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ABSTRACT 
 

The rapid surge in drug-resistant bacterial infections has now become one of the 

primary public health crises of the 21st century. In a world without effective antibiotics, 

modern surgical and medical procedures will become too dangerous or impossible due to 

the threat of untreatable bacterial infections. As discussed in Chapter 1, the emergence of 

antibiotic resistant bacteria threatens to render a majority of the current antimicrobial 

therapeutics ineffective. Every year in the United States alone, over two million people 

are afflicted with bacterial infections that are resistant to FDA-approved antibiotics. 

According to the CDC, over 20,000 of those patients died as a result of drug-resistant 

Gram-positive bacterial infections, such as Streptococcus pneumoniae (S. pneumoniae), 

Enterococcus faecium (E. faecium), and Staphylococcus aureus (S. aureus). Equally 

alarming is the emergence of multidrug Gram-negative pathogenic bacteria, including 

strains that are resistant to all currently available antibiotics. As the number of efficacious 

antibiotics continues to rapidly dwindle without replenishment, the possibility of entering 

a post-antibiotic era can become a reality. Discovery and development of drug leads 

against the most serious pathogenic bacteria is desperately needed to reinvigorate the 

antibiotic pipeline and reverse this alarming trend.  

This thesis will discuss the design of two immunotherapy strategies that target 

bacterial cells for destruction via surface modeling conjugates that specifically home to 

bacterial cell surfaces. The Pires lab has pioneered the field of bacterial immunotherapy 

for the eradication of Gram-positive bacteria. In Chapter 2, we will highlight previous 

reports of facile bacterial surface modulation strategies that act to stimulate or attenuate 

the host immune system. We have extended our techniques of bacterial surface 
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remodeling with the goal of reactivating the host immune system to seek out and directly 

clear pathogenic bacteria. In Chapter 3, we set out to leverage the surface-homing 

properties of vancomycin to specifically tag the surface of Gram-positive Staphylococcus 

aureus with immune cell attractants.   Vancomycin was conjugated to a small molecule 

hapten, known to effectively recruit endogenous antibodies. In combination with sortase 

A-mediated surface remodeling, which are house-keeping enzymes that catalyze selective 

and covalent modification of bacterial cell walls, we successfully demonstrated the 

tagging and recruitment of endogenous anti-DNP antibodies to the surface of S. aureus. 

We also showed, for the first time, in vivo selective targeting of S. aureus in live C. 

elegans, a widely used model host to understand bacterial pathogenesis and host-

pathogen interactions. Together, our results pave the way for a narrow-spectrum strategy 

for the destruction of bacterial infections caused by S. aureus (drug-sensitive and -

resistant) through bacterial immunotherapy. 

Chapter 4 will discuss our goal is to eradicate Gram-negative superbugs by 

targeting problematic pathogenic bacteria for destruction by the host immune system. In 

this second major strategy, we report the design and development of a series of 

polymyxin B conjugates (a last resort antibiotic against Gram-negative pathogens), which 

are, to our knowledge, the first class of synthetic molecules that remodel Gram-negative 

bacterial cell surfaces with immune cell attractants. Given the inherent antimicrobial 

activity of polymyxin B, we designed agents to display dual activities against bacteria 

(membrane-disruption and immune activation). By leveraging the power of the immune 

system in clearing pathogens, this new class of molecules was shown to uniquely target 

Gram-negative bacteria and, additionally, potentiate existing FDA-approved antibiotics. 
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Additionally, in this study, the recruitment of antibodies from pooled human serum is 

shown, thus validating the biological relevance of this immunotherapy. We hope to 

establish this approach as a potential treatment option and further refine this methodology 

to address the clinical challenge of Gram-negative bacterial pathogens.  

The last chapter of this thesis focuses on the development of a facile assay to 

monitor the activity and inhibition of two isoforms of the Peptidylarginine deiminases 

(PAD) family: PAD2 and PAD4. PADs are post-translational modifiers that catalyze the 

calcium-dependent conversion of arginine residues to unnatural citrulline residues in a 

protein substrate. The full extent of the role PADs play in normal physiology and 

diseased states is not yet fully understood. PADs have important roles in the formation of 

Neutrophil Extracellular Traps (NETs), which was a recently discovered response of the 

immune system against bacterial pathogens. NETs are biomolecules that encase invading 

pathogens, which immobilize them to assist in their clearance by the human immune 

system. We report on a new, fluorescence-based assay, which is readily performed under 

ambient conditions and is compatible with high-throughput screening platforms. 

Furthermore, through a collaboration with Penn State Hershey Medical Center, we 

utilized the assay in a high-throughput screen for potential PAD4 inhibitors.  
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Chapter 1 

 Pathogenic Bacteria 

1.1 Microbes  

The sheer number of the projected bacterial species on Earth can be difficult to grasp 

– with a total number well into the millions of individual species.1 Bacteria are single-cell 

microorganisms, a few micrometers in length, that normally exist together and are 

characterized by a lack of a nucleus structure and membrane-bound organelles.2 Due to 

their high adaptability to different environments, bacteria are found in even the harshest 

conditions on Earth. In fact, it has been reported that much of Earth’s biomass is 

composed primarily of bacteria.3 The ability of bacteria to survive, adapt, and thrive in 

unusual environments is primarily driven by three features: a relatively high mutation 

rate, their small sizes, and a rapid binary cell division rate. The mutation rate for bacteria 

has been estimate at 0.003 mutations per genome per cell.4 . This is sharp contrast to 

humans, which have mutation rates of ~2.5×10−8 per base per generation.5 The increased 

mutation rate naturally promotes the generation of mutants within a population that 

possess increased fitness. Their relatively small size functions to increase the population 

size in any niche they occupy, providing the opportunity for favorable mutations to 

accumulate. Finally, a large majority of bacteria divide rapidly – with some bacteria 

approaching doubling times in the matter of minutes. Together, these features are 

extremely favorable for the rapid evolution of offspring that can adapt to new and 

changing environments.  

Bacteria can also survive in less extreme environments such as soil, plants, ambient 

temperate water, and other modern-life surfaces. These are the same environments that 
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are occupied by humans. Not coincidently, humans and bacteria cross paths through our 

co-existence. But our relationship goes beyond a co- and -independent existence. In many 

ways, humans (similar to most complex life on Earth) have co-evolved with bacteria. The 

human body represents a unique and highly dynamic environment for trillions of bacterial 

cells living in and on an average person.6 The sheer number of bacterial cells means that 

these microbial communities have the potential to impact human health. Commensal 

bacteria are harbored in many different tissues through the body, which means the host 

immune system has to naturally adapt to these non-self cells. An imbalance of the host 

immune response can lead to a number of serious health diseases. For example, a highly 

attenuated response may lead to uncontrolled bacteria growth, while an overly aggressive 

response may lead to chronic or acute inflammation.  

Unlike the response to commensal bacteria, the human immune system must rapidly 

and efficiently attempt to eradicate pathogenic bacteria upon first exposure. In most 

instances, this is exactly what happens. The human immune system (both the innate and 

the adaptive arms) has evolved diverse and incredibly precise modes of detecting, 

responding, and clearing pathogens. Likewise, pathogens continue to evolve counter-

measures to the defense modalities employed by human immune systems. As such, there 

are instances when pathogenic bacteria successfully evade the host immune response. 

From the initial invader, an infection often ensues that requires the intervention of 

therapeutic agents, such as antibiotics. For example, the notorious Gram-positive 

bacteria, Staphylococcus aureus (S. aureus) is known to cause a high human burden 

resulting in infections in various tissues of the body. S. aureus has long been recognized 

as one of the most important bacteria that cause disease in humans and the incidence of 
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infections have dramatically increased in the last 50 years due to the emergence of drug-

resistant strains, the closed quarters associated with hospitals, and the high number of 

surgical procedures associated with modern medical interventions. Gaining access to the 

body through broken or punctured skin, S. aureus can cause serious infections such as 

bloodstream infections, pneumonia, or bone and joint infections. By readily multiplying 

and disrupting the normal function of healthy cells within a host organism, pathogenic 

bacteria will progress to a diseased state. If left untreated, the infection can rapidly 

escalate to become life-threatening. 

 

1.2 Antibiotic Treatment for Bacterial Infections 

Alexander Fleming’s 1928 discovery and 1942 clinical use of penicillin, started the 

Golden Age of antibiotics and marked the foundation for the treatment of infectious 

diseases.7 Within a decade after World War II, several additional classes of important 

antibiotics were making it to clinical settings for the treatment of infections caused by all 

major types of bacteria. A majority of antibiotics being discovered during this era and 

since are natural products – molecules synthesized and extracted from living organisms. 

In fact, most of these antibiotics were produced by bacteria in an effort to reduce 

competing bacterial populations with the goal of gaining a competitive advantage in a 

world of limited resources. In a way, modern human medicine has been beneficiaries of 

the constant battle for space and resources on the part of environmental microbes. Over 

the course of millions of years, microbes have evolved extremely potent and small 

molecule drugs that target neighboring bacterial populations. As we harnessed these 

agents for our own use, it is clear today that these small antimicrobial molecules 
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revolutionized the field of modern medicine. For several decades following the discovery 

of antibiotics, deaths associated with bacterial infections plummeted. Most modern 

households were well stocked with an arsenal of potent antibiotics in a myriad of 

products including soaps, detergents, cosmetic creams, toothpaste, and primary care 

products. Most important, the advent of invasive surgeries and cancer therapies 

previously deemed too precarious due to risk of infection became routine procedures in 

the medical setting and led to a dramatic increase in the quality of life. It is no 

coincidence that since the introduction of antibiotics into the clinics, the average life 

expectancy has increased by nearly three decades.8 

Most antibiotics target specific biological processes in bacteria. If the disruption to 

this process is severe enough, the agent will result in bacterial death. Within the naturally 

existing bacterial warfare, a series of antibiotics have been previously cataloged against a 

large majority of pathogenic bacteria that infect human beings.9 Effective antibiotics 

work by inhibiting vital cellular processes that bacteria require in order to survive, such 

as DNA replication, protein synthesis, and cell wall biosynthesis. Of these classes, 

inhibitors against cell wall biosynthesis represent the largest and most widely subscribed 

class of antibiotics owning to their lack of human counterparts. Eukaryotic cells do not 

possess a structural unit similar to cell walls, opening the door to several potential drug 

targets within the cell wall biosynthetic pathway.10   

Bacterial cell surfaces are heterogeneous mixtures comprised of lipids, proteins, and 

glycans. These complex molecular structures are responsible for providing bacteria with 

structural support and mediating interactions with its environment.11 Due to its role in 

maintaining bacterial viability, bacterial cell walls have been the primary target for some 
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of the first antibacterial agents discovered. Differences in architecture of these molecular 

structures also form the basis for the classification of bacteria into two main categories: 

Gram-positive and Gram-negative. Gram-positive bacteria contain a single lipid bilayer 

and a thick layer of peptidoglycan, comprised of multiple layers of glycan strands that are 

cross-linked by oligopeptides.12  The Gram-positive designation refers to the ability of 

these cells to retain the Gram stain via the peptidoglycan scaffold, which becomes readily 

visible under light microscopy. Conversely, bacteria that are unable to retain the Gram 

stain are Gram-negative bacteria and are referred to as diderms, containing two lipid 

bilayers separated by a thin layer of peptidoglycan13 (Figure 1.1). In other words, the 

additional outer membrane found in Gram-negative organisms function to reduce 

permeation and accumulation of the Gram stain. Consistently, Gram-negative bacterial 

species are more difficult to kill due to the protective nature of the outer lipid membrane, 

which effectively prevent the facile passage of most antibiotics.  

There are two major categories that separate the mechanisms of antibiotics, namely 

bactericidal and bacteriostatic agents. A bactericidal antibiotic interferes with crucial 

processes, leading to effective cell death. A large number of FDA-approved antibiotics 

that act as bactericides happen to target the peptidoglycan building blocks necessary for 

cell wall synthesis (Table 1.1).14  Currently, β-lactam antibiotics represent more than half 

of the antibiotics that are used in clinical settings. 
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β-lactam antibiotics effectively block cell wall crosslinking by covalently modifying 

a critical serine residue at the active side of cell-anchored transpeptidases, which reduces 

peptidoglycan integrity and causes cell death. Glycopeptides, such as vancomycin, arrest 

peptidoglycan synthesis by binding to and sequestering lipid II precursor molecules. 

Lipid II molecules are responsible for translocating monomeric peptidoglycan building 

blocks from the cytosolic space, where it is biosynthesized, to the mature peptidoglycan 

scaffold. By blocking the delivery of monomeric peptidoglycan building blocks from the 

cytosol to the growing scaffold on the bacterial cell surface, cell wall biosynthesis comes 

to a halt. Antibiotics targeting bacterial DNA replication and repair enzymes also fall in 

Figure 1.1 Bacterial Classification. Cell wall composition of the 
two main types of bacteria, Gram-negative and Gram-positive. 
Gram-negative bacteria exhibit a thin peptidoglycan layer and an 
outer lipid membrane whereas Gram-positive bacteria contain a thick 
layer of peptidolgycan and lack an outer membrane. 
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the bactericidal category. These agents operate by inhibiting enzymes, such as 

topoisomerases and DNA gyrase, which are vital processes for the maintenance and 

growth of bacterial cells. Fluoroquinolones are considered a broad-spectrum agents that 

are effective against both Gram-negative and -positive bacteria, antibiotic within this 

class. 

Bacteriostatic antibiotics are different from bactericidal antibiotics in that these agents 

shut down active bacterial growth but do not cause cell death. Antibiotics in this class 

take advantage of non-eukaryotic structural characteristics of ribosomal subunits and 

other factors involved with initiation, elongation, and termination in bacterial protein 

synthesis. FDA-approved antibiotics in this class include tetracyclines and 

aminoglycosides, which target different parts of the ribosome machinery to effectively 

terminate protein synthesis. For example, clindamycin is commonly prescribed for the 

treatment of S. aureus.  
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For many decades, the number of new antibiotics introduced into the clinics easily 

outpaced the emergence of resistant strains. Although the discovery and use of antibiotics 

was thought to signal the end of infectious diseases, the overuse and misuse of antibiotics 

has led to the emergence of bacterial strains that are resistant to several if not all 

approved antibiotics.  

 

Classification Antibiotic 
Example 

Bacteriostatic/ 
Bactericidal 

Mechanism of Action Target 
Bacteria 

β-Lactam 
Penicillin / 

Amoxicillin 
 

Bactericidal 
 

Inhibit cell wall synthesis  
 

Gram-
positive 

 

Glycopeptides Vancomycin 

Lincosamides Clindamycin Bacteriostatic Inhibit protein synthesis 

Sulfonamides 
Trimethoprim-

Sulfamethoxazole 
Bacteriostatic 

Inhibit nucleic acid synthesis 

 
Broad 

Spectrum 
 

Tetracyclines Doxycyclin Inhibit protein synthesis 

Fluroquinolones 
Ciprofloxacin / 
Levofloxaxin 

Bactericidal Inhibit DNA replication 

Cephalosporins 
Cefclidin 

(4th generation) 
 

Bactericidal 
 

Inhibit cell wall synthesis 
Carbapenems Miropenam 

Aminoglycosides Streptomycin 

Bactericidal 

Inhibit protein synthesis 
Gram-

negative 
 

Monobactams Aztreonam Inhibit cell wall synthesis 

Polypeptides 
Polymyxin B / 

Colistin 
Disrupt outer membrane 

integrity 

Table 1.1 Common Antibiotics Prescribed for Bacterial Infections.  
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1.3 Mechanisms of Antibiotic Resistance in Bacteria 

 

Over 60 years of antibiotic use has led to a precarious new reality – a scenario in 

which pathogenic bacteria have taken the upper hand and our ability to fight bacterial 

infections has been heavily eroded. This new era was brought on by decades of 

antibiotic use and misuse. Yet, in many ways, resistance to antibiotics is nothing new 

nd not purely a human-mediated effect. Given the source of most antibiotics in use 

today – natural products from bacteria – bacteria have been evolving mechanisms of 

resistance slowly over millions of years.15 Bacteria have been fighting off natural 

“predators” since their first widespread existence on Earth. The rapid growth rates 

and promiscuous gene swapping by bacteria form the basis for rapid evolution and 

propagation of favorable phenotypes.16 In combination with the exposure to 

antibiotics, there is a clear and strong selective pressure on the heterogeneous 

population of bacteria, leading to the rapid elimination of the susceptible members 

and leaving the few resistant members to replicate and flourish.17  
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While natural evolution outside of human hosts has previously, and will continue 

to, shape the resistance profile of bacteria, human beings have played a major role in 

accelerating this process. A steady increase in frequency of drug resistant bacterial strains 

have been reported since the beginning of the Golden Era for virtually all major classes 

of antibiotics. The overuse and misuse of antibiotics are two major reasons for the 

Figure 1.2 Bacterial Antibiotic Resistance Mechanisms. Bacterial have devised 

several methods of antibiotic resistance. Decreased uptake – poor antibiotic 

permeability through the cell wall will make some antibiotics ineffective. Target 

alternations – bacteria can modify the target to dodge the antibiotic yet remain 

safe for the bacteria. Alternative enzyme – Bacteria can utilize a different enzyme 

for cellular processes which is not affected by the antibiotic. Inactivating enzymes 

- bacteria have developed mechanisms, such as enzyme mediated antibiotic 

hydrolysis, to alter the structure of the antibiotic and destroy the effects of the 

therapeutic. Efflux pumps – actively transport therapeutics out of the cell. 
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emergence of drug resistant strains. Overuse of antibiotics typically refers to the use in 

farm animals, which can account for a large percentage of antibiotics produced on a 

yearly basis*. Misuse of antibiotics mostly refers to the prescription of antibiotics for 

viral infections and incomplete use of the entire course of antibiotics that are prescribed. 

When administration of a course of antibiotics is not followed according to 

recommendations, it can lead to incomplete clearance of pathogens from the system. The 

remaining bacteria typically have acquired mutations that can be passed on to future 

generations. Moreover, the genetic information that encoded the superior phenotype can 

be additionally passed onto other bacteria as it is spread back out to the natural 

environment. Drug resistance is a phenomenon that is observed in virtually all known 

bacteria that can occur in an inter- and intra-species modalities. A single mode of drug 

evasion can be enough to endow bacteria with a drug-resistant phenotype. Yet, it is now 

clear that bacteria can acquire several genes that confer competitive advantages against 

antibiotics, making these strains exceedingly dangerous.18 These bacteria are known as 

multidrug-resistant (MDR), extremely drug-resistant (XDR) or pandrug-resistant (PDR) 

bacteria.19 These are all designations that refer to bacteria that can cause infections that 

are mostly untreatable.  

Bacteria possess diverse and incredibly efficient methods to avoid the toxic 

actions of antibiotics. Drug modification or degradation, efflux pumps, decreased 

permeation of drugs, and drug target alteration are the most common mechanism used by 

bacteria to circumvent antibiotics (Figure 1.2).20, 16, 21 An effective and widely employed 

resistance mechanism used by bacteria involves the reduction in access of antibiotic to its 

molecular target, which can result in insufficient concentration to impart its intended 
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biological response (Figure 1.2). This can be an inherent resistance mechanism as in the 

case for vancomycin against Gram-negative pathogens. Vancomycin associates tightly 

with the peptidoglycan precursor molecules, lipid II. Pools of lipid II are found primarily 

on the cytoplasmic membrane of bacteria around the sites of cell division and growth. 

Both Gram-positive and Gram-negative bacteria possess peptidoglycan, and, in theory, 

both should be equally sensitive to the actions of vancomycin. However, the outer 

membrane layer found on the surface of Gram-negative bacteria severely restricts 

accumulation of vancomycin within the periplasmic space (site of lipid II in Gram-

negative bacteria), thus preventing access to its molecular target. Vancomycin cannot 

overcome this limitation, and, therefore, is only effective as a stand-alone antibiotic 

against Gram-positive bacterial infections.  

Another widely observed mechanism used by bacteria use to circumvent the 

actions of antibiotics occurs via the structural alteration of the molecular target of that 

particular drug (Figure 1.2). A mutation at the genetic levels results in a protein target 

with an altered primary sequence (a replacement of an amino acid). Protein changes that 

result in lower binding to the antibiotic will give that particular bacterial cell a selective 

advantage. Alternatively, a similar drug-resistant phenotype can be selected whereby the 

primary sequence of the target protein remains unchanged. For example, ribosomal 

protection proteins protect ribosomes from the action of antibiotics by directly interacting 

with the ribosome and changing their shape or conformation. The change in the ribosome 

shape prevents an antibiotic from binding and interfering with protein synthesis.22  

Drug modification or degradation by an inactivating enzyme is another prevalent, 

and highly effective, mechanism of resistance against β-lactam antibiotics (Figure 1.2). β-

15 
 



 
 

lactam antibiotics work by structurally mimicking the dipeptide D-Alanyl-D-Alanine, 

which the terminal group found on the stem peptide of bacterial peptidoglycan, and 

effectively inactivating Penicillin Binding Proteins (PBPs). PBPs are responsible for 

crosslinking adjacent stem peptides within the peptidoglycan scaffold, thus increasing the 

strength and stiffness of this critical cellular matrix. This crosslinking step is crucial to 

the viability of bacterial cells and its disruption is lethal to the cells. The crosslinking 

reaction carried out by PBPs is initiated at the D-Alanyl-D-Alanine terminal end of the 

peptidoglycan. The strained β-lactam bond and the proper mimicry of D-Alanyl-D-

Alanine by these antibiotics results in a covalent capture of the active site of PBPs. 

Consequently, PBPs modified with β-lactam cease to crosslink the peptidoglycan scaffold 

and cell death follows.  

Bacteria resistant to β-lactam antibiotics respond to the presence of these drugs by 

releasing high levels of β-lactamase proteins into the surrounding media. β-lactamases 

enzymatically hydrolyze the β-lactam bond, which renders these drugs poor mimics of D-

Alanyl-D-Alanine and  unable to covalently capture PBPs.23 The use of β-lactamase 

inhibitors in combination with a β-lactam antibiotic has previously proven effective at 

treating these β-lactam-resistant bacteria.24 This combination is commonly prescribed as 

augmentin, which is composed of clavulanic acid, a β-lactamase inhibitor, and 

amoxicillin. Not surprisingly, it was not long after clavulanic acid was first used in clinics 

before bacteria have found a way around this drug combination as well.25 The short 

amount of time needed for bacteria to find a way around this combination of drugs 

highlight the ability of bacteria to gain resistance to antibiotics. In this particular instance, 

bacteria that survived augmentin started to shift the crosslinking function away from 
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PBPs to other enzymes in order to crosslink their cell walls. L,D-transpeptidases, which 

are normally used to perform a separate task in bacterial cells and are structurally distinct 

from PBPs, are inherently insensitive to β-lactam agents.26, 27, 28, 29, 30 Therefore, cells that 

transferred the crosslinking function to L,D-transpeptidases were able to grown and 

proliferate in the presence of high levels of most β-lactam antibiotics. 

