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Abstract

Few transactional memory implementations allow for condition synchronization among

transactions. The problems are many, most notably the lack of consensus about a

single appropriate linguistic construct, and the lack of mechanisms that are com-

patible with hardware transactional memory. In this thesis, we introduce a broadly

useful mechanism for supporting condition synchronization among transactions. Our

mechanism supports a number of linguistic constructs for coordinating transactions,

and does so without introducing overhead on in-flight hardware transactions. Ex-

periments show that our mechanisms work well, and that the diversity of linguistic

constructs allows programmers to chose the technique that is best suited to a par-

ticular application.

1



Chapter 1

Introduction

1.1 Transactional Memory

Transactional Memory (TM) was originally proposed as a hardware mechanism to

simplify the creation of nonblocking data structures [1]. It then was embraced as

a mechanism for lock elision [2], and has come to be seen today as a full-fledged

programming model [3].

TM has a clear and valuable role in increasing concurrency among critical sec-

tions, by eliminating the need for locks. When lock-based critical sections are re-

placed with transactions, those critical sections can run in parallel as long as their

memory accesses do not conflict, and will run in a correct sequential order other-

wise. However, locks are not the only tool for coordinating threads: many concurrent

programs also employ condition variables to suspend thread execution until some

precondition is met. The lack of support for some form of condition synchronization

presents a challenge to TM adoption and widespread use [4–6].
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1.2 Condition Synchronization

There have been a handful of proposals for allowing the use of condition variables

within transactions [5, 7, 8], but these have not been widely embraced. In contrast,

the Retry mechanism [9] is a popular tool for coordinating transaction in Haskell.

The distinction between condition variables and Retry is significant. Transactional

condition variables break atomicity, by committing an in-flight transaction at the

point of a Wait, and then running the remainder of the transaction as a new atomic

region, after wakeup. In contrast, Retry casts condition synchronization as a form

of scheduling: Retry allows the programmer to state that a transaction should

not have been started yet, because some dynamically-determined precondition did

not hold when the transaction was attempted. When a Retry is encountered, the

transaction’s effects are undone and the transaction is not attempted again until

some datum read by the most recent attempt is updated by a transaction from

another thread.

Because Retry does not break atomicity, it is composable: When a Retry by an

inner nested transaction causes the outer transaction’s effects to be undone, it is as

if the outer transaction was never attempted. In contrast, waiting on a condition

variable within an inner nested transaction exposes the partial updates of the outer

transaction. Thus a programmer can use Retry within library code, without needing

to then perform whole-program analysis to understand the impact of Retry on outer

nested scopes.

Unfortunately, existing approaches to implementing Retry are complex and in-

timately tied to low-level details of an underlying software TM (STM) implementa-

tion [9, 10]. The mechanism operates by publishing to a global data structure the
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list of all metadata associated with locations read by the retrying transaction. This

action is done atomically with the retrying transaction undoing its effects. Every

subsequent transaction must log the metadata of every address it updates, so that,

during commit, it can compare its write metadata with the suspended transaction’s

read metadata, and wake the transaction if the intersection is not empty. Today’s

hardware TM (HTM) systems do not use metadata, nor do they provide a means

of seeing a successful transaction’s write set, and hence all transactions appear to

need to fall back to a high-overhead instrumented mode as soon as any transaction

calls Retry.

we introduce a new mechanism for implementing Retry, which employs value-

based validation [11, 12] to avoid overhead on in-flight hardware transactions, and

to make the wakeup mechanism more precise (e.g., immune to false wakeups due

to silent stores). We also show that our mechanism has broad utility: we use it to

implement Retry in one HTM library and two STM libraries, we use it to implement

the simpler Await mechanism for condition synchronization [13], and we construct

a new predicate-based condition synchronization technique that we call WaitPred.

We hope that the broad usefulness of this mechanism will encourage TM designers

to begin supporting one (or all!) of these language-level condition synchronization

constructs, so that programmers can gain more experience with coordinating trans-

actions and ultimately provide case studies to the C++ TM specification effort.
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Chapter 2

Condition Synchronization

Mechanisms

2.1 RETRY

Our goal is to provide a mechanism that (a) works with HTM, (b) supports Retry-

style condition synchronization, and (c) can be used to implement other condition

synchronization techniques. We first consider an implementation of Retry that is

faithful in spirit to prior STM proposals for Haskell [9] and C++ [10].

Algorithm 1 assumes an eager STM with in-place updates, such as TinySTM [14],

or the STM provided with GCC [15]. Addresses are mapped to entries in a table of

locks, so that on every read by an in-flight transaction, the legality of the read can

be determined by reading the lock, and saving its location for later validation. On

every write, the corresponding lock is acquired, the old value stored in an undo log,

and memory updated directly.
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The goal of Retry is to undo the effects of a transaction and delay subsequent

re-attempts until there is a chance that re-executing it would be profitable. Re-

execution is delayed until some later transaction performs a write that overlaps

with a read of the retrying transaction: since a re-execution would then observe

different state, there is a chance that re-execution is worthwhile.

The main challenge is to ensure that when a thread is put to sleep, its reads

have not experienced a concurrent modification; otherwise it could miss its lone

opportunity to be awoken. Assuming the underlying STM is opaque [16], the calling

transaction has a consistent view of memory when Retry is called. Nonetheless,

the transaction must ensure its reads remain valid while adding itself to the list

of waiting threads. This necessitates some manner of validation atomic with the

update to waiting (lines 3–8 of Retry). While accidental wakeups are harmless,

there can be subtle races if two writers are simultaneously attempting to wake a

transaction, and the transaction resumes and modifies reads concurrently with a

thread executing line 12 of TxCommit. For clarity of presentation, Algorithm 1

employs a global lock. Our good-faith implementation achieves greater concurrency

by using an ad-hoc nonblocking technique to protect accesses to waiting.

With regard to supporting Retry in HTM, there is a second challenge. Tradi-

tionally, Retry performs intersections over sets of locks, instead of sets of actual

addresses read and written. Clearly, HTM does not have such locks, and Hybrid

TM appears to have converged on designs without locks [17–19]. However, even if

the implementation were to switch to using address/value pairs (which would also

prevent silent stores from causing fruitless wakeups), the mechanism would remain

incompatible with HTM. Even though the wakeup routine occurs after a writing
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transaction has logically committed, it requires access to the list of locations writ-

ten by the committed transaction, and today’s HTM systems do not provide this

information.

