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Abstract 

Separation and concentration of nanoscale species play an important role in 

various fields such as biotechnology, nanotechnology and environmental science. 

Inevitably, the separation efficiency strongly affects the quality of downstream detections 

or productions. For biotechnology and diagnostic applications, conventional separation 

techniques such as centrifugation, chromatography, filtration, and electrophoresis have 

been well established and the related instruments and reagents are readily available 

commercially. However, other factors such as cost, processing time, bulky instruments, 

infrastructure, and well trained technicians limit their applications in resource-limited 

settings. Consequently, innovations in materials science that can separate 

bionanoparticles efficiently and do not require complex setups, reagents or external fields 

are highly demanded.  

This work focuses on developing new materials for the affinity separation of bio-

nanoparticles such as viruses or macromolecules from a complex mixture, such as whole 

blood. To enhance the interaction between target nanoparticles and the capture bed, 

methods to produce porous matrices with a uniform pore size matching the dimension of 

targets are studied. Furthermore, regarding viral separation from whole blood, 

macroporous materials are further patterned into microarrays to allow multiscale 

separation. Considering the needs in resource-limited settings, these materials are 

integrated with microfluidic technologies to reduce the volume of samples and reagents, 

simplify operating processes, and enable the use of inexpensive and portable components. 
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Beyond the application of viral separation as demonstrated in the work, the fundamental 

study of macroporous material formation and transport in these materials also shed light 

to the separation of many other nanospecies in multiscale materials. 

Specifically, two macroporous materials, based on template synthesis, are created 

in this work. The first type employs porous anodic aluminum oxide (AAO) films as the 

template to create hexagonal arrays of nanoposts. However, pore sizes and interpore 

distances (cell size) of ordered porous AAO films are limited by the conventional 

fabrication process. Moreover, the process usually yields defective pore morphologies 

and large pore and cell size distributions. To overcome these limitations, a patterning 

method using nanobead indentation on aluminum substrate prior to anodization is 

evaluated to control the growth of AAO. Together with controlled anodizing voltages and 

electrolytic concentrations, AAO pore and cell sizes are shown to be tunable and 

controllable with narrow size distributions within submicron range. A high degree of 

order of AAO pore arrangement is also demonstrated. In addition, overall anodization 

becomes more time-efficient and stable at high anodizing voltages.  

Secondly, a three-dimensional (3D) assembly of microbeads is used as a template 

to fabricate a spherical pore network with small interconnected openings. After 

depositing and drying a suspension containing both micro- and nanobeads, the 

microbeads assemble into a 3D close-packed structure while the nanobeads fill the 

interstitial space.  When the nanobeads are melted and microbeads are removed, a 

spherical pore matrix then form with small interconnected openings. Such the opening 

size is in submicron range can be adjusted depending on the size of microbead.  
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The advantages of the two macroporous materials are not only controllable and 

tunable pore size, but also high surface-to-volume ratio due to the nanoscale features. 

With a ratio on the order of ~1 µm-1, the porous materials provide a significantly large 

binding surface. Computational and experimental results reveal that porous materials 

with a pore size matching the nanoparticle size are suitable for their capture. Separation 

of human immunodeficiency virus (HIV) is used as a model and capture yields of ~99 % 

and ~80 % are achieved in the nanopost structure and spherical pore network, 

respectively, after treated with a functional chemistry. Hence, the properties of these two 

macroporous materials are suitable as a size-exclusion and affinity separation for viral 

particles. 

To further explore multiscale separation, i.e. capturing viruses from whole blood, 

micropatterned arrays of macroporous materials have been designed. In this design, a 

microscale gap allows the passage of microparticles such as blood cells, and the 

nanoscale pores promote permeation for affinity capture of bionanoparticles. 

Consequently, particles with a size difference of 3-4 orders of magnitude can be 

separated in a simple flow-through process. Computational analyses are employed to 

study the effect of micropattern shape and layout.  A half-ring pattern is shown to reduce 

flow resistance and promote fluid permeation compared to a circular pattern.  In the 

experiment, the micropatterned porous arrays yield around 4 times higher viral capture 

from whole blood compared with a micropatterned solid array. The micropatterned 

porous devices are capable of handling a large volume of fluid sample without clogging 

by cells. Therefore they can be used for nanoparticle concentration. Our study also 
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indicates that the layout of micropatterns can be adjusted to improve the capture yield. 

For example, an increase in pattern radius, or a decrease in gap distance between each 

post and in width of half ring will enhance fluid permeation in the porous structure. When 

combined with downstream detection, these materials integrated into microfluidic 

platforms can be created as point-of-care diagnostics, as well as other applications for 

particle separation and analysis. 
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Chapter 1 

 
Introduction 

 

This thesis aims to develop a microfluidic platform for viral separation and 

concentration as part of a diagnostic device. Alternative to conventional viral separation 

methods, microfluidic systems are widely introduced due to many advantages over the 

past decade. The scope of this thesis covers the study of macroporous materials and 

fabrications, transport behavior of bio-nanoparticles in microchannels, and the design of 

micro- and nanostructure for viral separation using microfluidic technology. This work 

has introduced macroporous materials which can be incorporated with a microfluidic 

device suitable for viral separation and concentration. The separation of human 

immunodeficiency virus (HIV) from human blood was demonstrated as a model in the 

study as part of the global health concern. This work has provided fundamental 

approaches using multiscale features for bioparticle separation and relying on physical 

and chemical interaction. 
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1.1:   Background and motivation 

Human immunodeficiency virus (HIV) has caused 39 million human deaths and 

still infects more than 35 million people worldwide [1]. Due to limited resources, a large 

number of individuals are not aware of their HIV infection. Consequently, proper 

treatments are delayed while the viruses can be further spread without precaution. In 

addition, clinical tests for viral load measurement require a blood sample to be analyzed 

in a laboratory which could take weeks to receive the diagnostic results before a proper 

treatment can be provided. Also ones knowing individual’s HIV status can prevent 

spreading HIV to other people. To improve accessibility of diagnostic technologies, the 

need of inexpensive and easy-to-use, and point-of-care devices has emerged for 

diagnostics and monitoring, especially to those in resource-limited regions. 

Blood is a complex biological mixture which contains red blood cells, white 

blood cells, platelets, and around 55% plasma with more than thousands of soluble 

macromolecules and proteins [2]. In biopharmaceutical production, viral separations are 

essential to avoid viral contaminations in plasma-derived products [3-5]. In diagnostics, 

protein or viral separation from blood is strongly important for accurate and reliable 

diagnoses. Currently, HIV diagnostics is performed in clinical laboratory by enzyme 

immunoassay which detects immunoglobulin G (IgG) antibody detection in blood serum 

or oral fluid. Any inclusions in human plasma or hemoglobin in human blood cells may 

significantly reduce the amplification capacity of polymerase chain reaction (PCR) 

analysis [6-8]. Likewise, inclusions from blood may interfere with sensitivity of enzyme 

immunoassay (EIA) and result in inaccurate analysis [9]. Such hindered or interfered 
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interactions may lead to an inaccurate diagnosis and result in improper treatments. As far 

as it is concerned, efficient separation techniques are needed as an important step to 

successfully and accurately diagnose whether a person becomes infected or determine at 

what stage of infection a patient is. 

Herein, we aim to develop a microfluidic device for blood processing that is low-

cost and processed in a simple flow-through fashion to avoid complex setup and 

instruments. We focus on combining a micro pattern with nanoporous structures 

integrated in microfluidic devices for HIV separation and concentration. This approach 

relies on the high surface-to-volume ratio and the geometry of nanostructures to enhance 

viral capture efficiency; and also on a design of micropatterned porous array which 

allows more fluid permeation in a porous capture bed while exclude large particles off the 

device. This method shall provide an alternative POC device that can improve 

accessibility of diagnostic and monitoring health care. 

 

  



 

8 
 

1.2:   Separations and concentrations for bioparticles 

Separations and concentrations of target species are a crucial step in various fields 

such as diagnostics [10-12], pharmaceutical production [13] as well as environmental 

safety [14, 15]. The need of particle separation can be for analytics, sample concentration 

or decontamination. Containing less interfering factors, properties of target particles can 

be characterized, analyzed, controlled, and quantified more accurately. In principle, 

separation methods rely on a difference in physical, chemical, electrical, optical or 

magnetic properties of particles. With that in mind, this thesis mainly focuses on 

separations of bio-nanoparticles for examples, viruses or other comparable sized particles 

and their proteins, from fluids. 

Conventionally, separation methods can be broadly categorized, based on 

separation mechanisms, as centrifugation, chromatography, filtration, and 

electrophoresis. Nonetheless they can be combined to improve separation efficiency. 

Conventional methods for bioseparation have been widely explored in industrial and 

research scales. Many techniques are well established while the involved reagents and 

instruments are already available in the market. Target particles can be separated by 

individual property such as size, density, surface charge, polarizability, hydrophobicity, 

dissolubility, bioaffinity, or a combination of those properties. In one way or another, 

some methods offer advantages over the others such as processing time and reagent 

consumption, efficiency, and cost. Examples of conventional separation methods 

reviewed are summarized in Table 1.1. 
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With advanced technologies, more recent methods such as magnetic [16] and 

dielectrophoretic [17] separations have been developed with a high efficiency while some 

magnetic separators already become available commercially [16]. At the same time, the 

conventional methods have also been improved, combined, and modified specifically in 

various fields. Because of their sizes and densities, the cellular components can be 

appreciably separated by centrifugation, which usually involves in most of sample 

preparations. Yet, a separation of nanoparticles such as viruses or macromolecules may 

require a high speed centrifuge from 20,000 to 60,000 rpm which the instrument is not 

generally available in resource-limited area [16, 18]. The chromatographic and 

electrophoretic methods and have been widely used in diagnostics, biopharmaceutical 

industries, and research due to its high resolution of purification of proteins or viruses. 

Nonetheless, they may require multiple-step purification and a combination of reagents, 

complex setup, and very high power supplies [19]. Particularly for diagnostics, the 

expensive laboratory equipment, reagents, skilled technicians, and infrastructure are the 

factors that limit an access to diagnosis and treatment. To address these issues, there is a 

need for an inexpensive, simple-to-use, point-of-care, diagnostic device. Therefore, 

alternative separations are sought to further expand the access to diagnosis of infectious 

diseases such as HIV, hepatitis, or influenza viruses.  
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1.3:   Microfluidic technologies for bioparticle separation 

Microfluidic technology was developed from microelectromechanical systems 

(MEMS). In general, this technology shares common advantages of using a small volume 

of sample loads and chemical reagents, being inexpensive, and precisely controlling 

processes and interaction. Consequently, microfluidic devices has been explored in many 

applications. Microfluidic technology for particle separation has been widely 

demonstrated for different sizes and types of particles. Ones can achieve similar 

separation efficiency as those performed by conventional methods while instruments and 

reagents involved are miniaturized. For examples, Haeberle et al. utilized a centrifugal 

disk spinning at 40 Hz to perform a 2 µL plasma separation with less than 0.1% of 

residual cell concentration extracted from a 5 µL whole blood [24]. This method is a 

powerful and timely processing, but a high-speed rotator is required. Another technique 

using a hand-held egg beater, attached with a tubing loaded with blood, as a centrifuge 

was demonstrated by Wong et al [25]. Nevertheless, it induced hemolysis and resulted in 

intracellular contaminated in plasma. Cheng et al. [26] utilized microfluidic devices for 

CD4 T cell capture from whole blood while Nagrath et al. [27] further integrated a 

micropost array in a device to promote particle-surface interaction for circulating tumor 

cell separation. Their microfluidic systems worked well for the cellular size but may not 

serve for nanoparticles. 

More specific approaches toward separation and concentration of targeted bio-

nanoparticles, that are directly purified, have also been performed. An order of magnitude 

lower than cellular components, the HIV particle has an average size of 110-164 nm [28]. 
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Hence the difference in particle sizes makes them feasible to be separated by using filter 

membranes. The pore size should be uniform and effective to allow smaller particles to 

pass through while larger particles to remain upfront. Wang and coworkers utilized 

polycarbonate track-etched membranes to separate HIV particle from blood cells [29]. 

However, the rapid clogging of filters is still the major drawback. Magnetic separation 

was also introduced in microfluidic systems. Kim et al. demonstrated the use 

carboxylated magnetic microbeads and fluorescence polystyrene nanobeads to perform 

HIV separation under a magnetic field [30]. The performance on bio-particle separation 

and concentration is also based on a surface affinity which is further related to a capture 

surface area. Consequently, nanoscale features play an important role as they provide a 

high surface-to-volume ratio. For example, Chen et al. performed an HIV separation 

using superparamagnetic nanoparticles which have overall higher surface area [31]. 

Nevertheless, the particle capture relies on chaotic mixing between two mobile species 

which is a random process and difficult to predict. Examples of microfluidic device for 

particle separation are summarized in Table 1.2. Putting all together, a separation method 

that requires less reagents and external fields, and provides a controllable and predictable 

process is still in need. 

Beside the separation modules, a great amount of efforts on developing detection 

modules using microfluidic technologies have been demonstrated by research groups. 

Detection methods in microfluidic devices have relied on various approaches such as 

optical, electrical, biochemical, or magnetic detections. Although each technique may 

have an advantage one way or another over other techniques, they share common benefits 
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where the cost, time, and reagents are minimized. More of detection methods using 

microfluidic platforms can be found in the literature [32-36]. Eventually, combining two 

modules, sample preparation and detection, in a single device enable a new way of low-

cost and relatively fast diagnostics and treatment monitoring. 
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1.4:   Integration of multiscale separation in microfluidic devices 

Using the state-of-the-art technology, microfluidic devices can be fabricated from 

various materials including silicon [40, 41], polymers [29, 42, 43] or glass [44]. 

However, devices made of polymers are cost-effective compared with other materials. 

Moreover, they are made disposable to avoid contamination between samples. Beside the 

ease of fabrication, the surface of polymer devices can be modified chemically or 

biologically inside the channel to enhance the performance and specificity of the devices 

[27, 35, 38, 43, 45].  