Likewise, bacteria have developed additional mechanisms to use alternative 

enzymes to carry out cellular processes. As a resident of the human skin, nails, and nares, 

S. aureus has the unique ability to penetrate deeper layers of host barriers. S. aureus have 

evolved three unique mechanisms to avoid the actions of two distinct classes of 

antibiotics. Methicillin resistant S. aureus (MRSA) shift the crosslinking functions 

necessary for cell wall growth and division to avoid inactivation by β-lactam antibiotics. 

Strains of MRSA express high levels of a PBP variant, PBP2a, that has inherently low 

affinity for β-lactam antibiotics *. This unusual PBP serves as a fully functional enzyme 

within the peptidoglycan biosynthetic pathway. The slower acylation of the active site 

serine in PBP2a forms the basis for a drug-resistant phenotype. Two additional modes of 

drug resistance against vancomycin in S. aureus exemplify the plasticity in bacterial cells 

in their ability to alter structural and biochemical pathways to endow new and favorable 

phenotypes. In the first mode, S. aureus avoid the actions of vancomycin by increasing 

the levels of D-Alanyl-D-Alanine on the peptidoglycan structure as a way of capturing 

vancomycin molecules away from the lipid II pool near the cell membrane.31 The simple 

expansion in the valency of dipeptides present in the mature peptidoglycan scaffold can 

be enough to reduce the susceptibility of vancomycin to disrupt new cell wall growth. In 

the second mode, S. aureus cells perform a wholesale alteration of their peptidoglycan 
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structure to include a terminal D-Lactic acid (D-Lac) in place of the terminal D-Alanine 

(D-Ala) residue within the stem peptide of the peptidoglycan.32 Although structurally 

subtle, the primary sequence change from D-Alanine to D-Lactic acid eliminates a single 

hydrogen bond and, consequently, results in 1000-fold weaker binding affinity to 

vancomycin.33 Exposure to vancomycin triggers a shift in cell wall biosynthesis towards 

the intracellular production of D-Lac and D-Lac terminated building blocks. Pyruvate is 

converted to D-Lac and ligated onto D-Ala by the ligases to afford D-Ala-D-Lac. This unit 

is joined onto a tripeptide by MurF to yield the full PG pentadepsipeptide precursor, 

which is subsequently loaded onto the lipid carrier. Yet, production of D-Ala-D-Lac alone 

is insufficient to impart vancomycin resistance due to the continued cytosolic production 

of D-Ala-D-Ala. If available, D-Ala-D-Ala will also enter the PG biosynthetic pathway 

and generate vancomycin-susceptible Lipid II molecules. To ensure that primarily D-Lac 

terminated Lipid II molecules are assembled, a carboxypeptidase (vanX) is also encoded 

on the resistance plasmid. This enzyme is tasked with the proteolysis of the dipeptide D-

Ala-D-Ala, thus greatly reducing the production of D-Ala terminated Lipid II molecules. 

Through the concerted actions of these enzymes, vancomycin resistant S. aureus cells 

continue to grow and proliferate in the presence of high concentrations of vancomycin. 

Finally, it is now well established that the overexpression of membrane proteins 

that act as efflux pumps are, at least partly, responsible for the emergence of multi-drug-

resistant bacteria.34 Efflux pumps export antibiotics (along with many other small 

molecules) from the inside the target bacterial cells out to the extracellular space. In 

effect, drugs cannot accumulate to sufficiently high levels to impart their biological 

activity. A feature that makes these efflux pumps extremely problematic for drug design 
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and discovery is that they tend to exhibit a low degree of specificity therefore they 

recognize and pump out a myriad of structurally unrelated antibiotics with diverse 

mechanisms of action. A common and problematic opportunistic pathogen, Pseudomonas 

aeruginosa, exhibits low susceptibility to antibiotic treatment due to the action of 

multidrug efflux pumps and low permeability of the antibiotics across bacterial outer 

membrane.35 Recent reports have shown that the combination of phenylarginine-β-

naphthylamide, an efflux pump inhibitor, and cefepime (a β-lactam antibiotic), re-

sensitized cefepime resistant Pseudomonas aeruginosa to the drug.36 These promising 

early results demonstrate the possibility of targeting the inactivation of drug efflux pumps 

with the goal of potentiating known antibiotics and improving the activity of drugs 

currently in the pipeline. 

Together, the diversity of mechanisms and the speed of resistance acquisition 

signify that our current stock of antibiotics will have a fairly limited utility lifespan. The 

continued use and misuse of antibiotics will propel us into a post-antibiotic era unless 

there is a re-dedication of effort and resources towards the discovery of new antibiotics. 

Today, drug resistant pathogenic bacteria are already responsible for thousands of deaths 

and billions of additional health care costs each year. Although novel antibiotics are 

urgently needed, no new class of antibiotics has been discovered since the 1980s (Figure 

1.3). This has become a serious problem in hospitals as bacterial resistant infections 

continue to be on the rise despite the practice of standard precautions.   
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1.4 Treatment of Antibiotic Resistant Bacterial Infections  

With the increasing incidences of drug resistant bacterial infections, last resort 

antibiotics, such as vancomycin and colistin, have now become front-line therapeutics. 

Even more troubling is the presence of vancomycin-resistant bacterial strains37 and 

colistin-resistant Escherichia coli.38,39 The widespread dissemination of these pathogens 

may rapidly increase the cases of untreatable infections.40, 16 If current trends continue, 

modern healthcare standards will be in jeopardy. Recent estimates project that by 2050 

more people will die from antimicrobial resistant infections than from all forms of cancer 

combined.41 

Figure 1.3 Classes of Antibiotics. Chart highlighting the lack of new 
classes of antibiotics in the past 3 decades (source: Pew Institute). 

20 
 



 
 

While the lack of new antibiotics being introduced into clinical settings needs to be 

addressed from a medical, government, and training level, there are a number of 

promising avenues being currently pursued. One example of a class of potential 

antibiotics that are effective against antibiotic-resistant bacteria focuses on derivatization 

of current antibiotics. For example, the Boger group at Scripps Research Institute has a 

long history of designing and synthesizing vancomycin derivatives that have improved 

activities compared to the parent drug.42, 43 In order to try and regain the lost binding 

affinity of vancomycin against D-Lac displaying drug resistant strains, a series of 

vancomycin analogues was synthesized with modifications focused on improving the 

binding to D-Ala-D-Lac strands. Their successful vancomycin displayed a 40-fold 

increase in affinity for D-Ala-D-Lac. Most importantly, the derivative also was effective 

against vancomycin-resistant Enterococcus faecalis (VRE) (MIC = 31 µg/mL).43 

 Some potential methods to expand the antibacterial therapy repertoire target non-

direct killing modalities. A promising strategy is aimed at inhibiting the ability of bacteria 

to communicate with one another.44 Bacteria use small diffusible molecules to distribute 

information about population density in a process termed quorum sensing. Quorum 

sensing has been proposed to play a role in bacterial pathogenicity. Communication 

between pathogenic bacteria can potentially provide a mechanism to minimize host 

immune responses by delaying the production of tissue-damaging virulence factors until 

sufficient bacteria have accumulated and the cells, in sync, are prepared to overwhelm 

host defense mechanisms to establish a robust infection. Therefore, the inhibition of these 

molecules may result in decreased colonization and virulence.  
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Although not approved in the United States, bacteriophage therapy has had 

remarkable success in Europe for antibiotic-resistant bacterial infections. Bacteriophages, 

commonly called phages, are viruses that infect bacteria but not mammalian cells.45 After 

penetrating the bacterial surface, phages will hijack bacterial DNA, and then replicate 

themselves within the bacteria until the cell bursts – depending on the lifecycle of the 

bacteriophage. Cocktails of phage viruses matched against pathogenic bacteria of interest 

can effectively cure a bacterial infection in the human body with remarkable accuracy, 

taking out only the infiltrators.46  

Recently, the World Health Organization (WHO) assembled a list of pathogens 

desperately needing new therapies. At the top of the list are three drug-resistant Gram-

negative bacteria followed by vancomycin-resistant E. faecium and MRSA (Figure 1.4). 

This thesis presents a novel non-direct killing method of combatting pathogenic bacteria 

by use of bacterial immunotherapy, specifically targeting MRSA and Gram-negative 

pathogenic bacteria.  
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Figure 1.4 Pathogen Priority Level. The World Health 
Organization’s list of top priority pathogens desperately needing 
new antibiotics. 
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Chapter 2 

Bacterial Immunotherapy 

2.1 Introduction 

The threat of antibiotic-resistant strains urgently calls for the development of novel 

multi-pronged approaches, including improved stewardship of known antibiotics, in the 

development of effective vaccines or alternative strategies to treat bacterial infections. 

Agents that circumvent antibiotic resistance by targeting pathogens for host immune 

clearance have the potential to selectively stimulate protective immune responses as a 

treatment option for bacterial infections.1  

Of the many systems in the body, the human immune system is one of the most 

important. Composed of a myriad of cellular mechanisms this complex network works as 

a defensive biological response to dangerous pathogens. The immune system recognizes 

potentially harmful substances, such as viruses, bacteria, and fungi, and sequentially acts 

to neutralize these foreign invaders. An effective immune system will successfully clear 

infectious material while sparing healthy human cells. Yet, the immune system’s ability 

to neutralize destructive offenders it not limited to foreign organisms. It can also offer 

support in the clearance of distorted cells, such as cancerous cells. In this case, 

elimination is carried out by tumor-specific T cells, immune cells developed specifically 

to target and attack cancer cells. However, cancerous cells have done well at evading the 

host immune system.2 To achieve evasion, tumors use powerful adaptations to disrupt 

equilibrium and suppress the immune system, such as manipulation of checkpoint 

pathways.3 When this manipulation occurs, checkpoint pathways like CTLA-4 or PD-1 

are activated to release a negative signal down-regulating the immune system and 
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promoting self-tolerance by suppressing T cell inflammatory activity. This host immune 

evasion upsets the delicate balance of the immune response, potentially leading to dire 

repercussions and serious health implications. Similarly, pathogenic bacteria have also 

evolved to thwart clearance by the immune system. When evasion is extremely 

successful, further medical intervention is required, in the means of antibiotic delivery or 

surgery to remove the untreatable infection.  

The external surface of bacterial pathogens presents many diverse antigenic targets 

for the host immune system. As the central interface between host and pathogen, 

recognition of the exposed surface by the immune systems provides the host a key 

signature to initiate microbial clearance. It also affords the pathogen significant 

opportunity to present mimics of host immune modulators, alter host immune responses, 

express adhesins or receptor ligands to anchor the pathogen to host surfaces, and to 

present invasins or fusion proteins to mediate uptake into host cells.4, 5  

A major difficulty for bacterial pathogens is hiding this complex surface of proteins 

and carbohydrates from immune surveillance and TLR recognition yet exposing key 

molecules, such as adhesins and invasins. A common mechanism of masking bacterial 

surfaces is to express a carbohydrate capsule. This mechanism is used by most 

extracellular bacterial pathogens that circulate systemically within the body. For example, 

Streptococcus pneumoniae relies extensively on its capsule to prevent antibody and 

complement deposition on its surface, thereby avoiding opsonization and phagocytic 

clearance.6 
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Bacterial pathogens, especially Gram-negative pathogens, have developed secretion 

systems to export virulence factors across the bacterial membranes and either into the 

supernatant or directly into host cells. Secretion of virulence factors such as toxins and 

immune modulators is a major use of these secretion systems.7, 8 In Gram negative 

pathogens, both type III secretion systems (T3SS) and type IV secretion systems (T4SS) 

can insert various molecules directly into host cells, including toxins, mechanisms to 

paralyze phagocytosis, and many diverse effectors that alter immune functions to enhance 

immune evasion.  

 

2.2 Bacteria and the Human Host 

In the last few years, we have learned that humans share a complicated and intricate 

co-existence with bacteria living in and on our bodies. The sheer number of bacteria cells 

means that these microbial communities have the potential to impact human health. There 

exist two types of bacteria, probiotic and pathogenic bacteria. Probiotics, like 

Lactobacillus, are beneficial to our health, primarily aiding in a healthy digestive 

system.9 Unlike the response to commensal bacteria, the human immune system must 

rapidly and efficiently attempt to eradicate pathogenic bacteria upon exposure. An 

imbalance of the host immune response can lead to a number of serious health 

implications. An overly aggressive response may lead to chronic or acute inflammation, 

whereas a highly attenuated response may lead to uncontrolled bacteria growth.  

In the case of the latter, uncontrolled bacteria growth may also be due to evasion of 

the host immune system. As discussed in the previous section, bacterial pathogens have 

mechanisms in place in order to thwart clearance by the immune system. Therefore, in 
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response to threat, researchers have developed bacterial immunotherapies that operate by 

provoking a selective native immune response against evading pathogenic bacteria. 

Treatment of microbial infections using this novel methodology possesses two main 

benefits. First, the immune system has evolved to combat pathogenic bacteria. In fact, the 

innate human immune system is constantly detecting, engaging, and destroying 

pathogenic bacteria. As stated, it is only when the homeostatic balance between the host 

immune system and the pathogenic bacteria is compromised that a bacterial infection 

ensues. Secondly, by targeting the immune system of the host rather than the bacteria, the 

propensity for bacteria to evolve resistance via selective pressure is potentially reduced.1 

It is due to these two clear advantages that immunomodulatory drugs provide great 

potential as future antimicrobial therapeutics.  

 

2.3 Bacterial Immunotherapy 

Unfortunately, immuno-agents against bacterial infections have lagged behind 

traditional antibiotics despite the tremendous clinical success of immunotherapy in other 

disease areas.10  This is best illustrated in the field of cancer therapy. Cancer 

immunotherapeutics attack cancer cells by mounting or enhancing a selective immune 

response against the tumor cells. Immuno-oncology has resulted in unprecedented patient 

responses.10 Most significantly, more robust and sustained anti-cancer responses have 

been observed when compared to traditional cancer chemotherapeutics.11, 12, 13, 14 

Research groups have been working towards applying guiding principles from immuno-

oncology to design molecules that target pathogenic bacteria.15, 16, 17, 18 These strategies 

act to stimulate or attenuate the host immune system in a manner that is advantageous to 
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clearance of infection. By exploiting an emerging chemical understanding of complex 

biological systems, future efforts to rationally modulate human immunological functions 

have the potential to augment our ability to prevent, diagnose, and treat human disease. In 

this field, one of the most utilized methods of synthetically tagging bacteria for host 

immune clearance is the employment of antibody-recruiting small molecules (ARMs). 

 

2.3.1 Antibody-Recruiting Small Molecules (ARMs) for Bacteria Targeting 

To date, the display of antibody-recruiting small molecules (ARMs) on targets such 

as cancer cells, viruses, and bacteria has demonstrated high potential for stimulating the 

host immune system.19 Bacteria eradication by the immune system relies on surface 

“tagging” by antibodies. As such, synthetic ARMs are comprised of a target binding 

domain (surface of bacteria) and an antibody binding domain. Simultaneous association 

of ARMs with antibodies and surface-exposed targets results in the formation of ternary 

complexes, which can elicit antibody dependent immune effector responses. Two potent 

arms of the native immune system that can potentially lead to bacterial killing based on 

opsonization are antibody-dependent cellular cytotoxicity (ADCC) and complement-

dependent cytotoxicity (CDC) (Figure 2.1). 

In the latter, the recruitment of antibodies induces a complement-dependent cytotoxic 

(CDC) response, in which protein aggregates are formed in target membrane. This 

protein aggregate, known as the membrane attack complex (MAC), is responsible for 

lysing the target cell by forming pores in the membrane of the cell.20 This response does 

not rely on other immune cells, although the innate immune system is made up of 
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phagocytic cells (polymorphonuclear neutrophils, monocytes, macrophages), cells that 

release inflammatory mediator, and natural killer cells. This mechanism is generally 

thought to be utilized in the eradication of Gram-negative bacteria. 

The other mechanism, in which the immune system facilitates immune-mediated 

cytotoxicity, is through the recruitment of these aforementioned effector immune cells. In 

these types of immune responses, antibodies opsonizing the surface of target cells are 

recognized by effector immune cells. In the case of antibody-dependent cellular 

phagocytosis (ADCP), macrophages and neutrophils recognize opsonized bacterial 

surfaces and phagocytose target cells.21 Conversely, recognition of the antibody Fc region 

by natural killer cells results in immune cell release of proteins such as perforin, which 

subsequently destroy the target through lysis. This mechanism of immunity is antibody-

dependent cellular cytotoxicity (ADCC).22, 23 
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Immunotherapy with antibodies has taken the leading role in this development aided 

by the virtually unlimited supply of purified human mAbs, which are among the immune 

system’s most effective weapon against bacterial pathogens. Upon antigen labeling of 

target cell surfaces, these adaptive antibodies can bind and neutralize bacterial toxins, 

facilitate an immune response, and improve recognition and binding by phagocytic cells 

thereby increasing the phagocytic killing efficiency. In using this strategy for therapeutic 

purposes, antigens that bind endogenous antibodies are more appealing as they forgo the 

need for vaccination.  

Figure 2.1 Primary Modes of Pathogen Clearance based on Immunomodulators. 
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Few antigens are known to be recognized by endogenous antibodies. The first and 

most prominently utilized endogenous ARM is the carbohydrate galactosyl-(1-3) 

galactose (α-Gal) (Figure 2.2). With estimations of up to 8% of anti- α-Gal antibodies 

found circulating in the human blood stream, this trisaccharide epitope has produced 

robust immune responses used in developing cancer and HIV treatments.24, 25, 26, 

27Another carbohydrate-based antigen is L-rhamnose (Figure 2.2). Through extensive 

analysis of human sera samples derived from subjects of diverse ethnicities, ages, and 

gender, antibodies which bind L-rhamnose were found in greater concentrations in a 

higher proportion of people than the previously mentioned α-Gal.28 Recently L-rhamnose 

was used to label tumor cells and demonstrated its ability to inhibit tumor growth in 

vivo.29 Lastly, DNP is also known to recruit endogenous antibodies (Figure 2.2). 

Although antibodies for the previous two epitopes mentioned, have origins linked to 

bacteria, the presence of anti-DNP antibodies remains debated.30, 31 It is known that 1% 

of all antibodies circulating within the human blood stream will bind to DNP haptens.32, 

33, 34 Due to its chemical structure, constructing ARMs displaying the DNP epitope is 

facile in comparison to the previously mention carbohydrate antigens. The use of DNP 

conjugated ARMs has previously been used to elicit immunomodulation responses that 

have targeted human immunodeficiency virus (HIV), lung cancer, prostate cancer, and 

colon adenocarcinoma.35, 36, 37 
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A variety of ARM-based antibacterial strategies have been evaluated. The first 

example was reported by the Bednarski laboratory in 1992. They employed a rationally 

designed, bifunctional molecule capable of directing anti-avidin antibodies to E. coli.38, 39 

The target of interest was a mannose sugar receptor expressed on the pili of Escherichia 

coli (E.coli). Biotin was conjugated to the C-glycoside of mannose, a known ligand for 

bacterial mannose receptors, and this construct was shown to recruit anti-avidin IgG 

antibodies to the surface of E. coli in a manner dependent on the presence of conjugate, 

avidin, and antibodies. Furthermore, the researchers demonstrated that complexes 

between avidin, antibody, and ARM could mediate complement- and macrophage-

dependent cytotoxicity. 

More recently, in 2003 and 2006, Whitesides and co-workers developed ARMs that 

target pathogenic bacteria by utilizing the potent antibiotic vancomycin.40, 41 Constructing 

vancomycin- fluorescein polyvalent polymers allowed for the targeting of the surface of 

several Gram-positive bacteria, including S. aureus, S. epidermidis, and S. pneumoniae). 

Figure 2.2 Chemical Structures of Antigens Capable of Recruiting Endogenous 
Antibodies. Galactosyl-(1-3) galactose, rhamnose, and dinitrophenyl are known to 
be epitopes or haptens for endogenous antibodies.  
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The polymeric vancomycin was used to target the site of new peptidoglycan and the 

fluorescein moiety promoted the recruitment of anti-fluorescein antibodies to the surface 

of various Gram-positive bacteria.  Using fluorescence microscopy and flow cytometry, 

the authors demonstrated that the antibody-recruiting polymer could mediate 

phagocytosis of opsonized bacteria in the presence of anti-fluorescein antibodies. 

Each of these previous studies demonstrates the feasibility of stimulating the host 

immune system as an effective strategy to thwart off pathogenic bacterial infections. 

However, these methods suffer drawbacks such as vaccination, low bioavailability, or 

indirect antigen cell surface labeling. The antigens utilized, biotin and fluorescein, would 

not be suitable for inducing an immune response without prior immunization. To mitigate 

this shortcoming, the hapten utilized should ideally recruit endogenous host antibodies to 

the bacterial surface.  

In 2014, the Pires laboratory pioneered the use of a direct targeting agent, where 

bacterial cell surfaces were selectively modified with antigens that recruit endogenous 

antibodies to eliminate the need for vaccination. Since then they have pioneered the field 

of bacteria immunotherapy utilizing haptens recognized by endogenous antibodies.15, 16, 17  

In their novel immunomodulation strategy, D-amino acid Antibody Recruitment Therapy 

(DART), they developed a series of D-amino acid derivatives that selectively modified 

bacterial cell surfaces with small molecule haptens. Synthetic D-amino acids were 

metabolically incorporated as cell wall building blocks, which led to cell surface 

presentation of unnatural sidechains modified with haptens. They showed that the 

presence of DNP-conjugated D-amino acids led to extensive peptidoglycan remodeling 

and triggered the recruitment of endogenous antibodies (existing antibodies in human 
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serum) and induced phagocytosis by macrophages. In a second generation form of 

DART, they showed the ability of PBP transpeptidases to incorporate D-amino acids 

possessing diverse C-terminus modifications. Through this study, it was observed that 

exogenous D-amino carboxamide variants are more readily incorporated into the 

peptidoglycan than the natural carboxylic acid containing D-amino acid substrate. They 

show that that DNP-conjugated D-amino carboxamides elicited a greater immune 

response in B. subtilis and E. faecalis.16 

Poignantly, the use of employing antibodies to treat infections has long ago been 

established. Using antibodies to treat infections became a reality in the late 1800’s when 

a German physiologist, Emil von Behring, developed serum therapies against diphtheria 

and tetanus.42 He found that he could transfer serum from infected horses to ill patients 

stricken with the disease. The antitoxins, as he coined them, from the horse serum 

targeted the disease in the patients and triggered a robust immune response. Stricken 

patients were healed and Von Behring later won the first Nobel Prize in medicine for 

employing antitoxins (antibodies, as we call them today) in 1901. Afterward, passive 

serum therapy was the preferred method in treating not only diphtheria and tetanus, but 

also scarlet fever and meningitis.43 As we are well aware of today, the use of the 

antiserum was particularly effective against pathogens, capable of evading the immune 

system. With the advent of antibiotic therapy, serum therapy faded into background. 

