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Abstract

The objective of this study is to find suitable methods of information measurement and charac-

terizations to facilitate research on information acquisition optimization. Specifically, this study

is to support an approach, which has been acquired in past periods of the research, that can

be interpreted as a theory of information exchange between the decision maker and information

source(s). It can also be said that the developed approach complements the classical Informa-

tion Theory. The classical Information Theory describes transmission of information over some

channel, regardless of its content. The proposed approach deals the first and last link of the full

information chain: extracting information from a source and using it to obtain the best possible

decision. In this approach, a quantitative framework describing information sources, the process

of information exchange between the source(s) and the agent, and the relevance of the obtained

information for the given problem is developed. The purpose of this thesis is to study and summa-

rize the existing methods of measuring information and evaluate their suitability for the purposes

of the proposed approach.

1



Chapter 1

Introduction

1.1 Current Research: Information Acquisition

The objective of the overall research is to develop a theory of information acquisition for quanti-

tative decision making. This work can also be looked upon as an attempt to make Information

Theory methods useful for optimization and decision making under uncertainty. If the informa-

tion is to be used to solve problems, and the goal is to maximize the solution quality (e.g. by

minimizing the properly defined loss) by making use of available information sources, then one

needs to know what specific information is to be requested from a source so that, on one hand,

the source would be able to fulfill the request accurately and, on the other hand, the information

obtained would have a large impact on the solution quality for the specific problem at hand. Some

preliminary results can be found in [39, 37, 38, 40]. (Please note : our research is still ongoing.

Many materials are being revised or to be improved. The results in different stages of the research

in the future may be similar to the following sections but changes and differences may occur if

necessary.)

We believe that progress on this particular front has been made especially important by the

recent advance of the so called “Big Data”, i.e. the newly acquired ability to record, store and

manipulate large amounts of data of various flavors. The availability of such large amounts of

information holds a promise, but also presents a challenge. The promise is related to the “bigness”

of the data: it is likely to have a lot to do with almost any problem because of the large amount

2



CHAPTER 1. INTRODUCTION 3

of data (since everything is interrelated). The challenge, not surprisingly, is directly related to the

very same “bigness”. Since the amounts of the data is so large and potentially related to almost

everything, it is difficult to find and extract useful bits of it for a given problem. Therefore, in

order to be able to use large amounts of data, one needs to learn how to extract useful information.

1.1.1 Comparison with Classical Information Theory

The above considerations naturally lead one to the need of a theory of information flow. Such

theory seems to exist - the Information Theory. However, if one opens a textbook on the classical

Information Theory, a mild surprise might ensue in that a definition of information itself is

typically lacking. If one reads carefully, it is possible to see that information is understood as a

collection of symbols from a certain alphabet sets that is assumed to be given at the outset and is

in need of transmission to a different point in space – as quickly as possible and hopefully without

errors – even though the transmission channel might not be error-free. This theory gives little

about information extraction. The question is why this is so and what else we need to know to

extract accurate information from a variety of sources. The existing information theory focuses

on the image portion of the information, ignoring what its image represents. In other words, it

deals with the external form of information. If one just needs to transmit and compress, it is

sufficient. If information needs to be extracted from a source, it is not very useful. One needs

to study the essence of information: that what forms it. The underlying reason why information

needs to be exchanged is the existence of a distributed (relatively isolated) nature of human

activity. Because of the latter, various agents can benefit from the experience of other agents,

which are communicated as information. Encoding in the various symbols is the experience gained

by the agent in the process of solving certain problems. This experience is first reflected in their

knowledge, which we believe should be seen as the essence of information.

Classical Information Theory solves the problem of maximizing the quantity of information

that can be reliably transmitted over the given (imperfect) channel, without dealing with the

questions of where the information comes from and what it’s going to be used for. In the Classical

Information Theory, one abstracts from the source and then the requester (also the problem) and

takes information as given. Thus one also abstracts from the content of information(since the
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latter is determined by the problem). In the developed theory, it abstract from the broader

context of the problem: why this problem is being solved and what for. And also abstract

from any details of the activity that led to the formation of the source’s knowledge. It can be

said that the developed methodology complements the classical Information Theory in that it

deals in the context of quantitative decision making at least with the first and last link of the full

“information chain”: extracting it from the source and using it to obtain the best possible decision.

The classical Information Theory describes the middle link of that chain in case a transmission

of the information obtained from the source over some channel is involved. The middle link just

happens to be largely independent of the end links and can be treated separately, while the end

links are rather closely connected and therefore have to be treated together.

Here, three figures shows three different context of problem solving by agents. The classical

Information Theory appears to be an independent part of the extended theory in that it can be

considered separately with no loss of description accuracy

Figure 1.1: The Broad Context of Problem Solving by Agents

The form of an image that used in classical IT is a pre-specified set of symbols in the alpha-

bet. Without changing the nature of the image, the particular alphabet itself is obviously not

important. In this sense, people can use different alphabets and mappings from the first to the

second. In particular, you can select any “standard” alphabet and map each letter. The simplest

alphabet that is usually used as a standard is a binary string with only two symbols: 0 and 1. If

a person insists on using a binary alphabet, he can concentrate on the essence of the image and
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Figure 1.2: Classic Information Theory

Figure 1.3: Extended Information Theory

appear it in the clearest way on the surface in binary form. This can be an intuitive study of the

quantitative analysis of this essence.

If one can learn the statistical properties of the original image, regardless of the alphabet, one

can use the encoding of the original image to map to the standard alphabet. The knowledge of

the statistical properties can then be used to remove the redundancy from the image, that is, to

minimize the expected length of the mapped image by using the Kraft inequality. The length of

the best-coded image will then represent the true number of images (as opposed to the visible

number in the original alphabet). Once the basic quantity is determined, the image dynamics

can be extensively quantitatively studied. Especially its transmission on imperfect channels. It is
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possible to transmit error-free data through imperfect channels, which is one of Shannon’s main

results. The reason is that the imperfect channel will affect the transmission of the symbol that is

the appearance of the image. Introducing planned redundancy in your code ensures that changes

do not affect essence.

On the surface, the information exists in the form of symbols. The theme of this level is the

subject of classical information theory. After this changing surface, there is always some knowl-

edge. This knowledge is the crystallization of human activity. This is the essence of information

at a deeper level. Essence should appear on the surface. Knowledge is exchanged by an agent,

and the exchange takes place in symbolic form. The knowledge comes to the surface through

the information source satisfying the agent’s specific information request. We can call them the

answer to the question

Finally, information only becomes actualized when it gets used to solve a problem. In this

sphere, the surface, the essence and the appearance of the essence come together. It’s in this

sphere that the usefulness of information can be measured. If a quantitative theory is our goal

we will need to tie everything to this sphere.

1.1.2 General Description of the Research and Approach

In classical Information Theory, the main question is two-fold: what is the maximum (theoretical)

speed of accurate transmission for the given channel and how that speed can be (practically)

achieved. The first part of the main question is addressed by calculating the channel capacity

and the second part of the main question is addressed by designing appropriate codes for input

symbols. The main question being addressed in the proposed approach is also two-fold: what is

the maximum decision quality (for the given problem) that can be achieved by using the available

information source(s) and what is the practical way of achieving that quality. The first part of

this question is addressed by computing the loss efficient frontier for the given problem and source

specific function, and the second part is addressed by designing appropriate questions (that lie

on the efficient frontier) as means of extracting information from the source(s) optimally with

respect to the decision making problem being solved.

Often, information that such sources possess fails to be taken advantage of due to its perceived
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and factual imprecision and to the lack of a methodology that allows for this in a controlled and

regular fashion. Moreover, the above-mentioned inability to extract additional pieces of useful

information often results in decisions being made simply based on decision makers’ intuition and

qualitative judgement because of the perceived imprecision of the available probability measure.

In this research, we initiate development of a unified theoretical framework for optimal information

acquisition in general purpose decision making problems including those with large and complex

feasible regions to address such a situation.

The approach begins with the assumption that one or several information sources are available

that are capable of providing potentially various (i.e. qualitatively different) “bits” of additional

information on top of what’s already contained in the initial probability measure. The assumption

of having available such “multi purpose” information sources is made to describe primarily human

experts that possess a certain “picture” of the way the investigated system will likely develop in the

future and capable of internally “processing” that picture to answer specific questions concerning

possible future outcomes. Generally speaking, any source has finite capability that manifests

itself in answering easy questions with higher accuracy than difficult ones. Difficulty of various

questions is source-specific: what is easy for one source can be difficult for another and vice versa.

On the other hand, information contained in an answer to any question carries a certain

value of information with respect to the given decision making problem. The latter measures the

improvement in the value of the problem objective resulting from the information contained in the

answer. The decision maker would naturally be interested in maximizing this value of information

[26] and can achieve this goal by carefully choosing a question that would be sufficiently easy for

the source to yield an accurate answer and, at the same time, relevant to the problem at hand

so that the resulting value of information would have the highest possible value. This naturally

leads to an important question the decision maker appears to be facing: how the information

source should be optimally “aligned” with the given problem, or, more precisely, what question

the decision maker should ask the information source so that the respective answer would have

the largest positive effect on the solution quality for the given problem. More generally, if several

information sources are available the decision maker would want to know what question(s) and,

possibly, in what order the sources should be asked so that the combined effect of the respective
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answers on the solution quality can be maximized. In other words, here the overall problem is that

of optimal “alignment” of a system of information sources to the given decision making problem.

What can make that latter problem more difficult is that optimal question(s) to be asked a given

source might in general depend on the number and properties (“expertise”) of other available

sources.

If such a methodology is to be developed, it seems logical to begin with (i) a quantitative

framework describing information sources, questions and answers, (ii) study relationships between

questions and the value of information of answers of the given source to these questions and (iii)

use the results of (i) and (ii) to develop algorithms for choosing optimal questions and thus

optimizing the process of acquiring additional information from the available source(s) for the

decision making problem of interest.

1.1.3 Quantitative Aspect

The Problem

When uncertainty is present, several approaches to decision making are used depending on the

problem at hand. If the main difficulty lies in a large number of possible solutions as well as a

complex structure of the feasible region then optimization methods are usually used (stochastic

[7], robust [6, 5]).

Even though the problem can be of rather general form, since the study of quantities is our

goal, we will assume it to have a typical optimization under uncertainty shape. In decision making

under uncertainty, the goal is to choose the best decision given the available information, according

to a suitable criterion. One of the most widely used criteria is that of optimizing the expected

objective function given the probability distribution that describes the available information. The

problem so formulated can be formally written as

minx∈X Epf(ω, x) =

∫
Ω
f(ω, x)P (dω) (1.1)

where Ω is the parameter space and P (·) is a probability measure on it. Here X ⊂ D is the

set of all feasible solutions, i.e. the set satisfying all (deterministic) constraints that are present
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in the problem formulation, where D is the space to which all solutions belong (e.g. a suitable

Euclidean space). Ω has the meaning of a space of possible values of input data parameters that

are not known with certainty. It is often referred to as a parameter space. P is a fixed initial

probability measure (with a suitable sigma-algebra assumed) on Ω that describes the initial state

of the uncertainty and that can in principle be modified by querying information sources. The

function f : X ×D → R̄ is assumed to be integrable on Ω for each x ∈ X. For example, in the

context of stochastic optimization, X is the set of feasible first-stage solutions and f(ω, x) is the

best possible objective value for the first stage decision x in case when the random outcome ω is

observed.

We are interested, given the problem (1.1) and an information source capable of providing

answers to our questions, in obtaining the best possible solution to problem (1.1), suitably modified

by the source’s answer(s). Figure blow shows this process. It is worth noting that the information

Figure 1.4: Overall Process

exchange process between the agent and the source represented by the dotted line in the figure

which belongs to the category of classical information theory. To study how to transmit this

information is not within the scope of the study, we are concerned about what kind of questions

should be asked to get the most efficient answer. It is necessary to assume that the information

(knowledge) of the agent at the beginning is incomplete. Otherwise, the exchange of information

is not required. With the general assumption as a starting point, Cox believes that the only way to
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quantify the incomplete information and update its dynamics is through the standard probability.

Thus, the initial state of the agent’s information is described by the probability measure P (·) on

Ω. The agent’s goal is to update this measure using information obtained from the source. Agents

need some specific information with specific content to solve the problem. In order to get it, he

must describe it to the source. The description of the agent’s desire to obtain information from

the source will be called the question. Accordingly, the source’s response to the question that

supplies the information described in the question will be called an answer.

To make this desideratum a bit more specific, let L(P ) be the expected loss corresponding to

measure P defined as follows.

L(P ) =

∫
Ω
f(ω, x∗P )P (dω)−

∫
Ω
f(ω, x∗ω)P (dω)

where , x∗P is a solution of (1.1) and x∗ω is a solution of minx∈Xf(ω, x)for the given ω.

Let Q be the set of all possible (suitably defined) questions that can be directed towards the

source of information, and let A(Q) be its answer to a particular question Q ∈ Q. Further, let

P k be the measure on Ω conditional on reception of a particular value a of the answer A. One

can think of P k as the measure updated by the value k, from the original measure P . Then the

expected loss following question Q and answer A = A(Q) can be found as

L(P,Q,A(Q)) =
∑
k

Pr(A(Q) = k)

∫
Ω
f(ω, x∗Pk)P k(dω)−

∫
Ω
f(ω, x∗ω)P k(dω) (1.2)

where the sum is over all possible values a of the answer A.

Our goal then can be stated as that of finding, for the given problem (1.1) and a given

information source, the question(s) Q ∈ Q that would make the corresponding expected loss (1.2)

as small as possible:

minQ∈Q L(P,Q,A(Q))

Here is a figure about how a question can be classified.

