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Abstract

Given a graph G with pebbles on the vertices, we define a pebbling move as

removing two pebbles from a vertex u, placing one pebble on a neighbor v, and

discarding the other pebble, like a toll. The pebbling number π(G) is the least

number of pebbles needed so that every arrangement of π(G) pebbles can place a

pebble on any vertex through a sequence of pebbling moves. We introduce a new

variation on graph pebbling called two-player pebbling. In this, players called the

mover and the defender alternate moves, with the stipulation that the defender

cannot reverse the previous move. The mover wins only if they can place a pebble

on a specified vertex and the defender wins if the mover cannot. We define η(G),

analogously, as the minimum number of pebbles such that given every configuration

of the η(G) pebbles and every specified vertex r, the mover has a winning strategy.

First, we will investigate upper bounds for η(G) on various classes of graphs and find

a certain structure for which the defender has a winning strategy, no matter how

many pebbles are in a configuration. Then, we characterize winning configurations

for both players on a special class of diameter 2 graphs. Finally, we show winning

configurations for the mover on paths using a recursive argument.

1



Chapter 1

Introduction

Graph pebbling was developed by Lagarias and Saks in 1989 as a tool to solve a

number theoretic conjecture posed by Erdös. Chung [2] proved the conjecture using

graph pebbling. It was also proved independently by number-theoretic methods

[10].

Theorem 1.0.1. [2, 10] Given an integer d and integers a1, a2, . . . , ad, there exists

a non-empty set Q ⊂ {1, 2, . . . , d} such that d
∣∣∣∑
i∈Q

ai and
∑
i∈Q

gcd(ai, d) ≤ d.

Graph pebbling can be thought of as a type of optimization problem where a

utility such as gas, electricity, or computing power travels across a network. While

traveling through the network, some amount of the utility may be lost. A natural

question that arises is what is the minimum amount of the utility that is needed to

travel the network and arrive at a destination.

1.1 Definitions

From this point, all graphs G will be finite and simple (no loops or multiedges).

We let V (G) be the set of vertices of G and |V (G)| be the number of vertices in G,

otherwise known as the order of G. Similarly, we say E(G) is the set of edges of G

and |E(G)| is the number of edges in G, known as the size of G. In a connected

2



graph, a path from u to v is a sequence of distinct edges which connects u to v.

For a graph G and two vertices u and v in V (G), the distance between u and v,

denoted dist(u, v), is the length of a shortest u, v-path. The diameter of a graph G,

diam(G) = maxu,v dist(u, v), is the maximum distance over every pair of vertices in

G. Label paths of n vertices as Pn = v1v2 . . . vn. The open neighborhood of v, N(v),

is the set of vertices adjacent to but not including v. The closed neighborhood of v,

N [v] = N(v) ∪ {v}, is the set of vertices adjacent to and including v.

We have a definition for neighborhoods that will be useful.

Definition 1.1.1. Let H ⊆ G and v ∈ G. We say the H-restricted neighborhood of

v, NH(v), is the set of neighbors of v in H, i.e. NH(v) = N(v)− V (G−H).

We continue by introducing terms relevant to graph pebbling. Intuitively, we

can think of a pebble as an indistinguishable discrete object placed on the vertices

of a graph G. If a vertex u has a pebble or pebbles in it, then we say u is pebbled.

If a vertex v has no pebbles on it, then v is unpebbled or pebble-free.

Definition 1.1.2. Given a graph G, let a configuration C : V (G)→ N be a distri-

bution of pebbles on the vertices of G with C(v) pebbles at vertex v. The size of

C, |C| =
∑

v∈V C(v), is the sum of all C(v)’s. We say a vertex is even if there is an

even number of pebbles distributed on it and a vertex odd if there is an odd number

of pebbles distributed on it.

It is technically correct to say that a vertex has pebbles distributed on it or there

is a configuration on the vertices of G. However, for ease, we will say that a vertex

has pebbles on it or that there is a configuration on a graph G.

We need a way to move the pebbles from vertex to vertex.

Definition 1.1.3. A pebbling move is a relation p : C → C between the set of all

possible configurations C and itself such that p(C) = C ′ by the following:

• |C ′| = |C| − 1

• ∃ an edge, uv, where C ′(u) = C(u)− 2 and C ′(v) = C(v) + 1

3



• C ′(x) = C(x), ∀x 6= u, v

i.e., a pebbling move removes two pebbles from a vertex u and adds one pebble to

an adjacent vertex v. We look at Figure 1.3 as an example of a configuration and

Figure 1.2 as an example of a pebbling move.

Figure 1.1: A Configuration of Pebbles on G

u

v

u

v

Figure 1.2: An Example of a Pebbling Move on G From u to v

We have the following definition.

Definition 1.1.4. Let C and C ′ be configurations on G. We say C contains C ′

provided C(v) ≥ C ′(v) for all v ∈ G. We denote this by C ′ ⊆ C.

It is useful to talk about one configuration being reachable from another config-

uration.

Definition 1.1.5. Let C and C ′ be configurations on G. We say C ′ is reachable

from C provided there is some sequence of pebbling moves on C that results in C ′.

The goal of graph pebbling is to use pebbling moves to place at least one pebble

on a specified vertex r called the root.

Definition 1.1.6. We say a pebbling move from u to v is greedy provided dist(v, r) <

dist(u, r), and semi-greedy provided dist(v, r) ≤ dist(u, r).

4



Definition 1.1.7. Given a configuration C on a graph G and a root r ∈ V (G),

we say C is r-solvable provided there exists a reachable configuration C ′ such that

C ′(r) = 1. If every reachable configuration from C yields C ′(r) = 0, then we say C is

r-unsolvable. Given a configuration C on a graph G, we say C is solvable provided

C is r-solvable for every choice of r. If there exists a choice of r such that C is

r-unsolvable, then we say C is unsolvable.

Thus, we can think of graph pebbling as a sequence of configurations C, C1, . . . , Cm,

where Ci+1 = p(Ci), all configurations reachable from C, and Cm has either at least

one pebble on the root or no pebbles on the root and no pebbling moves remaining.

We can see in Figure 1.3 that C is solvable.

r

Figure 1.3: A Configuration C is r-solvable

Definition 1.1.8. Given a graph G with root r, the rooted-pebbling number π(G, r)

is the minimum number m such that every configuration of m pebbles is r-solvable.

From this we get the following definition.

Definition 1.1.9. The pebbling number π(G) is the minimum number m such that

every configuration of size m is solvable.

We can see a simple relationship.

Fact 1.1.10. For any graph G, we have π(G) = max
r∈G

π(G, r).

We can also characterize π(G) in terms of unsolvable configurations.

Fact 1.1.11. For any graph G, we have π(G) = |C| + 1 where C is a maximum

unsolvable configuration.

Hence, finding π(G) is equivalent to finding a maximum unsolvable configuration.

The following fact is useful.

5



Fact 1.1.12. Given a graph G with configurations C and C ′ such that C ′ ⊆ C, if

C ′ is r-solvable, then C is r-solvable.

Proof. For a graph G with configuration C ′, any sequence of pebbling moves made

in C ′ can be made in C .

1.2 Classical Bounds

For graphs H and G, let H ⊆ G denote that H is a subgraph of G. We get the

following fact.

Fact 1.2.1. If H and G are connected graphs with H ⊆ G such that V (H) = V (G),

then π(H) ≥ π(G).

Proof. Any pebbling moves made in H can be made in G.

Now we move to finding upper and lower bounds for the pebbling number of

graphs. The first lower bound is in terms of the order of G.

Fact 1.2.2. Let |V (G)| = n. Then π(G) ≥ n.

Proof. Let G be a graph and r ∈ V (G). Consider the configuration C on G described

by

C(v) =

0 if v = r

1 if v 6= r.

This has n − 1 pebbles and no pebbling moves. Thus C is r-unsolvable. Since

|C| = n− 1, we have π(G) ≥ n by Fact 1.1.11.

If equality holds, then we get the following definition.

Definition 1.2.3. A graph G is said to be a Class 0 graph provided π(G) = |V (G)|.

There is a necessary condition for G to be a Class 0 graph. Let κ(G) be the

connectivity of the graph G, i.e. the minimum number of vertices one needs to

remove to disconnect the graph.

6



Theorem 1.2.4. [4] If diam(G) = 2 and κ(G) ≥ 3, then G is of Class 0.

The following fact shows that if G has a cut vertex, then G is not Class 0.

Fact 1.2.5. If G has a cut vertex, then π(G) > |V (G)|.

Proof. Let G by a graph with a cut vertex x. Let u be a neighbor of x in a different

component of G− x than r. Consider the configuration C on G described by

C(v) =


0 if v ∈ {x, r}

3 if v = u

1 if v /∈ {u, r, x}.
The only pebbling move is to x. All vertices except r have one pebble on them.