However, Von Behring’s discovery may be making its second debut as a life-saving 

remedy.   
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In this thesis, the development of an immunotherapy strategy to specifically target 

Staphylococcus aureus and the challenging Gram-negative pathogenic bacteria is 

discussed. By utilizing derivatives of antibiotics, which naturally home to the bacteria 

surface, bacterial cell surfaces were selectively modified with antigens that recruit 

endogenous antibodies. The antibody recruitment molecules were designed to afford high 

levels of bioavailability and selectively modulate bacterial surfaces in a direct manner to 

reduce off target immune responses effecting host cells. In Staphylococcus aureus, we 

report on the selective and covalent modification of the bacterial cell wall primed for the 

recruitment of endogenous antibodies. We also show, for the first time, in vivo selective 

targeting of S. aureus. In developing an immunotherapy strategy for Gram-negative 

bacteria, we describe the first class of synthetic molecules that remodel Gram-negative 

bacterial cell surfaces with immune cell attractants. The results of this thesis demonstrate 

a viable treatment option to address the clinical challenge of Staphylococcus aureus and 

Gram-negative bacterial pathogens.  
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Chapter 3 

Immuno-Targeting of Staphylococcus aureus via Sortase A-Mediated Incorporation 

of Vancomycin-Antigen Complexes 

3.1 ABSTRACT 

As the threat of methicillin-resistant Staphylococcus aureus continues to loom 

over the power of modern medicine, new methodologies to treat bacterial infections is of 

paramount importance. We set out to leverage the surface-homing properties of 

vancomycin to specifically tag the surface of Gram-positive pathogens with immune cell 

attractants. Vancomycin, which accumulates preferentially at the regions of cell 

division/growth (concentrated pools of Lipid II molecules), target a dipeptide motif found 

in the cell wall of bacteria. Additionally, previous research has shown that exogenous 

peptides can be covalently incorporated into the peptidoglycan of S. aureus via the 

sortase A enzyme, SrtA. This chapter will discuss the development of vancomycin-

conjugated SrtA-recognition peptides, which were shown to covalently modify the 

bacterial cell surface through sortase A-mediated surface remodeling. Initially, 

fluorescent handles were conjugated to the peptide-drug complexes, in order to answer 

fundamental questions, such as peptide recognition sequence, optimal linker length for 

incorporation, and potential toxicity. Using these determined conditions, the conjugated 

fluorophore on the peptide-drug complex was exchanged for a DNP antigen moiety to 

facilitate the recruitment of anti-DNP antibodies, readily found in human blood serum. 

The studies presented in this chapter demonstrate that the incorporation of DNP antigens 

within the bacterial peptidoglycan scaffold enhances the recruitment of endogenous anti-
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DNP antibodies to the bacterial cell surface by nearly four-fold compared to unlabeled 

cells. Furthermore, we show, for the first time, the in vivo selective targeting of S. aureus 

in live C. elegans, a widely used model host to understand bacterial pathogenesis and 

host-pathogen interactions. In conjunction, these results pave the way for a narrow-

spectrum strategy for the destruction of bacterial infections caused by S. aureus (drug-

sensitive and -resistant) through bacterial immunotherapy. 
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3.2 INTRODUCTION 

The cell wall of Gram-positive bacteria has served as a fruitful target for the 

development of antibacterial therapies for decades.1 As discussed previously, Gram-

positive bacteria are surrounded by a mesh-like scaffold of peptidoglycan, which is 

composed of multiple layers of N-acetylglucosamine (NAG) and N-acetylmuramic acid 

(NAM) glycan strands that are cross-linked by oligopeptides and provides bacteria with 

immense structural support.2 Due to the critical role of the cell wall during cellular 

growth and division, molecules that interfere with the necessary enzymatic processes 

related to peptidoglycan synthesis have become some of the most successful antibiotic 

agents. Additionally, cell walls come in direct contact with the human hosts, a feature 

that can be exploited by the immune system in the detection and eradication of these 

pathogens. The remodeling of bacterial surfaces using surface-homing antibiotics holds 

considerable potential as a unique and targeted method to modulate the immune response 

by host organisms. As such, we explored the possibility of utilizing the antibiotic, 

vancomycin, as a means to target the surface of Gram-positive bacteria. We designed 

vancomycin-antigen conjugates, in order to decorate the bacterial surface with an 

immune stimulant. The potential as an antigen-conjugated surface displaying molecule is 

of great interest albeit concentration must remain below the minimal inhibitory 

concentration (MIC) of the bacteria. We became interested in designing a surface-

remodeling method that would (1) increase the number of DNP epitopes against 

pathogens that display reduced D-Ala-D-Ala content on mature PG scaffolds, (2) generate 

covalent tags onto the PG scaffold and (3) conduct as a narrow-spectrum drug.  
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We aimed to target S. aureus, and explored the possibility of combining 

vancomycin with a peptidic recognition motif specific to S. aureus. The cell wall of S. 

aureus is very diverse and plays many important roles in the establishment of various 

infectious diseases. As such, the bacteria have devised methods for covalently decorating 

their cell wall with surface proteins, which can be involved in pathogenicity. S. aureus 

lack pili or fimbrial structures and instead rely on surface protein-mediated adhesion to 

host cells or invasion of tissues as a strategy to escape immune defenses.3 In order to 

engage this strategy, this facultative anaerobe decorates its cell surface with a diverse set 

of virulence factors (e.g., exotoxins, exoenzymes, and adhesins) via sortase A (SrtA) 

mediated transpeptidation.4,5 Critical for gaining entry into and colonization in host 

tissues, SrtA transpeptidase is a surface-bound enzyme that attaches bacterial proteins 

onto the PG scaffold of S. aureus (Figure 3.1).6  

In anchoring proteins, sortase A recognizes the short, LPXTG peptide motif 

(where X is any amino acid) and catalyze the acyl-transfer onto lipid II of S. aureus.4 As 

the PG monomeric unit from lipid II is loaded onto the existing PG scaffold, so will the 

anchored protein (Figure 3.1).7 After continued PG biosynthesis, the anchored protein 

will eventually be presented at the cell surface. Spiegel and coworkers have previously 

shown that S. aureus cells treated with fluorescently labeled LPXTG peptides resulted in 

the labeling of bacterial surfaces.8 Furthermore, the conjugation of fluorescein to the N-

terminus of LPXTG and subsequent labeling of the bacterial surface, allowed for the 

recruitment of anti-FITC antibodies to S. aureus.9 
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Although these results highlight the potential in using SrtA-based peptide 

sequences to install unnatural handles on cell surfaces, the concentrations required for 

efficient labeling are not physiologically relevant (0.5-1 mM during overnight 

incubation). These high concentrations are necessary due to the nature of the 

transpeptidase reaction carried out by SrtA (high KM), whereby both of its substrates are 

highly concentrated at the cell surface. Coinciding with the work described in this thesis, 

the reporting of the covalent conjugation of vancomycin to LPXTG was shown to bring 

the substrate peptide to its partner, lipid II, based on the ability of vancomycin to 

Figure 3.1 Remodeling of Bacterial Surface via Sortase A. The transpeptidase 
recognizes a SrtA specific peptide sequence (LPXTG). A cysteine in the active site of 
SrtA attacks the amide bond between the glycine and threonine residues to generate an 
acyl enzyme intermediate. Further reaction of this intermediate with the nucleophilic 
amine of a pentaglycine crosslinking oligopeptide of lipid II anchors the secreted proteins 
to the membrane. As the PG monomeric unit from lipid II is loaded onto the existing PG 
scaffold, so will the anchored protein. After additional PG biosynthesis, the anchored 
protein will eventually be presented at the cell surface. Nature Reviews Microbiology 9, 
166-176 (March 2011). 
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associate with the D-Ala-D-Ala dipeptide on lipid II.10 By increasing the effective 

concentration of the LPXTG, efficient SrtA mediated tagging was possible at low 

micromolar concentrations. We set out to develop a potentially novel immunotherapy 

strategy by exploiting the propensity of bacteria to incorporate exogenous Srt A 

recognition peptides into their peptidoglycan that are conjugated to vancomycin 

displaying antibody-recruiting haptens (Figure 3.2). We hypothesized that a synthetic 

immunology approach could provide a highly efficient method for developing alternative 

antibiotic agents.  

 

 

 

 

 

 

Figure 3.2 Schematic Representation of S. aureus Immunotherapy. S. aureus is 
incubated with sortase A recognition peptides conjugated to vancomycin-DNP. The DNP 
epitope is the antigen which is then covalently bound to the peptidoglycan surface of S. 
aureus. Following the labeling, the binding of anti-DNP IgG antibodies leads to the 
eventual clearance by the immune system.
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3.3 RESULTS AND DISCUSSION  

3.3.1. Fluorescent Labeling of S. aureus using vancomycin-BODIPY 

Vancomycin, and related glycopeptides, imparts cytotoxicity by binding to the 

terminal D-Ala-D-Ala found on the PG stem peptide. As mentioned, the PG layer of the 

cell wall is rigid due to its highly cross-linked structure. As new layers of PG are the 

synthesized, new building blocks of peptidoglycan get inserted (monomers of N-

acetylmuramic acid and N-acetylglucosamine) into the membrane. Vancomycin binds to 

the building blocks of the peptidoglycan and prevents the transpeptidase from acting on 

these new formed blocks and thus prevents cross-linking of the peptidoglycan layer. By 

causing the peptidoglycan layer to be less rigid and more permeable, vancomycin 

addition eventually leads to the death of the bacteria (Figure 3.3). Due to the antibiotic’s 

surface homing ability, we hypothesized that we could exploit the natural tendency of the 

antibiotic as a synthetic immunology approach.  
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Figure 3.3 Mechanism of Vancomycin. Penicillin binding proteins (PBPs) rest on 
peptidoglycan and are responsible for the crosslinking between N-acetylglucosamine (NAG) 
and N-acetylmuramic (NAM) chains. Once vancomycin has irreversibly bound to D-Ala-D-
Ala, PBPs are unable to recognize the site and connect the oligopeptide via their pentaglycine 
chains. (Mcstrother, Vancomycin resistance.svg April 9, 2011) 

vancomycin 
interferes with 

PG crosslinking  

Vancomycin
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In assessing the binding affinity to the surface of S. aureus, we utilized a 

fluorescent vancomycin conjugate, vancomycin-BODIPY. S. aureus cells were incubated 

in medium supplemented with vancomycin-BODIPY (4 µg / mL) for 30 min at 37 °C. 

After allotted incubation time, cells were washed and fluorescence was quantified via 

flow cytometry at indicated time points (Figure 3.4). We observed a decrease in 

fluorescence in the first 5 min suggesting the dissociation of vancomycin-BODIPY from 

the surface of the bacteria. Due to this, we explored the use of a covalent method for 

installing vancomycin antigen conjugates on the surface of bacteria. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Vancomycin-BODIPY Dissociation from S. aureus Surface. 
Flow cytometry analysis of vancomycin-BODIPY-labeled S. aureus cells 
after indicated times. Data are represented as mean + SD (n = 3). 
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3.3.2 SrtA-mediated Incorporation in S. aureus 

Some surface proteins require SrtA for the covalent anchorage to the 

peptidoglycan of Gram-positive bacteria. The enzyme recognizes secreted proteins 

bearing a specific sortase motif, Leu-Pro-X-Thr-Gly (LPXTG), and Leu-Pro-X-Thr-

Gly/Leu-Pro-X-Thr-Ala-Ala (LPXTG/LPXTAA), for Staphylococcus aureus and 

Streptococcus pyogenes, respectively (where X is any amino acid). Other Gram- positive 

bacteria will also possess sortase enzymes, yet may have different recognition motifs11 

and substrate requirements.12 Although the natural sortase substrate is the LPETG motif 

in S. aureus, the use of methionine in the central position of the pentapeptide 

demonstrated enhanced cell surface labeling.7 However, due to the role of SrtA as a 

housekeeping enzyme responsible for covalently modifying the peptidoglycan with 

proteins, the Km of the enzyme is high.13 Thus, the required LPXTG-motif containing 

peptide concentration needed for labeling requires millimolar concentrations.  

Initially, we synthesized peptides to establish the baseline values for efficient 

SrtA-mediated incorporation into the peptidoglycan of S. aureus. All fluorescently 

labeled SrtA recognition peptides were built via solid-phase peptide synthesis using 

standard Fmoc-chemistry (Scheme 3.1). We constructed two variants, FITC-KLPMTG-

NH2 and FITC-KLPETG-NH2, and a control peptide exhibiting a scrambled SrtA 

sequence, FITC-KMGTLP, employing the fluorescein (FITC) fluorophore which is 

compatible for solid-phase synthesis. S. aureus cells were incubated overnight in medium 

supplemented with 1 mM of FITC-KLPMTG, FITC-KLPETG or control peptide, FITC-

KMGTLP.   
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Scheme 3.1 Synthesis of FITC Conjugated SrtA Recognition Peptides. Peptides were 
synthesized using Fmoc-protected amino acids conjugated on Sieber resin. FITC 
fluorophore was conjugated to the N-terminus. Following conjugation, deprotection of the 
N-terminus of lysine and TFA cleavage from the resin afforded FITC Conjugated SrtA 
Recognition Peptides. Synthesis shown for FITC-KLPMTG; all peptides underwent same 
synthetic procedure.   
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The bacteria cells were washed and analyzed for the acquisition of green 

fluorescence from the fluorescein fluorophore. Consistent with previous reports, we 

observe roughly a 2-fold increase in surface labeling exposed to FITC-KLPMTG over 

bacteria exposed to FITC-KLPETG. Both the unlabeled bacteria and bacteria treated with 

the scrambled control displayed reduced fluorescence (Figure 3.5).  

 

 

Figure 3.5 Incorporation of FITC Conjugated SrtA Recognition Peptides. 
Flow cytometry analysis of S. aureus incubated overnight in the presence of 
LB alone, and LB supplemented with 1 mM of FITC-KLPETG or 1 mM of 
FITC-KLPMTG or 1 mM of FITC-KMGTLP. Data are represented as mean + 
SD (n = 3). 
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Next, we visualized the labeled S. aureus via fluorescence microscopy and 

observed a uniform fluorescence signal throughout the cell (Figure 3.6). We believe the 

difference in fluorescence levels in bacteria treated with different peptide sequences 

suggests a specific process of incorporation. In this case, we believe SrtA activity is 

responsible for selectively incorporating the LPMTG-containing peptide into the cell wall 

over the scrambled control.  

 

 

 

 

 

Figure 3.6 DIC and Fluorescent Microscopy Image of FITC-KLPMTG 
Labeled S. aureus. S. aureus were incubated in LB supplemented with 1 
mM FITC-KLPMTG overnight at 37 °C. Cells were washed and imaged. 
Scale bar represents 1μm. 
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3.3.3 Vancomycin-conjugated SrtA Recognition Peptide Incorporation in S. aureus 

Next, we constructed fluorescent peptides consisting of the LPMTG motif and the 

antibiotic, vancomycin. In particular, we varied the linker between the LPMTG and 

vancomycin to establish the optimum linker length (Figure 3.7). The spacer between 

these two units should be long enough to accommodate the binding of the D-Ala-D-Ala 

by vancomycin and the docking of the LPMTG onto the SrtA active site.  
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A 

Figure 3.7 Cartoon representation of SrtA incorporation of Vancomycin-
peptide conjugates. (A) Scheme depicting the anchoring of sortase A peptides 
onto PG. The presence of vancomycin positions the conjugate at the site of the 
sortase A enzyme. Due to this the effective concentration of the sortase A peptide 
substrate increases causing swift incorporation and transfer onto Lipid II. (B) 
Structure of sortase-vancomycin conjugates. 

B 
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In the absence of structural data, we sought to empirically establish the optimum 

tether by evaluating a small panel of poly ethylene glycol (PEG) spacers. The high 

flexibility and solubility of PEG should be ideal for the bridging of LPMTG with 

vancomycin. We constructed several peptides with this backbone, FITC(PEG)-K(PEGn-

Vanc)-LPMTG, where n = 0, 1, 2, 3 (Table 3.1). We anticipated building this panel of 

peptides completely on solid support. However, vancomycin is deglycosylated in the 

presence of trifluoroacetic acid, eliminating the vancosamine and vancosaminyl-O-

glucose sugars.14,15  

 

 

 

 

Table 3.1 List of Synthesized Vancomycin-SrtA peptide conjugates.  

Compound : PEG Linker : Abbreviation :
FITC(PEG)-KLPMTG 0 FITC-PEG0
FITC(PEG)-K(PEG)-LPMTG 1 FITC-PEG1
FITC(PEG)-K(PEG2)-LPMTG 2 FITC-PEG2
FITC(PEG)-K(PEG3)-LPMTG 3 FITC-PEG3

FITC(PEG)-K(Vanc)LPMTG 0 FITC-PEG0Vanc
FITC(PEG)-K(PEG-Vanc)-LPMTG 1 FITC-PEG1Vanc
FITC(PEG)-K(PEG2-Vanc)-LPMTG 2 FITC-PEG2Vanc
FITC(PEG)-K(PEG3-Vanc)-LPMTG 3 FITC-PEG3Vanc
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To confirm, we dissolved vancomycin in 95% TFA and obtained a HPLC trace 

(Figure 3.8). We overlaid the trace with the traces of pure vancomycin and pure 

vancomycin aglycon (vancomycin without the sugars). As seen in the trace, even pure 

vancomycin is susceptible to the 0.1% TFA added in the HPLC solvents. Therefore, the 

series of constructs were built using a combination of solid and solution phase 

chemistries and purified using 0.001% TFA HPLC solvents, due to the high sensitivity of 

vancomycin towards acidic conditions.  

 

 

Figure 3.8 Vancomycin Acid Susceptibility. Vancomycin treated with 95% TFA 
(red trace) displays three peaks in the HPLC trace, depicting the vancomycin peak 
(center), the sugars (left) and the vancomycin aglycon (right). Vancomycin (black 
trace) is susceptible to HPLC acidic solvents displaying the vancomycin aglycon 
peak (right).  
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Vancomycin was coupled to the primary amine of PEG linker or directly to the 

lysine side chain, resulting in the final constructs (Scheme 3.2). All compounds were 

purified via reverse phase high performance liquid chromatography (RP-HPLC). Masses 

were confirmed using either electrospray ionization mass spectrometry (ESI-MS) or 

matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-

TOF MS). 

S. aureus was incubated overnight in medium supplemented with 5 μM of each 

construct. The bacteria cells were washed and analyzed by flow cytometry. We observed 

a 30-fold increase in fluorescence for bacteria exposed to FITC-PEG0Vanc and FITC-

PEG1Vanc over unlabeled bacteria (Figure 3.9). This increase is attributed to the 

presence of vancomycin. The peptides not conjugated to vancomycin displayed very little 

to no fluorescence, indicating that vancomycin is needed to position the peptide near SrtA 

at the cell membrane. Lipid II, the target of vancomycin, is anchored on the cell 

membrane and is the recipient of the sortase cargo. We observed a loss in fluorescence 

for the peptides with a longer linker between the sortase A motif and vancomycin. This 

indicates length dependence between the motif and the antibiotic. The low levels of 

fluorescence associated with these samples may have resulted from nonspecific binding 

of the peptide construct to the bacterial surface or from low levels of intracellular 

accumulation. 
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Next, we probed the distance between the sequence motif and the fluorophore. 

We constructed another peptide incorporating an additional PEG group before the FITC 

fluorophore (Table 3.2).  

 

Figure 3.9 Vancomycin-conjugated SrtA Recognition Peptide 
Incorporation in S. aureus. Flow cytometry analysis of S. aureus cells 
incubated overnight in LB supplemented with panel of fluorescent 
conjugates at 5 µM. Data are represented as mean + SD (n = 3). 

Table 3.2 List of Synthesized Vancomycin-SrtA peptide conjugates.  

Compound : PEG Linker : Abbreviation :

FITC(PEG2)-K(PEG)LPMTG 1 FITC-2PEG1
FITC(PEG2)-K(PEG-Vanc)-LPMTG 2 FITC-2PEG1Vanc
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Incubating S. aureus with 5 µM of FITC-PEG1Vanc or FITC-2PEG1Vanc 

overnight led to a 2.5 – fold increase in fluorescence for the FITC-2PEG1Vanc treated 

bacteria over the FITC-PEG1Vanc treated bacteria (Figure 3.10). Thus, the addition of 

the spacers before the fluorophore handles seems to aid in incorporation efficiency.  

  

We believe this incorporation suggests a specific process of incorporation by Srt 

A, and therefore, should only label Gram – positive bacteria where Srt A is heavily 

expressed. To test this, we incubated 2PEG1Vanc with several different bacteria of 

varying Srt A expression levels. After overnight incubation, the bacteria were washed and 

fluorescence was quantified via flow cytometry. As evident from the fluorescence levels, 

2PEG1Vanc is incorporated into S. aureus to the greatest extent (Figure 3.11).  

Figure 3.10 Vancomycin-conjugated SrtA Recognition Peptide Incorporation in 
S. aureus. Flow cytometry analysis of S. aureus cells incubated overnight in LB 
supplemented with panel of fluorescent conjugates at 5 µM. Data are represented as 
mean + SD (n = 3). 
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Figure 3.11 Vancomycin-conjugated SrtA Recognition Peptide 
Incorporation in Various Bacterial Strains. Flow cytometry analysis of 
bacterial cells incubated overnight in LB supplemented with FITC-2PEG1 or 
FITC-2PEG1Vanc at 5 µM. Data are represented as mean + SD (n = 3).  

 

As expected, the Gram-negative E. coli failed to incorporate the construct. 