Informally speaking, the problem is about finding the question(s) that is “aligned” optimally

with both the information source’s “strengths” and the particular decision making problem.
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Figure 1.5: Expected Loss

Changing the purely “optimization” component of the problem (the function f(ω, x) and the

set X) while keeping the “information” component (the space Ω and the measure P ) the same

will in general change the optimal question(s) Q for the same information source. Thus the main

goal can also be described as that of finding an optimal alignment between the optimization and

information components of the problem (where the information source itself is included in the

latter).

Information Exchange Framework

The main components of the information exchange framework developed here are information

sources, decision maker’s questions and corresponding source’s answers. The answers change the

agent’s beliefs about the problem parameter space thus affecting the resulting solution quality.

The answers – and the information contained in them – are generated by the source’s knowledge

and reflect the quality of the latter. On the other hand, the answers directly depend on the

corresponding question which reflect the agent’s needs – the specific detail of the agent’s beliefs

which are deemed either lacking in precision or important for the given problems (or both). If

one wants to study the process of information exchange from a quantitative point of view one

needs to make use of some suitable quantitative characteristics of the elements of the said process

– questions, answers and the sources knowledge – as well as the agents original beliefs which are

updated by the information received from the source.

Some preliminary results were obtained [39, 37, 38, 40]. Below, we briefly describe an updated
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version of these results. The main quantitative characteristics developed previously are Question

Difficulty and Answer Depth. The most recent research indicates that these two characteristics

have to be augmented by one more – the Question Depth which we also briefly introduce below.

Questions and Question Difficulty

In our current view, question difficulty is a derivative and the most complicated concept of the

three, with the question and answer depth being the simpler ones. We begin with the question

difficulty here partially due to “historic” reasons and partially to emphasize the “naturalness” of

it from the point of view of an axiomatic characterization.

Recall that the problem was assumed to have the form

minx∈X Epf(ω, x) =

∫
Ω
f(ω, x)P (dω) (1.3)

where Ω is the problem parameter space, and P is the probability measure on Ω encoding the

initial state of agent’s information.

Questions were identified in [39] with partitions C = {C1, ..., Cr} of the parameter space Ω

of the problem. Partitions were allowed to be incomplete, i.e. such that ∪rj=1Cj . The question

difficulty functional was introduced to measure the degree of difficulty of the question to the

given information source, so that the information source would be able to answer questions with

lower values of the difficulty functional more accurately that those with higher values of difficulty.

The specific form of the difficulty functional was determined in [39] by demanding that it satisfy

a system of reasonable postulates that, in particular, imposed the requirements of linearity and

consistency. The question difficulty introduced here can be measured by the difficulty functional—

denoted by G(Ω, Q, P ) . We would like to determine the overall shape of it. A standard way

of doing so is to demand that G(Ω, Q, P ) satisfy some requirements that express consistency

and other desiderata derived from what is known about the general nature of the object. Such

requirements can be formulated as postulates and the overall form of the functional can be then

derived up to some remaining degrees of freedom. The latter will then express characteristics

(parameters) of the particular source.

If we require the difficulty to be additive for questions that are successive “detalizations”
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of each other, the question difficulty functional has to be logarithmic in probability measure

expressing the agent’s initial state of information.

G(Ω, Q, P ) =

r∑
i=1

uΩ(Q)P (Ci) log
1

P (Ci)
(1.4)

if all subsets Ci belong to the same context of the source’s knowledge structure. Here, uΩ(Q) is

the coefficient characterizing the source’s knowledge depth in this particular (global - belong to

the whole space Ω) context.

More generally, if the source’s knowledge structure has multiple “crossed” or “nested” contexts,

the question difficulty functional will reflect that.

G(Ω, Q, P ) =

p∑
k=1

∑
C∈Q(k−1)

P (C)G0(C,Q
(k)
C , PC) (1.5)

where (Q(1), Q(2), ..., Q(p)) is some sequence of partitions of Ω such that Q(k+1) is a refinement of

Q(k) for k = 1, 2, ..., p− 1, Q(0) denotes the trivial partition Q(0) = {Ω}, and

G0(Ξ, Q, PΞ) =

r∑
j=1

uΞ(Q)PΞ(Cj) log
1

PΞ(Cj)

r∑
j=1

PΞ(Cj)

(1.6)

In particular, the difficulty of the given question Q depends on, besides the initial probability

measure P , the function uΞ(·) defined on the parameter space Ω and depending on the context.

One can say that, while the source’s knowledge (in its full detail) generates the agent’s in-

formation change (which is practically impossible to compute), the system of contexts generates

the question difficulty which is (relatively) easy to estimate. This is what allows the agents to

choose between sources and make use of the provided information (since the accuracy of it is

predictable). A source with deep but irregular knowledge would be impossible to acquire infor-

mation from. As we have seen, in the simplest case, there is a single context for the source and

the difficulty functional reduces simply to the (multiple of) Shannon entropy of the probability

distribution induced by the question (partition of Ω).
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Answer Depth

Here, we give a brief review of the concept of answer depth which appears to be obsolete at the

time of writing. We will have to say more about this towards the end of the thesis.

Given a question Q = {C1, ..., C2}, the information source can provide an answer V (Q), defined

in [37], that takes one of values in the set {s1, ..., sm}. A reception of the value sk has an effect of

modifying the original probability measure P on Ω to a new (updated) measure P k. To ensure

the answer , V (Q) is in fact an answer to the (complete) question Q and no more. The folloing

condition is required to hold for the updated measures P k, k = 1, ...,m:

P k =
r∑
j=1

vk|jPCj (1.7)

where vk|j , k = 1, ...,m, j = 1, ..., r are the corresponding conditional probabilities.

The answer depth functional Y (Ω, Q, P, V (Q)) for the answer V (Q) to question Q measures

the amount of pseudo-energy that is conveyed by V (Q) in response to question Q. The general

form of Y (Ω, Q, P, V (Q)) can be established if certain reasonable requirements (postulates) it

has to satisfy are imposed. A system of postulates proposed in [37] that parallels the postulates

for question difficulty and in particular, impose the requirements of linearity and isotropy. The

following theorem was then proved in [37]. The extent to which a source answers a given question

can be quantified by the answer depth functional Y (Ω, Q, P, V (Q)).

Y (Ω, Q, P, V (Q)) =

p∑
k=1

∑
C∈Q(k−1)

P (C)Y0(C,Q
(k)
C , PC , V (Q

(k)
C )) (1.8)

where Y0(Ξ, Q, PΞ, VΞ(Q)) denotes the depth of answer VΞ(Q) to question Q on subset (i.e. in the

context of) Ξ on the base space. Here, the elementary depth functional Y0(Ξ, Q, PΞ, VΞ(Q)) can

be shown to have the following form:

Y0(Ξ, Q, PΞ, VΞ(Q)) =
m∑
k=1

vk|ΞY (Ξ, Q, PΞ, P
k
Ξ) (1.9)

where P kΞ is the measure modifies by the reception of VΞ(Q) = sk and Y0(Ξ, Q, PΞ, P
k
Ξ) is the

conditional (single-context) depth that depends on the modified measure P kΞ . The latter looks
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like

Y0(Ξ, Q, PΞ, P
k
Ξ) =

r∑
j=1

uΞ(Q)P kΞ(Cj) log
P kΞ(Cj)

PΞ(Cj)

r∑
j=1

P kΞ(Cj)

(1.10)

Knowledge Structure

After the agent receives the knowledge of the source, his knowledge will be changed. Since the

latter is quantitatively described by probabilistic measurements, the change process must follow

the standard Bayesian law

Pa(ω|m) =
Ps(m|ω)Pa(ω)∑

ω′∈Ω Ps(m|ω′)Pa(ω′)
, (1.11)

where m is the particular value of the message sent to the agent by the source. We see that

the knowledge of the source can be described quantitatively by the conditional distributions

{Ps(m|ω)}ω∈Ω. If all conditional distribution Ps(m|ω)ω∈Ω were known or a source was available

for which

Ps(m|ω) = δω,mω , (1.12)

where mω is the message associated with the element ω (perfect knowledge source) then no

additional theory would be needed. Similarly, if each channel is perfect, all external information

forms are non-redundant, you do not need the classic information theory. In practice, however,

these conditional distributions have very complex structures that involve many parameters. In

most cases, it is impractical to estimate them with reasonable accuracy.

Since it is not possible to estimate the source of knowledge parameters, the agent must rely

on other ways to optimize the information extraction. We can see that in practice, the agent can

evaluate the various sources of information and choose between them to align the resources with

their problems.The most common form of this phenomenon is to find a “expert” source, the kind

of expert known to be close to the perfect knowledge in one aspect of the problem.

If you want to get information from resource optimization - like the classic information theory,

manage the way in which information is optimized - the first step is to think about the source’s
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knowledge. Obviously, to make the source code knowledge useful to the agent, it must have some

rules of the structure. Otherwise, even if the agent can get them, he will not know what to do

with the source message.

The knowledge is expressed by conditional probabilities {Ps(m|ω)}ω∈Ω which lives in a simplex

of dimension equal to |V |−1 (one fewer than the number of possible values of the source’s message).

Let us assume that the structure of the source’s message is such that the source is in principle

capable of providing perfectly correct information. In other words, the source is aware of all

elements of the problem parameter space Ω. Thus |V | = |Ω|. Then, geometrically, the knowledge

structure of the source will be represented by |Ω| points in a (|Ω|−1) dimensional simplex. These

points have to possess some regular structure in order for the source’s knowledge to be usable.

We call a set of such points on Ω or its projection a context if all these elements are found in the

same relation to each other. In other words, the corresponding conditional distributions can all

be obtained from each other by some permutation of the values of elements V .

For a real-life source, the contexts will, in general, not be exact. This is similar to regression:

the exact relationship between some parameters of a system is typically less regular and more

complicated but can often be described approximately by a simple function (i.e. linear) reasonably

well.The contexts themselves can form a fairly complicated structure, with multiple contexts being

present and “crossed”, or “nested” in DOE terminology, with respect to each other.

Consider the base space Ω consisting of four elements: Green and red apples and green and red

pears. The information source can be asked to distinguish between those four objects. The figures

below shows the geometric view of this example. In this case, the source has two well-defined

contexts in its knowledge structure: “Type” and “Color”. The context “Type” is well defined

because the source distinguishes green apple from green pear just as well as he does red apple

from red pear. The question about the color will be more difficult for the source than that about

type. The value of the respective knowledge structure parameters will be respectively higher.

Figures about Type and Color are shown below.

Now let’s consider a slightly different knowledge structure. The source is still an expert in

fruit type but can distinguish the color of pears better than that of apples. Thus Color is not a

global context for this source. Instead he has “nested” color contexts: different for each type.
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Figure 1.6: Example: Apple and Pear Figure 1.7: Elements of Apple and Pear

Figure 1.8: Type Context Figure 1.9: Color context

Now recall the function of question difficulty G(Ω, Q, P ) and answer depth Y (Ω, Q, P, V (Q)):

G0(Ξ, Q, PΞ) =

∑r
j=1 uΞ(Q)PΞ(Cj)log

1
PΞ(Cj)

)∑r
j=1 PΞ(Cj)

and

Y0(Ξ, Q, PΞ, P
k
Ξ) =

∑r
j=1 uΞ(Q)P kΞ(Cj)log

PkΞ(Cj)

PΞ(Cj)∑r
j=1 P

k
Ξ(Cj)

.

The coefficients uΞ(·) that enter the difficulty and depth functionals are related to the source’s

knowledge structure.
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Figure 1.10: Example 2: Type Context Figure 1.11: Example 2: Color Context

Revised answer depth and question depth

The answer depth functional described above belongs to the preliminary version of the proposed

approach. It was later found that such definition of answer depth leads to somewhat inadequate

description of the information exchange process. Here we briefly sketch the revised version of the

answer depth together with the additional function – the question depth.

First, let’s turn our attention to ways of relating the coefficients uΞ(·) to the source’s knowledge

structure. Since the question difficulty functional is linear in uΞ(·), a natural way to express this

relation is to set uΞ(·) higher for the case of “weaker” source thus making the corresponding

question would more difficult to the source. To see how it works, let’s consider a single context

Ξ. Let vk|j = Pr(s = sk|ωi) denote the probability of the message having value sk when the true

state of the system is described by ωi. Let vk|Ξ denote the unconditional (within the subset Ξ)

probability of the sources’s message taking the value sk. Then the depth of the answer to an ideal

(single subset) question ωi such that P (ωi) = 1
rΞ

(thus describing the “maximum ignorance” of

the agent) will be equal to uΞ(ωi)
∑

k vk|ilog
vk|i
vk|Ξ

, where the value of uΞ(ωi) will be the same for

all ωi within the same context inside Ξ.

We can set the value of uΞ(·) by using the convention that the maximum answer depth the

source is capable of within the context Ξ is equal to logrΞ where rΞ is the number of distinguishable
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elements n Ξ. This can be achieved by setting

(uΞ(ωi) + 1)
∑
k

vk|ilog
vk|i

vk|Ξ
= logrΞ

for all ωi ∈ Ξ. Clearly, if the source knowledge on Ξ is perfect one would obtain uΞ(ωi) = 0.

Otherwise, uΞ(ωi) > 0.

A question difficulty thus defined will always vanish for a source possessing perfect knowledge

of what’s being asked. Moreover, such question difficulty (including the more general multiple

context case) will have the meaning of the average value of uΞ(·) over all contexts involved weighted

with the degree of “ignorance” of the agent about these contexts. This also gives us a hint of

how one should naturally define the answer depth. Specifically, the revised version of the answer

depth functional doesn’t use the quantities uΞ(·) expressing the source’s knowledge structure and

simply measures the extent of the change of the agent’s beliefs upon the answer reception (more

on this later).

