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Abstract

Error correctiong codes (ECC) are widly used in applications to correct errors in data

transmission over unreliable or noisy communication channels. Recently, two kinds of

promising codes attracted lots of research interest because they provide excellent error

correction performance. One is non-binary LDPC codes, and the other is polar codes.

This dissertation focuses on efficient decoding algorithms and decoder design for these

two types of codes.

Non-binary low-density parity-check (LDPC) codes have some advantages over their

binary counterparts, but unfortunately their decoding complexity is a significant chal-

lenge. The iterative hard- and soft-reliability based majority-logic decoding algorithms

are attractive for non-binary LDPC codes, since they involve only finite field additions

and multiplications as well as integer operations and hence have significantly lower

complexity than other algorithms. We propose two improvements to the majority-logic

decoding algorithms. Instead of the accumulation of reliability information in the ex-

isting majority-logic decoding algorithms, our first improvement is a new reliability

information update. The new update not only results in better error performance and

fewer iterations on average, but also further reduces computational complexity. Since

existing majority-logic decoding algorithms tend to have a high error floor for codes

whose parity check matrices have low column weights, our second improvement is a

re-selection scheme, which leads to much lower error floors, at the expense of more fi-

nite field operations and integer operations, by identifying periodic points, re-selecting

intermediate hard decisions, and changing reliability information.

Polar codes are of great interests because they provably achieve the symmetric ca-

pacity of discrete memoryless channels with arbitrary input alphabet sizes while having

1



an explicit construction. Most existing decoding algorithms of polar codes are based

on bit-wise hard or soft decisions. We propose symbol-decision successive cancellation

(SC) and successive cancellation list (SCL) decoders for polar codes, which use symbol-

wise hard or soft decisions for higher throughput or better error performance. Then we

propose to use a recursive channel combination to calculate symbol-wise channel tran-

sition probabilities, which lead to symbol decisions. Our proposed recursive channel

combination has lower complexity than simply combining bit-wise channel transition

probabilities. The similarity between our proposed method and Arıkan’s channel trans-

formations also helps to share hardware resources between calculating bit- and symbol-

wise channel transition probabilities. To reduce the complexity of the list pruning, a

two-stage list pruning network is proposed to provide a trade-off between the error per-

formance and the complexity of the symbol-decision SCL decoder. Since memory is

a significant part of SCL decoders, we also propose a pre-computation memory-saving

technique to reduce memory requirement of an SCL decoder.

To reduce the complexity of the recursive channel combination further, we propose

an approximate ML (AML) decoding unit for SCL decoders. In particular, we investi-

gate the distribution of frozen bits of polar codes designed for both the binary erasure

and additive white Gaussian noise channels, and take advantage of the distribution to

reduce the complexity of the AML decoding unit, improving the throughput-area effi-

ciency of SCL decoders.

Furthermore, to adapt to variable throughput or latency requirements which exist

widely in current communication applications, a multi-mode SCL decoder with variable

list sizes and parallelism is proposed. If high throughput or small latency is required,

the decoder decodes multiple received words in parallel with a small list size. However,

2



if error performance is of higher priority, the multi-mode decoder switches to a serial

mode with a bigger list size. Therefore, the multi-mode SCL decoder provides a flexible

tradeoff between latency, throughput and error performance at the expense of small

overhead.

3



Chapter 1

Introduction

The only task of telecommunication systems is to maintain a reliable information

transmission over unreliable communication channels. Unfortunately, noise is every-

where. Communication channels are not ideal and contain different kinds of noise, thus

errors may be introduced during transmission from a transmitter to a receiver. Error cor-

recting codes is used in telecommunication systems to detect or correct such errors and

to restore transmitted data. There are a lot of error correcting codes: Hamming codes,

Bose-Chaudhuri-Hocquenghem (BCH) codes, Reed-Solomon(RS) codes, convolutional

codes, turbo codes, low-density parity check (LDPC) codes, non-binary LDPC codes,

polar codes, and so on. Among these codes, LDPC codes, non-binary LDPC and polar

codes have attracted lots of research interest recently because they have excellent error

correction performance.

4



1.1 Background and Motivation

1.1.1 Non-binary LDPC codes

Low-density parity-check (LDPC) codes were first developed by Gallager [4] in

1963. They were forgotten until they were rediscovered in the late 1990s by MacKay and

Neal [5]. Since then, the academic and industrial communities have focused on binary

LDPC codes, because long binary LDPC codes can achieve performance approaching

the Shannon limit (see, for example, [6]). Hence binary LDPC codes have been used in

various applications, such as digital television, Ethernet, home networking, and Wi-Fi.

Efficient decoding algorithms, encoder implementations, and decoder implementations

of binary LDPC codes (see, for example, [7–9]) have received significant attentions.

In 1998, the study of Davey and MacKay [10] showed that non-binary LDPC codes

over GF(q) (q > 2) perform better than their binary counterparts for moderate code

lengths. Moreover, non-binary LDPC codes also outperform binary LDPC codes on

channels with bursty errors and high-order modulation schemes [11]. These advan-

tages have motivated a steady stream of work on code designs [12, 13], decoding al-

gorithms [10, 11, 14–20], and decoder implementations [21–23] for non-binary LDPC

codes. Davey and MacKay [10] first used belief propagation (BP) to decode non-

binary LDPC codes. By applying the fast Fourier transform (FFT) of probabilities to

the BP algorithm, they also proposed a fast Fourier transform (FFT) based q-ary sum-

product algorithm (SPA), called FFT-QSPA [15]. The FFT-QSPA was further improved

by Barnault and Declercq [16]. Song and Cruz proposed a logarithm domain FFT-BP

algorithm [11]. The Min-Sum algorithm was applied to non-binary LDPC codes by

Wymeersch et al. [17]. Then Declercq and Fossorier [18] proposed the Extended Min-

5



Sum (EMS) algorithm by using only a limited number of probabilities in the messages

at inputs of check nodes. Savin [19] proposed the Min-Max algorithm.

The advantages of non-binary LDPC codes come at the expense of significantly

higher decoding complexity than their binary counterparts. Since complexity of decod-

ing non-binary LDPC codes is a key challenge, the iterative hard- and soft-reliability

based majority-logic decoding, referred to as IHRB-MLGD and ISRB-MLGD, respec-

tively, algorithms [20] are particularly attractive. When there is no ambiguity, MLGD

is omitted when referring to majority-logic decoding algorithms for brevity. Based on

the one-step majority logic decoding, these majority-logic decoding algorithms repre-

sent reliability information with finite field elements and integers, and hence involve

only finite field additions (FAs) and finite field multiplications (FMs) as well as integer

additions (IAs), integer comparisons (ICs), integer multiplications (IMs) and integer di-

visions (IDs). As a result, they require much lower computational complexities at the

expense of moderate error performance degradation. For instance, while the error per-

formance of the ISRB algorithm is within 1 dB of that of FFT-QSPA [16], its complexity

is only a small fraction of that of the latter [20]. With a performance loss of 1 dB, the

IHRB algorithm has even lower complexity than the ISRB algorithm [20]. Based on

the IHRB algorithm, Zhang et al. [23] proposed an enhanced IHRB-MLGD (EIHRB)

algorithm by introducing the soft-reliability initialization and re-computing the extrinsic

information. The EIHRB algorithm has a similar complexity to that of the IHRB algo-

rithm, but its error performance approaches that of the ISRB algorithm. The majority-

logic decoding algorithms are particularly effective for LDPC codes constructed based

on finite geometries and finite fields [13].

However, in these MLGD algorithms, the reliability information includes all check-
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to-variable messages of previous iterations. This leads to some performance loss and

lower convergence speed. Furthermore, these MLGD algorithms tend to show a high

error floor for codes whose parity check matrix have small column weights. In this

dissertation, we will tackle these two problems of MLGD algorithms for non-binary

LDPC codes.

1.1.2 Polar Codes

Polar codes, a groundbreaking finding by Arıkan [24] in 2009, have ignited a spark

of research interest in the fields of communication and coding theory, because they

provably achieve the symmetric capacity for both binary-input memoryless channel [24]

and nonbinary-input memoryless channels [25]. The second reason polar codes are

attractive is their low encoding and decoding complexity. For example, a polar code

of length N can be decoded by the successive cancellation (SC) algorithm [24] with

complexity O(N logN).

Polar codes’ capacity-approaching performance is achieved only when the code

length is large enough if the SC algorithm is used. For a short or moderate code length,

in terms of the error performance, polar codes with the SC algorithm are inferior to

Turbo codes or low-density parity-check (LDPC) codes [26, 27]. Thus, a lot of effort

has been made to improve the error performance of short polar codes. Systematic polar

codes [28] were proposed to reduce the bit error rate (BER) while guaranteeing the same

frame error rate (FER) as their non-systematic counterparts. Although a Viterbi algo-

rithm [29], a sphere decoding algorithm [30] and stack sphere decoding algorithm [31]

can provide maximum likelihood (ML) decoding of polar codes, they are considered
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infeasible, especially for long polar codes, due to their much higher complexity than the

SC algorithm. Recently, an SC list algorithm for polar codes was proposed in [32] to

bridge the performance gap between the SC algorithm and ML algorithms at the cost of

complexity O(LN logN), where L is the list size. Moreover, the concatenation of polar

codes with cyclic redundancy check (CRC) codes was introduced in [26,33]. To decode

the CRC-concatenated polar codes, a CRC detector is used in the SCL algorithm to help

select the output codeword. The combination of an SCL algorithm and a CRC detector

is called CRC-aided SCL (CA-SCL) algorithm. [33] shows that with the CA-SCL algo-

rithm, the error performance of a (2048, 1024) CRC-concatenated polar code is better

that of a (2304, 1152) LDPC code, which is used in the WiMax standard [34].

Several architectures have been proposed for the SC and SCL algorithms. Arıkan

[24] showed that a fully parallel SC decoder has a latency of 2N−1 clock cycles. A tree

SC decoder and a line SC decoder with complexity O(N) were proposed in [35]. These

two decoders have the same latency as the fully parallel SC decoder. To reduce com-

plexity further, Leroux et al. [36] proposed a semi-parallel SC decoder for polar codes

by taking advantage of the recursive structure of polar codes to reuse processing re-

sources. Assuming that the number of processing elements (PEs) are P (P = 2p ≤ N),

the latency of the semi-parallel SC decoder is 2N+ N
P
log2(

N
4P

) clock cycles. A scalable

semi-parallel architecture was proposed in [37]. To reduce the latency, a simplified SC

(SSC) polar decoder was introduced in [38] and it was further analyzed in [39]. In the

SSC polar decoder, a polar code is converted to a binary tree including three types of

nodes: rate-one, rate-zero and rate-R nodes. Based on the SSC polar decoder, the ML

SSC decoder makes use of the ML algorithm to deal with part of rate-R nodes in [40].

However, the SSC and ML-SSC polar decoders depend on positions of information bits

and frozen bits, and are code-specific consequently. In [41], a pre-computation look-

8



ahead technique was proposed to reduce the latency of the tree SC decoder by half.

For the SCL polar decoder, the semi-parallel architecture was adopted in [42]. In [43]

Balatsoukas-Stimming et al. proposed an architecture of L = 4 to achieve a throughput

of 124 Mbps and a latency of 8.25 ms when decoding a (1024, 512) polar code. In [44],

Lin and Yan designed an SCL polar decoder with a throughput of 182 Mbps and a la-

tency of 5.63 ms. To reduce the memory requirement, the log-likelihood ratio (LLR)

messages are used in [45]. The throughpu t of existing polar decoders is still not high

enough for high speed applications.

The aforementioned polar decoders are based on soft or hard bit decisions. That is,

they deal with bits serially, leading to low throughput (or long latency). Several previous

works attempt to improve the throughput (or latency) by dealing with multiple bits at

a time. In [2], the data bits of a polar code are split into several streams, which are

decoded simultaneously. This idea of parallel processing is extended in [1], where the

SC decoder is transformed into a concatenated decoder, where all the inner SC decoders

are carried out in parallel. Yuan and Parhi proposed a multi-bit SCL decoder [3]. But

their computation methods for symbol-based transition probabilities have unnecessary

high complexity. The first problem we deal with here for polar codes is how to design a

low-complexity ML decoding unit to calculation symbol-based transition probabilities.

Many applications, such as modern wireless or wireline communication systems, re-

quire variable data rate transmission and have stringent latency requirements. As a po-

tential candidate of FEC technique for future communication systems, a polar decoder

supporting variable data rate and variable decoding latency is desired. Unfortunately,

existing polar decoders provide only fixed latency and throughput (data rate). In this

dissertation, we will introduce a multi-mode area-efficient SCL (MM-SCL) polar de-

9



coder with variable list sizes and parallelism. When the error performance is of higher

priority, the MM-SCL decoders is under a mode with a large list size to provide a good

error performance. However, when the channel is good enough and the error perfor-

mance with a smaller list size is acceptable, the MM-SCL decoder switches to a mode

with this smaller list size to provide a higher throughput and a shorter decoding latency.

Therefore, the MM-SCL decoder provides a flexible trade-off between latency, through-

put and error performance and can easily adapt to different communication channels and

applications.

1.2 Outline of the Dissertation

This dissertation is organized as follows:

In Chapter 2, two improvements to the majority-logic decoding algorithms are pre-

sented. Instead of the accumulation of reliability information in the existing majority-

logic decoding algorithms, our first improvement is a new reliability information update.

The new update not only results in better error performance and fewer iterations on av-

erage, but also further reduces computational complexity. Since existing majority-logic

decoding algorithms tend to have a high error floor for codes whose parity check matri-

ces have low column weights, our second improvement is a re-selection scheme, which

leads to much lower error floors, at the expense of more finite field operations and inte-

ger operations, by identifying periodic points, re-selecting intermediate hard decisions,

and changing reliability information.

In Chapter 3, symbol-decision successive cancellation (SC) and successive cancel-
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lation list (SCL) decoders for polar codes are presented, which use symbol-wise hard or

soft decisions for higher throughput or better error performance. First, we propose to

use a recursive channel combination to calculate symbol-wise channel transition prob-

abilities, which lead to symbol decisions. Then we show that our proposed recursive

channel combination has lower complexity than simply combining bit-wise channel

transition probabilities. The similarity between our proposed method and Arıkan’s chan-

nel transformations also helps to share hardware resources between calculating bit- and

symbol-wise channel transition probabilities. Second, a two-stage list pruning network

is proposed to provide a trade-off between the error performance and the complexity

of the symbol-decision SCL decoder. Third, since memory is a significant part of SCL

decoders, we propose a pre-computation memory-saving technique to reduce memory

requirement of an SCL decoder. Finally, to evaluate the throughput advantage of our

symbol-decision decoders, we design an architecture based on a semi-parallel succes-

sive cancellation list decoder. In this architecture, different symbol sizes, sorting imple-

mentations, and message scheduling schemes are considered.

In Chapter 4, an approximate ML (AML) decoding unit for SCL decoders is inves-

tigated. In particular, the distribution of frozen bits of polar codes designed for both the

binary erasure and additive white Gaussian noise channels are investigated. By taking

advantage of the distribution, the complexity of the AML decoding unit is reduced fur-

ther. Moreover, to adapt to variable throughput and latency requirements which widely

exist in practical applications, a multi-mode SCL decoder with variable list sizes and

parallelisms is discussed. The multi-mode SCL decoder provides a flexible trade-off

between throughput, latency and error performance.

Chapter 5 concludes this dissertation and discusses some future work regarding non-
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binary LDPC codes and polar codes.
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Chapter 2

Improved MLGD Algorithms for

Non-binary LDPC Codes

The main contributions of this chapter are two improvements to the majority-logic

decoding algorithms for non-binary LDPC codes.

• The first improvement is a new reliability information update, instead of the accu-

mulation of reliability information used in existing majority-logic decoding algo-

rithms.

• Since existing majority-logic decoding algorithms tend to have a high error floor

for codes whose parity check matrices have small column weights, our second

improvement is a re-selection scheme, which lowers error floors at the expense of

more finite field operations and integer operations by identifying periodic points,

re-selecting intermediate hard decisions, and changing reliability information.
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In the ISRB and IHRB algorithm, the reliability information includes all check-to-

variable (c-to-v) messages of previous iterations. The new reliability information up-

date proposed in this chapter excludes the c-to-v messages of previous iterations. It not

only results in better error performance and fewer iterations on average, but also greatly

reduces computational complexities of all existing majority-logic decoding algorithms.

For instance, when applied to the ISRB majority-logic decoding algorithm, the new reli-

ability information update results in a 0.15 dB coding gain and reduces required number

of iterations by 10% at 4.7 dB for a (16, 16)-regular (255, 175) cyclic LDPC code over

GF(28) constructed with the method as describe in [46, Example 4]. Also, at a block

error rate (BLER) of 10−4, the coding gain over the EIHRB algorithm is about 0.07 dB.

At the SNR of 4.7 dB, the average number of iterations is reduced by about 25%. Fur-

thermore, with the new reliability information update, the improved algorithms require

significantly fewer IAs and ICs than the ISRB and EIHRB algorithms. Finally, the ex-

isting majority-logic decoding algorithms are based on the accumulation of reliability

information, and hence the numerical range of the reliability information increases with

iterations. In contrast, the proposed reliability information update results in a fixed nu-

merical range and thus simplifies hardware implementations. Our new reliability update

has been presented in part in [47]. By applying both the layered scheduling and our first

improvement to the IHRB algorithm, we proposed a layered improved IHRB decoder

with a high throughput in [48]. Because the architecture design of non-binary LDPC

decoders is beyond the scope of this chapter, we will not discuss the layered improved

IHRB decoder henceforth.

In the literature, to analyze the error floor of binary LDPC codes, some notions

based on graphical structures have been introduced, such as stopping sets [49], trapping

sets [50] and absorbing sets [51]. Unfortunately, trying to lower the error floor based
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on graphical structures usually incurs very high complexity. Also, some approaches

for binary LDPC codes cannot be readily adapted to non-binary ones. For instance, a

selective biasing postprocessing algorithm is proposed in [51] to lower the error floors of

binary LDPC codes based on the relaxed graphical structure of absorbing sets. However,

for non-binary LDPC codes, trapping sets are difficult to identify because they involve

not only the graph topology but also values of non-zero entries of parity-check matrices

[52]. Moreover, the biasing rule between two elements for binary LDPC codes cannot

be applied to non-binary codes directly, because there are more than two elements in a

non-binary finite field.

In this chapter, for the majority-logic decoding algorithms, we propose a re-selection

scheme based on periodic points to lower the error floors. The re-selection scheme is

not a postprocessing algorithm and can be integrated into the regular iteration procedure

easily. For instance, for an (837, 726) non-binary quasi-cyclic LDPC code over GF(25)

constructed with the method in [13] with a column weight of four, the EIHRB algorithm

has a BLER floor around 10−3, while the hard-reliability based algorithm with the new

reliability information update and the re-selection scheme achieves a BLER floor below

10−5. Although this re-selection scheme requires additional computation, it is used only

when existing majority-logic decoding algorithms have a high error floor.

The rest of our chapter is organized as follows. Section 2.1 reviews existing majority-

logic decoding algorithms for non-binary LDPC codes. Section 2.2 proposes the two

improvements. In Section 2.3.1, the two improvements are applied to existing majority-

logic decoding algorithms to illustrate their advantages in error performance and aver-

age numbers of iterations. Section 2.3.2 discusses the reduction in the computational

complexities due to the two improvements. Some conclusions are given in Section 2.4.
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2.1 Existing Majority-Logic Decoding Algorithms

The basic idea of the ISRB and IHRB algorithms [20] is the majority-logic decod-

ing. They calculate reliability information of variable nodes iteratively. Based on the

reliability information, by the majority-logic decoding, hard-decisions are made in each

iteration and are passed from variable nodes to check nodes. After getting these hard-

decisions, check nodes provide votes for variable nodes. Here, a vote for a variable node

provided by a check node is the value the variable node should be so that the check node

is satisfied, assuming the other variable nodes adjacent to the check node take the values

of hard decisions of the previous iteration. Then, based on the reliability information of

the previous iteration and these votes, the reliability information of the current iteration

is updated. Hence, the reliability information comes from the channel information and

votes generated during iterations. The initial hard decisions come from the channel in-

formation. The difference between the ISRB and IHRB algorithms is that they use the

soft and hard channel information, respectively, for the initial reliability information and

vote information coefficients.

The EIHRB algorithm [23] was devised based on the IHRB algorithm by intro-

ducing a soft-reliability initialization. However, for vote information coefficients, the

EIHRB algorithm still uses the hard channel information. Moreover, the EIHRB algo-

rithm recalculate the extrinsic information to check nodes. Hence, if the soft-reliability

information of the received symbol is available, the EIHRB algorithm achieves a better

performance than the IHRB algorithm. Therefore, we focus on the EIHRB algorithm

and do not consider the IHRB algorithm further.

For the ISRB, IHRB and EIHRB algorithm, the reliability information update is an
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accumulation operation. To perform these three algorithm correctly, the reliability in-

formation must be kept from numerical saturation based on two methods. One is to use

a very large numerical range to store the reliability information. The other is to carry out

a clipping operation for the reliability information. Furthermore, the accumulated reli-

ability information update conflicts the extrinsic information principle for the iteration

message-passing algorithm.

2.2 Two Improvements

A regular LDPC code C of length N over a finite field GF(2r) is the null space

of an M × N sparse parity check matrix H over GF(2r). H has constant column

and row weights of γ and ρ, respectively. Let h0,h1, · · · ,hM−1 denote the rows of

H, where hi = (hi,0, hi,1, · · · , hi,N−1) for 0 ≤ i < M . Let (al,0, al,1, · · · , al,r−1)

be the binary representation of al ∈ GF(2r), for 0 ≤ l < 2r. Suppose a codeword

x = (x0, x1, · · · , xN−1) is transmitted. Since xi ∈ GF(2r) can be represented by an

r-tuple (xi,0, xi,1, · · · , xi,r−1) over GF(2) for 0 ≤ i < N , an Nr-tuple over GF(2) is

transmitted for each codeword. Let y = (y0, y1, · · · , yN−1) represent the received word,

and z = (z0, z1, · · · , zN−1) and q = (q0, q1, · · · , qN−1) represent the hard decision and

quantization, respectively, of the received word. Let N(i) = {j : hi,j ̸= 0, 0 ≤ j < N}

for 0 ≤ i < M and M(j) = {i : hi,j ̸= 0, 0 ≤ i < M} for 0 ≤ j < N . Imax represents

the maximal iteration number. Throughout this chapter, the superscript (k) is added to

denote variables in the k-th iteration. s(k) is the syndrome vector corresponding to z(k).

σ
(k)
i,j and ϕi,j are the vote and vote information coefficient, respectively, from check node

i to variable node j. φj,l, ψ
(k)
j,l , and R(k)

j,l are the channel reliability, extrinsic reliability
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and overall reliability information, respectively, of the j-th received symbol being al.

2.2.1 New Reliability Information Update

The reliability information update of the ISRB algorithm can be written as:

R
(k+1)
j,l = R

(k)
j,l + ψ

(k)
j,l

= R
(0)
j,l +

k∑
t=0

ψ
(t)
j,l

(2.1)

R
(k)
j,l includes all check-to-variable (c-to-v) messages of previous iterations. This con-

flicts with the extrinsic information principle.