Listeria monocytogenes displayed low incorporation levels, as the bacteria boasts a high 

expression of sortase B over sortase A.16 S. epidermidis rely on Srt A-mediated covalent 

modification and non-covalent interactions with surface polymers such as teichoic acids 

to decorated their cell surface.17,18 As such, S. epidermidis displayed the second highest 

fluorescence levels, depicting mild incorporation. Lastly, B. subtilis failed to grow under 

the pressure of 5 µM FITC-2PEG1Vanc. This is due to the high toxicity of vancomycin 

towards B. subtilis. As seen in Figure 3.12, the minimal inhibitory concentration (MIC) 

of vancomycin is 0.39 µg / mL (0.27 μM) in B. subtilis.   
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As this data shows selective labeling of S. aureus, it favorably compliments the 

use of the construct as a recruitment tool for the host immune system. Moreover, the 

increased length between the fluorophore and the rest of construct favorably compliments 

antibody recruitment to the bacterial cell surface since the antigen location requires 

exposure to the extracellular space. In order to use this technique for antibody 

recruitment, we want to ensure that the peptide becomes incorporated throughout the 

peptidoglycan not just at the site of the target of vancomycin. Vancomycin accumulates 

preferentially at the regions of cell division/growth (concentrated pools of Lipid II 

molecules). If that is the case, then only dividing cells would be labeled with the peptide 

Figure 3.12 Toxicity of Vancomycin in Gram-positive Bacteria. MIC determinations 
were performed in cation-adjusted Mueller-Hinton Broth (CaMHB). The MIC was 
defined as the lowest vancomycin concentration at which visible growth was inhibited 
following 18 h incubation at 37 °C. Data are represented as mean + SD (n = 3).  
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since there is an accumulation of Lipid II during bacterial growth. If vancomycin is solely 

present to bring the peptide closer to sortase A and then the enzyme incorporates it into 

the peptidoglycan, as we assume, then the peptide should be uniform through-out the 

peptidoglycan surface of the bacteria. Using confocal microscopy, cells were imaged 

during two different growth phases: exponential and stationary phase. S. aureus (OD 6.0) 

was incubated with fluorescently-labeled 2PEG1Vanc for 15 min and 4 h. After allotted 

time, cells were washed, fixed and analyzed via fluorescence microscopy. We observed 

septal fluorescence and fluorescence of the bacterial surface after the 15 min incubation 

time (Figure 3.13, top). This is attributed to high concentration of Lipid II during the 

growth phase. However, after 4 h the fluorescence can be seen through-out the surface, 

consistent with SrtA incorporation of the fluorescent construct into the peptidoglycan 

(Figure 3.13, bottom). These results demonstrate the selectivity for S. aureus and the 

uniform display of the construct over the surface of the bacteria. In exploiting this 

selectivity, we sought to conjugate an epitope to the peptide, in order to potentially 

generate a narrow-spectrum immuno-therapy technique for S. aureus.  
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Figure 3.13 DIC and Fluorescent Microscopy Image of FITC-
2PEG1Vanc Labeled S. aureus. Log phase S. aureus were incubated in LB 
supplemented with 5 μM FITC-2PEG1Vanc for 15 min (top) or 4 h (bottom) 

at 37 °C. Cells were washed and imaged. Scale bar represents 1μm. 
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3.3.4 DNP-Conjugate Mediated Opsonization of S. aureus  

The effectiveness of these constructs as an antibody recruitment facilitator was 

assessed by replacing the fluorophore with an immune stimulant epitope. To accomplish 

this, we utilized 2,4-dinitrohpenol (DNP), chosen for the relatively high concentration of 

anti-DNP antibodies in human serum.19 Minding the length requirements determined in 

the previous labeling studies, we synthesized a DNP- displaying construct (Scheme 3.3).  

We synthesized, DNP(PEG2)K(PEG-Vanc)LPMTG (DNP-2PEG1Vanc), with the 

anticipation that SrtA would be able to recognize and incorporate it into the 

peptidoglycan, as with the FITC-labeled peptides. For this set of experiments, we utilized 

a mutant strain of S. aureus (Wood strain), in which endogenous protein A is knocked 

out. Protein A, a surface protein anchored to the cell surface by SrtA, binds to the Fc 

terminus of mammalian immunoglobulins in a nonimmune fashion, causing decoration of 

the staphylococcal surface with antibody.20,21 Protein A is the bacteria’s defense against 

the immune system. For our experiments since the recruitment efficiency is quantified by 

fluorescence the presence of protein A would increase background fluorescence by 

binding to the fluorescent anti-DNP antibodies. The Wood strain was utilized in order to 

clearly show proof-of-concept for antibody recruitment to S. aureus.  Additionally, we 

hypothesized that teichoic acid−based polyanionic polymers (wall teichoic acid and 

lipoteichoic acid) contained within the cell wall of S. aureus may serve to hinder the 

permeation and binding of anti-DNP antibodies to the modified peptidoglycan.22, 23,24 By 

growing the bacteria overnight in the presence of DNP-2PEG1Vanc and tunicamycin, a 

known wall teichoic acid inhibitor, cell surface antibody binding was greatly increased 
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compared to FITC-conjugated anti-DNP binding observed in previous experiments. The 

recruitment capability of the peptide constructs was quantified by fluorescence of FITC-

labeled anti-DNP on the surface of the bacteria. We observed nearly a 15-fold increase 

for S. aureus labeled with the vancomycin-conjugated peptide over S. aureus labeled with 

the non-vancomycin conjugated peptide (Figure 3.14).  
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In order to emulate a more biological representation, we sought to recruit 

antibodies to the surface of methicillin-resistant S. aureus. In order to eliminate the IgG 

binding contribution of protein A, we blocked the surface of the bacteria with polyclonal 

IgG prior to FITC-labeled anti-DNP addition. We observed a 3-fold increase for S. 

aureus treated with the vancomycin-conjugated peptide over unlabeled S. aureus (Figure 

3.15).   

Figure 3.14 Antibody Recruitment to the Surface of S. aureus-Wood 
Strain. Cells were incubated overnight in LB supplemented with indicated 
concentration of specified DNP-conjugate followed by incubation with anti-
DNP antibodies. Data are represented as mean + SD (n = 3). 
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Also, it is worth noting that even at 10 times the recruitment concentration (50 

μM) of DNP-2PEG1Vanc, we observed marginal bacterial growth inhibition (Figure 

3.16). 

 

 

 

 

 

Figure 3.15 Antibody Recruitment to the Surface of S. aureus Sc01. Cells were 
incubated overnight in LB supplemented with 5 µM of DNP-2PEG1Vanc followed 
by incubation with polyclonal IgG. After washings, cells were incubated with anti-
DNP antibodies. Data are represented as mean + SD (n = 3). 
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In addition to antibody recruitment ability, we set out to assess the toxicity of 

DNP-2PEG1Vanc against host mammalian cells. One of the major possible advantages of 

using this peptide construct to target bacteria derives from the fact that it relies upon the 

enzymatic incorporation at the surface of the cell. No mammalian enzymes are known to 

exist and accept –LPXTG substrates, potentially giving this strategy high selectivity. 

Therefore, it is anticipated that in a living organism, administered SrtA substrates would 

be preferentially utilized by bacteria.  

Figure 3.16 DNP-2PEG1Vanc Toxicity towards S. aureus Sc01. S. aureus Sc01 
cells were incubated with varying concentrations of DNP-2PEG1Vanc for 18 h at 
37 °C. Bacterial viability was evaluated by measuring the absorbance at 600 nm. 
Data are represented as mean + SD (n = 3). 
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To evaluate the toxicity of DNP-2PEG1Vanc, HEK293 cells were incubated in the 

presence of varying concentrations of construct for 24 h and analyzed by standard 

viability assays (Figure 3.17). At all concentrations examined, we observed no significant 

loss of viability, thus highlighting an important feasibility consideration of our strategy. 

 

 

 

Figure 3.17 Induced Mammalian Toxicity. HEK293 cells were incubated for 24 
hours in the absence or the presence of increasing concentrations of construct. 
Cellular viability was evaluated with MTT by measuring absorbance at 580 nm. 
Data are represented as mean + SD (n = 3). 
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3.3.5 In vivo Labeling of S. aureus Sc01 in C. elegans  

We anticipate that this strategy can be a worthwhile model to apply synthetic 

immunology in in vivo models in the future. To test this feasibility, we first sought to 

determine if our lead compound, FITC-(PEG2)K(PEG-Vanc)LPMTG, can label S. aureus 

Sc01 in vivo. In pursuing live labeling, we chose the model organism, Caenorhabditis 

elegans (C. elegans).  

On the day of experiments, C. elegans were washed with M9 buffer and incubated 

with 10% LB broth and 10% S. aureus Sc01 in M9 buffer at room temperature for 4 h. 

After washing the C. elegans with M9 buffer, they were resuspended in M9 buffer 

supplemented with 10% LB broth and either 50 μM FITC-(PEG2)K(PEG-Vanc)LPMTG 

(FITC-2PEG1Vanc) or 50 μM FITC(PEG2)K(PEG)LPMTG (FITC-2PEG1) and 

incubated for an additional 30 min at room temperature. The C. elegans were harvested, 

washed, resuspended in 10 mM sodium azide and analyzed by confocal microscopy. 

Remarkably, we observed in vivo labeling of S. aureus Sc01 in C. elegans treated with 

FITC-2PEG1Vanc (Figure 3.18). We observed no bacterial labeling with treatment of 

FITC-2PEG1. To our knowledge, this is the first SrtA mediated labeling of methicillin-

resistant S. aureus in C. elegans.  
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Figure 3.18 in vivo Labeling of S. aureus Sc01 in C. elegans. Confocal microscopy 
images of S. aureus Sc01 in C. elegans. C. elegans were infected with bacteria for 4 h 
at room temperature. C. elegans were washed to remove any bacteria not ingested. C. 
elegans were subsequently incubated with 50 µM of either FITC-2PEG1Vanc or 
FITC-2PEG1 for 30 min at room temperature. After washing and treatment with 10 
mM sodium azide, C. elegans were imaged with confocal microscopy. Scale bars = 
10 µm.   
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3.3.6 SrtB-mediated Incorporation in L. monocytogenes 

 Lastly, we explored whether the use of specific sortase incorporation could be 

expanded to other sortases present in other bacteria. Whereas SrtA acts on most of the 

proteins in the peptidoglycan fraction, sortase B (SrtB) appears to target minor amounts 

of surface polypeptides. Motifs recognized by SrtB are defined by the consensus 

sequence, -NXZTN, where X can be any amino acid and Z typically lends to a charged 

amino acid.16 Noteworthy, the sorting motif recognized by SrtB has been experimentally 

tested only with the surface protein IsdC involved in iron acquisition. IsdC of S. aureus 

and Bacillus anthracis are recognized by SrtB at NPQTN and NPKTG motifs, 

respectively.25, 26 Differences in sequence motif are dependent on the organism/substrate 

with the aforementioned exceptions, experimental data supporting the recognition of 

other sorting motifs are lacking.  

 Listeria monocytogenes, a ubiquitous food-borne Gram-positive bacterium, 

interacts with host cells through a number of surface proteins to induce pathogenesis of 

listeriosis. L. monocytogenes contains and utilizes both, SrtA and SrtB. Mariscotti et al. 

reported elegant work in identifying the motifs recognized by SrtB of L. monocytogenes 

and unveiled the unique capacity of L. monocytogenes SrtB for recognizing a sorting 

motif lacking the invariant proline at position (2), exemplified by sequence, -NAKTN.16 

We constructed a FITC-conjugated SrtB recognition peptide and incubated L. 

monocytogenes overnight in medium supplemented with FITC(PEG)NAKTN. After 

analysis, we observed approximately a 30-fold increase in surface labeling in bacteria 

exposed to 1 mM FITC(PEG)NAKTN over unlabeled bacteria (Figure 3.20).  
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From this data, we anticipate that selective tagging of L. monocytogenes through 

SrtB mediated incorporation can be utilized as another bacterial immunotherapy 

technique. 

 

 

 

 

Figure 3.19 SrtB-mediated Fluorescent Peptide Incorporation in Listeria 
monocytogenes. Flow cytometry analysis of L. monocytogenes cells incubated 
overnight in LB supplemented with FITC(PEG)NAKTN at designated 
concentrations. Data are represented as mean + SD, (n = 3). 
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3.4 CONCLUSION 

The utilization of immunomodulatory strategies for combating pathogenic 

bacterial infections represents an attractive alternative to traditional antibiotic 

therapeutics. In this strategy, we show specific and selective targeting of methicillin-

resistant S. aureus for clearance by the host immune system.  This technique exploits the 

SrtA mediated incorporation of vancomycin-conjugated peptides. We show that a panel 

of fluorescently labeled vancomycin-conjugated SrtA recognition peptides is readily 

incorporated into the peptidoglycan of S. aureus within 15 min of treatment. From these 

studies, we empirically observed peptidoglycan incorporation dependent on peptide 

linker length. We hypothesize that this length restriction arises from the distance between 

the sortase A enzyme and the vancomycin binding site, Lipid II. We identified that FITC-

(PEG2)K(PEG-Vanc)LPMTG is the optimal construct for efficient selective incorporation 

into the cell wall S. aureus, while achieving minimal incorporation in S. epidermidis, and 

achieving marginal to no incorporation in L. monocytogenes, E. coli, and B. subtilis.  

We show that DNP(PEG2)K(PEG-Vanc)LPMTG is readily incorporated into the 

peptidoglycan and permits the recruitment of anti-DNP antibodies to the cell surface of 

methicillin-sensitive S. aureus and methicillin-resistant S. aureus. Furthermore, we show, 

for the first time, the successful SrtA mediated labeling of methicillin-resistant S. aureus 

in C. elegans.  

Through these studies, we illustrate a strategy that has the potential to be an 

effective therapy against bacterial infections caused by S. aureus. We anticipate that the 

unique metabolic labeling process of this strategy may reduce the potential for the 

emergence of resistance. S. aureus bacteria rely on SrtA to metabolically incorporate 



80 
 

almost 20 different sortase substrates, necessary for cellular evasion, colonization, and 

consequently, pathogenicity. By employing this essential method of incorporation, the 

chance of rapid bacterial resistance is not expected. Moreover, the use of SrtA mediated 

incorporation significantly limits this strategy to S. aureus, making this an appealing 

platform for narrow-spectrum bacterial immunotherapy. 
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Chapter 4 

Synthetic Immuno-Attractants against Gram-Negative Pathogens 

 

4.1 ABSTRACT  

 The number of drug-resistant bacterial infections has been rapidly rising and may 

soon approach epidemic levels. For these reasons, there is an urgent need for novel 

antimicrobial modalities to be developed. The emergence of multi-resistant bacteria that 

are part of the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella 

pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter 

species) group of pathogens is a particularly acute challenge to the healthcare system. 

ESKAPE pathogens are the leading cause of nosocomial infections worldwide. This 

chapter will discuss our efforts in re-engaging the immune system towards Gram-

negative pathogenic bacteria via synthetic molecules that remodel bacterial cell surfaces 

with immune cell attractants. More specifically, we built conjugates composed of 

polymyxin B, an antibiotic that inherently homes to bacterial cells surfaces, linked to 

antigenic epitopes that engage endogenous antibodies. Given the inherent antimicrobial 

activity of polymyxin, we additionally showed that these agents display dual activities 

against bacteria. By leveraging the power of the immune system in clearing pathogens, 

this new class of molecules was shown to uniquely target Gram-negative bacteria and, 

additionally, potentiate existing FDA-approved antibiotics. We hope to establish this 

approach as a viable treatment option and further refine this methodology to address the 

clinical challenge of Gram-negative bacterial pathogens.  
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4.2 INTRODUCTION 

The rapid surge in drug-resistant bacterial infections has now become one of the 

primary public health crises of the 21st century, consequently, driving a renewed effort to 

find antibiotics with unique mechanisms of action. As mentioned in Chapter 1, the World 

Health Organization considers Gram-negative pathogens high priority target areas. Every 

year in the United States alone, over two million people are afflicted with bacterial 

infections resistant to FDA-approved antibiotics. Most alarming is the emergence of 

multidrug Gram-negative pathogenic bacteria, including strains that are resistant to all 

currently available antibiotics.3 The four most problematic infections are caused by drug 

resistant Klebsiella pneumoniae (K. pneumoniae), Acinetobacter baumannii (A. 

baumannii), Pseudomonas aeruginosa (P. aeruginosa), and Escherichia coli (E. coli). 

The paucity of drugs against these pathogens means that we run the risk of entering a 

post-antibiotic era. 

Compared to Gram-positive organisms, Gram-negative bacteria possess an outer 

membrane (OM) that lies to the exterior of the cytoplasmic membrane bilayer. The 

additional layer serves as a formidable barrier to permeation of small molecule antibiotics 

and larger biomacromolecules.4 Partly for these reasons, there are currently fewer 

antibiotics that are active against Gram-negative bacteria. As mentioned in Chapter 3, 

bacterial cell surfaces play crucial roles in the normal physiology and pathogenicity (in 

the case of pathogenic bacteria) of these organisms. Proteins and structural polymers at 

the cell surface are actively involved in bacterial adhesion, colonization, and engagement 

with the host immune cells.5,6 We envisioned a molecule that successfully targeted one of 

the structural polymers on the surface of Gram-negative bacteria.   
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We expanded on our recent finding that we can decorate the surface of Gram-negative 

bacteria using antibiotic conjugates that home to and associate with bacterial cell 

surfaces. Due to the vast surface area of bacterial cell surfaces and their exposure to the 

host organism, it is the principal bacterial structure recognized by the human immune 

system.  

We reasoned that grafting immune cell attractant tags on bacterial cell surfaces 

would result in effective recruitment of immune cells. In the previous chapter, we had 

targeted the modification of bacterial peptidoglycan (PG) for the installation of antibody 

recruiting haptens. Although Gram-negative bacteria also have PG scaffolds and they are 

remodeled via synthetic cell wall analogs, the 

presence of the OM prevents any engagement 

with immune cells. Instead, we had to explore 

a different mode of surface modification. 

Gram-negative bacterial cells generally 

possess negatively charged surfaces due to the 

high abundancy of lipopolysaccharide (LPS). 

Lipid A, an essential lipid component of LPS, 

is composed of a phosphorylated 

diglucosamine unit connected to lipid chains (Figure 4.1).  

The naturally occurring lipopeptide antibiotic, polymyxin B (PMB), is unique in 

the ability to associate with Lipid A with high affinity and specificity. PMBs are 

comprised of hydrophobic and hydrophilic domains, both of which are pivotal for their 

antibacterial activity. The core PMB scaffold consists of a cyclic hexapeptide linked to a 

Figure 4.1 Structure of LPS. 
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linear tripeptide with an N-terminal fatty acyl tail (Figure 4.2). Five L-α,γ-diaminobutyric 

acid (Dab) residues decorate the scaffold, the primary amines of which are positively 

charged at 

physiological pH 

(7.4). Two 

hydrophobic residues 

in positions 6 and 7 of 

the cyclic hexapeptide 

form an intermediary 

hydrophobic segment 

that breaks the 

succession of cationic 

Dab residues. 

Specifically, the 

cationic cyclic peptide 

binds to negatively 

charged Lipid A on bacterial OMs and the aliphatic fatty acid tail anchors into the0- 

membrane (Figure 4.2).7 PMB is thought to impart its antibacterial activity by binding to 

the OM surface and destabilizing the OM layer – although the exact mechanism has yet 

to be fully elucidated.8,9 These features made PMB an attractive target for our surface 

remodeling strategy, as both of these structural components were integrated into our 

design to establish the optimum combination of inherent antimicrobial activity in synergy 

with immunomodulation.  

Figure 4.2 Representation of PMB and LPS Binding. 
Polymyxin B and LPS bind through ionic forces and 
strong hydrophobic forces. 
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Herein, we describe a strategy aimed at targeting bacterial cells for destruction via 

small molecule conjugates that specifically home to Gram-negative bacterial cell 

surfaces. By exploiting surface exposed features (e.g., Lipid A) unique to Gram-negative 

bacteria, we hypothesized that heterobifunctional agents composed of Polymyxin B 

(PMB) would lead to the specific surface presentation with epitopes that engage various 

components of the immune system (e.g., antibodies and primary immune cells). The use 

of surface homing agents that inherently possess antimicrobial activity represents a 

significant advance due to the potential synergism between (1) the direct bactericidal 

activity of the homing beacon and (2) the engagement of immune system. Combined, we 

showed that these agents effectively target Gram-negative pathogen in two distinct ways 

with minimal toxicity towards host cells. 

 

 

 

Figure 4.3  Schematic Representation of Gram-negative 
Bacterial Immunotherapy. Gram-negative bacteria are incubated 
with PMB-hapten conjugates. Following the labeling, the binding 
of anti-DNP IgG antibodies leads to the eventual clearance by the 
immune system. 
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4.3 RESULTS AND DISCUSSION 

4.3.1 Fluorescent Labeling of E. coli using PMBN-FITC  

In collaboration with the Regen Group, they synthesized a fragment of PMB 

known as PMB nonapeptide (PMBN) (Figure 4.4). PMBN is devoid of the membrane-

disrupting fatty acid tail but, critically, retains the cyclic heptapeptide responsible for 

association to Lipid A.10, 11 The smaller PMBN fragment has attenuated antimicrobial 

activity, which can be useful in isolating the effect of surface-homing in our strategy. We 

tested the toxicity of PMBN to E.coli and determined the MIC to be 40 μg/mL. 

We generated a fluorescent PMBN 

by coupling fluorescein to (BOC)-

protected PMBN (Scheme 4.1). After 

purification and removal of the protecting 

groups, the construct was incubated 

overnight with E.coli to assess its ability to 

label the cell surface. E. coli was grown in 

LB supplemented with increasing 

concentrations of the PMBN-FITC (0 – 

200 µM). The cells were harvested, 

washed, and analyzed via flow cytometry. 

By quantifying fluorescence, we observed 

a roughly 30-fold increase in fluorescence for bacteria exposed to 40 µM of the construct 

(Figure 4.5). Concentrations of greater than 40 µM of the construct were toxic to the 

bacteria cells as assessed by optical density (600 nm).  

Figure 4.4 Structures of Polymyxin B and 
PMB-Nonapeptide (PMBN).   
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Scheme 4.1 Synthesis of PMBN-FITC. (BOC)-PMBN (1 eq.) was 
reacted with fluorescein isothiocyanate (1.5 eq.) in DMF with N,N-
diisopropylethylamine (DIEA) (2 eq.). After acidic treatment to remove 
the –BOC protecting groups, the compound was purified via normal phase 
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Given the nature of the interaction between PMBN and LPS on cell surfaces, 

which is independent of cell growth/division, we sought to establish labeling to cells in 

stationary phase. Bacterial cells at stationary phase display dramatically lower metabolic 

rates and do not undergo extensive cell growth and division.12 A large fraction of the 

currently available antibiotics fail to effectively clear bacterial pathogens at stationary 

phase due to their reliance on processes related to cell growth and division.13 Therefore, 

developing a molecule that elicits a therapeutic effect against stationary phase bacteria 

would be valuable in the treatment of latent bacterial infections.  

Figure 4.5 PMBN-FITC Labeling of E. coli. Flow cytometry analysis of 
E. coli incubated overnight in the presence of LB alone, and LB 
supplemented with increasing concentrations of PMBN-FITC. Data are 
represented as mean + SD (n = 3). 
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We incubated stationary phase (OD = 1.4) E. coli in media supplemented with 40 

µM PMBN-FITC at 37 °C. At indicated time points, the bacteria were harvested, washed, 

and analyzed by flow cytometry. We observed an increased in fluorescence over time, 

with maximum fluorescence after 2 h of incubation (Figure 4.6). After 2 h, a reduction in 

fluorescence is observed. This may arise from stationary phase bacteria death due to lack 

of nutrients.  

 

 

 

 

 

Figure 4.6 PMBN-FITC Labeling of E. coli over Time. Flow cytometry data of 
stationary phase E. coli incubated with 40 μM PMBN-FITC for indicated time 
points in LB media. Data are represented as mean + SD (n = 3). 
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In further understanding how PMBN-FITC interacts with the cell surface, we 

sought to determine the persistence of association of the construct to the bacterial surface. 

Stationary phase E. coli was incubated with 40 μM PMBN-FITC for 2 h at 37 °C. After 

harvesting and washing, the bacteria were resuspended in phosphate buffer saline (PBS) 

and the loss of fluorescence was monitored over time. We did not observe immediate 

dissociation of the construct from the bacterial surface (Figure 4.7).  