As mentioned before that microfluidic devices have been developed for separation 

applications, most of the devices contain only a single feature either micro or nanoscale 

for a specific separation. Those devices renders the need of pre-purify processes to before 

final target can be separated from a mixture. In contrast, ones that can separate target 

species within one or two steps are highly desired and suitable for POC device. Such the 

device platform may contain multiscale features in order to manipulate different particle 

sizes within a single module. Up to date, only a few work demonstrated the use of 

multiscale elements for particle separation [38, 46]. Fachin et al. [46] introduced a 

concept of micropattern of nanoporous elements made of vertically aligned carbon 

nanotubes (CNTs) while Chen et al. [38] further utilized the micropatterned porous CNT 

device for separating particles in three orders of magnitude difference in size. 

Interestingly, with the design and integration of multiscale porous elements, different 

sized particles can be either retained or excluded within a simple flow-through process. 
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Nevertheless, the spacing of CNTs was controllable upto 80 nm which still limit an 

entrance of larger nanoparticles such as HIV. 

In order to deal with the limited pore or spacing size, different materials 

possessing controllable pore sizes in submicron range are sought. Two different materials 

with interconnected open pores were reported in literature. First, nanoporous anodic 

aluminum oxide (AAO) films containing hexagonally self-ordered array of straight-

through pores have been reported in literature (Figure 1.1(A)-(B)) [47-50]. The ordered 

straight nanopore array with pore sizes in range of a few tens to hundreds of nanometers 

makes AAO films interesting in various fields. Yanagishita et al. demonstrated that AAO 

films could be used as a template to fabricate an ordered array of nanoposts (Figure 

1.1(C)) and further for an ordered porous polymer membrane [50]. Moreover, Chen et al. 

utilized AAO as a template to fabricate an ordered array of PMMA nanopost with an 

aspect ratio (height to width) of more than 300 [51]. Such the high aspect ratio was a 

result of lyophilization that prevented nanoposts from collapsing due to surface tension 

from solvent evaporation. The spacing between each nanopost can be used for size-

exclusion, especially for nanoparticles. 

Another ordered porous material is a 3D network of spherical pores. Such the 

structure can be obtained by constructing a 3D packing of microbeads and introducing a 

second material filling in the space between the microbead structure. Then the 

microbeads can be selective etched leaving a porous structure with small interconnected 

openings between the spherical pores [52]. Gates et al. performed a 3D packing of 

monodispersed either silica or polystyrene (PS) microbeads in a “packing cell” (Figure 
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1.2(A)-(B)) [53]. A UV-curable or thermally cross-linkable prepolymer was introduced in 

between the structure. An interconnected opening size of 250 nm porous polyurethane 

was obtained after removing 1 µm PS beads (Figure 1.2(C)). Weldon et al. also 

fabricated thin PS spherical porous films through a binary suspension of silica-PS 

micro/nanobeads [54]. By melting the PS nanobeads and etching the silica beads away, 

spherical pore network with interconnected openings was revealed.  

These two porous materials show an ordered structure with uniform pore size. 

Moreover pore size or spacing between each post can be adjusted in submicron range and 

also comparable to HIV particle size. Thus it is of interest to utilize the two materials and 

incorporate with a micropattern array for viral separation. 
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Figure 1.1:   SEM images of highly orders porous AAO template viewed from (A) top 

surface and (B) cross-section. (C) SEM image of a nickel nanopost array molded from 

the AAO template. (Reprinted from Yanagishita et al., Japanese Journal of Applied 

Physics 2006) [50] 
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Figure 1.2:   Schematic of (A) three dimensional assembly of microparticles surrounded 

by a continuous matrix and (B) spherical pores revealed after removal of microparticles. 

(C) SEM image of spherical pore network with small interconnected openings. 

(Reprinted from Gates et al., Chemistry of Materials 1999) [53]  
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Chapter 2 

 
Nanoporous anodic aluminum oxide 

with a long-range order and tunable 

cell sizes by phosphoric acid 

anodization on pre-patterned 

substrates 

 

2.1:   Abstract 

Nanoporous anodic aluminum oxide (AAO) has been explored for various 

applications due to its regular cell arrangement and relatively easy fabrication processes. 

However, conventional two-step anodization based on self-organization only allows the 

fabrication of a few discrete cell sizes and formation of small domains of hexagonally 

packed pores. Recent efforts to pre-pattern aluminum followed with anodization 

significantly improve the regularity and available pore geometries in AAO, while 

systematic study of the anodization condition, especially the impact of acid composition 

on pore formation guided by nanoindentation is still lacking. In this work, we pre-

patterned aluminum thin films using ordered monolayers of silica beads and formed 
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porous AAO in a single-step anodization in phosphoric acid. Controllable cell sizes 

ranging from 280 nm to 760 nm were obtained, matching the diameters of the silica 

nanobead molds used. This range of cell size is significantly greater than what has been 

reported for AAO formed in phosphoric acid in the literature. In addition, the 

relationships between the acid concentration, cell size, pore size, anodization voltage and 

film growth rate were studied quantitatively. The results are consistent with the theory of 

oxide formation through an electrochemical reaction. Not only does this study provide 

useful operational conditions of nanoindentation induced anodization in phosphoric acid, 

it also generates significant information for fundamental understanding of AAO 

formation. 
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2.2:   Introduction 

Owing to its self-ordered pore arrangement, straight through-pore geometries and 

ready availability out of a clean room environment, nanoporous anodic aluminum oxide 

(AAO) is attractive to numerous applications such as electrical and optical sensing, 

separating molecules and particles, as well as templating various nanostructures [1-10]. 

Conventionally, AAO films with self-ordered nanoporous structures are fabricated 

following a two-step anodization process developed by Masuda et al [10-12]. Although 

various anodization parameters have been studied in great detail, only a few discrete cell 

sizes are available using the self-ordering method.  These are determined mainly by the 

applied voltage and type of acids used: for example, sulfuric acid at 25 V, oxalic acid at 

40 V and phosphoric acid at 195 V give 63 nm, 100 nm and 500 nm pore intervals, 

respectively [13]. When an anodization of aluminum is carried out outside of these 

narrow process windows, the degree of spatial organization decreases considerably. 

Another shortcoming of the self-ordering method is the need of long anodization time 

and a relatively thick aluminum layer. Thus, the method does not apply easily to 

aluminum thin films deposited on a substrate [14]. Furthermore, the domain size with 

hexagonal packed pores is limited to several micrometers; it is difficult to obtain long 

range order through the self-organization process.  

As an alternative to the self-ordered anodization, pre-patterning techniques to 

modify an aluminum surface prior to anodization have been introduced to improve a 

long-range order of AAO cell array, promote tunable cell sizes, reduce the anodization 

time and enable straight pores in thin aluminum films on different substrates. The 
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indented topographic features produce a high local electric field, which enhances 

dissolution of the oxide film and serve as pore nucleation sites [15]. Shallow indentations 

have been created from various molds. For example, Masuda et al. used a SiC mold 

containing hexagonal array of convexes created by e-beam lithography to produce highly 

ordered AAO films [16]. Mikulskas et al. used an optical diffraction grating as an 

imprinting mold to pattern an aluminum surface [17]. However, the small dimension and 

high cost of the fabricated molds limit their wide applications. Alternatively, focused ion 

beam drilling has been used to indent aluminum directly [18, 19], while the patterned 

area is limited to the 10-100 m order due to the slow and serial indentation process. 

Various approaches to pattern a large area of aluminum for ordered AAO have been 

reported. Ordered arrays of nickel bumps or pyramids have been created by interference 

lithography and used as a stamping mold for wafer-scale anodization [20]. Holographic 

lithography has also been employed to create photoresist grating patterns on a thin film 

aluminum and form highly ordered AAO [21]. Recently, a combination of imprinting 

lithography and wet etching has been carried out to grow highly ordered AAO on a 4-in 

silicon wafer [22]. However, these nano-lithographic patterning techniques require 

sophisticated clean room facilities and are not easily accessible. On the other hand, 

several groups have utilized nanobeads of 13-500 nm in diameter to imprint an aluminum 

surface and guide highly ordered pores in AAO [23, 24]. The nanobead molds offer an 

advantage over other imprinting methods in that no clean room access is required and 

continuously tunable bead sizes are easily available [23-25]. Moreover, nanobeads can be 
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patterned into long range hexagonally ordered domains in scalable processes [26], 

enabling large area AAO formation through pre-patterning.  

Despite numerous reports on pre-patterning guided anodization, prior work has 

focused on pattern transfer from the mold to the oxide film; there is little knowledge 

about how the electrolyte composition affects the oxide formation.  Additionally, cell size 

of ordered AAO is limited to below 500nm, even with the nanoindentation approach.  To 

address these limitations, we report here an investigation of oxide film growth rate as a 

function of acid concentration for cell sizes in a wide range through pre-patterned 

aluminum anodization in phosphoric acid. We use monolayers of hexagonally packed 

silica nanobeads as the imprinting mold to control the cell size between 280 to 760 nm. In 

addition to the acid concentration, the relationships between cell size, intrinsic pore size, 

anodization voltage and oxide film growth rate are also studied quantitatively.  
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2.3:   Experimental details 

2.3.1 Materials 

Tetraethyl orthosilicate (TEOS) was obtained from Sigma-Aldrich (St. Louis, 

MO). Ethanol (EtOH) – 200 proof was obtained from Pharmco-AAPER (Brookfield, 

CT). Ammonium hydroxide (NH4OH) and premium plain glass microscope slides were 

purchased from Fisher Scienctific (Pittsburgh, PA). Phosphoric acid (H3PO4) was 

purchased from Alfa Aesar (Ward Hill, MA). 

2.3.2 Overview of the strategy to form tunable AAO pores through 

nanoimprinting 

The schematic in Figure 2.1 demonstrates the process to fabricate highly ordered 

nanoporous AAO thin films by nanobead imprinting. The process starts from depositing 

silica nanoparticles into a large, continuous and close-packing monolayer on glass slides 

by the convective deposition [27] (Figure 2.1(A)-(B)).  Polystyrene nanobeads are mixed 

into the suspension at a concentration of 4 vol%, co-deposited and melted afterwards to 

stabilize the silica monolayer.  The silica monolayer is then used as a template mold to 

imprint an aluminum thin film (Figure 2.1(C)-(D)). The resulting nanodimple arrays on 

the aluminum surface (Figure 2.1(E)-(F)) serve as pore nucleation sites in subsequent 

anodization and guide the formation of straight pores of the desired pore size in 

phosphoric acid under a constant voltage (Figure 2.1(G)-(H)).  
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Figure 2.1:   Schematic showing the process to fabricate highly ordered nanoporous AAO 

thin films by nanobead imprinting. (A) The deposition of monolayer of tightly packed 

silica as the imprinting mold. (B) A continuous monolayer of nanobeads covering a 3″  

1″ glass slide. (C) Imprinting of nanobead mold onto an aluminum substrate. (D) An 

SEM image of hexagonally packed nanobead array used in (C). (E) The resulting 

nanodimples on aluminum surface serving as pore nucleation sites in the anodization 

process. (F) An SEM image of the ordered array of nanodimples matching patterns on the 

imprinting mold. The inset is a high magnification image showing the arrangement of the 

indents. (G) An AAO film with a pore arrangement comparable to the imprint mold. (H) 

A comparison of cell arrangement between patterned and un-patterned areas on the same 

AAO film. Scale bars are 2 µm.  
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2.3.3 Creation of the nanoimprinting mold 

Monodispersed silica nanobeads were synthesized by hydrolysis of TEOS 

following a recipe modified from the literature [25]. Deionized (DI) water, ethanol, 

NH4OH and TEOS were mixed at different ratios (Table 2.1) and left to react at room 

temperature for 24 hours under continuous stirring. The synthesized silica nanobeads 

were in the range of 280 nm to 760 nm with a narrow size distribution (Table 2.1). After 

multiple washes by DI water and concentration by centrifugation, suspensions of the 

nanobeads were diluted to 16 vol% in DI water. Close-packed silica-nanobead 

monolayers were prepared through convective deposition on plain glass slides following 

the method reported by Kumnorkaew [27]. The deposition blade, a parafilm treated glass 

slide, was positioned at 45º above the substrate and 10 µl of silica bead suspension was 

pipetted between the substrate and blade. The substrate was then linearly translated at 

500-550 m/min to deposit a monolayer of silica beads (Table 2.2). To promote a long-

range order in the monolayer of Si nanoparticles, 100-nm polystyrene nanobeads was 

also mixed into the silica bead suspension at a final concentration of 4 vol% except for 

the 280-nm silica bead samples where polystyrene nanoparticles were not added due to 

an interference to silica hexagonal packing. After deposition on a whole glass slide of 3″ 

× 1″, the slide was cut and the deposition area was manually patterned into a 10 mm × 20 

mm region for nanoimprinting. Beads outside the region were removed by a blade and 

wiped. This step is necessary to reach the desirable indentation pressure under the 

maximal available force on the universal testing instrument (Instron 5500 R). 

Subsequently, the slides were heated to 240 °C for 5 min to melt the polystyrene 
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nanobeads, which strengthen the integrity of the silica monolayer and allow for multiple 

use of each deposition. 
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Table 2.2:   Suspension compositions and deposition rates of each nanobead sample 

 

Nanobead samples Suspension composition Deposition rate (µm/min) 

SiO2-280* 16% SiO2 510 

SiO2-410* 16% SiO2/ 4% PS** 500 

SiO2-500* 16% SiO2/ 4% PS** 500 

SiO2-645* 16% SiO2/ 4% PS** 500 

SiO2-760* 16% SiO2/ 4% PS** 550 

 

*The numbers refer to the diameter of the silica beads.  

** Polystyrene beads are 100 nm in all cases. 
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2.3.4 Nanoimprinting of aluminum thin films 

An aluminum film of five micrometers thick was evaporated onto clean glass 

slides using an electron-beam evaporator (Indel Systems-2602). The e-beam gun was a 

Telemark 4 pocket gun assembly with the Telemark TT-6 power supply, and controlled 

with a Sycon Systems STC-200/SQ Deposition Rate Controller. The aluminium source 

was 99.99% pure. Glass slides were cleaned by piranha solution and evaporation was 

carried out at a starting vacuum level of 1.1 x 10-7 torr. The deposition rate was 2-5 

angstrom per second. 

The silica monolayer was then pressed onto the aluminum surface at a pressure of 

30 kN/cm2 for 30 seconds using the Instron instrument to create a pattern of nanodimple 

arrays. This imprinting pressure was optimized to create dimples without cracking the 

glass substrates. As mentioned above, the silica nanoparticles were patterned onto an area 

of 10 mm × 20 mm to satisfy this pressure given the force specifications on the Instron 

instrument. The patterned aluminum was then ultrasonicated in ethanol for 10 minutes, 

rinsed with DI water, and dried by nitrogen gun before anodization.  