2.2 Deschedule - An abstract mechanism

2.2.1 A Motivating Example

Algorithm 2 uses the example of a bounded buffer with transactional condition

variables to illustrate some of the key ideas and challenges we address in this pa-

per. The intent of the code is to provide a multi-producer, multi-consumer buffer.

When non-transactional code calls the Produce and Consume methods, the buffer’s

behavior is correct. However, a programmer has reasoned that since there are trans-

actions, it ought to be possible to compose complex atomic behaviors involving the

buffer. To this end, the programmer has crafted Algorithm 3, which illustrates

a dangerous scenario of composing Produce and Consume methods. we name it

Produce1Consume2().

Suppose thread T calls Produce1Consume2() when count is 0. Lines 1-5 will

execute atomically, resulting in the function setting some shared state, creating

a new element, inserting it into the buffer, and extracting the element from the

buffer. However, when line 6 is reached, the buffer is empty, and thus line 21 of

algorithm 2 will be reached. To put T to sleep, the outermost transaction will

commit, breaking atomicity. T will not wake until some subsequent call to Produce

occurs. During the interval until then, the temporary value of inprogress will be

visible. Furthermore, before T wakes, any number of other threads may produce
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and consume an unbounded number of elements, such that when T finally wakes and

consumes another element, it will not be certain that it consumed two consecutively

produced elements.

The mechanisms we propose avoid this problem. We replace lines 13 and 21 of

algorithm 2 with calls to one of our mechanisms, and then T will be completely

rolled back when it reaches Consume line 21. Atomically with its rollback, T will

publish information that allows subsequent transactions to decide, after they com-

mit, whether program state has changed in a way that justifies the re-execution of

T .

Aesthetically, our mechanisms are much cleaner than condition variables. With

our mechanisms, lines 15 and 23 of algorithm 2 are no longer necessary, and neither

are the loops on algorithm 2’s lines 10 and 18. The unrolling of a transaction when

using our mechanisms provides an implicit back-edge.

Figure 2.1 illustrates the effective behavior of the mechanisms we discuss in this

thesis. At time 1, Waiter (executing Produce1Consume2) reaches an untenable

state (algorithm 2 line 20), undoes its effects, and sleeps. At this time, the state of

the programs’ memory is indistinguishable from before Waiter began, but Waiter

has published a representation of the precondition on which it depends. At time

2, some other producer (Writer) commits, and establishes that the precondition

needed by Waiter now holds. Therefore, at time 3, Waiter wakes and then runs to

completion (time 4). Retry, Await, and the WaitPred condition synchronization

mechanism we introduce in this thesis, achieve this behavior.

8



Waiter

Writer

1

2

3

4

Time

Figure 2.1: High-level interaction between a waiter and a writer. At time 2, the writer
has changed the shared state in a way that makes re-attempting the waiter
worthwhile. The decision to wake the waiter occurs at time 3.

2.2.2 An HTM-friendly mechanism

To construct an HTM-friendly mechanism that is compatible with HTM, it is in-

structive to focus on the high-level behavior of Retry. In Figure 2.1, we see a

rough sketch of the interaction between a waiting transaction that calls Retry and

a writing transaction that causes the waiter to wake.

Note that at time 1, the waiter does not commit changes to program state,

but does update program metadata. In today’s HTM systems, which lack support

for escape actions [20], it appears impossible to achieve this behavior in HTM.

However, since retrying is not on the critical path of the application, re-executing

that transaction in a software mode with escape actions does not seem onerous.

Additionally, the wakeup operation by the writing transaction, at time 3, occurs
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strictly after the transaction commits its changes to shared memory. Wakeup is not

atomic with writer commit.

Our technique (1) shifts overhead from the writer to the waiter, and (2) treats the

wakeup operation as a computation over shared memory. Algorithm 4 provides more

detail. We say that a thread wishing to delay its execution will call Deschedule.

Deschedule undoes the effects of the transaction. It then uses a transaction to

evaluate some read-only transactional function f using parameters p. If the function

returns true, then the calling transaction is immediately restarted. Otherwise, the

thread makes f and p visible to other threads and then puts itself to sleep. By

expressing the rescheduling condition as f(p), we need not validate before adding

the caller to the list of waiting transactions. Instead, we can place the caller in the

list, and then double-check the condition. This would not be possible if we were

relying on the underlying TM’s metadata.

After any writing transaction commits, it calls wakeWriters to find any sleeping

threads whose transactions could now complete. If the computation to wake a

thread is not too complex, then lines 4–8 should be able to execute as a hardware

transaction. Consequently, we must avoid contention (e.g., by making a shallow

copy of the list of waiting threads) and eschew escape actions (e.g., by deferring

semaphore operations until line 9). A minor implementation detail to note is that,

as of line 3 of Deschedule, the calling transaction is completely undone. While we

can safely call new transactions, we must ultimately restart the calling transaction,

and thus it is necessary to preserve the calling transaction’s checkpoint (line 4 and

line 17).

10



2.2.3 Implementing RETRY

As discussed in Section 2.2.2, HTM without escape actions appears unable to atom-

ically undo its effects and publish itself into a list of waiting threads. Thus in our

Retry implementation, a hardware transaction that encounters the Retry keyword

will restart in software mode1 In the software mode, on every read, the address

and value produced by the read are logged to a special waitset. These behaviors

are shown in TxRead, Algorithm 5. Since the retrying transaction would other-

wise immediately make a system call to put its calling thread to sleep, we see this

switch-and-restart behavior as a form of backoff. In the best case, the transac-

tion will discover, on re-execution, that its precondition has been established by a

concurrent writing transaction.

If the thread is in software mode, the next challenge is to ensure that it can

announce an operation that can be checked by hardware transactions. Regardless

of the metadata in the underlying TM system, we always use values to implement

Retry. If necessary, we restart the transaction to ensure that it logs values on

every TxRead, so that it can express the precise state it observed when it next

reaches Retry. In this manner, findChanges(waitset) can precisely track whether

the transaction should be resumed. Note, too, that a silent store (one that does not

change the location’s value) will not wake a thread.