 

 

 

 

Figure 4.7 PMBN-FITC Dissociation from E. coli Surface. Flow cytometry data 
of stationary phase E. coli incubated with 40 μM PMBN-FITC for 2 h, then 
incubated in PBS for indicated time before analysis. Data are represented as mean + 
SD (n = 3). 
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Next, we explored how the addition of cations would affect the labeling ability of 

PMBN-FITC to the surface of the bacteria. As mentioned, polymyxin B exerts its 

antimicrobial activity through an electrostatic interaction of the cationic Dab residues 

with the negatively charged phosphate groups of lipid A of LPS. This complex formation 

displaces divalent cations (Ca2+ and Mg2+) that bridge adjacent LPS molecules.14, 15, 16 

Therefore, we expected that salt concentrated media would negatively affect the labeling 

efficiency of PMBN-FITC to the E.coli surface by competing for the negatively charged 

phosphate groups of lipid A. 

We incubated stationary phase (OD = 1.4) E. coli in the presence of 40 µM 

PMBN-FITC for 2 h in medium of differing salt concentrations. We utilized Luria Broth 

(LB) as a control. LB is the complete growth media for E. coli. Mueller Hinton (MH) 

Broth is the broth of choice for antimicrobial susceptibly testing. It is commonly used in 

the micro dilution technique of assessing minimal inhibitory concentration of antibiotics 

and contains 11.5 mg/L Ca2+ and 2.5 mg/L Mg2+. We further supplemented Mueller 

Hinton (MH) Broth with additional cations, resulting in a final concentration of 21.5 

mg/L Ca2+ and 12.5 mg/L Mg2+
.   

Upon fluorescent analysis, we observed the expected trend of decreased labeling 

efficiency with increased salt concentration (Figure 4.8). The data shows efficient 

PMBN-FITC labeling of E. coli over time when incubated with LB media. Conversely, as 

the concentration of calcium and magnesium increases, and the propensity for 

competition increases, the level of fluorescence decreases, indicating a lack of efficient 

labeling of the construct of the E. coli surface. From this data, we also observe a steady 

increase in fluorescence for E. coli incubated with the construct in LB media.   
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 Lastly, we visualized the labeled E. coli via fluorescent microscopy. We observed 

a uniform fluorescence signal along the cell surface (Figure 4.9). We observed heavily 

concentrated signal at the poles of the bacteria, a finding that is consistent with 

polymyxin B nonapeptide bacterial surface labeling. 17, 18 

Taken together, we believe our modification of polymyxin B does not interrupt its 

ability to interact with the surface of E. coli. We observed PMBN-FITC labeling of the E. 

coli surface, through interaction with the negatively charged LPS. Furthermore, we show 

that PMBN-FITC labels stationary phase E. coli. As mentioned, a large fraction of the 

currently available antibiotics fail to effectively clear bacterial pathogens at stationary 

Figure 4.8 Cation Effect on PMBN-FITC Labeling of E. coli. Flow cytometry 
data of stationary phase E. coli incubated with 40 μM PMBN-FITC for indicated 
time points in different media. Data are represented as mean + SD (n = 3). 
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phase due to their reliance on processes related to cell growth and division. Therefore, 

PMBN derivatives have heightened potential to act as an immunotherapeutic towards 

hard to treat bacterial infections.   

 

 

 

 

 

 

 

Figure 4.9 DIC and Fluorescent Microscopy Image of PMBN-FITC Labeled 
E. coli.  Stationary phase E. coli were incubated in LB supplemented with 40 μM 
PMBN-FITC for 2 h at 37 °C. Cells were washed and imaged. Scale bar represents 2 
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4.3.2 PMBN-DNP Mediated Opsonization of E. coli  

The outer membrane (OM) of Gram-negative bacteria (Figure 4.10) is a unique 

and highly asymmetric lipid bilayer, heavily populated by proteins and other 

biopolymers. Composed of phospholipids in the inner leaflet and lipopolysaccharide 

(LPS) in the outer leaflet, the complexity and crowdedness of the OM makes it an 

effective barrier against the permeation of both hydrophobic and hydrophilic compounds. 

LPS, a complex amphiphatic molecule, consists of lipid A, a core oligosaccharide, and an 

O-antigen polysaccharide. The O-antigen varies in length depending to the bacteria and is 

comprised of oligosaccharide. It also renders additional protection from the antimicrobial 

action of certain antibiotics and can potentially interfere with the approach and binding of 

extracellular antibodies onto haptens.19 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 Gram-negative bacterial Outer Membrane Molecular Complexity. 
The LPS molecule can be divided into three main regions: Lipid A, which anchors 
LPS to the outer membrane, the core region, containing the majority of the 
functional groups, and the repeating O-antigen unit. (Left) Chemical structure of 
endotoxin from E. coli O111:B4 according to Ohno and Morrison.2  
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We hypothesized that the accessibility of DNP epitopes to the extracellular space 

could drastically effect antibody recruitment to the bacteria surface and therefore reduce 

immune response. Furthermore, the OMs of bacteria strains vary, in regards to the 

makeup of the O-antigen. We anticipated that the structure and dynamics of the 

conjugates would impact the interactions of PMB and LPS, exposure of DNP to the outer 

space, and the stability of the OMs. In designing the PMBN-DNP conjugate that could 

recruit endogenous antibodies, the PMBN and DNP units cannot be altered. Modification 

of those chemical structures can lead to poor surface homing and/or poor antibody 

recruitment.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 Structures of Polymyxin B 
and PMBN-DNP conjugates with PEG 
linkers.  
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However, the linker connecting the two units must be carefully designed to: (1) 

minimally disrupt the binding to LPS on bacterial cell surface (PMBN), (2) maximize 

DNP availability on cell surfaces, and (3) possess the proper chemo-physical properties 

of a drug-like molecule.  

We chose the flexible spacer, polyethylene glycol (PEG), to be coupled onto the 

N-terminus followed by the arylation with DNP (Figure 4.11). We reasoned that the PEG 

spacer may play a pivotal role in determining antibody recruitment levels by improving 

the hapten presentation. In collaboration with the Regen Group, they synthesized a 

fragment of PMB known as PMB nonapeptide (PMBN) (Figure 4.11). PMBN is devoid 

of the membrane-disrupting fatty acid tail but, critically, retains the cyclic heptapeptide 

responsible for association to Lipid A.11, 10 The smaller PMBN fragment has attenuated 

antimicrobial activity, which can be useful in isolating the effect of surface-homing in our 

strategy. Therefore, we synthesized, purified, and characterized 7 PMBN- (PEG) 2-24-

DNP conjugates, which systematically varied on the number of PEG units (Scheme 4.2, 

Scheme 4.3).   
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Scheme 4.2 Synthesis of PMBN-PEGx-DNP Conjugates. (BOC)-PMBN (1eq.) was 
reacted with PEG2-DNP (1.5eq.) in DMF with HATU (1.4eq.) and DIEA (3eq.). After 
reaction time, the product was extracted with DCM and the protecting groups were 
removed in acidic conditions. Purification on normal phase with 2% MeOH / DCM 
afforded conjugate, PMBN-PEG2-DNP. Synthesis was repeated for conjugates with 
PEGx (x = 4, 6, 12). 
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Scheme 4.3 Synthesis of PMBN-PEGx-DNP Conjugates. Amino-PEG16-acid (1eq.) 
was reacted with 2, 4-dinitrofluorobenzene (5 eq.) in a mixture of MeCN and NaHCO3 
for 2 h. After extraction with DCM, the product was isolated and used without further 
purification. (BOC)-PMBN (1 eq.) was reacted with PEG16-DNP (1.5eq.) in DMF with 
HATU (1.4eq.) and DIEA (3eq.). After reaction time, the product was extracted with 
DCM and the protecting groups were removed in acidic conditions. Purification on 
normal phase with 2% MeOH / DCM afforded conjugate, PMBN-PEG16-DNP. 
Synthesis was repeated for conjugates with PEGx (x = 20, 24).
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We continued our investigations into this immunotherapy strategy utilizing E. coli 

as the initial model organism to evaluate antibody recruitment. In this experiment, E. coli 

cells from overnight stationary phase (106 cells) were treated with the panel of DNP-

(PEG)2-24-PMBN agents. Following the treatment, E. coli cells were incubated with 0.02 

μg/mL FITC-labeled anti-DNP antibody for 1 h at 37 °C.  After washing and fixing cells 

in 4% formaldehyde, the cells were analyzed for cellular fluorescence by flow cytometry 

(Figure 4.12).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 PMBN-PEGx-DNP mediated antibody recruitment in E. coli. 
Stationary phase E. coli were incubated in LB supplemented with 40 μM of 
PMBN-PEGx-DNP of varying lengths for 2 h at 37 °C. Incubation with anti-
DNP antibodies followed and cells were analyzed via flow cytometry. Data are 
represented as mean + SD (n = 3).  
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The length dependence observed suggests that there is a particular tether length 

that optimizes hapten presentation by displaying it away from the immediate OM. 

Remarkably PMBN-PEG12-DNP treatment resulted in a robust recruitment of antibodies. 

To the best of our knowledge, this is the first demonstration of a strategy that induces the 

recruitment of antibodies to surfaces of Gram-negative bacteria using small molecules. 

Most importantly, this level of recruitment was observed in bacterial cells from the 

stationary phase.  

Next, we assessed the toxicity of PMBN-PEG12-DNP to E. coli. As PMBN 

displays minimal bacterial toxicity, we expected an attenuated response in cells treated 

with PMBN-PEG12-DNP. As such, we observed low toxicity in E. coli treated with up to 

30 μg /mL of PMBN-PEG12-DNP (Figure 4.13). The MIC was defined as the lowest 

Figure 4.13 PMBN-PEG12-DNP Toxicity towards E. coli. E.coli cells were 
incubated with varying concentrations of PMBN-PEG12-DNP for 18 h at 37 °C. 
Bacterial viability was evaluated by measuring the absorbance at 600 nm. Data are 
represented as mean + SD (n = 3). 
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concentration at which visible bacterial growth was inhibited following 18 h incubation at 

37 °C. For PMBN-PEG12-DNP, 43.95 µg / mL (25 μM) is the MIC in E. coli. Separately, 

high cell density stationary-phase cultures of E. coli were treated with various 

concentrations of PMBN-PEG12-DNP (0, 17.3, 34.6, 69.2, 103.7, 138.3, 172.9 μg /mL or 

10, 20, 40, 60, 80, 100 µM). Time-kill studies were performed at 37 °C with shaking at 

250 rpm. At the indicated times, bacterial aliquots were removed and plated on LB agar 

plates  which were then incubated for 18 h at 37 °C.  Cell viability was assessed by 

enumerating the CFU (colony forming units) per milliliter. It was demonstrated that the 

number of viable cells was reduced quickly by several logs for E. coli treated with 60 µM 

or greater of PMBN-PEG12-DNP (Figure 4.14). Conversely, we observed a slow killing 

effect with E. coli treated with 40 µM of PMBN-PEG12-DNP. 

Figure 4.14 Toxicity of PMBN-PEG12-DNP towards Stationary phase
E. coli. E. coli cells in the stationary phase of growth were treated with 
increasing concentrations of PMBN-PEG12-DNP for indicated times. Cell 
viability was assessed by enumerating colonies from overnight incubation 
on LB agar culture plates. Data displayed as CFU/mL (concentration) over 
time. 
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Killing of Gram-negative bacteria that are in a stationary phase of growth has 

been described as a specific characteristic of the bactericidal action of polymyxin B.20  In 

this study it could be demonstrated that stationary phase E. coli reacts differently to 

PMBN-PEG12-DNP presence, whereas killing curves with logarithmically growing 

bacteria exhibited a lower tolerance to high concentrations to PMBN-PEG12-DNP.  

Next, we set out to assess the toxicity of PMBN-PEG12-DNP against host 

mammalian cells. One concern we had is the overall negative charge of mammalian cells 

and the probability of interacting with positive charged molecules. To evaluate the 

toxicity of PMBN-PEG12-DNP, HEK293 cells were incubated in the presence of varying 

concentrations of PMBN-PEG12-DNP for 72 h and analyzed by standard viability assays 

(Figure 4.15). At all concentrations examined, we observed no significant loss of 

viability. 

 In conclusion the assessment of PMBN-PEG12-DNP toxicity, we show that the 

conjugate is relatively non-toxic (Table 4.1). We determined that the conjugate is non-

toxic to bacterial cells in the growth phase. The MIC of PMBN-PEG12-DNP in E. coli  is 

consistent with the MIC observed for PMBN.21 Thus, the addition of PEG linker and 

DNP moiety does not affect the attenuated toxicity of PMBN. Conversely, we observed a 

high tolerance for PMBN-PEG12-DNP in stationary phase E. coli. This data hints at 

another mechanism of action given the nature of the interaction between PMBN and LPS 

on cell surfaces is independent of cell growth and division.   
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Figure 4.15 PMBN-PEG12-DNP Induced Mammalian Cell Toxicity. HEK293 cells 
were incubated for 72 hours in the absence or the presence of increasing concentrations 
of PMBN-PEG12-DNP. Cellular viability was evaluated with MTT by measuring 
absorbance at 580 nm. Data are represented as mean + SD (n = 3). 

 

Table 4.1 PMBN-PEG12-DNP Toxicity towards E. coli and Mammalian Cells. 
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4.3.3 PMBN-DNP Potentiation of Antibiotics 

Studies have been carried out showing that the addition of PMBN renders Gram-

negative bacteria susceptible to several antibiotics by permeabilizing their outer 

membranes.22, 23 Given the ability of PMBN to potentiate large-molecular-weight 

antibiotics, we reasoned that PMBN-PEG12-DNP would also act as an antibiotic adjuvant 

capable of sensitizing Gram-negative bacteria to antibiotics typically restricted to Gram-

positive bacteria.  

To test this, we grew E. coli in the presence of increasing concentrations of 

rifampicin accompanied with PMBN-PEG12-DNP at 0.5×MIC. Rifampicin is a 

polyketide antibiotic, which inhibits RNA synthesis. We observed that PMBN-PEG12-

DNP potentiated the activity of rifampicin against E.coli at 37 °C (Figure 4.16). 

Specifically, PMBN-PEG12-DNP synergized with rifampicin (fractional inhibitory 

concentration (FIC) index of ≤0.5), which is hydrophobic, but not with the hydrophilic 

glycopeptide vancomycin (Table 4.2). These data are consistent with antibiotic 

potentiation by PMBN, where synergy with hydrophobic molecules is generally more 

pronounced than that with hydrophilic molecules.22 

 

 

 

 

Table 4.2 Evidence of Synergy against E. coli. Fractional inhibitory concentration (FIC) 
indices were calculated against E. coli using microdilution assays with maximum 
concentrations of PMBN-PEG12-DNP at 25 μg/mL, and drugs, rifampicin and 
vancomycin, set to 50 µg/mL and 100 µg/mL, respectively. MICD is the minimum 
inhibitory concentration of each drug alone. MICP is the MIC of PMBN-PEG12-DNP 
alone. FICD is the FIC of each drug. FICP is the FIC of PMBN-PEG12-DNP. FICx = 
[x]/MICx, where [x] is the lowest inhibitory concentration of drug in the presence of co-
drug, and MICx is the MIC of x in the absence of co-drug. 
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A 

B 

Figure 4.16 Potentiation of Antibiotics. E. coli toxicity of rifampicin (A) and vancomycin 
(B) in the presence of 12.5μM (0.5×MIC) PMBN-PEG12-DNP for 18 h at 37 °C. Bacterial 
viability was evaluated by measuring the absorbance at 600 nm. Data are represented as 
mean + SD (n = 3). 
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4.3.4 PMBN-DNP Mediated Opsonization of P. aeruginosa   

Next, we set out to determine if this strategy was compatible in other pathogenic 

Gram-negative bacteria. We chose to study Klebsiella pneumoniae, Acinetobacter 

baumannii, and Pseudomonas aeruginosa. As seen in Chapter 1, therapies for these 

bacteria are among those listed in the World Health Organization’s account of critical 

priority. Although the strains used in this study were non-resistant strains, the feasibility 

of this strategy towards these bacteria will serve as a proof-of-principle in targeting more 

dangerous bacterial strains.  

As previously mentioned, the conserved domains of the LPS are shared regions 

among bacterial species, which intervene in the development and in the survival of the 

bacteria. The O-antigen may display modifications, such as alterations in the length of the 

oligosaccharide chain, changes in the surface composition, and changes in the chemical 

configuration the O-antigen of Gram-negative bacteria.24 It also renders additional 

protection from the antimicrobial action of certain antibiotics and participates in the 

inhibition of the membrane attack complex (MAC) during an immune response.25  

Up until this point, we were using an E.coli strain (K12) devoid of the O-antigen 

layer for assessing antibody recruitment (Figure 4.17). Acting as a model system, the K12 

strain displayed pronounced antibody recruitment with our synthesized panel of PMBN-

DNP conjugates. In order to determine the usefulness of this strategy against clinically 

relevant bacterial strains, we assessed antibody recruitment in Klebsiella pneumoniae, 

Acinetobacter baumannii, and Pseudomonas aeruginosa.  
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Figure 4.17 Schematic Representation of Variety in Lipopolysaccharide 
Structures. Gram-negative bacteria can have varying designs of LPS, which 
represents 75% of the total surface. There is smooth-type (left), which contains 
a strain specific O-antigen that varies in length. The bacterial surface can also 
be of the semi-rough type with only one O-chain subunit (center) and rough-
type (right), which halts LPS biosynthesis at the inner saccharide core.1 
(Mechanisms of O-Antigen Structural Variation of Bacterial Lipopolysaccharide 
(LPS), Reyes, R. E, 2012, Ch.3.) 
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We incubated each strain with 40 μM of PMBN-PEGx-DNP, where x = 12, 16, 

20, 24, for 2 h during the stationary phase lifecycle for the bacteria.  We did not observe 

any recruitment capability for any of conjugates in Klebsiella pneumoniae or 

Acinetobacter baumannii. However, we observed roughly an 8-fold increase in 

fluorescence in Pseudomonas aeruginosa treated with PMBN-PEG12-DNP over the other 

conjugate-treated and untreated bacteria (Figure 4.18). This is, to our knowledge, the first 

synthetic conjugate capable of facilitating endogenous antibody recruitment to a 

pathogenic Gram-negative organism.  

Figure 4.18 PMBN-PEGx-DNP mediated antibody recruitment in 
Pseudomonas aeruginosa. Stationary phase Pseudomonas aeruginosa were 
incubated in LB supplemented with 40 μM of PMBN-PEGx-DNP of varying 
lengths for 2 h at 37 °C. Incubation with anti-DNP antibodies followed and 
cells were analyzed via flow cytometry. Data are represented as mean + SD 
(n = 3).  
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Due to the complexity related to LPS, we have a limited molecular-level 

understanding of how the bacterial outer membranes behave for various types of bacteria. 

Therefore, we have collaborated with the Im laboratory at Lehigh University, who 

developed a unique technique to build and simulate complex outer membranes of Gram-

negative bacteria, including different cores and O-antigens of E. coli and P. aeruginosa. 

In attaining this information, we will look forward to the de novo design of linkers to 

achieve high levels of surface labeling and proper display of antigens for antibody 

recruitment, specific for the surface of the bacteria we aim to target.  
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4.3.5 Induced Toxicity with Fatty Acid Derivative  

We expected that the re-introduction of the fatty acid tail will improve the 

inherent antimicrobial activity of the conjugates. More importantly, antibody recruitment 

will be expected to be efficient at lower concentrations. The ability of the fatty acid tail to 

imbed within the outer membrane should result in better affinity towards Lipid A and 

longer residency time of the entire construct onto the bacterial cell surface.  

We synthesized an octanoic acid derivative via solid-phase peptide synthesis 

(Scheme 4.4). Chlorotrityl resin was loaded with N-α-Fmoc-N-ε-4-methyltrityl-L-lysine 

(Fmoc-L-Lys(Mtt)-OH). The N-terminus of lysine was deprotected to allow for the 

coupling of caprylic acid (octanoic acid). Selective unmasking of the Nε-methyltrityl 

protecting group was completed in mild acidic conditions. The free amine was then 

reacted with Fmoc-N-amido-PEG12-acid in the presence of coupling agent and base. 

Deprotection of the construct, followed by conjugation of 2, 4-dinitrofluorobenzene 

allowed for the completion of portion of the construct on solid support. The construct was 

cleaved from the resin and reacted with (BOC)PMBN. After reaction time and removal of 

BOC protecting groups, the final construct was purified on RP-HPLC and characterized 

by MALDI-TOF MS. 
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Scheme 4.4 Synthesis of PMBN-PEG12-DNP(Oct). Peptide construct was built via 
solid-phase peptide synthesis as previously discussed. Construct was reacted with 
(BOC)PMBN. Protecting group removal and purification, afforded the final 
derivative.  
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We assessed the toxicity of PMBN-PEG12-DNP(Oct) to E. coli. We expected this 

conjugate to replace the inherent antimicrobial activity of the conjugates. As such, we 

observed high toxicity in E. coli treated with concentrations as low at 5 μg /mL of 

PMBN-PEG12- DNP(Oct) (Figure 4.12). The MIC was defined as the lowest 

concentration at which visible bacterial growth was inhibited following 18 h incubation at 

37 °C. For PMBN-PEG12- DNP(Oct), 3.09 µg / mL (1.56 μM) is the MIC in E. coli. 

 

 

 

 

Figure 4.19 PMBN-PEG12-DNP(Oct) Toxicity towards E. coli.  
E.coli cells were incubated with varying concentrations of PMBN-PEG12-DNP 
octanoic acid for 18 h at 37 °C. Bacterial viability was evaluated by measuring 
the absorbance at 600 nm. Data are represented as mean + SD (n = 3). 
 



115 
 

4.3.6 Pooled Human Serum Bacterial Cell Opsonization 

Next, we set out to investigate the ability of the conjugates to induce opsonization 

in a physiologically-relevant environment. Up to this point, we have shown that by 

associating the the bacterial surface, PMBN-PEGx-DNP conjugates can trigger the 

recruitment of purified FITC-labeled anti-DNP IgG antibodies. While these results 

establish the feasibility of the overall strategy, the recruitment of IgG antibodies in a 

human host would have to be derived directly from the serum. The recruitment of serum-

associated IgG antibodies could potentially fail due to interference with serum proteins, 

lack of specificity, and overall lack of anti-DNP abundance. Therefore, it was critical to 

evaluate this strategy in the biologically relevant conditions. The lack of a fluorescent 

handle on IgG antibodies from the pooled human serum necessitated the introduction of a 

secondary antibody. 

 

 

Figure 4.20 Cartoon Representation of Antibody Recruitment using Pooled Human 
Serum.  
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In this assay, IgG antibodies from pooled human serum that had opsonized the 

bacteria cell surface were detected using a FITC-labeled anti-human IgG antibody via 

flow cytometry (Figure 4.20). We chose to assess the recruitment capability of PMBN-

PEG12-DNP octanoic acid for this assay. As this conjugate displays acute toxicity to 

E.coli, the potential of this conjugate to possess dual- modes of thwarting bacterial cells 

was exciting.  