This naturally leads to the notion of question depth defined simply as the largest value the

answer depth can take in case the corresponding answer is perfect. It’s straightforward to show

that the question depth thus defined will have the form of simply

D(Ω, Q, P ) =
r∑
i=1

P (Ci) log
1

P (Ci)
,

which is nothing else but the Shannon entropy of the probability measure induced by the

partition representing question Q. The question depth thus defined is a measure of the initial

ignorance of the agent with respect to the question the agent is asking. The question depth is

higher if either the question is very detailed or the agents knows little about the matter. A high

value of question depth gives the source the opportunity to change the agent’s beliefs by a large

amount – measured by the revised answer depth functional. On the other hand, if the question

depth is low the agent’s updated belief will stay close to the original – no matter how much the

source knows.
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1.2 Motivation and Background

1.2.1 Motivation

The main motivation for this thesis is the need to revisit the existing quantitative measures of

information in order to clarify certain points of the overall proposed approach and resolve some

of the contradictions of the preliminary version of it which were recently found.

To this effect, the logical place to begin is to clarify what information really is – at least in

a more narrow sense directly related to optimizing the process of its acquisition in science and

engineering. We propose to use the following definition.

Definition 1.2.1. Information is an (ideal) image of some human activity.

In this definition the word “ideal” refers to some material entity which is used to represent an-

other material entity, like, for example, symbols that are used to record and transmit information

are there solely to represent something else – the information content.

The need by the agent to acquire additional information is only there if the information he or

she has at the time is incomplete. Thus one would need to quantify incomplete information first.

Fortunately Cox had argued [17, 18] that the only consistent way to quantify that is by describing

it by standard probabilities subject to Bayes’ update rules (together with possible generalizations

(see [12] for details)).

In a nutshell, Cox’s argument amounts to the observation what complete information can be

stated as a system of logical propositions which can be either true of false. For example if the

agent has complete information about the apple color (knowing for sure that it’s red) than the

proposition “The apple is red” is true and the proposition “The apple is green” is false. On the

other hand, if the agent’s information is incomplete then neither of these propositions can be

true or false. This implies that either of them has to be partially true. Since they are mutually

exclusive if one of them is almost true the other has to be nearly false and vice versa. This leads to

the notion of quantitative difference between qualitatively uniform (partially true) propositions.

The corresponding quantity has to be additive with for mutually exclusive propositions. Then, it

is easy to show that consistency with logical algebra requires that this quantity be multiplicative

with respect for logical intersections. This uniquely leads to an identification of these quantities
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(degrees of belief) and classical probabilities.

Once one is able to describe – qualitatively and quantitatively – the state of agent’s information

(belief) as incomplete, the next task is to find suitable quantification of the degree of change of

these beliefs. Clearly, the original beliefs might change just a little bit or very drastically. The

important question is what is the correct quantity – if it exists – characterizing such a change.

Since – according to some authors – information is “whatever can change rational beliefs” [12] (the

property of information that follows directly from our definition), the degree of such change can

be identified with the true quantity of information obtained. It is this quantity which constitutes

the main subject of the present thesis.

1.2.2 Background

The field of Information Theory, born from Shannon’s work on the theory of communications [46]

has had great success in a number of fields — besides communications itself which it revolutionized

— that include statistical physics [28, 29], computer vision [50], climatology [36, 49], physiology

[31] and neurophysiology [13]. The relatively new field of Generalized Information Theory (see

e.g. [32]) is concerned with problems of characterizing uncertainty in frameworks that are more

general than classical probability such as Dempster-Shafer theory [45]. There it was shown, for

example, [35, 24] that the minimal uncertainty measure satisfying consistency requirements (such

as general subadditivity and additivity for combining uncertainty for independent subsystems)

is obtained by maximizing Shannon entropy over all classical probability distributions consistent

with the given (generalized) belief specification.

In our research, together question difficulty and answer depth can be thought of as a logical

development of the entropy concept of information theory. The axiomatic approach was first

used, besides Shannon himself, in [20] to derive the most general form of the entropy function.

Later, [43] used a different set of axioms to find the one-parameter family of functions (later

called Rényi entropies) that included standard (Shannon) entropy as a special case. The concept

of structural entropy was introduced in [25] and used for classification purposes. Also known

as Havrda-Charvat entropy, it was more recently obtained by axiomatic means in [47] where

axiomatization of partition entropy was discussed on rather general grounds (see also [27] for
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closely related work). It was shown in [47] that Shannon entropy, Havrda-Charvat entropy and

Gini index all obtain as particular cases of general partition entropy that satisfies a system of

reasonable axioms.

Similarly, it can be thought of as a development of a general theory of inquiry that goes

back to the work of Cox [17, 18]. This line of work received more attention recently resulting

in a formulation of the calculus of inquiry [33] that constructs a distributive lattice of questions

dual to the Boolean lattice of logical assertions. The definition of questions adapted in Chapter 2

corresponds to the particular subclass of questions — the partition questions ? defined in [33]. The

work here goes beyond that on the calculus of inquiry in that it introduces the concept of pseudo-

energy as a measure of source specific difficulty of various questions to the given information

source. One could say that it develops a quantitative theory of knowledge as opposed to the

theory of information.

Explicit consideration of information sources that lies at the core of the proposed methodology

is similar in spirit to analyzing and using information provided by human experts. In fact, in

many practically relevant applications the role of multi-purpose information sources used in the

proposed approach will likely be played by experts. In existing research literature, the problem

of optimal usage of information obtained from human experts has been addressed mostly in

the form of updating the decision makers’ beliefs given probability assessment from multiple

experts [22, 23, 14, 15] and, in particular, optimal combining of expert opinions, including experts

with incoherent and missing outputs [42]. Closely related to the approach initiated here are the

investigations on using and combining information of experts that partition the event differently

[8] and on rules of updating probabilities based on outcomes of partially similar events [9]. The

latter investigations essentially consider experts that provide qualitatively different information.

The dependence of the quality of experts’ output on the particular partition was also studied in

[21]. Here, the emphasis is on optimizing on the particular type of information (i.e. partition) for

the given expert(s) and the given decision making problem.
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1.3 Information Measures

In order to understand the idea of information, we began to consider some ideas about the

concept of information; our daily experience tells us that we continue to deal with information

and information transmission. One reason for this information is that all creatures protect their

lives by receiving information about their environment so that they can discover food and danger

(“Information is the very essence of life; H.Haken”). Despite the importance of information, we

have not yet found the definition of this concept. One of the reasons for this lack of definition

is that when we check information about messages, objects, etc., we need different levels. For

example, the mathematical description of the information used in communication theory can only

provide a limited number of levels. Thus, as described by mathematical measures, the concept of

information can provide us with an in-depth understanding of the whole concept of information.

However, these limitations are due to the neglect of the subjective information, which is proven

by common scientific methods, trying to eliminate human beings from their experiments as an

immeasurable source of error. Such subjective aspects of information may be complex, or very

inaccurate models.

A possible way out could be the use of the effect caused by the received information and the

description of the information processing using this effect. This can be done easily by sending a

message to someone and then by judging his reaction. However, this analog information transmis-

sion already contains some different information processing steps, merely describing the merging

of these different information processing steps. After that, we need to be evaluated by certain

criteria, and we must judge the comparison between intent and response. However, this is an easy

task because of the objective criteria that can be applied. But the key to information transmission

is the steps that must be inserted and the conversion of the information that must be completed

in this transmission. It is in these steps that we need to describe the details, which are the basis

for the actual implementation of modeling. Have the opportunity to optimize individual details

in the right way, and the entire system will benefit from this optimization. However, this requires

understanding the concept of information, allowing at least a limited definition of information.

When we can define at least part of the concept of information, we can also use this part of

the understanding to achieve the application, so as to learn from the information collected on
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the information about more information. So we can extend our understanding of this abstract

concept by constantly examining our actions in information. If we only optimize the system for

the transmission rate, we do not need to consider the concept of information, because the bound-

ary conditions (bandwidth, time and energy) impose restrictions on the expected optimization,

this optimization must be adjusted conditions. There is no need to understand the concept of

information to do such an optimization. So the advantage of this aspect is that we can build and

optimize the information transmission system, although we do not have a complete understanding

of the actual information.

The complexity of the information is clearly a great challenge to the definition, which limits

the scope of application of this concept. However, we can understand some parts of conceptual

information and apply it to scientific theory (coding theory, estimation theory, cryptography, ...).

Thus, it is possible to develop a scientific information theory, which assumes the comprehension

of particular facts and allows us to use this comprehension.

We, therefore, deal with the concept of information in an emotional way by benefiting from

the information available in our limited field of information from the available and reproducible

experience. Because this inductive strategy is based only on partitions that can be experimentally

or experimentally verified, the resulting theory must be continually developed to include all the

changes that are collected through additional experience. Within the scope of these experiences,

over the past 60 years, many other options have been developed for information and communi-

cation system information description. They all expand the existing theory, because they are

more numerous, and even provide a complex accumulation of completely different functions. It

is, therefore, difficult to determine whether the specified function describes, understands, or even

loves a given question in the desired way. However, this diversity is the result of the induction

method and can not lead to a complete description of the problem due to the necessary limitations

of the particular case.

By fully adapting the boundary conditions, the deduction from the description of the complete

topic to the description of some limited areas will require the characterization of the information,

which is not suitable for mathematical selection. But this is not necessarily a negative attribute of

information because every math system is incomplete, so we can not use our resources to prove all
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the statements of a mathematical system. If you change the description level of the system, you

can get other insight that has not been achieved before. Therefore, different levels of information

complement each other; we use these opportunities to verify and explain our information in the

mathematical processing of the results obtained.

1.4 Objective of Thesis

The main objective of this thesis is to study, review and find a suitable methods of information

measurements to support our current research introduced in Section 1.1. Specifically, this thesis

tries to find a proper aspects of “Information” that meets our definition of information and discover

right information measures among existing methodologies that can be used in the quantitative

aspects of our research.

1.5 Thesis Outline

Chapter 1 is the introduction of this thesis. In section 1.1, the general ideas in the research of

our group is introduced with some detailed information like overfall framework and quantitative

aspects that can be useful as the standard to distinguish different information measures in fol-

lowing chapters. Section 1.2 shows the motivation and background of this thesis. It includes

several questions we want to answer about information and some previous work that has been

done. Section 1.3 introduces the core concept of this thesis about information measures, about

the way we treat “information”. Section 1.4 introduces the objective of this thesis and Section

1.5 shows the structure of it.

In chapter 2, I will examine some historical milestones in the development of information

theory and arrive at Shannon’s Information, which is the fundamental one. The character of this

measure of information is more than that of an entropy which has been known in physics.

In chapter 3, I will introduce another famous measure of information—Rényi’s Information.

In particular, Shannon’s information is a special case of Rényi’s Information with α = 1. We

will focus on the generalized mean of entropy and see how different measures make different

characterizations with different properties.
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In Chapter 4, there is a critical measurement of information derived — Kullback-Leibler Di-

vergence. It can be called in different names like Kullback’s information and Relative Information.

The key point is Kullback-Leibler Divergence is a good measure to deal the difference between

two information/entropies.

In Chapter 5, a summary of popular information measures is provided. And the relationships

among Information, Entropy and Probability are discussed. Based on the quantitative aspects in

our research, we will provide a brief introduction about the deduction of our main idea that what

kinds of information measures are necessary.

In Chapter 6, we will see different divergence functions in the view of information geometry.

By introducing some important properties of Bregman Divergence and Invariant Divergence, we

show how the requirements of our ideal information measure are satisfied by these two classes of

divergences. And since Kullback-Leilber Divergence is the only one that belongs to both Bregman

divergences and Invariant divergences, it is indeed the proper information measure we are seeking

for our research.

Chapter 7 is the summarization of this thesis. Conclusions achieved in this thesis are derived

in section 7.1. And a brief discussion about the future work is involved in section 7.2 with some

potential difficulties.



Chapter 2

Information Theory and Shannon’s

Information

2.1 Information Theory

2.1.1 Information Transmission

Samuel F.B. Morse 1837

The Morse alphabet was developed to transmit messages in an optimal way over a communication

channel. The assignment of the characters of the alphabet to the symbols, which was carried out

by S. Morse, was not based on the relative frequency with which the letters appeared in given texts.

It was instead carried out by S. Morse by counting the types in a letter case of the typesetter in a

print office. Thus the Morse alphabet is not the optimum coding on the basis of the preliminaries

and it can be improved by a factor of 15% [41].

With this coding the rate of transmission of a message is bounded by the divergence, leading

to a merging of two subsequent pluses on the channel. A line requires three times the periods of

a dot and thus prevents the fast transmission of messages, which was the reason to replace the

line by a dot with a negative sign. This leads to an increased speed of transmission.

27
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Thomas Edison 1874

Thomas Edison introduced the quadruplex coding, using the symbols +3,+1,−1,−3 to increase

further the rate of information transmission. The amount of information that can be transmitted

over a given channel obviously depends on the following three factors:

• How fast can we send two successive characters without leading to a merging of both on the

channel(divergence, inter-symbol interference)? —frequency, bandwidth

• How many different characters are we able to transmit (number of levels)? — amplitudes

• How much time do we have for the transmission? — time

Nyquist 1924

in his paper ‘Certain factors affecting telegraph speed’ in [41], Nyquist says:

If we send symbols at a constant rate, the rate of transmission W is connected to the

number of possible different symbols that can be sent, by the equation

W = B · lnm (2.1)

Where B is a constant, depending on the number of different amplitudes of current

that can be sent per second; m is the number of different symbols at our disposal for

the transmission.

2.1.2 Information Functions

Hartley 1928

Hartly defined a unit and a measure of information by stating the following prediction:

The answer to a question that can assume the two values ‘yes’ or ‘no’ (without taking

into account the meaning of the question) contains one unit of information.