We propose a new reliability information update to exclude the c-to-v messages of

previous iterations. The new reliability information update, shown as Eq. (2.2), uses

only the channel information φj,l and ψ(k)
j,l of the current iteration to compute the relia-

bility information R(k+1)
j,l :

R
(k+1)
j,l = ξ1φj,l + ξ2ψ

(k)
j,l , (2.2)

where ξ1 and ξ2 are two parameters to improve the error performance. Consequently the

new algorithm, presented in Alg. 1, is called the IISRB algorithm.

To reduce complexity of the IISRB algorithm, we calculate ξ1φi,j and ξ2ϕi,j in the

initialization. This helps to reduce the complexity of each iteration.

By applying the new reliability information update to the EIHRB algorithm, we have
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Algorithm 1: IISRB algorithm
/* ------Initialization------- */

1 for j = 0 : (N − 1) do
2 z

(0)
j = zj;

3 for l = 0 : (2r − 1) do
4 φ′

j,l =
∑r−1

t=0 (1− 2al,t)qj,t;
5 φj,l = ξ1φ

′
j,l;

6 for i = 0 : (M − 1) do
7 for j ∈ N(i) do
8 ϕi,j = ξ2 mint∈N(i)\{j} maxl φ

′
t,l;

/* -------Iteration-------- */
9 for k = 0 : Imax do

10 s(k) = H · (z(k))T ;
11 if s(k) == 0 then return z(k) else if k == Imax then return Failure else
12 for j = 0 : (N − 1) do
13 for l = 0 : (2r − 1) do
14 ψ

(k)
j,l = 0;

15 for i ∈ M(j) do
16 σ

(k)
i,j = h−1

i,j

∑
t∈N(i)\{j} hi,tz

(k)
t ;

17 for l = 0 : (2r − 1) do
18 if σ(k)

i,j == al then ψ
(k)
j,l = ψ

(k)
j,l + ϕi,j

19 for j = 0 : (N − 1) do
20 for l = 0 : (2r − 1) do
21 R

(k+1)
j,l = φj,l + ψ

(k)
j,l ;

22 z
(k+1)
j = argal maxR

(k+1)
j,l ;
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the IEIHRB algorithm. For the sake of conciseness, we only present the initialization of

the IEIHRB algorithm in Alg. 2, where c1, c2 and c3 are parameters to improve the error

performance, because the iteration part of the IEIHRB algorithm is the same as that of

the IISRB algorithm. For the IISRB algorithm, ϕi,j is from the channel information.

However, for the IEIHRB algorithm, ϕi,j is a constant.

Algorithm 2: Initialization of the IEIHRB algorithm
1 for j = 0 : (N − 1) do
2 z

(0)
j = zj;

3 for l = 0 : (2r − 1) do
4 φj,l =

∑r−1
t=0 (1− 2al,t)qj,t;

5 R
(0)
j,l = max(⌊φj,l/c1⌋+ c2 −maxl(⌊φj,l/c1⌋), 0);

6 for i = 0 : (M − 1) do
7 for j ∈ N(i) do
8 ϕi,j = c3;

2.2.2 Re-selection Scheme

Furthermore, we observe that the error floor of the ISRB algorithm becomes higher,

as the column weight of the parity check matrix decreases. The IISRB algorithm suffers

the same problem. Unless otherwise specified, the BPSK modulation, the additive white

Gaussian noise (AWGN) channel with a single-sided power spectral density N0, a 6-bit

uniform quantization with 64 levels and an interval length ∆ = 0.0625, and Imax = 50

are used in our following numerical simulations.

In Fig. 2.1, C1 is an (837, 726) LDPC code over GF(25) with a column weight of

four, C2 an (806, 680) LDPC code over GF(25) with a column weight of five, C3 a

(775, 634) LDPC code over GF(25) with a column weight of six. All three codes are
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constructed based on Reed–Solomen codes with two information symbols [13]. The

error floor of BLER performance becomes lower as the column weight of the parity

check matrix increases. Hence, the column weight of the parity check matrix is one key

factor for the error floor.
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Figure 2.1: BLERs of the soft-reliability based algorithms for different codes with dif-
ferent column weights

We propose a re-selection scheme to address this problem. To simplify the dis-

cussion, here we focus on the IISRB algorithm. Our simulation results show that the

re-selection scheme also applies to the ISRB, EIHRB and IEIHRB algorithms.

To analyze the error floor, the concept of periodic points is introduced. Given an
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endomorphism f : Z → Z, a point z in Z is called a periodic point with a period of i if

there exists a smallest positive integer i so that f (i)(z) = z, where f (i) = f(f (i−1)(z)).

An iteration of the IISRB algorithm can be considered a function f . The k-th iter-

ation of the IISRB algorithm is z(k) = f(z(k−1)) = f (2)(z(k−2)) = · · · = f (k)(z(0)),

and if s(k) ̸= 0 and z(k) = z(k−i) for 0 < i ≤ k, the decoding algorithm results in a

periodic point with a period of i. Our algorithm focuses on only the periodic points with

a period of up to two for two reasons. First, our simulation results show that the BLERs

are caused mainly by periodic points with periods one and two. Second, to identify the

existence of a periodic point with a period of greater than two needs more memory to

keep track of the hard decisions of the previous iterations.

If the Hamming distance between a periodic point and its corresponding transmitted

codeword is less than θ, the periodic point with a period of up to two is called a small-

distance periodic point (SDPP). Otherwise, the periodic point with a period of up to

two is called a large-distance periodic point (LDPP). The solid curves of Fig. 2.2 show

the BLER of the IISRB algorithm and the BLER caused by SDPPs or LDPPs for the

(837, 726) code when θ = 8. For low SNRs, the overall BLER is dominated by those

caused by LDPPs. The sum of the BLERs due to SDPPs and LDPPs is less than the

overall BLER, because periodic points with a period greater than two also cause some

BLERs. For high SNRs, the BLER caused by SDPPs dominates the total BLER. A

similar trend for the ISRB algorithm was observed as well. Hence, for the ISRB and

IISRB algorithms, the error floor is mainly caused by SDPPs.

Consider the hard decision process of line 22 of Alg. 1. If the most likely decision is

wrong, the second most likely decision is supposed to be the best choice to be decoded.

The smaller the difference between the maximal reliability information and the second
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Figure 2.2: BLERs of SDPPs and LDPPs for the IISRB and RS-IISRB algorithm to
decode the (837, 726) code

maximal reliability information, the greater the probability that the most likely decision

is wrong.

Based on this intuition, when a periodic point is detected, the re-selection scheme

tries to help the decoder get away from the periodic point by using the second most likely

decision. The re-selection scheme consists of two steps. The first step is to identify

the existence of a periodic point when the syndrome vector is a non-zero vector. The

second step is to identify positions of erroneous symbols. A set is defined to include

variable nodes adjacent to unsatisfied check nodes. This set contains some erroneous

symbols. Then, among the variable nodes belonging to the set, the position of a variable

node which has the smallest difference between its maximal reliability information and

second maximal reliability information can be identified. If there are multiple variable

nodes having the smallest difference, the first one is selected. Assume the index of this
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position is rs_n. Let us_cj represent the number of unsatisfied check nodes connected

with the j-th variable node for 0 ≤ j < N . The most likely decision z(k)rs_n is replaced by

the second most likely decision z̃(k)rs_n. Meanwhile, φ
rs_n,z(k)rs_n

is reduced by a preset offset

ζ and φ
rs_n,z̃(k)rs_n

is added by the same preset offset. The detailed re-selection scheme is

described in Alg. 3. Here, s(k)i is the i-th value of the syndrome vector s(k).

Algorithm 3: Re-selection scheme
1 for j = 0 : (N − 1) do
2 z̃

(k)
j = arg

al∈GF (2r)\{z(k)j }maxR
(k)
j,l ;

3 if (z(k−1) == z(k)) or (z(k−2) == z(k)) then
4 dif_R= R

(k)

0,z
(k)
0

;

5 for j = 0 : (N − 1) do
6 us_cj = 0;
7 for i ∈ M(j) do
8 if (s(k)i > 0) then us_cj ++

9 if (us_cj > 0) and ((R
(k)

j,z
(k)
j

−R
(k)

j,z̃
(k)
j

) < dif_R) then

10 dif_R = (R
(k)

j,z
(k)
j

−R
(k)

j,z̃
(k)
j

);

11 rs_n = j;
12

13 φ
rs_n,z(k)rs_n

= φ
rs_n,z(k)rs_n

− ζ;
14 φ

rs_n,z̃(k)rs_n
= φ

rs_n,z̃(k)rs_n
+ ζ;

15 z
(k)
rs_n = z̃

(k)
rs_n;

16 for i ∈ M(rs_n) do
17 s

(k)
i = hi · (z(k))T ;

This scheme can be applied to any majority-logic decoding algorithms. For the

IISRB algorithm, this scheme is added between lines 11 and 12. Similarly, the re-

selection scheme can be inserted at the corresponding position of other algorithms. “RS-

” is prefixed in front of the name of the algorithms to show that an algorithm adopts the

re-selection scheme. For instance, the ISRB algorithm with the re-selection scheme is
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called as the RS-ISRB algorithm.

The dash-dot lines of Fig. 2.2 show the BLERs of the RS-IISRB algorithm and those

caused by SDPPs and LDPPs. Compared with the IISRB algorithm, the BLER caused

by LDPPs descends to 2 × 10−4 from 1.2 × 10−3, and the BLER caused by SDPPs is

reduced to 7×10−5 from 4×10−3 when SNR is 4.8 dB. Hence, the rs-selection scheme

reduces the occurrences of both SDPPs and LDPPs and works better on the former. Even

for the RS-IISRB algorithm, SDPPs still are the primary reason for the error floor.

The re-selection scheme helps the decoding algorithm correct some periodic points.

It is likely that the decoding algorithm goes out of a periodic point temporarily, and goes

back to the same periodic point or results in another periodic point. Therefore, even with

the re-selection scheme, the decoding algorithm still encounters the error floor problem.

Moreover, the re-selection scheme works better on SDPPs because in general a SDPP

involves fewer unsatisfied check nodes than a LDPP.

2.3 Performance Evaluation

2.3.1 Error Performance and Average Numbers of Iterations

Our simulations focus on C1, C2, and C3, whose parity check matrices have small

column weights, as well as a (255,175) cyclic LDPC code over GF(28) constructed with

the method as describe in [46, Example 4], because it has a large column weight of 16.

We first compare the performance of the soft-reliability based algorithms. The ISRB,

IISRB and RS-IISRB algorithms are used to decode the (255, 175) code. For the ISRB
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algorithm, different values of λ = 4l for l = 1, 2, · · · , 8, were tried, and λ = 16 leads to

the best performance. For the new reliability information update, different combinations

of ξ1 and ξ2 were tested. Since they are weighting factors, we fix ξ2 = 1 and try different

values for ξ1. For the (255, 175) code, ξ1 = 4, 5, 6, 7, 8, 9, 10 were tried and (ξ1 = 7,

ξ2 = 1) results in the best error performance1. The real values from 6.2 to 7 with a

step size of 0.2 for ξ1 and ξ2 = 1 were tested as well. Performance differences between

different real value coefficients are very small. Henceforth, integer values are used for

ξ1 and ξ2 to reduce complexity.
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Figure 2.3: BLERs of the ISRB, IISRB and RS-IISRB algorithms for the (255, 175)
code

The BLER curves of the ISRB, IISRB, RS-IISRB and Min-Max algorithms for the

(255,175) code are shown in Fig. 2.3. The IISRB algorithm has a 0.15 dB coding gain

versus the ISRB algorithm in this case. The RS-IISRB algorithm also achieves a slight
1The comparison of these parameters is omitted due to the limited space, and can be found in an

extended version of this manuscript [53].
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improvement compared to the IISRB algorithm and has a performance loss of about 0.4

dB versus the Min-Max algorithm.

If a total of T iterations is used to decode K received words, the average number

of iterations per received word is T/K. The average numbers of iterations per received

word for the soft-reliability algorithms are compared in Table 2.1, where K is chosen

such that at least 100 erroneous decoded words are observed for each SNR. Table 2.1

shows that both the RS-IISRB and IISRB algorithms require fewer iterations than the

ISRB algorithm. At 4.7 dB, the average number of iterations of the IISRB algorithm

is fewer by 10% than that of the ISRB algorithm. The advantage of the IISRB and

RS-IISRB algorithm is even more pronounced for low SNRs.

Table 2.1: Average number of iterations of the Min-Max (nm = 16), ISRB, IISRB and
RS-IISRB algorithms for the (255, 175) code

Eb/N0(dB) Min-Max [19] ISRB [20] IISRB RS-IISRB
4.0 2.35 18.76 11.58 11.25
4.1 1.91 13.25 8.17 7.85
4.2 1.60 9.10 5.78 5.71
4.3 1.36 6.46 4.46 4.41
4.4 N/A 4.59 3.59 3.59
4.5 N/A 3.68 3.06 3.05
4.6 N/A 3.10 2.71 2.70
4.7 N/A 2.74 2.46 2.46
4.8 N/A 2.50 2.27 2.28

The ISRB, IISRB and RS-IISRB algorithms are also used to decode the (837, 726)

code. The best BLER performance of the IISRB algorithm is achieved when ξ1 = 4

and ξ2 = 1. Fig. 2.4 compares the BLERs of the ISRB, IISRB, RS-IISRB and Min-Max

algorithms for this code. The IISRB algorithm has a 0.2 dB coding gain versus the ISRB

algorithm, but both algorithms show an error floor around 10−3. Compared with these

two algorithms, for low SNRs the RS-IISRB algorithm shows a slight improvement, and
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for high SNRs the RS-IISRB algorithm lowers the error floor to below 10−5 and has a

performance loss of only 0.6 dB versus the Min-Max algorithm at the BLER of 10−3.
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Figure 2.4: BLERs of the ISRB, IISRB and RS-IISRB algorithms for the (837, 726)
code

The average numbers of iterations for the (837,726) code with different SNRs are

listed in Table 2.2. The average numbers of iterations of the IISRB and RS-IISRB al-

gorithms are fewer by at least 20% than that of the ISRB algorithm. The number of

iterations of the RS-IISRB algorithm is slightly fewer than those of the IISRB algorithm

because of the re-selection scheme. In addition, we compare the running time of dif-

ferent decoding algorithms (implemented in C) on a DELL Optiplex 755. To decode

10,000 codewords of the (837,726) code over the AWGN channel at the SNR of 5.4 dB,

the ISRB, IISRB and RS-IISRB algorithms run 22.22, 19.48 and 19.37 seconds, respec-
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tively. The running time is consistent with the comparison based on the average number

of iterations.

Table 2.2: Average number of iterations of the ISRB, IISRB and RS-IISRB algorithms
for the (837, 726) code

Eb/N0 (dB) ISRB [20] IISRB RS-IISRB
4.5 22.18 10.58 9.97
4.6 16.52 8.22 7.62
4.7 12.69 6.54 6.30
4.8 9.40 5.49 5.33
4.9 7.44 4.79 4.64
5.0 5.99 4.20 4.12
5.1 5.21 3.80 3.71
5.2 4.53 3.44 3.38
5.3 4.06 3.15 3.10
5.4 3.66 2.90 2.87

For C1, C2 and C3, the BLERs of the RS-IISRB algorithm are shown with the

dashed curves in Fig. 2.1. For C1 and C2, ξ1 = 4, ξ2 = 1, λ = 16, ζ = 32. For

C3, ξ1 = 5, ξ2 = 1, λ = 16, ζ = 32. The RS-IISRB algorithm improves the BLER

performance and lowers the error floor for all three codes. In Fig. 2.1, for C1, the

simulation result for the RS-ISRB algorithm is shown as well, which does not adopt

the new reliability information update but the re-selection scheme. It appears that the

re-selection scheme also provides some performance gain. If both improvements are

applied, the RS-IISRB algorithm achieves a greater performance gain.

We evaluate the proposed soft-reliability based algorithms over block fading chan-

nels, which are widely used in wireless communication systems involving slow time-

frequency hopping or multi-carrier modulation using orthogonal frequency division mul-

tiplexing technique. We assume that each codeword experiences a block Rayleigh fading

channel and that the receiver has perfect channel state information. For the (837,726)
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code over a block Rayleigh fading channel, the IISRB and RS-IISRB algorithms have a

gain of about 0.2 dB over the ISRB algorithm, which is similar to that over the AWGN

channel. The proposed improvements reduce the average number of iterations by about

5%2.

Next, we compare the performances of hard-reliability based MLGD algorithms.

The EIHRB-INIT algorithm [23] is a simplified version of the EIHRB algorithm with-

out the recalculation of the extrinsic information. The RS-IEIHRB algorithm is devel-

oped by integrating the re-selection scheme describe in Section 2.2.2 into the IEIHRB

algorithm.
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Figure 2.5: BLERs of hard-reliability based algorithms for the (255,175) code

Fig. 2.5 shows the BLERs of different hard-reliability based algorithms for the
2More detail can be found in [53].
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(255,175) code, and Table 2.3 lists the average numbers of iterations. For the EIHRB-

INIT and EIHRB algorithm, c1 = 4 and c2 = 15. For the IEIHRB and RS-IEIHRB

algorithm, c1 = 1, c2 = 63, c3 = 12 and ζ = 16. For the (255,175) code the new relia-

bility information update provides about 0.05 dB performance gain, and the re-selection

scheme provides another 0.05 dB performance gain. Hence, compared with the EIHRB

algorithm, the RS-IEIHRB algorithm has about 0.1 dB performance gain, and the av-

erage number of iterations required by the RS-IEIHRB algorithm is reduced by about

30%.
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Figure 2.6: BLERs of hard-reliability based algorithms for different non-binary LDPC
codes with different column weights

Fig. 2.6 compares the BLERs of hard-reliability based algorithms for different non-

binary LDPC codes with different column weights. For C1 and C2, c1 = 10, c2 = 63,
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Table 2.3: Average number of iterations of the hard-reliability based algorithms for the
(255, 175) code

Eb/N0 EIHRB-INIT EIHRB IEIHRB RS-IEIHRB
(dB) [23] [23]
4.0 22.28 18.56 12.67 12.09
4.1 16.48 13.62 8.99 8.85
4.2 12.21 9.54 6.42 6.09
4.3 8.57 7.20 4.70 4.62
4.4 6.44 5.57 3.70 3.69
4.5 5.15 4.70 3.10 3.10
4.6 4.29 4.07 2.73 2.72
4.7 3.75 3.65 2.47 2.47
4.8 3.38 3.33 2.28 2.28
4.9 3.09 3.06 2.14 2.14

c3 = 2 and ζ = 32. For C3, c1 = 11, c2 = 63, c3 = 2 and ζ = 32. For the (837,726)

code, the EIHRB algorithm also has an error floor of 10−3. For low SNRs, the IEIHRB

algorithm outperforms the EIHRB algorithm and the RS-IEIHRB algorithm reduces the

error floor to a level of 10−5. In the error floor region, the EIHRB algorithm is better

than the IEIHRB algorithm because of the use of z(k)i,t and recalculating the extrinsic

information in the latter. The two improvements in Section 2.2 also help to reduce the

average number of iterations by at least 20% for the (837,726) code as listed in Table 2.4.

For C2 and C3, the new reliability information update provides some performance gains

for low SNRs, and the error floors are lowered effectively.

In summary, the two improvements introduced in Section 2.2 apply to both the soft-

reliability and hard-reliability based MLGD algorithms. While both improvements im-

prove the error performance and require fewer iterations on average, the re-selection

scheme lowers the error floor of codes with low column weights effectively.
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Table 2.4: Average number of iterations of the hard-reliability based algorithms algo-
rithm for the (837, 726) code

Eb/N0 EIHRB-INIT EIHRB IEIHRB RS-IEIHRB
(dB) [23] [23]
4.2 43.01 37.25 28.83 27.49
4.4 32.19 23.09 15.52 14.55
4.6 18.85 12.41 8.29 7.83
4.8 10.57 7.60 5.45 5.22
5.0 6.79 5.49 4.13 4.01
5.2 4.98 4.37 3.36 3.27

2.3.2 Computational Complexity Reduction

We evaluate impacts on the complexity by the two proposed improvements and fo-

cus on the soft-reliability based MLGD algorithms first. Assume the quantized input

information qj,t has a bit width of ω. Without the clipping operation, for the ISRB al-

gorithm, R(k)
j,l needs ω + ⌈log2((λ + Imaxγ)r)⌉ bits and its bit width increases as Imax

grows. However, for the IISRB algorithm, R(k)
j,l needs only ω+ ⌈log2((ξ1 + ξ2γ)r)⌉ bits

and Imax has no impact on R(k)
j,l ’s bit width. With the clipping operation, R(k)

j,l needs

a smaller bit width in the ISRB algorithm. However, N2r IAs and N(2r − 1) ICs are

needed per iteration to carry out the clipping operation. In contrast, there is no accumu-

lation operation in the IISRB and RS-IISRB algorithms. Thus, saturation is not an issue

for the IISRB and RS-IISRB algorithms, and the clipping operation is not needed.

For the IISRB algorithm, let us consider the initialization step first. There are N2r

φj,l’s. To compute φj,l’s needs Nr2r IAs. Because maxl φt,l = φt,zt and there are Nγ

ϕi,j’s, Nγ(ρ − 2) ICs are needed to calculate ϕi,j’s. The calculations of ξ1φj,l’s and

ξ2ϕi,j’s need N2r and Nγρ IMs, respectively. Therefore, the initialization step needs

Nr2r IAs, N2r +Nγρ IMs and Nγ(ρ− 2) ICs.
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We now analyze the complexity per iteration of the IISRB algorithm. Each iteration

needs Mρ FMs and M(ρ− 1) FAs to calculate the syndrome s(k). Line 16 in Alg. 1 can

be reformulated as:

σ
(k)
i,j = h−1

i,j s
(k)
i + z

(k)
j (2.3)

Hence, Nγ FAs and Nγ FMs are needed to calculate σ(k)
i,j ’s. Assume there are u(k)j

(0 < u
(k)
j ≤ γ) different values among σ(k)

i,j ’s for each j, then u(k)j R
(k+1)
j,l ’s need to be

updated. To compute ψ(k)
j,l ’s and R(k+1)

j,l ’s, γ−u
(k)
j and u(k)j IAs are needed, respectively,

for each j. For z(k+1)
j , R(k+1)

j,z
(k+1)
j

must be one of R(k+1)
j,zj

and those R(k+1)
j,l updated in the

k-th iteration. To make the hard decisions, Nγ ICs are needed at most. Hence, in the

worst case, each iteration of the IISRB algorithm requires 2Nγ FMs, 2Nγ −M FAs,

Nγ IAs and Nγ ICs (Mρ = Nγ). Compared with the ISRB algorithm, the IISRB

algorithm saves N2r IAs and N(2r+1 − 2 − γ) ICs for each iteration, while requiring

the same numbers of FAs and FMs. This saving is significant if 2r is large.

We now calculate the computational complexity overhead due to the re-selection

scheme. z̃ = (z̃0, z̃1, · · · , z̃N−1) represents the second most likely decision of the re-

ceived word y. To acquire z̃j in the initialization step, r − 1 ICs are needed for each j,

because r-bit representations of z̃j and zj differ by one bit and there are r elements over

GF(2r) satisfying this constraint. Hence, the initialization step of the RS-IISRB algo-

rithm needs N(r− 1) ICs more than that of the IISRB algorithm. For each iteration, the

second maximum among R(k)
j,l ’s must be one of R(k)

j,z̃j
, R(k)

j,zj
and those R(k)

j,l ’s updated. It

needs at most N(γ + 1) ICs per iteration. Line 3 of Alg. 3 needs 2N ICs to identify the

existence of a periodic point. Nγ IAs and Nγ ICs are needed to calculate us_cj . The

calculation of dif_R needs 2N ICs and N IAs. φ
rs_n,z(k)rs_n

and φ
rs_n,z̃(k)rs_n

need two IAs.