This configuration is r-unsolvable. Since |C| = |V (G)|, we have π(G) > |V (G)| by

Fact 1.1.11.

If π(G) = |V (G)|+ 1, then G is of Class 1. The next lower bound is in terms of

the diameter.

Fact 1.2.6. Let diam(G) = d. Then π(G) ≥ 2d.

Proof. Let G be a graph and r ∈ V (G). Let u ∈ G be a vertex such that dist(u, r) =

d. Consider the configuration C on G described by

C(v) =

2d − 1 if v = u

0 if v 6= u.
It is easy to check that this configuration is r-

unsolvable. Since |C| = 2d − 1, we have π(G) ≥ 2d by Fact 1.1.11.

We can show that if the previous configuration has 2d pebbles on u, then C

would be r-solvable.

Fact 1.2.7. Let diam(G) = d. If C is a configuration which has 2d on u ∈ G, then

C is r-solvable to any choice of r.

Proof. Let G be a graph and r ∈ V (G). Let u ∈ G. Consider the configuration C

on G described by

7



C(v) =

2d if v = u

0 if v 6= u.

For any choice of r ∈ G, we know there exists a path almost distance d from

u to r, call it uv2v3 . . . vkr. If we use all pebbling from u to v2, there will be 2d−1

pebbles on v2. Likewise, pebbling from v2 to v3 will ensure 2d−2 pebbles on v3. Since

d(u, r) ≤ d, pebbling in a like fashion will place at least 2d−d = 1 pebbles on r.

Thus far, we have lower bounds for π(G). The next result uses the Pigeonhole

Principle for an upper bound for π(G).

Fact 1.2.8. Let |V (G)| = n and diam(G) = d. Then π(G) ≤ (n− 1)(2d − 1) + 1.

Proof. Let G be a graph and r ∈ V (G). Let C be a configuration on G with

(n − 1)(2d − 1) + 1 pebbles. If C(v) ≥ 1 for every v, then C is r-solvable for any

choice of r. If, on the other hand, some vertices are pebble-free, then there must be

a vertex x ∈ V (G) such that C(x) ≥ 2d. Thus, by Fact 1.2.7, every vertex in G is

reachable from x. So C is r-solvable.

1.3 Early Results

Let Kn be the complete graph on n vertices.

Fact 1.3.1. For every positive integer n, we have π(Kn) = n.

Proof. Let r be any vertex. Suppose we have a configuration C with n−1 pebbles. If

every non-root vertex has 1 pebble, then there are no pebbling moves. Now suppose

we have a configuration C ′ with n pebbles. If C ′ has 1 pebble on r, then we are

done. If C ′ has no pebble on the root, then there must exist at least one vertex v

with at least 2 pebbles on it. We can pebble from v to r.

Next, we have the pebbling number of a path on n vertices, Pn.

Fact 1.3.2. For every positive integer n, we have π(Pn) = 2n−1.

8



Proof. By Fact 1.2.6, π(Pn) ≥ 2n−1. We now show π(Pn) ≤ 2n−1 by induction on n.

Base: Let n = 1. Having 1 pebble on 1 vertex is solvable.

Induction: Let π(Pk) = 2k−1 for all k < n. Suppose we have a configuration C

on Pn with 2n−1 pebbles. If C(r) = 1, we are done. So suppose C(r) = 0. First,

suppose r is an endpoint and let u be the neighbor to r. By induction, we can place a

pebble on u using at most 2n−2 pebbles. Since we have at least 2n−2 pebbles left, we

can place another pebble on u. Since C ′(u) = 2, we can pebble to r. Now, suppose

r is a non-endpoint. Let dist(v1, r) = d1 and dist(r, vn) = d2 with d1 + d2 = n− 1.

By the Pigeonhole Principle, either the subpath v1 . . . r has at least 2d1 pebbles on

it or r . . . vn has at least 2d2 pebbles on it. In either case, we can pebble to r by

induction.

Later, we will have another proof of this result that relies upon a “potential”

argument. This result helps find the pebbling number of trees. Let T be a tree and

r ∈ T . We build a partition of T into paths as follows. Let P1 be the longest path

in T with r as an endpoint. Let P2 be the longest path in T with an endpoint in

P1, but otherwise disjoint from P1. We recursively continue this for every i with

Pi being the longest path in T with an endpoint in Pi−1 until we have an index m

such that T = P1 ∪ P2 ∪ · · · ∪ Pm. Notice, |Pi| ≥ |Pi+1| for all i = 1, 2, . . . ,m − 1

and let |Pi| be the length of Pi. We say P = (P1, P2, . . . , Pm) is an r-maximum path

partition of T .

Theorem 1.3.3. [2] If T is a tree and P = (P1, P2, . . . , Pm) is an r-maximum path

partition of T , then π(T ) =
m∑
i=1

2|Pi| −m+ 1.

From [12], we get the pebbling number of cycles.

Theorem 1.3.4. [12] For every integer k ≥ 2, we have π(C2k) = 2k and for every

integer k ≥ 1, we have π(C2k+1) = 2
⌊
2k+1

3

⌋
+ 1.

The following result from [2] gives the pebbling number of hypercubes.

Fact 1.3.5. [2] If Qk is the hypercube in dimension k, then π(Qk) = 2k.

9



This result from [3] shows complete bipartite and complete multipartite graphs

are Class 0 graphs.

Fact 1.3.6. [3] If Ka1,a2,...,am is a complete multipartite graph with 1 < a1 ≤ a2 ≤

· · · ≤ am < n and
m∑
i=1

ai = n, then π(Ka1,a2,...,am) = n.

A famous conjecture by Ronald Graham [2] poses a question about the cartesian

product of graphs. First, we need a definition.

Definition 1.3.7. For any two graphs G and H, the cartesian product, G�H, is

the graph whose vertex set is {(g, h) : g ∈ G, h ∈ H} with edges between (g, h) and

(g′, h′) if and only if (g = g′ and {hh′} ∈ E(H)) or (h = h′ and {gg′} ∈ E(G)).

Now, we can state the conjecture.

Conjecture 1.3.8 (Graham’s Conjecture [2]). For any graphs G and H, π(G�H) ≤
π(G)π(H).

Graham’s Conjecture has been verified for certain classes of graphs such as trees

with trees [11] and cycles with cycles [6, 7, 12]. Notably, equality was shown for

arbitrary products of paths [2].

Theorem 1.3.9. [2] For positive integers n1, n2, . . . , nm,

π(Pn1+1�Pn2+1� . . .�Pnm+1) = 2n1+n2+···+nm

.

This proof was the foundation for Chung’s verification of Theorem 1.0.1.

1.4 Optimal Pebbling

For π(G), we are concerned with finding the smallest integer m such that every

configuration of m pebbles on G can reach every vertex. In other words, we are

looking for the largest configuration that is unsolvable for some choice of root.
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Instead, we may want to find the smallest solvable configuration on G. This may

be useful for a company trying to determine locations of fuel stations, warehouses,

or generators. We have the definition for the optimal pebbling number.

Definition 1.4.1. Given a graph G, the optimal pebbling number of G, denoted

π∗(G), is the minimum number k of pebbles such that there exists a solvable con-

figuration of size k.

The key difference between the optimal pebbling number and the pebbling num-

ber of G is that for the optimal pebbling number, we only want to find one configu-

ration C of size k that is solvable. It may be true that there is another configuration

C ′ of size k that is not solvable. This gives the first fact for optimal pebbling

Fact 1.4.2. Given a graph G, we have π∗(G) ≤ π(G).

We also have a nice upper bound.

Fact 1.4.3. Given a graph G, let diam(G) = d and |V (G)| = n. Then π∗(G) ≤
min{2d, n}.

Proof. Any configuration C which places 2d on a single vertex can reach every other

vertex, by Fact 1.2.7. Any configuration C ′ which places one pebble on every vertex

is reachable to every other vertex, vacuously.

The following gives us a far less trivial bound.

Theorem 1.4.4. [1] Given a graph G with |V (G)| = n, we have π∗(G) ≤
⌈
2n
3

⌉
.

This upper bound has been shown to be tight for paths [12] and cycles [1].

1.5 Pebbling as a Two-Player Game

There are many other variations of graph pebbling [8, 9]. We introduce a new

variation that extends pebbling to a two-person game called Two-Player Pebbling.

We will differentiate this variation from π(G) by referring to the latter as classical
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pebbling. The first player, called the mover, uses pebbling moves to try to obtain a

configuration C ′ such that C ′(r) = 1. The second player, called the defender, uses

pebbling moves to ensure a configuration C ′′ that admits no pebbling moves and

C ′′(r) = 0. The mover wins if there is a pebble on r. The defender wins if, during

any player’s turn, there are no more pebbling moves possible and C ′(r) = 0.