The unit of information is called a bit, because we can realize the two answer in a dual system

0 and 1. Now we are also able to realize complex systems or procedures by an arbitrary number
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of these binary digits. The characterization of a set EN consisting of N = 2n dual enumerated

elements, where the occurrence of the elements can be answered with yea or no, requires the

information

I(EN ) = n = 1 logN =
lnN

ln 2
bit (2.2)

This definition of information is commonly known as Hartley’s formula and it holds under the

assumption that all N elements of the set EN occur with equal probability (pni = 1
n , for i =

1, ..., N). As Hartley’ formula is a definition, we need not perform any proof. But this definition

is not at all an arbitrary selection. It meets the following postulates of Hartley summarizing the

requirements of an information function.

For the sets EN , EN+1, EM , EMN , consisting of N,N + 1,M,MN equal probable elements we

postulate:

• I(EMN ) = I(EN ) + I(EM )

The sum of the pieces of information of two independent sets EN and EM is equal to

the information of the union set EMN (all sets consist of elements occurring with equal

probability).

• I(EN ) ≤ I(EN+1)

Information is a monotonically increasing function.

• I(E2) = 1

Determination of a unit quantity to obtain an absolute reference.

Hartley’s information (information content)

I(EN ) = n = 1dN =
lnN

ln 2
bit (2.3)

and the channel capacity

C = log n (2.4)

are identical, though they are defined with different preliminaries. Hartley examined the proba-

bility of the occurring events, while the channel capacity aims at the number of events to define a
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quantum to measure the quality of a signal processing system or a communication system. Since

for equally probable events the reciprocal probability is equal to the number of occurring events,

both definitions are identical an we thus get:

Hartley′s information = channel capacity

The next scientists to deal with the problem of information theory were Norbert Wiener and

Andrej N. Kolmogorov. They studied the problem of predicting a process from contaminated data

and developed independent solutions for this problem. Furthermore, the evolution of probability

theory by Ricard von Mises and Anderj N. Kolmogorov was an essential prerequisite for the

development of the following information measures, which are merely defined on the basis of

relative frequency of the probability of the occurring events.

2.2 Shannon’s Information

2.2.1 Shannon 1948

Claude E. Shannon enlarged Hartley’s concept of information, by permitting sets which need not

occur with equal probability. The starting point of Shannon’s derivation is the mutually disjoint

sets E1, E2, ..., En with E = E1 +E2 +E3 + ...+En. The number of elements contained in the set

Ek is Nk, which means that the union set E consists of N =
n∑
k=1

Nk elements. As a consequence

of these preliminaries, the set Ek occurs with the relative frequency

pk =
Nk

N
(2.5)

The elements of the set Ek all have the same probability of occurrence. Thus, if we know that

a certain element is a member of the set Ek, the exact characterization of an element of the set

E merely requires the average information Ibinary, when we already know that the element is a

member of the set Ek

Ibinary =

n∑
k=1

Nk

N
· 1 logNk =

n∑
k=1

pk · 1 log(N · pk) = 1 logN +

n∑
k=1

pk · 1 log pk (2.6)
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thus it follows that

1 logN = Ibinary −
n∑
k=1

pk · 1 log pk (2.7)

The information required to characterize an element of the set E is an amalgamation of two pieces

of information

1 logN = Ibinary + IShannon (2.8)

IShannon specifies the set Ek that contains the element; Ibinary specifies the particular element in

the known set Ek.

Shannon’s entropy(information entropy) is thus given by:

IShannon =

n∑
k=1

pk · 1 log(
1

pk
) = −

n∑
k=1

pk · 1 log pk (2.9)

Shannon’s information is an expectation value of Hartley’s formula E{1 log( 1
pk

)}, where the prob-

abilities are not required to be equal for all possible events. If the probabilities are equal for

all events pk = 1
n , Shannon’s information reduces to the formulation of the Hartley information,

which is

IShannon =
n∑
k=1

1

n
1 log n =

n

n
· 1 log n = 1 log n (2.10)

Taking a further look at Shannon’s entropy, commonly denoted by H(X), i.e. the entropy

of the random variable X, we are usually going to use the notation H or the previously used

notation IShannon

H = H(X) = −
n∑
k=1

pk · ln pk (2.11)

2.2.2 Properties of Shannon’s Information, Entropy

Shannon’s information

IShannon =

n∑
k=1

pk · ln(
1

pk
) = −

n∑
k=1

pk · ln pk (2.12)

achieves its maximum when all n symbols occur with the same probability p = pk. To determine

the maximum, we additionally have to take into consideration that the sum of all probabilities is
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equal to 1, then we have
n∑
k=1

pk = 1 (2.13)

and

pk =
1

n
(2.14)

and this value has to be inserted into Shannon’s information to determine the maximum. It is

thus equal to

max (IShannon) = −
n∑
k=1

1

n
· ln
(

1

n

)
= n · 1

n
· ln
(

1

n

)
= ln

(
1

n

)
(2.15)

The maximum of Shannon’s information is thus achieved when all events occur with the same

probability 1
n . But this is exactly the formulation that Hartley found to express the information.

Therefore Hartley’s information maximize Shannon’s information.

Shannon’s information describes exactly the uncertainty eliminated by the measurement.

Without any observation we can give only some vague description of the possible realizations

by assigning probabilities to the possible events. Having obtained an observation, the a priori un-

certainty vanishes, as we are able to determine one event as the result of our measurement. Thus

Shannon’s information measures the information contained in an observation or the eliminated

uncertainty.

The original notation of this quantity was entropy. Shannon’s measure describes the initial

uncertainty that we have before we make the observation. We then only know the distribution

density of the experiment, as we do not have a concrete realization. But he distribution density

enables us to calculate the uncertainty(the entropy) that we have regarding the desired realization.

So Shannon’s measure is a measure of entropy, when we look at the experiment on the basis of

the initial knowledge.

Shannon’s measures is also a measure of information, because by the description of the initial

uncertainty it also describes the information that we are able to obtain by the following obser-

vation. When we examine Shannon’s measure from this point of view, which is more with the

tendency to a future gain of information, we may also speak of Shannon’s information, as it

describes the information contained in the succeeding observations.
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Here we have to distinguish between discrete probabilities and continuous distribution density

functions, because the discrete probabilities are assigned to countable events, which my or may

not occur. It is thus possible to find an exact determination of the occurrence of an event by

a simple yes/no decision, elimination all uncertainty regarding the realization of the observed

discrete random variable. The description of a random experiment with continuous distribution

densities on the other hand does not lead to an exact realization, because we are not able to

perform any exact measurement. We still retain an uncertainty after we make the observation.

In this case the gain of information that we get from the measurement not only depends on the

initial uncertainty (as it is in the case for discrete random variable), but also on the uncertainty

remaining after the measurement(which is equal to zero in discrete case).

Algebraic Properties of the Shannon Entropy

Theorem 2.2.1. The Shannon entropies Hn(X) defined by (2.11) have the following properties[1]:

• Symmetry

Hn (p1, p2, ..., pn) = Hn(Pk(1),k(2),...,k(n))

for all (p1, p2, ..., pn) ∈ ∆n, where k is an arbitrary permutation on 1,2,...,n.

• Normality

H2

(
1

2
,
1

2

)
= 1

• Expansibility

Hn(p1, p2, ..., pn) = Hn+1(0, p1, p2, ..., pn) = ...

= Hn+1(p1, p2, ..., pk, 0, pk+1, ..., pn) = ...

= Hn+1(p1, p2, ..., pn, 0) (k = 1, 2, ..., n− 1)

• Decisivity
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H2(1, 0) = H2(0, 1) = 0

• Strong additivity

Hmn(p1q11, p1q12, ..., p1q1n, p2q21, p2q22, ..., p2q2n, ..., ..., pmqm1, pmqm2, ..., pmqmn)

= Hm(p1, p2, ..., pm) +

m∑
j=1

pjHn(qj1, qj2, ..., qjn)

for all(p1, p2, ..., pm) ∈ Γm and (qj1, qj2, ..., qjn) ∈ Γn, j = 1, 2, ...m

• Additivity

Hmn(p1q1, p1q2, ..., p1qn, p2q1, p2q2, ..., p2qn, ..., ..., pmq1, pmq2, ..., pmqn)

= Hm(p1, p2, ..., pm) +Hn(q1, q2, ..., qn)

for all(p1, p2, ..., pm) ∈ ∆m and (q1, q2, ..., qn) ∈ ∆n

• Recursivity

Hn(p1, p2, p3, ..., pn) = Hn−1(p1 + p2, p3, ..., pn)

+(p1 + p2)H2

(
p1

p1 + p2
,

p2

p1 + p2

)
for all (p1, p2, p3, ..., pn) ∈ Γn, for which p1 + p2 > 0.

Proof is omitted here. The Symmetry property means intuitively that in the order of events,

the amount of information is constant. The Normality tells that experiments with two outcomes

with equal probability will provide a unit of information. The Expansibility makes sure that

the additional results with probability of 0 will not change the uncertainty of the experimental

results . The Devisivity says in an experiment if there are two results, the probability of one is

1 and the other probability is 0, then there is no uncertainty in this experiment. The Additivity

property describes that the information expected from two independent experiments is the sum

of the informations expected from the individual experiments. And The Strong additivity

describes the situation in which the two experience are not independent. The Recursivity is

important. It says that by dividing an event of the system into two conditional probability events,
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the uncertainty of this division increases the uncertainty of the system, but only when the original

event occurs. The importance of recursivity is that it gives a recursive formula for calculating Hn.

2.2.3 Application of Shannon’s Information

Now let’s take a look at a typical application of Shannon’s information. Considering the objective

of this thesis is to summarize not only the definition of each information measures but also the

application fields, it is important to provide an typical example here to describe the application.

In coding theory, Shannon’s information is used to construct construct codes with optimal

lengths of the codewords. One of the basic equations in coding theory is the Kraft inequality,

which will now derive.

If we are able to arrange message or codewords in a code tree, then we are able to state

something about the number of codewords used to code the given message. Let:

1. D= number of symbols in the coding alphabet

2. n1, n2, ..., nm = given set of positive integers

Kraft’s Inequality

m∑
k=1

D−nk ≤ 1 (2.16)

is a necessary and sufficient condition for the existence of M codewords, corresponding to the

end points of a tree. Their length is equal to the given numbers nk (= length of the codewords).

Proof of Kraft’s is omitted here since it is pretty well-known and is out of scope of this thesis.

For detail please refer to lectures or books about information theory such as [16]. It is important

that the summation is done only over all disjoint codewords. There must not be any part of a

codeword in the summation or a multiple summation of short codewords.Kraft’s inequality is thus

a sufficient condition for the existence of a set of codewords, where the length of these codewords

are specified in another set. It is possible to generate prefix codes with a minimal average length,

when the Kraft inequality holds.
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The average of the optimum length of the codewords can be derived by

L =
∑
i

pi · li = −
∑
i

pi
ln pi
lnD

= −
∑
i

pi · logD pi = HD(X)

L = HD(X) = − 1

lnD

∑
i

pi · ln pi =
H(X)

lnD
(lnDL = H(X)) (2.17)

The average of the length of the codewords is thus equal to the entropy divided by the natural

logarithm of the number of symbols that our alphabet consist of.



Chapter 3

Rényi’s Measures of Information

3.1 Rényi’s Information 1960

The starting point of the derivation [44] of Rényi’s α-information (α-entropy) Sα and the G-

divergence Gα is Hartley’s definition of the information

IHartley = − ln p (3.1)

with known properties, such as additivity of the information for independent events. This defini-

tion only holds when we have no a priori knowledge regarding the probabilities pk of the single

events Ak, i.e. when all pk = p have equal probabilities. Shannon extended this description of

information by assigning different probabilities to the events and calculating the average of all

probabilities occurring in the observed process.

IShannon =
n∑
k=1

pk · ln
(

1

pk

)
= −

n∑
k=1

pk · ln pk (3.2)

pk = weighting factors of the information Ik = ln pk. The linear mean value, however, is not

the only possible mean value. So Alfred Rényi extended the averaging weights p1, p2, ..., pn (with

37
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0 ≤ pk ≥ 1 and
n∑
k−1

pk = 1) to the real numbers x1, x2, ..., xn with results in a generalized mean.

mg = ϕ−1

[
n∑
k=1

pk · ϕ(xk)

]
(3.3)

ϕ is an arbitrary continuous and strictly increasing or decreasing function defined on the set of

the real numbers. These generalized means are also known as Kolmogorov-Nagumo functions of

the mean. If we use the generalized mean instead of the linear mean in the definition of Shannon’s

Information, we obtain the equation

IRényi = ϕ−1

[
n∑
k=1

pk · ϕ
(

1 log
1

pk

)]
(3.4)

or with the natural logarithm

IRényi = ϕ−1

[
n∑
k=1

pk · ϕ
(

ln
1

pk

)]
(3.5)

It is better to limit the description to the natural logarithm, as all other logarithms only introduce

an additional constant factor. If ϕ(x) is a linear function, the generalized mean reduces to the

linear mean and we obtain Shannon’s information as as a special case of this formula.

We may now use IRényi as an information measure, but we certainly cannot use an arbitrary

function ϕ(x) with the restriction already stated. The function ϕ(x) has to be selected in such a

way that certain postulates are met by the resulting information function. The most important

postulate is the requirement that the information of independent events can be added, to obtain

the information of the union set of both events. Here Rényi uses the function

ϕ(x) = 2(1−α)x α 6= 1 if we use the logarithm with the base 2 (3.6)

If we consider the natural logarithm with the base e

ϕ(x) = e(1−α)x α 6= 1 (3.7)
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Now we insert the generalized mean of Rényi and after several calculating, we can obtain

IRényi =
1

1− α
· ln

[
n∑
k=1

pαk

]
(3.8)

And if we use the binary logarithm instead of the natural logarithm, we get:

IRényi =
1

1− α
·

ln

[
n∑
k=1

pαk

]
ln 2

(3.9)

and the change in the basis of the logarithm leads only to an additional constant factor in the

information function. We are thus going to use the natural logarithm, which does not require the

permanent writing of factors, which do not change the meaning of the function.

3.2 Properties of Rényi’s Entropy

1. Monotonicity

At first Rényi’s entropy is a monotonically decreasing function of the additional parameter α.