After the re-selection scheme, there are γ syndromes to be recalculated so that Eq. (2.3)
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can be applied, requiring 2γ FAs and γ FMs. Therefore, the RS-IISRB algorithm needs

2γ FAs, γ FMs, Nγ +N + 2 IAs and 5N + 2Nγ ICs per iteration more than the IISRB

algorithm.

Table 2.5: Computational complexities in initialization for various decoding algorithms,
where V = N2r and W = Nγ

Operations need by initialization
Algorithm IA IM IC ID Floor
ISRB [20] rV V MN(2r − 1)(3ρ− 6) 0 0

IISRB rV V +Wρ W (ρ− 2) 0 0
RS-IISRB rV V +Wρ N(γ(ρ− 2) + (r − 1)) 0 0

EIHRB [23] V (r + 2) 0 V V V
IEIHRB V (r + 2) 0 V V V

RS-IEIHRB V (r + 2) 0 V +N(r − 1) V V

Table 2.6: Computational complexities per iteration for various decoding algorithms,
where V = N2r and W = Nγ

Operations need by per iteration
Algorithm FA FM IA IC
ISRB [20] 2W −M 2W W + V 2V − 2N

IISRB 2W −M 2W W W
RS-IISRB 2W −M + 2γ 2W + γ 2W +N + 2 5N + 3W

EIHRB [23] 3W − 2M 3W 2W + V 2V − 2N +W
IEIHRB 2W −M 2W W W

RS-IEIHRB 2W −M + 2γ 2W + γ 2W +N + 2 5N + 3W

Complexities of the hard-reliability based algorithms can be analyzed similarly. The

IEIHRB algorithm has the same computational complexity per iteration as the IISRB

algorithm, because they have the same iteration procedure. For the same reason, the

RS-IEIHRB algorithm has the same computational complexity per iteration as the RS-

IISRB algorithm.

Tables 2.5 and 2.6 compare computational complexities of various decoding algo-

rithms needed by initialization and per iteration, respectively. For the initialization step,

35



the numbers of IMs of the IISRB and RS-IISRB algorithms are greater than those of

the ISRB algorithm because the calculation of ξ2ϕi,j is done in initialization to reduce

computational complexities of iterations. This is a good trade-off for computational

complexity. The number of ICs needed by the initialization step of the ISRB algorithm

provided in [20, Section III-A] is significantly greater than those of the other algorithms.

This is because in [20], ϕi,j’s are calculated for every i and j, and maxl φt,l’s are re-

calculated for each ϕi,j . For each iteration, the numbers of integer operations required

by the ISRB and EIHRB algorithms scale with 2r, the order of the finite field. With

the new reliability information update, the numbers of integer operations are reduced

greatly and are now independent of 2r. The re-selection scheme incurs some additional

complexity, but complexities of the RS-IISRB and RS-IEIHRB algorithms are still lower

than those of the ISRB and EIHRB algorithms, respectively.

Tables 2.7 and 2.8 list the numbers of various operations for initialization and each

iteration, respectively, needed by various decoding algorithms for the (255,175) code.

For initialization, the ISRB algorithm needs significantly more ICs than the other algo-

rithms. When the order of the finite field is higher, our improved algorithms reduce the

numbers of IAs and ICs for each iteration significantly.

From a perspective of the computational complexity, the IISRB and IEIHRB al-

gorithms are the best. The re-selection scheme needs more finite field operations and

integer operations. All the improved algorithms are simpler than the ISRB and EIHRB

algorithms.

We also consider the memory overhead required by the two improvements. Our

first improvement—the new reliability information update—does not need any extra

memory. The second improvement—the re-selection scheme—needs to store z(k−1)
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and z(k−2) and hence requires 2Nr extra memory bits. Hence, the re-selection scheme

increases the memory requirement slightly, but it does lower the error floor.

Table 2.7: Computational complexities of the initialization step for various decoding
algorithms to decode the (255,175) code

Algorithm IA IM IC ID Floor
ISRB [20] 522240 65280 696417750 0 0

IISRB 522240 130560 57120 0 0
RS-IISRB 522240 130560 58905 0 0

EIHRB [23] 522750 0 65280 65280 65280
IEIHRB 522750 0 65280 65280 65280

RS-IEIHRB 522750 0 67065 65280 65280

Table 2.8: Computational complexities required per iteration for various decoding algo-
rithm to decode the (255,175) code

Algorithm FA FM IA IC
ISRB [20] 7905 8160 69360 130050

IISRB 7905 8160 4080 4080
RS-IISRB 7937 8176 8417 13515

EIHRB [23] 11730 12240 73440 134130
IEIHRB 7905 8160 4080 4080

RS-IEIHRB 7937 8176 8417 13515

2.4 Summary

In this chapter, we propose two improvements to the soft- and hard-reliability based

MLGD algorithms for non-binary LDPC codes. The first improvement—the new reli-

ability information update—helps the reliability-based MLGD algorithms achieve better

BLERs, require fewer iterations, and have lower complexities. The second improvement—

the re-selection scheme—results in a better error performance, fewer iterations on aver-

age, and a lower error floor. Although the re-selection scheme needs additional complex-
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ity, the MLGD algorithms with the re-selection scheme still require lower computational

complexities than the existing MLGD algorithms.

38



Chapter 3

Symbol-Decision Polar Decoder

In this chapter, we address the throughput/latency issue of polar decoders by propos-

ing symbol-decision SC and SCL decoders, which are based on symbol-wise hard or soft

decisions. Since each symbol consists of M bits, when M > 1 the symbol-decision de-

coders achieve higher throughput as well as better error performance. The proposed

symbol-decision decoders are natural generalization of their bit-wise counterparts, and

reduce to existing bit-wise decoders when the symbol size is one bit. The main contri-

butions of this chapter are:

• We propose a novel recursive channel combination to calculate the symbol-wise

channel transition probabilities, which enable symbol decisions in SC and SCL

algorithms, based on the bit-wise channel transformation [24]. The proposed re-

cursive channel combination has lower complexity than simply combining bit-

wise channel transition probabilities. The similarity between Arıkan’s recursive

channel transformation and our symbol-based recursive channel combination also

39



helps to share hardware resources to calculate the bit- and symbol-wise channel

transition probabilities.

• An M -bit symbol-decision SCL decoder needs to select the L most reliable can-

didates out of a list consisting of 2ML list candidates. To perform this pruning

function, we propose a two-stage list pruning network, which provides a trade-off

between performance and complexity.

• By adopting the pre-computation technique [54], We develop a pre-computation

memory-saving (PCMS) technique to reduce the memory requirement of the SCL

decoder. Specifically, the channel information memory can be eliminated when

using the PCMS technique. Moreover, this technique also helps to improve through-

put slightly.

• To evaluate the throughput of symbol-decision SCL decoders, we propose an area

efficient architecture for symbol-decision SCL decoders1. In our architecture, to

save the area, adders in processing units are reused to calculate the symbol-wise

channel transition probability. We propose two scheduling schemes for sharing

hardware resources. We also propose two list pruning networks for designs with

different symbol sizes.

• We design two-, four-, and eight-bit symbol-decision SCL decoders for a (1024,

480) CRC32-concatenated polar code with a list size of four. Synthesis results

show that in terms of area efficiency, our symbol-decision SCL decoder outper-

forms all existing state-of-the-art SCL decoders in [3, 43–45]. For example, the

area efficiency of our four-bit symbol-decision SCL decoder is 259.2 Mb/s/mm2,

1We focus on the SCL decoder because the SC decoder can be considered as an SCL decoder with a
list size of one.
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which is 1.51 times as big as that of [45]. Our implementation results also demon-

strate that the symbol-decision SCL decoder can provide a range of trade-offs

between area, throughput, and area efficiency.

Our symbol-decision decoding algorithms assume that the underlying channel has

a binary input, and our symbol-based channel combination is virtual and introduced

for decoding only. Hence, our work is different from those assuming a q-ary (q > 2)

channel (see, for example, [55]).

The decoding schedule (bit sequence) of our symbol-decision decoding algorithms

is actually the same as those in [1–3], but our symbol-decision decoding algorithms

are different from multi-bit decoding algorithms in [1–3] in two aspects. First, our

symbol-based recursive channel combination is different from how symbol-wise transi-

tion probabilities are derived in [1–3]. Second, the symbol-decision perspective allows

us to prove that the symbol-decision algorithms have better frame error rates (FERs)

than their bit-decision counterparts [56] for SC algorithms, while only simulation re-

sults are provided in [2, 3] and error performance is not investigated in [1]. There are

additional differences between our decoding algorithms/architectures and those in [1–3].

For instance, all the bits within a symbol are estimated jointly in our symbol-decision

SC algorithm, whereas some bits are sometimes decoded independently for the decoder

with parallelism two in [2]. Also, while our symbol-decision decoding is introduced

on the algorithmic level, the multi-bit decoder is introduced on the level of decoding

operations [3]. Finally, for our symbol-decision SCL decoder architectures, we use the

semi-parallel architecture because it is more area efficient than the tree architecture and

the line architecture in [35], on which the multi-bit decoder architecture in [3] is based.

No hardware implementation was presented in [1, 2].
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The proposed PCMS technique is useful for our proposed symbol-decision SCL de-

coder as well as prior bit-decision and multi-bit SCL decoders regardless of the message

representation. Zhang et al. [41] also used the pre-computation technique to improve the

throughput of the SC decoder with the cost of increased area. In contrast, our proposed

PCMS technique aims to reduce the memory requirement of the SCL decoder, while

improving the throughput slightly.

The hardware implementations in this chapter are important in verifying the through-

put/latency advantage of symbol-decision decoders. Some prior works claim a through-

put improvement proportional to the size of the symbol (in bits) (see, for example, [2]).

Such claim usually assumes constant clock cycle while growing the symbol size. This

assumption is unrealistic, as shown by our implementations and discussion in Sec-

tion 3.4.

The rest of our chapter is organized as follows. Section 3.1 briefly reviews polar

codes and existing decoding algorithms for polar codes. In Section 3.2, the symbol-

based recursive channel combination is proposed to calculate the symbol-wise channel

transition probability. Moreover, to simplify the selection of the list candidates, a two-

stage list pruning network is proposed. In Section 3.3, we introduce a method to reduce

memory requirement of list decoders of polar codes by the pre-computation technique.

In Section 3.4, we present the architecture for symbol-decision SCL decoders. Two

scheduling schemes for hardware sharing are discussed. We also propose two list prun-

ing networks for different designs: a folded sorting implementation and a tree sorting

implementation. A discussion on the latency of our architecture and synthesis results

for our implementations are provided in this section as well. Finally, we draw some

conclusions in Section 3.5.
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3.1 Polar Codes and Existing Decoding Algorithms

3.1.1 Preliminaries

We follow the notation for vectors in [24], namely uba = (ua, ua+1, · · · , ub−1, ub)

when a ≤ b; if a > b, uba is regarded as void. uba,o and uba,e denote the subvectors of uba

with odd and even indices, respectively.

Let W : X → Y represent a generic discrete memoryless channel with binary input

alphabet X, arbitrary output alphabet Y, and transition probabilities W (y|x), y ∈ Y,

x ∈ {0, 1}. Let W (j)
N denote a set of N coordinate channels:

W
(j)
N : X → YN × Xj−1, 0 < j ≤ N

with transition probabilitiesW (j)
N (yN1 , x

j−1
1 |xj), where (yN1 , x

j−1
1 ) and xj denote the out-

put and input of W (j)
N , respectively.

3.1.2 Polar Codes

Polar codes are linear block codes, and their block lengths are restricted to powers

of two, denoted by N = 2n for n ≥ 2. Assume u = uN1 = (u1, u2, · · · , uN) is the

data bit sequence. Let F = [ 1 0
1 1 ]. The corresponding encoded bit sequence x = xN1 =

(x1, x2, · · · , xN) is generated by

x = uBNF
⊗n, (3.1)
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where BN is the N × N bit-reversal permutation matrix and F⊗n denotes the n-th

Kronecker power of F [24].

For any index set A ⊆ {1, 2, · · · , N}, uA = (ui : 0 < i ≤ N, i ∈ A) is the

sub-sequence of u restricted to A. For an (N,K) polar code, the data bit sequence

is grouped into two parts: a K-element part uA which carries information bits, and

uAc whose elements are predefined frozen bits, where Ac is the complement of A. For

convenience, frozen bits are set to zero.

3.1.3 SC Algorithm for Polar Codes

Given a transmitted codeword x and the corresponding received word y, the SC

algorithm for an (N,K) polar code estimates the encoding bit sequence u successively

as shown in Alg. 4. Here, û = (û1, û2, · · · , ûN) represents the estimated value for u.

Algorithm 4: SC Decoding Algorithm [24]
1 for j = 1 : N do
2 if j ∈ Ac then ûj = 0 else

3 if W
(j)
N (y,ûj−1

1 |uj=1)

W
(j)
N (y,ûj−1

1 |uj=0)
≥ 1 then ûj = 1 else ûj = 0

4

To calculate W (j)
N (y, ûj−1

1 |uj), Arıkan’s recursive channel transformation [24] is ap-

plied. A pair of binary channels W (2i−1)
2Λ and W (2i)

2Λ are obtained by a single-step trans-

formation of two independent copies of a binary input channel W (i)
Λ : (W (i)

Λ ,W
(i)
Λ ) 7→

(W
(2i−1)
2Λ ,W

(2i)
2Λ ). The channel transition probabilities of W (2i−1)

2Λ and W (2i)
2Λ are given by
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W
(2i−1)
2Λ (y2Λ1 , u2i−2

1 |u2i−1)

=
1

2

∑
u2i

[
W

(i)
Λ (yΛ1 , u

2i−2
1,o ⊕ u2i−2

1,e |u2i−1 ⊕ u2i)

·W (i)
Λ (y2ΛΛ+1, u

2i−2
1,e |u2i)

]
,

(3.2)

and

W
(2i)
2Λ (y2Λ1 , u2i−1

1 |u2i)

=
1

2
W

(i)
Λ (yΛ1 , u

2i−2
1,o ⊕ u2i−2

1,e |u2i−1 ⊕ u2i)

·W (i)
Λ (y2ΛΛ+1, u

2i−2
1,e |u2i),

(3.3)

where 0 < i ≤ Λ = 2λ < N and 0 ≤ λ < n.

Expressed in log-likelihood (LL), Eqs. (3.2) and (3.3) can be approximated as [26]:

LL
(2i−1)
2Λ (y2Λ1 , u2i−2

1 |u2i−1)

≈ max

{[
LL

(i)
Λ (yΛ1 , u

2i−2
1,o ⊕ u2i−2

1,e |u2i−1 ⊕ 0)

+ LL
(i)
Λ (y2ΛΛ+1, u

2i−2
1,e |0)

]
,[

LL
(i)
Λ (yΛ1 , u

2i−2
1,o ⊕ u2i−2

1,e |u2i−1 ⊕ 1)

+ LL
(i)
Λ (y2ΛΛ+1, u

2i−2
1,e |1)

]}
− log 2,

(3.4)

LL
(2i)
2Λ (yΛ1 , u

2i−1
1 |u2i)

= LL
(i)
Λ (yΛ1 , u

2i−2
1,o ⊕ u2i−2

1,e |u2i−1 ⊕ u2i)

+ LL
(i)
Λ (y2ΛΛ+1, u

2i−2
1,e |u2i)− log 2.

(3.5)
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To simplify the calculation, the constants in Eqs. (3.4) and (3.5) can be discarded

since this global offset for all LLs does not affect the decoding decision.

3.1.4 SCL and CA-SCL Algorithms for Polar Codes

Algorithm 5: SCL Decoding Algorithm [32]
1 α = 1;
2 for j = 1 : N do
3 if j ∈ Ac then
4 for i = 1 : α do
5 (Li)j = 0;

6 else if 2α ≤ L then
7 for i = 1 : α do
8 (Li)

j
1 =conc((Li)

j−1
1 , 0);

9 (Li+α)
j
1 =conc((Li)

j−1
1 , 1);

10 α = 2α;
11 else
12 for i = 1 : L do
13 S[i].P = W

(j)
N (y, (Li)

j−1
1 |0);

14 S[i].L = (Li)
j−1
1 ;

15 S[i].U = 0;
16 S[i+ L].P = W

(j)
N (y, (Li)

j−1
1 |1);

17 S[i+ L].L = (Li)
j−1
1 ;

18 S[i+ L].U = 1;

19 sortPDecrement(S);
20 for i = 1 : L do
21 (Li)

j
1 =conc(S[i].L, S[i].U);

22 α = L;

23 û = L1;

Instead of making a hard decision for each information bit of u in the SC algorithm,

the SCL algorithm creates two paths in which the information bit is assumed to be 0 and

1, respectively. If the number of paths is greater than the list size L, the L most reliable
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paths are selected. At the end of the decoding procedure, the most reliable path is chosen

as û. The SCL algorithm is formally described in Alg. 5. Without loss of generality, we

assume L to be a power of two, i.e. L = 2l. We use Li = ((Li)1, (Li)1, · · · , (Li)N) to

represent the i-th list vector, where 0 < i ≤ L. S is a structure type array with size 2L.

Each element of S has three members: P, L, and U. The function sortPDecrement

sorts the array S by decreasing order of P. c=conc(a,b) attaches a bit sequence b at

the end of a bit sequence a, and the length of the output bit sequence c is the sum of

lengths of a and b.

The CA-SCL algorithm is used for the CRC-concatenated polar codes. The differ-

ence between CA-SCL [33] and SCL algorithms is how to make the final decision for û.

If there is at least one path satisfying the CRC constraint, the most reliable CRC-valid

path is chosen for û. Otherwise, the decision rule of the SCL algorithm is used for the

CA-SCL algorithm.

3.1.5 Multi-bit SC and SCL Algorithms for Polar Codes

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit N

Bits

(1,2,…,M)

(a)

(b)

Bits

(M+1,...2M)

Bits

(2M+1,…,3M)

Bits

(N-M+1,…,N)

Figure 3.1: (a) bit-decision vs. (b) M -bit decision

The SC and SCL algorithms described above make hard or soft decision for only

one bit at a time, and their decoding schedule is shown in Fig. 3.1(a). We call them

bit-decision decoding algorithms. Multi-bit SC and SCL decoders [1–3] make hard
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or soft decision for M bits instead of only one bit at a time, as shown in Fig. 3.1(b). If

M = N , these decoding algorithms are exactly maximum-likelihood sequence decoding

algorithms.

3.2 M -bit Symbol-Decision Decoding Algorithms for Po-

lar Codes

3.2.1 Symbol-Decision SC and SCL Algorithms

Here, we propose symbol-decision SC and SCL algorithms, which also have the

schedule in Fig. 3.1(b). However, we treat each group of M bits in Fig. 3.1(b) as an

M -bit symbol. Let Z represent the alphabet of all M -bit symbols. The symbol-decision

algorithms deal with the virtual channels

W
(j)
N : Z → YN × Zj−1, 0 < j ≤ N

M

with transition probabilities W(j)
N (yN1 , z

j−1
1 |zj), where (yN1 , z

j−1
1 ) and zj = (ujM−M+1,

· · · , ujM) denote the output and input of W(j)
N , respectively.

3.2.2 Symbol-Based Recursive Channel Combination

When the channel input alphabet is Z, a recursive channel transformation similar to

(3.2) and (3.3) can be used to derive W
(j)
N (see [55, (2) and (3)]). We focus on the case

where the channel input is binary.
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In [1–3], the channel transition probability of a group of bits is obtained by combin-

ing the bit-wise channel transition probability, referred to as direct-mapping calculation

henceforth. Let W (j)
N,M denote a set of N

M
coordinate channels:

W
(j)
N,M : XM → YN × XjM−M , 0 < j ≤ N

M

with transition probabilities W (j)
N,M(yN1 , x

jM−M
1 |xjMjM−M+1), where (yN1 , x

jM−M
1 ) and

xjMjM−M+1 denote the output and input of W (j)
N,M , respectively. If M = 1, W (j)

N,1 = W
(j)
N .

Let

uiMiM−M+1 = (wi, wi+ N
M
, · · · , wi+N− N

M
)BMF

⊗m, 1 ≤ i ≤ N

M
.

In [1–3], to perform the multi-bit decision, the calculation of channel transition proba-

bility W (i)
N,M(y, ûiM−M

1 |uiMiM−M+1) is based on a product of bit-wise channel transition

probabilities:

W
(i)
N,M(y, ûiM−M

1 |uiMiM−M+1) =

M−1∏
j=0

W
(i)
N
M

(y
(j+1) N

M

j N
M

+1
, ŵ

(i−1)+j N
M

1+j N
M

|wi+j N
M
),

(3.6)

whereW (i)
N
M

(y
(j+1) N

M

j N
M

+1
, ŵ

(i−1)+j N
M

1+j N
M

|wi+j N
M
) is calculated by Arıkan’s recursive channel trans-

formations.

Actually, W(j)
N is exactly equivalent to W (j)

N,M if we consider XM as the binary vector

representation of Z. Therefore, the symbol-decision SC/SCL algorithms have the same

schedule as the multi-bit SC/SCL algorithms in [1–3]. However, our symbol-decision

SC/SCL algorithms have a different approach, called symbol-based recursive channel

combination (as described in Proposition 3.2.1), to compute channel transition proba-
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bilities W (j)
N,M(y, ûjM−M

1 |ujMjM−M+1), which is our main focus.

Proposition 3.2.1. Assume that all bits of u are independent and each bit has an equal

probability of being a 0 or 1. Given 0 < m ≤ n, N = 2n, M = 2m, for any 1 ≤ ϕ ≤ m,

0 ≤ λ < n, Λ = 2λ, Φ = 2ϕ, and 0 ≤ i < 2Λ
Φ

, we say that a Φ-bit channel W (i+1)
2Λ,Φ

is obtained by a single-step combination of two independent copies of a Φ
2

-bit channel

W
(i+1)
Λ,Φ/2 and write

(W
(i+1)
Λ,Φ/2,W

(i+1)
Λ,Φ/2) 7→W

(i+1)
2Λ,Φ , (3.7)

where channel transition probabilities satisfy,

W
(i+1)
2Λ,Φ (y

2Λ
1 , uiΦ1 |uiΦ+Φ

iΦ+1 ) =

W
(i+1)
Λ,Φ/2(y

Λ
1 , u

iΦ
1,o ⊕ uiΦ1,e|uiΦ+Φ

iΦ+1,o ⊕ uiΦ+Φ
iΦ+1,e)

·W (i+1)
Λ,Φ/2(y

2Λ
Λ+1, u

iΦ
1,e|uiΦ+Φ

iΦ+1,e).

(3.8)

Proof of Proposition 3.2.1. According to the definition of conditional probability

Pr(B|A) = Pr(AB)
Pr(A)

,

W
(i+1)
2Λ,Φ (y2Λ1 ,uiΦ1 |uiΦ+Φ

iΦ+1 )

=
W

(iΦ+Φ)
2Λ,1 (y2Λ1 , uiΦ+Φ−1

1 |uiΦ+Φ)

Pr(uiΦ+Φ−1
iΦ+1 |uiΦ+Φ)

.