We have the following defintion.

Definition 1.5.1. We say a round consists of two pebbling moves; the initial move

made by the mover and the final move made by the defender. A turn will be an

individual player’s pebbling move.

Every game needs rules; ours is no different. Given an initial configuration C on

a graph G, we begin playing round 1 with the following rules:

1. Each player must take their turn.

2. If the mover pebbles from u to v, then the defender cannot pebble from v to

u in the same round.

3. If C ′(r) > 0 at any time, then the mover wins.

4. If C ′(r) = 0 and there are no more pebbling moves, then the defender wins.

We have considered what would happen if we ignore Rule 1, i.e. if the defender

was allowed to forfeit their turn. We will comment later on as to why this variation

was not studied in depth. Rule 2 is very important. We can play a quick game to

demonstrate why this rule is imperative. Consider P4 with a configuration C which

places 10 pebbles on v4, 1 pebble on v3 and v2, and 0 pebbles on v1, which will be

the root. If we ignore rule 2 and play this game, then we get Figure 1.4.

We can see that the defender will win. However if we include rule 2 again, we

will get Figure 1.5.

Of course, these show only one outcome of the game. Because there are two

players, we need to consider possible pebbling moves of each player.
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1 1 10
M

1 2 8
D

1 9
M

1 1 7
D

1 2 5
M

2 5
D

1 5
M

2 3
D

4

r

r

r

r

r

r

r

r

r

Figure 1.4: A Game on P4 Without Rule 2.

0 1 1 10
M

0 1 2 8
D

0 1 3 6
M

0 2 1 6
D

0 2 2 4
M

1 0 2 4

r

r

r

r

r

r

Figure 1.5: A Game on P4 With Rule 2.

Definition 1.5.2. A game tree is a directed graph whose vertices are the possible

outcomes for each player’s move at each turn and edges are the turns from one

configuration to the next based on the previous player’s move.

These two figures only show one path of the game tree for simplicity. No matter
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what moves the mover makes, without rule 2, the defender has a way to win.

This brings up one of the main differences between two-player pebbling and clas-

sical pebbling – choice. There are two players with opposite objectives competing;

we begin to step in the realm of combinatorial games. So, how should each player

play the game? There needs to be a way to measure how well the players play not

only against each other, but also against other ways they themselves could play.

Definition 1.5.3. A strategy for either player is a choice function S : C → P
from the set of all possible configurations C to the list of all possible legal pebbling

moves P . A strategy S is winning for the mover (or defender) on a configuration C

provided the mover (or defender) wins playing S no matter what the defender (or

mover) does.

By this, of course, we mean a strategy is a method of playing the game based

on the possible outcomes of any move. The defender also needs to be aware of the

mover’s previous move so the defender does not make a pebbling move that violates

rule 2.

1.6 The Two-Player Pebbling Number

Now we can introduce the values for two-player pebbling.

Definition 1.6.1. For a graph G with root r, the rooted-two-player-pebbling number,

η(G, r), is the minimum number m such that for every configuration of m pebbles,

the mover has a winning strategy.

From this we get the following.

Definition 1.6.2. For a graph G, we say the two-player pebbling number, η(G),

is the minimum number m such that for every configuration of m pebbles and

every choice of r, the mover has a winning strategy. If for a graph G and a root r

there exists configurations of arbitrarily large size for which the defender wins, then

η(G, r) =∞.
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The following definition is useful when considering configurations for which the

mover has a winning strategy.

Definition 1.6.3. Given a graph G with root r, we say a trivial configuration C on

the vertices of G will have C(r) ≥ 1 or for some v ∈ N(r), C(v) ≥ 2. A configuration

is nontrivial otherwise.

A trivial configuration will be won by the mover in 0 or 1 turns. We move on

with some basic statements about η(G).

Fact 1.6.4. For every graph G, η(G) = max
r∈G

η(G, r).

Proposition 1.6.5. π(G) ≤ η(G).

Proof. The mover cannot win with less than the original pebbling number.

Notice if the defender is not forced to pebble in a winning pebbling move sequence

for classical pebbling, then equality fails. Thus far, we have found that equality holds

only for complete graphs and paths of 5 or less vertices. Details will follow in later

chapters.

Fact 1.6.6. Let C be a configuration on G with m pebbles. After t rounds, there

m− 2t pebbles on G

Proof. Every pebbling move removes 1 pebble from the graph.

Here, we find a result if a vertex is adjacent to all other vertices.

Proposition 1.6.7. If deg(r) = |V (G)| − 1, then η(G, r) = |V (G)|.

Proof. Let r be a vertex with degree |V (G)| − 1. Suppose we have |V (G)| − 1

pebbles. If every non-root vertex has 1 pebble, then the defender wins. So suppose

we have |V (G)| pebbles. If we have a configuration with 1 pebble on r, then the

mover wins. Suppose we have a configuration with no pebbles on the root. Then

there must exist at least one vertex with at least 2 pebbles on it. Since the mover

begins the game, they will pebble to the root.
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From this, we get a corollary about the complete graph on n vertices, Kn.

Corollary 1.6.8. η(Kn) = n.

The proof for Proposition 1.6.7 and Corollary 1.6.8 is the same proof for classical

pebbling [2].
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Chapter 2

General Upper & Lower Bounds

2.1 Paths & Cycles

In this section, we will show that the mover has a winning strategy for paths and

cycles. First, we can find an upper bound for the number of pebbles needed anywhere

on a path for the mover to have a winning strategy. We also describe the strategy.

Now we can find an upper bound for the two-player pebbling number of paths.

Lemma 4.2.1 describes why we will only consider the case when v1 is the root.

Lemma 2.1.1. For n ≥ 2, η(Pn) ≤ 2n.

Proof. By induction on k.

Base: Let n = 2. Any configuration of 4 pebbles on P2 can be won by the mover

in 0 or 1 turns.

Induction: Suppose η(Pk) ≤ 2k for all k < n. Let C be a non-trivial configuration

of 2n pebbles on the vertices of Pn with r = v1. Suppose C(v2) = 1. Then there

are 2n − 1 pebbles on the vertices v3v4 . . . vn. Since 2n − 1 ≥ 2n−1, by induction,

the mover can eventually place a pebble on v2. No matter which player pebbles

to v2, the mover will still pebble to r on their next turn and win. Now, suppose

C(v2) = 0. It takes 2n−2 pebbles and 2n−2 − 1 pebbling moves for the mover to

place one pebble on v2. The mover will use at most 2n−2 pebbles and the defender

17



will use at most 2n−2 pebbles. Now our resulting configuration C ′ has at least

|C ′| ≥ 2n − (2n−2 + 2n−2 − 1) = 2n − 2n−1 + 1 = 2n−1 + 1 > 2n−1 pebbles. By

induction, the mover can place another pebble on v2. No matter which player

pebbles to v2, the mover will still pebble to r on their next turn and win.

Recalling Fact 1.2.6, we have very nice upper and lower bounds for η(Pn).

Corollary 2.1.2. For n ≥ 1, we have 2n−1 ≤ η(Pn) ≤ 2n

We move on to the upper bounds for cycles. We can consider a cycle on n vertices

as a path on n vertices, adding an edge from v1 to vn.

Theorem 2.1.3. η(Cn) ≤ 2n.

Proof. Let r be any vertex in Cn. Label the vertices of Cn = a1a2 . . . an−1r, i.e. one

Pn beginning at a1 and ending at r. Let C be a configuration with 2n pebbles on the

vertices of Cn. If a1 or an−1 have 2 pebbles on them, then the mover will pebble to

r and win. Suppose a1 or an−1 have at most 1 pebble on them. If the defender ever

pebbles from a1 to r, then the mover wins. Thus the mover has a winning strategy

using at most 2n pebbles on the vertices by Lemma 2.1.1.

These are very nice upper bounds. The classical pebbling number of Pn is 2n−1.

The upper bound for paths and cycles are in O(2 · π(Pn)) and O(π(Cn)2). Chapter

4 focuses further on pebbling in paths and the difficulty that arises. With further

consideration on these graphs, we hope we can refine these upper bounds.

2.2 Fan Graphs, Fm,n

In this section, we find an upper bound for the Two-Player Pebbling Number of a

fan graph.

Definition 2.2.1. A fan graph, Fm,n = K ′m ∨ Pn, is the join of a independent set

and a path.
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Figure 2.1: A Fan Graph F4,6

Figure 2.1 is an example of a fan graph.

First, we have results on classical pebbling of fan graphs.

Theorem 2.2.2. [5] The Fan Graph F1,n is class 0, i.e. π(F1,n) = n+ 1.