Proofs are omitted here and can be referred in [1].

2. Limits in the interval 0 ≤ α <∞

As we saw in the previous property Rényi ’s α-entropy is a monotonically decreasing function

of the parameter α. Thus we now want to determine the limits, which can be achieved by variation

of the parameter in the interval [0,∞).

For a given distribution density P = (p1, p2, ..., pn) the term

Sα =
1

1− α
· ln

[
n∑
k=1

pαk

]
with α 6= 1 and α > 0 (3.10)

is a monotonically decreasing function of the parameter α with the limits

lnn ≥ 1

(1− α)
· ln

[
n∑
k=1

pαk

]
≥ − ln pmax (3.11)

3. Nonnegative for discrete events
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For discrete events Rényi’s entropy is always nonnegative, which can be verified via the fol-

lowing consideration:

IRényi =
1

1− α
· ln

[
n∑
k=1

pαk

]

IRényi =
1

1− α
· ln

[
n∑
k=1

pk · pα−1
k

]

IRényi =
1

1− α
· ln

{
n∑
k=1

pk · exp[−(1− α) · ln pk]

}

where α is always positive. We exclude the special case α = 1, because in this case we obtain

Shannon’s information, which is a special case of Rényi’s information(for the linear mean).

It does not in matter in which interval the parameter α lies, the resulting Rényi information is

always nonnegative. For the limit α→ 1 we obtain Shannon’s information, closing the gap in the

range that the parameter can achieve. As Shannon’s information is also nonnegative for discrete

events, we get a complete nonnegative information for all possible values of our parameter.

4. Additivity

Sα =
1

1− α
· ln

[
n∑
k=1

pαk

]
with α 6= 1 (3.12)

additionally has the following properties:

Sα(A) is symmetric, normalized, additive and nonnegative (decisive, expandable) [1].

The additivity of the information of two independent random variables can be obtained by

computing the Rényi α-information of the joint distribution density of two independent random

variables, which means that fz,y = fx · fy the joint distribution in equal to the product of the

marginal distribution densities. As the joint distribution density can be created from the product

of the marginal distribution densities, we are able to transform the kernel of the integral and thus

to separate the integral into to integrals, which means:

SαZ = SαX + SαY for independent random variables (3.13)

Additivity actually means that the entropy of the joint distribution density can be computed
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from the entropies of a marginal distribution and a conditional conditional, i.e. fx,y = fx|y · fy. If

the random variables are independent, then this approach can be simplified and we again obtain

the formulation we previously examined.

The entropy Sα(A) is strictly additive. Thus it is not easy to define a concept of a transfor-

mation in the form of differences of entropies.

3.3 Relation between Shannon’s and Rényi’s Information

lnx is a concave function and satisfies the Jensen inequality

ln

(
n∑
k=1

pk · xk

)
≥

n∑
k=1

pk · lnxk (3.14)

Let xk = pα−1
k with α 6= 1, which provides

ln

(
n∑
k=1

pk · pα−1
k

)
≥

n∑
k=1

pk · ln pα−1
k

ln

(
n∑
k=1

pαk

)
≥ (α− 1) ·

n∑
k=1

pk · ln pk

ln

(
n∑
k=1

pαk

)
≥ −(1− α) ·

n∑
k=1

pk · ln pk

(3.15)

This presents the connection to Shannon’s entropy, and we are able to proceed with further

transformation with regard to α.

The relation of Rényi’s entropy and Shannon’s entropy depends on the parameter α. We may

thus define an α- transformation

ITα = S(A)− Sα(A) (3.16)

and write:

ITα = S(A)− Sα(A) < 0 for 0 < α < 1

ITα = S(A)− Sα(A) > 0 for α > 1

(3.17)

This α-transformation occurs if we measure the information of a certain event with Shannon’s
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measure and with Rényi’s measure of information and calculate the difference between the observe

measures of information of the same event A.

Additionally, combining with previous properties we have, we get:

lnn ≥ Sα(A) > S1(A) ≥ − ln pmax for 0 < α < 1

lnn ≥ Sα(A) = S1(A) ≥ − ln pmax for α = 1

lnn ≥ S1(A) > Sα(A) ≥ − ln pmax for 1 < α

(3.18)

This describes the connection between Rényi’s entropy and Shannon’s entropy for different values

of the parameter α.



Chapter 4

Kullback’s Measures of Information

and Divergence

4.1 Kullback’s Information

The information that Kullback himself preferred the name ‘discrimination information’ is gen-

erated from the difference of two Shannon information functions[34]. As a difference of these

information functions, it is — contrary to Shannon’s information — invariant with respect to a

transformation of the coordinate system. For a continuous random variable, the result

IKullback = G1 =

∫
Ξ

ln

(
f(ξ)

fs(ξ)

)
· f(ξ) · dξ (4.1)

is Kullback’s ‘discrimination information’. Some easy rearrangements lead to:

G1 =

∫
Ξ

ln(f(ξ)) · f(ξ) · dξ −
∫

Ξ
ln(fs(ξ)) · f(ξ) · dξ (4.2)

G1 = −S(f(ξ)) + S (fs(ξ), f(ξ)) (4.3)

now we can immediately notice the relation to Shannon’s information S. The mean of the in-

formation difference together with the application of Shannon’s information led us to Kullback’s

information. This information arises when we replace a given probability distribution by another

43



CHAPTER 4. KULLBACK’S MEASURES OF INFORMATION AND DIVERGENCE 44

probability distribution.The derivation from the G-divergence demonstrates that the discrimina-

tion information describes the information difference between two distribution densities.

Furthermore Kullback’s information allows us to describe the information of the random vari-

able x contained in the random variable y

G1 =

∫
P

ln

(
fy,x(ρ, ξ)

fx(ξ) · fy(ρ)

)
· fy,x(ρ, ξ) · dρ · dξ (4.4)

This information is also known as Kolmogorov’s information (mutual information), and it is a

special, symmetric case of Kullback’s information.

4.2 Kullback-Leibler Divergence 1951

To measure the difference between two probability distributions over the same variable x, Kullback

and Leibler(1951) were the first to introduce an information measure between two distribution

density functions, the Kullback-Leibler divergence. The KL divergence, which is closely related

to relative entropy, information divergence, and discrimination information(previous section),

is a non-symmetric measure of the difference between two probability distributions p and q.

Specifically, the Kullback-Leibler (KL) divergence of q(x) from p(x), denoted DKL(p, q), is a

measure of the information lost when q is used to approximate p.

Let p and q are two probability distributions of a discrete random variable. That is, both p

and q sum up to 1, and p > 0 and q > 0. DKL(p, q) is defined by

DKL(P‖Q) =

n∑
i=1

pi · ln
pi
qi

for all P,Q ∈ ∆n (4.5)

Let’s imagine an application: the KL divergence measures the expected number of extra bits

required to code samples from p when using a code based on q, rather than using a code based on

p. Typically p represents the “true” distribution of data, observations, or a precisely calculated

theoretical distribution. The measure q typically represents a theory, model, description, or

approximation of p.
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The continuous version of the KL divergence is

DKL(p(x)‖q(x)) =

∫ ∞
−∞

p(x) ln
p(x)

q(x)
dx (4.6)

Although the KL divergence measures the “distance” between two distributions, it is not a

distance measure. This is because that the KL divergence is not a metric measure. It is not

symmetric: the KL from p(x) to q(x) is generally not the same as the KL from q(x) to p(x).

Furthermore, it need not satisfy triangular inequality. Nevertheless, DKL(P‖Q) is a non-negative

measure. DKL(P‖Q) ≥ 0 and DKL(P‖Q) = 0 if and only if P = Q.

4.3 Discrete and Continuous Measures of Entropy and Relative

Entropies

Kullback’s information measure is a relative information, which means that it describes the dif-

ference between two continuous distribution densities or between two probability distributions in

discrete case. This relative definition of the information measure provides three advantages:

At first, the value of the calculated information is directly a measure, which describes the

difference between amounts of information in the two random variables. We there fore do not

require any additional generation of a reference value in the form of a second information. On

the other hand it is a disadvantage of this information that we cannot directly determining which

random variable contains more information. This is caused by the nonnegative of this measure.

The great advantage of this measure is that it does not change with a change of the coordinate

system. Thus we can use this measure to determine the information differences before and after

some arbitrary transformations. Furthermore, this measure allows us to compare discrete and

continuous entropies. We already know from Shannonn’s information that the transformation

from discrete to continuous systems leads to an additional term in the information. However,

differences between two Rényi entropies can be compared, because this additional term vanishes

as soon as we build difference.

Kullback’s information offers the advantages that we directly obtain a difference information

(absolute information measures do not directly provide any meaning because we have neither a
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reference scale nor a unit element), and that we may compare discrete and continuous entropies.

Additionally, this information measure is invariant regarding transformations. This advantage is

a general property of the relative information measures, calculating a comparison between two

distribution densities or between two probability distributions.

In the book [30], J.N. Kapur argues that

We are more fortunate for the measure of directed divergence, since here the limit

of measures for discrete probability distributions give measures for continuous variate

distribution. And it is therefore desirable to consider the concept of directed divergence

as more basic than that of entropy and to express the concept of entropy in terms of

the concept of directed divergence.

So the Kullback-Leibler Divergence turns out to be a critical part of our research. Especially

at the beginning of our research, we need to build our intuitive models from basic measures of

information. Detail discussions and conclusions can be found in Chapter 6.



Chapter 5

Summary of Information, Entropy,

and Divergence Measures

5.1 Measures of Information

We have now presented several information measures and describe their properties more from

the descriptive point of view. These information functions are the most familiar ones, which are

commonly used in applications. It is impossible to enumerate all information functions, because

every stated problem leads to the generation of another information function. The information

functions introduced demonstrate already the most important properties and possible variances

that are typical for such information functions.

Measures of information and measures of entropy are closely related to each other, which

caused our excursion into thermodynamics. There the concept of entropy arose in the description

of thermal energy and it is nowadays used in the statistical description of physical state. The

entropy, as it is described in physics, describes the probability of the occupation of certain states.

It is a measure of uncertainty, which is exactly the concept we used in the documentation Shan-

non’s information and our current research. Information is a concept referring to the future and

describing the possibility of a gain of information by an observation. So we can also denote the

entropy functions as information functions, because the only difference is the reference we used

in the interpretation.

47
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The examination of information cannot be restricted to one optimal information function

initially, because we cannot always foresee which information is the best for the calculations.

Cambel [11] states this fact this way:

There is no one best definition. Use the one best suited for your purpose. Also, please

do not overlook the possibility that describing certain systems may require evaluating

several of its entropy functions.

It is pretty clear in the examination of maximum entropy principle where we need to generate

entropy functions for arbitrary arrangements.

By considering several different descriptions of information, however, we did not get a detailed

definition for the concept of information. On the basis of certain demands that we required the

information to meet, we found some measures that behave according out intuition.

Here is a table present the most familiar information functions and show their connections.

Some of information measures are mentioned in previous chapters, others will be briefly introduced

in following sections of this chapter.

POSTULATES VARIED POSTULATES

↙ ↓ ↓

Sα Rényi’s α-information
→

Rényi’s Gα-information Daroczy’s entropy
∆Sα

↓ α→ 1 ↓ α→ 1
↘

Generalized mutual informationfyx/
fxfy

Shannon’s S-information
→

Kullback’s G1-information
→

Kullback’s D-divergence
∆S ∆G1

↓ ↘
Series expansion fyx/

Differential quotient fxfy

Fisher’s information matrix Kolmogorov’s Transformation

Table 5.1: Connections between the information measures

In the following sections. we present only an enumeration of generalized measures, without

any detailed examination of the presented measures, because this would beyond the cope of this

thesis.
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5.2 Entropy Measures

The most important properties of such entropy measures, which are met by Shannon’s information,

are:

1. Additivity

H(P ·Q) = H(P ) +H(Q) (5.1)

For P = {p1, p2, ..., pn} ∈ ∆0
n and Q = {q1, q2, ..., qm} ∈ ∆0

m and for the product space

P ·Q = {p1q1, p1q2, ..., p1qm, p2q1, p2q2, ..., pnqm} ∈ ∆nm0 where P = {p1, p2, ..., pn} ∈ ∆0
n =

set of all probabilities of n events, where certain events may occur with a probability pi = 0.

2. Recursivity

H(p1, p2, ..., pn) = H(p1 + p2, p3, ..., pn) = (p1 + p2) ·H
(

p1

p1 + p2
,

p2

p1 + p2

)
(5.2)

p1 + p2 > 0 for all P = {p1, p2, ..., pn} ∈ ∆0
n

3. Summation property

H(P ) =

n∑
i=1

f(pi) P = p1, p2, ..., pn ∈ ∆0
n (5.3)

for Shannon’s measure we get f(p) = p ln p.