If the transaction has populated waitset, then Retry reduces to a call to the

Deschedule(findChanges, self) method. That is, Retry will undo the transaction’s

effects, add the transaction to waiting, double-check that the values read by the

1Existing best-effort HTM implementations already require this fallback path to overcome trans-
actional capacity limitations [5].
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failed attempt have not changed, and then put the thread to sleep. For simpler

presentation, we omit code for cleaning up the is retry flag, and we lazily reset the

waitset.

2.2.4 Implementing AWAIT

With Retry, the programmer cannot restrict the set of addresses for which modifi-

cations will cause the transaction to re-execute. On the one hand, this is beneficial

for deeply nested transactions, where it may be difficult to determine the precise

locations that precede a wakeup. On the other hand, especially for shallow nesting,

it may be desirable to limit the address range. In the Atomos language, Carlstrom

et al. proposed the Await keyword [13], which can be thought of as Retry restricted

to a single location. This restriction enables implementation inside of HTM, since

the amount of data to track can be constrained. With Retry already available, it

is relatively straightforward to also implement this limited interface, as depicted in

Algorithm 6.

Our implementation supports waiting on changes to an arbitrary number of

memory locations, as indicated by the parameter addrs. In contrast to Retry,

where the addresses of the read set may not be known at the time of the call to

Retry (e.g., if the underlying TM implementation logs lock locations), with Await,

the programmer provides a list of addresses. Thus as long as we can see the contents

of memory from the time when the transaction began, we can construct the correct

initial values for Await without restarting the transaction. There is a subtlety,

however: while we must not read the speculative writes of the current transaction

(and hence must undo writes first), we must also be sure that reads of those addresses

12



are consistent with the entire transaction.

Our implementation assumes that the addresses passed to Await had been pre-

viously read by the transaction, and the TM is opaque. In this case, we can re-use

the existing code for reading memory within transactions (TxRead, line 3) to pop-

ulate waitset: if that read returns a different value than the prior read to the same

location, then the transaction will abort. Note that holding locks while performing

the re-reads is necessary, due to the way that production STM is implemented: a

read followed by a write may be executed as a “read for write” [21], in which case the

address is not logged in the transaction’s read set, only its write set. For such reads,

and for certain TM implementations (such as timestamp extension [22]), releasing

locks would be incorrect.

Note that it is possible that addresses passed to Await were allocated by the

transaction, as “Captured Memory” [23, 24]. Thus we must be careful about how we

roll back the transaction. If it had allocations, those allocations cannot be undone

until after the awaiting thread has been awoken by a subsequent writer.2

2.2.5 WaitPred: Synchronization with Explicit Predicates

Having developed support for Retry and Await through the use of Deschedule, we

now have the means to add an additional mechanism for condition synchronization,

which we call WaitPred.

The idea behind WaitPred is to replace findChanges with user-specified func-

tions. In this manner, it is possible to avoid wakeups that occur when an address

is written, but the written value is not one that establishes the needed precondition

2Strictly speaking, this concern is also possible in Retry.
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for the waiting transaction. The only challenge with our implementation is that

the user-specified predicate function may expect arguments to be passed to it (e.g.,

the address of a specific bounded buffer). We cannot construct an object to store

these arguments, since the writes might be undone during Deschedule. Instead, we

receive a variable number of arguments, which the library then marshals into the

waitset. Details appear in Algorithm 7.

2.2.6 Discussion

There are several high-level aspects of our design that merit additional discussion.

First, we note that HTM is immediately usable for non-rescheduling transactions,

since their only change is to execute wakeWaiters. For hardware transactions that

must be descheduled, the lack of escape actions requires that we change modes

and then re-execute the transaction in software. For WaitPred, in limited cases

re-execution is not needed. For example, Intel’s hardware transactional memory

support allows the programmer to emit an 8-bit value to describe any explicit self-

abort. If the total set of reschedule function/parameter combinations is less than

255, then it is possible to use this value as an index into a table, so that the hardware

transaction can abort, enqueue its predicate, and then put itself to sleep.

Second, we note that our algorithms appear to be compatible with all known

abortable single-version STM algorithms. Support for lazy TM, TM with vary-

ing metadata implementations, and TM with visible reads are all straightforward

modifications to the algorithms presented herein. HyTM algorithms are similarly

straightforward to support. Furthermore, our algorithms are general enough to han-

dle production-level TM systems, such as GCC, which use read-for-write and other

14



optimizations.

Third, our mechanisms do not require garbage collection, and ensure that explicit

allocation and reclamation remain safe. Note that we are also careful to avoid

erroneous wakeups. For example, in Await, we explicitly do not store values into the

waitset during TxRead, instead waiting until after the undo log has been rolled back

to ascertain these values. To do otherwise could result read-after-write operations

populating the log with values that were essentially produced out of thin air. Every

subsequent writer commit might then wake the transaction.

There is one caveat: while the mechanisms cleanly express scheduling and condi-

tion synchronization as predicates over states, there are some unexpected scheduling

outcomes. For example, suppose that transaction TA reschedules to await a list be-

coming nonempty. Let transactions TB, TC , and TD insert, remove, and insert

elements into the list, respectively, with each completing a commit but stalling be-

fore calling wakeWaiters. In this case, any might be the one to successfully wake

TA, and there is not a relationship between the identity of the transaction that es-

tablished the condition upon which TA waited, and the identity of the transaction

that awoke TA. Similarly, suppose the absence of TD: in this case, if TB completes

wakeWaiters before TC commits, then it is possible for TA to wake, TC to commit,

and TA to ultimately go to sleep again. We contend that none of these outcomes

are necessarily unintuitive, once the programmer is comfortable thinking of con-

dition synchronization as predicates over program states (and indeed, this line of

thinking originates with the original Retry mechanism). Since one outcome of our

work is bringing Retry from its original home in Haskell to HTM, we believe that

emphasizing this point is useful.
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2.3 Programmability

procedure PutPred(x)
1 TxBegin()
2 if Full() then
3 WaitPred(¬Full, void)

4 Put(x)
5 TxCommit()

procedure GetPred()
TxBegin()
if Empty() then

WaitPred(¬Empty, void)

return Get()
TxCommit()

procedure PutAwait(x)
1 TxBegin()
2 if Full() then
3 Await(〈&count〉)
4 Put(x)
5 TxCommit()

procedure GetAwait()
TxBegin()
if Empty() then

Await(〈&count〉)
return Get()
TxCommit()

procedure PutRetry(x)
1 TxBegin()
2 if Full() then
3 Retry()

4 Put(x)
5 TxCommit()

procedure GetRetry()
TxBegin()
if Empty() then

Retry()

return Get()
TxCommit()

Figure 2.2: Put and Get methods for a bounded buffer using three transactional condi-
tion synchronization mechanisms.