We can extend this result to all fan graphs. For notation, when we refer to Fm,n,

we will let u1, u2, . . . , um be the vertices in the independent set and v1, v2, . . . vn be

the vertices in the path

Theorem 2.2.3. The Fan Graph Fm,n is class 0, i.e. π(Fm,n) = m+ n.

Proof. By Lemma 1.2.2, π(Fm,n) ≥ m + n. Let C is a configuration with m + n

pebbles.

Let r = uk for some k ∈ {1, 2, . . .m}.
Case 1: If C(ui) ≥ 4 or C(vj) ≥ 2 for some i, j, then pebbling from ui to v` to

uk or from vj to uk places a pebble on the root.

Case 2: If 2 ≤ C(ui) ≤ 3 for all i 6= k and C(vj) ≤ 1 for all j, then pebbling

from ui to v` to uk, where C(v`) = 1, places a pebble on the root.

Now let r = vk for some k ∈ {1, 2, . . . n}.
Case 1: If C(ui) ≥ 2 or C(vj) ≥ 4 for some i, j, then pebbling from ui to vk or

from vj to u` to vk places a pebble on the root.

Case 2: If C(ui) ≤ 1 for all i, C(u`) = 1 for some `, and C(vj) ≤ 3 for all j,

then there must exist a vs such that C(vs) ≥ 2. Pebbling from vs to u` to vk places

a pebble on the root.

Case 3: If C(ui) = 0 for all i and C(vj) ≤ 3 for all j, then there must exist v`

and vs such that C(v`) ≥ 2 and C(vs) ≥ 2. Pebbling from v` and vs to ui to vk

places a pebble on the root.

19



Noting that Fm,n is a class 0 graph for classical pebbling, one would hope that

η(Fm,n) <∞ as well. One thing to note is that if m ≥ 2 and r = ui for some i, then

this case is exactly one of the diameter-2 graphs described in Chapter 3, for which

we get exact values for η(G, r). We continue to show that, in fact, η(Fm,n) <∞

Theorem 2.2.4. For m ≥ 1 and n ≥ 2, we have η(Fm,n) ≤ η(Pn) + 3m.

Proof. Let m = 1.

Case 1: Suppose r = u1. Let C be a configuration with n + 1 pebbles on

Pn. Then, by the Pigeonhole Principle, there is at least one vertex vj such that

C(vj) ≥ 2. The mover can pebble from vj to r and win.

Case 2: Suppose r = vi for some i. Let C be a configuration with η(Pn) + 3

pebbles on the vertices of F1,n. If C(u1) ≥ 2, then the mover can pebble from u1

to r and win. If C(u1) = 1, then the mover will not pebble there. If the defender

ever pebbles to u1, then the mover will pebble from u1 to r and win. Since there are

η(Pn) + 2 pebbles on Pn, the mover has a winning strategy. If C(u1) = 0, then the

mover’s first move is to pebble to u1. If the defender pebbles to u1, then the mover

will pebble from u1 to r and win. If the defender makes a pebbling move on the

vertices of Pn, then there are η(Pn) pebbles on the vertices of Pn. Thus the mover

has a winning strategy.

Now, let m ≥ 2.

Case 1: Suppose r = uk for some k ∈ {1, 2, . . . ,m}. Then η(Fm,n, r) = η(G, r) ≤
m+ 2n+ 3 for G ∈ Gn,m−1 by Theorem 3.7.7

Case 2: Suppose r = vk for some k ∈ {1, 2, . . . , n}. Let C be a configuration

with η(Pn) + 3m pebbles on the vertices of Fm,n. If C(ui) ≥ 2 for any i, then the

mover can pebble from ui to r and win. If C(ui) ≤ 1 for all i and there exists some

k such that C(uk) = 1, then the mover will only pebble to the pebble-free vertices of

u1, u2, . . . , um. If the defender ever pebbles to uk, then the mover will pebble from

uk to r and win. Since there are fewer than m unpebbled vertices of u1, u2, . . . , um,

there will be at least η(Pn)+3 pebbles on Pn once the mover has placed 1 pebble on
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every vertex of u1, u2, . . . , um. Thus the mover has a winning strategy. If C(ui) = 0

for all i, then the mover’s first moves are to pebble to u1, u2, . . . , um. If the defender

places a second pebble on uj for some j, then the mover will pebble from uj to r and

win. If the defender places one pebble on uk for some k, then the mover will place

another pebble on an unpebbled vertex of u1, u2, . . . , um or make a pebbling move

on Pn if there are no more unpebbled vertices. If the defender makes a pebbling

move on the vertices of Pn, then the mover will continue to pebble to the pebble-free

vertices of u1, u2, . . . , um. Once each vertex in u1, u2, . . . , um has a pebble on them,

the vertices in Pn will have at least η(Pn) pebbles on them. Thus the mover has a

winning strategy.

We note that the proof of Theorem 3.7.7 and any proof relating to η(Pn) are

independent of this result.

2.3 The Powers of Paths, P k
n

We move on to look at Two-Player Pebbling on the kth power of paths, P k
n .

Definition 2.3.1. The kth power of a graph, Gk is the graph with vertex set

V (Gk) = V (G) and edge set E(Gk) = {uv | dG(u, v) ≤ k}.

There is an upper limit when raising a graph to a power. The following fact

describes the limit.

Fact 2.3.2. If diam(G) = d, then Gd is complete.

Also, we notice that P 1
n is just a path on n vertices and P n−1

n is a complete graph.

Hence, we will consider k ∈ {2, 3, . . . , n− 2} when dealing with P k
n .

First, we see the classical pebbling value for P 2
n .

Theorem 2.3.3. [12] Let 0 ≤ r ≤ 1. Then π(P 2
2k+r) = 2k + r.

Now, we can determine whether η(P k
n ) is finite or not.
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Theorem 2.3.4. Let k ≥ 2 and n ≥ 3. If n ≤ k + 3, then η(P k
n ) ≤ 4n− 8.

Proof. Let n = k + 1. Then k = n − 1. Since P n−1
n is a complete graph, we have

η(P n−1
n ) = n.

Let n = k + 2. Then k = n− 2 and P n−2
n = Kn − e for some edge e. This edge

missing is v1vn.

Case 1: Suppose r = v1 (the case of r = vn is completed by symmetry). This

graph is a member of Gn−2,1, the diameter-2 graphs described in Chapter 3. Thus,

by Theorem 3.7.7, η(P n−2
n , r) = 2n− 2.

Case 2: Now suppose r = vi for i 6= 1, n. Since d(vi) = n − 1, the mover has a

winning strategy using n pebbles by Lemma 1.6.7.

Let n− k = 3. Then |N(r)| = n− 3.

Case 1: Suppose r = v1. Let C be a configuration with 4(n − 3) + 4 = 4n − 8

on the vertices of P n−3
n . If there exists vi ∈ N(r) such that C(vi) ≥ 2, then the

mover will pebble to r and win. If for every vi ∈ N(r) we have C(vi) ≤ 1, then the

mover’s strategy will be to pebble to N(r) so all vertices have exactly one pebble on

them. If the defender places a second pebble on a vertex of N(r), then the mover

can pebble to r and win. If the defender pebbles to an unpebbled vertex in N(r),

then the mover will also pebble to a pebble-free vertex of N(r), if no more exist,

pebble from vn−1 to v2, or if there is no pebbling move on vn−1, pebble to vn−1.

Otherwise, the defender will pebble from vn to vn−1, from vn−1 to vn, or lose. Once

N(r) is pebbled, there are at least 4 pebbles on vn−1 and vn. If C(vn−1) ≥ 2, then

the mover will pebble to v2. If C(vn−1) ≤ 1, then the mover will pebble from vn to

vn−1. The defender will either pebble to a vertex in N(r), in which case the mover

wins, or pebble to vn−1 as well. Now C(vn−1) ≥ 2 and the mover will pebble to v2.

If the defender pebbles from v2 to r, then the mover wins. If the defender pebbles

from v2 to a vertex vk ∈ N(r), then the mover will pebble from vk to r and win.

If the defender pebbles from vn to any vertex in N(vn), then the mover will pebble

from v2 to r and win.

Case 2: Now suppose r = v2 (the case of r = vn−1 is completed by symmetry).

Let C ′ be a configuration with 4n−8 pebbles on the vertices of P n−3
n . If there exists
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vi ∈ N(r) such that C ′(vi) ≥ 2, then the mover will pebble to r and win. If for

every vi ∈ N(r) we have C ′(vi) ≤ 1, then the mover’s strategy will be to pebble

to N(r) so all pebbles have exactly one pebble on them. If the defender places a

second pebble on a vertex of N(r), then the mover can pebble to r and win. If the

defender pebbles to an unpebbled vertex in N(r), then the mover will also pebble

to a pebble-free vertex of N(r) or, if no more exist, pebble to from vn to vn−1. Once

N(r) is pebbled, if C ′(vn−1) ≥ 2, then the mover will pebble to r and win, because

vn−1 ∈ N(r). If C ′(vn−1) ≤ 1, then the mover will pebble from vn to vn−1. The

defender will either pebble to r or to a vertex in N(r), in either case the mover wins.