We observed that in the absence of pooled human serum, there was slight cell-

associated fluorescence signal from untreated E. coli cells. These results indicated that 

there is non-specific binding of the FITC-labeled anti-human antibody on the surface of 

E. coli cells. Upon treatment with 25% pooled human serum to cells treated with PMBN-

PEG12-DNP(Oct) led to an increase in fluorescence signal (Figure 4.21). There was a 3-

fold increase in cell-associated fluorescence for cells incubated with the conjugate of 1 h. 

This data points to this strategy being compatible with conditions that mimic the human 

host environment.  
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Figure 4.21 Antibody Recruitment from Pooled Human Serum in E. coli.  
E.coli cells were incubated with 20 μM of PMBN-PEG12-DNP(Oct) for indicated 

time points at 37 °C. Cells were subsequently incubated with either 25% pooled 
human serum or PBS, followed by the incubation with FITC-labeled anti-human 
IgG antibodies and analyzed using flow cytometry. Data are represented as mean + 
SD (n = 3).  
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4.4 FUTURE WORK 

We have developed a series of conjugates capable of facilitatating the recruitment 

of endogenous antibodies to the surface of Gram-negative bacteria. As mentioned, we are 

lacking in our ability to fully understand the on-goings of the outer membrane. Our 

current collaboration with the Im laboratory will hopefully illuminate key structural 

differences among the bacteria surfaces, in order to rationally design more effacioucs 

immune attractant molecules.  

In generating a more robust immune repsonse, we have synthesized a PMBN 

connstruct displaying the rhamnose antigen in place of the DNP epitope. It has been 

recently shown there is a greater abundance of endogenous anti-rhamnose antibodies 

compared to anti-DNP antibodies in human serum.26, 27 Therefore, the switch to 

rhamnose antigens should result in even higher levels of antibody recruitment due to the 

higher abundance of anti-rhamnose in human serum. As we have shown the recruitment 

of antibodies directly from pooled human serum, we can apply this assay to evaluate the 

PMBN-rhamnose constructs, as anti-rhamnose antibodies are not commercially available. 

Additionally, anti-rhamnose opsonization can induce more effective pathogen killing.27 If 

successful in facilitating the recruitment of anti-rhamnose antibodies from pooled human 

serum, the opsonized pathogens will be targeted for complement-dependent cytotoxicity 

(CDC) or antibody-dependent cell-mediated cytotoxicity (ADCC). By elevating the 

levels of antibodies on the surface of bacteria, we expect to see an induction in bacterial 

lysis by the serum-components and directly by human immune cells. 
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4.5 CONCLUSION 

In this immunotherapy strategy, we utilized the homing properties of polymyxin 

B to design polymyxin B nonapeptide-antigen conjugates capable of inducing the 

recruitment of antibodies to the surface of Gram-negative bacteria. We show that PMBN-

FITC targets Gram-negative E. coli and maintains assosciation with the abcterial surface 

through ionic interactions with the negatively charged E. coli surface. From these data, 

the possibility of PMBN-antigen conjugates interacting with the surface long enough to 

facilitate the recruitment of antibodies was conceivable. Therefore, we synthesized a 

panel of PMBN-antigen conjugates, employing a PEG spacer and DNP antigen. Our 

results demonstrate that PMBN-PEGx-DNP induce the recruitment of anti-DNP 

antibodies to the surface of E. coli. We hypothesize that spacer length requirement arise 

from differences in complexity of the LPS on the bacterial surface. We identified that 

PMBN-PEG12-DNP is the optimal construct for efficient recruitment in E. coli and P. 

aeruginosa. Further studies need to be conducted in order to answer fundamental 

questions and may be achieved by computational simulations of outer membrane 

behavior.  

Furthermore, we show that PMBN-PEG12-DNP potentiates the activity of the 

hydrophobic antibiotic, rifampicin. Similar to PMBN, this construct displays minimal 

toxicity to E. coli and mammalian cells. We also show that re-introduction of the fatty 

acid tail eccentuates the toxicity of the construct to E. coli. This is an important feature 

that can be tailored based on the level of toxicity desired for studying dual-mode 

approahces to combatting Gram-negative bacteria. Finally, we show that our conjugate 

can tigger the recruitment of anti-DNP antibodies directly from pooled human serum. 
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Further investigations into this strategy, may prove great potential to be an effective 

therapy against bacterial infections caused by challenging Gram-negative pathogens. 

Although, there have been extreme cases where bacteria have evolved their LPS, 

resistance to polymyxin B is rare.28, 29 We plan to explore the ability of these conjugates 

to label E. coli bacterial in the future by using live organism models. We anticipate that 

these agents will be excellent lead compounds as a bacterial immunotherapy strategy 

against Gram-negative pathogenic bacteria. 
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Chapter 5 

Fluorescence-based Assay Monitors PAD2 and PAD4 Activity 

 

5.1 ABSTRACT  

Post-translational modifications (PTMs) can greatly increase the functional diversity 

of the modified protein by changing its size, charge, and/or structure. As a result, PTMs 

may lead to physiological consequences. Peptidylarginine deiminases (PADs) are a 

family of post-translational modifiers which catalyze the calcium-dependent conversion 

of arginine residues to non-tRNA encoded citrulline residues. The full extent of the role 

PADs play in normal physiology and diseased states is not yet fully understood, however 

in some diseases, such as rheumatoid arthritis, a clear correlation between arginine 

citrullination and manifestation of the disease exists. Although this correlation is known, 

few assays described to date have been operationally facile with satisfactory sensitivity. 

This chapter explores a new, facile, fluorescence-based assay that reports on the activity 

and inhibition of two isoforms of the PAD family: PAD2 and PAD4.  The data, herein, 

show the assay to be readily performed under ambient conditions displaying a high signal 

to noise ratio. Furthermore, through collaboration with Penn State Hershey Medical 

Center, we utilized the assay in a high-throughput screen for potential PAD4 inhibitors.   
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5.2 INTRODUCTION  

5.2.1 Post-Translational Modifications  

Within any particular cell, there exists a delicate balance among protein expression, 

modification, and degradation, all of which are crucial in maintaining cellular 

homeostasis. Modifications that are made to proteins after ribosomal biosynthesis are 

called post-translational modifications (PTMs). These post-translational modifications 

(PTMs) can greatly increase the functional diversity of the modified protein by changing 

its size, charge, structure, and oligomerization state, amongst other features.1, 2, 3 As a 

result, the change in protein structure can lead to physiological consequences, such as 

protein degradation, cellular differentiation, signaling, modulation in gene expression, 

and protein-protein interactions. While these modifications are prevalent in a large 

percentage of all human proteins, the terminal ends on histone proteins undergo an 

unusually high number of covalent modifications.4  

Histone proteins are a family of structural proteins that facilitate the condensation of 

genomic DNA. Covalent modifications of the unstructured histone tails are carried out 

and regulated by a series of enzymes that can catalyze the covalent modification of 

residues (writers), reverse the same modifications (erasers), and distinguish among the 

changes being imprinted onto the histone tails (readers).5, 6, 7 In fact, most of the known 

PTMs can be observed within this short segment of the histone including methylation, 

phosphorylation, acetylation, sumoylation, ubiquitination, and citrullination.8. 

Within the past decade, the identification and characterization of post-translational 

modifications (PTMs) have received a significant amount of research interest9. The vast 

and versatile protein products generated by PTMs allow for the diversification of proteins 
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potentially influencing both normal cellular homeostasis and diseased states. A 

dysregulation in PTMs can lead to proteins with altered or expired functions. While most 

PTMs are fully reversible, a few appear to permanently alter the protein structure.  

5.2.2 Peptidylarginine Deiminases 

Peptidylarginine deiminases (PADs) catalyze the post-translational conversion of 

arginine residues to the non-tRNA encoded citrulline residues in the presence of calcium. 

The full extent of the role PADs play in diseased states is not yet fully established, yet 

rheumatoid arthritis patients harbor an elevated level of citrullinated proteins.10, 11, 12 

Aberrant protein citrullination has also been found to be elevated in multiple sclerosis 

(MS)13, Alzheimer’s disease14, lupus15, and various types of cancer16, 17, thus suggesting a 

possible intervention pathway via therapeutics. Amid the five PAD isoforms, PAD2 and 

PAD4 are commonly overexpressed in the aforementioned diseases.  

Assays that readily and reliably measure the activity of PAD2 / PAD4 would not only 

enhance our understanding of PADs, but also aid in the search for potent and specific 

inhibitors. To date, five members of the PAD family have been described (PAD1, PAD2, 

PAD3, PAD4, and PAD6). Each member of this family appears to target distinct cellular 

proteins and displays unique tissue distribution profiles.  PAD4 is the only member of 

this protein family known to be localized within the nucleus via a nuclear localization 

sequence.18 Accordingly, it has been shown to deiminate a number of nuclear targets, 

including arginine side chains on the N-terminal tails of histones H2A arginine residue 3 

(H2R3), H3 (H3R2, H3R17, and H3R26) and H4 (H4R3)19,20. While each of the PAD 

isozymes have specific and critical physiological functions, PAD4 has received 
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considerably more attention due to its role in a number of human processes in both 

diseased and healthy cells. Recently, PAD4 was shown to be a member of the 

pluripotency transcriptional network21.  In a recent experiment, PAD4 expression levels 

and activity were shown to be elevated during reprogramming and ground-state 

pluripotent states in mice. By controlling the regulation of stem-cell genes, PAD4 may 

retain a pivotal role in cellular reprogramming efficiency. PAD4 has also been implicated 

in the formation of neutrophil extracellular traps, which upon binding of pathogens 

enable their system clearance. The hypercitrullination of histone proteins by PAD4 

induces decondensation of the chromatin, which serves as the base material for the 

encapsulation of pathogenic bacteria by the extracellular trap, thus warding off bacterial 

infections22.  

PAD2 is widely expressed in the brain, secretory glands, and skeletal muscles. 

PAD2 overexpression is responsible for hypercitrullination of myelin basic protein 

(MBP), which leads to myelin sheath integrity loss in multiple sclerosis23. Recently, the 

overexpression of PAD2 in cell carcinoma cells led to an elevated tumorigenic profile, 

including markers consistent with epithelial-to-mesenchymal transition (EMT)24. The 

same study found that the overexpression of PAD2 in transgenic mice induced 

spontaneous skin lesions, which also showed high EMT and invasion markers.  

The use of small molecules to turn off the function of PADs may prove to be a 

powerful new strategy in thwarting the consequences due to aberrant protein expression. 

Toward this end, several activity assays have been developed with the goal of discovering 

new PAD inhibitors. A number of covalent inhibitors have been developed by the 
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Thompson group using the chloro/fluoro imidine handle that mimics the arginine 

substrate25,26,27 and have proven to be practical tools in understanding the role of PAD4 in 

both healthy and diseased state cells. PAD4 assays have also been described that link the 

release of ammonia from the reaction to a colorimetric readout28, utilize a fluorescently 

labeled chloroamidine substrate analog for fluorescence polarization assay,29 rely on the 

acid-assisted reaction between glyoxal and citrulline30, and couple the PAD4 activity to a 

fluorescence dequenching step31. Of these, only the covalent modifier haloacetamidine 

strategy has been proven to be compatible with high-throughput screening platforms32 

and few are operationally facile with satisfactory sensitivity. The lack of adequate assays 

has likely contributed to the absence of potent non-covalent PAD4 inhibitors. 

Here, we describe a new mechanism-based fluorescence assay that quickly and 

reliably measures the activity of PAD2 / PAD4. We reason that we could monitor PAD2 / 

PAD4 activity by utilizing the pro-fluorescent substrate analog. When acting upon 

substrate histones 3 and 4, PAD4 converts a positively charged arginine side chain to a 

neutral side chain through the citrullination reaction, which is currently thought to be 

irreversible (Figure 5.1). The neutralization of this positive charge has important 

implications for the association of histones with the negatively charged genomic DNA, 

potentially modulating transcriptional regulation and promoting the formation of 

neutrophil extracellular traps (NETs).33 The citrullination of arginine could similarly be 

leveraged to monitor PAD4 activity. Furthermore, citrullination of arginine would also 

interfere with the ability of trypsin to hydrolyze the carboxyl side of the amide bond. 

Trypsin has a distinct preference in hydrolyzing the C-terminal amide bonds of both 

lysine and arginine, with optimal activity near a pH range of 7.5 to 8.5. 
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 The incorporation of a masked fluorophore (7-amino-4-methylcoumarin, AMC) on 

the carboxyl side of arginine could be used to generate a signal upon trypsin-mediated 

hydrolysis. Acylation of AMC is known to greatly reduce its fluorescence intensity, a 

feature that has been utilized in a number of protease assays.34 Likewise, acylation of 

AMC onto the arginine is expected to greatly reduce the fluorescence of the potential 

PAD4 substrate (Scheme 5.1). In addition, a carboxybenzyl (Cbz, Z) group on the amino 

side of the arginine was included to mimic the typical protein-based substrate of PAD4. 

The N-terminus acetylation was crucial since it has been previously reported that neither 

free arginine nor arginine-methyl ester is citrullinated by PAD4 to any appreciable 

levels20.  

As shown by Wildemen et al., the modification of arginine with the unnatural 

moieties AMC and Cbz is well-tolerated in the active site of PAD4 and responds to 

trypsin-mediated hydrolysis.35 The substrate, ZRCoum, was also shown to efficiently 

convert to the expected product upon co-incubation with PAD4.35 In furthering the initial 

framework of this design, we set up to optimize the assay for high-throughput screening 

platforms and extend the assay to other PAD isoforms.  
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Scheme 5.1 PAD Assay Design. (A) A schematic representation of the octameric 
histones found in a basic unit of a nucleosome. PAD4 is able to citrullinate a number 
of arginine residues on histone proteins. (B) Schematic representation of the PAD 
assay. The citrullination reaction catalyzed by PAD renders the substrate (ZRCoum) 
resistant to trypsin-mediated amide hydrolysis, thus leading to a change in fluorescence 
levels. 
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5.3 MATERIALS AND METHODS 

5.3.1 Materials 

The PAD2 – GST and PAD4 – GST fusions containing pGEX-6P plasmid were a 

kind gift from Dr. Yanming Wang and Dr. Walter Fast, respectively. Luria Broth (LB), 

Isopropyl-β-D-thiogalactopyranoside (IPTG) and Ampicillin trihydrate were purchased 

from Sigma Aldrich. LB Agar, Miller granulated was purchased from Fisher Scientific. 

Z-Arg-L-7-amino-4-methylcoumarin, 7-amino-4-methylcoumarin, benzamidine, and 

phenylmethylsulfonyl fluoride (PMSF) were purchased from Sigma Aldrich. Cl-amidine, 

PAD inhibitor, was purchased from Chem Impex. Compound YW4-03 was supplied by 

Yanming Wang. Trypsin, crystalline from Bovine Pancreas (Amresco) was purchased 

from Sigma Aldrich. All salts were purchased from Fisher Scientific.  

5.3.2 PAD2 / PAD4 Expression and Purification 

The PAD2 – GST / PAD4 – GST fusion containing pGEX-6P plasmid were 

transformed into chemically competent Escherichia coli BL21(DE3) cells. The cells were 

plated on an ampicillin-containing agar-LB plate and incubated overnight at 37 °C. A 

single colony was picked and grown overnight in 50 mL of lysogeny broth (LB) 

containing 1 mM ampicillin at 37 °C. LB (8 L) containing 1 mM ampicillin was 

inoculated with the overnight growth medium. Cells grew to an OD = ~0.2, when they 

were moved to a 16 °C environment and continued to OD = ~0.6. Protein production was 

induced with 0.3 mM isopropyl-β-D-thiogalactopyranoside and incubated overnight at 16 

°C while shaking at 250 RPM. Cells were harvested by centrifugation at 3, 500 x g for 30 

min at 4 °C. The remaining cell pellet was resuspended in 100 mL lysis buffer containing 
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50 mM NaH2PO4, 300 mM NaCl, 10 mM Imidazole, 1 mM PMSF, and 1 mM DTT. The 

mixture was sonicated for 15 min and centrifuged at 20,000 x g’s for 30 min at 4 °C. The 

transparent supernatant was transferred to a Protino’s glutathione agarose 4B column. 

After washing steps with 1 X PBS (3 × 10 mL per mL of bead volume) the protein was 

eluted with 10 mL elution buffer (50 mM Tris HCl, 10 mM glutathione, pH = 8.0). The 

eluent was further purified and concentrated by using a 100 MWCO spin column. SDS-

PAGE was utilized to verify the expected molecular weight and purity of the protein. 

Aliquots were stored in –80 °C. 

5.3.3 PAD Activity Assay  

GST-tagged PAD2 or PAD4 was introduced to reaction buffer with a final 

concentration of 50 mM tris(hydroxymethyl)aminomethane hydrochloride (Tris HCl), 50 

mM NaCl, 1 mM tris(2-carboxyethyl)phosphine (TCEP) and 10 mM CaCl2 (pH = 8.0) 

and incubated for 10 min at 37 °C. ZRCoum (25 μM) was added to the wells and the 

reaction continued for 2 h at 37 °C. Quenching of the reaction occurred upon the addition 

of 10 μL 10 mg/mL trypsin/100 mM EDTA. After 10 min, fluorescence values were 

obtained via Tecan Infinite 200 (λex = 340nm, λem = 475nm).  . 

5.3.4 Calcium Dependence Analysis 

GST-tagged PAD2 or PAD4 was incubated for 10 min at 37 °C in reaction buffer 

with a final concentration of 50 mM Tris HCl, 50 mM NaCl, 1 mM TCEP and varying 

concentrations of calcium chloride (0 – 10 mM) (pH = 8.0). ZRCoum (25 μM) was added 

and the reaction continued for 2 h at 37 °C. Quenching of the reaction occurred upon the 
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addition of 10 μL 10 mg/mL trypsin/100 mM EDTA. After 10 min, fluorescence values 

were obtained via Tecan Infinite 200 (λex = 340nm, λem = 475nm).  

5.3.5 Kinetic Analysis 

GST-tagged PAD2 / PAD4 was incubated for 10 min at 37 °C in reaction buffer 

with a final concentration of 50 mM Tris HCl, 50 mM NaCl, 1 mM TCEP and 10 mM 

CaCl2 (pH = 8.0). ZRCoum (25 μM, 100 μM, 250 μM, 500 μM, 800 μM and 1 mM) was 

added to specific wells and the reaction was quenched at time points (15, 30, 45, 90, 120, 

and 180 min) by the addition of 10 μL 10 mg/mL trypsin/100 mM EDTA. After 10 min, 

the fluorescence values were obtained via Tecan Infinite 200 (λex = 340nm, λem = 

475nm). The slopes of the data points that displayed a linear relationship of fluorescence 

plotted against time (min) were the values of V0 (µmol / min). From this data, the kinetic 

parameters, kcat and KM, were calculated. 

5.3.6 Trypsin Inhibition Analysis 

PMSF or benzamidine (0 – 1 mM) was introduced to wells containing 25 µM 

ZRCoum for 10 min at 37 °C (Buffer: 50 mM Tris-HCl, 50 mM NaCl, 1 mM TCEP and 

10 mM CaCl2). Quenching of the reaction occurred upon the addition of 10 μL 10 mg/mL 

trypsin/100 mM EDTA. After 10 min, fluorescence values were obtained via Tecan 

Infinite 200 (λex = 340nm, λem = 475nm). 

5.3.7 Small Molecule Inhibition Curves 

GST-tagged PAD2 or PAD4 was incubated for 10 min at 37 °C in reaction buffer 

with a final concentration of 50 mM Tris HCl, 50 mM NaCl, 1 mM TCEP and 10 mM 
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CaCl2 (pH = 8.0). Varying concentrations of inhibitor (0 μM – 100 μM) was introduced 

to the wells for 1 h at 37 °C. ZRCoum (25 μM) was added to the wells and the reaction 

continued for 6 h at 37 °C. Quenching of the reaction occurred upon the addition of 10 

μL 10 mg/mL trypsin/100 mM EDTA. After 10 min, fluorescence values were obtained 

via Tecan Infinite 200 (λex = 340nm, λem = 475nm).  IC50 values were calculated.   
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5.4 RESULTS AND DISCUSSION 

5.4.1 Assay reports on PAD2 / PAD4 Activity  

We set out to determine the suitability of our assay for reporting on the enzymatic 

activity of PAD2 / PAD4 in 96-well plates to demonstrate its potential utility for high-

throughput screening methods.  Reaction wells were incubated with the substrate, 

ZRCoum, in the presence and absence of PAD2 / PAD4. The wells were incubated at 

37°C for 1 h. Next, an excess of trypsin/EDTA was added to designated wells and the 

reaction continued for an additional 10 minutes at 37 °C.  

 

 

Figure 5.1 Fluorescence assay reports on Activity of PAD2 and PAD4. PAD 2 / PAD4 
was incubated in reaction buffer (pH=8.0) with ZRCoum (25µM) at 37 ºC. Fluorescence was 
measured (λex = 340 nm, λem = 475 nm) in the absence (blue) and presence (red) of 
trypsin/EDTA. Data represented as mean +/- SD. 
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Upon treatment with trypsin, the fluorophore, AMC, is uncoupled from the molecule, 

thus restoring its fluorescence. We observe a 5- fold increase in fluorescence levels. The 

change in fluorescence can be readily monitored in solution via its maximum excitation 

~440 nm under physiological pH conditions.  The enzymatic activity of PAD2 / PAD4 in 

converting arginine to citrulline should prevent the unmasking of the fluorophore, 

therefore reducing the fluorescence output. 

Conversely, in wells treated with PAD2 / PAD4 and sequential trypsin/EDTA 

addition, low fluorescence levels are observed (Figure 5.1). This low fluorescence is due 

to substrate conversion in the presence of the enzyme, thus no longer retaining specificity 

for trypsin and foregoing hydrolysis of the fluorophore. The addition of EDTA is 

intended to assist in the cessation of the PAD reaction due its ability to chelate the 

essential calcium ions. From these data, we observe a 6.5-fold decrease in fluorescence 

output in the presence of PAD2 and a 5.6-fold decrease in fluorescence output in the 

presence of PAD4. Trypsin release of the fluorophore is complete within 10 minutes and 

further incubation does not increase the fold difference (Figure 5.2).  From this data, it is 

evident that ZRCoum has the potential to be a fast and facile reporter of PAD2 / PAD4 

activity. 
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Next, we examined the effect the presence of calcium has on PAD activity. The 

binding of calcium ions (up to five binding sites have been identified) leads to a re-

structuring of the protein to generate the active site36. In vitro, calcium binding is known 

to cause a conformational change that moves Cys645 and His471 into positions that are 

competent for catalysis.37  

Indeed, as more calcium ions are titrated in a decrease in the fluorescence is 

observed, consistent with the fluorescence signal being linked to citrullination by active 

PAD2 / PAD4 (Figure 5.3).  