(3.9)

Because all bits of u are independent and each bit has an equal probability of being a 0

or 1,

Pr(uiΦ+Φ−1
iΦ+1 |uiΦ+Φ) = Pr(uiΦ+Φ−1

iΦ+1 ) = 2−(Φ−1).
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Therefore,

W
(i+1)
2Λ,Φ (y2Λ1 , uiΦ1 |uiΦ+Φ

iΦ+1 )

= 2(Φ−1)W
(iΦ+Φ)
2Λ,1 (y2Λ1 , uiΦ+Φ−1

1 |uiΦ+Φ).

(3.10)

According to (3.3),

W
(iΦ+Φ)
2Λ,1 (y2Λ1 , uiΦ+Φ−1

1 |uiΦ+Φ)

=
1

2
W

( iΦ+Φ
2

)

Λ,1 (yΛ1 , u
iΦ+Φ−2
1,o ⊕ uiΦ+Φ−2

1,e |uiΦ+Φ−1 ⊕ uiΦ+Φ)

·W ( iΦ+Φ
2

)

Λ,1 (y2ΛΛ+1, u
iΦ+Φ−2
1,e |uiΦ+Φ).

(3.11)

Similarly, we have

W
( iΦ+Φ

2
)

Λ,1 (yΛ1 , u
iΦ+Φ−2
1,o ⊕ uiΦ+Φ−2

1,e |uiΦ+Φ−1 ⊕ uiΦ+Φ)

= 2−(Φ
2
−1)W

(i+1)
Λ,Φ/2(y

Λ
1 , u

iΦ
1,o ⊕ uiΦ1,e|uiΦ+Φ

iΦ+1,o ⊕ uiΦ+Φ
iΦ+1,e),

(3.12)

and

W
( iΦ+Φ

2
)

Λ,1 (y2ΛΛ+1, u
iΦ+Φ−2
1,e |uiΦ+Φ)

= 2−(Φ
2
−1)W

(i+1)
Λ,Φ/2(y

2Λ
Λ+1, u

iΦ
1,e|uiΦ+Φ

iΦ+1,e).

(3.13)

Then, by equations (3.10) to (3.13), equation (3.8) is obtained.

We observe that the channel combination in (3.8) is different from that in (3.2) and

(3.3) and their symbol-wise counterpart in [55, (2) and (3)]. In (3.2), (3.3), and [55, (2)

and (3)], the size of the symbol is fixed. In contrast, in (3.8) the symbol size (in bits) is

doubled during each recursion call.
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Compared with the direct-mapping calculation in [1–3], our recursive channel com-

bination has lower complexity. We will illustrate this from the perspective of a message

flow graph (MFG). Similar to the SC algorithm, with the help of the symbol-based recur-

sive channel combination, an M -bit symbol-decision SC algorithm can be represented

by an MFG as well, where a channel transition probability is referred to as a message

for the sake of convenience. This MFG is referred to as SR-MFG. If the code length

of a polar code is N , the SR-MFG can be divided into (n + 1) stages (S0, S1, · · · , Sn)

from the right to the left: one initial stage S0 and n calculation stages. For the SC

algorithm, all calculation stages carry out Arıkan’s recursive channel transformations.

However, for the M -bit symbol-decision SC algorithm, in the left-most m calculation

stages (Sn, · · · ,Sn−m+1), called S-COMBS stages, symbol-based channel combinations

are carried out. For the remaining (n − m) calculation stages (Sn−m, · · · , S1), called

B-TRANS stages, Arıkan’s recursive channel transformations are performed. The S-

COMBS stages use outputs of B-TRANS stages to calculate symbol-wise messages.

We refer to the MFG in [1–3] as the DM-MFG, which also consists of two parts:

B-TRANS and DM-CAL. The B-TRANS part of the DM-MFG is the same as that of

the SR-MFG. However, there is only one stage in the DM-CAL part, and it performs the

direct-mapping calculation.

For example, as shown in Fig. 3.2, the SR-MFG of a four-bit symbol-decision SC

algorithm for a polar code with N = 8 has four stages. Messages of the initial stage

(S0) come from the channel directly. Messages of the first stage (S1) are calculated

with Arıkan’s transformations. Messages of the second and third stages (S2 and S3) are

calculated with (3.8). Stages in the left gray box are the S-COMBS stages. Stages in the

right gray box are the B-TRANS stages. Fig. 3.3 shows the DM-MFG when the direct-
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mapping calculation is used to calculate symbol-wise channel transition probabilities

W
(1)
8,4 (y

8
1|u41) and W (2)

8,4 (y
8
1, u

4
1|u85). Here,

v41 = u81,o ⊕ u81,e, v85 = u81,e,

w1 = v1 ⊕ v2 = u1 ⊕ u2 ⊕ u3 ⊕ u4,

w2 = v3 ⊕ v4 = u5 ⊕ u6 ⊕ u7 ⊕ u8,

w3 = v2 = u3 ⊕ u4,

w4 = v4 = u7 ⊕ u8,

w5 = v5 ⊕ v6 = u2 ⊕ u4,

w6 = v7 ⊕ v8 = u6 ⊕ u8,

w7 = v6 = u4,

w8 = v8 = u8.

B-TRANSS-COMBS |

Figure 3.2: The message flow graph of a four-bit symbol-decision SC algorithm for a
polar code with code length eight by using the proposed symbol-based recursive channel
combination.
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B-TRANS|DM-CAL

Figure 3.3: The message flow graph of a four-bit multi-bit SC algorithm for a polar code
with code length eight by using direct-mapping calculation [1–3].

The direct-mapping calculation in (3.6) needs (M − 1) additions. Therefore, a total

of 2|AMj |(M − 1) additions are needed to calculate all LL-based symbol-wise channel

transition probabilities for ujM+M
jM+1 . Let us consider the recursive symbol-based channel

combination now. The S-COMBS stages of the SR-MFG are indexed as 1 to m from

left to right. There are 2n−i(0 < i ≤ m) nodes in the i-th S-COMBS stage and each

node contains 2M+i−n messages. One addition is needed to compute each LL message

according to (3.8). Hence, the number of additions needed by the S-COMBS stages

to calculate W (j)
N,M(y, ûjM−M

1 |ujMjM−M+1) is
∑m−1

i=1 2i2
M

2i + 2|AMj |. When we perform

the hardware implementation, the worst case - that all bits of a symbol are information

bits - should be considered. Therefore, the recursive symbol-based channel combination

can be taken advantage of to reduce complexity of calculating the symbol-wise channel

transition probability.

For the example shown in Fig. 3.2, (3.6) needs 24(4− 1) = 48 additions to calculate
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log(W
(1)
8,4 (y

8
1|u41)). With the symbol-based channel combination, 4, 4 and 16 additions

are needed to calculate log(W
(1)
4,2 (y

4
1|v21)), log(W

(1)
4,2 (v

8
5|v65)) and log(W

(1)
8,4 (y

8
1|u41)), re-

spectively. Therefore, our method needs only 24 additions, which is only a half of those

needed by (3.6). Table 3.1 lists the numbers of additions needed by our recursive method

and the direct-mapping calculation [1–3] when all M bits of a symbol are information

bits. When M = 8, additions needed by our proposed method are 17% of that needed

by the direct-mapping calculation.

Table 3.1: The numbers of additions to calculate W (j+1)
N,M (y, ûjM1 |ujM+M

jM+1 ) when the (j+
1)-th M -bit symbol has no frozen bit.

Proposed method Direct-mapping calculation [1–3]
M = 2 4 4
M = 4 24 48
M = 8 304 1792

The other advantage of the proposed method to calculate the symbol-wise channel

transition probability is that it reveals the similarity between Arıkan’s recursive channel

transformations and the symbol-based recursive channel combination. We will take

advantage of this similarity to reuse adders and to save area when computing the bit-

and symbol-wise channel transition probability in our proposed architecture. In [3],

additional dedicated adders are used to calculate the symbol-wise channel transition

probability, which is not area efficient.

In terms of the error performance, the symbol-decision SC algorithm is not worse

than the bit-decision SC algorithm [56]. Fig. 3.4 shows the BERs and FERs of symbol-

decision SC algorithms for a (1024, 512) polar codes. SDSC-i denotes the i-bit symbol-

decision SC algorithm. When M = 2 and 4, the FER performance is the same as that of

the bit-decision SC algorithm. When M = 8, the FER performance is slightly better.
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Figure 3.4: Error rates of symbol-decision SC algorithms for a (1024, 512) polar code.

3.2.3 Generalized Symbol-Decision SCL Algorithm

The symbol-based recursive channel combination is also applicable for the SCL al-

gorithm. The symbol-decision SCL algorithm is more complex than the SCL algorithm,

since the path expansion coefficient is not a constant any more. In the bit-decision SCL

algorithm, the path expansion coefficient is two for each information bit. For the M -

bit symbol-decision SCL algorithm, the path expansion coefficient is 2|AMj |, which de-

pends on the number of information bits in the j-th symbol. TheM -bit symbol-decision

SCL algorithm is formally described in Alg. 6. Without any ambiguity, 0 represents

a zero vector, whose bit-width is determined by its left-hand operator. The function

dec2bin(d, b) converts a decimal number d to a b-bit binary vector. (3.8) is used to

calculate the symbol-wise channel transition probability corresponding to each list, i.e.

W
(j+1)
N,M (y, (Li)

jM
1 |ujM+M

jM+1 ).
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Algorithm 6: Symbol-Decision SCL Algorithm
1 α = 1;
2 for j = 1 : N

M
do

3 β = 2|AMj |;
4 if β == 1 then
5 for i = 1 : α do
6 (Li)

jM
jM−M+1 = 0;

7 else if αβ ≤ L then
8 uAMc

j
= 0;

9 for k = 0 : β − 1 do
10 uAMj

=dec2bin(k, |AMj|);
11 for i = 1 : α do
12 t = i+ kα;
13 (Lt)

jM
1 =conc((Li)

jM−M
1 , ujMjM−M+1);

14 α = αβ;
15 else
16 uAMc

j
= 0;

17 for k = 0 : β − 1 do
18 uAMj

=dec2bin(k, |AMj|);
19 for i = 1 : L do
20 t = i+ kL;
21 S[t].P =W

(j)
N,M(y, (Li)

jM−M
1 |ujMjM−M+1);

22 S[t].L = (Li)
jM−M
1 ;

23 S[t].U = ujMjM−M+1;

24 sortPDecrement(S);
25 for i = 1 : L do
26 (Li)

jM
1 =conc(S[i].L, S[i].U);

27 α = L;
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Fig. 3.5 shows the BERs and FERs of symbol-decision SCL algorithms for a (1024,

480) CRC32-concatenated polar code with L = 4 where the generator polynomial of

the CRC32 is 0x1EDC6F41. This CRC32 is also used in all the CRC-concatenated

polar codes henceforth. SDSCL-i denotes the i-bit symbol-decision SCL algorithm.

The performances of the symbol-decision SCL algorithms with different symbol sizes

are almost the same.
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Figure 3.5: Error rates of symbol-decision SCL algorithms for a (1024, 480) CRC32-
concatenated polar code with L = 4.

3.2.4 Two-Stage List Pruning Network for the Symbol-Decision SCL

Algorithm

For the M -bit symbol-decision SCL algorithm, the maximum path expansion coef-

ficient is 2M , i.e. each existing path generates 2M paths. Therefore, in the worst-case

scenario, the L most reliable paths should be selected out of 2ML paths. To facilitate
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this sorting network, we propose a two-stage list pruning network. In the first stage, the

q most reliable paths are selected from up to 2M paths that come from the expansion of

each existing path. Therefore, there are qL paths left. In the second stage, the L most

reliable paths are selected from the qL paths generated by the first stage. The message

flow of a two-stage list pruning network is illustrated in Fig. 3.6.

2
M

-path 

Sorting 

Function

2
M

-path 

Sorting 

Function

2
M

-path 

Sorting 

Function

qL-path 

Sorting 

Function
L

L

≤ 2M

q

q

q

≤ 2M

≤ 2M

Figure 3.6: Message flow for a two-stage list pruning network.

If q ≥ L, the L paths found by the two-stage list pruning network are exactly the L

most reliable paths among the 2ML paths. When q < L, the probability that the L paths

found by the two-stage list pruning network is exactly the L most reliable paths among

the 2ML paths decreases. This may cause some performance loss. On the other hand, a

smaller q leads to a two-stage list pruning network with lower complexity.

Fig. 3.7 shows how different values of q affect the error performance of an SDSCL-

8 algorithm with L = 4 for a (1024, 480) CRC32-concatenated polar code. When

q = 2, the SDSCL-8 algorithm shows an FER performance loss of about 0.25 dB at an

FER level of 10−3. As shown in Fig. 3.8, for a (2048,1401) CRC32-concatenated polar

code, the two stage list-pruning network of q = 4 helps to reduce the complexity of the

SDSCL-4 decoder without observed performance loss when L = 8. When q = 2 and
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Figure 3.7: Error rates of the SDSCL-8 decoder for a (1024, 480) CRC32-concatenated
polar code with L = 4.
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Figure 3.8: Error rates of the SDSCL-4 algorithm for a (2048, 1401) CRC32-
concatenated polar code with L = 4 and L = 8.
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L = 8, the SDSCL-4 decoder has a performance degradation of about 0.1 dB at an FER

level of 10−3, compared with the SDSCL-4 decoder with q = 8 and L = 8. If L = 4,

the error performance due to q = 2 is negligible.

Therefore, the two-stage list pruning network uses a parameter q to introduce differ-

ent trade-offs between error performance and complexity.

3.3 Pre-Computation Memory-Saving Technique

Pre-computation technique was first proposed in [54] and can be used to improve

processing rate when the number of possible outputs is finite. In [41], the pre-computation

technique is used to improve the throughput of the line SC decoder at the expense of

increased area. Here, our main purpose is to use the pre-computation technique to re-

duce the memory required by list decoders because the memory of an SCL decoder to

store the channel transition probability becomes a big challenge as the list size and code

length increase. Henceforth, this memory saving technique is called the pre-computation

memory-saving (PCMS) technique. It is worth noting that this memory-saving tech-

nique is independent of the decoder architecture and the message representation of SCL

decoders.

Let us take the MFG shown in Fig. 3.2 as an example. For stages S0 and S1, the num-

bers of pairs of LLs stored by the list decoder with list size L are 8 and 4L, respectively.

Actually, the outgoing message W (1)
2,1 (y

2
1|w1) of the top black solid node in S1 can only

be either W (1)
2,1 (y

2
1|0) or W (1)

2,1 (y
2
1|1). The outgoing message W (2)

2,1 (y
2
1, w1|w2) of the top

red hollow node in S1 can only be one of W (2)
2,1 (y

2
1, 0|0), W

(2)
2,1 (y

2
1, 0|1), W

(2)
2,1 (y

2
1, 1|0),
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and W (2)
2,1 (y

2
1, 1|1). Hence, no matter what the list size is, the total number of possible

values of outgoing messages of S1 is 2 × 4 + 4 × 4 = 24. These 24 values provide all

the information we need for calculations of further stages. With knowledge of these 24

values, channel LLs are not needed any more.

Generally speaking, the PCMS technique takes advantage of the relationship be-

tween messages of S0 (channel LLs) and outgoing messages of S1. By storing only all

possible outgoing messages of S1, the PCMS technique helps list decoders save memory.

Let us evaluate the memory saving of the PCMS technique, assuming LL represen-

tation is used for the channel transition probability. Without the PCMS technique, a list

decoder for a polar code with code length N and list size L stores (N − 2)L + N LL

pairs. Each pair contains two messages, which are associated with the conditional bit

being zero or one. The total number of bits used for LL storage is

BLL = 2
(
NQch + L

logN−1∑
i=1

2i(Qch + logN − i)
)

= 2(L+ 1)NQch + 4L(N − logN −Qch − 1),

(3.14)

where Qch denotes the number of bits used for the quantization of channel LLs.

With the PCMS technique, the total number of LL pairs needed by a list decoder is

N
2
L+ 3

2
N . The total number of bits needed for LL storage is:
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BPCMS =2(
N

2
+N)(Qch + 1)+

2L

logN−2∑
i=1

2i(Qch + logN − i)

=3N(Qch + 1) + LN(Qch + 3)

− 4L(logN +Qch + 1)

=BLL −N(LQch + L−Qch − 3).

(3.15)

Therefore, when LL representation is used for messages, the PCMS technique saves

N(LQch + L − Qch − 3) bits of memory. The saving is approximately linear with

both N and L. Consider a polar code with N = 1024, a list decoder with L = 4 and

Qch = 4. Without the PCMS technique, BLL = 57104. With the PCMS technique,

BPCMS = 43792. The PCMS technique helps to save 13312 bits of memory, which is

23% of BLL.

The other advantage of the PCMS technique is that it improves the throughput

slightly because the messages of S1 are already in the memory and do not need to be

calculated from channel messages. For example, for a bit-decision semi-parallel SCL

decoder with the list size of L, if the code length is N and the number of processing

units is P , the latency saving due to the PCMS technique is NL
P

clock cycles.

63



3.4 Implementation of Symbol-Decision SCL Decoders

3.4.1 Architecture of Symbol-Decision SCL Decoders

We propose an architecture of an M -bit symbol-decision SCL decoder shown in

Fig. 3.9. It consists of M MPU blocks (MPU0,MPU1, · · · ,MPUM−1), a list pruning

network (LPN), a mask bit generator (MBG), a message-screening block (MSNG), a

control block (CNTL), an output-list generator (OLG) and a CRC checker (CRCC).

LPN

MPU0

MPU1

MPUM-1

CNTL

MBG

M
S
N
G

0

1 0frz_flag

CRCC

OLG

Mask_bit

Figure 3.9: Top architecture for an M -bit symbol-decision SCL decoder.

An MPU block calculates messages for B-TRANS and S-COMBS messages and

updates the partial-sum network by adopting blocks of the SCL decoder in [44]. The

additions of S-COMBS stages are carried out by reusing the same hardware resource

used to calculate messages of the B-TRANS stages to reduce area. Compared with

the SCL decoder in [44], the MPU has neither path pruning unit nor the CRC checker.

The other improvement for the MPU is that the PCMS technique is used here. The

architecture of an MPU is shown in Fig. 3.10. Channel messages are not needed any

more due to the PCMS technique. L-MEM stores messages corresponding to stages
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of the MFG. For stage S1, MSEL selects messages from L-MEM based on partial sum

values and/or the type of calculation nodes. PUs are processing units to calculate LL

messages. PSUs are used to update partial-sums. ISel selects messages from LMEM

or OSel module for the crossbar (CB) module which chooses messages for PUs. OSel

outputs messages to L-MEM for intermediate stages and output symbol-wise messages

to MSNG.

L-MEM

CB

PU0

PU1

PUL-1

P
S
U
0

P
S
U
1

P
S
U
L
-1

ISel OSelMSEL

Figure 3.10: Architecture of an MPU.

We take the MFG of Fig. 3.2 as an example to illustrate the function of MSEL. For

node f21 of path l, {W (1)
2,1 (y

2
1|0),W

(1)
2,1 (y

2
1|1)} and {W (1)

2,1 (y
4
3|0),W

(1)
2,1 (y

4
3|1)} are selected

from LMEM by MSEL and output to Isel. For node g21 of path l, {W (2)
2,1 (y

2
1, w1l|0),

W
(2)
2,1 (y

2
1, w1l|1)} and {W (2)

2,1 (y
4
3, w3l|0),W

(2)
2,1 (y

4
3, w3l|1)} are selected from LMEM. Here,

w1l and w3l are the partial sums for w1 and w3, respectively, belonging to path l. The

detailed information of other blocks in Fig. 3.10 can be found in [44] and will not be

discussed in this chapter.

The message-passing scheme in MFG of a polar code is in a serial way, which means

that the calculation of a stage depends on the output of its previous stage. The PUs

in [44] carry out only the B-TRANS additions. On the other hand, the S-COMBS stages
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need only additions and a processing unit has four adders. Therefore, in order to save

hardware resources, the adders in the processing units are reused to calculate symbol-

wise channel transition probabilities, after these processing units finish calculations for

the B-TRANS stages. In other words, additions of both the B-TRANS and S-COMBS

stages are folded onto the same adders in the processing units. As shown in Fig. 3.11,

c[0] and c[1] are outputs for the B-TRANS stages; d[0], d[1], d[2], and d[3] are outputs

for the S-COMBS stages.

a[0]

a[1]

b[0]

b[1]

max

max

c[0]

c[1]

d[0]

d[1]

d[2]

d[3]

1

0
1

0

1

0

1

0

u

mode

Figure 3.11: Architecture of a processing unit.

MBG provides a mask bit for each path. If there are f (f ≥ 0) frozen bits in an

M -bit symbol, the number of expanded paths is 2M−f for this symbol. For hardware

implementations, we need to consider the worst case and all messages corresponding to

2M possible paths are calculated. Each path is associated with a mask bit. When some

paths are not needed, due to frozen bits, they are turned off by mask bits. Fig. 3.12

shows how to generate the mask bit for path i, where i = (i1, i2, · · · , iM) ∈ {1, 0}M

(0 ≤ i < 2M − 1) and bj = (bj,1, bj,2, · · · , bj,M) is a frozen bit indication vector for

ujM+M
jM+1 . If ujM+t is a frozen bit, bj,t = 1. Otherwise, bj,t = 0. If bj is an all-one vector,

all bits of ujM+M
jM+1 are frozen bits, called an M -bit frozen symbol. If Mask_biti is 1,

ujM+M
jM+1 cannot be i and the message corresponding to ujM+M

jM+1 = i is set to 0 in MSNG.
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i1
bj,1

i2
bj,2

iM
bj,M

Mask_biti

Figure 3.12: Architecture for generating a mask bit.

LPN receives 2MLmessages from MSNG, finds the most reliable L paths, and feeds

decision results back to the MPUs. Here, we use two different sorting implementations

– a folded sorting implementation and a tree sorting implementation – for different de-

signs. The basic unit for these two implementations is a bitonic sorter [57] , which

outputs the L max values out of 2L inputs and is referred to as BS_L. The folded sorting

implementation needs 2M−1 BS_Ls (BS_L0,BS_L1, · · · ,BS_L2M−1−1). The outputs

of the BS_L2i and the BS_L2i+1(0 ≤ i < 2M−2) are connected with inputs of BS_Li

through registers and multiplexers. For the tree sorting implementation with 2ML in-

puts, 2M − 1 BS_Ls are needed. The tree sorting implementation can be divided into

M layers. For 0 ≤ i < M , there are 2i BS_Ls in the i-th layer. Inputs of the BS_Ls of

the i-th layer are connected with outputs of the BS_Ls of the (i + 1)-th layer. Fig. 3.13

and 3.14 show examples of the folded and tree sorting implementations, respectively,

for 2M = 8.

BS_L0 BS_L1 BS_L2 BS_L3

D D DD

MUX MUX MUX MUX

Figure 3.13: Architecture for the folded sorting implementation when 2M = 8.
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BS_L0 BS_L1 BS_L2 BS_L3

BS_L4 BS_L5

BS_L6

Figure 3.14: Architecture for the tree sorting implementation when 2M = 8.

The folded sorting implementation has a smaller area than the tree sorting imple-

mentation. However, pipelining can be applied to the tree sorting implementation by

inserting registers between layers to improve the throughput of the tree sorting imple-

mentation.