2.3.5 Anodization of nanoimprinted aluminum substrates 

Aluminum was anodized in phosphoric acid under vigorous stirring. The 

concentrations of phosphoric acid were varied from 0.6 M to 3 M for 280-nm samples, 

from 0.2 to 0.6 M for 410-nm samples, from 0.04 to 0.2 M for 500-nm samples, from 4 to 

15 mM for 645-nm samples, and from 1 to 5 mM for 760-nm samples (Table 2.3). To 

prevent sample burning, the electrolyte stock solution was diluted to the desirable final 

concentrations using a mixture of DI water and ethanol at a volume ratio of 4:1. The 
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electrolytic temperature was maintained at -7 °C by situating in a Styrofoam box 

containing a mixture of isopropanol and tightly packed ice/dry ice. All samples were 

anodized for 1 hour using a DC power supply (Electronic Measurement Inc., 

TCR300T16). The anodization voltages (Va) were initially chosen corresponding to the 

relationship of cell size (Dc in nm) = Va  2.5 nm/V [28], i.e. 112 and 164, 195, 255, and 

296 V to form AAO films with indentation periods of 280, 410, 500, 645, and 760 nm 

respectively. However, for indentation periods of 500, 645, and 760 nm, anodization 

current surged when the calculated Va of 200, 258 and 304 V were applied. Instead, 

voltages were lowered slightly to 195, 255 and 296 V respectively to maintain an 

anodization current density in the low milli-ampere/ cm2 range. 
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Table 2.3:   Anodization conditions 

 

Target AAO cell size 

(nm) 

Applied voltage 

(volt) 

H3PO4 concentration 

(mol/dm3) 

280 112 0.6 

  0.8 

  1.0 

  1.3 

  1.7 

  2.0 

  2.5 

  3.0* 

410 164 0.20 

  0.30 

  0.40 

  0.50 

  0.60 

  0.65* 

500 195 0.04 

  0.06 

  0.08 

  0.10 

  0.13 

  0.17 

  0.20 

  0.24* 

645 255 0.004 

  0.006 

  0.008  

  0.010 

  0.012 

  0.014 

  0.015 

  0.016* 

760 294 0.001 

  0.002 

  0.003 

  0.004 

  0.005 

  0.006* 

 

* indicates the critical concentrations corresponding to each applied voltage. 
Electrolyte temperature is maintained at -7 °C in all cases.  
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2.3.6 Sample Characterization 

Nanofeatures obtained in this work were characterized using a field-emission 

scanning electron microscope (FE-SEM – Hitachi 4300) and an atomic force microscope 

(AFM – Veeco di Dimension, D3100 V). The nanobeads, cell and pore sizes, and AAO 

film thickness were analyzed by ImageJ [29]. 
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2.4:   Results and Discussion 

2.4.1 Nanoimprinting of aluminum thin films 

The silica nanoparticles were synthesized in a range of 280 to 760 nm (Table 2.1). 

Using the convective deposition procedure developed by Gilchrist group [27], 

monolayers of silica nanoparticles deposited on glass substrates were obtained and are 

shown in Figure 2.2(A1)-(A5). Within the monolayer, the nanobeads take a hexagonal 

close-packed arrangement over a long range. Moreover a large area of deposition on the 

order of square centimeters can be created in ~15 minutes (Figure 2.1(B)). Such a process 

is scalable to accommodate flat substrates of any size and the mold is re-usable (Figure 

2.3). These deposited nanoparticles serve as imprinting molds to indent aluminum 

deposited glass substrates. After imprinting on aluminum substrate, homogeneous 

nanodimples are formed on entire imprinted area while narrow bands of silica nanobead 

occasionally came off from the mold edge (Figure 2.4). The resulting nanodimples have a 

period matching the nanobead diameters (Figure 2.2(B1)-(B5)). Indentation depths are 

calculated from the diameters of the nanodimple opening in SEM images by 

trigonometry. The averages of dimple depth are 73.45 ± 5.08 nm, 68.80 ± 5.56 nm, 56.78 

± 3.52 nm, 42.97 ± 6.42 nm, and 26.30 ± 3.16 nm for the 760-nm down to 280-nm 

samples, respectively. The depths of 760-nm and 500-nm samples are confirmed by AFM 

measurements (Figure 2.5), which are 69.26 ± 3.75 nm and 53.53 ± 5.23 nm respectively, 

comparable to the calculated values. 
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Figure 2.2:   SEM images showing the nanoparticle monolayers used as the imprinting 

molds (row (A)), the indented aluminum thin films (row (B)), surfaces of the anodized 

oxide films (row (C)) and cross-section views of anodized oxide films (row (D)). The 

features were created using monolayers of 280 nm (column 1), 410 nm (column 2), 500 

nm (column 3), 645 nm (column 4) and 760 nm (column 5) silica nanoparticles, 

respectively.  The images show a translation of the nanofeature arrangements from the 

molds to the AAO films. All scale bars are 2 µm. 
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Figure 2.3:   A 500-nm nanobead mold after being used (A) 0, (B) 5, and (C) 10 times. 

The mold is mostly intact after reuse except for thin stripes (< 10 m) silica beads lost 

from the mold edge. (D) An indented aluminum surface with nanobeads transferred from 

the mold edge. (E) Occasionally, small islands of nanobeads are lost inside the deposited 

monolayer after imprinting for 10 times. Scale bars are 2 cm in (A)-(C), 10 µm in (D), 

and 30 m in (E). 
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Figure 2.4:   (A) An SEM image showing a large area of aluminum indented by 500-nm 

nanobead mold. (B) An SEM image showing an area of indentation boundary. The 

aluminum substrate can be indented over the whole surface to the mold boundary. 

Sometimes, a narrow band of silica beads is transferred from the mold edge to the 

aluminum surface after imprinting. All scale bars are 5 µm. 
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Figure 2.5:   Topography of aluminum substrate indented by 760-nm beads measured by 

(A) SEM and (B) AFM. (C) The depth profile extracted from the dash line in (B). The 

indentation creates nanodimples with a depth of 69.26 ± 3.75 nm by AFM measurement. 

Using bead size of 760 nm and nanodimple opening of 448.69 ± 13.93 nm from SEM 

images, the depth of 73.45 ± 5.08 nm can be calculated by trigonometry, which matches 

the results from AFM measurement. All scale bars are 2 µm.  
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2.4.2 Anodization of nanoimprinted aluminum substrates 

Following the anodization process, the AAO porous structure forms a 

hexagonally packed cell array with the periods and arrangements consistent with those of 

the imprinting molds (Figure 2.2(C1)-(C5)). In contrast to the few discrete cell sizes 

available using non-patterned flat substrate [13], this pre-patterning procedure allows 

tunable cell sizes through selection of imprinting molds of different particle diameters. 

The regular ordered cell arrangement is not limited to the top surface, but 

maintained through the film thickness (Figure 2.2(D1)-(D5)) as observed from the cross-

sectional images. The varying film thickness in Figure 2.2(D) is a result of differences in 

electrolyte concentrations, which are discussed later in this paper. It should be noted here 

that although electrolyte concentration plays an important role in the film growth rate, it 

does not seem to impact the cell and pore geometry, which is different from pH-

dependent cell arrangement in the self-ordering process [30].  

Distinct from the self-organization process that takes hours of anodization to 

obtain hexagonally arranged pores, nanoindentation predefines the pore location and 

allows immediate formation of ordered pores [23, 24]. A comparison between 

anodization on patterned and un-patterned areas of the same sample is shown in Figure 

2.1(H). It is clearly observed that ordered pores form only in the pre-indented region. 

Thus, the patterning technique is effective in greatly reducing the reaction time and 

aluminum thickness to produce straight pores. This is especially beneficial for the 

anodization of deposited thin aluminum films.  
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2.4.3 Effect of anodization voltage on cell size, pore size and porosity 

When the cell sizes are inspected more carefully, it is found that the cell sizes 

range from 280 to 760 nm, matching the nanobead molds. The cell size increases linearly 

with the anodization voltage, governed through the relationship Dc ≈ Va  2.6 nm/V 

(Figure 2.6). The proportionality is slightly off from previously reported value of 2.5 

[28], due to the need to reduce voltage and avoid current surge when pre-patterned 

substrates with periods greater than 500 nm are used. The pore size (Dp) of 88 to 211 nm 

also increases linearly with the voltage and the relationship is Dp ≈ Va  0.6 nm/volt. As 

the voltage increases, the porosity is found to vary between 6% and 9% approximately. 

This value is slightly lower than what has been reported for the self-ordering regime of 

10% porosity, dictated by an optimal stress induced from the volume expansion. 

Disordered pores often do not follow the 10% porosity rule [30]. We demonstrate here 

that regular, ordered pores guided by pre-indented patterns also deviate from the 10% 

rule. This is likely a result of residual stress in the aluminum layer from the imprinting 

process. Since the pores can be widened in a post-anodization process, the lower-than-

10% porosity after anodization should not limit AAO in practical applications where high 

porosity is desired. 
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Figure 2.6:   Relationship between the applied voltage (Va, volt) and the resulting cell 

diameter (Dc, nm), pore diameters (Dp, nm), and porosity. The linear fit of the cell 

diameter versus voltage yields Dc = 2.6038  Va - 8.3497. The pore diameter also 

increases linearly with the anodization voltage by Dp = 0.5997  Va + 21.91. The porosity 

(P) was calculated as 2
cp )/)(32/( DDP  , which varies between 6% and 9% in the cell 

size range fabricated. 
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2.4.4 Effect of H3PO4 concentration on growth rate of AAO films 

Capability to continuously tune the cell size allows us to study the influence of 

electrolyte composition on the AAO formation at different voltages. To facilitate a 

comparison of electrolyte composition, we used phosphoric acid in all anodizations and 

varied only its concentration. While the cell and pore sizes are found to be independent of 

the acid concentration, the film growth rate varies greatly with acidity (Figure 2.7). The 

overall film thicknesses were measured directly from SEM images and the average AAO 

growth rates were calculated. With all the patterned AAO films, the film growth rate 

increases exponentially with the acid concentration until a critical value is reached, at 

which the anodization current density surges within 60 seconds and the film growth 

becomes non-uniform or breaks down. This critical concentration of phosphoric acid is 

found to rely on the anodization voltage. For anodization voltage of 164, 195, 255, and 

296 V, the critical concentrations are 0.65, 0.24, 0.016, and 0.006 M, respectively (dash 

lines in Figure 2.7). When anodizing a pre-patterned substrate with a period of 280 nm at 

112 V, the reaction is stable for an hour even when the phosphoric acid concentration is 3 

M. Thus, no critical concentration is identified in this case. The maximum growth rate is 

found to be around 1-2 µm/hr in all cases, slightly lower than that reported of self-

ordered mild anodization around  2-6 µm/hr [20]. The overall lower growth rate is likely 

a result of low anodizing temperature [31] of -7 °C used to maintain a current density in 

the low mA/cm2 range. 
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Figure 2.7:   Relationship between the electrolytic concentration and film growth rate for 

different nanoindentation periods. For all the cell sizes, the film growth rate (GR, nm/hr) 

increases with the acid concentration (C, mol dm-3). The best fittings for each series show 

an exponential growth rate: GR = 311.3 exp(0.3594*C) for interpore distance of 280 nm; 

GR = 219.34 exp(2.187*C) for interpore distance of 410 nm; GR = 374.18 

exp(8.1051*C) for interpore distance of 500 nm; GR = 341.38 exp(100.11*C) for 

interpore distance of 645 nm; and GR = 438.12 exp(155.53*C) for interpore distance of 

760 nm. The dash lines indicate the critical concentrations leading to fast current surge 

within 60 seconds for each indentation period. Anodization of the 280 nm sample is 

stable even in the high concentration of phosphoric acid of 3 M. 
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The AAO growth involves movements of ionic species between electrolyte/ oxide 

and oxide/ metal interfaces under an electric field. The ion flux can be monitored by the 

current density in the anodization process (Figure 2.8(A)). Inspecting the current density 

as a function of time, it is observed that at the beginning of the anodization, there is a 

high current density, suggesting fast initial growth of AAO. The current density and 

growth rate then decrease over time until a steady state is reached due to the formation of 

AAO barrier at the bottom of the pores, which decreases the ion mobility. The steady 

state current density is found to be heavily dependent on the acid concentration under a 

fixed voltage. Taking 410 nm pre-indentation pattern anodized at 164 V as an example, 

the steady state current densities are 6.1, 8.3 and 11.2 mA/cm2 for H3PO4 concentrations 

of 0.2, 0.4, and 0.6 M, respectively. The corresponding average AAO film growth rates 

are 318, 556, and 792 nm (Figure 2.8(B)). The dependence of anodization current on the 

acid concentration thus offers a means to control the AAO growth rate.  
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Figure 2.8:   The profiles of current density of AAO film formed at 164 V in H3PO4 

concentrations of 0.2M, 0.4M, and 0.6M (A) Current profile as a function of time for 60 

min. (B) Current density and AAO growth rate as a function of the H3PO4 concentration. 
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The anodization current is related to the electrolyte concentration, electric field, 

and temperature according to the following equation: 

𝑖 = 2𝑎𝑛𝜈 exp (− (
𝑊−𝑞𝑎𝐸

𝑘𝑇
))   (Eq. 2.1) 

where n is the ion concentration, ν is the jump frequency, a is the activation distance, W 

is the energy barrier and E is the interfacial electric field [32]. Although the applied 

voltage and temperature are critical parameters for an oxide formation, they are fixed for 

each AAO cell size. Thus, the only parameter that contributes significantly to the current 

density for a fixed cell size is the acid concentration. From a first inspection, it appears 

that the anodization current should scale linearly with the acid concentration. However, 

an increase of the acid concentration reduces the Debye length at the electrode surface 

and increases the local electrical field [33]. The exponential dependence of anodization 

current on the electrical field in Eq. 2.1 dictates the observed exponential relationship 

between the film growth rate and the acid concentration as seen in Figure 2.7.   