Figure 5.2 Trypsin Hydrolysis of ZRCoum. ZRCoum (25µM) or 

AMC (25µM) was incubated in reaction buffer at 37 ºC. Fluorescence 

was measured (λex = 340 nm, λem = 475 nm) after trypsin/EDTA 
addition at designated time intervals. Data represented as mean +/- SD. 
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Conversely, at very low levels of calcium, fluorescence levels are elevated, 

indicating the PAD enzyme is not as active and the pro-fluorescent ZRCoum is released 

upon trypsin hydrolysis. Interestingly, it is evident that PAD4 restores its full catalytic 

activity at lower concentrations of exogenous calcium ions than PAD2. It is conceivable 

that either the calcium binding sites in PAD4 have tighter affinities for the calcium ions 

or the catalytic activity of PAD2 is more strictly associated with full occupation of the 

calcium binding sites.  

Figure 5.3 Calcium Dependence of PAD2 and PAD4. PAD2 / PAD4 was 
incubated in reaction buffer (pH = 8.0) containing varying concentrations (0 – 
10 mM) of calcium chloride followed by ZRCoum (25µM) addition. After 2 h, 
fluorescence was measured in the presence of trypsin/EDTA. Data represented 
as mean +/- SD. 
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5.4.2 Assay Optimization for High-Throughput Screening  

5.4.2.1 Assay Miniaturization at Room Temperature  

Next, we demonstrated the compatibility of our assay with high-throughput 

screening platforms. We were primarily interested in analyzing five reaction variables 

that would be most favorable for screening purposes: (1) the further miniaturization of 

the assay volume, (2) the possibility of performing the assay at room temperature, (3) the 

stability of the protein and buffer mixture prior to completing the assay, (4) the kinetics 

of the assay, and (5) the potential interference of trypsin inhibitors.   

For mid-throughput or high-throughput screening efforts, high-density well plates 

are commonly utilized in small molecule screens. We verified that the assay can be 

performed almost identically in a 384-well plate as compared to a 96-well plate (Figure 

5.4). In further determining the working conditions for the assay in a high-throughput 

format, we sought to investigate whether PAD4 activity can be monitored in a reasonable 

time frame at room temperature. 
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Since not all liquid-handling instruments have a temperature controller, it can 

become cumbersome and costly to have an incubation step at elevated temperature. 

Furthermore, accounting for fluctuation in temperature can be a cause for discrepancy 

between plates and runs.  In order to determine the effect of lower temperatures for the 

assay described here, we performed a similar assay at room temperature. We found that 

the signals were virtually unchanged between 37o C and room temperature (Figure 5.5). 

 

 

Figure 5.4 Assay Monitors PAD4 Activity in 384 – well plate. PAD4 was 
incubated in reaction buffer (pH=8.0) with ZRCoum (25µM) at 37 ºC in a 384-

well plate. Fluorescence was measured (λex = 340 nm, λem = 475 nm) in the 
absence (blue) and presence (red) of trypsin. Data represented as mean +/- SD. 
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5.4.2.2 Reagent Stability 

Next, we evaluated the stability of PAD4 when dissolved in the reaction buffer 

over a prolonged period of time. Realistically, high-throughput screening will require 

reagents to be generally stable for many hours while the instrument is completing the 

screen. Due to short half-lives of certain reagents, it can be quite expensive and time 

consuming to terminate a screen in order to prepare fresh reagents. Depending on the 

assay conditions, it is not unusual for some assays to be incompatible with high-

throughput screening for this very reason. Minding this potential obstruction, we tested 

the stability of PAD4 in the reaction buffer over several hours. 

Figure 5.5 Assay Monitors PAD4 Activity in 384 – well plate at Room 
Temperature. PAD4 was incubated in reaction buffer (pH=8.0) with ZRCoum 
(25µM) at room temperature. Fluorescence was measured (λex = 340 nm, λem = 

475 nm) in the absence (blue) and presence (red) of trypsin. Data represented 
as mean +/- SD. 
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The enzyme was suspended in reaction buffer and left at room temperature in a sealed 

vial covered from light. At indicated time points, an aliquot was removed for testing in 

the PAD4 activity assay.   We observe almost no loss in enzymatic activity throughout 

the time period, thus indicating that the protein is stable even after sitting at room 

temperature for over 15 hours (Figure 5.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Analysis of Reagent Stability. PAD4 was incubated in reaction 
buffer (pH=8.0) with ZRCoum (25µM) at room temperature for a time. 

Fluorescence was measured (λex = 340 nm, λem = 475 nm) in the absence 
(blue) and presence (red) of trypsin. Data represented as mean +/- SD. 
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5.4.2.3 Kinetics of Reaction 

To further optimize the assay performance by minimizing the required incubation 

time between PAD2 or PAD4 and the substrate, we analyzed the kinetics of the reaction. 

We monitored PAD4 activity over time both at room temperature and 37o C. As expected, 

it appears that PAD4 is more active at 37o C (consistent with human physiological 

temperature) with the reaction mostly complete by 20 minutes. Satisfyingly, the reaction 

is not strongly affected by the reduction in temperature down to room temperature. The 

reaction proceeds at approximately half the speed as at the elevated temperature and is 

essentially complete 40-45 minutes post initiation (Figure 5.7).  

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Time Course of PAD4 Reaction. PAD4 was incubated in reaction 
buffer (pH=8.0) with ZRCoum (25µM) at 37 ° C (A) and room temperature (B). 

Fluorescence was measured (λex = 340 nm, λem = 475 nm) in the presence of 
trypsin/EDTA. Data represented as mean +/- SD. 
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From the time course analyses, kinetics constants were calculated and the 

parameters (KM = 397 μM, kcat = 2.98 sec-1, kcat / KM = 7400 M-1sec-1) were found to be 

similar to other PAD4 substrates.28  We observed slightly different parameters with 

PAD2 (KM = 260 μM, kcat = 0.51 sec-1, kcat / KM = 1950 M-1sec-1) compared to PAD4 

(Figure 5.8), which is expected considering their inherent differences in substrate 

preferences. These values are also comparable to a similar substrate evaluated with PAD2 

using the ammonia-release colorimetric assay.38 
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Figure 5.8 Kinetics of PAD2 Reaction. (Left) Michaelis−Menten data obtained from 
varying ZRCoum concentration and time to determine rate, V0, as a function of 
ZRCoum concentration. (Right) Lineweaver-Burk plot (double reciprocal plot) of 
PAD2 activity in the presence of varying concentrations of the substrate, ZRCoum. 
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5.4.2.4 Trypsin Inhibition  

In adapting our assay to high-throughput screening platforms, we addressed the 

possibility of a false negative small molecule inhibitor resulting from unintended 

inhibition of trypsin. The assay we developed couples the citrullination reaction by PAD2 

/ PAD4 with the protease action of trypsin. We imagined that large concentrations of 

trypsin would not reduce the signal-to-noise ratio. Furthermore, we anticipated that small 

molecules that could inhibit trypsin would not disrupt the assay given the quantity of 

trypsin present. To test this, we incubated our assay in the presence of trypsin inhibitors. 

Phenylmethylsulfonyl fluoride (PMSF), a known covalent-inhibitor of trypsin, was 

incubated with the reaction mixture prior to trypsin introduction. We observed that co-

incubation of trypsin with PMSF did not alter the fluorescence output within our assay 

conditions. The assay was also tested against benzamidine, a trypsin inhibitor with 

increased water stability (Figure 5.9). These findings are consistent with the amount of 

trypsin added in the unmasking of the fluorophore, which far exceeds the usual amount of 

potential inhibitor being evaluated and should not result in false positive hits. 
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Figure 5.9 Analysis of Trypsin Inhibition. ZRCoum 
(25µM) was incubated in reaction buffer at 37 °C in 

the presence of trypsin inhibitors. After trypsin/EDTA 
addition, the fluorescence was measured (λex = 340 
nm, λem = 475 nm) in the absence (blue) and presence 
(red) of trypsin/EDTA. Data represented as mean +/- 
SD. 
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Having shown that the assay is tolerant to a variety of conditions that are typically 

encountered in small molecule drug discovery efforts, we set out to highlight the 

selectivity of the reaction by performing the reaction in crude whole cell lysates. E. coli 

cells containing the GST-PAD4 expression vector were induced with isopropyl β-D-1-

thiogalactopyranoside (IPTG), similar to the procedure used for the isolation of GST-

PAD4. Following the disruption of the cell membrane via sonication, the cellular debris 

was separated by centrifugation to afford a clarified cell lysate. When the PAD4-

containing cell lysate was submitted to the same assay conditions as the purified GST-

PAD4 assay, the fluorescence signal varied in agreement with the presence of active 

PAD4 in solution. Cell lysates contain a number of biomacromolecules at high 

concentrations that could potentially interfere with the assay (i.e. the activity of PAD4, 

the fluorescent properties of ZRCoum, and the trypsin hydrolysis). We found that the 

assay was functional in crude cell lysates thus indicating a high selectivity in the reaction 

between PAD4 and ZRCoum. To further demonstrate that the signal decrease in the 

presence of crude cell lysates was specific to the presence of active PAD4, we evaluated 

the effect of Cl-amidine, an established PAD4 inhibitor. The addition of Cl-amidine leads 

to a restoration in the fluorescence signal, consistent with the inactivation of PAD4 

(Figure 5.10). Together, we show that the assay can be further simplified by utilizing 

crude cell lysates for the monitoring of PAD4 activity. 
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Figure 5.10 Assay using Crude Cell Lysate as PAD4 Source. ZRCoum (25µM) 
and cell lysate was incubated in reaction buffer at room temperature in a 384-well 
plate. After trypsin/EDTA addition, the fluorescence was measured (λex = 340 nm, 
λem = 475 nm) in the absence (blue) and presence (red) of trypsin/EDTA. Data 
represented as mean +/- SD. 
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5.4.3 Assay Response to known PAD Inhibitors 

Finally, we evaluated the ability of the assay to respond to the presence of known 

inhibitors: Cl-amidine and YW4-03.37, 39 It was found that both of these compounds 

effectively reduce the citrullination reaction by PAD2 / PAD4, consistent with previous 

findings for these compounds (Figure 5.11). The IC50 values for Cl-amidine are 14 µM 

and 19 µM for PAD2 and PAD4, respectively. The IC50 values for YW4-03 are 6 µM and 

14 µM for PAD2 and PAD4, respectively. Furthermore, the data suggests that YW4-03 is 

a more effective inhibitor for PAD2 than PAD4. This slight selectivity in inhibition is 

especially significant in diseases where PAD2 and PAD4 are both overexpressed and 

supports the existence of novel PAD selective inhibitors. 

 

 

 

 

 

 

 

 

 

 

Figure 5.11 Assay Reports on PAD Inhibition. (A) Chemical structures of Cl-
amidine and YW4-03. (B) IC50 curves of Cl-amidine and YW4-03. Conditions: PAD2 
/ PAD4 (2µM) were incubated with ZRCoum (25 μM) in 384-well plate at 37° C for 6 
h. Fluorescence was measured (λex = 340 nm, λem = 475 nm) in the presence of 
trypsin/EDTA. Data represented as mean +/- SD. 
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5.5 CONCLUSION 

We report a novel rapid and facile fluorescence-based assay of PAD2 / PAD4, 

which relies on the re-design of an arginine substrate. In particular, we incorporated a 

fluorescent moiety whose fluorescence is controlled by the reaction of the substrate with 

the enzyme. The citrullination reaction leads to a change in the level of blue fluorescence, 

yielding a reliable read-out of PAD activity. This strategy has proven to be compatible 

with high-throughput screening platforms. The assay has several advantages over existing 

technologies, including a strong signal-to-noise ratio, speed of analysis, and robustness of 

measurement. Most importantly, it is technically facile and can be performed with readily 

available reagents.  Having shown that the assay is tolerant to a variety of conditions that 

are typically encountered in small molecule drug discovery efforts, we set out to employ 

it for high-throughput screening of potential PAD4 inhibitors. Working with the Drug 

Discovery Core Facility at Penn State Hershey Medical, we conducted a pilot screen of 

80 compounds in order to quantify the suitability of the assay for use in a high-

throughput screen. To measure suitability, a Z-factor or Z’ (Z-prime) is calculated based 

off of four parameters: the means and standard deviations of both the positive and 

negative controls.  
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In regarding the pilot screen, a robust Z’ value of 0.7 was identified making the 

assay very compatible for high-throughput robotics. To date, over 2,000 natural and 

FDA-approved compounds have been screened via our assay using the robotic lab at the 

Drug Discovery Core Facility. No positive hits have been discovered.    

 

 

 

 

 

 

 

 

 

 

 

1.0 Ideal Assay 

0.5 < X < 1.0 Excellent Assay 

0 < X < 0.5 Marginal Assay 

X < 0 

Too much overlap between 
positive and negative controls 
for the assay to be considered 

useful 

Table 5.1 Interpretation of Z-factor.  
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Chapter 6 
 

Materials and Methods 
 

6.1 Materials  
 

Protected amino acids were purchased from Chem-Impex. Fluorescein 5-

isothiocyanate and 5, 6-carboxyfluorescein were purchased from Chem-Impex. Amino-

PEG16-24-acid, DNP-PEG2-12-acid, and Fmoc-N-amido-PEG12-acid compounds were 

purchased from Broadpharm. Fmoc-8-amino-3,6-dioxaoctanoic acid was purchased from 

Chem Impex, International. Antibody was purchased from Vector Laboratories. Purified 

Human IgG, Normal Serum was purchased from Bethyl Laboratories. All other organic 

chemical reagents were purchased from Fisher Scientific or Sigma Aldrich and used 

without further purification. Dimethyl sulfoxide (DMSO) and Dulbecco’s modified 

Eagle’s medium (DMEM) were purchased from Thermo Fisher Scientific Inc. Fetal 

Bovine Serum (FBS) was purchased from Corning. Penicillin-Streptomycin was 

purchased from Sigma-Aldrich. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) was purchased from EMD Millipore.  

 

6.2 Mammalian Cell Culture  

Human embryonic kidney 293 cells were cultured in Dulbecco’s modified Eagle’s 

medium (DMEM) supplemented with 10% FBS, 100 U/mL penicillin, and 0.1 mg/mL 

streptomycin in a humidified atmosphere of 5% CO2 at 37 °C. 
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6.3 Bacterial Cell Culture  

Bacterial cells were cultured in specific media in an aerobic environment shaking at 250 rpm 

at 37 °C. S. aureus, S. epidermidis, B. subtilis, E. coli, Acinetobacter baumannii, Klebsiella 

pneumoniae, were all grown in Luria Bertani (LB) medium. P. aeruginosa were grown in 

Trypsin Soy Broth (TSB) medium. L. monocytogenes was grown in Brain Heart Infusion 

(BHI) medium. 

 

6.4 Bacterial Strains  

 Bacterial strains utilized in this work are as followed. 

Bacterial Strain Classification Chapter Reference 
B. subtilis NCIB 3610 Gram Positive 3 
S. aureus Newman  Gram Positive 3, 4 
S. aureus Sc01 Gram Positive 3 
S. epidermidis NRS101 Gram Positive 3 
L. monocytogenes 10403s Gram Positive 3 
E. coli MG1655 Gram Negative 3,4 
Acinetobacter baumannii 
ATCC 19606 

Gram Negative 4 

Klebsiella pneumoniae 
ATCC 13883 

Gram Negative 4 

Pseudomonas aeruginosa 
ATCC 27853 

Gram Negative 4 

Pseudomonas aeruginosa 
ATCC 27853 

Gram Negative 4 

E.coli XL1 Blue Gram Negative 5 
E. coli BL21 (DE3) Gram Negative  5 

 
 
6.5 Synthesis of FITC-conjugated anti-DNP Antibody 
 
     Anti-DNP rabbit (1 mg/mL) was suspended in 1 mL cold solution of 0.05 M boric 

acid, 0.2 M NaCl at a pH = 9.2 in a 30 KDa molecular weight cut-off centrifuge tube. 

Antibody was spun at 5,000g for 10 min at 4 °C (4X) to complete the wash process. A 

solution of 5 mg/mL of fluorescein 5-isothiocyanate (40 μL) was added to the washed 
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antibody solution (1mL). Solution rotated for 2 h protected from light. After reaction 

time, solution was washed in with 10 mM phosphate, 0.15 M NaCl, 0.08% NaN3 at pH = 

7.8, as before. Concentration was determined by absorbance at 280 nm and 480 nm via 

Shimadzu Biotech BioSpec-nano spectrophotometer.  

 
 
6.6 Solid Phase Peptide Synthesis of FITC-Conjugated Sortase Recognition Peptides 
 

A 25 ml synthetic vessel was charged with 564 g (0.41 mmol) of Rink Amide resin. 

The resin was initially deprotected in a solution of 6 M piperazine/100 mM HOBt in 

DMF (7 ml). The flask was agitated for 30 minutes and the deprotection solution was 

drained. The resin was washed with DMF, CH2Cl2, MeOH, CH2Cl2, and DMF (3 x 5 ml 

each). Initial loading of Fmoc-Gly (example for Sortase A peptide) (4 eq., 0.91 mmol), 

HCTU (3.9 eq., 0.88 mmol), and DIEA (8 eq., 1.80 mmol) in DMF (10 mL) was 

performed. The vessel was agitated for 2 h at room temperature. The resin was then 

washed with DMF, CH2Cl2, MeOH, CH2Cl2 and DMF (3 x 5 ml each). The Fmoc-

protecting group was removed with a solution of 6 M piperazine/100 mM HOBt in DMF 

(7 ml). The flask was agitated for 25 minute and the deprotection solution was drained. 

The resin was washed and the addition of the second amino acid was performed by 

adding Fmoc-protected amino acid (4 eq., 0.91 mmol), HCTU (3.9 eq., 0.88 mmol), and 

DIEA (8 eq., 1.80 mmol) in DMF (10 mL) and agitating for 2 hours. Peptide synthesis 

was continued for remaining Fmoc-protected amino acids and/or Fmoc-protected PEG 

groups. For the FITC modification addition, the resin was deprotected and 5, 6-

carbocyfluorescein (2 eq., 0.46 mmol), HCTU (1.9 eq., 0.44 mmol), and DIEA (4 eq., 

0.93 mmol) in DMF (10 mL) was added to the resin. The flask was agitated in the dark 
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overnight. The resin was drained and subsequently washed with DMF, CH2Cl2, MeOH, 

CH2Cl2 and DMF (3 x 5 ml each). The cleavage of the peptide from resin was carried out 

by addition of trifluoroacetic acid (TFA) cocktail solution (95% TFA, 2.5% TIPS, 2.5% 

H2O, 20 ml).  The mixture was agitated for 1 hour at room temperature. The resulting 

solution was concentrated via compressed air to remove the TFA. The residue was 

triturated in cold diethyl ether and the precipitate was collected by centrifugation and 

dissolved in H2O. Compounds were then purified using RP-HPLC with a Phenomenex 

C8 prep column and an eluent consisting of solvent A (H2O / 0.1% TFA) and solvent B 

(MeOH / 0.1% TFA) using a 60 minute gradient transitioning from 5% B to 100% B at a 

flow rate of 10 ml min-1. The purity of the peptides was verified by analytical reverse 

phase HPLC using a Phenomenex C18 column with an eluent consisting of solvent A 

(CH3CN/0.1% TFA) and solvent B (H2O/0.1% TFA) with a 30 minute gradient 

consisting of 5 to 100 % B, and a flow rate of 1 ml min-1 and monitored at 230 nm. 

Purified peptides were subsequently characterized using ESI-MS and MALDI-TOF MS.   

 
6.7 Solid Phase Peptide Synthesis of DNP-Conjugated Sortase Recognition Peptides 
 

The resin was initially deprotected in a solution of 6 M piperazine/100 mM HOBt 

in DMF (7 ml). The flask was agitated for 30 minutes and the deprotection solution was 

drained. The resin was washed with DMF, CH2Cl2, MeOH, CH2Cl2, and DMF (3 x 5 ml 

each). Initial loading of Fmoc-Gly (example for Sortase A peptide) (4 eq., 0.91 mmol), 

HCTU (3.9 eq., 0.88 mmol), and DIEA (8 eq., 1.80 mmol) in DMF (10 mL) was 

performed. The vessel was agitated for 2 h at room temperature. The resin was then 

washed with DMF, CH2Cl2, MeOH, CH2Cl2 and DMF (3 x 5 ml each). The Fmoc-

protecting group was removed with a solution of 6 M piperazine/100 mM HOBt in DMF 
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(10 ml). The flask was agitated for 25 minute and the deprotection solution was drained. 

The resin was washed and the addition of the second amino acid was performed by 

adding Fmoc-protected amino acids (4 eq., 0.91 mmol), HCTU (3.9 eq., 0.88 mmol), and 

DIEA (8 eq., 1.80 mmol) in DMF (10 mL) and agitating for 2 hours. Peptide synthesis 

was continued for remaining Fmoc-protected amino acids and/or Fmoc-protected PEG 

groups. For the DNP modification step, the resin was treated with 2, 4-

dinitrofluorobenzene (10 eq. 2.5 mmol) and DIEA (15 eq., 3.75 mmol) in DMF, and the 

flask was agitated in the dark for 1 hour at room temperature. The resin was drained and 

subsequently washed with DMF, CH2Cl2, and MeOH (3 x 5 mL each). The peptide was 

built with sequence, DNP-PEG-K(Mtt)LPMTG. The Nε-methyltrityl protecting group of 

the lysine was then deprotected by adding 10 mL of a TFA cocktail solution (1% TFA, 

2% TIPS in CH2Cl2) to the resin and agitating for 10 minutes protected from light. The 

solution was drained and this procedure was repeated four additional times. The solution 

was then drained and washed as previously stated. Upon MTT deprotection, Fmoc-8-

amino-3, 6-dioxaoctanoic acid (3 eq., 0.36 mmol), HCTU (0.36 eq., 0.36 mmol), and 

DIEA (6 eq., 0.72 mmol) in DMF was added to the resin. After 2 h of agitation, the resin 

was deprotected and washed as previously stated. Depending on the length of the PEG 

linker, additional PEG groups were added before cleaving the peptide from the resin. 

After 1 h agitation with TFA cocktail solution (95%, TFA, 2.5% TIPS, and 2.5 % H2O), 

the resin was concentrated to remove the TFA. The residue was triturated in cold diethyl 

ether and the precipitate was collected by centrifugation. Peptides were purified using 

RP-HPLC using a Phenomenex C8 prep column with an eluent consisting of solvent A 

(H2O / 0.1% TFA) and solvent B (MeOH / 0.1% TFA) using a 60 minute gradient 
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transitioning from 5% B to 100% B at a flow rate of 10 ml min-1. The purity of the 

peptides was verified by analytical RP-HPLC using a Phenomenex C4 column with an 

eluent consisting of solvent A (H2O /0.01% TFA) and solvent B (CH3CN / 0.01% TFA) 

with a 30 minute gradient transitioning from 5% B to 100% B at a flow rate of 3 ml min-

1 and monitored at 230 nm and molecular weight was confirmed using MALDI-TOF MS.  