Programming with WaitPred and Await are similar to programming with Retry.

Within a transaction, programmers test if a necessary condition does not hold, and

use the appropriate command to unroll any pending writes by their transaction and

put the calling thread to sleep. Figure 2.2 show the changes to Listing 2 necessary

to use the any of the three mechanisms we discuss. The programmer can choose to

wait on a given condition specified by a function (left column), a static address list

16



(middle column), or the dynamic set of addresses read by the transaction (right col-

umn). In all three cases, there is a slight decrease in code and control flow, relative

to condition variables.

An open question is whether this increased diversity of linguistic constructs for

scheduling transactions will be valuable. There are three issues which we highlight

in this section. First, the value of composition is not obvious. We conducted a

survey of 16 open-source applications and benchmarks that use condition variables,

and found that in every single case, no more than one lock was held at the time

that condvar.wait() was called. Furthermore, in every case, the wait was at the

same lexical scope as lock acquisition and release: waiting was never even done in a

function called from the critical section. We suspect this to be more a consequence

of the difficulty of using condition variables than the lack of a need for composable

condition synchronization. While solutions to the nested monitor problem are well

known, they simply have not been adopted [25].

Second, we note that just as our mechanisms provide functionalities that are not

available to condition variables (such as fine-grained control over which threads to

wake up, via predicates), there are situations in which our mechanisms cannot be

used as a simple replacement for condition variables. As a strawman, consider the

implementation of a condition variable as an integer. To wait, one could simply

use Await, passing the value of the integer, and to signal, one could increment

the integer. In addition to the restriction that this would only provide broadcast

functionality, we observe that this would not work for critical sections that expect to

make their state updates visible to other threads. For example, the classic two-wait

reusable barrier [26, Chapter 5] cannot be implemented via simple substitution.
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This is a known problem [27], which we highlight to emphasize that some code

must be re-designed when transitioning from condition variables to transactional

mechanisms.

Finally, we observe that there is a tradeoff in the complexity of reasoning required

when using WaitPred, Await, and Retry. Consider the Produce1Consume2 ex-

ample from Section 2.2.1. In this case, the use of Retry within the Put and Get

methods is sufficient, but the use of WaitPred is not: the designer of the bounded

buffer would likely use the condition ¬Empty() as the predicate in Consume, when

atomic consumption of two elements would the predicate count ≤ (cap − 2). Sim-

ilarly, if the code were atomically consuming a total of two elements, from up to

two buffers, then we might need to Await using state encapsulated in two different

objects.

Regarding this final point, the benefit of our mechanism is that it should intro-

duce a tradeoff between the generality of the condition synchronization mechanism,

and run-time overhead. WaitPred should avoid unnecessary wakeups; Await avoids

validation of a full read set; and Retry provides generality in the face of composi-

tion.

2.4 Evaluation

In this section, we evaluate the performance of our mechanisms on STM and HTM

workloads. We are interested in two questions:

• How do our implementations compare to the current state of the art (i.e.,

transactional condition variables)?
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Figure 2.3: Bounded buffer performance with eager STM.

• Do WaitPred and Await offer a performance benefit over Retry?

To explore these questions, we run two categories of experiments. First, we use

a bounded buffer micro-benchmark, which we parameterize based on the buffer size,

number of producers, and number of consumers. This allows us to evaluate over-

heads in a situation where the condition synchronization mechanism is potentially

used with high frequency, and where there may be more threads than cores. Sec-

ond, we measure performance on the PARSEC benchmark suite [28]. We limit our

evaluation to the 8 PARSEC benchmarks that use condition variables.
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Figure 2.4: Bounded buffer performance with lazy STM.

We compare 7 condition synchronization mechanisms: the baseline system, Pthreads,

uses pthread locks to protect critical sections, and pthread condition variables for

condition synchronization. TMCondVar is a transliteration of lock: transactions

protect critical sections, and transaction-safe condition variables [7] provide condi-

tion synchronization. Note that these two implementations both break atomicity

when a critical section waits. WaitPred, Await, and Retry correspond to our

mechanisms, built upon a single HTM-friendly mechanism. Retry-Orig, used only

in STM experiments, is a good-faith implementation of Retry from [9]. Finally,
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Restart aborts and immediately restarts a transaction any time a precondition

does not hold.

In our experiments, we consider three configurations: Eager STM corresponds

to a configuration in which transactions are provided via STM, using the default

GCC “ml-wt” implementation (a privatization-safe variant of TinySTM with undo

logs [14]). Lazy STM is like Eager STM, but uses redo logs, much like a privatization-

safe version of TL2 [29]. HTM corresponds to a configuration in which transactions

are provided via HTM, using the GCC “htm” implementation. Our experimental

system had a single Intel Core i7-4770 CPU running at 3.40GHz. The i7-4770

has four cores, each 2-way multi-threaded, for a total of 8 hardware threads, and

supports hardware TM through Transactional Synchronization Extensions (TSX).

The software stack included Ubuntu 14.04, Linux kernel 3.13.0-43, and GCC 5.0.0,

with -O3 optimizations.

2.4.1 Producer Consumer Micro-benchmark

We begin with experiments on a bounded buffer micro-benchmark, based on the

Figures 2.2. There are three configuration parameters: the size of the buffer, the

number of producers, and the number of consumers. Each benchmark trial entails

220 total elements produced, with an equal number of operations assigned to each

producer, and 220 elements consumed, with an equal number of operations assigned

to each consumer. We half-fill the buffer before starting each experiment.

Figures 2.3–2.5 present the results for STM and HTM executions. In each chart,

pi-cj refers to an execution with i producers and j consumers. The X axis reflects

the size of the buffer (4, 16, or 128 elements). Values are the average of 5 trials.
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Variance was generally low, though there are some exceptions, discussed below.