For the two-stage list pruning network proposed in Sec. 3.2.4, either the folded sort-

ing implementation or the tree sorting implementation can be used for the 2M -to-q sort-

ing function and the qL-to-L sorting function.

CNTL provides control signals to the decoder. More details about CNTL will be

provided later. The signal frz_flag is an indicator. It is one only when a frozen symbol

appears. In this case, all MPUs use zero to update the partial-sums instead of outputs of

LPN. Therefore, LPN, MSNG, and calculations for the S-COMBS stages are bypassed.

OLG stores the output paths. CRCC checks whether a path satisfies the CRC constraint.

3.4.2 Message Scheduling and Latency Analysis

To improve area efficiency, different scheduling schemes are needed for different

number of PUs. To reuse the adders of the processing units, additions of the S-COMBS

stages in the MFG must be scheduled properly. Assuming that the number of processing
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units is P , the total number of adders provided by processing units is 4P . If 2ML ≤ 4P ,

we use a serial scheduling, which means that there is no overlap for the processing units

and LPN in terms of the operation time, as shown in Fig. 3.15.

B-TRANS S-TRANS

Processing Units LPN

Sn-m+1 Sn-m+2 Sn...S1 Sn-mS2 ...

TS TN

Figure 3.15: Serial scheduling (in clock cycles).

Suppose each addition takes one clock cycle. Then each S-COMBS stage takes one

clock cycle to compute messages. Therefore, it takes m clock cycles for the S-COMBS

stages to output messages to LPN. To save area, the folded sorting implementation is

applied for the serial scheduling.

When 2ML > 4P ≥ 2M/2L, there are not enough adders to calculate all 2ML

messages of stage Sn in one clock cycle, but all 2M/2n−i
Lmessages of stage Si (n+m−

1 ≤ i ≤ n− 1) can be calculated in one clock cycle. Without increasing the number of

adders, 2ML
4P

cycles are needed. In each cycle, 4P messages are calculated. To reduce

the latency, the overlapping scheduling shown in Fig. 3.16 is used. In clock cycle c0, the

first 4P messages come out. In clock cycle c1, LPN starts. Therefore, MPUs and LPN

are working simultaneously for 2ML
4P

− 1 clock cycles. Here, LPN works in a pipelined

way. Hence, the tree sorting implementation is deployed for the overlapping scheduling

and a BS_L is connected at the end of the tree sorting implementation in a way shown

in Fig. 3.17, where the number on a line represents the number of messages transmitted

through the line.

The latency of an M -bit symbol-decision SCL decoder consists of the latency for

calculating messages of the B-TRANS stages, the latency for calculating messages of
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B-TRANS S-TRANS
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: Clock cycles when the processing units are busy.

: Clock cycles when the LPN is busy.

: Clock cycles when both the processing units and LPN are busy.

c0 c1 ...

Sn-mS1 ...

TS TN

Figure 3.16: Overlapping scheduling (in clock cycles).
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Figure 3.17: A pipelined tree sorting implementation for the overlapping scheduling.

the S-COMBS stages, and the latency of the list pruning network:

• TB represents the overall number of clock cycles for the calculations of the B-

TRANS stages. It is equivalent to the latency of a bit-decision SCL decoder with

code length N
M

and P
M

processing units:

TB = 2
N

M
+
NL/M

P/M
log2(

NL/M

4P/M
)− NL/M

P/M
,

where the third term, −NL/M
P/M

, is the latency saving by using the PCMS technique.

• TS represents the number of clock cycles for the calculations of the S-COMBS

stages per symbol. If 2ML ≤ 4P , the number of clock cycles used to calculate

messages for the S-COMBS stages is TS = m. When 2ML > 4P ≥ 2M/2L,

TS = m− 1 + ⌈2ML
4P

⌉. More generally, TS ≤
∑m

i=1⌈
22

i
L

4P
⌉.
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• TN represents the number of extra clock cycles per symbol needed by LPN to fin-

ish the list pruning after all messages of stage Sn are calculated. TN is determined

by the detailed implementation.

Here, TS and TN are needed by only symbols including information bit(s). For frozen

symbols, LPN and the calculation of the S-COMBS stages are bypassed. Hence, the

latency of the symbol-decision SCL decoder is:

T (M) = (1− γ)
N

M
(TS + TN) + TB

= (1− γ)
N

M
(TS + TN) + 2

N

M
+
NL

P
log2(

NL

8P
),

(3.16)

where γ is a ratio of the number of frozen symbols to N
M

.

Table 3.2 shows latencies (in clock cycles) of different decoders to decode a (1024,

480) CRC32-concatenated polar code with 64 processing units and L = 4. We assume

a BS_L needs one clock cycle to find the four maximum values out of eight values. For

M = 2 and M = 4, a folded sorting implementation and the serial scheduling are used.

For M = 8, a pipelined tree sorting implementation and the overlapped scheduling are

applied. ForM = 8 and q = 2, the basic unit in the tree sorting implementation is to find

the two maximum values out of eight values, which needs one clock cycles. Therefore,

TN = 4 when M = 8 and q = 2.

It is claimed in [2] that the M -bit SDSCL decoder could have M times faster de-

coding speed than the bit-decision SCL decoder. In practice, this is unrealistic as shown

by Table 3.2. Let us review (3.16) again. For a fair comparison, suppose the MPUs

of the M -bit SDSCL decoder has the same architecture as the conventional SCL de-

coder. Then a conventional SCL decoder with the PCMS technique has a latency of
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Table 3.2: Latencies of different decoders for a (1024, 480) CRC32-concatenated polar
code with 64 processing units and L = 4.

Decoder γ TS TN q Latency (# of cycles)
SDSCL-2 0.445 1 2 4 2069
SDSCL-4 0.395 2 4 4 1634
SDSCL-8 0.344 6 7 4 1540
SDSCL-8 0.344 6 4 2 1288

T (1) = 2N + NL
P

log2
NL
8P

. The decoding speed gain of the M -bit SDSCL decoder is

T (1)

T (M)
=

2N + NL
P

log2
NL
8P

(1− γ)N
M
(TS + TN) + 2N

M
+ NL

P
log2(

NL
8P

)

=M −
(1− γ)N(TS + TN) + (M − 1)NL

P
log2

NL
8P

(1− γ)N
M
(TS + TN) + 2N

M
+ NL

P
log2

NL
8P

(3.17)

To be exactly M (M > 1) times faster, (1− γ)N
M
(TS + TN) + (M − 1)NL

P
log2

NL
8P

needs to be small. For NL > 8P , T (1)
T (M)

< M , because TS > 0 and TN > 0. For NL =

8P , TS = TN = 0 should be satisfied, which means that the calculation of the symbol-

wise channel transition probability and the list pruning procedure do NOT take any clock

cycle. This is impractical, since TS and TN cannot be zero in a practical design. IfNL <

8P and P ≤ NL, to achieve M times faster, (TR + TN) =
(M−1)L log2

8P
NL

(1−γ)P
< 5(M−1)

(1−γ)N
.

Usually, (1−γ)N >> 5(M−1). Therefore, the statement about the decoding speed gain

in [2] is too idealistic to be achieved in practice because practical implementations need

extra cycles to calculate symbol-wise channel transition probabilities and to perform the

list pruning function.
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3.4.3 Control Logic

The control part CNTL is similar to that of [36] because a semi-parallel architecture

is used in our decoders. Some necessary modifications are made for the symbol-decision

decoder.

Basically, CNTL mainly consists of finite state machines and counters to generate

control signals for other blocks. It provides the information of frozen bits and accom-

plishes another three main jobs.

• It controls MPU blocks to calculates messages for B-TRANS messages.

• It controls MPU blocks to calculates messages for S-TRANS messages.

• It controls the list pruning network to generate L list candidates.

The first job is almost the same as the control logic used in [36] except for additional

control signals needed by the PCMS technique. Based on different message scheduling

schemes, different controllers are used to accomplish the second and third jobs.

There are several counters in CNTL, such as the current decoded symbol index

counter, the current stage index counter, the current message index counter, and so on.

Main finite state machines (FSMs) for different scheduling schemes are shown in

Fig. 3.18.

For the serial scheduling, the decoder is enabled by signal “start” and goes to state

“B-TRANS” to calculate B-TRANS messages. If the symbol is a frozen symbol, the

decoder stays in state “B-TRANS” and the current decoded symbol index increases by
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Figure 3.18: Finite state machines for different scheduling schemes, (a) serial schedul-
ing (b) overlapping scheduling.

1. Otherwise, the decoder goes to states “S-TRANS” and “LPN” sequentially. After L

candidates are founded, the decoder goes back to state “B-TRANS” and starts to deal

with the next symbol. Meanwhile, the current decoded symbol index counter goes up by

1. After all symbols are decoded, the decoder goes back to state “IDLE” and waits for

the next “start” to decode the next codeword. There are three dash arrows in Fig. 3.18

indicating that whenever a reset signal is received by the decoder, the decoder goes back

to state “IDLE” immediately.

For the overlapping scheduling, the FSM has only three states. The decoder cal-

culates S-TRANS messages and perform list pruning function in state “MLD”. More

counters are needed when the decoder adopts the overlapping scheduling. For exam-

ples: a counter is needed to generate a signal indicating when LPN starts to work.

Actually, the control logic is a very small part for polar decoders. The ratio of the

area of the control logic over the entire decoder area is less than 0.5%.

3.4.4 Synthesis results

To implement the proposed symbol-decision SCL decoder, we consider only M =

2, 4 and 8. For M ≥ 16, it is impractical to build list pruning networks. For example,
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for the worst case of M = 16 that all the bits of a symbol are information bits, there are

216L = 65536L paths. Even if L = 1, to find the maximum value among 65536 values

still needs a huge amount of hardware resources and leads to a large latency.

Table 3.3: Synthesis results of proposed decoders with L = 4 for the
aforementioned (1024, 480) CRC32-concatenated polar code.

Our Proposed Architectures
Algorithm Symbol-decision SCL

M 2 4 8 (q = 4) 8 (q = 2)
Message Type LL

Clock Rate (MHz) 500
Latency (us) 4.14 3.27 3.08 3.21** 2.58 2.70**

Throughput (Mbps) 247 313 332 319** 398 379**

Area (mm2) 1.126 1.209 1.669 1.782** 1.403 1.519**

Area eff. (Mb/s/mm2) 219.4 259.2 199.2 179.1** 283.3 249.3**

** The design is without the PCMS technique.

Table 3.4: Synthesis results of existing decoders with L = 4 for the aforementioned
(1024, 480) CRC32-concatenated polar code.

[3] [44] [43]‡ [43]† [45]
Algorithm Multi-bit SCL Bit-decision SCL

M 2 4 N/A
Message Type LL LLR

Clock Rate (MHz) 525 379* 400 289* 500 694 314 794
Latency (us) 3.89 5.39* 2.56 3.53* 5.63 4.06 8.25 3.34

Throughput (Mbps) 262 189* 401 289* 182 252 124 307
Area (mm2) 1.98 3.79* 2.14 4.10* 1.099 2.197 3.53 1.78

Area eff. (Mb/s/mm2) 132.3 49.9* 187.3 70.6* 165.6 114.7 35.1 172
† The synthesis result in [43] is based on a UMC 90nm CMOS technology.
‡ The synthesis result is provided by the authors of [43] based on a TSMC 90nm CMOS technology.
* Original synthesis results in [3] are based on an ST 65nm CMOS technology. For a fair comparison,

synthesis results scaled to a 90nm technology are used in the comparison.

Our implementations assume L = 4 and 64 processing units. LL messages are used

in our designs. Channel LL messages are quantized with 4 bits. A (1024, 480) CRC32-

concatenated polar code is used. The synthesis tool is Cadence RTL compiler. The
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process technology is TSMC 90nm CMOS technology. Our proposed architectures are

compared with state-of-the-art SCL architectures, in [3,43–45], of both bit-decision and

multi-bit algorithms. The synthesis results in [45] and [44] are also based on a TSMC

90nm CMOS technology. The original synthesis results of [43] and [3] are based on a

UMC 90nm and ST 65nm CMOS technologies, respectively.

The synthesis results shown in Tables 3.3 and 3.4, demonstrate that our symbol-

decision SCL polar decoders have higher area efficiencies than the SCL decoders in

[43], [44], [3], and [45]. The SCL decoders in [3, 43, 45] have higher clock rates than

our designs, because they use registers as storage units. However, in our designs, register

files are used.

The SDSCL-8 decoders provide a higher throughput and a smaller latency than the

SDSCL-2 and SDSCL-4 decoders, and occupy larger areas. However the improvements

on the throughput and latency are not linear in the symbol size.

Compared with the bit-decision SCL decoder in [44], the increase of areas of symbol-

decision SCL decoders is mainly due to sorting networks because the adders of process-

ing units are reused to calculate both bit- and symbol-wise channel transition probabili-

ties.

Parameter q provides trade-offs between complexity and performance. For the SDSCL-

2 and SDSCL-4 decocers, q = 4. For the SDSCL-4 decoder, because the sorting network

of the SDSCL-4 decoder is only 0.073 mm2, there is no need to shrink q further. For

the SDSCL-8 decoders, both q = 4 and q = 2 are tested. When q = 4, the area of

the sorting network is 0.454 mm2. However, when q = 2, the sorting network occupies

0.196 mm2 which is less than a half of that of q = 4. A smaller q does help the SDSCL-8
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decoder achieve a higher throughput, a smaller latency, a smaller area, and a higher area

efficiency, but it also introduces an FER performance loss of 0.25 dB to the SDSCL-8

decoder at an FER level of 10−3 as shown in Fig. 3.7.

Moreover, synthesis results for SDSCL-8 decoders without the PCMS technique are

also provided. The PCMS technique helps the SDSCL-8 decoders gain an area saving

of about 0.12 mm2.

LL messages are used in our designs presented herein. If LLR messages are used in

our decoder architecture as in [45], our symbol-decision SCL decoders will have better

area efficiencies than our current designs, because the memory requirement for LLR

messages are smaller than that for LL messages [45].

3.5 Summary

In this chapter, we use the symbol-based recursive channel combination to calculate

the symbol-wise channel transition probability. We show that based on the LL repre-

sentation of the transition probability, this recursive procedure needs fewer additions

than the method used in [1–3]. Furthermore, a two-stage list pruning network is pro-

posed to simplify the L-path finding problem. We use the PCMS technique to reduce the

memory requirement for list decoders. By applying the PCMS technique, we design an

efficient architecture for symbol-decision SCL decoders. Specifically, we introduce two

scheduling schemes to perform the hardware sharing. A folded sorting implementation

and tree sorting implementation are also discussed. We also implement symbol-decision

SCL polar decoders for two-bit, four-bit and eight-bit, respectively, with a list size of
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four. Our synthesis results show that symbol-decision SCL polar decoders outperform

existing SCL polar decoders in terms of the area efficiency. Our proposed methods and

architecture provide a range of trade-offs between area, throughput and area efficiency.
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Chapter 4

Multi-Mode Area-Efficient SCL Polar

Decoder

Maximum likelihood (ML) decoding algorithms [29–31] can be used to decode po-

lar codes, but their complexity can be prohibitively high. Compared with ML decoding

algorithms, the successive cancellation (SC) decoding algorithm [24] has a lower com-

plexity at the cost of sub-optimal performance. To improve the performance of the SC

algorithm, the SC list (SCL) decoding algorithm [33] and the CRC-aided SCL (CA-

SCL) algorithm [26, 33] were proposed. A key drawback of the SC, SCL and CA-SCL

algorithms is their long decoding latency and low decoding throughput, as these algo-

rithms deal with only one bit at a time.

To reduce decoding latency and improve throughput of an SC polar decoder, sev-

eral algorithms [1, 2, 40, 58] were proposed to deal with several bits at a time instead of

only one bit by using ML decoding units, which calculate symbol-wise channel transi-
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tion probabilities and make hard decisions for several bits at a time. Based on the SC

algorithm, the parallel SC [2], hybrid ML-SC [1], ML simplified SC (ML-SSC) [40]

and fast ML-SSC [58] algorithms were proposed. The basic difference of ML decod-

ing units between these four algorithms is that hybrid ML-SC [1] and fast ML-SSC [58]

take advantage of the distribution of frozen bits to reduce complexity, but neither parallel

SC [2] nor ML-SSC [40] algorithms do so.

ML decoding units in [3, 59–63] are also used to improve throughput of SCL-based

decoders and to reduce decoding latency. Instead of making hard decisions in SC-

based algorithms, an ML decoding unit for SCL-based algorithms calculates symbol-

wise channel transition probabilities and performs path expansion and pruning. None of

these SCL-based algorithms takes advantage of the distribution of frozen bits to reduce

complexity of ML decoding units. Therefore, ML decoding units in these SCL-based

algorithms have high complexities. For example, when the list size is four and the sym-

bol size is eight, the ML decoding unit accounts for 27% of the overall decoder area

in [60]. In [62], when the code length is 1024, the area of an ML decoding unit takes up

as much as 62% of the overall decoder area.

In this chapter, we first propose a low-complexity approximate ML (AML) decoding

unit by utilizing the distribution of frozen bits of polar codes and then propose a multi-

mode SCL (MM-SCL) polar decoder to support variable throughput and latency. Our

main contributions are:

• The divide-and-conquer method in [1] is applied in the probability domain to sim-

plify the ML unit for SC-based algorithms. By extending this idea, a divide-and-

conquer AML decoding unit for SCL-based algorithms is proposed by consider-

ing the distribution of frozen bits. It has greatly smaller computational complexity
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than those of existing ML decoding units for SCL-based algorithms, and has neg-

ligible performance loss when properly configured.

• The distribution of frozen bits of polar codes is analyzed. We show that there are

only a small number of frozen-location patterns for polar codes constructed by a

method proposed by Arıkan in [64] and a method in [65].

• Since only a small number of frozen-location patterns exist in polar codes, the

divide-and-conquer AML decoding unit for SCL-based algorithms is simplified

further. A low-complexity hardware implementation for the simplified divide-

and-conquer AML decoding unit, the LC-AML decoding unit, is proposed. Syn-

thesis results show that by taking advantage of a small number of frozen-location

patterns, our CA-SCL decoder with the LC-AML unit has a better throughput-area

efficiency than existing SCL decoders, while working for all channel conditions.

• An MM-SCL polar decoder is also proposed. This decoder supports SCL algo-

rithms with different list sizes and parallelism. When a high throughput or small

latency is needed, the MM-SCL decoder decodes multiple received words in par-

allel with a small list size. If error performance is of higher priority, the MM-SCL

decoder switches to a mode with a greater list size. Therefore, the MM-SCL polar

decoder provides a flexible tradeoff between latency, throughput and performance

at the expense of small overhead.

Our proposed divide-and-conquer AML decoding unit for SCL-based algorithm is

a nontrivial extension of the method for SC-based algorithm in [1]. However, by in-

vestigating the distribution of frozen bits of polar codes, we reduce the complexity of

the ML decoding unit further. Existing ML decoding units for SCL decoders [3,59–62]
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perform list pruning after all the symbol-wise channel transition probabilities are cal-

culated, whereas the proposed LC-AML decoding unit sorts intermediate results gen-

erated by the recursive channel combination method [59], leading to a reduced number

of symbol-wise channel transition probabilities dealt with by list pruning. Hence, the

proposed LC-AML decoding unit has a much smaller complexity. The performance

degradation due to the proposed LC-AML is the same as that in [59, 60]. Although the

ML decoding unit in [3] has no performance degradation, its complexity grows quickly

as the list size and symbol size increase. The performance degradation of the ML de-

coding unit in [61, 62] depends on its design parameters.

Many applications, such as modern wireless or wireline communication system, re-

quire variable data rate transmission and have stringent latency requirements. As a po-

tential candidate of FEC technique for future communication systems, a polar decoder

supporting variable data rate and variable decoding latency is desired. Unfortunately,

existing polar decoders provide only fixed latency and throughput (data rate). To the

best of our knowledge, the proposed MM-SCL decoder is the first polar decoder with

variable throughput and decoding latency given a polar code.

The rest of this chapter is organized as follows. In Section 4.1, construction meth-

ods for polar codes and existing ML decoding units are reviewed. In Section 4.2, the

divide-and-conquer method is first applied to the ML unit of SC-based algorithms in

the probability domain. Then, the divide-and-conquer AML decoding unit for SCL-

based algorithms is proposed, and its computational complexity is also analyzed. In

Section 4.3, frozen-location patterns for polar codes are investigated. In Section 4.4,

a hardware design of the LC-AML unit is proposed, and an area-efficient CA-SCL de-

coder with the LC-AML unit is implemented as well. The hardware implementation and
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synthesis results for the area-efficient SCL decoder are also presented in this section. In

Section 4.5, the MM-SCL decoder, its hardware implementation and synthesis results

are presented. Finally, some conclusions are provided in Section 4.6.

4.1 Preliminaries

4.1.1 Construction Methods of Polar Codes

An essential problem for constructing a polar code is to determine the locations of

frozen bits (elements of Ac). For the BEC with an erasure probability ϵ (0 < ϵ < 1),

assuming z0,1 = ϵ, the following recursions [64] are used to construct an (N,K) polar

code, where N = 2n and 0 < K < N :

zi,2j−1 = 2zi−1,j − z2i−1,j, (4.1)

zi,2j = z2i−1,j, (4.2)

where 1 ≤ i ≤ n. Then Ac is chosen such that
∑

j∈Ac zn,j is maximal and |Ac| = N−K.

For the AWGN channel and a given noise variance σ2, let z0,1 = 2
σ2 , the following

recursive method [65] based on Gaussian approximation is used for 1 ≤ i ≤ n:

zi,2j−1 = τ−1
(
1−

(
1− τ(zi−1,j)

)2)
, (4.3)

zi,2j = 2zi−1,j, (4.4)
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where

τ(x) =

 e−0.4527x0.86+0.0218, 0 < x < 10,√
π
x
e−

x
4 (1− 10

7x
) x ≥ 10.

(4.5)

In this case, Ac is chosen such that
∑

j∈Ac zn,j is minimal and |Ac| = N −K.

4.1.2 Existing ML Decoding Units for Polar Decoders

When x = uBNF
⊗n is transmitted, suppose the received word is y = yN1 and the

symbol size is M = 2m. A symbol-decision [59] ML decoding unit first calculates

symbol-wise channel transition probabilities, Pr(y, ûjM1 |ujM+M
jM+1 ) (0 ≤ j < N

M
), then

makes a symbol-wise ML decision for SC-based decoders or chooses the Lmost reliable

paths for SCL-based decoders. Here, ûjM1 is the previously estimated bits.

There are three methods to calculate the symbol-wise channel transition probabil-

ities, and all of them do not take advantage of the distribution of frozen bits. The

first [2, 3, 40, 61] is based on an M -element product of bit-wise channel transition prob-

abilities, called directing mapping method (DMM):

Pr(y, ûiM−M
1 |uiMiM−M+1) =

M−1∏
j=0

Pr(y
(j+1) N

M

j N
M

+1
, ŵ

(i−1)+j N
M

1+j N
M

|wi+j N
M
),

(4.6)

where uiMiM−M+1 = (wi, wi+ N
M
, · · · , wi+N− N

M
)BMF

⊗m for 1 ≤ i ≤ N
M

, and ŵ
(i−1)+j N

M

1+j N
M

is the previously estimated bit vector of w
(i−1)+j N

M

1+j N
M

.