When anodization is compared among different indentation patterns or applied 

voltages, it is observed that the acid concentration decreases exponentially with the 

increase of the anodization voltage for a fixed growth rate (Figure 2.9). This observation 

is consistent with Eq. 2.1:  in the case that the current density (or growth rate) and 

temperature are constant, the ion concentration n is exponentially proportional to the 

electrical field, which linearly scales with the anodization voltage.  
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Figure 2.9:   H3PO4 concentration as a function of the applied voltage for different growth 

rates. The black solid line predicts the critical concentrations which yield a breakdown.  
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Although the AAO growth rate can be improved by increasing the acid 

concentration, it is still limited by a breakdown mechanism, where the current density 

surges rapidly and the oxide film grows non-uniformly (Figure 2.10). Such breakdown is 

caused by an avalanche electron multiplication process by impact ionization [34]. Albella 

et al. proposed a model that the breakdown voltage of anodic Ta2O5 film is dependent on 

the logarithm of electrolyte concentration. The relationship is a result of increased 

avalanche size with electrolyte concentration. Figure 2.9 shows a similar dependence of 

electrolyte concentration and breakdown voltage for AAO formation and supports the 

model. 
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Figure 2.10:   The profiles of breakdown current density at critical concentrations in 

different applied voltages. 
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As the cell size scales with the voltage, fabricating a nanoporous AAO film with a 

cell size larger than 500 nm has been found challenging due to breakdown. Although 

multiple techniques have been investigated to suppress burning, such as the usage of a 

powerful heat sink and conditioning the electrolyte with alcohol or polyethylene glycol 

[20, 35, 36], only a few studies reported successful fabrication of nanoporous AAO with 

cell size above 500 nm. Ono et al. [37] obtained AAO with cell sizes in the range of 300 

to 600 nm using various acids, but the size of the ordered domains were small, only 

extending a few microns. Chu et al. fabricated AAO cell sizes as large as 950 and 980 nm 

by anodizing in malic acid at 450 V and in citric acid at 370 V, respectively, but the pore 

arrangement was not well ordered [38]. Fournier-Bidoz et al. [24] anodized pre-patterned 

aluminum in 0.3 M H3PO4 to control the cell size in the range of 150-500 nm, but 

claimed anodization above 200 V to be unstable. Jagminas et al. [39] varied the 

phosphoric concentration from 0.005 to 0.3 M and tested the breakdown voltage using 

aluminum of different acid purities and found a convergence point of a breakdown 

voltage at 260 V corresponding to a cell size of  approximately 650 nm, which was 

suggested as the cell size limit for anodization in phosphoric acid. Distinct from the prior 

work, we demonstrate here long-range ordered nanoporous AAO with cell sizes as large 

as 760 nm is possible by anodization in phosphoric acid. This is achieved by the 

combination of nanoimprinting and careful consideration of the anodization condition, 

including the voltage, acid concentration and temperature. The largest cell size of 760 nm 

obtained here is not the physical limit of the process but determined by the maximum 

output voltage in our power source.  
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2.5:   Conclusions 

Imprinting an aluminum surface with silica nanobeads, along with carefully 

selecting anodization conditions such as voltages and concentrations of phosphoric acid, 

enables the fabrication of highly ordered nanoporous AAO film with a wide range of cell 

sizes using only a single step of anodization. In the procedure, the cell size is 

continuously tunable from 280 to 760 nm based on the imprinting molds and the 

anodization voltages. The film growth kinetics and reaction stability are controlled by the 

electrolyte concentration. More concentrated electrolyte solution yields a higher growth 

rate, although the acid concentration has to be kept below a critical level to avoid the 

breakdown phenomena. As the mold fabrication and imprinting process are easily 

controllable and scalable, large areas of AAO with a long range order and flexible cell 

size can be produced in a cost-effective fashion to enable the broader applications of 

AAO films. 
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Chapter 3 

 
Microfluidic Devices with Regular 

Macroporous Structures for HIV Viral 

Capture 

 

3.1:   Abstract 

There is a need to develop inexpensive, portable and easy-to-use devices for viral 

sample processing for resource-limited settings. Here we offer a solution to efficient virus 

capture by incorporating macroporous materials with regular structures into microfluidic 

devices for affinity chromatography. Two-dimensional simulations were first conducted 

to investigate the effects of two structures, a nanopost array and a spherical pore network, 

on nanoparticle capture. Then, the two structures were created in polymers by templating 

anodic aluminum oxide films and 3D close-packed silica particles, respectively. When 

the microdevices containing functionalized porous materials were tested for human 

immunodeficiency virus (HIV) isolation, capture efficiencies of 80-99% were achieved 

under a continuous flow. Comparatively, functionalized flatbed microchannels captured 

around 10% of HIV particles. As the characteristic dimensions of the nanostructures are 

tunable, such devices can be adapted for the capture of different submicron bioparticles. 
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The high capture efficiency and easy-to-operate nature suit the need of resource-limited 

settings and may find applications for point-of-care diagnostics. 
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3.2:   Introduction 

Effective separation and concentration of viruses or their biomarkers are essential 

steps in performing accurate and reliable viral load measurements for clinical diagnostics. 

However, current techniques such as ultracentrifugation [1], electrophoresis [2-4], 

chromatography [5-8], or magnetic beads based separation [9] require sophisticated 

equipment, skilled technicians and/or expensive reagents. These requirements inevitably 

limit accessibility of viral diagnostics in resource-limited regions. 

To address the problem, lab-on-a-chip devices have been developed to process 

biofluids containing viruses or other nanoparticles. These devices can be integrated with 

micro-detectors for rapid and cost-effective analysis of biological samples at the point of 

need [10-12]. Employing an ultrafiltration process, several types of porous membranes 

have been encapsulated into microfluidic devices to physically capture whole particle 

viruses [13-15]. However, these approaches cannot distinguish target particles from non-

target species of comparable sizes, which may interfere with downstream detection. On 

the other hand, affinity separation offers more biochemical specificity [16-18]. Chen et 

al. designed micro-mixers to promote the capture of human immunodeficiency virus 

(HIV) by antibody-functionalized magnetic beads in microchannels [19]. The capture 

efficiency is limited to 60%, likely due to the difficulty of predicting and optimizing the 

collision between target species and magnetic beads. Alternatively, porous matrices with 

regular structures and pore sizes comparable to the targets offer the opportunity to control 

the interaction between analyte and affinity groups [20]. Conventional chromatography 

matrices for viral and microvesicle separation [8, 21] such as agarose gels or packed 
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beads, have a broad pore size distribution [8, 21]. Nanostructured materials possessing 

characteristic dimension comparable to bionanoparticles, narrow pore size distribution 

and a regular pore structure are desirable for highly efficient viral isolation. 

As a scalable and clean-room free approach, templating synthesis has been used 

to create various ordered nanostructures [22, 23]. In the form of macroporous matrices 

with interconnected pores on the submicron scale, two types of templated geometries 

have been reported. Yanigishita et al. utilized anodic aluminum oxide (AAO) porous 

membranes as a template to form ordered polymer nanopost arrays [24]. Chen et al. 

further embedded high aspect ratio nanopost arrays from AAO replication into 

microfluidic devices that function as bioreactors [25]. Gates et al. and Weldon et al. 

fabricated monolithic matrices with interconnected spherical pores by templating close-

packed microbeads [26, 27]. In these porous materials, the pore geometries are regular 

and pore sizes are tunable within a wide range by selecting appropriate templates [26, 

28]. These nanotemplated matrices have not yet been tested for viral separation. 

Herein, we investigated two macroporous structures, a nanopost array and a 

spherical pore network, for viral capture in a microfluidic format. We first performed 

computational fluid dynamics simulations to understand how pore geometry influences 

the interaction between nanoparticles and porous matrices. Next, we created materials 

with regular macropores and integrated them into microfluidic devices.  We then studied 

the capture efficiencies of HIV particles in the functionalized nanomaterials and 

compared them to capture efficiencies in flatbed devices.  
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3.3:   Experimental details 

3.3.1 Computational fluid dynamics simulation 

Creeping Flow Module and Particle Tracing for Fluid Flow Module were coupled 

in COMSOL Multiphysics to study the nanoparticle capture efficiency. The characteristic 

repeating units were used as the capture bed:  a hexagonal array of circle islands was used 

to represent a 2D section of a nanopost array, and an array of interconnected circular 

voids represented a 2D section of a spherical pore structure. The shortest separation 

distance (D) between the circular islands or of the pore neck was varied in the sub-micron 

range from 200 to 600 nm (targeting average HIV particle size of 110-164 nm) [29]. The 

hexagon diagonal and void diameter (W) were varied accordingly to maintain a constant 

D/W ratio of 0.2.  The particle density was 1.05 g/cm3 and the diffusion coefficient was 

set at 5 µm2/s, corresponding to the values of HIV virions in plasma. An average inflow 

velocity of 400 µm/s was introduced along with 1000 particles per micron uniformly 

distributed at the inlet. Particle-particle interaction was neglected. Drag force and 

Brownian force were introduced using the COMSOL built-in formulation and centroids 

of the particles were tracked.  The inlet was set 1.5 µm away from the capture zone to 

allow the particle convection to fully develop. The density and viscosity of fluid were 

1.00 g/cm3 and 1 mPa·s. For comparison, capture in a flat channel with a wall-to-wall 

separation of 30 µm and length of 10 µm was also simulated. All capture surfaces were 

specified to be 100% binding probability after particle-surface collision.  
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3.3.2 Materials 

SU-8 photoresist was purchased from MicroChem (Newton, MA). Sylgard 184 

silicone elastomer kit was purchased from Dow Corning (Midland, MI). 99.997% 

aluminum foil, 85% aq. soln. phosphoric acid and 98% anhydrous copper (II) chloride 

were purchased from Alfa Aesar (Ward Hill, MA). Polymethyl methacrylate (PMMA) 

and polystyrene (PS) sheets were obtained from Plaskolite (Columbus, OH). A binary 

suspension containing 20 vol% of 1-µm silica beads and 8 vol% of 100-nm PS beads in 

water was kindly provided by Professor Gilchrist at Lehigh University (Bethlehem, PA). 

Methyl methacrylate (MMA) monomer, EDC (N-(3-Dimethylaminopropyl)-N'-

ethylcarbodiimide), NHS (N-hydroxysuccinimide sodium salt), and lyophilized bovine 

serum albumin (BSA) were purchased from Sigma Aldrich (St. Louis, MO). PMMA fine 

granules (M.W. 97000, M.N. 44700, Acros Organics) were purchased from Fisher 

Scientific (Pittsburgh, PA). Benzoin methyl ether was obtained from Electron 

Microscopy Sciences (Hatfield, PA). Phosphate buffered saline (PBS) was obtained from 

Mediatech (Herndon, VA). NeutrAvidin biotin-binding protein was purchased from 

Thermo Scientific (Rockford, lL). An HIV-1 p24 enzyme-linked immunosorbent assay 

(ELISA) kit was obtained from Perkin-Elmer (Waltham, MA). Polystyrene nanobeads 

100 nm in diameter (internally dyed with FirefliTM Fluorescent Red (Ex 542/ Em 612 

nm)) was obtained from Thermo Scientific (Fremont, CA). 

3.3.3 Device fabrication 

Three types of microfluidic devices were fabricated: flatbed channels, porous 

channels with hexagonal post arrays and with spherical porous networks. 
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Flatbed devices: PMMA and PS flatbed devices were fabricated by an embossing 

process. First, SU-8 patterns of 50 mm × 25 mm × 30 µm were created on a silicon wafer 

by standard photolithography. Polymer sheets were cut into 40 × 8 mm2 pieces and holes 

were drilled as the inlet and outlet. The polymer pieces were then manually pressed onto 

the SU-8 pattern at 120 °C to form a 25 mm long indentation along the length of polymer 

piece. Next, the indented surface was glued to a flat sheet of the same material with 

epoxy and the sides were sealed. Finally, tubing was inserted into the inlet and outlet and 

fixed by epoxy. The channel dimension was 25 mm × 8 mm × 30 µm (Figure 3.1(A1-

A2)). 

Microchannels with nanopost arrays: The PMMA nanopost devices were 

fabricated by templating AAO films. First, aluminum foil was anodized at 195 V in 0.1M 

phosphoric acid mixed with ethanol at -7 °C via a two-step anodization [28]. After pore 

widening in 0.1M phosphoric acid for 1 hr at room temperature, the AAO sample was cut 

into 25 mm × 10 mm pieces. A pre-polymerization solution containing MMA monomer, 

1% w/v PMMA granules, and 1% w/v benzoin methyl ether was then introduced into the 

AAO nanopores under vacuum for 15 min [25]. After drying, the monomer-treated side 

was attached to a flat PMMA substrate dampened by the pre-polymerization solution, and 

the assembly was exposed to ultraviolet light for 30 min. Next, the back aluminum was 

removed by a CuCl2 solution and the AAO pore barrier was opened by immersing the 

sample in 1.5M phosphoric acid for 5.5 hr. The newly exposed backside was then 

attached to another piece of PMMA flat sheet that had inlet and outlet holes drilled into 

it. The pre-polymerization solution was pipetted onto the contact surface and UV-
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polymerized. Subsequently, the sides of the assembly were cut open to allow AAO film 

removal in 20 wt% NaOH for several days. After rinsed and immersed in de-ionized (DI) 

water overnight with gentle stirring, the device was lyophilized to ensure standing 

PMMA nanoposts [25]. Eventually the sides were sealed, and tubing was connected by 

epoxy glue. The footprint of the nanopost-covered region was 25 × 8 mm2 and the 

nanoposts were ~25-30 µm tall (Figure 3.1(B1-B3)). 

Microchannels with spherical pores: The PS spherical pore devices were 

fabricated by templating close-packed silica beads. First, a polydimethyl siloxane 

(PDMS) open channel of 25 mm × 8 mm × 30 µm was fabricated using standard soft 

lithography. Then, 20 µL of a binary suspension of 1-µm silica and 100-nm PS in DI 

water was pipetted into the PDMS channel. The PDMS surface was pretreated by a 

plasma gun to promote spreading of the suspension throughout the open channel. After 

drying, the silica beads self-assembled into ordered structures with the PS beads filling 

the interstitial space. Next, the PS nanobeads were melted at 240 °C for 10 min. The 

sample was glued to a PS flat sheet by epoxy glue and the PDMS mold was peeled off. 