Our first observation is that, for these microbenchmarks, simply retrying the

transaction immediately offers the best performance. This is a consequence of the

simplicity of the microbenchmark, and does not apply to PARSEC. We do not

discuss Restart further in this subsection.

When producers and consumers are balanced and there is no oversubscription

(p1c1, p2c2, p4c4), our mechanisms have the best performance: they avoid calls

into the pthread library, and when there are wakeups, only a small number of

threads are woken at a time. The effect is most pronounced for small buffers,

where sleeping is more likely. Furthermore, our mechanisms outperform the original

retry technique, suggesting that separation of the mechanism from the underlying

TM implementation does not introduce significant overhead.

This same relationship mostly holds for small amounts of imbalance (p2c1, p4c2,

p1c2, p2c4). However, in these cases there is a higher incidence of sleeping and

waking up. Consequently a few new behaviors emerge. First, STM and HTM

behave differently. This is a consequence of the TM implementations: In HTM,

conflicts between the read-only wakeWaiters call and the execution of other trans-

actions can result in aborts. This is due to TSX aborting transactions on some

read-write conflicts that do not cause aborts in the STM implementations. Second,

and more significantly, our mechanisms have a higher frequency of wakeups. While

the pthread baseline will only wake one thread after any production or consumption,

our mechanisms essentially broadcast. This can result in pathological behaviors for

homogeneous and imbalanced micro-benchmark configurations: consider a produc-

tion in p1c4 when the buffer is empty. After the production, 4 consumers are woken.
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They all contend for the same element, one succeeds, three fail, and then the failed

threads go back to sleep. The effect is equivalent to using broadcast with pthread

condition variables, and is inherent to our three techniques. Third, we observe that

the latency differences between our mechanisms meet our expectations: WaitPred

is less costly than Await, but since transactions are tiny, Await does not offer an

advantage over Retry: only one fewer location is tracked.

Under moderate imbalance (p4c1, p1c4, p8c1, p8c2, p1c8, p2c8), these trends

continue. However, particularly when there is oversubscription (either 8 producers

or 8 consumers), an additional trend arises: transactional condition variables show

a significant advantage. There is a synergy, in that transactional condition variables

both (a) allow concurrency among the critical sections of producers and consumers

(locks do not), and (b) do not perform broadcast wakeups, which would cause con-

text switching. Note, however, that these results begin to have higher variance

(between 0.1 and 1), due to the impact of preemption and context switches when

there are more threads than cores.

For HTM, high imbalance experiments (p8c4, p4c8, p8c8) behave the same as

under moderate imbalance. HTM implementation details matter here: To ensure

progress, the GCC HTM implementation suspends concurrency after a transaction

aborts twice, so that it may execute to completion. Additionally, when a hardware

transaction calls our mechanisms, we suspend concurrency so that the transaction

can run in a software mode that allows for escape actions. In STM there is one

difference: transactional condition variables experience pathologically bad behavior.

When too many producers or consumers run simultaneously, the benchmark can

wind up in a situation where all but one thread is asleep; at this point, the roughly
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Figure 2.5: Bounded buffer performance with HTM.

3× latency overhead of STM instrumentation dominates, and variance also increases

to above 1.

2.4.2 PARSEC Performance

We now turn our attention to the performance of our mechanisms on larger appli-

cations. We consider the eight PARSEC benchmarks that make use of condition

synchronization. Table 2.1 describes the number of lines of code that were removed

from each benchmark to eliminate condition variables, and the number of lines that
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Figure 2.6: PARSEC performance with eager STM.
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Figure 2.7: PARSEC performance with lazy STM.

were added to synchronize threads via our mechanisms.

The number of lines needed to use our mechanisms is comparable to the number

of lines related to condition variables. Quantitatively, the changes are small and

localized. Qualitatively, while the code using our mechanisms was typically as long

as the condition variable code, it was usually simpler, since it did not have to worry

about breaking the atomicity of transactions. Perhaps most surprisingly, WaitPred

did not require more code than our other mechanisms: the predicate functions we

needed to write were either tiny, or already present in the program.

Figures 2.6–2.8 present PARSEC performance for STM and HTM. Each bar
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Figure 2.8: PARSEC performance with HTM.

is the average of five trials; variance was uniformly low. Note that some bench-

marks only execute for thread counts that are even or powers of two. We used the

transactional version of PARSEC provided by Wang et al. [7]. This has two imme-

diate consequences: first, we observe a slight slowdown for transactions (TM) versus

pthreads (lock). This is not surprising: PARSEC is carefully tuned lock-based code,

and the TM version simply replaces locks with critical sections, without any care-

ful tuning. Second, dedup performs very poorly with TM. This, too, is expected:

dedup performs I/O within critical sections; the TM runtime forbids concurrency

during transactions that perform I/O, to avoid conflicts/rollback after I/O has been

performed but before the transaction has committed.

A few broad trends that emerge from these experiments. First, the performance

difference between transactions with condition variables and our mechanisms is neg-

ligible: in real-world programs, where condition synchronization overheads do not

dominate, the cost of synchronizing is not significant. Second, Await tends to Retry.

This outcome is due to the larger sizes of our transactions: Await effectively prunes

the set of locations on which a sleeping transaction waits. This, in turn, reduces

overhead in wakeWaiters, saving time after every transaction commit that overlaps
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with a sleeping thread. Lastly, we observe subtle variations in the relative merit of

different synchronization mechanisms for different thread counts. For example, flu-

idanimate’s performance at 8 threads depends more substantially on the condition

synchronization mechanism than it does at 2 threads.

Overall, the outcome is that performance with our mechanisms is acceptable, and

thus the main question is whether it is more appealing to programmers. For the

most part, we believe the answer is affirmative. Especially in codes like PARSEC,

where macros and compile-time options obfuscate control flow, there is a significant

advantage to a condition synchronization technique that does not break atomicity;

it is already difficult to reason about critical sections in PARSEC. This is even

more true for library code, which may involve nested transactions and condition

synchronization.