For all P = {p1, p2, ..., pn} ∈ ∆0
n = set of all probabilities of n events, where certain events

may occur with probability pi = 0, there exist several entropy(information) measures:

Measure I − 1 Shannon(1948)

I1 = −
n∑
i=1

pi · ln pi (5.4)

Measure I − 2 Rényi(1961)

I2 =
1

1− α
· ln

(
n∑
i=1

pαi

)
α 6= 1, α > 0 (5.5)
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Measure I − 3 Acél and Daróczy (1963)

I3 = −

n∑
i=1

pαi · ln pi

n∑
i=1

pαi

α > 0 (5.6)

Measure I − 4

I4 =
1

s− α
· ln


n∑
i=1

pαi

n∑
i=1

psi

 α 6= s, α 6= 1, α > 0 (see I2) (5.7)

Measure I − 5

I5 =
1

s
· arctan


n∑
i=1

pαi · sin(s · ln pi)

n∑
i=1

pαi · cos(s · ln pi)

 s 6= 0, α > 0 (5.8)

Measure I − 6 Varma (1966)

I6 =
1

m− α
· ln

(
n∑
i=1

pα−m+1
i

)
m− 1 < α < m,m ≥ 1 (5.9)

Measure I − 7

I7 =
1

m · (m− α)
· ln

(
n∑
i=1

p
α
m
i

)
m− 1 < α < m,m ≥ 1 (5.10)

Measure I − 8 Kapur (1967)

I8 =
1

1− t
· ln


n∑
i=1

pt+s+1
i

n∑
i=1

psi

 t 6= 1, t > 0, s ≥ 1 (see I6) (5.11)

Measure I − 9 Havrda and Charvát (1967)

I9 =
1

21−s − 1
·

(
n∑
i=1

psi − 1

)
s 6= 1, s > 0 (5.12)
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Measure I − 10 Belis and Guiasu (1968)

I10 = −

n∑
i=1

pi · wi · ln pi

n∑
i=1

pi · wi
wi > 0, i = 1, 2, 3..., n (see I3) (5.13)

Measure I − 11 Rathie (1970)

I11 =
1

1− α
· ln


n∑
i=1

pα+si+1
i

n∑
i=1

psii

 α 6= 1, α > 0, si ≥ 1, i = 1, 2, 3, ...n (see I8)

(5.14)

Measure I − 12 Arimoto (1971)

I12 =
1

2t−1 − 1
·

((
n∑
i=1

p
1
t
i

)t
− 1

)
t 6= 1, t > 0 (5.15)

Measure I − 13 Sharma and Mittal (1975)

I13 =
1

21−s − 1
·

[
exp2

(
(s− 1) ·

n∑
i=1

pi · ln pi

)
− 1

]
s 6= 1, s > 0 (5.16)

Measure I − 14

I14 =
1

21−s − 1
·

( n∑
i=1

pαi

) s−1
α−1

− 1

 s 6= 1, s > 0 (5.17)

Measure I − 15 Taneja (1975)

I15 = −2α−1 ·
n∑
i=1

pαi · ln pi α > 0 (5.18)

Measure I − 16

I16 =
1

21−α − 21−s ·
n∑
i=1

(pαi − psi ) α 6= s, α > 0, s > 0 (5.19)
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Measure I − 17

I17 = − 2α−1

sin(s)
·
n∑
i=1

pαi · sin(s · ln pi) s 6= kπ, k = 0, 1, 2, ...α > 0 (5.20)

Measure I − 18 Picard (1979)

I18 = −

n∑
i=1

vi · ln pi

n∑
i=1

vi

(see I3) (5.21)

Measure I − 19

I19 =
1

1− α
· ln


n∑
i=1

pα−1
i · vi

n∑
i=1

vi

 α 6= 1, α > 0(see I3) (5.22)

Measure I − 20

I20 =
1

21−s − 1
·


exp2

(
(s− 1) ·

n∑
i=1

vi · ln pi

)
n∑
i=1

vi

− 1

 s 6= 1, s > 0(see I13)

(5.23)

Measure I − 21

I21 =
1

21−s − 1
·




n∑
i=1

vi · pα−1
i

n∑
i=1

vi


s−1
α−1

− 1

 s 6= 1, s > 0, α > 0 (see I14)

(5.24)

These functions exchanging the expectation over pi by the expectation over vi for

all entropies. The weights are vi > 0 for i = 1, 2, ..., n and P = {p1, p2, ..., pn} ∈

∆n, i.e. pi = 0 is not allowed.

Table 5.2: Entropy Measures
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Taneja uses this entropies to generate a unifies(α, s)-entropy with

Esα(P ) =



Hs
α(P ) for α 6= 1, s 6= 1, α > 0

Hs
1(P ) for α = 1, s 6= 1

H1
α(P ) for α 6= 1, s = 1, α > 0

H(P ) for α = 1, s = 1

and this most general form can be examined in detail.

During this examination, Taneja defines certain properties which he uses for the description

of analytics and algebraic properties of the unified (α, s)-entropy. The complete explanation of

this unified entropy can be found in [48].

5.3 Information, Entropy and Probability

5.3.1 How Can We Describe Information?

Of course, like we mentioned before, we have not been able to answer these questions completely.

Certain fundamental questions remain, which we may never be able to answer in a satisfying

way. The nature of information can only be partially described by the objective descriptions

that we applied, while other aspects of information are less amenable to scientific descriptions.

The fundamental idea is very old and certainly ‘rethought’ in many different ways, but no closed

definition has been found up to the present. Nevertheless, it seems that information and its basic

meaning is not only based on physically measurable quantities. Information is able to appear in

different quantities and is able to change carrier easily, which demonstrates a certain independence

of the measurable quantities, which we are used to.

However, we are able to describe and apply a certain part of the information, the syntactic

information, with the information functions described. The definition of the whole concept of

information may be impossible for us, so that we have to rely on our familiar methods. Though

most popular applicable concept of information is based on a limited definition, the resulting ap-

plications are very extensive and the information age, which is now propagated, promise further

applications of both information processing and transmission. Like we mentioned in the Chapter
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1 and always emphasize in our research that the “information transmission” are finally not re-

sponsible for the meaning or the sense of the transmitted messages. This responsibility is left to

us. So it is up to us to extract the reasonable information out of the growing flood of information

with modern techniques such as Big Data, Machine Learning, etc..

The concept of entropy as well as the concept of information are closely related to the proba-

bility of the events. The information functions are the expectation values of distribution densities,

which describes the probabilities of the possibilities of the possible events. These probabilities,

which we assign to the events, have to be defined in someway before we use them. One possibility

of a definition is the use of the relative frequency

h(A) =
n(A)

A
(5.25)

describes the number of the elements A occurring in n samples. The probability can be understood

as the limit of this relative frequency for large n (numbers of samples) or as the expectation of

the relative frequency. Both intuitive definitions of the probability have certain disadvantages,

prohibiting a direct mathematical application of these heuristic denotations. The determination

of the probability as the expectation of the relative frequencies already requires the definition of

the probability in the computation of the expectation value P (A) = E{h(A)} and it thus leads to

a circular argument, which is not allowed in a correct definition. The second approach computes

the limit

P (A) = lim
n→∞

h(A) = lim
n→∞

n(A)

n
(5.26)

These limit cannot be computed with the common analytic methods and the observation of an

infinite number of samples is not realistic. The more samples we observe, the more the relative

frequency should approach the theoretical probability.

5.3.2 Characterizations toward the Quantitative Aspects in Our Research

Now let’s recall those quantitative aspects of the main framework of our research introduced in

Section 1.1 that we suggested: Question difficulty, Answer Depth and Knowledge Structure.

Theorem 5.3.1. Let the functional G(Ω, Q, P ) where Q = {C1, ..., Cr} satisfy Postulates 1
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through 6 (see [39]). Then it has the form

G(Ω, Q, P ) =

r∑
j=1

u(Cj)P (Cj) log
1

P (Cj)

r∑
j=1

P (Cj)

where u(Cj) =

∫
Cj

u(ω)dP (ω)

P (Cj)
and u : Ω→ R is am integrable nonnegative function on the parameter

space Ω.

Theorem 5.3.2. The answer depth functional Y (Ω, Q, P, V (Q)) has the form

Y (Ω, Q, P, V (Q)) =

m∑
k=1

Pr(V (Q) = sk)

r∑
j=1

u(Cj)P
k(Cj) log

P k(Cj)

P (Cj)

r∑
j=1

P k(Cj)

,

where P k ≡ P V (Q)=sk is the measure on Ω conditioned on reception of V (Q) = sk and u(Cj) =

1
P (Cj)

∫
Cj
u(ω)dP (ω) and the function u : Ω→ R is the same function that is used in the question

difficulty functional G(Ω, Q, P ).

Things about Knowledge Structure is more complicated and from previous sections about

knowledge and probability, we know that describing one’s Knowledge by Probabilities could be

a proper direction. Currently we are working on the measure of Knowledge Structure so deeply

analyzing of knowledge are omitted here.

From previous introduction, we know that the measure of information and the measure of

entropy are closed to each other. And according to the definition of information in our research,

it is very suitable to measure these quantitative aspects of information by the measures based on

Shannon’s Information and Entropy.

From Chapter 2-5, we know that information measures based on Shannon’s Entropy may or

may not have these characterizations like Symmetry, Normality, Expansibility, Decisivity,

Branching, Additivity, Recursivity, Summation. Furthermore, the most important and

most widely used is additivity, resursivity, and summation. Refer to Table 5.2 that lists several

entropy/information measures, some special cases needs to be focused so that we can distinguish
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the best measures of information for our research.

Rényi’s entropy Hα is an extension with a generalized mean

Hα(P ) =
1

1− α
· ln

(
n∑
i=1

pαi

)
(5.27)

It is an entropy of the order α. It meets the additivity, but it cannot be calculated with a recursive

formulation and even the summation property does not hold. Havrda and Charvát introduced

the entropy Hs of grade s

Hs(P ) =
1

21−s − 1
·

(
n∑
i=1

psi − 1

)
(5.28)

which does not meet the additivity, but is recursive in the grade s

Hs(p1, p2, ..., pn) = Hs(p1 + p2, p3, ..., pn) = (p1 + p2)s ·Hs

(
p1

p1 + p2
,

p2

p1 + p2

)
(5.29)

p1+p2 > 0 for all P = {p1, p2, ..., pn} ∈ ∆0
n and even the sum representation Hs(P ) =

∑n
i=1 f(pi)

is possible. Moreover, there is third index, indicating an entropy tH of the kind t, and it has been

presented by Arimoto with the entropy

tH(p) =
1

2t−1 − 1
·

((
n∑
i=1

p
1
t
i

)t
− 1

)
(5.30)

If we replace i/t by α, we may easily derive Rényi’s entropy.

Sharma and Mittai presented an entropy Hs
α of order α and grade s

Hs
α(P ) =

1

21−s − 1
·


∑

(

i = 1)npαi

 s−1
α−1

− 1

 (5.31)

It is neither additive nor recursive, and they do not even meet the sum-representation. They are

generalizations of entropies presented so far and can be reduced to the special forms.

Information measures like all these measures mentioned above may not be suitable for our

research, according to the requirement of the definition functions in Theorem 6.1.3 and 6.1.2.

Not only because that these measures doesn’t meet certain characterizations like additivity or
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recursivity, since J. N. Kapur argues in the book [30]

RECURSIVITY ≡BRANCHING ≡ ADDITIVITY ≡ DECOMPOSABILITY

• Recursivity implies that entropy measure for n outcomes can be found when

entropy measures for m outcomes are known where m = 1, 2, ..., n− 1.

• Branching implies that entropy for p1, p2, ..., pn can be expressed in terms of

entropy for p1 + p2, p3, ..., pn and entropy of p1, p2.

• Additivity means that entropy of a joint distribution can be expressed as the sum

of two entropies, one of which is the entropy of one marginal distribution and the

other is the conditional distribution in the second distribution.

• Decomposability emphasizes that the total entropy can be decomposed into en-

tropy within classes and entropy between entropies.

but also that certain measures of information are established on their own applications with

unique description of information. Some of them are not suitable for our research.

So in conclusion, based on our research and all the relative introduction in this thesis, we have

conclude that the Kullback-Leibler Divergence (also known as Kullback’s information, relative

information etc) is a proper measure of information for our research based on our definition of

information here (see chapter 6).

Kullback-Leible Divergence do not have the characterization of Symmetric, but it has the

property of additivity and recurisivity. Formulations like

DKL(P‖Q) =
n∑
i=1

pi · ln
pi
qi

for all P,Q ∈ ∆n (5.32)

with its definition of description of difference between two informations quite match not only the

quantitative aspects we suggested but also meet the whole definition of information we derived

for the general purpose of our research.
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5.4 Relative Information and Divergence

5.4.1 On the Information Gain

Now after we define the knowledge of each characters, the next question would be how to describe

the knowledge(information) change process. Explicitly, how to the describe and measure the

information between the agent and source. And most importantly, how to measure the information

the the agent gain.

The basic consideration is connected with the two terms ‘gain of information’ and ‘gain of

uncertainty’, which differ only by a negative sign. In principle, we have two possible ways to define

the Information Acquisition. The first way is to create mean of all single gains of information.

The second way is to create the mean of all single uncertainty differences and multiply the results

by −1. In the case of Shannon’s information, both approach lead to the same result. First, we

generate the mean value of a function of the changed probability
qk
pk

=
P (Ak|Bj)
P (Ak)

and called the

result a gain of information. In the second formulation we calculate the mean value of the same

function, but use the reciprocal argument
qk
pk

=
P (Ak|Bj)
P (Ak)

. This is equivalent to a calculation

of the mean of uncertainty and we obtain the gain of information simply by multiplying the

calculated mean value by the factor −1. The results is same in both approaches, when we use

Shannon’s information.

This identity of both approaches does not hold if we apply Rényi’s information measure of the

order α. There we obtain the information measurement by the equation

I2 = IRényi =
1

1− α
· ln

(
n∑
k=1

pk · pα−1
k

)
α 6= 1, α > 0 (5.33)

Here we compute the expectation value of pα−1
k . Replacing the single probabilities by the quotient

qk
pk

=
P (Ak|Bj)
P (Ak)

, leads us to the gain of information in the formulation of Rényi’s information.

Iα(Q‖P ) =
1

α− 1
· ln

[
n∑
k=1

qαk
pα−1
k

]
(5.34)

as Rényi’s gain of information for replacing the given discrete probability distribution P =
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(p1, p2, ..., pn) by the probabilityQ. The second possibility is to replace the quotient
qk
pk

=
P (Ak|Bj)
P (Ak)

by its reciprocal quotient
qk
pk

=
P (Ak|Bj)
P (Ak)

, which leads to a measure of uncertainty Uα. This pro-

vides the equation

Uα(Q‖P ) =
1

1− α
· ln

[
n∑
k=1

q2−α
k

p1−α
k

]
(5.35)

The information difference always vanishes for α = 2 and therefor this formulation is not suit-

able for denoting an information difference. However, the other formulation of the information

difference merely consists of the special case α = 1.