Case 3: Lastly, suppose r = vi for i 6= 1, 2, n − 1, n. Since d(vi) = n − 1, the

mover has a winning strategy using n pebbles by Lemma 1.6.7.

We note that the proof of Theorem 3.7.7 is independent of this result. Unfortu-

nately, not all powers of paths have a finite value for η. There is a subset for which

the defender has a winning strategy.

Theorem 2.3.5. Let k ≥ 2 and n ≥ 3. If n ≥ 2k + 4, then η(P k
n ) =∞.

Proof. Let n ≥ 2k + 4. Let r = v1. Notice that N(r) = {v2, v3, . . . , vk+1} and

N(N(r)) = {v2, v3, . . . , vk+1} ∪ {vk+2, vk+3, . . . , v2k+1} and there are at least 3 ver-

tices not in N(N(r)). Let C be the configuration with all pebbles on vn for any

number of pebbles. The defender’s strategy is to pebble from vn to vn−1 or to

undo a pebbling move from the mover. If the mover places a second pebble on a

vertex in {vk+3, vk+4, . . . , v2k+1}, then the defender has at least two pebbles out of

v2k+2, v2k+3, . . . vn that they can pebble back to. Suppose the mover makes a pebbling

move from v2k+2 and places a second pebble on vk+2. If any of vk+3, vk+4, . . . , v2k+1

are pebble-free, then the defender will pebble to that vertex. Suppose none of

vk+3, vk+4, . . . , v2k+1 are unpebbled. Since the mover pebbles from v2k+2, then on the

defender’s previous turn, they must have pebbled to v2k+2. Because the defender

pebbles from vn to vn−1 or undoes a pebbling move from the mover, the pebbling

move must have come from vk+3, vk+4, . . . , v2k+1, leaving one of them pebble-free.

This contradicts the assumption that they were not pebble-free. Thus, the mover

will not be able to pebble to N(r) and cannot win.
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We note that when n ≥ 2k+5, then P k
n satisfies the conditions of Theorem 2.4.1.

But when n = 2k + 4, P k
n does not satisfy those same conditions and η(P k

n ) =∞.

For k ≥ 2, it is unknown at this time whether η(P k
n ) is finite or not for k + 4 ≤

n ≤ 2k + 3.

Conjecture 2.3.6. Let k ≥ 2. If k + 4 ≤ n ≤ 2k + 3, then η(P k
n ) <∞.

2.4 Sufficient Condition for Infinite η

In this section, we show there exists a graph structure for which the defender always

has a winning strategy. In fact, the condition below will show that “most” graphs

yield a configuration giving a winning strategy for the defender. Later, we will show

more structured classes of graphs which have winning strategies for the mover.

Theorem 2.4.1. For a graph G, let S be a cut set of G. Label the components of

G − S as G0, G1, . . . Gk with r ∈ G0. If for every v ∈ S, |N(v) − V (G0) − S| ≥ 2

and for every x ∈ N(v)− V (G0)− S, |N(x)− S| ≥ 2, then η(G) =∞.

Proof. Let G be described as above. Let m be an arbitrary natural number and C be

the family of configurations with all pebbles m pebbles on the vertices of N(x)−S.

The only way the mover can win is if the defender is forced to place a second pebble

on a vertex in S. To see this, suppose the mover puts a second pebble on a vertex

v ∈ S. Because |N(v)− V (G0)− S| ≥ 2, the defender can pebble to another vertex

in N(v) − V (G0) − S. Let y ∈ N(v) − V (G0) − S and suppose the defender must

pebble from y. Because |N(y) − S| ≥ 2, the defender can pebble to a vertex in

N(y) − S. Therefore, the defender is never forced to place a second pebble on a

vertex in S and can exhaust the use of all m pebbles.

Note that Figure 2.2 satisfies the conditions for Theorem 2.4.1. We see that

Figure 2.2 is a tree and a bipartite graph. Therefore, trees and bipartite graphs will

have an infinite two-player pebbling number, even though both classes of graphs

graphs have a known classical pebbling number [3, 11]. Figure 2.3 has diameter

2. Thus, a graph G having diameter 2 is not a sufficient condition for a winning
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Figure 2.2: A Small Example for Theorem 2.4.1

strategy for the mover, whereas diameter-2 graphs have classical pebbling number

of at most |V (G)| + 1 [12]. In fact, we are finding that the defender has a winning

strategy on the configurations for many classes of graphs. So, we must have more

restrictions on graphs to find η(G) <∞.

r

Figure 2.3: A Graph With Diameter 2 for Theorem 2.4.1

We have also found that grids, Pn�Pm for m,n ≥ 4 have infinite η because they

satisfy the conditions for Theorem 2.4.1. Consider Figure 2.4.

r

Figure 2.4: P4�P4

It is easily verified that P4�P4 satisfies the conditions of Theorem 2.4.1, so

η(P4�P4) = ∞. However, we will show in Chaper 3 that η(P4) is finite. This is in
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direct contrast to Graham’s Conjecture [2]. So even for a simple cartesian product

of graphs, a two-player pebbling analog of Graham’s Conjecture will not hold.

We do wonder if there is an upper bound to the number of pebbles in a con-

figuration one must check to determine if the mover has a winning strategy. If the

classical pebbling number of a graph is π(G), then it takes at most π(G)−1 pebbling

moves to place a pebble on the root. So if the defender had enough pebbles to never

‘use’ the pebbles needed by the mover and the defender still had a winning strategy,

then η(G, r) =∞.

Conjecture 2.4.2. If there exists a configuration C on a graph G and choice of

root r with 3 · π(G, r) − 1 pebbles for which the defender has a winning strategy,

then η(G, r) =∞.

2.5 Removal of Edges

While working through some of the graphs for which the defender has a winning

strategy, we noticed that removing edges can completely change the outcome of the

game. Take Figure 2.3 for example. Thereom 2.4.1 says that η(G) =∞. But if we

remove one of the edges so Theorem 2.4.1 is no longer satisfied, as in Figure 2.5,

then it is easy to check that the mover has a winning strategy. So we see that a

two-player analogue result for Fact 1.2.1 will not hold.

r

Figure 2.5: Removal of an Edge from Figure 2.3

The removal of edges does not just benefit the mover. Consider Figure 2.6.

It is straightforward to check that the mover has a winning strategy for this
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Figure 2.6: Graph for Which Mover has a Winning Strategy

graph. But if we remove one more edge, the game shifts. Figure 2.7 now satisfies

the conditions of Theorem 2.4.1

r

Figure 2.7: Figure 2.6 Minus One Edge

The removal of an edge changed the outcome of the game for either player. The

edge removed can determine who is helped. The removal of an edge adjacent to the

root will only help the defender.

Proposition 2.5.1. Let G be a graph and e be an edge adjacent to the root. If the

defender has a winning strategy on G, then the defender has a winning strategy on

G− e.

Proof. Given a configuration C on the graph G, the defender will never pebble on

an edge adjacent to the root unless forced to. So let the defender have a winning

strategy on G. Then the defender will play the same strategy on G−e and win.
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Chapter 3

Pebbling on Diameter-2 Graphs

3.1 Construction of Gs,t
We move on to the study of two-player pebbling on graphs of diameter 2. Specifically,

we characterize the winning player for nearly every configuration for a certain class

of diameter-2 graph, we characterize the winning player for every configuration

on complete bipartite and complete multipartite graphs, and find exact η values for

complete bipartite and complete multipartite graphs. To do this, we define a specific

subset of diameter-2 graphs. For a graph G, the complement G′ is the graph for

which V (G′) = V (G) and e ∈ E(G′) ⇐⇒ e /∈ E(G). For any two graphs H and

G, the join of H and G, H ∨G, is the graph such that V (H ∨G) = V (H) ∪ V (G)

and E(H ∨ G) contains all edges in H, all edges in G, and edges connecting every

vertex in H with every vertex with G.

We define a subset of diameter-2 graphs, Gs,t = {(K1 ∪ K ′t) ∨ S} where S is

arbitrary and |V (S)| = s. We let the root be K1, s ≥ 1 and, t ≥ 2. We will save

the case when t = 1 for later, as it is unique. Figure 3.1 gives us an example of a

graph in Gs,t.
If a starting configuration C has two pebbles on any vertex in S, then C is

trivial, i.e. the mover wins with one turn. So we will consider configurations on G

with 0 or 1 pebbles on vertices in S. Let k be the number of vertices in S that are
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pebble-free.

r

S

T

Figure 3.1: The Class Gs,t

We develop a condition on the distribution of pebbles on T based on the pebble-

free vertices in S. Informally, it appears that we can compare how many pebbling

moves are in T to the number of pebble-free vertices in S. If there are many more

moves than pebble-free vertices, it would stand to reason that the mover wins. On

the other hand, if there are many more pebble-free vertices than pebbling moves in

T , the defender should win. We would like a way to count the number of pebbling

moves in T . Notice for any vertex v ∈ T that
⌊
C(v)
2

⌋
will tell us the number of

pebbling moves on v. We have the following definition.