Afterwards, silica beads were removed in 50% hydrofluoric acid and the device was 

rinsed in DI water. The porous matrix was attached to a flat piece of PS with drilled inlet 

and outlet by double-sided tape. Finally, the sides were sealed and the device was 

connected to tubing with epoxy glue. The porous region was 25 mm × 8 mm × 30 µm 

(Figure 3.1(C1-C3)). 
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Figure 3.1:   Schematics showing the fabrication processes of (A) PMMA and PS flatbed 

devices, (B) PMMA nanopost devices, and (C) PS spherical pore devices. (A1) A 

microchannel was formed on the substrate by manual embossing. (A2) The open channel 

was attached to a second flat sheet of the same material by epoxy glue, creating a flatbed 

microchannel. (B1) An array of PMMA nanoposts was fabricated through polymerizing 

MMA in an AAO template. (B2) The aluminum support was chemically removed and the 

newly opened top was attached to a PMMA roof by MMA and UV-polymerization. (B3) 

The PMMA nanopost device was created after chemically removing the AAO and sealing 

the sides. (C1) A binary suspension of silica and PS was deposited onto a PDMS mold. 

The PS beads were melted and glued to a PS substrate. (C2) The PDMS mold was 

detached and silica beads were etched away. (C3) A PS roof was attached to the PS 

porous structure and the sides were sealed, creating a PS spherical pore device. 
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3.3.4 Sample characterization 

The templates and macroporous structures were characterized by a field-emission 

scanning electron microscope (FE-SEM – Hitachi 4300) and the geometries were 

measured from the SEM images using ImageJ software. 

3.3.5 Measurement of fluid permeability 

DI water was driven through the microfluidic devices at a constant pressure 

between 1 and 3 psi. The outflow was collected and weighed. The volume flow rate of 

water was then used to calculate the permeability of the devices.  

3.3.6 Surface modification 

PMMA devices: All devices were washed with 70% isopropanol and DI water 

prior to surface functionalization. PMMA devices were hydrolyzed with 3 M sulfuric 

acid at 60 °C for 20 min and rinsed with DI water [30]. Then, the devices were exposed 

to the coupling reagents containing 1.6 mM EDC and 1 mM NHS in 50 mM MES buffer 

(pH 5.4) for 20 minutes at room temperature and rinsed with the MES buffer following 

the literature [31]. Afterwards, 20 µg/mL NeutrAvidin was injected into the devices and 

incubated for 2 hr before rinsing and viral capture. 

PS devices: Polystyrene was functionalized by physisorption of NeutrAvidin for 2 

hrs in PBS. To ensure comparable NeutrAvidin density on PS and PMMA substrates, PS 

flat substrates of 1×1 cm2 were first physisorbed with NeutrAvidin at different 

concentrations of 0-20 µg/mL. To account for the difference in substrate materials, the 

concentration that yielded a comparable viral capture to that of PMMA was then selected 

to treat the porous PS devices. To evaluate binding specificity, 1% BSA/PBS was used in 
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the place of NeutrAvidin. After 2 hr incubation with NeutrAvidin or 1% BSA/PBS at 

room temperature, all devices were rinsed with 1% BSA/PBS before the viral capture 

test. 

3.3.7 Viral production 

Pseudotyped HIV was cultured [32] and biotinylated [33] as previously reported. 

Briefly, HEK-293T cells were transfected with four plasmids of pGag-eGFP, pcRev, 

pR8ΔEnv, and pJR-FL in DMEM using MegaTran 1.0. After a 24-48 hr incubation 

period, the cells were washed with PBS and biotinylated with 1.67 mM Sulfo-NHS-LC-

Biotin in PBS. The cells were incubated at room temperature for 30 min, then washed 

with PBS and 100 mM glycine to remove excess biotin, and re-incubated in HEK cell 

culture media. After incubation for another 24 hrs, the supernatant was filtered and 

centrifuged to concentrate the biotinylated HIV particles. The viral pellet was 

resuspended in the cell culture medium and stored at -80 °C. 

3.3.8 Viral capture in microfluidic devices 

The biotinylated HIV at a concentration of ~106 virions/mL was injected into the 

devices by a syringe pump at a constant flow rate of 5 µL/min for a total volume of 320 

µL. Afterwards, all devices were washed with 90 µL of PBS and 300 µL of 0.5% Triton 

X-100, both at 5 µL/min. The outflow during the viral injection, PBS wash, and Triton 

wash steps were collected separately. Then, a p24 ELISA kit was used to quantify the 

amount of p24 protein in the different outflow fractions. The input viral solutions were 

also analyzed to confirm mass balance between input and output solutions. Four devices 

were tested in each condition. 
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3.3.9 Capture of 100-nm fluorescent PS beads in microfluidic devices 

The suspension of 100-nm fluorescent PS beads (1 vol%) was utilized to visually 

observe non-specific binding in PMMA and PS porous devices. The devices were 

passivated with 1% BSA/PBS for 2 hr and the suspension containing 100-nm fluorescent 

nanobeads was then injected into the devices at 5 µL/min for 1 hr, followed with 60 µL 

PBS rinse at 5 µL/min. Fluorescence images were taken afterwards along the flow 

direction in the center line at four different distances from the inlet. The fluorescence 

intensities were measured and the background intensity before injecting the particles was 

subtracted. Three devices of each geometry were tested. The images were processed by 

ImageJ software. 
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3.4:   Results and Discussion 

3.4.1 Computational analysis of nanoparticles captured in porous media 

We first investigated through COMSOL simulation how the capture bed geometry 

affects the probability of particle-matrix collision. Three types of geometries were 

evaluated: hexagonally arranged circular islands, interconnected circular voids, and two 

parallel plates, which represent the building blocks of the post array, spherical pore array, 

and flatbed channel. Two transport processes were considered, advection along the fluid 

streamlines and diffusion that crosses streamlines. The latter plays significant roles when 

the characteristic length of the capture bed is comparable to the nanoparticle dimension: 

the Péclet number (Pe) is on the order of 1 when 100 nm particles are convected at 100 

m/s in a matrix with a characteristic length of 100 nm. Figure 3.2(A)-(C) present 

distinct fluid streamlines in the three geometries. The nanostructures are seen to break the 

parallel input streamlines into branches and shorten the average diffusion distance for 

nanoparticles to interact with the affinity wall. 
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Figure 3.2:   Simulation results of streamlines in (A) a hexagonal array of circle islands, 

(B) an interconnected void array and (C) two parallel plates. The bold boundaries 

represent the affinity capture surface.   
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By reducing the separation distance D of the circular islands or pore neck from 

600 nm to 200 nm, the capture efficiency increases from 45.38% to 77.65% in the 

circular island array and 18.63% to 42.68% in the interconnected circular void array 

(Figure 3.3(A)). To account for a difference in the unit cell dimension, the capture 

efficiency is normalized to the footprint of the capture bed, and it increases from 4.32% 

per m2 to 66.60% per µm2 in the circular island array and 1.19% per µm2 to 24.64% per 

µm2 in the interconnected circular void array (Figure 3.3(B)). This improvement of ~16-

20 times with a 3 time reduction of gap distance is consistent with the analysis by Squires 

et al. that the footprint-normalized capture efficiency scales with D-8/3 for diffusion 

controlled reactions on a planar sensor under a constant convective feed [34]. 

When footprint-normalized capture efficiencies are compared between the two 

macroporous structures, the circular island array achieves ~2.7 to 3.6 times higher 

capture for each separation distance. This is partially contributed by a larger surface area 

in the circular island array per footprint. Given the same D, the capture area of the 

circular island array is ~2 times that of the interconnected void array per µm2. Additional 

improvement beyond the surface area contribution (Figure 3.3(C)) is likely caused by the 

velocity and streamline profiles. The streamlines are more uniformly distributed in the 

circular island array, suggesting a relatively constant distance between each stream line 

and the capture surface. On the other hand, the distance between streamlines varies 

periodically in the circular void geometry, being closer at the pore neck and further apart 

at the circular void center. For a given separation distance, D, in the two geometries, the 
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average diffusion distance for nanoparticles to interact with the walls is longer in the 

circular void geometry, leading to lower capture efficiencies. 

Although the streamlines in flatbed were seen to be uniform, the distance between 

particles and capture walls are rather far away. As a consequence, the capture efficiency 

of a flatbed channel was found to be 5.38% or 0.02% per m2 footprint. The Péclet 

number in the flatbed device is on the order of 1000, so only particles close to the capture 

surface have the opportunity to collide. The computational analysis suggests that 

nanostructures promote affinity binding compared to a flatbed channel, due to an increase 

of the surface area and reduction of Péclet number. The performance of nanostructures 

improves with the size match between the matrix gap separation and the target species as 

well as uniformity of the streamline distribution.  
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Figure 3.3:   The effects of the separation distance, D, on the capture efficiency are 

shown in (A) total capture efficiency, (B) capture efficiency normalized to the capture 

bed footprint and (C) capture efficiency normalized to the capture surface area. 
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3.4.2 Fabrication of PMMA and PS macroporous devices 

To test virus capture experimentally, two macroporous materials, a high aspect-

ratio nanopost array and a spherical pore array, were fabricated by templating synthesis. 

Following the simulation predication to match the characteristic dimension of the 

matrices to the target species, the separation distance was selected to be ~200 nm, slightly 

larger than the HIV particles of 110 nm [32]. 

The PMMA nanopost arrays were fabricated by templating AAO films of straight 

pores. After two-step anodization in phosphoric acid, aluminum oxide self-orders into a 

hexagonally arranged pore array with a center-to-center distance of 503.45 ± 11.22 nm 

(Figure 3.4(A)). By UV-polymerizing MMA in the AAO template and dissolving the 

aluminum substrate and oxide template, solid straight PMMA nanoposts with a high 

aspect ratio of ~80 were successfully fabricated as shown in Figure 3.4(B). The average 

space between the nanoposts is 191.33 ± 34.68 nm. Assuming perfect replication of the 

AAO structure, the porosity of PMMA nanopost material is calculated to be 65.20% and 

the surface-to-volume ratio (Rs/v) is 4.46 µm-1 for a 30 m thick matrix, which is 

comparable to typical chromatographic media [35]. In contrast, a flatbed channel of the 

same height has the Rs/v of 3.30 × 10-4 µm-1. Thus the Rs/v is enhanced by 4 orders of 

magnitude in the nanopost array. 

The PS spherical pore matrix was fabricated by templating self-assembled, close-

packed silica beads of 990.50 ± 12.58 nm in diameter. The silica beads were co-deposited 

with 100-nm PS beads into a PDMS mold, and the PS was melted afterwards to form a 

matrix surrounding the silica beads (Figure 3.4(C)). After etching out the silica beads, a 
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network of PS spherical pores with small, interconnected openings was revealed (Figure 

3.4(D)). The average size of the openings was 232.55 ± 21.73 nm, similar to that reported 

by Gates et al. using 1 m microbeads as a template [26]. Assuming the silica beads form 

a close-packed structure and PS fills in the interstitial space perfectly, the theoretical Rs/v 

is 3.73 µm-1 for a 30 m thick matrix. This Rs/v is slightly less than that of the PMMA 

nanopost array, but still ~4 orders magnitude greater than a flatbed device of the same 

volume. The characteristics of the PMMA nanopost array and PS spherical pore network 

are summarized in Table 3.1. 
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Figure 3.4:   Representative SEM images of the templates and the replicated structures. 

(A) An AAO template with hexagonal arranged pores within each domain. The inset 

shows a zoom-in image of the AAO pore structure. (B) Standing PMMA nanoposts after 

templating AAO. The inset shows the separation of the nanoposts. (C) A template of 3D 

packed silica beads with PS filling the interstitial space. (D) A network of PS porous 

structure after silica bead removal. Scale bars in (A) - (D) are 5 µm and scale bars in the 

insets are 1 µm. 
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Table 3.1:   Physical characteristics of the flatbed and macroporous channels fabricated in 

this work. All channels for the permeability tests have a dimension of 25 mm × 8 mm × 

30 µm (Length  Width  Thickness). 

 

Device Structures Separation 

Distance (nm) 

Porosity* 

(%) 

Rs/v
*(µm-1) Permeability 

(m2) 

PMMA flat channel 30,000 100 3.30 × 10-4 5.61×10-11 ± 

2.87×10-12 

PS flat channel 30,000 100 3.30 × 10-4 5.58×10-11 ± 

2.05×10-12 

Hexagonal array of 

PMMA nanoposts 

191.33 ± 34.68 65.14 4.46 1.97×10-14 ± 

7.59×10-16 

Interconnected PS 

spherical pores  

232.55 ± 21.73 74.17 3.73 1.43×10-13 ± 

2.01×10-14 

 

* indicates calculated values assuming a perfect replication of the template.  
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3.4.3 Permeability in microchannels with macroporous matrices 

Water permeability in the macroporous matrices was measured according to 

Darcy’s law of pressure driven flow: 

 
𝑄 =  −

𝜅 𝐴 Δ𝑃

µ 𝐿
 

(3.1) 

where Q is the volume metric flow rate (m3/s),  is the fluid permeability (m2), µ is the 

dynamic viscosity of fluid (Pa·s), A (m2) and L (m) are the cross-sectional area and length 

of the channel, and ΔP is the pressure drop across the channel (Pa). Q and ΔP were 

measured experimentally to compute PMMA and PS flatbed channels have 

comparable permeability of ~5.60×10-11 m2, while the channel with PS spherical pores 

has a permeability of 1.43×10-13 ± 2.01×10-14 m2, which is an order magnitude higher 

than that of the PMMA nanopost channel of 1.97×10-14 ± 7.59×10-16 m2 (Table 3.1). 