If we apply Jensen’s inequality to the gains of informationIα(Q‖P ), I1(Q‖P ) with the concave

logarithm function and another function xα, which is concave in the interval 0 < α < 1,but convex

for α > 1, we find

Iα(Q‖P ) ≥ 0

and

I1(Q‖P ) ≥ 0

(please see Kullback’s information in Chapter 4). The gain of information is thus always positive

and it only equals to zero when the two probabilities p and q are equal.

Rényi’s gain of information, however, is not a symmetric function of the two arguments pk and

qk, because the resulting gains of information are in fact nonnegative, but in general they do not

provide the same gains of information. To obtain a symmetric gain of information, independent of

the order of replacement, it is possible to define a J-divergence. Considering that in our research,

it is more about to analyze the information acquisition from an agent for knowledge change,

symmetric property is not that important in our case, I think. So detail about J-divergence is

omitted here. More useful information can be found [48].

For the special case that Q = {q1, q2, ..., qn} = {1/n, 1/n, ..., 1/n} is a uniform probability

distribution and that we replace it by another probability distribution P

Iα(Q‖P ) =
1

α− 1
· ln

[
n∑
k=1

qαk
pα−1
k

]
=

1

α− 1
· ln

[
n∑
k=1

nα−1 · pαk

]
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Iα(Q‖P ) = lnn− 1

α− 1
· ln

[
n∑
k=1

pαk

]

Iα(P‖Q) = IHartley(Q)− Iα(P )

Iα(P‖Q) = IShannon(Q)− Iα(P ) = I1(Q)− Iα(P )

There the information difference is equal to the difference of two information values. The uniform

distribution density maximizes the information function and thus the gain of information is always

positive. Thus the entropy described by the function decrease when we replace the uniform

distribution density by any other distribution density.

This approach allows us to define a gain of information on the basis of completely missing a

priori information, because the distribution density describing the complete lack of any previous

information is the uniform distribution density. This is connection to Laplace’s principle of insuf-

ficient reasoning, expressing the fact that we must not prefer any event, if we do not have priori

information. We thus must have to assign equal probabilities to all events. It is quite important

for us to use in our research that it provides an limit of description of agents’ knowledge in a

special case. If an agent know nothing about this objective, we should assign a uniform distribu-

tion to it and then calculate the information change after the agent receives the answer from the

source.

5.4.2 The Key: Kullback-Leibler Divergence

In Chapter 4, we discuss that Kullback and Leibler introduced an information measure between

two distribution density functions, the Kullbacl-Leibler divergence, discrimination function, rela-

tive information, directed divergence or Kullback’s information.

DKL(P‖Q) =

n∑
i=1

pi · ln
pi
qi

for all P,Q ∈ ∆n (5.36)

It is also shown that this divergence can be extended by applying a generalized mean, which has

been realized by Rényi(1961)

D1
α(P‖U) =

1

(1− α)
· ln

(
n∑
i=1

pαi · u1−α
i

)
α 6= 1, α > 0 for all P, U ∈ ∆n (5.37)
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This divergence can be extended by applying a generalized mean, which has been realized by

Rényi(1961), who

D1
α(P‖U) =

1

(1− α)
· ln

(
n∑
i=1

pαi · u1−α
i

)
α 6= 1, α > 0 for all P, U ∈ ∆n (5.38)

Another generation of the divergence is

Ds
s(P‖U) =

1

1− 21−s ·

(
n∑
i=1

psi · u1−s
i − 1

)
s 6= 1, s > 0, for all P, U ∈ ∆n (5.39)

Both generalization can be reduced to the Kullback-Leibler distance by calculation of the limit

for

lim
α→1

D1
α(P‖U) = lim

s→1
Ds
s(D‖U) = D(P‖U) (5.40)

Like previous section about entropy measure, all these generalized divergence measures can

then be summarized by a unified directed divergence, defined by

Ds
α(P‖U) =



Ds
α(P‖U) for α 6= 1, s 6= 1, α > 0

Ds
1(P‖U) for α = 1, s 6= 1

D1
α(P‖U) for α 6= 1, s = 1, α > 0

D(P‖U) for α = 1, s = 1

for all P,U ∈ ∆n.

To circumvent difficulties, which may occur, when the probabilities are equal to zero, the

probability space is assumed to be given by ∆n, so that zero probabilities do not need further

attention in the definition.

For all P,U ∈ ∆n the unified (α, s)-directed divergence Ds
α(P‖U) has the following properties:

(i) Ds
α(P‖U) ≥ 0 for all α > 0 and all s.

(ii) Ds
α(P‖U) is a convex function of the pair (P,U) ∈ ∆n ×∆n for all s ≥ α > 0

(iii) Ds
α(P‖U) is an increasing functions of α (for constant s)
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(iv)

Ds
α

(
σ∑
i=1

pi, 1−
σ∑
i=1

pi

∥∥∥ σ∑
i=1

ui, 1−
σ∑
i=1

ui

)
≤ Ds

α(P‖U)

≤ Ds
α

p1, p2, ..., pσ,

1−
σ∑
i=1

pi

n− 1
, ...,

1−
σ∑
i=1

pi

n− 1

∥∥∥∥∥u1, u2, ..., uσ,

1−
σ∑
i=1

ui

n− 1
, ...,

1−
σ∑
i=1

ui

n− 1


for 1 ≤ σ < n (5.41)

(v) Let

P (c) =

(
n∑
i=1

pi · ci1,
n∑
i=1

pi · ci2, ...,
n∑
i=1

pi · cin

)
∈ ∆n

U(c) =

(
n∑
i=1

ui · ci1,
n∑
i=1

ui · ci2, ...,
n∑
i=1

ui · cin

)
∈ ∆n

with
n∑
i=1

cik =
n∑
k=1

cik = 1 cik ≥ 0, for i, k = 1, 2, ..., n

Then we get

Ds
α(P (c)‖U(c)) ≤ Ds

α(P‖U) (5.42)

(vi)

Ds
α(P‖U) =

 ≤ D
1
α(P‖U) for s < 1

≥ D1
α(P‖U) for s > 1

Ds
1(P‖U) =

 ≤ D(P‖U) for s < 1

≥ D(P‖U) for s > 1

Ds
α(P‖U) =

 ≤ D
s
1(P‖U) for 0 < α < 1

≥ Ds
1(P‖U) for α > 1

D1
α(P‖U) =

 ≤ D(P‖U) for 0 < α < 1

≥ D(P‖U) for α > 1
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There are also other kinds of divergence in the filed of Information measures, like Jensen’s measures

of divergence difference and J- divergence of Kullback and Leible. However, they are out of the

scope of our research. For detailed information, please refer to [48].

It looks like this Kullback-Leibler Divergence can be a good measure for us to use in our

research to measure the knowledge change of the agent after the agent receives the answer of the

question he asks. It should be like this:

D(PA‖P ) = I(Question, Answer) (5.43)

Detailed Information about why Kullback-Leibler Divergence is the only measure that satisfies

our requirements can be shown in next chapter.



Chapter 6

Information Geometry and

Information Acquisition Optimization

The field of Information Geometry explores geometric properties of manifolds of probability dis-

tributions and related manifolds. This approach proved to be rather fruitful to the fields of

computational vision, optimization, signal processing and neural networks. A key concept of in-

formation geometry is a notion of a divergence function which can be thought of as generalized

distance (not necessarily symmetric) between two point on a manifold [2, 3, 4]. In particular, two

classes of divergence functions – Bregman divergences and invariant divergences play a particular

role and help shed light on our problem – that of the proper quantitative measure of the degree

of change from the original belief to the updated one.

6.1 Information Geometry of Divergence Functions

Given two points P and Q in space S, we may define a divergence D[P : Q] which measures

their discrepancy. The standard distance is indeed such a measure. However, there are many

other measures frequently used in many areas of applications. In particular, for two probability

distributions p(x) and q(x), one can define various measures D[p(x) : q(x)] such as the Kullback-

Leibler divergence and the Hellinger distance. A divergence is not necessarily symmetric, that

is, the relation D[P : Q] = D[Q : P ] do not generally hold nor does it satisfy the triangular
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inequality. It usually has the dimension of squared distance, and a Pythagorean-like relation

holds in some cases.

There are two typical classes of divergences: one is the class of Bregman divergences [10],

introduced trough a convex function. The other is the class of invariant dvergences, called f−

divergence, where f is a convex function.

Bregman divergences are derived from convex functions. The Bregman divergence induces a

dual structure through the Legendré transformation. It gives a geometrical structure consisting

of a Riemannian metric and dually flat affine connections, called the dually flat Riemannian

structure. A dually flat Riemannian manifold is a generalization of the Euclidean space, in which

the generalized Pythagorean theorem and projection theorem hold. These two theorems provide

powerful tools for solving problems in optimization, statistical inference and signal processing.

We show that the Bregman type divergence is automatically induced from the dual flatness of a

Riemannian manifold.

Then we study the class of invariant divergences . The invariance requirement comes from

information monotonicity, which states that a divergence measure does not increase by coarse

graining of information. This leads to the class of f -divergences. The α-divergences are typical

examples belonging to this class, which also includes the Kullback-Leibler divergence as a special

case. This class of divergences induces an invariant Riemannian metric given by the Fisher

information matrix and a pair of invariant dual affine connections, the ±α−connections, which

are not necessarily flat.

6.1.1 Bregman Divergence

Let k(z) be a strictly convex differentiable function defined in a space S with a local coordinate

system z. Then, for two points z and y in S, we can define the following function

D[z : y] = k(z)− k(y)−Grad k(y) · (z − y). (6.1)

where, Grad k is the gradient vector

Grad k(z) = (∂k(z)/∂zi). (6.2)
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and the operator ‘·’ denotes the inner product

Gradk(y) · (z − y) =
∑
i

∂k

∂yi
(zi − yi). (6.3)

The function D[z : y] satisfies the following condition for divergences:

1) D[z : y] ≥ 0,

2) D[z : y] = 0 when and only when = y,

3) for small dz, Taylor expansion

D[z + dz : z] ≈ 1

2

∑
gijdzidzj (6.4)

gives a positive-definite quadratic form.

We call D[z : y] the Bregman divergence between two points z and y. In general, the divergence

is not symmetric with respect to z and y so that

D[y : z] 6= D[z : y]. (6.5)

There are some important theorems about the Bregman divergence and Riemannian metric.

Some details and proofs given by S. Amari are omitted here and can be found in [2, 3, 4].

Theorem 6.1.1. The Riemannian metrics gij and g∗ij in their matrix form are mutually inverse.

They are the same tensor represented in different coordinate systems z and z∗, giving the same

local distance, where (·)∗ means the dual structure of (·).

Theorem 6.1.2. The two divergences D and D∗ are mutually reciprocal, in the sense of

D∗[y∗ : z∗] = D[z : y]. (6.6)

The divergence between two points z and y is written in the dual form

D[z : y] = k(z) + k∗(y∗)− z · y∗. (6.7)
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Pythagorean Theorem and Additivity

It has been shown that Space S equipped with a Bergman divergence is Riemannian, but has two

dually flat affine structures. This gives rise to the following generalized Pythagorean theorem.

Theorem 6.1.3. Pythagorean Theorem: Let P , Q, R be three points in S whose coordinates

(and dual coordinates) are represented by zP ,zQ, zR (z∗P , z
∗
Q, z

∗
R), respectively. When the dual

geodesic connecting P and Q is orthogonal at Q to the geodesic connecting Q and R, then

D[P : R] = D[P : Q] +D[Q : R]. (6.8)

Dually, when the geodesic connecting P and Q is orthogonal at Q to the dual geodesic connecting

Q and R, we have

D[R : P ] = D[Q : P ] +D[R : Q]. (6.9)

Proof. By using [6.7], we have

D[R : Q] +D[Q : P ] =

= k(zR) + k∗(z∗Q) + k(zQ) +K∗(z∗P )− zR · z∗Q − zQ · z∗P

= k(zR) = k∗(z∗P ) + zQ · z∗Q − zR · z∗Q − zQ · z∗P

= D[zR : z∗P ] + (zQ − zR) · (z∗Q − z∗P )

The tangent vector of the geodesic connecting Q and R is zQ − zR, and the tangent vector of the

dual geodesic connecting Q and P is z∗Q − z∗P in the dual coordinate system. Hence, the second

term of the right-hand side of the above equation vanishes, because the primal and dual geodesics

connecting Q and R, and Q and P are orthogonal.

The Pythagorean Theorem cited here is quite important for our goals. It can be seen that

it implies additivity of the corresponding divergence functions for two statistically independent

subsystems. We view the latter property as necessary for the proper quantitative measure of the

degree of belief change – the one we are interested in finding.
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6.1.2 Invariant Divergence

Consider again the space Sn of all probability distributions over n+ 1 atoms X = {x0, x1, ..., xn}.

The probability distribution are given by p = (p1, p1, ..., pn), pi = Prob{x = xi}, i = 0, 1, ..., n,
∑
pi =

1. We try to define a new divergence measure D[p : q] between two distributions p and q. To this

end, the concept of information monotonicity should be introduced.