Definition 3.1.1. We say CT =
∑
v∈T

⌊C(v)

2

⌋
is the number pebbling moves in T

with configuration C.

In fact, if there are k pebble-free vertices in S and CT ≥ k + 3, then the mover

has a winning strategy. If CT ≤ k, then the defender has a winning strategy. If

CT = k + 2, k + 1, then it depends on the parity of k and the structure of S to find

the winning player.

We can see that CT will change from configuration to configuration. When a

pebbling move is made from T , we can say that the number of pebbling moves in T

for the new configuration C ′ is C ′T = CT − 1 with original configuration C.

We see that for Gs,t the rule that each player must take their turn is important.

If the defender is allowed to forfeit their turn, then it is easy to verify that they

have a winning strategy for s ≥ 1 and t ≥ 2. We want to see a configuration where
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the mover has a winning strategy and define such a strategy. The winning strategy

for the mover is to force the defender to place a second pebble on a vertex in S.

3.2 When k is odd

Lemma 3.2.1 is the base case for induction when k is odd.

Lemma 3.2.1. Let G ∈ Gs,t and C be a non-trivial configuration with 1 pebble-free

vertex in S. The mover has a winning strategy if and only if CT ≥ 2.

Proof. Suppose CT ≥ 2. The mover will pebble to the unpebbled vertex. Now there

is one more move in T and all vertices in S have a pebble on them. The defender

must pebble to a vertex in S, placing a second pebble on a vertex. The mover

pebbles to r and wins.

Conversely, suppose CT ≤ 1. If CT = 0, then there are no pebbling moves in T

and the defender wins. Suppose CT = 1. Since there is 1 pebbling move in T , all

the vertices in T without the pebbling move have 0 or 1 pebble on them. The mover

has two choices, to pebble to the unpebbled vertex or to place a second pebble on

a vertex in S. If the mover pebbles to the pebble-free vertex, then for the new

configuration C ′, C ′T = 0. There are no more pebbling moves and the defender

wins. So suppose the mover pebbles to a pebbled vertex in S. If they can, then

the defender will pebble to the pebble-free vertex in S or T and win. If all vertices

in T are pebbled, then the defender will place a second pebble on one vertex in T ,

yielding an extra pebbling move. The mover has the same two options as earlier.

Suppose the mover places a second pebble on a vertex in S, or else they will lose.

The vertex in T with the original pebbling move can now have 0 or 1 pebbles on it.

The defender will pebble to it. If it is unpebbled, then the defender wins. If it is

pebbled, then the defender adds a new pebbling move. The mover will pebble from

that vertex to S with the same two options. Again we suppose the mover pebbles

to a pebbled vertex. Now there is guaranteed to be an unpebbled vertex from the

mover’s last two pebbling moves for the defender to pebble to. The defender does

so and wins.
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Lemma 3.2.2. Let G ∈ Gs,t and C be a non-trivial configuration with k pebble-free

vertices in S. If k is odd and CT ≥ k + 1, then the mover has a winning strategy on

G.

Proof. Let k be odd and CT ≥ k+ 1. The mover will pebble to a pebble-free vertex

in S. If the defender places a second pebble on a vertex in S, the mover wins. If

the defender pebbles to a pebble-free vertex in S, then there are k − 2 pebble-free

vertices in S and the resulting configuration C ′ has C ′T = CT − 2. Thus C ′T = k− 1.

Hence, by induction, the mover has a winning strategy.

Next is a result when the defender has a winning strategy.

Lemma 3.2.3. Let G ∈ Gs,t and C be a non-trivial configuration with k pebble-free

vertices in S. If k is odd and CT ≤ k, then the defender has a winning strategy on

G.

Proof. By induction on Ct.

Base: Let Ct = 0 ≤ k. There are no pebbling moves in T so the defender wins.

Induction: Let Ct ≤ k for k-pebble-free vertices in S. The mover has two choices,

to pebble to a pebble-free vertex in S or to place a second pebble on a vertex in

S. If the mover pebbles to a pebble-free vertex and there are no more pebble free

vertices, then k = 1 and by Lemma 3.2.1 the defender wins. If the mover pebbles to

a pebble-free vertex and there is another unpebbled vertex, then the defender will

pebble to a pebble-free vertex. We have Ct ≤ k − 2 and by induction, the defender

has a winning strategy. If the mover places a second pebble on a vertex in S, then

the defender will pebble back to an even vertex in T , if one exists. Now Ct ≤ k + 1

and by induction the defender wins.

So for k odd, we have the following:
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Initital Value of CT Winning Player

CT ≥ k + 1 Mover
CT ≤ k Defender

Table 3.1: Value of CT and its Winning Player for k Odd

3.3 When k is even

The section when the number of pebble-free vertices on S is even is a little more

difficult. We first show the number of pebbling moves needed in T for the mover to

win.

Lemma 3.3.1. Let G ∈ Gs,t and C be a non-trivial configuration with k pebble-free

vertices in S. If k is even and CT ≥ k + 3, then the mover has a winning strategy.

Proof. By induction on k.

Base: Let k = 0 and CT ≥ 3. The mover will pebble to S, placing a second

pebble on one of the vertices. The defender will pebble back to T or lose. The new

configuration C ′ has C ′T ≥ 2 and now k = 1. By Lemma 3.2.1, the mover wins.

Induction: Let CT ≥ k + 3 for k ≥ 1. The mover will pebble to a free vertex.

If the defender places a second pebble on a vertex in S, then the mover wins.

If the defender pebbles to a free vertex in S, then the new configuration C ′ has

C ′T = CT − 2 ≥ k + 3− 2 = k + 1. Since S now has k − 2 pebble-free vertices, the

mover has a wining strategy by induction.

We will forgo the case when CT = k+ 2 for now and leave it for its own section.

Lemma 3.3.2. Let G ∈ Gs,t and C be a non-trivial configuration with k pebble-free

vertices in S. If k is even and CT ≤ k + 1, then the defender has a winning strategy.

Proof. By induction on k.

Base: Let k = 0 and CT ≤ 1. If CT = 0, then there are no pebbling moves in T

and the defender wins. If CT = 1, then all but one vertex in T as at most 1 pebble
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on it. The mover has no choice but to place a second pebble on a vertex in S. The

defender will pebble from the vertex in S with two pebbles on it to any vertex in

T . For the new configuration C ′, we have C ′T ≤ 1 and k = 1. So by Lemma 3.2.1,

the defender has a winning strategy.

Induction: Let k be even and CT ≤ k + 1. If the mover pebbles to a pebble-free

vertex in S, then the defender will as well. The new configuration C ′ has k − 2

pebble-free vertices and C ′T = CT − 2 ≤= k − 1. By induction, the defender has a

winning strategy. If the mover places a second pebble on a vertex in S, the defender

will pebble to a vertex in T . The resulting configuration C ′′ has k + 1 pebble-free

vertex in S and C ′′T ≤ CT ≤ k + 1. Since k + 1 is odd, the defender has a winning

strategy by Lemma 3.2.3.

So for k even, we have the following:

Initital Value of CT Winning Player

CT ≥ k + 3 Mover
CT ≤ k + 1 Defender

Table 3.2: Value of CT and its Winning Player for k Wven

3.4 When CT = k + 2 with k even

When CT = k + 2, the difficulty increases. The number of pebbles in S and how

many vertices in T have a non-zero even number of pebbles on them will determine

which player has a winning strategy. Each player’s strategy changes a little. The

mover’s goal is to force the defender to pebble to a vertex in T with an odd number

of pebbles on it. This will increase the number of pebbling moves in T and yield one

of the mover’s winning configurations described in an early section. The defender

will try to pebble to a vertex in T with an even number of pebbles on it. This adds

no new pebbling moves and yields one of the defender’s winning configurations.

First we consider the configuration were all the vertices in T have an odd number

of pebbles on them.
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Lemma 3.4.1. Let G ∈ Gs,t and C be a non-trivial configuration with k pebble-free

vertices in S. If k is even and CT = k + 2 and for all v ∈ T , C(v) is odd, then the

mover has a winning strategy.

Proof. By induction on k.

Base: Let k = 0 and CT = 2 with every vertex in T having an odd number of

pebbles on it. The mover will pebble to S, placing a second pebble on one of the

vertices. The defender will pebble back to T or lose. Since every vertex in T has

an odd number of pebbles, the new configuration C ′ has C ′T = 2 with 1 unpebbled

vertex in S. By Lemma 3.2.1 the mover wins.