Various macroporous materials have been characterized in the literature for filtration 

applications, such as track-etched polycarbonate, polyethersulfone, and vertically aligned 

carbon nanotubes [11, 33, 36]. The permeabilities of these materials are in the range of 

10-15 to 10-13 m2, into which our materials also fall. Although the spherical pore matrix 

has ~20% less surface-to-volume ratio, the order-of-magnitude higher permeability may 

offer practical advantages considering low back pressure. In fact, a pressure of ~1 MPa 

(145 psi) is required to drive water through the PMMA post array at ~10 µL/min, and 

devices often leak at this pressure. Therefore, the viral capture experiments were carried 

out at a flow rate of 5 µL/min. 
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3.4.4 Viral capture in microchannels with macroporous matrices 

After characterization of the physical properties, the two porous matrices were 

encapsulated into microfluidic devices and functionalized for viral capture. Since the two 

structures were fabricated with different materials, we first tested functionalization 

protocols to level the affinity chemistries on the two surfaces, so the contribution from 

the pore structures could be compared. PMMA flat substrates were immobilized with 

NeutrAvidin, while PS flat pieces of the same size were physisorbed with NeutrAvidin at 

concentrations of 0-20 µg/mL. The functionalized substrates were used for viral capture 

under static incubation. As presented in Figure 3.5, the PS flat substrate exposed to 10 

µg/mL NeutrAvidin captures comparable amount of biotinylated HIV to that on the 

PMMA flat substrate. As a result, this concentration was used for surface modification of 

PS microchannels. 
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Figure 3.5:   HIV virions captured on functionalized PMMA and PS flat substrates. The 

PMMA was functionalized with a fixed protocol but PS was exposed to different 

concentrations of NeutrAvidin from 0 to 20 µg/mL. PS treated with 10 µg/mL 

NeutrAvidin yielded a comparable amount of HIV viral capture to that on PMMA. The 

error bars represent standard deviation from 4 trials.  
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Capture of biotinylated HIV was performed in both the flatbed and porous 

microchannels under a constant flow of 5 µL/min. The numbers of HIV particles in the 

flow-through, rinse, and lysis fractions were quantified and normalized to the total 

amount of viruses flowed into the device. Figure 3.6 shows the results of capture 

efficiency in each device. As predicted from the simulation, the flatbeds are not efficient 

in viral capture: the functionalized PMMA and PS flatbed channels each capture 10.80 ± 

0.51% and 8.88 ± 0.94% virus from the input sample. In flatbed channels lacking 

NeutrAvidin, the capture efficiency dropped to 1.62 ± 0.23% and 1.08 ± 0.25% 

respectively, suggesting surface functionalization is effective.  

The regular macroporous structures significantly improve the capture efficiency. 

NeutrAvidin treated PMMA nanopost and PS spherical pore arrays each captured 99.46 ± 

0.51% and 80.10 ± 0.92% of virus from the input sample. A longer device containing PS 

spherical pore network is expected to capture more viral particles, while the flow 

resistance and back pressure will also increase proportionally. The current dimension is 

selected to balance the capture yield and back pressure in the nanopost devices, and the 

same dimension is used to create the spherical pore devices and facilitate comparison. 

Noticeably, non-specific binding in the nanopost array was found high: the PMMA 

nanopost devices without NeutrAvidin captured 88.03 ± 2.61% HIV versus 12.00 ± 

4.27% in PS spherical pore matrices without NeutrAvidin (Figure 3.6). In contrast to a 

low nonspecific binding in flatbed devices, the macroporous devices demonstrate greater 

nonspecific capture yields, especially in PMMA nanopost devices.  
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Figure 3.6. HIV capture efficiency in the flatbed and macroporous devices with surface 

treatment by 1% BSA/PBS or NeutrAvidin. The error bars represent standard deviation 

from 4 trials. 
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Significant non-specific binding in the nanopost array is likely a result of 

structural defects, which form narrower spacing than the diameter of HIV particles and 

physically trap them. Despite all the precautions to preserve standing nanoposts, such as 

lyophilization and attaching both ends of the nanoposts to solid supports, deformation 

and collapse of high aspect ratio nanoposts remain unavoidable. According to the 

theoretical calculation by Hui et al. [37], PMMA nanoposts would experience lateral 

collapse when the aspect ratio reaches ~12 as a result of capillary and surface adhesive 

forces, while the high aspect ratio of 80 used in our work exceeds the critical value. To 

visualize physical trapping in the macroporous matrices, bare PS fluorescent nanobeads 

of 100 nm in diameter were flowed into the PMMA and PS porous devices.  After 

rinsing, fluorescent images were acquires as shown in Figure 3.7(A)-(B). In the PMMA 

device, bright fluorescent domains were observed, suggesting formation of nanopost 

clusters that physically retain the beads. The average width of the clusters is 53.54 ± 

11.70 µm, consistent with bundling of high aspect ratio nanoposts reported in the 

literature [25, 38]. When the fluorescence intensity was quantitatively analyzed along the 

flow direction (Figure 3.7(C)), non-specific binding was observed from the inlet to the 

outlet in the nanopost devices. The larger error bars are consistent with clustering of the 

fluorescence intensity. On the other hand, fluorescence intensities remain rather uniform 

and low in the PS spherical pore devices, suggesting minimal structural collapse and a 

low level of non-specific binding. 
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Figure 3.7:   Physical retention of 100-nm fluorescent PS nanobeads in (A) a PMMA 

nanopost device and (B) a PS spherical pore device after rinsing. (C) Fluorescence 

intensity distribution along the channel length reveals greater non-specific binding of the 

fluorescent beads in the nanopost device. The error bars represent standard deviation 

from 3 trials. 
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Our work demonstrates that macroporous materials with regular structures can be 

incorporated into microfluidic devices for highly efficient viral separation. Despite a wide 

use of macroporous materials as size-exclusion media to decontaminate viruses from 

biopharmaceutical products [39], conventional matrices tend to have a broad size 

distribution, which makes it difficult to predict the target-matrix interactions. Our 

devices, which contain regular macroporous structures, facilitate theoretical 

understanding and practical optimization of the target-matrix collision. The affinity 

chemistry promotes specific capture of the target particles, especially in the spherical 

pore devices. Due to its small volume, the miniaturized device also concentrates target 

analyte by orders of magnitude.  Furthermore, sample processing can be achieved in a 

simple flow-through process. Thus the device could be used for viral purification and 

enrichment in resource-limited settings. As a proof of principle, biotinylated HIV virus 

and NeutrAvidin are used in this work, while the surface can be modified by broad 

neutralizing antibodies [40], aptamers [41, 42], and other affinity molecules [17] for the 

isolation of wild type viruses. With recent biosensing applications in porous matrices [16, 

18, 20], it is also plausible to incorporate electrical and optical sensors into our device to 

detect captured bio-nanoparticles. 

Anticipating other applications may demand macroporous structures of 

dimensions different from those in this work, the fabrication strategies presented here 

offer great geometrical flexibility. In terms of AAO templating, the pore size, porosity 

and interpore distance of AAO mold can all be independently adjusted in submicron 

range [28]. Similarly, for the spherical pore structure, pore size and pore opening are 
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controllable by the composition of the colloid suspension [26, 27]. The tunable sizes of 

these macroporous structures make them versatile tools for processing nanoparticles and 

biomolecules of different sizes and shapes.   
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3.5:   Conclusions 

Two different macroporous structures, a nanopost array and a spherical nanopore 

array, are studied in this work as affinity matrices for viral isolation. Computational 

analyses and experiments demonstrate significantly enhanced capture efficiency in the 

porous devices over flatbed channels, and the enhancement is attributed to large surface-

to-volume ratios and short diffusion distance before interaction. While the nanopost 

arrays are shown to have higher capture efficiency than the spherical pore devices, 

structural defects associated with the high aspect ratio posts also generate higher non-

specific binding. Since macroporous structures of different characteristic dimensions can 

be formed by adjusting the template geometry, the templating approach to incorporate 

nanomaterials into microfluidic devices is potentially applicable for separation and 

concentration of a broad spectrum of bio-nanoparticles and biomolecules. 
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Chapter 4 

 
Micropatterned Macroporous 

Structures in Microfluidic Devices for 

Viral Separation from Whole Blood 

 

4.1:   Abstract 

Separation and enrichment of bionanoparticles from cells are critical steps in 

many chemical and biomedical practices. We demonstrate here the design and fabrication 

of a microfluidic immunochromatographic device incorporating regular and multiscale 

structures to capture viruses from blood. The device contains micropatterned arrays of 

macroporous materials to perform size-exclusion and affinity chromatography in a simple 

flow-through process. The microscale gap in the array allows the passage of cells while 

the macroporous matrices promote viral capture. Computational analyses reveal that fluid 

permeation into the porous matrices is controllable by the micropattern separation 

distance and dimensions. Experimental analyses using blood samples containing human 

immunodeficiency viruses (HIV) as a model system further prove significantly improved 

viral capture efficiency using devices incorporating multiscale structures than those 

containing solid micropatterns. At the same time, blood cells flowed around the 
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micropatterns without clogging the device. Such microfluidic devices containing regular 

and multiscale structures have a potential for the separation and concentration of a wide 

range of bioparticles as well as macromolecules from complex mixtures.  
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4.2:   Introduction 

Separating and enriching bio-nanoparticles from a complex mixture of multiscale 

species are critical steps in many applications such as diagnosis of infectious agents [1-3], 

pharmaceutical productions of drug loaded vesicles [4, 5], and assessment of water and 

food safety [6, 7]. Conventionally, bionanoparticle samples are processed through 

centrifugation [2], filtration [5], electrophoresis [3, 8], magnetic separation [7, 9], and 

chromatography [10]. Although these techniques have been routinely performed, 

complex reagents and procedures, sophisticated lab equipment, and skilled operators are 

usually involved. With rising demands of bio-nanoparticle processing and detection at 

resource-limited settings, alternative approaches for their separation are needed.  

Microfluidic devices hold a great potential for sample processing with little 

infrastructure requirement. Miniaturized devices employing centrifugal [11], magnetic 

[12, 13], filtration [14], chromatographic [15], and dielectrophoretic[16] principles have 

been created to separate viruses and vesicles from cells. However, these devices face 

various challenges such as limited g-force to concentrate viruses, clogging, and 

undesirable electrochemical reactions. Hydrodynamic fractionation based on inertial 

effect in microfluidic devices has been demonstrated to sort microparticles [17]. Yet, the 

inertia effect is weak and ineffective for nanospecies. 

Recently, immunoaffinity microfluidic devices have been reported to capture cells 

and pathogens in a simple flow-through process [18, 19]. A high capture yield is 

warranted by matching the characteristic dimension of the capture bed with the target 

particles to promote their interactions. For example, solid micropost arrays have been 
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introduced in microfluidic devices to isolate extremely rare circulating tumor cells from 

whole blood [20, 21]. Materials with nanoscale pores have been shown to isolate 

molecules and bio-nanoparticles with high yields [22]. Considering a nanoparticle sample 

in a multiscale mixture, such as viruses in blood, it has been hypothesized that a capture 

bed containing multiscale characteristic dimensions will outperform that with solid 

micropatterns. To test this idea, Fachin et al. [23] fabricated an array of circular islands 

made of vertically aligned carbon nanotubes, which allowed fluid to partially permeate 

into the porous microposts. Chen et al. [24] further utilized the device for multiscale 

separation and found that capture yields of both micro- and nanoparticles were enhanced 

compared to devices with solid islands. The enhancement is a result of minimized 

boundary layer around the islands and nanoparticle penetration. Yet, spacing of the 

carbon nanotubes is limited to 80 nm, which prevents the entry of larger nanoparticles, 

such as HIV virions.  

Built on our prior work of macroporous material fabrication in Chapter 3, we 

created micropatterned macroporous elements permeable to particles up to 200 nm for 

HIV viral separation from human blood. We first investigated how the micropattern 

geometry and separation distance influence fluid permeation into the pattern using a 

numerical method. Afterwards, we experimentally tested the capture of HIV particles 

from plasma and whole blood using one selected micropattern design. The results support 

the concept of enhancing particle separation and concentration by multiscale features in 

microdevices  
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4.3:   Experimental details 

4.3.1 Computational fluid dynamics simulation 

2D simulations were carried out by COMSOL Multiphysics to evaluate fluid 

permeation into micropatterned macroporous islands. 2D micropatterns studied here 

included a circle, a half circle, and a half ring (Table 1). The patterns had porosity and 

permeability of 0.7 and 1 × 10-13 m2, respectively, corresponding to materials used in the 

experiments in Chapter 3. Each pattern was centered between two parallel plates. The gap 

distance from the pattern edge to one plate wall was D/2. The Creeping Flow and 

Brinkman Equations modules were coupled in the simulation. The plates were set as 

periodic boundaries. An average inflow velocity of 1 mm/s was set at the inlet. The 

density and viscosity of the fluid were 1000 kg/m3 and 0.001 Pa·s, respectively. Volume 

fraction of fluid permeating into the porous element was calculated from the equation 

(4.1), 

 
Volume fraction =

∫ (𝒖 + 𝒗)
 

𝑆
⋅ 𝑑𝒔 

∫ (𝒖 + 𝒗)
 

𝑑
⋅ 𝑑𝒔 

 × 100% (4.1) 

where ∫ (𝒖 + 𝒗)
 

𝑆
⋅ 𝑑𝒔 and ∫ (𝒖 + 𝒗)

 

𝑑
⋅ 𝑑𝒔 are fluxes into the porous elements and from the 

inlet, respectively. Dimensional variables in this study were radius of the patterns (R), 

gap distance between the pattern edge and the wall (D/2), and ring width (Whr, for the 

half-ring pattern only) (Table 4.1). 
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Table 4.1:   Design variables of micropattern geometry and layout for testing permeation 

volume fraction. 

 
Micro patterns Gap distance 

(D, nm) 

Radius  

(R, nm) 

Width of the half ring 

(Whr, nm) 

Circle 

 

50, 100, 200 150, 300, 600 - 

Half circle 

 

50, 100, 200 150, 300, 600 - 

Half ring 

 

50, 100, 200 150, 300, 600 25, 50, 100 
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4.3.2 Materials 

SU-8 photoresist was obtained from MicroChem (Newton, MA). Sylgard 184 

silicone elastomer kit was purchased from Dow Corning (Midland, MI). Polystyrene (PS) 

sheets were obtained from Plaskolite (Columbus, OH). A binary suspension containing 

20 vol% of 1-µm silica beads and 8 vol% of 100-nm PS beads was kindly provided by 

Gilchrist lab at Lehigh University (Bethlehem, PA). Lyophilized bovine serum albumin 

(BSA) was purchased from Sigma Aldrich (St. Louis, MO). Phosphate buffered saline 

(PBS) was obtained from Mediatech (Herndon, VA). NeutrAvidin biotin-binding protein 

was from Thermo Scientific (Rockford, lL). Green fluorescent 10-µm PS beads and red 

fluorescent 100-nm PS beads were purchased from Thermo Scientific (Fremont, CA). An 

HIV-1 p24 enzyme-linked immunosorbent assay (ELISA) kit was obtained from Perkin-

Elmer (Waltham, MA). Human blood from healthy donors was kindly provided by 

Network Office of Research and Innovation at Lehigh Valley Health Network 

(Allentown, PA). 