If we divide X into m groups, G1, G2, ..., Gm (m < n+1), and make sureX = ∪Gi, Gi∩Gj =

∅. Assume that we do not know the outcomes xi directly, but can observe which group Gj it

belongs to. This is called coarse-graining of X. The coarse-gaining generates a new probability

distributions p̄ = (p̄1, ..., p̄m) overG1, ..., Gm . Let D̄[p̄ : q̄] be an induced divergence between p̄

and q̄. Since coarse-graining summarized some of elements into one group, detailed information

of the outcome in each groups is lost. Therefore, it is natural to require

D̄[p̄ : q̄] ≤ D[p : q]. (6.10)

For two distributions p and q, assume that the outcome xi is known to belong to Gi. Then we

require more information to distinguish the two probability distributions p and q by knowing fur-

ther detail inside group Gj . Since xi belongs to group Gj , we consider the conditional probability

distributions

p(xi|xi ∈ Gj), q(xi|xi ∈ Gj)

inside group Gj . If they are equal, we cannot obtain further information to distinguish p from q

by observing elements inside Gj . Hence,

D̄[p̄ : q̄] = D[p : q]. (6.11)

holds, when and only when

p(xi|xi ∈ Gj) = q(xi|xi ∈ Gj) (6.12)

for all Gj and all xi ∈ Gj , or

pi
qi

= λj (6.13)
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for all xi ∈ Gj for some constant λj .

All divergence satisfying the above requirements is called an invariant divergence, and such

a property is termed as information monotonicity.

The f -divergence was introduced by Csiszár [19]. It is defined by

Df [p : q] =
∑

pif

(
qi
pi

)
, (6.14)

where f is a convex function satisfying f(1) = 0. Csiszár found that an f− divergence satisfies

information monotonicity. Moreover, the class of f -divergence is unique in the sense that any

decomposable divergence satisfying information monotonicity is an f - divergence.

For our goals, the sought for measure of the degree of change in beliefs has to be consistent

with the general structure of classical probabilities, i.e. it has to properly respect the conditional

structure of the latter. In other words, it the desired measure is a divergence it has to be invariant

in the sense of information geometry.

6.1.3 Kullback-Leibler Divergence in Information Geometry View

Consider the set Sn of all discrete probability distributions over n+1 elements X = {x0, x1, ..., xn}.

A probability distribution is given by

p(x) =
n∑
i=0

piδi(x), (6.15)

where pi = Prob{x = xi} and δi(x) = 1, if x = xi and 0 otherwise. Obviously,

n∑
i=0

pi = 1. We can

use a coordinate system z = (p1, p2, ..., pn) for the set Sn of all such distributions, where z0 = p0

is regarded as a function of the other coordinates,

p0 = 1−
n∑
i=1

zi. (6.16)

The Shannon entropy,

H(z) = −
∑

zi log zi − (1−
∑

zi) log(1−
∑

zi), (6.17)
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is concave, so that k(z) = −H(z) is a concave function of z.

The Riemannian metric induced from k(z) in calculated as

gij(z) =
1

pi
δ(ij) +

1

p0
, (6.18)

which is the Fisher information matrix. The divergence function is given by

D[z : y] =

n∑
i=0

zi log
zi
yi
. (6.19)

which is known as the Kullback-Leibler divergence. It is written in general as

DKL[p(x) : q(x)] =
∑
x

p(x) log
p(x)

q(x)
. (6.20)

In [4], it is shown that Kullback-Leibler divergence belongs to the class of Bregman divergences

for which the Pythagorean theorem holds. Thus it satisfies the requirement of additivity of our

proposed approach.

And if we recall the form of the f -divergence which has the invariance property in equation

[6.14] that

Df [p : q] =
∑

pif(
qi
pi

),

we can see that Kullback-Leibler divergence belongs to the f -divergences with f(u) = u−1−log u.

Moreover it can be shown [4] that Kullback-Leibler divergence is the only one that is both

invariant and dually flat (and thus Bregman and satisfies the Pythagorean theorem) the at the

same time on the manifold of probability distributions.



Chapter 7

Conclusion and Future Work

7.1 Final piece of evidence

Let us summarize our findings concerning the main goal of the present thesis – the determination

of the proper quantitative measure of the degree of change from the original agent’s belief to the

updated one. The review of existing literature seems to point rather strongly at Kullback-Leibler

divergence as the unique proper quantitative characterization of that degree. Let’s give some

additional supporting arguments to KL-divergence. Let, as before, the probability measure P

describe the agent’s original belief which is updated to the measure P k upon reception of k as

the value of the sources answer to the corresponding agent’s question. Then the standard total

probability rule ∑
k

vkP
k = P

has an important interpretation in the given context. It expresses the assumption of rationality

of both beliefs – the original and the updated one. In other words, it expresses the observation

that the original belief is not erased but simply refined by the new information contained in the

answer.

Let

L(P ) =

∫
Ω

(f(x∗P , ω)− f(x∗ω, ω)) dP (ω)

be the original value of the loss. We are inerested in the sign of change of that loss upon reception
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of the information contained in the answer A(Q). We can write

L(P )−
∑
k

vkL(P k)

=

∫
Ω

(f(x∗P , ω)− f(x∗ω, ω)) dP (ω)−
∑
k

vk

∫
Ω

(
f(x∗Pk , ω)− f(x∗ω, ω)

)
dP k(ω)

=

∫
Ω
f(x∗ω, ω)

(∑
k

vkdP
k(ω)− dP (ω)

)
← 0

+

∫
Ω
f(x∗P , ω)dP (ω)−

∑
k

vk

∫
Ω
f(x∗Pk , ω)dP k(ω)

=

∫
Ω
f(x∗P , ω)

[∑
k

vkdP
k(ω)

]
−
∑
k

vk

∫
Ω
f(x∗Pk , ω)dP k(ω)

=
∑
k

vk

∫
Ω

[
f(x∗P , ω)− f(x∗Pk , ω)

]
dP k(ω) ≥ 0

This result can be formulated in plain language as “Any rational belief update decreases the loss”.

Note that here we have not used any quantitative measure of degree of belief change but only the

assumption of belief rationality.

Now let us consider the degree of change of belief. If we use KL-divergence as the basis for

such a quantity we obtain the following

D(PA‖P ) ≡
∑
k

vkD(P k‖P ) =
∑
k

vk
∑
i

P k(ωi) log
P k(ωi)

P (ωi)
. (7.1)

With a little more work it turns out to be possible to show that any higher D(PA‖P ) obtained

by question refinement implies a lower loss L(PA). The main property of KL divergence that

makes this claim true is its strong additivity in the sense introduced in earlier chapters.

This establishes a direct link between the quantity and belief change and the loss reduction.

Since KL-divergence is the only known measure of difference of two distributions possessing the

strong additivity property we obtain an additional hint that it may be the only correct quantity

of the degree of change we are looking for.
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7.2 Future work

Summarizing the main result of the present thesis we can say that, upon a review of existing

measures of information we found the only one possessing all characteristics of the desired measure

of the degree of change in the agent’s beliefs – the Kullback-Liebler divergence. The next logical

step is to use these findings in the development of the quantitative framework of information

acquisition optimization. Here we sketch the next few steps that seem rather clear at the time of

writing.

• It seems logical, as we have mentioned already, to define the answer depth as the expected

value of KL-divergence between the original and the updated belief. This also gives rise to

the notion of the question depth defined as the value of the answer depth for the case of a

perfect answer.

• The question difficulty functional can then be logically defined as we have already described

in the Introduction. The coefficients u in it reflecting the source’s knowledge structure are

related to the conditional probabilities describing the source’s knowledge.

• Then one should explore the possible large scale structures of the source’s knowledge in

its own right paying special attention to the possible symmetries and the relation of these

symmetries to the parameters u of the question difficulty functional.

• Finally, it would be needed to explore the relations between difficulty of questions and the

resulting loss especially for cases when the source is not capable of a perfect answer. Does

there exist a general (even if approximate) relationship between the difficulty coefficients u

and the increase of loss relative to the case of u = 0?
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[1] J. Aczél and Z. Darózy. On measures of information and their characterizations. Academic

Press, New York, 1975.

[2] S. I. Amari. Information geometry and its applications: Convex function and dually flat

manifold. Emerging Trends in Visual Computing, 2009.

[3] S. I. Amari. Differential geometry derived from divergence functions: information geometry

approach. Mathematics of Distances and Applications, pages 9–23, 2012.

[4] S. I. Amari and A. Cichocki. Information geometry of divergence functions. Bulletin of the

Polish Academy of Sciences: Technical Sciences, 58(1):183–195, 2010.

[5] A. Ben-Tal, S. Boyd, and A. Nemirovski. Extending scope of robust optimization: Compre-

hensive robust counterparts of uncertain problems. Math. Programming, Ser.B, 107:63–89,

2006.

[6] A. Ben-Tal and A. Nemirovski. Robust convex optimization. Math. Oper. Res., 23(4):769–

805, 1998.

[7] J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer-Verlag, New

York, NY, 1997.

[8] R. F. Bordley. Combining the opinions of experts who partition events differently. Decision

Anal., 6(1):38–46, March 2009.

[9] R. F. Bordley. Using bayes’ rule to update an event’s probabilities based on the outcomes of

partially similar events. Decision Anal., 8(2):117–127, June 2011.

74



BIBLIOGRAPHY 75

[10] L. Bregman. The relaxation method of finding a common point of convex sets and its applica-

tion to the solution of problems in convex programming. Comp. Math. Phys., USSR7:200–217,

1967.

[11] A. B. Cambel. Applied Chaos Theory. Academic Press, London, 1993.

[12] A. Caticha. Entropic Inference and the Foundations of Physics (monograph commissioned by

the 11th Brazilian Meeting on Bayesian Statistics–EBEB-2012. Sao Paulo: USP Press, 2012.

[13] M. Chav́ez, J. Martinerie, and M. LeVanQuyen. Statistical assessment of nonlinear causality:

Application to epileptic eeg signals. J. of Neurosci. Methods, 124(2113-128), 2003.

[14] R. Clemen. Combining overlapping information. Management Sci., 33(3):373–380, 1987.

[15] R. Clemen and R. Winkler. Combining probability distributions from experts in risk analysis.

Risk Anal., 19(2):187–203, 1999.

[16] T. M. Cover and J. A. Thomas. Elements of information theory. John Wiley & Sons, 2012.

[17] R. T. Cox. Probability, frequency, and reasonable expectation. Am. J. Phys, 14:1–13, 1946.

[18] R. T. Cox. The Algebra of Probable Inference. Johns Hopkins Press, Baltimore, 1961.

[19] I. Csiszár. Information-type measures of difference of probability distributions and indirect

observations. Studia Sci. Math., 2:299–318, 1967.

[20] D. K. Faddeev. On the concept of entropy of a finite probabilistic scheme. Uspekhi Mat.

Nauk, 11(1(67)):227–231, 1956.

[21] C. Fox and R. Clemen. Subjective probability assessment in decision analysis: Partition de-

pendence and bias toward the ignorance prior. Management Sci., 51(9):1417–1432, 2005.

[22] S. French. Group consensus probability distributions: A critical survey. Bayesian Statist,

2:183–202, 1985.

[23] C. Genest and J. V. Zidek. Combining probability distributions: A critique and an annotated

bibliography. Statist. Sci., 1:114–148, 1986.



BIBLIOGRAPHY 76

[24] D. Harmanec and G. J. Klir. Measuring total uncertainty in dempster-shafer theory: A novel

approach. Int. J. Gen. Syst, 22(4):405–419, 1994.

[25] J. H. Havrda and F. Charvat. Quantification methods of classification processes: Concepts

of structural entropy. Kybernetika, 3:30–35, 1967.

[26] R. A. Howard. Information value theory. IEEE Transactions on Systems Science & Cyber-

netics, 2(1):22–26, 1966.

[27] S. Jaroszewicz and D. A. Simovici. On axiomatization of conditional entropy of functions

between finite sets. In Proc. 29th ISMVL, Freiburg, Germany, pages 24–31, 1999.

[28] E. T. Jaynes. Information theory and statistical mechanics i. Phys. Rev., 106:620–630, 1957.

[29] E. T. Jaynes. Information theory and statistical mechanics ii. Phys. Rev., 108:171–190, 1957.

[30] J. N. Kapur. Measures of Information and Their Applications. New Age International

Limited, Publishers, 1994.

[31] T. Katura, N. Tanaka, A. Obata, H. Sato, and A. Maki. Quantitative evaluation of interrela-

tions between spontaneous low-frequency oscillations in cerebral hemodynamics and systemic

cardiovascular dynamics. NeuroImage, 31(4):1592–1600, July 2006.

[32] G. J. Klir and D. Harmanec. Generalized information theory: Recent developments. Kyber-

netes, 25(7/8):50–66, 1966.

[33] K. H. Knuth. Lattice duality: The origin of probability and entropy. Neurocomputing,

67:245–274, 2005.

[34] S. Kullback. Topics in Statistical Information Theory. Springer-Verlag, Berlin, 1987.

[35] Y. Maeda and H. Ichihashi. An uncertainty measure with monotonicity under the random

set inclusion. Int. J. Gen. Syst., 21(4):379–392, 1993.

[36] I. I. Mokhov and D. A. Smirnov. El nin o-southern oscillation drives north atlantic oscil-

lation as revealed with nonlinear techniques from climatic indices. Geophys. Res. Lett., 33,

2006. L03708.



BIBLIOGRAPHY 77

[37] E. Perevalov and D. Grace. Towards the full information chain theory: answer depth and

source models. Physical Review E, arXiv:1212.2696v2 [physics.data-an], 2013.

[38] E. Perevalov and D. Grace. Towards the full information chain theory: expected loss and

information relevance. Physical Review E, arXiv:1301.2020 [physics.data-an], 2013.

[39] E. Perevalov and D. Grace. Towards the full information chain theory: question difficulty.

Physical Review E, arXiv:1212.2693v2 [physics.data-an], 2013.

[40] E. Perevalov and D. Grace. Towards the full information chain theory: solution methods for

optimal information acquisition problem. Physical Review E, arXiv:1302.0070 [physics.data-

an], 2013.

[41] J. R. Pierce. An Introduction to Information Theory. Dover Publications, New York, 1980.

[42] J. B. Predd, D. N. Osherson, S. R. Kulkarni, and H. V. Poor. Aggregating probabilistic fore-

casts from incoherent and abstaining experts. Decision Anal., 5(4):177–189, December 2008.
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