 
6.8 Synthesis of Vancomycin-conjugated SrtA Recognition Peptides 
 

Vancomycin (20 mg, 0.0138 mmol) was dissolved in 1 mL 50/50 DMSO: DMF. 

Solution was cooled on ice and HCTU (5.13mg, 0.0124 mmol) and DIEA (7.2μL, 0.0414 

mmol) were added. SrtA recognition peptide, FITC(PEGm)K(PEGn)LPMTG or 

DNP(PEG2)K(PEG)LPMTG (1.5 eq.), was added to the mixture. Reaction continued on 

ice for 2 h with stirring. After time, mixture was filtered and injected into RP-HPLC for 

purification. Peptides were purified using RP-HPLC using a Phenomenex C8 prep 

column with an eluent consisting of solvent A (H2O / 0.001% TFA) and solvent B 

(MeOH / 0.001% TFA) using a 60 minute gradient transitioning from 5% B to 100% B at 

a flow rate of 10 ml min-1. The purity of the peptides was verified by analytical RP-

HPLC using a Phenomenex C4 column with an eluent consisting of solvent A (H2O 

/0.001% TFA) and solvent B (CH3CN / 0.001% TFA) with a 30 minute gradient 

transitioning from 5% B to 100% B at a flow rate of 3 ml min-1 and monitored at 230 nm 

and molecular weight was confirmed using MALDI-TOF MS.  
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6.9 Synthesis of PMBN-FITC 
 

Fluorescein isothiocyanate (FITC) (1.5 eq., 4.08 mg, 0.0105 mmol) was dissolved 

in DMF (100 μL). (BOC)PMBN (1eq., 10 mg, 0.007 mmol) was added to the fluorophore 

solution. DIEA (3eq., 3.65 μL, 0.021 mmol) was then added to the solution. Reaction 

progressed for 2 h while rotating protected from light. Reaction solution was purified on 

normal phase silica column with an eluent consisting of solvent A (CH2Cl2 / 0.01% 

DIEA) and solvent B (MeOH) with a 20 minute gradient transitioning from 0% B to 20% 

B at a flow rate of 18 ml min-1 and monitored at 280 nm and 254 nm. Product eluted at 

10% MeOH and molecular weight was confirmed using ESI-MS. Solvent was removed 

under reduced pressure and yellow oil was treated with acidic cocktail (50%, TFA, 2.5% 

TIPS, and 47.5 % CH2Cl2) for 2 h at room temperature to remove protecting groups. 

After reaction time, solvent was removed to yield 11 mg of PMBN-FITC. 

 
 
6.10 Synthesis of PMBN-PEGx-DNP 
 

Amino-PEG16-acid (Broadpharm 21880) (12.8 mg, 0.016 mmol) was dissolved 

in 200 μL of MeCN:0.1 M NaHCO3. 2, 4-dinitrofluorobenzene (1.5 eq, 3 μL) was added 

to the reaction and progressed for 2 h at room temperature protected from light. After 

reaction time, product was extracted in CH2Cl2: 2 M HCl and organic layer was isolated. 

Solvent was removed under reduced pressure and product was used without further 

purification. Synthesis repeated for DNP- PEG20-acid and PEG24-acid. DNP-PEG2-12-

acid compounds were purchased from Broadpharm.  

DNP-PEG16-acid (1.5 eq., 12 mg, 0.012 mmol) was dissolved in DMF (50 μL). 

HATU (1.4 eq., 4.7 mg, 0.0112 mmol) and DIEA (3 eq., 4.6 μL) were added to DNP-
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PEG16-acid solution. (BOC)PMBN (1 eq., 10.9 mg, 0.0079 mmol) was dissolved in 

DMF (100 μL). Solutions were mixed together and rotated for 2 h protected from light. 

After reaction time, product was resuspended in CH2Cl2:NaHCO3 and organic layer was 

isolated. Solvent was removed under reduced pressure. The resulting yellow oil was 

purified on normal phase silica column with an eluent consisting of solvent A (CH2Cl2 / 

0.01% DIEA) and solvent B (MeOH) with a 20 minute gradient transitioning from 0% B 

to 20% B at a flow rate of 18 ml min-1 and monitored at 280 nm and 254 nm. Product 

eluted at 19% MeOH and molecular weight was confirmed using MALDI-TOF MS. 

Solvent was removed under reduced pressure and yellow oil was treated with acidic 

cocktail (50%, TFA, 2.5% TIPS, and 47.5 % CH2Cl2) for 2 h at room temperature to 

remove protecting groups. After reaction time, solvent was removed to yield 13 mg of 

PMBN-PEG16-DNP. 

6.11 Synthesis of PMBN-PEGx-DNP(Oct) 
 

A 25 mL vessel was charged with 1 g (0.9 mmol) of 2-Chlorotrityl chloride resin. 

Initial loading with N-α-Fmoc-N-ε-4-methyltrityl-L-lysine (Fmoc-L-Lys(Mtt)-OH) (2 

eq., 1.8 mmol) and DIEA (4eq., 3.6 mmol) in anhydrous CH2Cl2 (10 mL) was performed. 

The vessel was agitated for 2 h at room temperature. The resin was washed with DMF, 

CH2Cl2, MeOH, CH2Cl2, and DMF (3 x 5 ml each). The N-terminus of lysine was 

deprotected in a solution of 6 M piperazine/100 mM HOBt in DMF (7 ml) for 30 min. 

Caprylic acid (5 eq.) was added to the vessel in DMF (10 mL) with HCTU (4.9 eq.) and 

DIEA (10 eq.). The vessel was agitated for 2 h at room temperature. The resin was 

washed as previously stated. Selective unmasking of the Nε-methyltrityl protecting group 

was completed in mild acidic conditions of 2 % TFA in CH2Cl2. Fmoc-N-amido-PEG12-
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acid (2 eq.) was added to the resin in DMF (10 mL) with HCTU (1.9 eq.) and DIEA (4 

eq.). After shaking for 4 h, the resin was washed and deprotected, as previously stated. 2, 

4-dinitrofluorobenzene (8 eq.) was added to the reaction and progressed for 3 h at room 

temperature protected from light. After reaction time, resin was again washed and 

cleaved from resin in acidic conditions. After removing solvent, product was isolated and 

used without further purification. Lys(PEG12)-DNP(Oct) was conjugated to (BOC)PMBN 

following reaction steps as mentioned in 6.10. 

 
6.12 SrtA Mediated Fluorescent Labeling 
 

Bacteria were grown in presence of FITC-labeled SrtA recognition peptides or 

FITC-labeled vancomycin-conjugated SrtA recognition peptides (5 μM) overnight at 37 

°C with shaking at 250 rpm in LB media. The next morning, the bacteria were harvested, 

washed 3X in 1X phosphate buffered saline (PBS), and fixated with 2% formaldehyde 

solution and analyzed via flow cytometry on a BDFacs Canto II flow cytometer (BD 

Biosciences, San Jose, CA) equipped with a 488 nm argon laser and a 530 bandpass filter 

(FL1). A minimum of 10,000 events were counted for each data point. The data were 

analyzed using the FACSDiva version 6.1.1 software. Cells were also imaged with 

fluorescent confocal microscopy.  

 
6.13 Antibody Binding Assay in S. aureus (Wood Strain) 
 

S. aureus (Wood Strain) bacteria were grown at 37 °C overnight in LB broth, 

supplemented with 0.4 µg mL-1 tunicamycin and DNP-2PEG1Vanc at designated 

concentrations with shaking at 250 rpm. The bacteria were harvested and washed 3X with 

1X phosphate buffer saline (PBS).  Approximately 2 × 106 colony forming units (CFU) 
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were then incubated in 100 µL of PBS containing 10% (v/v) FBS and 0.02 µg / mL of 

FITC-conjugated rabbit anti-dinitrophenyl IgG. All experiments were protected from 

light and incubated at 37 °C for 1 hour. Samples were then immediately analyzed by flow 

cytometry. Fluorescence data are expressed as mean arbitrary fluorescence units and were 

gated to include all healthy bacteria.  

 
6.14 Antibody Binding Assay in S. aureus 
 

S. aureus bacteria were grown at 37 °C overnight in LB broth, supplemented with 

0.4 µg mL-1 tunicamycin and DNP-2PEG1Vanc (5 μM) with shaking at 250 rpm. The 

bacteria were harvested and washed 3X with 1X phosphate buffer saline (PBS).  

Polyclonal antibody (0.02 μg / mL) was added to bacteria for 20 min at 4 °C. Cells were 

washed and roughly 2 × 106 colony forming units (CFU) were then incubated in 100 µL 

of PBS containing 10% (v/v) FBS and 0.02 µg / mL of FITC-conjugated rabbit anti-

dinitrophenyl IgG. All experiments were protected from light and incubated at 4 °C for 

30 min. Cells were washed 1X PBS and fixated in 2 % formaldehyde. Samples were then 

analyzed by flow cytometry. Fluorescence data are expressed as mean arbitrary 

fluorescence units and were gated to include all healthy bacteria.  

 
6.15 Bacterial Labeling in live C. elegans 
 

N2 Caenorhabditis elegans were maintained by standard protocol using nematode 

growth agar with bacterial lawns of E.coli OP50 (source) on a 60mm x 15mm cell culture 

dish. For bacterial labeling assays, C. elegans were grown to contain primarily L4 larval 

stage nematodes by incubation at 25 °C for ~48-52 h. On the day of experiments, C. 

elegans were washed off the plates with M9 buffer, and washed three times with M9 
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buffer. For washing steps, the C. elegans were pelleted at 1000g. The C. elegans were 

resuspended in 450 μL of M9 buffer containing 10% LB broth and transferred to a sterile 

24 multiwell plate. For infection, Staphylococcus aureus Sc01 of an overnight growth 

was harvested at 6000g and washed three times with original culture volume of M9 

buffer. The bacteria were resuspended in original culture volume in M9 buffer containing 

10% LB broth and 50 μL of the bacterial cells were added to the 450 μL suspension of C. 

elegans. The C. elegans were incubated at 25 °C for 4 h, harvested at 1000g and washed 

three times with M9 buffer to remove excess bacteria in the extracellular space. The C. 

elegans were then resuspended in 500 μL of M9 buffer containing 10% LB broth and 50 

μM FITC(PEG2)K(PEG-Vanc)LPMTG (FITC-2PEG1Vanc).  C. elegans were incubated 

for an additional 30 min at 25 °C. The C. elegans were harvested at 1000g, and washed 

three times with M9 buffer, and put into a final suspension of 10 mM sodium azide in M9 

buffer and analyzed by confocal microscopy. 

(Source) Lewis, J. A. & Fleming, J. T. (1995) Caenorhabditis elegans: Modern Biological 
Analysis of an Organism, eds. Epstein, H. F. & Shakes, D. C. (Academic, San Diego), Vol. 48, 
pp. 3–29. 
 

 
6.16 Minimal Inhibitory Concentration Assay 
 

The MICs of conjugates were determined by broth microdilution. Experiments 

were performed with Cation-adjusted Mueller-Hinton Broth (CaMHB) in 96-well 

polypropylene microtiter plates. Wells were inoculated with 200 μL of bacterial 

suspension prepared in CaMHB (containing ∼106 colony forming units (CFU) / mL) and 

200 μL of CaMHB containing increasing concentrations of the conjugates (0 to 100 
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µg/mL). The MIC was defined as the lowest concentration at which visible growth was 

inhibited following 18 h incubation at 37 °C. 

 
6.17 Mammalian Cell Viability Assay 
 

HEK293 cells were seeded in 96-well plates at a density of 10, 000 cells/well and 

incubated overnight. Prior to treatment, constructs were dissolved in DMSO to obtain 

desired aliquoted stock solutions. Appropriate volumes of these stock solutions were 

added to DMEM media so the final concentration of DMSO was equal to 1%.  After 

removal of cell media, 200 µL of treatment solutions were added to each well and 

incubated at 37 °C for 72 h. After treatment, the media was removed and the cells were 

washed with 100 µL of complete DMEM. Next, 100 µL of complete DMEM was added 

to each well. Cell viability was determined using the colorimetric 3-(4,5-dimethylthiazol-

2yl)-2,5 diphenyltetrazolium bromide (MTT) assay, in which 10 μL of a 5 mg/mL MTT 

stock solution was added to the treated cells and incubated for 2 h at 37 °C. The resulting 

formazan crystals were solubilized in 200 μL of DMSO. Absorbance was measured at 

580 nm using an Infinite 200 PRO microplate reader (Tecan). Cell viability was 

calculated against control cells treated with complete medium. 

 
6.18 Fluorescent Imaging 
 

Medium containing fluorescent conjugate was prepared to desired concentration. 

Bacteria were inoculated (1:100) in the corresponding medium and allowed to grow at 

designated time points or overnight at 37 °C. The bacteria were harvested at 1,000g and 

washed with 1X PBS (3X). The bacteria were analyzed on a glass slide by fluorescent 
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confocal microscopy using a B-2E/C filter (ex 465-495/em 515-555) for bacteria labeled 

with FITC fluorophore.  

 
6.19 PMBN-FITC E. coli Labeling 
 

E. coli were grown overnight in LB media. Concentrated (0 - 40 μM) aliquots of 

PMN-FITC were prepared in LB. Stationary phase E. coli (OD600 = 1.4) were harvested, 

suspended in PMN-FITC concentrated media, and shaken at 250 rpm for designated time 

points at 37 °C.  After treatment, bacteria were harvested, washed with 1X phosphate 

buffered saline (PBS) 3X, and fixated with 2% formaldehyde solution and analyzed via 

flow cytometry on a BDFacs Canto II flow cytometer (BD Biosciences, San Jose, CA) 

equipped with a 488 nm argon laser and a 530 bandpass filter (FL1). A minimum of 

10,000 events were counted for each data point. The data were analyzed using the 

FACSDiva version 6.1.1 software. Cells were also imaged with fluorescent confocal 

microscopy.  

 
6.20 Dissociation of PMBN-FITC from E. coli Surface 
 

Stationary phase E. coli (2 mL) were treated with 40 μM PMN-FITC for 2 h in 

LB media at 37 °C. After treatment, 2 mL of cells were harvested, washed with 1X PBS, 

and resuspended in 2 mL of PBS. Cells were shaken at 250 rpm at 37 °C. At designated 

time points, 0 – 24 h, 100 μL of cells were harvested, washed and fixated with 2% 

formaldehyde solution.  All fixed samples were analyzed via flow cytometry as 

previously stated.  
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6.21 PMBN-PEGx-DNP Antibody Binding Assay 
 

Stationary phase bacteria (600 μL) were treated with 40 μM PMN-PEGx-DNP for 

2 h in media at 37 °C. After treatment, cells were harvested and washed with PBS 3X. 2 

× 106 colony forming units (CFU) were then incubated in 100 µL of PBS containing 10% 

(v/v) FBS and 0.02 µg / mL of FITC-conjugated rabbit anti-dinitrophenyl IgG. All 

experiments were protected from light and incubated at 37 °C for 1 h. Cells were washed 

1X PBS and fixated in 4 % formaldehyde. Samples were then analyzed by flow 

cytometry. Fluorescence data are expressed as mean arbitrary fluorescence units and were 

gated to include all healthy bacteria.  

  

6.22 Bacterial Opsonization with Pooled Human Serum 

E. coli MG1655 was grown at 37 °C in LB broth with shaking. Stationary phase 

E. coli (OD = 1.4) were incubated with 40 µM of PMN-PEG12-DNP or PMN-PEG12-

DNP-octanoic acid for 15 min, 30 min or 60 min. The bacteria were harvested and 

washed 3X with PBS solution, and fixated in 4 % formaldehyde. Bacteria were then 

washed 2X with LB media. Pooled human serum was diluted to 25% in PBS solution 

with 10 % FBS and incubated with bacteria at 4 °C for 20 min. The opsonized bacteria 

were then washed with PBS and 2 × 106 colony forming units (CFU) were incubated with 

Anti-Human IgG-FITC diluted 1:1000 in PBS containing 10% FBS at 4 °C for 30 min 

protected from light. Cells were washed 1X PBS and fixated in 4 % formaldehyde. 

Samples were then analyzed by flow cytometry as previously stated.  
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6.23 Time-kill Studies of Stationary-phase E. coli 

High cell density stationary-phase cultures of E. coli in MH broth were treated 

with various concentrations of PMBN-PEG12-DNP (0, 17.3, 34.6, 69.2, 103.7, 138.3, 

172.9 μg /mL or 10, 20, 40, 60, 80, 100 µM). Time-kill studies were performed at 37 °C 

with shaking at 250 rpm. Culture aliquots (10 μL) were removed at the times shown in 

the figures, serially diluted in 1X PBS (pH 7.4 to 7.6), and then plated on LB agar and 

incubated overnight in a 37 °C incubator. Cell viability was assessed by enumerating the 

CFU per milliliter. Bactericidal activity was defined as a log reduction with antibiotic 

treatment compared with the untreated control at the start of each assay.  

 

6.24 Antibiotic Potentiation Assay 

 Antibiotic synergy was determined by broth microdilution assays. Experiments 

were performed with cation-adjusted Mueller-Hinton Broth (CaMHB) in 96-well 

polypropylene microtiter plates. Wells were inoculated with 200 μL of bacterial 

suspension prepared in CaMHB (containing ∼106 colony forming units (CFU) / mL) and 

200 μL of CaMHB containing increasing concentrations of the antibiotics (0 to 100 

µg/mL) and 25 μg / mL of PMBN-PEG12-DNP. The MIC was defined as the lowest 

concentration at which visible growth was inhibited following 18 h incubation at 37 °C. 

Data are representative of at least three biological replicates. Fractional inhibitory 

concentration (FIC) indices were calculated according to: 

FIC index = (MICac / MICa)  +  (MICbc / MICb) = FICa  +  FICb 

where MICa is the minimum inhibitory concentration (MIC) of compound A alone; 

MICac is the MIC of compound A in combination with compound B; MICb is the MIC of 
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compound B alone; MICbc is the MIC of compound B in combination with compound A; 

FICa is the FIC of compound A; FICb is the FIC of compound B. Synergy is defined as an 

FIC index of ≤0.5. Antagonism is defined as an FIC index of ≥4. 
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Appendices 

 

A.1 Molecular Weights and Purities of FITC-Conjugated SrtA Recognition Peptides 

 

 

 

 

 

 

 

 

 

 

 

Compound 
Calculated        

[M + H+]
Found         
[M + H+]

Purity

FITC-KLPETG 1003.43 1003.046 >95%
FITC-KLPMTG 1005.43 1005.337 >95%
FITC(PEG)K(PEG)LPMTG 1295.58 1295.159 >95%
FITC(PEG)K(PEG2)LPMTG 1440.65 1439.911 >95%
FITC(PEG)K(PEG3)LPMTG 1585.73 1585.035 >95%
FITC(PEG2)K(PEG)LPMTG 1440.65 1440.24 >95%

Compound 
Calculated        
[M + Na+]

Found         
[M + Na+]

Purity

FITC-KMGTLP 1027.42 1027.139 >95%
FITC(PEG)KLPMTG 1172.5 1172.911 >95%
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Analytical RP-HPLC Profiles of FITC-conjugated SrtA Recognition Peptides: The 
specified derivatives were analyzed on a Phenomenex C4 column by reverse phase HPLC 
with an eluent consisting of solvent A (H2O /0.1% TFA) and solvent B (CH3CN /0.1% 
TFA) with a 30 minute gradient consisting of 5 to 100 % B, a flow rate of 3 mL/min, and 
monitoring at 230 nm. 
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A.2 Molecular Weights and Purities of Vancomycin-Conjugated SrtA Recognition 
Peptides 

 

 

 

 

 

 

 

 

 

 

 

 

Compound 
Calculated        

[M + H+]
Found         
[M + H+]

Purity

FITC(PEG)-K(Vanc)LPMTG 2582.54 2582.163 >95%

Compound 
Calculated        

[M + K+]
Found         
[M + K+]

Purity

FITC(PEG)-K(PEGVanc)LPMTG 2765.78 2765.241 >95%
FITC(PEG)-K(PEG3Vanc)LPMTG 3057.01 3057.809 >95%

Compound 
Calculated        
[M + Na+]

Found         
[M + Na+]

Purity

FITC(PEG)-K(PEG2Vanc)LPMTG 2894.84 2894.55 >95%
FITC(PEG2)K(PEGVanc)LPMTG 2894.84 2894.622 >95%
DNP(PEG2)K(PEGVanc)LPMTG 2700.62 2700.454 >95%



173 
 

Analytical RP-HPLC Profiles of FITC(PEG)K(PEGNVanc)LPMTG-NH2  Peptides : 
The specified derivatives were analyzed on a Phenomenex C4 column by reverse phase 
HPLC with an eluent consisting of solvent A (H2O /0.001% TFA) and solvent B 
(CH3CN /0.001% TFA) with a 30 minute gradient consisting of 5 to 100 % B, a flow rate 
of 3 mL/min, and monitoring at 230 nm. 
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Analytical RP-HPLC Profile of DNP(PEG2)K(PEGVanc)LPMTG-NH2 : The 
specified derivative was analyzed on a Phenomenex C18 column by reverse phase HPLC 
with an eluent consisting of solvent A (H2O /0.001% TFA) and solvent B (CH3CN 
/0.001% TFA) with a 30 minute gradient consisting of 5 to 100 % B, a flow rate of 1 
mL/min, and monitoring at 230 nm. 
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A.3 Molecular Weights and Purities of FITC-Conjugated SrtB Recognition Peptides 

 

 

Analytical RP-HPLC Profiles of FITC-conjugated Sortase B Peptide: The specified 
peptide was analyzed on a Phenomenex C18 column by reverse phase HPLC with an 
eluent consisting of solvent A (H2O /0.1% TFA) and solvent B (CH3CN /0.1% TFA) 
with a 30 minute gradient consisting of 5 to 100 % B, a flow rate of 1 mL/min, and 
monitoring at 230 nm. 

 

 

 

 

 

 

Compound 
Calculated        

[M + H+]
Found         
[M + H+]

Purity

FITC(PEG)-NAKTN 1052.06 1052.136 >95%
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A.4 Molecular Weights and Purities of PMBN Conjugates  

 

 

 

 

 

 

 

 

 

 

Compound 
Calculated        
[M + Na+]

Found         
[M + Na+]

Purity

PMBN-PEG2-DNP 1311.399 1311.815 >98%
PMBN-PEG4-DNP 1399.499 1399.842 >98%
PMBN-PEG6-DNP 1487.609 1487.829 >98%
PMBN-PEG12-DNP 1751.919 1751.447 >98%
PMBN-PEG16-DNP 1928.123 1928.094 >98%
PMBN-PEG20-DNP 2104.349 2104.221 >98%
PMBN-PEG24-DNP 2280.559 2279.925 >98%

Compound 
Calculated        

[M + H+]
Found         
[M + H+]

Purity

PMBN-FITC 1353.52 1354.304 >98%
PMBN-PEG12-DNP(Oct) 1983.2 1983.476 >95%
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