4.3.3 Device fabrication 

An array of half-ring pattern was incorporated into microfluidic channels for HIV 

separation. The half-ring pattern had a height of 30 µm, outer radius (R) of 150 µm, gap 

distance (D) of 100 µm and ring width (Whr) of 50 µm. They were hexagonally arranged 

within an area of 25 mm × 10 mm (length × width). To fabricate the half-ring array, 

polydimethyl siloxane (PDMS) molds with a negative feature were created first using 

standard soft-lithography techniques. The PDMS mold was treated by corona discharge 

to promote hydrophilicity. Next, a 10 µL suspension containing 20 vol% of 1-µm silica 
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and 8 vol% of 100-nm PS was pipetted and spread on the PDMS mold. The binary 

suspension was allowed to dry at room temperature, and the silica beads self-assembled 

into a close packed structure with the PS nanoparticles filling the interstitial space. Then 

the PS nanobeads were melt at 240 °C for 10 min to form a continuous matrix 

surrounding silica beads. The sample was glued to a PS flat piece by epoxy and the 

PDMS mold was peeled off after epoxy was cured. At this point, solid half-ring patterns 

were revealed. To create porous half rings, silica beads were removed by 50% 

hydrofluoric acid and the sample was rinsed by de-ionized (DI) water, leaving a PS 

network of interconnected spherical pores. To cap the device, a 25 mm × 8 mm PS roof 

drilled with an inlet and outlet was attached on the pattern array using a double-sided 

tape. The device was finally connected with tubing and sealed with epoxy glue (Figure 

4.1(A)-4.1(E)). The final footprint of the micropatterned region was 25 mm × 8 mm as 

shown in Figure 4.1(F). 
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Figure 4.1:   Schematics showing the fabrication process of half-ring micropatterns with 

solid or porous structures. (A) Deposition of binary suspension in a micro-patterned 

PDMS mold. (B) Transferring the micropatterned half-ring array to a flat substrate. The 

micropatterns are either (C) solid without silica bead removal or (D) containing 

interconnected spherical pores after silica bead removal. (E) Capping the array with a 

roof to form a microfluidic device. (F) Photograph of an assembled microfluidic device 

containing an array of half-ring micropatterns used for viral separation. 
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4.3.4 Sample characterization 

The micropatterned macroporous structures were characterized by a field-

emission scanning electron microscope (FE-SEM – Hitachi 4300) and the geometries 

were measured from SEM images using ImageJ software. 

4.3.5 Surface modification 

Microfluidic devices were functionalized with NeutrAvidin for specific capture of 

biotinylated HIV viruses. Firstly, all devices were washed with 70% isopropanol and DI 

water. Afterwards, the microchannels were incubated with 10 µg/mL NeutrAvidin for 2 

hrs at room temperature to allow physisorption. Finally, the devices were rinsed with 1% 

BSA/PBS and used for viral capture immediately. To test nonspecific binding, devices 

were prepared by physisorption with 1 % BSA/PBS, instead of NeutrAvidin, for 2 hrs at 

room temperature. 

4.3.6 Viral production 

Pseudotyped HIV particles were cultured [25]  and biotinylated [26] following 

procedures in the literature. Briefly, HEK-293T cells were transfected with four plasmids 

of pGag-eGFP, pcRev, pR8ΔEnv, and pJR-FL in DMEM using MegaTran 1.0. After a 

24-48 hrs incubation period, the cells were washed with PBS and incubated with 1.67 

mM Sulfo-NHS-LC-Biotin in PBS at room temperature for 30 min. The cells were then 

washed with PBS and 100 mM glycine to remove excess biotin, and re-cultured in the 

HEK culture medium for another 24 hrs. Subsequently, the supernatant was filtered and 

centrifuged to concentrate the biotinylated HIV particles. The viral pellet was 

resuspended in the HEK culture medium and stored at -80 °C. 
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4.3.7 Transport of fluorescent micro- and nanobeads in the microfluidic 

devices 

To visualize particle transport in the micropatterned porous array, fluorescent 

micro- and nanobeads were used. A device was rinsed with 70% isopropanol and DI 

water, followed by incubation with 1% BSA/PBS for 2 hrs. Green fluorescent 10-µm PS 

beads and red fluorescent 100-nm PS beads were mixed together at equal volume and 0.5 

vol% each. The suspension was injected into the device at 5 µl/min for 60 min and then 

imaged. Afterward, the device was rinsed with PBS buffer at 20 µl/min for 3 min and 

imaged for non-specific binding. 

4.3.8 Viral capture in the microfluidic devices 

Biotinylated HIV was spiked into whole blood or plasma at a concentration of 

~106 virions/mL. Then, the spiked blood or plasma was injected into the devices by a 

syringe pump at constant flow rates of 5, 20, and 100 µL/min for a total volume of 300 

µL. An iron ball was placed in the syringe of blood to manually stir blood periodically 

during the injection.28 Afterwards, all devices were rinsed with PBS, and captured HIV 

was lysed on chip using 0.5% Triton X-100. The outflow from the viral injection, PBS 

wash, and Triton lysis steps were collected separately and analyzed for the amount of 

HIV virions. Volume of the PBS wash was tested ahead of time to ensure all free viruses 

were rinsed out before lysis. Flow-through samples containing blood were centrifuged to 

separate blood cells before HIV quantification. Amount of HIV was measured using a 

p24 ELISA kit. The input viral solution was also tested for HIV concentration to confirm 
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mass balance between input and output. The capture results from 4 samples of each 

condition were statistically analyzed by a two-tailed Student’s t-test. 

4.4:   Results and Discussion 

Considering the application of bio-nanoparticle separation from cells, we 

hypothesize that an affinity capture bed containing hierarchical features, both on the 

micron and submicron scales, will outperform that with microfeatures alone. To select an 

appropriate design to test this hypothesis, we first performed 2D COMSOL simulation to 

understand how geometry of porous micropatterns controls fluid permeation. We fixed 

the structure of the macropores, and varied the shape and spacing of the micropatterns. 

Using an average inlet velocity of 1 mm/s, dimensional analysis indicates that 

nanoparticle transport in the microscale gap of 50-200 µm is dominated by convection. 

On the other hand, nanoparticle transport in the porous islands is diffusion dominated. 

Additionally, Chen et al. [24], reported fluorescent molecules permeating gradually from 

the front to the back of a porous cylindrical post. These phenomena suggest that the back 

of the micropatterns has low probability to interact with the target for affinity separation, 

while removing them could significantly reduce flow resistance of the porous posts. We 

first simulated fluid permeation in three different micropatterns, a full circle, a half-circle 

and half-ring to represent microposts of the corresponding x-y cross-sectional shapes. 

The pattern with the highest permeability and compatible with the fabrication process 

was then fabricated to test HIV capture from whole blood experimentally. 
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4.4.1 Computational analysis 

We first used COMSOL Multiphysics software to simulate water permeation into 

macroporous patterns of three different geometries, a circle, a half circle, and a half ring, 

considering plausible short mean-free path of nanoparticles in the porous matrix. 2D 

geometries were placed between two parallel plates (Table 4.1). Three parameters were 

varied in the simulation: radius of the pattern (R), gap distance between the wall and the 

pattern edge (D/2), and ring width (Whr, for the half-ring pattern only). Figure 4.2 shows 

the maps of fluid velocity profile inside three porous patterns with R = 150 µm, D= 100 

µm, and W = 50 µm, and plotted on comparable scales. As predicted, the average 

velocity increases from the circle to half circle and further to the half ring patterns of the 

same radius, due to reduced flow resistance. The first two patterns demonstrate an order 

of magnitude higher velocity at the two poles than other regions. The half-ring pattern on 

the other hand, has even higher velocity and more uniform velocity distribution, thus 

providing a more consistent environment for nanoparticle capture. 
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Figure 4.2: Maps of fluid velocity magnitudes inside (A) circle, (B) half-circle, and (C) 

half-ring patterns. Flow is from the left to the right.   
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Fraction of water permeating into each porous structure was then computed using 

Equation (4.1). We first investigated the effect of gap distance D varied from 50 to 200 

µm with fixed R = 150 µm and Whr = 100 µm (Figure 4.3(A)). Permeation is less than 1% 

in all simulated geometries, since the flow resistance of the macroporous patterns is much 

higher than that of the separation gap (D). At the same D, 3-7 times less water permeates 

into the circular pattern than the other two patterns, and the half ring has lightly higher 

permeation than the half circle. This is not surprising since resistance of a porous 

structure scales with its thickness, and the circular pattern is twice as thick as the half 

circle. The resistance is further reduced in the half ring at the same radius. Additionally, 

large resistance of the circular pattern also makes it more sensitive to D. Permeation in 

the circle, half circle, and half ring drops by 22.88, 10.36, and 10.63 times, respectively, 

when D is widened from 50 µm to 200 µm. 

Next we evaluated the effect of radius R in the range of 150 to 600 µm with fixed 

D = 100 µm and Whr = 100 µm (Figure 4.3(B)). The permeable fraction increases by 

1.75, 1.25, and 2.43 folds with an increase of R from 150 nm to 600 nm for the circle, 

half-circle and half-ring patterns, respectively. Furthermore, the effect of the width of the 

half-ring pattern was studied. With all other parameters held constant, the permeable 

fraction increases as the width is decreased (Figure 4.3(C)). Reducing the width from 100 

µm to 25 µm leads to an improvement of permeation by 1.76 times.  According to the 

simulation results, the gap distance is more effective than the other two parameters in 

regulating fluid permeation into porous micropatterns. Although analytical solutions of 

flow resistance in the gap and micropatterns are not available, the observed dependence 
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of fluid permeation on D, R and W can be qualitatively understood from scale analysis.  

The resistance for laminar flow between infinite parallel plates scales with the separation 

distance (d) to the third power. When an infinitely long tube is situated in the middle of 

the two plates and leaves a gap of D for fluid to go around, the average width of the flow 

path is between d and D, thus the flow resistance is expected to scale with D to a power 

between 1 and 3, consistent with our simulation results.  R mainly controls the surface 

area orthogonal to the flow, and the flow resistance of a porous membrane scales linearly 

with the filtration area following Darcy’s law. For the circular and semicircular patterns, 

R also contributes to the thickness of the porous pattern, with which the flow resistance 

scales linearly. The two opposite effects cause a weak dependence of permeation on R. 

Porous cylindrical microposts have been reported to improve the capture yield of 

nanoparticles because fluid permeates into the structure and transports nanoparticles into 

the capture bed more efficiently [24]. Our simulation results suggest that microposts with 

a half-ring cross-section are more advantageous in promoting permeation, thus they are 

expected to yield better viral capture. 
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Figure 4.3: Computational results showing the effect of (A) Gap distance D, (B) outer 

radius R, and (C) width Whr of half ring on the fluid volume fraction permeating into 

different porous designs. 
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4.4.2 Fabrication of microfluidic channels with multiscale features 

According to the simulation results, we fabricated microfluidic devices 

incorporating an array of hexagonally packed half-ring islands (Figure 4.4(A)). Both 

solid and porous arrays were created to compare the viral capture efficiency. The gap 

spacing, outer radius, and ring width are 100 µm, 150 µm, and 50 µm, respectively. To 

form solid microposts, a mixture of silica microbeads and polystyrene nanospheres was 

deposited in a PDMS mold followed by melting the polystyrene nanospheres (Figure 

4.4(B)). On the other hand, the porous microposts were created with the same pattern 

geometry while silica beads were etched off (Figure 4.4(C)). The porous structure 

presented an ordered spherical pore network with small interconnected openings. The 

size of interconnected opening is ~233 nm and the openings on the side-wall surface have 

an average diameter of 695 ± 56 nm. The pore density on the side wall is ~1 × 108 

pores/cm2 and the bulk permeability of the macroporous matrix is ~1 × 10-13 m2, as 

reported in Chapter 2. The highly porous material allows permeation of fluids and 

transport of nanoparticles to the large affinity area inside the microposts. 
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Figure 4.4:   SEM images showing (A) a half-ring micropatterned array (D = 100 µm, R 

= 150 µm, and Whr = 50 µm). (B) A zoomed-in image showing a side wall of a solid post 

where silica beads are surrounded by a PS matrix. (C) A side wall of a patterned porous 

post showing pore openings on the surface after silica bead removal. The side-wall 

openings were measured to be 695 ± 56 nm. All SEM images were taken at ~50° to 55° 

tilted. Scale bars are 500 µm in (A) and 10 µm in (B) and (C).  
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4.4.3 Transport of fluorescent micro- and nanobeads in the device 

To demonstrate size exclusion of the porous micropatterns, 10-µm (green) and 

100-nm (red) fluorescent beads were mixed together and flowed into a device with 

macroporous patterns. While most particles flow around the posts, a small number of 10-

µm particles (green) slowly accumulate in front of the posts, while some 100-nm beads 

(red) accumulate inside the porous posts (Figure 4.5(A)). The accumulation of 

microbeads is consistent with Chen’s observation [24] that streamlines penetrate porous 

micropatterns and promote microparticle interaction with the islands. The nanobead 

distribution is relatively uniform inside the half-ring, suggesting penetration of fluid 

along the entire frontline. Nonspecifically trapped microparticles can be mostly rinsed out 

by increasing the flow rate from 5 to 20 µm/min, while some nanoparticles remain inside 

the posts (Figure 4.5(B)). The observation of fluorescent micro- and nanobead 

distribution in the device confirms that the micropatterned porous device can separate the 

two sized particles. 
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Figure 4.5:   Fluorescence images showing distribution of physically trapped 10-µm 

(green) and 100-nm (red) particles in a device with micropatterned macroporous islands.  

(A) While most of the beads flow around the posts, a small number of microbeads 

accumulate in front of the microposts whereas some 100-nm beads penetrate inside the 

porous posts. The images were taken after flowing the mixture for 60 min at 5 µm/min. 