The second [59], called as the recursive channel combination (RCC) method, is
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based on a product of symbol-wise channel transition probabilities recursively,

Pr(y2Λ1 , ûiΦ1 |uiΦ+Φ
iΦ+1 ) =Pr(yΛ1 , û

iΦ
1,o ⊕ ûiΦ1,e|uiΦ+Φ

iΦ+1,o ⊕ uiΦ+Φ
iΦ+1,e)

· Pr(y2ΛΛ+1, û
iΦ
1,e|uiΦ+Φ

iΦ+1,e),

(4.7)

where 1 ≤ ϕ ≤ m, 0 ≤ λ < n, Λ = 2λ, and Φ = 2ϕ.

The third [62] is a hybrid method by applying the DMM first and then the RCC

method, referred to as the DRH method.

Based on the distribution of frozen bits, some data symbols in [58] are considered as

some special constituent codes, such as repetition codes and single-parity-check nodes.

Different methods were proposed to deal with different constituent codes.

Furthermore, an ML decoding unit in [1] with the divide-and-conquer method was

proposed for SC algorithms based on an empirical assumption [1]:

Assumption 4.1.1. For a well designed polar code, there is no such case that u2i−1 is an

information bit and u2i is a frozen bit, for any 1 ≤ i ≤ N
2

.

Based on this assumption and the divide-and-conquer method, a simplified ML unit

was proposed in [1]. Moreover, a recursive way of the divide-and-conquer method was

proposed in [1], but it is not suitable for hardware implementation since it is for a large

symbol size, which has a very high complexity for hardware implementation.

How to take advantage of frozen-location patterns to reduce complexity of ML de-

coding units has been discussed in [58] and [1] for SC-based algorithms, but it has not

been investigated yet for SCL-based algorithms.
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4.2 Divide-and-Conquer AML Decoding Unit

The simplified ML unit in [1] is based on the Euclidean distance since an AWGN

channel is assumed. Here, we first apply the divide-and-conquer method in the prob-

ability domain and reformulate the ML unit for SC-based algorithms. This simplified

ML unit in the probability domain is slightly more general than that in [1], because it is

applicable to both AWGN channels and other channels. We then extend the simplified

ML unit in the probability domain to SCL-based algorithms.

4.2.1 Reformulation of the Divide-and-Conquer ML Unit for SC-

based Algorithms [1] in the Probability Domain

For the ease of discussion, a string vector Sb
a =‘Sa · · · Sb’ (for 1 ≤ a ≤ b ≤ N ) is

introduced to represent a frozen-location pattern of symbol uba. If uj (a ≤ j ≤ b) is an

information bit, Sj is denoted as ‘D’. Otherwise, Sj as ‘F’. Consider a toy example of a

four-bit symbol u41. Assuming u1 and u3 are frozen bits, and u2 and u4 are information

bits. Then the frozen-location pattern S4
1 of u41 is ‘FDFD’. Obviously, for all M -bit

symbols, there are 2M frozen-location patterns.

Based on Assumption 1, ujM+M
jM+1 (0 ≤ j < N

M
) can be divided into M

2
pairs, ujM+2i−1

and ujM+2i for 1 ≤ i ≤ M
2

. In theory, any pair of ujM+2i−1 and ujM+2i have four

possibilities. ‘FF’ is trivial. Under Assumption 1, ‘DF’ is not possible. Hence, in [1],

only two remaining possibilities are considered: ‘FD’ and ‘DD’. Let Ω(j)
01 represent the

index set of i that ujM+2i
jM+2i−1 is ‘FD’. Ω(j)

11 represents the index set of i that ujM+2i
jM+2i−1 is

‘DD’.
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For SC-based algorithms, the maximum of 2|Ω
(j)
01 |+2|Ω(j)

11 | values of T (ujM+M
jM+1 ) ,

Pr(y, ûjM1 |ujM+M
jM+1 ) needs to be found. Based on the RCC method [59], T (ujM+M

jM+1 ) =

T1(v
jM+M

2
jM
2

+1
)× T2(u

jM+M
jM+1,e), where v

N
2
1 ,uN1,o ⊕ uN1,e, T1(v

jM+M
2

jM
2

+1
) , Pr(y

N
2
1 , v̂

jM
2

1 |v
jM+M

2
jM
2

+1
),

and T2(u
jM+M
jM+1,e),Pr(yNN

2
+1
, ûjM1,e |u

jM+M
jM+1,e). The possible values of T (ujM+M

jM+1 ) can be

divided into 2|Ω
(j)
01 | groups based on Ω

(j)
01 , each with 22|Ω

(j)
11 | values. In each group, for

i ∈ Ω
(j)
11 , since v jM

2
+i and ujM+2i are independent, max(T ) = max(T1)max(T2). Then,

the maximum of 2|Ω
(j)
01 | values generated in the previous step is found. Therefore, if

Ω
(j)
01 = ∅,

max
ujM+M
jM+1

(T ) = max
ujM+2i
jM+2i−1

i∈Ω(j)
11

(T1)× max
ujM+2i

i∈Ω(j)
11

(T2); (4.8)

otherwise,

max
ujM+M
jM+1

(T ) = max
ujM+2i

i∈Ω(j)
01

 max
ujM+2i
jM+2i−1

i∈Ω(j)
11

(T1)× max
ujM+2i

i∈Ω(j)
11

(T2)

 . (4.9)

Under Assumption 1, considering Eq. (4.8), if Ω(j)
01 = ∅, the maximal value of T is

just a product of the maximal value of T1 and the maximal value of T2. For example,

Fig. 4.1(b) shows an example of frozen-location pattern ‘DDDD’ which has Ω(0)
01 = ∅,

when M = 4 and N = 4. If Ω(j)
01 is not empty, for any i ∈ Ω

(j)
01 , v jM

2
+i = ujM+2i.
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Figure 4.1: Examples for calculating max() and max2() functions when M = 4,
N = 4, q = 2, and j = 0, (a) the calculation rule for Pr(y41|u41), (b) the calculation
of max(Pr(y41|u41)) in [1] when the frozen-location pattern is ‘DDDD’ , (c) the calcu-
lation of max(Pr(y41|u41)) in [1] when the frozen-location pattern is ‘FDDD’, (d) the
calculation of max2(Pr(y

4
1|u4

1)) when the frozen-location pattern is ‘DDDD’ , and (e)
the calculation of max2(Pr(y

4
1|u4

1)) when the frozen-location pattern is ‘FDDD’.
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4.2.2 Divide-and-Conquer AML Decoding Unit for SCL-based Al-

gorithms

Extending the idea in Eqs. (4.8) and (4.9), we propose a divide-and-conquer AML

decoding method for SCL-based algorithms under Assumption 1. For SC-based al-

gorithms, only the maximal value of Pr(y, ûjM1 |ujM+M
jM+1 ) is needed. In contrast, for

SCL-based algorithms with list size L, the L maximal values of Pr(y, ûjM1 |ujM+M
jM+1 ) are

needed. A simple understanding for our method is that the max(Pr(ρ)) function is re-

placed by a function finding the L maximal values of Pr(ρ), denoted as [Pr(ρ1), · · · ,

Pr(ρL)] = maxL(Pr(ρ)). maxL(Pr(ρ))�maxL(Pr(ψ)) generates L2 values of

Pr(ρi)× Pr(ψj) for 1 ≤ i, j ≤ L.

The path expansion-and-pruning procedure of SCL-based algorithms is divided into

two stages. In the first stage, the q most reliable paths are selected for each list by

calculating and comparing path metrics. In the second stage, the L most reliable paths

among the qL survival paths generated in the first stage. This two stage approach was

proposed in our prior work [59], and the novelty herein is that we use the divide-and-

conquer method to reduce the complexity of the first stage. The second stage has been

described in [59], and we omit its discussions.

Assuming |Ω(j)
01 | = βj , |Ω(j)

11 | = γj . When βj ≥ 1, let Ω(j)
01 = {i(j)1 , i

(j)
2 , · · · , i(j)βj

}

(i
(j)
1 < i

(j)
2 < · · · < i

(j)
βj
). The first stage includes:

Step 0: the RCC method [59] is applied to calculate both T1 and T2.

Step 1: Given any βj-bit binary vector B(j) = (u
jM+2i

(j)
1
, u

jM+2i
(j)
2
, . . . , u

jM+2i
(j)
βj

),

there are 2γj possible values for both v
jM+M

2
jM
2

+1
and ujM+M

jM+1,e. We find the min(q, 2γj)
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maximal values of 2γj values of T1, and the min(q, 2γj) maximal values of 2γj values of

T2.

Step 2: For B(j), there are
(
min(q, 2γj)

)2 values of T , which is a product of values

of T1 and T2 generated in Step 1.

Step 3: The q maximal values are selected from
(
min(q, 2γj)

)2
2βj values of T gen-

erated by Step 2 because there are 2βj possible values for B(j).

If Ω(j)
01 = ∅ and βj = 0, we still use the aforementioned four steps to find the q most

reliable paths for each list except that B(j) is considered as a void binary vector which

is the only value for B(j) when βj = 0.

Fig. 4.1(d) and 4.1(e) show two examples for frozen-location patterns ‘DDDD’ and

‘FDDD’, respectively when M = 4, N = 4, and q = 2. After these four steps are

carried out for each list, there are qL values of T left, which are sorted to choose the L

maximal values in the second stage.

The proposed divide-and-conquer AML decoding unit has a lower computational

complexity. It reduces the number of symbol-wise channel transition probabilities dealt

by the list pruning function by sorting the intermediate calculation results generated by

the RCC method [59], whereas the DMM, RCC, and DRH methods perform list pruning

function after all the symbol-wise channel transition probabilities are calculated. For

example, in Fig. 4.1(d), the DMM, RCC, and DRH methods perform max2(Pr(y
4
1|u41))

after all 16 values of Pr(y41|u41) are calculated. The proposed divide-and-conquer method

performs max2(Pr(y
2
1|v21)) and max2(Pr(y

4
3|u2, u4)) first. Then it finds the two maximal

values out of four elements generated by max2(Pr(y
2
1|v21))�max2(Pr(y

4
3|u2, u4)). The

output of the proposed AML decoding unit is the same as those of other ML decoding
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units if they have the same input.

Given an M -bit symbol ujM+M
jM+1 , Ω(j)

01 , Ω(j)
11 , Pr(y

N
2
1 , v̂

jM
2

1 |v
jM+M

2
jM
2

+1
), and

Pr(yNN
2
+1
, ûjM1,e |u

jM+M
jM+1,e), the first stage using the divide-and-conquer decoding unit needs

two 2γj -to-
(
min(q, 2γj)

)
sorts, one

(
min(q, 2γj)

)2
2βj -to-q sort, and

(
min(q, 2γj)

)2
2βj

multiplications per list, whereas the ML decoding unit in [59] needs 2βj+2γj multiplica-

tions and a 2βj+2γj -to-q sort per list. By examining all possible values of βj and γj , we

can find the worst-case computational complexity.

We demonstrate the advantage of the proposed divide-and-conquer AML unit in

computational complexity as opposed to other ML decoding units with an example of

M = 8 and q = 4. Henceforth, we only discuss the computational complexity per list to

accomplish the job of the first stage of the proposed method. Table 4.1 lists worse-case

computational complexities of different methods, and shows that the proposed method

has the smallest computational complexity when 81 eight-bit frozen-location patterns

under Assumption 1 need to be dealt with.

Table 4.1: Worst-case computational complexity of different
methods when M = 8 and q = 4.

Method Computational Complexity
RCC [60] ‡ 304 multiplications, a 256-to-4 sort
DMM [40] ‡ 1792 multiplications, a 256-to-4 sort
DRH [62] ‡ 784 multiplications, a 256-to-4 sort

Divide-and-Conquer 112 multiplications, a 64-to-4 sort
AML ‡ and two 16-to-4 sorts

Divide-and-Conquer 80 multiplications, a 32-to-4 sort
AML † and two 16-to-4 sorts

LC-AML ⋆ 80 multiplications, a 32-to-4 sort
and four 8-to-4 sorts

‡ All 81 eight-bit patterns under Assumption 1 are dealt with.
† Only nine eight-bit patterns in Sec. 4.3.1 are dealt with.
⋆ Only six eight-bit patterns in Sec. 4.4 are dealt with.
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Figure 4.2: Frame and bit error rates of CA-SCL decoders with different qs for a
(2048,1433) polar codes with a 32-bit CRC over the AWGN channel when adapting
the LC-AML decoding unit.

Our proposed method has the same performance degradation as in [60]. If q ≥ L,

our method does not introduce any performance degradation for SCL-based algorithms.

If q < L, the performance degradation depends on q and L, and is usually negligible

when q and L are small. Fig. 4.2 shows the frame and bit error rates of a (2048, 1433)

polar code with a 32-bit CRC of CA-SCL decoders with the LC-AML decoding unit

when M = 8 and L = 8. When q = 8, the proposed algorithm has no performance loss

compared with the CA-SCL decoder in [33] and the hybrid SC-ML-LIST algorithm

in [1]. When q = 4, the performance loss is negligible compared with that of q = 8.

However, q = 2 leads to a performance loss of about 0.1 dB at a frame error rate (FER)

of 10−3.
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4.3 Frozen-Location Patterns for Polar Codes

Considering the hardware implementation for the divide-and-conquer AML unit, a

uniform hardware design for all frozen-location patterns is preferred rather than different

dedicated designs for various frozen-location patterns. For M = 8 and M = 16, there

are 81 and 6561 possible frozen-location patterns satisfying Assumption 1, respectively.

Actually, some of them may never exist in a polar code. Therefore, we want to know the

exact number of frozen-location patterns in a polar code, since the number of frozen-

location patterns impacts the complexity of the divide-and-conquer AML decoding unit

for SCL-based algorithms: the more frozen-location patterns, the higher complexity the

divide-and-conquer AML decoding unit has.

4.3.1 Polar Codes for the BEC

For polar codes constructed for the BEC with an erasure probability ϵ (0 < ϵ < 1),

Eqs. (4.1) and (4.2) are used in [64]. In order to examine frozen-location patterns in

these polar codes, we have following results regarding the ordering of zi,j for i ≥ 1 and

1 ≤ j ≤ 2i. This ordering determines possible frozen-location patterns in a polar code.

Proposition 4.3.1. Assuming z0,1 = ϵ ∈ (0, 1), given any i ≥ 1 and 1 ≤ j ≤ 2i, zi,j is

calculated by Eqs. (4.1) or (4.2). We have

(a) 0 < zi,j < 1 for i ≥ 1 and 1 ≤ j ≤ 2i,

(b) zi,2j−1 > zi,2j for i ≥ 1 and 1 ≤ j ≤ 2i−1,

(c) zi,4j−3 > zi,4j−2 > zi,4j−1 > zi,4j for i ≥ 2 and 1 ≤ j ≤ 2i−2,
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(d) zi,8j−7 > zi,8j−6 > zi,8j−5 > zi,8j−3 > zi,8j−4 > zi,8j−2 > zi,8j−1 > zi,8j for i ≥ 3

and 1 ≤ j ≤ 2i−3.

Proof of Proposition 4.3.1. (a) First, 0 < z1,1 = 2ϵ− ϵ2 = 1− (1− ϵ)2 < 1. Second,

0 < z1,2 = ϵ2 < 1. Then, by induction, for i ≥ 1 and 1 ≤ j ≤ 2i, 0 < zi,j < 1 is

satisfied.

(b) For any i ≥ 1 and 1 ≤ j ≤ 2i, zi,2j−1 − zi,2j = 2zi−1,j − z2i−1,j − z2i−1,j =

2zi−1,j(1− zi−1,j). By Proposition 4.3.1(a), zi,2j−1 − zi,2j > 0 ⇒ zi,2j−1 > zi,2j .

(c) By Proposition 4.3.1(b), zi,4j−3 > zi,4j−2 and zi,4j−1 > zi,4j . zi,4j−2 − zi,4j−1 =

2z2i−2,j(1 − zi−2,j)
2. By Proposition 4.3.1(a), zi,4j−2 − zi,4j−1 > 0 ⇒ zi,4j−2 >

zi,4j−1.

Therefore, zi,4j−3 > zi,4j−2 > zi,4j−1 > zi,4j .

(d) By Proposition 4.3.1(c), zi,8j−7 > zi,8j−6 > zi,8j−5 > zi,8j−4 and zi,8j−3 >

zi,8j−2 > zi,8j−1 > zi,8j . We also have zi,8j−5 > zi,8j−3 and zi,8j−4 > zi,8j−2

because zi,4j−2 > zi,4j−1.

Now let us compare zi,8j−4 and zi,8j−3,

zi,8j−4−zi,8j−3 = −2z2i−3,j(1− zi−3,j)
2

× (2 + 4zi−3,j − 5z2i−3,j + 2z3i−3,j − z4i−3,j).

By Proposition 4.3.1(a), zi,8j−4 < zi,8j−3.

Therefore, zi,8j−7 > zi,8j−6 > zi,8j−5 > zi,8j−3 > zi,8j−4 > zi,8j−2 > zi,8j−1 >

zi,8j .
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Now, let us explain how the ordering of zn,j determines 2m-bit (1 ≤ m ≤ 3) frozen-

location patterns in an (N,K) polar code over the BEC. First, to choose elements of Ac

for an (N,K) polar code over the BEC, Ac is chosen such that
∑

j∈Ac zn,j is maximal

and |Ac| = N − K, where N = 2n. Then, if there are kj frozen bits in a symbol

u
2m(j+1)
2mj+1 (0 ≤ j < N

2m
), a set Ac

j consisting of indexes of these kj frozen bits must be

chosen such that
∑

t∈Ac
j
zn,t is maximal while |Ac

j| = kj . For example, assuming there

are four frozen bits in u81 in a (16, 12) polar code, by Proposition 4.3.1(d), z4,1 > z4,2 >

z4,3 > z4,5 > z4,4 > z4,6 > z4,7 > z4,8. Hence, u1, u2, u3, and u5 will be frozen bits and

the frozen-location pattern for u81 will be ‘FFFDFDDD’.

Therefore, for polar codes constructed by the method in [64], by Proposition 4.3.1(b),

there are three two-bit frozen-location patterns: ‘DD’, ‘FD’, and ‘FF’. We note

that the implication of Proposition 4.3.1(b) is the counterpart over the BEC of As-

sumption 1 in [1]. By Proposition 4.3.1(c), there are five four-bit frozen-location pat-

terns: ‘DDDD’, ‘FDDD’, ‘FFDD’, ‘FFFD’, and ‘FFFF’. By Proposition 4.3.1(d),

there are nine eight-bit frozen-location patterns: ‘DDDDDDDD’, ‘FDDDDDDD’,

‘FFDDDDDD’, ‘FFFDDDDD’, ‘FFFDFDDD’, ‘FFFFFDDD’, ‘FFFFFFDD’,

‘FFFFFFFD’, and ‘FFFFFFFF’.

For a larger symbol size, it is hard to get the ordering of zi,j by an analytical method.

A numerical method can be used. For example, the symbol size is 16. By Proposition

4.3.1(d), we have z4,1 > z4,2 > z4,3 > z4,5 > z4,4 > z4,6 > z4,7 > z4,8 and z4,9 > z4,10 >

z4,11 > z4,13 > z4,12 > z4,14 > z4,15 > z4,16. We also have z4,5 > z4,9 > z4,7 > z4,11 and

z4,4 > z4,6 > z4,10 > z4,8 > z4,12. For 0 < z0,1 = ϵ < 1,

z4,10 − z4,7 = 2ϵ4(ϵ− 1)4
[
ϵ3(ϵ2 − ϵ+ 24)(ϵ− 1)3 − 8)

]
< 0.
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Moreover, for 0 < z0,1 = ϵ < 1, z4,4 − z4,9 = 2ϵ2(ϵ − 1)4(ϵ10 − 4ϵ9 + 34ϵ8 −

116ϵ7 + 237ϵ6 − 375ϵ5 + 420ϵ4 − 280ϵ3 + 102ϵ2 − 16ϵ − 4) < 0 and z4,8 − z4,13 =

2ϵ4(ϵ−1)2(ϵ10−6ϵ9+43ϵ8−132ϵ7+251ϵ6−262ϵ5+121ϵ4−8ϵ3−6ϵ2−4ϵ−2) < 0.

These two inequalities are verified numerically.

Because of the recursive calculation of zi,j , for i ≥ 4 and 1 ≤ j ≤ 2i−4, we have

zi,16j−15 > zi,16j−14 > zi,16j−13 > zi,16j−11

> zi,16j−7 > zi,16j−12 > zi,16j−10 > zi,16j−9

> zi,16j−6 > zi,16j−5 > zi,16j−3 > zi,16j−8

> zi,16j−4 > zi,16j−2 > zi,16j−1 > zi,16j.

Thus, there are only 17 frozen-location patterns for 16-bit symbols.

It is not meaningful to consider the symbol size greater than 16, because this will

incur very high complexity for hardware implementations.

4.3.2 Polar Codes for the AWGN Channel

For the construction method introduced in [65] for the AWGN channel, it is difficult

to analyze the relationship between z3,i’s for 1 ≤ i ≤ 8 based on Eqs. (4.3) and (4.5).

Instead, we examine eight polar codes constructed with the method in [65], which have

code lengths from 210 to 213 and code rates of 0.5 and 0.8 to identify eight-bit frozen-

location patterns. By examining all eight-bit symbols of these polar codes, we found that

in these codes there are only nine eight-bit frozen-location patterns, which are the same

as those for polar codes constructed for the BEC, listed in Sec. 4.3.1. Our observation
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is consistent with Assumption 1 in [1].

4.3.3 Computational Complexity of the Divide-and-Conquer AML

Decoding Unit

When it needs to deal with only the frozen-location patterns mentioned in Sections

4.3.1 and 4.3.2, the divide-and-conquer AML decoding unit has a smaller complexity.

If M = 8 and q = 4, it needs 80 multiplications, two 16-to-4 sorts, and a 32-to-4 sort, as

listed in Table 4.1. It saves 32 multiplications, a 32-to-4 sort and a 8-to-4 sort compared

with the divide-and-conquer AML decoding unit which deals with all 81 frozen-location

patterns following Assumption 1, since a 64-to-4 sort consists of two 32-to-4 sorts and

a 8-to-4 sort.

If M = 16 and q = 4, to deal with all 38 = 6561 16-bit frozen-location patterns

satisfying Assumption 1, the first stage of the proposed ML decoding unit needs 1632

multiplications, two 256-to-4 sorts, and a 1024-to-4 sort. However, to deal with 17

16-bit frozen-location patterns discussed in Section 4.3.1, the simplified divide-and-

conquer AML decoding unit needs 736 multiplications, two 256-to-4 sorts, and a 128-

to-4 sort.

4.4 Low-Complexity AML Decoding Unit

For convenience, we implement the proposed divide-and-conquer AML decoding

unit, assuming M = 8 henceforth. Our implementation can be readily extended to other
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values of M . To further reduce complexity and latency, we do not use the divide-and-

conquer method to deal with patterns ‘DDDDDDDD’, ‘FFFFFFFD’, and

‘FFFFFFFF’, which will be described in Sec. 4.4.2. Then the divide-and-conquer

AML decoding unit can be simplified further by dealing with only the remaining six

eight-bit frozen-location patterns. This simplified divide-and-conquer AML decoding

unit, referred to as the LC-AML decoding unit, needs 80 multiplications, four 8-to-

4 sorts, and a 32-to-4 sort. It saves two 8-to-4 sorts compared with the divide-and-

conquer AML decoding unit dealing with nine patterns, since a 16-to-4 sort consists

of three 8-to-4 sorts. This also leads to a shorter critical path in our design than the

divide-and-conquer AML decoding unit.