Unfortunately, our mechanisms do not obviate condition variables: It is not cor-

rect to explicitly abort a transaction after it has performed I/O. In the C++ Draft

TM Specification [3], such transactions are distinguished, lexically, as “relaxed trans-

actions”. A strict approach would forbid our techniques in relaxed transactions. In

cases like dedup, where condition synchronization occurs before I/O, our imple-

mentations remain correct. However, if a critical section must perform condition

synchronization after I/O, then it cannot use our mechanisms, and must use condi-

tion variables.
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2.5 Related Work

There are a few strategies for managing condition synchronization in TM, which we

outline below. The most obvious is to make condition variables compatible with

transactions. This approach has the benefit of simplifying the transactionalization

of legacy code, and was identified as an important challenge by Ringenburg and

Grossman [30] and Yoo et al. [6]. Dudnick and Swift subsequently presented hard-

ware and OS extensions that allowed for transaction-safe condition variables [8], and

Yoo et al. later showed that existing hardware could be made compatible with con-

dition variables through a novel use of Linux futexes [5]. Wang et al. subsequently

proposed an OS-agnostic, hardware-agnostic mechanism for transaction-safe condi-

tion variables, but it required extensions to the compiler [7]. While our mechanisms

employ a different programming model, and are thus somewhat incomparable, we

note that these techniques avoid OS, hardware, and compiler modifications.

Harris and Fraser [31], and later the X10 group [32], suggested a Conditional

Critical Regions style of synchronization, in which the read-only prefix of a transac-

tion determines if a predicate holds, and if not, the transaction aborts and retries.

When the predicate holds, the continuation runs in the same context as the pred-

icate test, as a single atomic transaction. Harris et al. later extended this to the

Retry mechanism [9], which we study in this paper. Our work completely separates

the retrying mechanism from the underlying TM implementation, and offers pro-

grammer control over the expression of the precondition. Thus one benefit of our

work is making it possible to use Retry in HTM and Hybrid TM.

There are many other proposals for synchronizing transactions, though none
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have gained traction outside of the research community. Smaragdakis et al. pro-

posed “punctuated transactions” as a means of handling I/O and condition syn-

chronization [27]. Like condition variables, this approach breaks the atomicity of

transactions; like our work, it also allows the programmer to specify precise pred-

icates, which govern when the awoken transaction can resume and how it can re-

establish atomicity. Proposals for synchronizing transactions via group commit were

proposed by Luchangco and Marathe [33] and Lesani and Palsberg [34]. Luchangco

later showed that this technique can approximate condition variables [35]. However,

the techniques have high complexity and are not compatible with HTM [36].
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Algorithm 1: Original Retry mechanism, adapted from [9] to use eager STM.
A lock prevents concurrent accesses for simplicity.

Per-Thread Metadata

reads : lock∗ // locks for locations read by txn
undos : 〈addr, val〉∗ // Writes by this transaction
locks : lock∗ // locks for locations written by txn
sem : semaphore // per-thread semaphore for Retry
cp : Checkpoint // Used on abort/rollback

Global Metadata waiting : Thread∗ // list of sleeping threads

procedure Retry

// undo writes
1 undos.undoAll()

// release locks as if transaction never ran
2 locks.resetAll()

// atomically add calling transaction to waiting if still valid
3 waiting.lock()
4 if reads.valid() then
5 waiting.insert(self)
6 waiting.unlock()
7 sem.wait()

8 else waiting.unlock()
// restart the transaction

9 reads← undos← locks← {}
10 cp.restore()

procedure TxCommit

// handle read-only transactions
1 if readOnly() then
2 reads← {}
3 return

// fail if reads not valid
4 if ¬reads.valid() then
5 undos.undoAll()
6 locks.releaseForAbort()
7 reads← undos← locks← {}
8 cp.restore()

// transaction is valid... release locks
9 locks.releaseForCommit()

// check for transactions to wake
10 waiting.lock()
11 for e ∈ waiting do
12 if e.reads ∩ locks then
13 waiting.remove(e)
14 e.sem.signal()

15 waiting.unlock()
// reset lists

16 reads← undos← locks← {}
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Algorithm 2: A bounded buffer example using transactional CondVars

Shared Fields:

buf : Array // stores the elements in the buffer
cap : Integer // the size of the array
count : Integer // # elements in the array
nextprod : Integer // destination index for next Produce()
nextcons : Integer // source index for next Consume()
notempty : CondVar // condition variable for consumers
notfull : CondVar // condition variable for producers

Internal Methods:
function Full()

1 return count = cap

function Empty()
2 return count = 0

procedure Put(x)
3 buf [nextprod]← x
4 nextprod← (nextprod + 1) mod cap
5 count← count + 1

function Get()
6 x← buf [nextcons]
7 nextcons← (nextcons + 1) mod cap
8 count← count− 1
9 return x

Public Methods:
procedure Produce(x)

10 while true do
11 TxBegin()
12 if Full() then
13 notfull.CondWait() //or Retry()

else
14 Put(x)
15 notempty.CondSignal()
16 return

17 TxCommit()

function Consume()
18 while true do
19 TxBegin()
20 if Empty() then
21 notempty.CondWait() //or Retry()

else
22 item← Get()
23 notfull.CondSignal()
24 return item

25 TxCommit()
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Algorithm 3: A dangerous Scenario

procedure Produce1Consume2(x)
1 TxBegin()
2 inprogress← true
3 x← CreateElement()
4 Produce(x)
5 a← Consume()
6 b← Consume()
7 Use(a, b)
8 inprogress← false
9 TxCommit()
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Algorithm 4: Abstract mechanism for descheduling transactions
Additional Per-Thread Metadata
asleep : Boolean // True if thread has been woken
waitfunc : Function // Decides if thread should wake
waitparams : Record // Parameters to waitfunc

pre-condition : Function called from a transactional context
input : A predicate (f) and it’s record of paramters p
procedure Deschedule(f, p)

// roll back the transaction
1 undos.undoAll()
2 locks.resetAll()
3 reads← undos← locks← {}

// preserve the checkpoint
4 tmpCp← deepCopy(cp)

// begin an outermost transaction
5 wait← false
6 TxBegin()
7 if ¬f(p) then

// precondition does not hold... go to sleep
8 waitfunc← f
9 waitparams← p

10 asleep← true
11 waiters← waiters ∪ self
12 wait← true

13 TxCommit()
// If f returned false, sleep

14 if wait then
15 sem.wait()