(B) While most of the 10-µm beads can be rinsed off at 20 µm/min, some 100-nm beads 

remain physically trapped inside the porous array after rinse. 
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4.4.4 Viral capture in micropatterned devices 

Viral capture was performed first using virus spiked plasma (Figure 4.6(A)). The 

same volume of samples was flowed into functionalized devices at various flow rates of 

5, 20 and 100 µL/min. For devices containing solid posts functionalized with 

NeutrAvidin, the capture yield increases slightly from 1.04 ± 0.14 % to 2.29 ± 0.38 % 

when the flow rate drops from 100 to 5 µL/min. On the other hands, devices with the 

porous array and functionalized with NeutrAvidin yield significantly higher efficiency, 

ranging from 1.26 ± 0.29 % to 8.51 ± 1.59 % as the flow rate decreases from 100 to 5 

µL/min. Nonspecific binding in the solid array devices treated with 1 % BSA remains 

relatively constant at <1 % regardless of the flow rate. In the BSA passivated porous 

devices, the nonspecific binding increases from 0.48 ± 0.22 % at 100 µL/min to 2.68 ± 

0.77 % at 5 µL/min. 
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Figure 4.6:   HIV capture efficiency in the solid and porous post devices under different 

flow rates from (A) blood plasma and (B) whole blood. The devices were functionalized 

by 1% BSA/PBS or NeutrAvidin. The error bars represent standard deviation from 4 

samples. Statistical analysis was performed using a two-tailed Student’s t-test at a 95% 

confidence interval.  
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Next viral capture was tested from whole blood using micropatterned devices. 

During blood injection, blood cells were found flowing around the patterned array and no 

clogging was observed. Similar to the capture results from plasma, higher capture yields 

are achieved at lower flow rates, while the yield is generally lower in blood than in 

plasma (Figure 4.6(B)). With NeutrAvidin-treated solid arrays, 0.89 ± 0.14 %, 1.09 ± 

0.25 %, and 1.36 ± 0.30 % of virus are captured at the flow rates of 100, 20 and 5 

µL/min, respectively. Functionalized porous arrays yield 1.15 ± 0.38 %, 4.57 ± 1.44 %, 

and 4.58 ± 0.92 % virus at these flow rates. Nonspecific binding in BSA treated devices 

is lower than NeutrAvidin functionalized counterparts, while significantly more 

nonspecific binding is observed in the porous array than the solid one. The greater 

nonspecific binding is a result of low velocity inside the porous matrix, which leads to a 

weak wall shear force on the order of 10-17 N that is insufficient to detach nonspecifically 

bound particles. 

Compared to that in plasma, the capture yield in whole blood is reduced, 

suggesting insignificant margination of viruses in whole blood. Margination of white 

blood cells and platelets have been reported both in vivo and in artificial microchannels 

due to the concave shape and deformability of red blood cells.[28, 29] However, 

margination of bio-nanoparticles remains a subject of debate. Toy et al.[30] demonstrated 

that liposomes sized 60-130 nm can marginate to microchannel walls. In contrast, 

Charoenphol et al.[31] reported that particles sized below 500 nm do not marginate. Lee 

et al.[28] also showed that 10-nm to 200-nm polystyrene beads are homogeneously 

dispersed under a capillary flow both in vivo and by computational analyses. Our results 
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indirectly support the latter view. Another possibility to lower yield from blood is 

marginated white blood cells and platelets impeding the penetration of HIV particles into 

the porous micropatterns, while teasing apart these possibilities will require additional 

investigation.  

Overall, microfluidic channels containing multiscale materials enhance the 

capture yield of bio-nanoparticles from a complex fluid such as blood. The microscale 

gaps permit the passage of blood cells, while the macroporous structure inside the 

micropattern allows nanoparticle permeation for affinity capture. The Péclet numbers of 

viral particle in the microscale gap and macroporous matrix are on the order of 104 and 

10-2 respectively. Thus different transport mechanisms are dominated inside and out of 

the microposts. Compared to solid microposts, porous microposts have two advantages 

for viral capture. First, the affinity area is improved by order of magnitude with the 

macroporous structures. Second, the porous micropattern allows penetration of 

streamlines and promotes transport of nanoparticles to the affinity surface. Since 

convection velocity at the boundary of porous micropatterns is non-zero,[24] 

nanoparticles are transported into the micropatterns by both convection and diffusion. In 

contrast, nanoparticles rely on diffusion to cross the boundary layer around solid posts 

before their interaction. As a result, the porous array captures up to 4 times more HIV 

virions than the solid array. Similarly, Chen et al.[24] demonstrated that a porous array of 

intertwined carbon nanotubes enhanced capture efficiency of cells and bacteria by ~6 

times on the exterior surface of the microposts compared to a solid array of the same 

geometry, due to a reduced boundary layer. 
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While permeation is not expected to change with the flow rate, the residence time 

is reduced as the flow rate increases. Short residence time limits viral diffusion from the 

central streamline in the interpost gap to the micropost surface and leads to dampened 

capture efficiency at high flow rates. The capture yield, although less than 10% from 

either plasma or blood, is comparable to the yield of plasma extraction devices reported 

in the literature. Compared to simple plasma extraction, our device also offers the 

possibility to concentrate viruses through processing sample volumes much larger than 

the microchannel volume.  

Different from prior work where circular microislands were designed, we selected 

a half-ring array to reduce the flow resistance of the porous island and promote 

permeation. The backside of the circular micropattern has a low probability to interact 

with the virus.  By eliminating the less efficient volume, the permeation is increased by 

more than 6 times for the half-ring posts. Although simulation predicts better permeation 

with even narrower half-ring widths, a porous array can collapse during device assembly 

or fluid injection if the width becomes too narrow. The selected geometry represents a 

balance between performance and practicality. Also, the capture yield is expected to 

further improve with the capture-bed length and residence time. The micropatterned 

devices are operated with a simple flow-through process, which can continuously handle 

a large fluid volume. As a result, target particles can be separated and concentrated to 

facilitate downstream detection. 
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4.5:   Conclusions 

Microfluidic devices incorporating functionalized hierarchical structures are 

fabricated in this work and shown to capture viruses more efficiently than devices with 

microposts alone. The enhancement is a result of viral permeation into the porous posts 

and specific interaction with the large affinity area. The separation happens in a 

continuous-flow process relying on physical and biochemical interaction, while little 

infrastructure is required. As an easy-to-use device for multiscale separation, the device 

may find applications in pathogen sample processing in resource-limited settings. 
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Chapter 5 

 
Summary and Future outlook 

 

5.1:   Summary 

Bioseparation technologies impact many fields from diagnostics and 

pharmaceutical production to food and environmental assessment. Although conventional 

technologies are effective, the requirement of expensive and bulky instruments, complex 

reagents and setups, and well-trained technicians makes them difficult to adopt in 

resource-limited regions.  

In this dissertation, a materials-engineering approach is taken to answer the need 

of alternative separation approaches suitable for resource-poor settings. Macroporous and 

multiscale materials are designed to perform size-exclusion and affinity chromatography, 

which allow enrichment and separation of viruses from a complex mixture, such as whole 

blood. The materials are further integrated into microfluidic channels to enable portable 

and easy-to-operate devices. Combining both computational and experimental methods, 

not only do we demonstrate efficient separation using the rationally designed materials, 

we also provide fundamental insight about transport in these materials.   
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In term of material formation, two porous structures are fabricated with tunable 

characteristic dimensions to match those of target particles in the submicron range 

through template synthesis. The first structure is a nanopost array template from porous 

anodic aluminum oxide (AAO) films. Though AAO films contain a self-ordered porous 

structure from the conventional anodization, the degree of order is far from ideal. In this 

work, pre-patterning on aluminum substrate by nanobeads is introduced to successfully 

control the AAO formation. The results show that the AAO cell and pore sizes can be 

adjusted continuously under submicron range with a narrow size distribution. Moreover, 

the degree of order is improved while the anodization was under control without oxide 

film breakdown even at high anodizing voltages. The second structure is a spherical 

porous network with small openings in submicron range, created by templating self-

assembled 1-µm beads. 

The porosities of both structures are ~70 % which is significantly higher than that 

of ~40 % in bead packing in chromatographic columns. Therefore, higher fluid 

permeation in the porous capture bed is allowed. The high surface-to-volume ratio of 104 

folds over a flatbed further enhances the particle-surface interaction. Incorporated within 

a microfluidic device, these structures thus offer a great promise for nanoparticle 

separation. As a proof of principle, the porous materials are tested for HIV capture. The 

results show that functionalized nanopost arrays and spherical pore matrices can capture 

up to 99 % and 80 % of HIV from a buffer solution, respectively. 

To demonstrate multi-scale separation, different micropatterns incorporating the 

macroporous materials are then designed. Computational methods are utilized to 
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investigate micropattern shapes and dimensions. A half-ring pattern is found to have 

much reduced flow resistance than a circular pattern, thus allowing more fluid 

permeation. Fluid permeation is further controllable through the pattern radius and gap 

distance. When evaluated for HIV separation from whole blood, the porous half-ring 

array captures ~4 times more HIV than a solid array in both plasma and whole blood.  

While microfluidic devices in this dissertation mainly aim to separate HIV 

viruses, they can be adapted for other bionanoparticles. The device performance can be 

optimized by means of micropattern designs and material selection. The separation 

devices can be further integrated with detection modules for fully functioning 

diagnostics. Plans and examples of device development are discussed in the Future 

Outlook chapter.  
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5.2:   Future outlook 

As mentioned previously, this work aims to create novel materials for 

bionanoparticle separation. Microdevices incorporating these materials have shown a 

potential in separating viruses from human whole blood. The devices can be optimized in 

many aspects and integrated with detection modules for fully functioning diagnostics 

usable at the point of care. 

The separation mechanism of the devices is size-exclusion and affinity separation. 

While large particles are screened by the micropatterned porous element and driven 

through the device, target particles are brought to the porous element and become trapped 

in front or inside the structure. This dissertation demonstrates that HIV separation can be 

achieved using a spherical pore network containing interconnected openings of ~200 nm. 

Additionally, the porous network can be used to separate other particles as intended by 

appropriately tuning the pore sizes. Moreover, the porous element can be functionalized 

specifically for different target species [1]. This makes micropatterned devices able to be 

used for capture of other bio-nanoparticles in addition to viruses. . As for the spherical 

pore network, many research reported a tunable interconnected openings ranging from 

tens of nanometers to several micrometers dependent on the template particles [2, 3]. The 

highest porosity for spherical pore network would be limited at ~75% corresponding to 

the perfect crystal packing of spheres. 

Alternatively, a selection of porous materials can be made which may yield a 

higher capture efficiency. In Chapter 3, we demonstrate that not only the spherical pore 

network can be used for viral capture, but also a nanopost array. In fact, the nanopost 
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array performs a high capture efficiency up to 99%. Unlike that of spherical pore 

network, the dimension of nanopost array can be adjusted independently corresponding to 

the template mold as demonstrated in Chapter 2. The independency of pore size, 

interpore distance, and porosity make nanoposts workable in a wide range separation of 

particles sizing from a few nanometers to hundreds of nanometers. In addition, a porosity 

of more than 90% can be achieved as well. However, a micropatterning method suitable 

for nanopost array has to be justified. Specific to the process of templating a nanopost 

array from AAO porous membrane, patterning must be completed before anodizing AAO 

films or before molding nanoposts. We demonstrate here a patterning technique based on 

photolithography which is processed before a final AAO anodization [4]. The patterning 

involves multiple steps which briefly are 1) 1st anodization of AAO film and removal, 2) 

vapor deposition of silica on the dimpled aluminum surface, 3) micropatterning of 

photoresist as a mask on top of silica layer, 4) removal of exposed silica, and 5) 2nd 

anodization of AAO film on the open surface. The unetched silica as a protective layer 

prevents a growth of anodic oxide film underneath it. As a result, a micropatterned 

porous AAO can be fabricated (Figure 5.1(A)). Next, PMMA nanoposts can be formed 

inside the AAO pores using the same method in Chapter 3 as seen in Figure 5.1(B). 

Nevertheless, the AAO growth rate becomes slower in the micropatterned substrate than 

in a regular substrate. As a result, anodization conditions need to be adjusted to control 

the proper pattern thickness. Another issue is non-uniform growth of micropatterned 

AAO. It is observed that the edge of micropatterned AAO is thinner than that in the 

center (Figure 5.2(A)). Moreover, a tilted growth of AAO pores is formed at the 



 

132 
 

boundary between AAO and silica layer (Figure 5.2(B) and (C)). This may be a result of 

the electric field redistribution around the edge which causes a slower growth rate and 

tilted growth of micropatterned AAO. The issue needs to be further investigated so that 

micropatterned AAO films can be used as a template for a micropatterned nanopost array. 
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Figure 5.1:   SEM images of (A) a micropatterned AAO array and (B) a zoom-in area of 

the dashed box in (A) showing PMMA nanoposts inside the AAO channels. Scale bars 

are 200 µm in (A) and 1 µm in (B). 
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Figure 5.2:   SEM images of micropatterned AAO. (A) A non-uniform growth where the 

edge of the oxide file is thinner than in the center. The growth of AAO pores are tilted 

near the boundary between AAO and silica layer as shown in cross-sectioned views by 

(B) polishing and (C) cracking the AAO film. Scale bars are 10 µm.  
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The separation efficiency is not only affected by porous materials, but also the 

design of the micropattern array. Even though the half-ring pattern showed a higher fluid 

permeation compared with the circle and half-circle patterns in this work, the dimensions 

of micropattern itself can be optimized to enhance viral capture efficiency as discussed in 

Chapter 4. In addition, other micropatterns which may improve fluid permeation may be 

investigated and compared with our study. 

To fully utilize the micropatterned device as a diagnostic or monitoring tool, a 

detection module is needed. Detection methods for microfluidic technology have been 

demonstrated based on various techniques for example, electrical, optical, biochemical 

detections or a combination of those techniques [5-8]. A detection module is under 

development by Kathryn Kundrod and John Fraser at Lehigh University. In their work, a 

voltammetric technique is used to measure currents from ion transport through the 

spherical pore network. In the presence of captured particles, the resistance to current 

flow is increased. The measured peak current consequently reduces proportionally to the 

captured viruses. Although this project is still under development and measurements need 

to be collected statistically, it has been demonstrated that the concentration of simulated 

virus particles could be measured quantitatively to perform a viral load measurement. 

All in all, several materials suitable for viral separation are presented in this work.  

When incorporated into microfluidics, the devices offer simple flow-through separation 

and can be modified for a wide range of particle sizes. Moreover, with the further design 

of porous materials and micropatterns, the separation performance could be enhanced. At 

last, combining the sample preparation and detection modules will provide a fully 
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functional lab-on-a-chip device that is versatile, low-cost, and disposable. By employing 

the microfluidic technology, diagnostics and monitoring shall be widely accessed for a 

global health care. 
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