4.4.1 Hardware Design for the LC-AML Decoding Unit

SCL-based polar decoders in the literature can be divided into two categories: the

log-likelihood (LL) based decoders [42,44,60] and the log-likelihood-ratio (LLR) based

decoders [45, 62]. Although our proposed algorithm in Sec. 4.2 is described in the

probability domain, it can be easily adapted for both the LL-based decoder and the

LLR-based decoder. We focus on the LLR-based polar decoder, because in general the

LLR-based decoder has a better throughput-area efficiency than the LL-based decoder.

First, we adapt the proposed LC-AML decoding unit to the LLR-based SCL decoder.

Given path metrics PM(t)
k of L list survivors and assuming ut is the last bit processed

by the decoder, where 1 ≤ k ≤ L, 1 ≤ t ≤ N , and t is a multiple of M . Suppose αj,l

(0 ≤ j < M) represents the LLR of Pr(y
(j+1) N

M

j N
M

+1
, ŵ

t
M

+j N
M

1+j N
M

|w t
M

+1+j N
M
) corresponding to

the list l. The path metric PM(t+M)
k,p of the p-th expanded path from the k-th list survivor

98



corresponding to ut+M
t+1 = p (0 ≤ p < 2M) is PM

(t+M)
k,p = PM(t)

k +
∑M−1

j=0 mj|αj,l|,

where mj = 0 if w t
M

+1+j N
M

= 1
2
(1 − sign(αj,l)) [45]. Otherwise, mj = 1. Then our

goal is to calculate PM
(t+M)
k,p and to select the L minimum values of PM(t+M)

k,p .

Fig. 4.3 shows the top architecture of our low-complexity implementation for the

LC-AML decoding unit. MLD_S1 calculates path metrics and selects the q minimum

values for each list. FrzInfVec is an M -bit frozen bit indication vector (f1, f2, · · · , fM)

for ut+M
t+1 . For 1 ≤ j ≤ M , if ut+j is a frozen bit, fj = 1; otherwise, fj = 0. LLRInV_l

is the vector (α0,l, α1,l, · · · , αM−1,l) for 1 ≤ l ≤ L.
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MLD_S1

q
L
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o
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rt
e
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Stage 1 Stage 2

L

q

q

q
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PML
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M

M

M

LLRInV_1

LLRInV_2

LLRInV_L

Figure 4.3: Top architecture of the proposed LC-AML decoding unit.

Fig. 4.4(a) shows the design for MLD_S1_q4 when M = 8 and q = 4. Here, we

focus on the data path for calculating path metrics. The circuitry to generate symbol

values associated with path metrics is simple and consists of XORs, and therefore is

omitted. The data paths corresponding to different steps aforementioned in Section 4.2

are labeled as well.

In Step 0, two RCC blocks, shown in Fig. 4.4(b), are used. LLR ai (16 ≤ i ≤ 31)

associated with Pr(yNN
2
+1
, û8j1,e|u

8j+8
8j+1,e = (i−16)2) is calculated by the right RCC block.

LLR ai (0 ≤ i ≤ 15) associated with Pr(y
N
2
1 , v̂

4j
1 |v4j+4

4j+1 = (i)2) is calculated by the left

RCC block. Here, (i)2 represents the binary string of interger i. 16-ADDER contains
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16 adders to calculate path metrics, shown in Fig. 4.4(c).
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In Step 1, for different frozen-location patterns, path metrics go through different

data paths selected by 16 2-to-1 multiplexers. Their control words are 1 if frozen-

location patterns are FDDDDDDD, FFDDDDDD; otherwise they are 0.

In Step 2, results from Step 1 are combined to calculate
∑7

j=0mj|αj,l|.

In Step 3, there are 32 path metrics going through a 32-to-4 sorter. However, for

some frozen-location patterns, the number of valid symbol values is less than 32 because

the number of frozen bits can be larger than three. Therefore, path metrics associated

with those invalid symbol values need to be set to the maximal positive value as well so

that the 4 minimum path metrics belong to valid symbol values. MSNG accomplishes

this job with FrzInfVec, which contains the frozen-location pattern information.

Different sorters used in our design are shown in Fig. 4.4(d), 5(e) and 5(f). S8TO4

finds the minimum four values of eight values. S4 sorts the four inputs and outputs

them in decreasing order and has a shorter critical path of two comparators and one 4-

to-1 multiplexer than a four-input bitonic sorter [57], which has a critical path of three

comparators. S32To4 consists of seven S8TO4 units in a binary tree structure.

Although MLD_S1_q4 is designed for six eight-bit frozen-location patterns, other

frozen-location patterns also can be dealt with by MLD_S1_q4, such as all frozen-

location patterns satisfying the following two conditions. First, the frozen-location pat-

tern has at least three ‘F’s. Second, two frozen bits are located at the first two bits of the

data symbol.
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4.4.2 Area-Efficient SCL Decoder

To examine the advantage of our proposed design, we incorporate MLD_S1_q4 into

CA-SCL polar decoders with list size L = 4. Architecture-wise, our decoder, referred to

as the AE-SCL decoder, is almost the same as the architecture of the tree based reduced

latency SCL polar decoder in [62], which performs the CA-SCL decoding algorithm on

a binary tree representation of a polar code, except that our AE-SCL decoder uses the

LC-AML decoding unit instead of the DRH ML decoding unit used in [62].

Leaf nodes of the decoding tree for our decoder are divided into four categories:

1. Rate-0 node: its frozen-location pattern contains only ‘F’, i.e., the node contains

only frozen bits.

2. Rate-1 node: its frozen-location pattern contains only ‘D’, i.e., the node contains

only information bits.

3. Repetition node [58]: its frozen-location pattern is either

‘FFFFFFFF_FFFFFFFD’ or ‘FFFFFFFD’.

4. Rate-R-2 node: its frozen-location pattern is one of the six eight-bit frozen-location

patterns.

Rate-0 and rate-1 nodes are decoded with the same methods as in [62]. The main

difference between our proposed decoder here and the tree based reduced latency SCL

polar decoder is how to deal with repetition nodes and rate-R-2 nods. For repetition

nodes, a binary tree of adders is used to calculate LLRs in order to reduce the decoding

latency [58]. Rate-R-2 nodes are dealt with by MLD_S1_q4, which reduces the area of

AE-SCL decoders.
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4.4.3 Synthesis Results

AE-SCL decoders with L = 4 are implemented for three polar codes: a (1024,

512) code, an (8192,4096) code, and a (32768, 29504) code. The first two codes are

constructed for the BEC with ϵ = 0.5 and the third code is for the AWGN channel

with a noise variance of 0.1757. These three codes are with a 32-bit cyclic redundancy

check whose generator polynomial is 0x1EDC6F41. The number of processing units of

decoders for N = 1024 is 256. For the other two codes, the decoder has 512 processing

units. Five-bit channel LLRs are used. The synthesis tool is Cadence RTL compiler. The

process technology is TSMC 90nm CMOS technology. Here, four stages of pipeline

registers are used in the LC-AML decoding unit. Areas of different ML decoding units

for the (1024, 512) polar codes are listed in Table 4.2. The area of our proposed LC-

AML decoding unit is only one fourth of that of the ML decoding unit in [62]. By taking

into account fewer patterns, the area of the LC-AML decoding unit is 67% of that of

the Divide-and-Conquer AML design which deals with all 81 eight-bit frozen-location

patterns following Assumption 1.

Table 4.2: Areas of different ML decoding units for the (1024,512) polar code.

LC-AML† Divide-and-Conquer AML‡ [62]
area (mm2) 0.456 0.673 2.298
† The LC-AML design targets the six eight-bit frozen-location patterns.
‡ The Divide-and-Conquer AML design targets all 81 eight-bit frozen-

location patterns following Assumption 1.

The synthesis results of three entire decoders (AE-SCLs) are also listed in Tables 4.4,

4.5, and 4.6, respectively. Here, NIT means the net information throughput. Compared

with decoders in [62], the SCL decoder architecture with the best throughput-area effi-

ciency to our knowledge, the AE-SCL decoders have smaller areas because the proposed
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LC-AML decoding unit is applied. The LC-AML decoding unit has a slightly larger de-

coding latency than that in [62], because the proposed LC-AML decoding unit deals

with only eight-bit frozen-location patterns, whereas the ML decoding unit in [62] can

deal with some 16-bit frozen-location patterns. Since the extra decoding cycles needed

by AE-SCL decoders are a very small fraction of the entire decoding cycles, the pro-

posed AE-SCL decoders still achieve better throughput-area efficiency than decoders

in [62]. For example, for the (1024, 512) polar code, the throughput-area efficiency of

the AE-SCL decoder is 1.93 times of that of the decoder in [62]. As the code length

increases, the advantage of throughput-area efficiency is less because the ML decoding

unit occupies a smaller fraction of the entire decoder if the code is longer. Compared

with symbol-decision SCL decoders in [3, 45, 60], the advantage of our decoders on

the throughput-area efficiency is more significant. The throughput-area efficiency of

the AE-SCL decoder is 3.32, 8.25, and 3.17 times of that of decoders in [3, 45, 60],

respectively, for the (1024, 512) polar code.

4.5 Multi-Mode SCL Decoder

All existing SCL polar decoders in the literature provide fixed throughput and de-

coding latency given a polar code. These SCL decoders cannot adapt to variable com-

munication channels and applications. In order to adapt to different throughput and

latency requirements, we propose a multi-mode SCL (MM-SCL) decoder with nd de-

coding paths, which can decode P received words with list size L in parallel, where

1 ≤ P,L ≤ nd and nd ≥ P × L. For simplicity, we use the number of the received

words decoded simultaneously as the mode index and call this mode-P . This multi-

105



mode feature requires the decoder to perform SCL decoding algorithms with different

list sizes (the SC decoding algorithm is a special case of the SCL decoding algorithm

with list size L = 1).

4.5.1 Architecture Description

DCD1

DCD2

DCD4

DCD3

CMEM1

CMEM2

CMEM3

CMEM4

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

SCLO1

MM-LC-AML

SCLO2

SCLO3

SCLO4

SCO1

SCO2

SCO3

SCO4

LLRInV_1

LLRInV_2

LLRInV_4

LLRInV_3

LMEM

Mode_Sel

FrzInfVecCNTL

Chn_LLR

MC_Flag

Mode_Sel

Figure 4.5: Top architecture of the MM-SCL decoder when nd = 4.

Assuming nd = 4, the top architecture of the MM-SCL decoder is shown in Fig. 4.5.

It has four blocks of channel memory, CMEMi (1 ≤ i ≤ 4), to store four received words

from Chn_LLR since the decoder under mode-4 deals with four received words simul-

taneously. Block DCDi (1 ≤ i ≤ 4) contains processing units to calculate LLRs, and

partial-sum units to update partial-sum for each list. The intermediate LLRs calculated

by DCDi are stored in LMEM. Designs for processing units, partial-sum units and the

interface between processing units and LMEM adopt blocks of the reduced-latency tree-

based SCL decoder in [62].

The control block (CNTL), designed based on the instruction RAM based method-

ology in [58], includes two parts shown in Fig. 4.6. The first part is the control ROM
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CNTL
(CROM)

Control
ROM

MC_Flag
Mode_Sel

FSM1

FSM2

FSM3

FSM4

Figure 4.6: Diagram of CNTL.

(CROM) which has N words. Here, N is the number of the leaf nodes of the decoding

tree [62] which is determined by the frozen-bit distribution of the polar code and param-

eters of the decoder. For a different polar code, the CROM needs to be re-programed.

Each word of the CROM corresponds to a leaf node and contains the following infor-

mation:

• the layer index, the node type and the size of the current leaf node,

• the frozen-location pattern of the current leaf node,

• the indices of log-likelihood ratio (LLR) vectors which will be updated for the

current leaf node,

• the indices of partial sums which will be udpated for the current leaf node,

• the number of clock cycles needed for the current leaf node.

The other part is four finite state machines (FSMs). Each of them is associated with

a decoding path and reads a word from the CROM and generates control signals for the

proposed decoder, such as read/write addresses and enable signals for memory blocks,

and control signals for decoding paths.
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We focus on the additional logic to support multi-mode features. Mode_Sel is a two-

bit control word to select the decoding mode of the MM-SCL decoder: 00, 01, and 10

for mode-1, mode-2, and mode-4, respectively. MC_Flag indicates that a mode change

happens within a decoding process: at the beginning of a decoding process, MC_Flag is

reset to 0; when a mode change happens within a decoding process, MC_Flag is set to

1 until the end of the decoding process.

Under mode-1, all four DCDi (1 < i ≤ 4) access channel information of CMEM1

and perform a list decoding algorithm with L = 4. Under mode-2, our MM-SCL de-

coder simultaneously decodes two received words with L = 2. DCD1 and DCD2 are

used to decode the received word located in CMEM1; DCD3 and DCD4 use the chan-

nel information from CMEM3. Under mode-4, four received words are simultaneously

decoded with L = 1: the received word in CMEMi is decoded by DCDi for 1 ≤ i ≤ 4.

Figure 4.7: Top architecture of MM-LC-AML for the MM-SCL decoder.

Block MM-LC-AML performs the LC-AML decoding function for different types

of leaf nodes and is supposed to output the most reliable list candidate for mode-4, the

two most reliable list candidates for mode-2, and the four most reliable list candidates

for mode-1. The architecture in Fig. 4.3 is for a fixed list size only. Here, we propose

an MM-LC-AML unit (we take nd = 4 and M = 8 as an example) shown in Fig. 4.7
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to support the multi-mode features. Under mode-1, all of SCLO1, SCLO2, SCLO3, and

SCLO4 are used to decode a received word. Under mode-2, SCLO1 and SCLO2 are

used for one of two received words; SCLO3 and SCLO4 are used for the other received

word. Under mode-4, each of SCOi(1 ≤ i ≤ 4) is used by an individual received word.

MM_MLD_S1 performs the same function as MLD_S1_q4 in Fig. 4.4, except that

MM_MLD_S1 supports multiple modes. This can be accomplished by simply adding

an S4 block between S32TO4 and the adder at the bottom right of Fig. 4.4(a). This

implementation leads to a slightly longer critical path due to the extra block in the

data path and hence a larger decoding latency. To address this issue, we redesign

MLD_S1 for mode-4 and mode-2, respectively, called MLD_S1_q1 and MLD_S1_q2,

shown in Fig. 4.8(a) and 4.8(b). Symbol values for ‘Z’ and ‘F’ are four-bit vectors

‘0000’ and ‘1111’, respectively. Hence, the symbol value calculated from ‘Z’ and ‘F’ is

‘11111111’, which is guaranteed to be an invalid symbol value for our designs.

If mode-2 is used, the control words for patterns ‘FFDDDDDD’, ‘FDDDDDDD’,

and ‘FFFDDDDD’ are 0, 1, and 2, respectively; for the remaining patterns, the con-

trol words are 3. If mode-4 is used, the control words for patterns ‘FFDDDDDD’,

‘FDDDDDDD’, and ‘FFFDDDDD’ are 0, 0, and 1, respectively; for the remaining

patterns, the control words are 2.

Actually, MLD_S1_q4, MLD_S1_q2 and MLD_S1_q1 are integrated together in-

stead of three individual blocks in MM_MLD_S1, since they have the same circuitry

for Step 0. Furthermore, sorting units of the top row of Step 1 in these three designs

can also be reused because S8TO4 contains several S4 blocks and S2 blocks. The hard-

ware sharing reduces the additional area for supporting multiple modes and improves

throughput-area efficiency without increasing the critical path delay.
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Figure 4.8: (a) Design of MLD_S1_q1 for q = 1, (b) design of MLD_S1_q2 for q = 2.
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Compared with the AE-SCL decoder in Section 4.4.2, to support multiple modes the

MM-SCL decoder needs additional hardware, including the additional three blocks of

channel memories and the additional circuitry for mode-2 and mode-4 in MM_MLD_S1.

FERs of the SC and CA-SCL algorithms and different modes for the MM-SCL de-

coder to decode all three codes are shown in Fig. 4.9. These figures show that, the

smaller the mode index, the greater the list size and the better the FER. The CA-SCL-i

algorithm is the CA-SCL decoding algorithm in [33] with list size i. The performance

differences between our decoder and prior decoding algorithms with the same list size

(mode-1 vs. CA-SCL-4, mode-2 vs. CA-SCL-2, mode-4 vs. SC) are very small.
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Figure 4.9: Frame error rates of of the SC and CA-SCL algorithms and different modes
for the MM-SCL decoder.
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4.5.2 Simplified Modes and Mode Changes

The three modes described above provide three possible throughputs and latency.

To provide a wider range of throughput and latency, we consider simplified modes and

mode changes by changing Mode_Sel and MC_Flag on-the-fly.

Simplified modes are motivated by the computational complexity and latency caused

by the expansion-and-pruning process when it involves L paths for a list size L. The

idea for simplified modes is to make a switch at some point so that while all L paths are

kept, the expansion-and-pruning process is carried out among every Ls (Ls|L) paths.

The computational complexity and latency of the expansion-and-pruning process are

reduced since Ls < L, while the performance degradation is negligible when an ap-

propriate switching point θ is used. Let us consider an Ls-simplified mode-P (referred

to as mode-PSLs) with a switching point θ. The first θ bits, uθ1, are decoded with list

size nd

P
. Then each list is divided into nd

PLs
groups, each of which has Ls survivors. For

the remaining bits, the expansion-and-pruning process happens only among the Ls sur-

vivors of each group. For example, for a (32768, 29504) code, under mode-1S1 with

θ = 21000, u210001 are decoded with L = 4. Then four survivors are divided into four

groups and each group has one survivor, i.e., Ls = 1. For the remaining 11768 bits,

u3276821001, the expansion-and-pruning process happens only for one survivor. In this case,

there is no observed performance loss compared with mode-1, while the decoding la-

tency of 6530 cycles is slightly shorter than that of mode-1, 6718 cycles. To reduce the

decoding latency further, a smaller switching point can be used at the expense of small

performance loss. With θ = 10000, mode-1S1 has a decoding latency of 6206 cycles and

has a performance loss of about 0.03 dB compared with mode-1 as shown in Fig. 4.9,

but still has a better performance and a slightly shorter decoding latency than mode-2.
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Hence, simplified modes provide a different tradeoff between latency (throughput) and

performance.

Under simplified modes, the number of simultaneously decoded received words

is not changed within the decoding process. To support a wider range of through-

put, it is also possible to perform a mode change, i.e., the number of received words

simultaneously decoded can be changed within a decoding process. Here, we use

mode-PCP ′ with θ to represent that in the decoding process of uθ1, P received words

(y1,y2, · · · ,yP ) are decoded simultaneously with list size nd

P
; in the decoding process

of uNθ+1, P
′ (P ′ > P ) received words (y1,y2, · · · ,yP ′) are decoded simultaneously with

list size nd

P ′ . More specifically, for each of y1,y2, · · · ,yP , uθ1 are decoded with list size

nd

P
, then the nd

P ′ most reliable survivors are kept, and uNθ+1 are decoded with list size nd

P ′ .

After the switching point, only ndP
P ′ decoding paths are used for y1,y2, · · · ,yP , and the

remaining nd(P
′−P )

P ′ decoding paths are used for yP+1,yP+2, · · · ,yP ′ . For example, let

us consider mode-1C4 with four decoding paths and θ = 10000 for a (32768, 29504)

polar code. For the first 10000 bits of y1, the SCL algorithm with L = 4 is used and

four survivors are generated at this point. Then, the most reliable survivor is selected

by comparing the path metrics of these four survivors. Based on the knowledge of

this most reliable survivor associated with u100001 of y1, the remaining 22768 bits of y1

are decoded with the SC algorithm by one decoding path DCD1. Meanwhile, after the

switching point, three received words (y2, y3, and y4) are fed into the other three decod-

ing paths (DCD2, DCD3, and DCD4) to be decoded with the SC algorithm. Therefore,

mode changes provide a wider range of throughput than simplified modes.

The control signals Mode_Sel and MC_Flag are used to facilitate simplified modes

and mode changes. When Mode_Sel changes the mode index from P to P ′, it signifies
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either a simplified mode-P with Ls =
nd

P ′ if MC_Flag = 0 or a mode change mode-PCP ′

if MC_Flag = 1.

Figure 4.10 illustrates decoding schedules for different modes and their control

words. In terms of the throughput, mode-4 > mode-1C4 > mode-1S1 > mode-1. The

range of the throughput of mode-1S1 is from the throughput of mode-1 up to a quar-

ter of that of mode-4. The range of the throughput of mode-1C4 is wider than that of

mode-1S1, from the throughput of mode-1 to that of mode-4.

Therefore, simplified modes and mode changes provide a way for the MM-SCL

decoder to reduce decoding latency further somewhat without noticeable performance

loss and improves throughput-area efficiency further. It can also be used when decoding

needs to finish as soon as possible due to external reasons such as buffer overflow.

In terms of the control of the decoding process, FSMs of different decoding paths

of simplified modes are synchronous on the decoding tree because all the decoding

paths are working on the same part of the decoding tree. However, these FSMs are

not synchronous on the decoding tree when a mode change happens within a decoding

process. Therefore, if the feature of mode changes within a decoding process is not

needed, only one FSM for all decoding paths in CNTL is enough, but the hardware

saving is very small because the area of the control circuitry is a very small fraction of

that of the entire decoder. For example, the area of FSMs of the MM-SCL decoder for

the (1024, 512) code is 0.011 mm2, 0.47% of the area of the whole decoder.
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  mode-1:

y1 – DCD1

y2 – DCD2
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Figure 4.10: Decoding schedules and control words for different modes.
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4.5.3 Synthesis Results

The MM-SCL decoder are implemented for the aforementioned three codes. For the

(1024, 512) code, the areas of the channel memory and the ML decoding unit are listed

in Table 4.3. It shows that the increased area of the MM-SCL decoder over the AE-SCL

decoder is dominated by the area of the three additional blocks of channel memory. Due

to hardware sharing, the increased area of the ML decoding unit is small.

Synthesis results of MM-SCL decoders for different polar codes are listed in Ta-

bles 4.4, 4.5 and 4.6. The decoding latency of mode-2 is smaller than that of mode-

1 and the decoder has the smallest decoding latency under mode-4. This is because

MLD_S1_q2 and MLD_S1_q1 have shorter data paths. Therefore, in MM-LC-AML,

three stages and two stages of pipeline registers are used by the circuitry for mode-2 and

mode-4, respectively. Mode-1S1 can have a smaller latency than mode-1 and mode-2.

Compared with the AE-SCL decoder, the MM-SCL decoder under mode-1 has a

smaller throughput-area efficiency due to the additional circuitry for supporting multiple

modes. However, the MM-SCL decoder provides multiple choices of output throughput

and decoding latency, which is more suitable for variable communication channels and

applications.
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Compared with the decoder in [62], for N = 1024 and N = 8192, the MM-SCL

decoder has a smaller area and a better throughput-area efficiency. For N = 32768,

the area of the MM-SCL decoder is bigger than that of the decoder in [62] because the

additional circuitry to support multiple modes is larger than the saving due to the low-

complexity ML decoding unit in the MM-SCL decoder. For the (1024, 512) code, under

mode-1, mode-2, and mode-4, the MM-SCL decoder provides area-efficiencies of 1.58,

3.5, and 8.36 times of throughput-area efficiency of the decoder in [62], respectively.