Induction: Let k be even and CT ≥ k + 2 for k ≥ 1. The mover will pebble

to a free vertex. If the defender places a second pebble on a vertex in S, then the

mover wins. So the defender will pebble to a free vertex in S. Now for the new

configuration C ′, C ′T = CT − 2 ≥ k + 2− 2 = k. Since S now has k − 2 pebble-free

vertices, the mover has a wining strategy by induction.

Now, we look at the case when some vertices in T have an even number of pebbles

on them. This becomes more difficult. The strategies for each player depends on

how many pebbles on are the vertex with an even number of pebbles.

Lemma 3.4.2. Let G ∈ Gs,t and C be a non-trivial configuration with k pebble-free

vertices in S. If k is even and CT = k + 2 and there is either at least one x ∈ T

such that C(x) = 0 or at least two vertices x, y ∈ T such that C(x) and C(y) are

even, then the defender has a winning strategy.

Proof. By induction on k.

Base: Let k = 0 and CT = 2. The mover will place a second pebble on a vertex

in S. The defender will pebble from that vertex in S to the pebble-free vertex in T

or to an even vertex in T . For the new configuration C ′, we have C ′T = 1 and k = 1.

Thus by Lemma 3.2.1, the defender wins.
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Induction: Let k be even and CT ≥ k+ 2. The mover can place a second pebble

on a vertex in S or pebble to a pebble-free vertex in S. If the mover places a second

pebble on a vertex in S, then the defender will pebble to the unpebbled vertex in

T or to an even vertex in T , not adding any pebbling moves to T . For our new

configuration C ′, we have C ′T = k + 1 and k is now odd. Hence, the defender wins

by Lemma 3.2.3. If the mover pebbles to a pebble-free vertex in S, then defender

will also pebble to a pebble-free vertex in S. Now for our new configuration C ′,

we have C ′T = k and there are k − 2 pebble-free vertices in S. Since there were no

pebbling moves back to T , we can see that T will still have at least one pebble-free

vertex or at least two even vertices. Thus, the defender wins by induction.

So for k even and CT = k + 2, we have the following:

Number of Even Vertices in T Winning Player

None Mover
At least one pebble-free or at least two even Defender

Table 3.3: Number of Even Vertices in T and its Winning Player for k Even

3.5 A New Game

In this section, we will characterize the winning player for specific structures on S

and certain configurations on Gs,t with an even number of unpebbled vertices in S,

one even vertex in T , and the number of pebbling moves from T is two more than

the number of pebble-free vertices in S. We will partition S into two subsets.

Definition 3.5.1. Let S0 be the pebble-free vertices of S and S1 be the pebbled

vertices of S.

We cannot characterize the winning player for all configurations and all struc-

tures on S. We will introduce a new game, called the Element Selecting Game

(ESG), to help explain why this task is particularly difficult.
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Figure 3.2: Partitioning S

Let N1, N2, . . . Nk be a collection of subsets, possibly empty and intersecting,

from a universal set U . There are two players, Mary and Dan. Each player will

take turns, Mary beginning and Dan following, selecting one element from U . After

a specified number of rounds, we say Mary wins if at least one of the subsets Ni

has every one of its elements selected and Dan wins if none of the Ni’s has been

completely selected. If there exists a subset Nj which is empty, then we say Mary

wins vacuously. Which player has a winning strategy?

This game directly relates to this case of exactly one even vertex in T with

CT = k+ 2 and k pebble-free vertices in S of Two-Player Pebbling by the following

definition.

Definition 3.5.2. Given an instance G ∈ Gs,t with configuration C containing 2j

pebble-free vertices in S and CT = 2j + 2, we define E(G,C) as the instance of the

Element Selecting Game constructed in the following way: Let U = S0, the set of

unpebbled vertices in S. For every vertex vi ∈ S, let Ni = N [vi] ∩ U . For k = 2j

pebble-free vertices in S and CT = 2j + 2, Mary and Dan play j rounds of the new

game. Mary represents the motives of the mover and Dan represents the motives of

the defender.

Here we see two lemmas to illustrate why we want CT = 2j + 2 given we are

playing j rounds.
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Lemma 3.5.3. Let G ∈ Gs,t and C be a non-trivial configuration with k pebble-free

vertices in S. Suppose there exists a pebbled vertex v ∈ S such that all its neighbors

in S are pebbled. If k is even and CT = k + 2 and there is one x ∈ T such that

C(x) ≥ 2 and all other vertices in T have an odd number of pebbles, then the mover

has a winning strategy.

Proof. The mover will pebble from x to v. The defender can either pebble to a

neighbor of v or pebble to an odd vertex in T . If the defender pebbles to a neighbor

of v, then that vertex will have two pebbles on it and the mover wins. If the defender

pebbles to an odd vertex in T , then they will add a pebbling move. Now our new

configuration C ′ has k + 1 pebble-free vertices in S and C ′T = k + 2. By Lemma

3.2.2, the mover has a winning strategy.

So, we have covered the case when the only even vertex in T has 2 pebbles on it.

If S is independent, then the conditions for Lemma 3.5.3 will hold vacuously. Here

is a configuration for the defender’s winning strategy.

Lemma 3.5.4. Let G ∈ Gs,t and C be a non-trivial configuration with k pebble-free

vertices in S. Suppose that for every pebbled vertex v ∈ S, there exist at least one

pebble-free neighbor in u ∈ S. If k is even and CT = k + 2 and there is one x ∈ T
such that C(x) = 2 and all other vertices in T have an odd number of pebbles, then

the defender has a winning strategy.

Proof. The mover can pebble to a pebbled vertex or an unpebbled vertex. If the

mover pebbles to a pebbled vertex v, then the defender will pebble from v to its

pebble-free neighbor, which exists by our hypothesis. Now k is unchanged and our

new configuration C ′ is such that C ′T = k + 1. By Lemma 3.3.2, the defender has a

winning strategy. If the mover pebbles to an unpebbled vertex, then the defender

will pebble from x to another vertex in S which is pebble-free, which exists because

k is even and at least 2. By Lemma 3.4.2, the defender has a winning strategy.

By the time the j rounds are completed, the mover wants to have a pebbled

closed neighborhood for some vertex in S and still have at least 2 pebbles on the

one even vertex in T .
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Now, we can show that the two games are equivalent when we restrict Two-Player

Pebbling to this current case.

Lemma 3.5.5. Let G ∈ Gs,t and C be a configuration containing 2j pebble-free

vertices in S and CT = 2j + 2 and E(G,C) be the instance of the Element Selecting

Game constructed from G. Mary has a winning strategy for E(G,C) if and only if

the mover has a winning strategy in G with configuration C.

Proof. Given G ∈ Gs,t, let C be a non-trivial configuration with 2j pebble-free

vertices in S, exactly one even vertex in T and CT = 2j + 2. We construct the

E(G,C) as in Definition 3.5.2. Suppose Mary has a winning strategy for the E(G,C).

Then, Mary and Dan have a sequence of elements that they each selected such that

at least one of the Ni’s has been selected. Every element in U that Mary selects,

the mover will pebble from an odd vertex in T to the corresponding vertex in S0.

If the defender ever places a 2nd pebble on a vertex in S, then the mover wins. If

the defender places a pebble on a pebble-free vertex, then the mover will pebble to

the vertex that corresponds to the next element that Mary selected. Since Mary

was able to select every element in one of the Ni’s, the mover will be able to have a

pebbled closed neighborhood with a new configuration C ′ such that C ′T ≥ 2. Thus

the mover has a winning strategy.

Conversely, suppose the mover has a winning strategy on G with configuration

C. If the mover can not pebble a closed neighborhood after j rounds, then for the

new configuration C ′ every vertex in S will have an unpebbled neighbor and C ′T = 2.

So the defender wins by Lemma 3.5.4. Thus the mover must be able to pebble a

closed neighborhood in S. Mary can select an element in U that corresponds to a

pebble-free vertex in S0 that the mover selects. Because a closed neighborhood is

pebbled for some vi ∈ S, then Ni must be able to have its elements selected. Thus

Mary has a winning strategy.

It will be easier to show cases of E(G,C) for which Mary has a winning strategy

and then show how a case for pebbling can apply.
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Lemma 3.5.6. If there exists an i such that |Ni| = j while playing at least j rounds,

then Mary wins the Element Selecting Game.

Proof. Suppose there exists a set Ni with j elements in it. Suppose Mary and Dan

play at least j rounds. Mary can select every element in Ni with her turn and win

in at most j rounds.