// on wakeup, prevent future notifications
16 TxBegin(); waiters← waiters− self ; TxCommit()

// restart the parent transaction
17 tmpCp.restore()

pre-condition : Function called during TxCommit, after the transaction has committed
procedure wakeWaiters()

// use a transaction to copy the set of waiting threads
1 TxBegin; l← waiting.copy(); TxCommit

// check each entry’s condition
2 for e ∈ l do
3 shouldWake← false
4 TxBegin
5 if e.asleep ∧ e.waitfunc(e) then
6 e.asleep← false
7 shouldWake← true

8 TxnCommit
9 if shouldWake then e.semaphore.signal()
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Algorithm 5: An implementation of Retry based on Deschedule
Additional Per-Thread Metadata
is retry : Boolean // True if thread called retry

pre-condition : Function called from within a transaction
procedure findChanges(Tx)

1 for 〈a, v〉 ∈ Tx.waitset do
2 if ∗a 6= v then return true

3 returnfalse

procedure TxRead(addr)
1 if is retry then
2 if addr ∈ undos then
3 v ← undos.get(addr)

4 else
5 v ← ∗addr
6 waitset.append(〈addr, v〉)

. . . // original TxRead code follows

procedure Retry()
// ensure software mode

1 if HTM mode() then restart in STM()
// if waitset not populated, restart and populate it

2 if ¬is retry then
3 is retry ← true
4 waitset← reads← undos← locks← {}
5 cp.restore()

// use Deschedule to suspend transaction
else

6 is retry ← false
7 Deschedule(findChanges, self)

Algorithm 6: Algorithm for generalized Await
pre-condition : Function called from a transactional context
input : A set of addresses

procedure Await(addrs)
// roll back writes, so we can see original state of memory

1 undos.undoAll()
// populate waitset

2 waitset← undos← {}
3 for a ∈ addrs do
4 waitset.append(〈a, TxRead(a)〉)

// use Deschedule to suspend transaction
5 Deschedule(findChanges, self)
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Algorithm 7: Algorithm for WaitPred
pre-condition : Function called from a transactional context
input : A function to evaluate, and a set of parameters

procedure WaitPred(pred, args)
// populate waitset

1 for arg ∈ args do
2 waitset← arg

// use Deschedule to suspend transaction
3 Deschedule(pred, self)

Benchmark WaitPred Await Retry Removed
bodytrack (5) 47 55 47 54
dedup (3) 66 88 66 71
facesim (7) 47 55 47 38
ferret (2) 31 49 31 47
fluidanimate (4) 60 68 60 126
raytrace (3) 76 88 76 38
streamcluster (5) 70 82 70 139
x264 (1) 15 21 15 14

Table 2.1: Lines of code added and removed for different condition synchronization mech-
anisms in PARSEC. Numbers in parentheses represent unique condition syn-
chronization points for each benchmark.
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Chapter 3

Conclusion and Future Work

We introduced a new approach to transactional condition synchronization. Our

algorithms are inspired by Retry, but offer two powerful new abilities: First, the

programmer can fine-tune the condition upon which a transaction depends, instead

of tracking memory locations. Second, our mechanisms are compatible with HTM,

Hybrid TM, and STM implementations.

Our evaluation showed that our multiple linguistic constructs, supported by

a single implementation, had minimal impact on code size, and that their per-

formance impact on large benchmarks like PARSEC is negligible. On stress-test

micro-benchmarks, performance is more nuanced, but overall, it appears that our

approach simultaneously achieves the goals of ease-of-use, performance, generality,

and amenability to programmer optimization/tuning.

The most significant open issue with our work is studying the relationship be-

tween condition synchronization and the “relaxed transactions” of the Draft C++
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TM Specification. In our work, we observed a compatibility with relaxed transac-

tions that have not yet performed I/O. Whether such compatibility can be statically

enforced or not is an open question, as is the question of whether such compatibility

is sufficient. We are comforted by our experience with PARSEC, but encourage

further workload and application usage studies.
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Appendix A

Software TM Implementation

Details

In this appendix, we present an implementation of a software TM that uses undo

logs, similar to TinySTM [14]. This presentation provides background that is useful

for understanding the behavior of our Deschedule algorithms.

Algorithm 8 presents the variables and data types. A set of locks protects all

shared memory, and a hash function is used to map memory addresses to locks. We

assume that it is possible to atomically read all fields of a Lock object simultaneously,

and to modify Lock objects via an atomic compare-and-swap (CAS) instruction. As

in TL2 [29], a monotonically increasing clock is incremented on each writer transac-

tion commit. This significantly reduces the overhead of validating that transactional

reads are consistent.

A Tx object is associated with each thread. The Tx object contains sets for

undoing writes, tracking locks held, and tracking locations read. There is also
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Algorithm 8: Global and thread-local variables for a software TM implemen-
tation. The “*” suffix indicates set types.

Globals

locks : Lock∗ // Set of locks
clock : Integer // Logical clock [29] to count commits

Fields of the Lock Object
locked : Boolean // True iff lock is held
owner : Tx // Identity of lock holder
version : Integer // Time of last unlock

Fields of the Tx Object

undos : 〈addr, val〉∗ // Writes by this transaction
locks : Lock∗ // Locks held by this transaction
mallocs : addr∗ // Result of calls to malloc

frees : addr∗ // Deferred calls to free

reads : addr∗ // Reads by this transaction
nesting : Integer // (Flat) nesting depth
cp : Checkpoint // Used on abort/rollback
start : Integer // Time of transaction start

metadata for managing a thread’s rollback, and for handling nested transactions via

flat (subsumption) nesting. Additionally, there are sets for deferring reclamation

and undoing allocations.

To begin an new lexically scoped transaction (Algorithm 9), a thread increments

its nesting counter. If the counter was not zero, then a nested transaction is started,

and no further work is required. Otherwise, the thread creates a checkpoint, so that

aborted transaction attempts can restore the architectural state to precisely as it

was when TxBegin was called. It also reads the current value of the clock, so it can

easily identify locations that are safe to access (e.g., those whose last modification

preceded this transaction’s start).