Compared with decoders in [3, 45, 60], the advantage in throughput-area efficiency

of the MM-SCL decoder is more significant. This advantage comes from two aspects.

The first is that the tree-based low-latency SCL architecture in [62] is adopted for the

MM-SCL decoder. This helps to reduce the decoding latency. The second is due to

the low-complexity AML decoding unit. For N = 1024, the MM-SCL decoder under

mode-1 provides an throughput-area efficiency of 2.73, 6.71, and 2.59 times of area

efficiencies of SCL decoders in [3,45,60], respectively. When mode-4 is used, the ratios

of the throughput-area efficiency of the MM-SCL decoder over those of SCL decoders

in [3, 45, 60] and that of the semi-parallel SC decoder in [36] are 14.38, 35.43, 13.65,

and 8.32, respectively.

For N = 32768, decoding latencies and throughputs respect to different switching

points of mode-1S1 are also provided. A smaller switching point leads to a smaller

latency. When the switching point is 10000, the latency of mode-1S1 is even smaller

than that of mode-2. Compared with mode-1, improvements on throughput and latency

are about 8%.
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4.6 Summary

In this chapter, the divide-and-conquer method is applied to SC-based algorithms in

the probability domain. By extending this idea, a divide-and-conquer AML decoding

unit for SCL-based polar decoder is proposed. By examining frozen-location patterns

of polar codes, an efficient hardware design for a simplified divide-and-conquer AML

decoding unit is developed. To adapt to different throughput and latency requirements,

the MM-SCL polar decoder is proposed in this chapter. Synthesis results show that our

implementations for our MM-SCL decoder and SCL decoder with the LC-AML unit

achieve better area efficiencies than existing SCL polar decoders.
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Chapter 5

Conclusion and future work

5.1 Conclusion

Error correcting codes provide a powerful tool to recover transmitted data from a

noisy channel. Two of the most powerful codes, non-binary LDPC codes and polar

codes have received lots of research interests because of their excellent error correcting

performance. In this dissertation, we investigate how to improve the error performance

of MLDG algorithms for non-binary LDPC codes. We also discuss how to reduce com-

plexity of polar decoders and how to design polar decoders for variable throughput and

latency requirements which widely exist in applications. Simulation results and com-

plexity analysis are provided as well to demonstrate advantages of our proposed meth-

ods and algorithms. Hardware implementation results are also presented. We briefly

summarize our main contribution as follows.

In Chapter 2, two improvements to the soft- and hard-reliability based MLGD al-
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gorithms for non-binary LDPC codes are proposed. The one is the new reliability in-

formation update, that helps the reliability-based MLGD algorithms achieve better error

performance, smaller average iteration numbers, and lower complexities. The other is

the re-selection scheme, which is intentionally used to lower the error floor, and also

results in a better error performance, fewer iterations on average. Though additional

computational resources are needed by the re-selection scheme, the MLGD algorithms

with the re-selection scheme still have lower computational complexities than the exist-

ing MLGD algorithms.

In Chapter 3, the symbol-based recursive channel combination are proposed to cal-

culate the symbol-wise channel transition probability. It shows that based on the LL rep-

resentation of the transition probability, this recursive procedure needs fewer additions

than methods used in existing parallel polar decoders and polar decoders with multi-bit

decisions. To simplify the path pruning problem of SCL polar decoders, a two-stage

list pruning network is proposed. Meanwhile, the PCMS technique is used to reduce

the memory requirement for list decoders. With these proposed ideas, an efficient ar-

chitecture for symbol-decision SCL decoders is designed. Specifically, two scheduling

schemes are introduced to perform the hardware sharing for different configurations.

A folded sorting implementation and tree sorting implementation are also investigated.

Furthermore, symbol-decision SCL polar decoders for two-bit, four-bit and eight-bit,

respectively, are implemented with a list size of four. Our proposed methods and archi-

tecture provide a range of trade-offs between area, throughput and area efficiency for

SCL polar decoders.

In Chapter 4, we first propose a method to reduce the complexity of a local ML de-

coding unit. We discuss the divide-and-conquer ML decoding technique of SC-based
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algorithms in the probability domain. Then we extend this idea to SCL-based polar

decoder and design a low-complexity divide-and-conquer AML decoding unit for SCL-

based polar decoder to reduce the computational complexity of a local ML decoding

unit. Frozen-location patterns of polar codes constructed for binary erasure channels

and AWGN channels are investigated as well. Our research shows that only a small

number of frozen-location patterns exist in polar codes constructed for a binary era-

sure channel or an AWGN channel. This enables us to develop an efficient hardware

design for a simplified divide-and-conquer AML decoding unit with less complexity.

Furthermore, the MM-SCL polar decoder is discussed in this chapter to adapt to differ-

ent throughput and latency requirements which widely exist in current communication

applications. This decoder supports SCL algorithms with different list sizes and par-

allelism. It decodes multiple received words in parallel with a small list size if a high

throughput or small latency is required. When a better error performance is desired, the

MM-SCL decoder switches to a mode with a greater list size. Implementation results

demonstrate advantages of our proposed ideas and architecture of the MM-SCL polar

decoder.

5.2 Future work

Non-binary LDPC codes and polar codes are two of the most attractive topics in the

fields of error correcting codes currently. There are lots of potential research directions

for this two codes, such as code constructions, an exploration of error floor, efficient

architecture designs for both encoders and decoders. Based on our research results, the

following potential future follow-up work may be carried out,
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• In Chapter 2, we have discussed improved MLGD algorithms with a

soft-information initialization. Our idea can be extended to MLGD algorithms

with a hard-information initialization, because there are some applications, such

as hard disk and data storage applications, which provide only hard decisions

from their communication channel. Therefore, it is reasonable and meaningful

to extend our ideas to such kind of applications and to improve and to optimize

our methods further for hard-information channels. Furthermore, the hardware

implementation for proposed improved MLGD algorithms with the re-selection

scheme are worthy to be investigated as well.

• The capacity-achieving performance of polar codes is only achieved when the

code length is infinite. Furthermore, the upper bound under successive cancella-

tion decoding in [66] is satisfied when the code length is large enough. But for a

real application, a large code length might not be satisfied. Therefore, naturally,

the question is that how good the error performance of polar codes is under SC

or SCL decoding when the code length is moderate or short. Currently, it takes

a very long time to emulate the block error performance as low as the level of

10−12 by using a software polar decoder. Hence, how to build an area-efficient

high-throughput polar decoder hardware emulator based on our research results

would be an interesting and meaningful research topic.

• The proposed methods and decoder architectures in Chapters 3 and 4 are meant

for polar codes in general and not tied with any particular application. How to

apply polar codes to real applications is a practical problem we need to solve in

the near future. Based on the research results of polar codes in the past ten years,

polar codes have at least the same error performance compared to Turbo codes

and LDPC codes which are used widely by current telecommunication standards.
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However, Turbo codes and LDPC codes have error floor issues such that it is a

big challenge to apply these two families of codes to some applications with strin-

gent error performance requirements for a very low bit error rate region, such as

fiber-optical communication (10−10 ~ 10−12) and data storage application (10−12

~ 10−15). Fortunately, the research in [67] shows that polar codes have a large

girth of 12 and show superior error floor performance compared to Turbo codes

and LDPC codes. Hence, polar codes are a better candidate of FEC technology

than turbo codes and LDPC codes for the fiber-optical communication and the

data storage application regarding the error performance. How to apply polar

codes to the fiber-optical communication and the data storage application should

be a promising research topic.

125



Bibliography

[1] B. Li, H. Shen, D. Tse, and W. Tong, “Low-latency polar codes via hybrid decod-

ing,” in Proceedings of 2014 8th International Symposium on Turbo Codes and

Iterative Information Processing, Aug. 2014, pp. 223–227.

[2] B. Li, H. Shen, and D. Tse, “Parallel decoders of polar codes,” arXiv:1309.1026,

Sep. 2013. [Online]. Available: http://arxiv.org/abs/1309.1026

[3] B. Yuan and K. Parhi, “Low-latency successive-cancellation list decoders for polar

codes with multibit decision,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 23, no. 10, pp. 2268–2280, Oct. 2015.

[4] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT Press,

1963.

[5] D. J. C. MacKay and R. M. Neal, “Near shannon limit performance of low density

parity check codes,” Electronics Letters, vol. 33, no. 6, pp. 457–458, Mar. 1997.

[6] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of capacity-

approaching irregular low-density parity-check codes,” IEEE Transactions on In-

formation Theory, vol. 47, no. 2, pp. 619–637, Feb. 2001.

126



[7] A. Cohen and K. Parhi, “A low-complexity hybrid LDPC code encoder for IEEE

802.3an (10GBase-T) ethernet,” IEEE Transactions on Signal Processing, vol. 57,

no. 10, pp. 4085–4094, Oct. 2009.

[8] Q. Huang, J. Kang, L. Zhang, S. Lin, and K. Abdel-Ghaffar, “Two reliability-based

iterative majority-logic decoding algorithms for LDPC codes,” IEEE Transactions

on Communications, vol. 57, no. 12, pp. 3597–3606, Dec. 2009.

[9] J. Kang, Q. Huang, S. Lin, and K. Abdel-Ghaffar, “An iterative decoding algorithm

with backtracking to lower the error-floors of LDPC codes,” IEEE Transactions on

Communications, vol. 59, no. 1, pp. 64–73, Jan. 2011.

[10] M. C. Davey and D. MacKay, “Low-density parity check codes over GF(q),” IEEE

Communications Letters, vol. 2, no. 6, pp. 165–167, Jun. 1998.

[11] H. Song and J. R. Cruz, “Reduced-complexity decoding of Q-ary LDPC codes for

magnetic recording,” IEEE Transactions on Magnetics, vol. 39, no. 2, pp. 1081–

1087, Mar. 2003.

[12] X. Jiang and M. H. Lee, “Large girth non-binary LDPC codes based on finite

fields and euclidean geometries,” IEEE Signal Processing Letters, vol. 16, no. 6,

pp. 521–524, Jun. 2009.

[13] B. Zhou, J. Kang, S. Song, S. Lin, K. Abdel-Ghaffar, and M. Xu, “Construction

of non-binary quasi-cyclic LDPC codes by arrays and array dispersions,” IEEE

Transactions on Communications, vol. 57, no. 6, pp. 1652–1662, Jun. 2009.

[14] W. Tang, J. Huang, L. Wang, and S. Zhou, “Nonbinary LDPC decoding by min-

sum with adaptive message control,” in Proceedings of IEEE International Con-

ference on Acoustics, Speech and Signal Processing, May 2011, pp. 3164–3167.

127



[15] D. J. MacKay and M. C. Davey, “Evaluation of Gallager codes of short block

length and high rate application,” in Proceedings of IMA workshop on Codes, Sys-

tems and Graphical Models, 2000, pp. 113–130.

[16] L. Barnault and D. Declercq, “Fast decoding algorithm for LDPC over GF(2q),” in

Proceedings of IEEE Information Theory Workshop, 2003, pp. 70–73.

[17] H. Wymeersch, H. Steendam, and M. Moeneclaey, “Log-domain decoding of

LDPC codes over GF(q),” in Proceedings of IEEE International Conference on

Communications, vol. 2, Jun. 2004, pp. 772–776.

[18] D. Declercq and M. Fossorier, “Decoding algorithms for nonbinary LDPC codes

over GF(q),” IEEE Transactions on Communications, vol. 55, no. 4, pp. 633–643,

Apr. 2007.

[19] V. Savin, “Min-max decoding for non binary LDPC codes,” in Proceedings of

IEEE International Symposium on Information Theory, Jul. 2008, pp. 960–964.

[20] C.-Y. Chen, Q. Huang, C.-C. Chao, and S. Lin, “Two low-complexity reliability-

based message-passing algorithms for decoding non-binary LDPC codes,” IEEE

Transactions on Communications, vol. 58, no. 11, pp. 3140–3147, Nov. 2010.

[21] K. Kasai and K. Sakaniwa, “Fourier domain decoding algorithm of non-binary

LDPC codes for parallel implementation,” in IEEE International Conference on

Acoustics, Speech and Signal Processing, May 2011, pp. 3128–3131.

[22] F. Cai and X. Zhang, “Efficient check node processing architectures for non-binary

LDPC decoding using power representation,” in Proceedings of IEEE Workshop on

Signal Processing Systems, Oct. 2012, pp. 137–142.

128



[23] X. Zhang, F. Cai, and S. Lin, “Low-complexity reliability-based message-passing

decoder architectures for non-binary LDPC,” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 20, no. 11, pp. 1938–1950, Nov. 2012.

[24] E. Arıkan, “Channel polarization: A method for constructing capacity-achieving

codes for symmetric binary-input memoryless channels,” IEEE Transactions on

Information Theory, vol. 55, no. 7, pp. 3051–3073, July 2009.

[25] E. Sasoglu, I. Telatar, and E. Arıkan, “Polarization for arbitrary discrete memory-

less channels,” in Proceedings of IEEE Information Theory Workshop, Oct 2009,

pp. 144–148.

[26] K. Niu and K. Chen, “CRC-aided decoding of polar codes,” IEEE Communications

Letters, vol. 16, no. 10, pp. 1668–1671, October 2012.

[27] A. Eslami and H. Pishro-Nik, “A practical approach to polar codes,” in Proceedings

of IEEE International Symposium on Information Theory, July 2011, pp. 16–20.

[28] E. Arıkan, “Systematic polar coding,” IEEE Communications Letters, vol. 15,

no. 8, pp. 860–862, August 2011.

[29] E. Arıkan, H. Kim, G. Markarian, U. Ozgur, and E. Poyraz, “Performance of short

polar codes under ML decoding,” in Proceedings of ICT Mobile Summit Confer-

ence, 2009.

[30] S. Kahraman and M. Celebi, “Code based efficient maximum-likelihood decoding

of short polar codes,” in Proceedings of IEEE International Symposium on Infor-

mation Theory, July 2012, pp. 1967–1971.

129



[31] K. Niu, K. Chen, and J. Lin, “Low-complexity sphere decoding of polar codes

based on optimum path metric,” IEEE Communications Letters, vol. 18, no. 2, pp.

332–335, February 2014.

[32] I. Tal and A. Vardy, “List decoding of polar codes,” in Proceedings of IEEE Inter-

national Symposium on Information Theory, July 2011, pp. 1–5.

[33] ——, “List decoding of polar codes,” IEEE Transactions on Information Theory,,

vol. 61, no. 5, pp. 2213–2226, May 2015.

[34] IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface

for Fixed and Mobile Broadband Wireless Access Systems Amendment 2: Physical

and Medium Access Control Layers for Combined Fixed and Mobile Operation in

Licensed Bands and Corrigendum 1, IEEE Std. 802.16e-2005, Mar. 2006.

[35] C. Leroux, I. Tal, A. Vardy, and W. Gross, “Hardware architectures for successive

cancellation decoding of polar codes,” in Proceedings of IEEE International Con-

ference on Acoustics, Speech and Signal Processing, May 2011, pp. 1665–1668.

[36] C. Leroux, A. Raymond, G. Sarkis, and W. Gross, “A semi-parallel successive-

cancellation decoder for polar codes,” IEEE Transactions on Signal Processing,

vol. 61, no. 2, pp. 289–299, Jan 2013.

[37] A. Raymond and W. Gross, “A scalable successive-cancellation decoder for polar

codes,” IEEE Transactions on Signal Processing, vol. 62, no. 20, pp. 5339–5347,

Oct. 2014.

[38] A. Alamdar-Yazdi and F. Kschischang, “A simplified successive-cancellation de-

coder for polar codes,” IEEE Communications Letters, vol. 15, no. 12, pp. 1378–

1380, Dec. 2011.

130



[39] C. Zhang and K. Parhi, “Latency analysis and architecture design of simplified SC

polar decoders,” IEEE Transactions on Circuits and Systems II: Express Briefs,

vol. 61, no. 2, pp. 115–119, Feb. 2014.

[40] G. Sarkis and W. Gross, “Increasing the throughput of polar decoders,” IEEE Com-

munications Letters, vol. 17, no. 4, pp. 725–728, Apr. 2013.

[41] C. Zhang and K. Parhi, “Low-latency sequential and overlapped architectures for

successive cancellation polar decoder,” IEEE Transactions on Signal Processing,

vol. 61, no. 10, pp. 2429–2441, May 2013.

[42] J. Lin and Z. Yan, “Efficient list decoder architecture for polar codes,” in Proceed-

ings of IEEE International Symposium on Circuits and Systems, June 2014, pp.

1022–1025.

[43] A. Balatsoukas-Stimming, A. Raymond, W. Gross, and A. Burg, “Hardware ar-

chitecture for list successive cancellation decoding of polar codes,” IEEE Transac-

tions on Circuits and Systems II: Express Briefs, vol. 61, no. 8, pp. 609–613, Aug

2014.

[44] J. Lin and Z. Yan, “An efficient list decoder architecture for polar codes,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 2015, accepted and

to appear, available on IEEE Explore, DOI: 10.1109/TVLSI.2014.2378992.

[45] A. Balatsoukas-Stimming, M. Bastani Parizi, and A. Burg, “LLR-based successive

cancellation list decoding of polar codes,” IEEE Transactions on Signal Process-

ing, vol. 63, no. 19, pp. 5165–5179, Oct 2015.

[46] L. Zeng, L. Lan, Y. Y. Tai, B. Zhou, S. Lin, and K. A. S. Abdel-Ghaffar, “Construc-

tion of nonbinary cyclic, quasi-cyclic and regular LDPC codes: A finite geometry

131



approach,” IEEE Transactions on Communications, vol. 56, no. 3, pp. 378–387,

Mar. 2008.

[47] C. Xiong and Z. Yan, “Improved iterative soft-reliability-based majority-logic de-

coding algorithm for non-binary low-density parity-check codes,” in Conference

Record of the Forty Fifth Asilomar Conference on Signals, Systems and Comput-

ers, Nov. 2011, pp. 894–898.

[48] ——, “Low-complexity layered iterative hard-reliability-based majority-logic de-

coder for non-binary quasi-cyclic LDPC codes,” in IEEE International Symposium

on Circuits and Systems, May 2013, pp. 1348–1351.

[49] C. Di, D. Proietti, I. Telatar, T. Richardson, and R. Urbanke, “Finite-length analysis

of low-density parity-check codes on the binary erasure channel,” IEEE Transac-

tions on Information Theory, vol. 48, no. 6, pp. 1570–1579, Jun. 2002.

[50] T. Richardson, “Error floors of LDPC codes,” in Proceedings of Allerton Confer-

ence on Communication, Control, and Computing, Monticello, IL, Oct. 2003, pp.

1426–1435.

[51] Z. Zhang, L. Dolecek, B. Nikolic, V. Anantharam, and M. J. Wainwright, “Low-

ering LDPC error floors by postprocessing,” in Proceedings of IEEE Global

Telecommunications Conference, 2008, pp. 1–6.

[52] A. Poloni, S. Valle, and S. Vincenti, “NB-LDPC: Absorbing set and importance

sampling,” in Proceedings of 7th International Symposium on Turbo Codes and

Iterative Information Processing, Aug. 2012, pp. 101–105.

132



[53] C. Xiong and Z. Yan, “Improved iterative hard- and soft-reliability based majority-

logic decoding algorithms for non-binary low-density parity-check codes,”

arXiv:1408.3357, Aug. 2014. [Online]. Available: http://arxiv.org/abs/1408.3357

[54] K. Parhi, “Pipelining in algorithms with quantizer loops,” IEEE Transactions on

Circuits and Systems, vol. 38, no. 7, pp. 745–754, July 1991.

[55] W. Park and A. Barg, “Polar codes for q-ary channels, q = 2r,” IEEE Transactions

on Information Theory, vol. 59, no. 2, pp. 955–969, February 2013.

[56] C. Xiong, J. Lin, and Z. Yan, “Error performance analysis of the symbol-

decision SC polar decoder,” arxiv:1501.01706, 2015. [Online]. Available:

http://arxiv.org/abs/1501.01706

[57] K. E. Batcher, “Sorting networks and their applications,” in AFIPS Proceeding of

the Spring Joint Computer Conference, 1968, pp. 307–314.

[58] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. Gross, “Fast polar decoders:

Algorithm and implementation,” IEEE Journal on Selected Areas in Communica-

tions, vol. 32, no. 5, pp. 946–957, May 2014.

[59] C. Xiong, J. Lin, and Z. Yan, “Symbol-based successive cancellation list decoder

for polar codes,” in Proceedings of IEEE Workshop on Signal Processing Systems,

Belfast, UK, October 2014, pp. 198–203.

[60] ——, “Symbol-decision successive cancellation list decoder for polar codes,”

IEEE Transactions on Signal Processing, vol. 64, no. 3, pp. 675–687, Feb. 2016.

[61] J. Lin, C. Xiong, and Z. Yan, “A reduced latency list decoding algorithm

for polar codes,” in Proceedings of IEEE Workshop on Signal Processing

133



Systems (SiPS 2014), Belfast, UK, October 2014, pp. 56–61. [Online]. Available:

http://arxiv.org/abs/1405.4819

[62] ——, “A high throughput list decoder architecture for polar codes,” IEEE Trans-

actions on Very Large Scale Integration (VLSI) Systems, accepted and to appear,

available on IEEE Explore, DOI: 10.1109/TVLSI.2015.2499777.

[63] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. Gross, “Increasing the speed of

polar list decoders,” in 2014 IEEE Workshop on Signal Processing Systems (SiPS),

Oct 2014, pp. 1–6.

[64] E. Arıkan, “A performance comparison of polar codes and Reed-Muller codes,”

IEEE Communications Letters, vol. 12, no. 6, pp. 447–449, June 2008.

[65] D. Wu, Y. Li, and Y. Sun, “Construction and block error rate analysis of polar codes

over AWGN channel based on Gaussian approximation,” IEEE Communications

Letters, vol. 18, no. 7, pp. 1099–1102, July 2014.

[66] E. Arıkan and I. Telatar, “On the rate of channel polarization,” in Proceedings of

IEEE International Symposium on Information Theory, June 2009, pp. 1493–1495.

[67] A. Eslami and H. Pishro-Nik, “On finite-length performance of polar codes: Stop-

ping sets, error floor, and concatenated design,” IEEE Transactions on Communi-

cations, vol. 61, no. 3, pp. 919–929, March 2013.

134



Vita

Chenrong Xiong received the B.E. degree in electrical engineering and the M.E.

degree in microelectronics from Tsinghua University, Beijing, China, in 2001 and 2004,

respectively.

Since 2010, he has been working towards the Ph.D. degree in the Department of

Electrical and Computer Engineering at Lehigh University, Bethlehem, PA under super-

vision of Prof. Zhiyuan Yan.

From 2004 to 2010, he was with Beijing Embedded System Key Lab, Beijing, work-

ing on VLSI architecture design for digital signal processing and communication sys-

tems. His research interests include channel coding technology and VLSI architecture

design for digital signal processing and communication systems.

135


	Lehigh University
	Lehigh Preserve
	2016

	Efficient decoder design for error correcting codes
	Chenrong Xiong
	Recommended Citation


	tmp.1498661647.pdf.STVqU