TxWrite is called on any write of shared memory (Algorithm 10). To write

shared memory, the transaction must hold an exclusive lock over the to-be-written

address. If such a lock is not yet held, the transaction must atomically transition

the location’s lock from a state in which it is unlocked and no newer than the
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Algorithm 9: Begin and end instrumentation for a simple software TM

procedure TxBegin
// create checkpoint iff outermost transaction

1 nesting ← 1 + nesting
2 if nesting = 1 then
3 cp← createCheckpoint()
4 start← clock

procedure TxCommit
// handle nesting

1 nesting ← nesting − 1
2 if nesting > 0 then
3 return

// handle read-only transactions
4 if locks.isEmpty() then
5 reads← {}
6 return

// get commit time
7 end← atomicIncrement(clock)

// validate
8 if end 6= start + 1 then
9 for addr ∈ reads do

10 tmp← locks[hash(addr)]
11 if ¬tmp.locked ∧ tmp.version > start then
12 TxAbort()

13 if tmp.locked ∧ tmp.owner 6= me then
14 TxAbort()

// transaction is committed... release locks
15 for l ∈ locks do
16 l← 〈false, nil, end〉

// finalize frees
17 for f ∈ frees do
18 free(f)

// reset lists
19 reads← undos← locks← mallocs← frees← {}

// quiesce to ensure privatization safety
20 quiesce()

transaction’s start time, to a state in which it is locked by the transaction. If this

attempt fails, the transaction aborts. Once the lock is held, the transaction copies
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Algorithm 10: Read and write instrumentation for a simple software TM

procedure TxWrite(addr, val)
// Atomically read the lock object

1 tmp← locks[hash(addr)]
// Handle locks already held by caller

2 if tmp.locked ∧ tmp.owner = me then
// add old value to undo log, update, return3 undos.append(〈addr, ∗addr〉)

4 ∗addr ← val
5 return

// Only succeed if lock version not too new
6 if ¬tmp.locked ∧ tmp.version ≤ start then
7 if CAS(locks[hash(addr)], tmp, 〈true,me, tmp.version〉) then

// same process as above, but also record this lock
8 locks← locks ∪ locks[hash(addr)]9 undos.append(〈addr, ∗addr〉)

10 ∗addr ← val
11 return

// In all other cases, abort
12 TxAbort()

function TxRead(addr)
// Atomically read the lock object

1 tmp← locks[hash(addr)]
// read the location, then re-check the lock object

2 val← ∗addr
3 tmp2← locks[hash(addr)]

// Easy case: caller holds lock
4 if tmp.locked ∧ tmp.owner = me then
5 return val

// Only succeed if read is consistent
6 if tmp = tmp2 ∧ ¬tmp.locked ∧ tmp.version ≤ start then
7 reads.append(addr)
8 return val

// In all other cases, abort
9 TxAbort()

the old value at the location into the undo log, and then updates the location. Note

that this copy is required even on line 3, since a single lock can cover multiple

locations.

Whenever a location is read, the TxRead instrumentation is called. If the loca-

tion is already locked by the caller, then the location can simply be read (line 5).
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Otherwise, the transaction must atomically read the lock and location, then ensure

that the lock is in a safe state for this transaction (i.e., it is unlocked and its version

is no greater than the caller’s start time). When a location is read, its address

is added to the read set, so that we can ensure that all reads are valid when the

transaction commits.

To commit a transaction, TxCommit first checks if the transaction is nested. If

so, no work is needed, as the parent transaction is not yet complete. Next, read-only

transactions are handled. To reach TxCommit, every read by the transaction must

have passed the test on line 6 of TxRead, and hence all values that were read were

logically present in memory at the time when the transaction started. Thus no fur-

ther processing is required. Otherwise, the transaction must validate. This ensures

that all reads were valid immediately after the time at which the last lock was ac-

quired. A fast-path is used (line 8) to detect when no other transactions committed

between this transaction’s begin and end. The validation ensures that every read

location is either (a) unlocked and not updated since this transaction started, or (b)

locked by this transaction. Since this transaction only acquired locations that were

not written after it began (TxWrite line 6), read-then-write accesses are not a con-

cern. If the validation succeeds, the transaction releases its locks and updates their

version number. It then performs any deferred reclamation, and resets its metadata.

Finally, it uses a quiescence technique [37] to ensure privatization safety [38].

Algorithm 11 presents the abort code for a transaction. TxAbort is responsible

for undoing writes, releasing locks, and resetting the transaction’s metadata. Then

it restores the checkpoint, so the transaction may restart. There are two subtleties.

First, care is required when releasing locks, to ensure that a concurrent TxRead
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Algorithm 11: Abort routine for software TM

procedure TxAbort
// undo all writes

1 for 〈addr, val〉 ∈ undos.reverse() do
2 ∗addr ← val

// release all locks; increment to notify TxRead lines 2-3
3 for l ∈ lock set do
4 l← 〈false, nil, l.version + 1〉

// ensure released locks have legal versions
5 atomicIncrement(clock)

// undo allocations by this transaction
6 for m ∈ mallocs do
7 free(m)

// reset lists
8 reads← undos← locks← mallocs← frees← {}

// re-start from beginning of transaction
9 nesting ← 0

10 cp.restore()

does not observe out-of-thin-air values. Secondly, any allocations performed by the

transaction must be undone.

The mechanics of allocating and freeing memory are not shown in pseudocode;

they are straightforward. Calls to free() are replaced with calls that insert the to-

be-freed pointer into the frees collection. Calls to malloc() are replaced with calls

to a function that performs a malloc and then inserts the return value into mallocs.

When a transaction commits, mallocs is cleared and the entries in frees are freed.

When a transaction is aborted, frees is cleared and the entries in mallocs are freed.

In this manner, reclamation is delayed until it is certain that the reclamation need

not be rolled back, and allocations can be logically undone if the calling transaction

aborts.

We observe that the above implementation is not optimal, but it is sufficient

to illustrate the behavior of software TM. There are two key aspects in which the
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implementation deviates from the implementation in GCC. First, our decision to

abort upon encountering “too new” version numbers in TxRead and TxWrite is

overly conservative, and can be avoided via timestamp extension techniques [22].

Second, our blind increment of the clock in TxAbort line 5 can be avoided through

the use of incarnation numbers [14].
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