Corollary 3.5.7. Let G ∈ Gs,t and C be a non-trivial configuration with k pebble-

free vertices in S. If k is even, CT = k + 2 and there is one even vertex x ∈ T such

that C(x) ≥ k + 2 and all other vertices in T have an odd number of pebbles, then

the mover has a winning strategy.

Proof. Let k = 2j. Having k pebble-free vertices in S with C(x) ≥ k+2 is equivalent

to some |Ni| = j and playing j rounds.

Unfortunately, Lemma 3.5.6 and Corollary 3.5.7 are not necessary conditions

for the mover to win in general. There are ‘boundary’ cases which can violate

the conditions of converse Corollary 3.5.7 and the mover still has a winning strategy

(Lemma 3.5.3 for example). Specifically, we can have many more pebble-free vertices

in S than pebbles on x and the mover has a winning strategy. We see why having

exactly one vertex in T with a non-zero even number of pebbles on it is so difficult.

It depends on how S is structured. The informal strategy for the mover is to pebble

from the even vertex in T to a vertex in S whose neighbors all have pebbles on them.

Then the defender must pebble to an odd vertex in T , yielding the odd configuration

in Lemma 3.2.2. If the defender can pebble in S, then the mover will lose.

We begin to characterize the winning strategy for each player for the case where

C(x) = 4 with x as the only even vertex in T . Notice that for the mover to have

a winning strategy in the C(x) = 2 case we needed a vertex v ∈ S1 to be such

that NS(v) ⊆ S1. The mover will make a pebbling move from an odd vertex in T

to try and force the defender to pebble in such a way that for the next round, the

conditions for Lemma 3.5.3 are satisfied.
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Lemma 3.5.8. Suppose Mary and Dan play only 1 round. Then Mary wins the

Element Selecting Game if and only if there is an i such that Ni is empty, Ni = {y}
or there exists an y ∈ U such that for every z ∈ U , Ni = {y, z}.

Proof. Let Mary and Dan play only 1 round.

Suppose that there is some y ∈ U such that for each z ∈ U , there is a subset

such that Ni is empty, Ni = {y} or Ni = {y, z}. If Ni is empty, then Mary wins

vacuously. If all Ni’s are nonempty, then Mary will select element y. Then Dan will

select any other element. By our hypothesis, there must exist a subset of U that is

equal to y or equal to y and the element Dan chose. Thus there will be a subset

that is selected. Thus Mary wins.

Conversely, suppose for every y ∈ U there exists a z ∈ U so that for every Ni

is nonempty, Ni 6= {y}, and Ni 6= {y, z}. Mary will chose any element y′. By our

assumption, there must exist another element z′ in U so that for every subset Ni,

we have {y′, z′} is a proper subset of Ni. Thus after 1 round, no subset has been

completely selected. Hence, Dan wins.

Corollary 3.5.9. Let G ∈ Gs,t and C be a non-trivial configuration with k pebble-

free vertices in S. Suppose k is even and CT = k + 2 and there is only one even

vertex x ∈ T . The mover has a winning strategy if C(x) ≥ 4 and there exists a

vertex v in S0 that for every vertex u ∈ S0 that either:

a) there is some vertex w ∈ S1 such that NS0(w) = {v} or {u, v}, or

b) NS0(u) = {v}.

The defender has a winning strategy if C(x) ≤ 4 and for every vertex v in S0

there exists a vertex u ∈ S0 such that there is no vertex w ∈ S1 with NS0(w) = {v}
or {u, v} and (b) NS0(u) 6= {v}.

Proof. We can consider C(x) ≥ 2(1) + 2. Thus having C(x) ≥ 4 is equivalent to

playing 1 round in ESG. Let the vertex v in Two-Player Pebbling represent the

element y in ESG. Suppose there is some vertex w ∈ S1 such that NS0(w) = {v} or

{u, v}. Then for the ESG, Nw = {v} or {u, v}. The mover wins by Lemmas 3.5.5
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and 3.5.8. Suppose NS0(u) = {v}. Then for the ESG, Nu = {u, v}. The mover wins

by Lemmas 3.5.5 and 3.5.8.

So for k even with CT = k+ 2 and one even vertex x ∈ T , we have the following:

Structure of S C(X) Winning Player

Any structure C(x) ≥ k + 2 Mover
Some pebbled vertex with all pebbled neigh-
bors

C(x) ≥ 2 Mover

All pebbled vertices have an unpebbled
neighbor

C(x) = 2 Defender

∃v ∈ S0, ∀u ∈ S0 either ∃w ∈ S1 such that
NS0(w) = {v}, {u, v} or NS0(u) = {v}

C(x) ≥ 4 Mover

∀v ∈ S0, ∃u ∈ S0 such that ∀w ∈ S1,
NS0(w) 6= {v}, {u, v} and NS0(u) 6= {v}

C(x) = 4 Defender

Table 3.4: Structure of S and its Winning Player

3.6 Configurations on Complete Multipartite Graphs

We attempted to find a nice necessary condition for Mary to have a winning strategy

in the Element Selecting Game while playing 2, 3, etc. rounds. We believe it would

be easier to find the winning player for different scenarios in the Element Selecting

Game and then translate them to Two-Player Pebbling. However, characterizing

scenarios for which Mary has a winning strategy turns out to be very difficult and

based on the structure of the subsets N1, N2, . . . , Nm. So, we narrow our focus from

any G ∈ Gs,t to G being a complete multipartite graph, and we can characterize the

winning player without the aid of the Element Selecting Game.

The goal is to determine the winning player for all configurations on complete

bipartite and complete multipartite graphs. Sections 3.2, 3.3, and 3.4 cover all cases

except when the number of unpebbled vertices in S, k, is even, CT = k + 2 and

there is one even vertex x ∈ T . Notice that for complete bipartite graphs, S is

independent so Lemma 3.5.3 and Lemma 3.5.4 finish the argument for complete
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bipartite graphs. To finish the task for complete multipartite graphs, we need to

complete the above argument. If S is a clique, then Corollary 3.5.7 shows when the

mover has a winning strategy.

Lemma 3.6.1. Let G be a complete multipartite graph with partite sets A1, A2, . . . , Am,

r ∈ A1, |A1| ≥ 3 and C be a non-trivial configuration with k pebble-free vertices in

G− A1. Let A` have the maximum number of unpebbled vertices in G− A1 and k`

denote the number of unpebbled vertices in A`. Let k be even, the number of peb-

bling moves in A1 be k+ 2, and one even vertex x ∈ A1 . The mover has a winning

strategy if and only if C(x) ≥ 2(k − k`) + 2.

Proof. By induction on k − k`.
Base: Let k − k` = 0. Suppose C(x) ≥ 2. If k = 0, then by Lemma 3.5.3 the

mover has a winning strategy. So, suppose k > 0. The mover will pebble from a

vertex in A1 other than x, if one exists, to a pebble-free vertex in A`. If the defender

pebbles to a pebbled vertex, then the mover can pebble to r and win. If the defender

pebbles to an unpebbled vertex in A`, then there is at least one pebbled vertex in A`

with all neighbors G−A1 pebbled. Then by Lemma 3.5.3 the mover has a winning

strategy.

Conversely, suppose C(x) = 0. Then by Lemma 3.4.2, the defender has a winning

strategy

Induction: Assume this is true for all i < k − k`. First, suppose C(x) ≥ 2(k −
k`) + 2. The mover will pebble from a vertex in A1 not x, if one exists, to one of the

pebble-free vertices inG−A1−A`. The defender will pebble to any pebble-free vertex

in G− A1 (or lose). The resulting configuration C ′ is such that C ′(x) ≥ 2(k − k`),
C ′A1

= k and A` has at least k` − 1 pebble-free vertices. So by induction, the mover

has a winning strategy.

Conversely, suppose C(x) ≤ 2(k − k`). The mover can either pebble to an

unpebbled vertex or to a pebbled vertex of G − A1. If the mover pebbles to an

unpebbled vertex of G−A1, then the defender will pebble from x to an unpebbled

vertex in A`. The new configuration C ′ has C ′(x) ≤ 2(k − k`)− 2 and there are at

most k` − 1 pebble-free vertices in A`. By induction, the defender has a winning
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strategy. If the mover pebbles to a pebbled vertex of G−A1, then the defender will

pebble to an unpebbled neighbor. Now the mover has the same two options and

the defender has the same two responses. No matter which one the mover chooses,

after two rounds the new configuration C ′′ has C ′′(x) ≤ 2(k − k`)− 2 and there are

at most k` − 2 unpebbled vertices in A`. By induction, the defender has a winning

strategy

While exploring the case of complete multipartite graphs, we found a result for

a related graph of diameter 2, where S is a disjoint union of cliques.

Lemma 3.6.2. Let G ∈ Gs,t and S = Km1 ∪Km2 ∪ · · · ∪Km`
and C be a non-trivial

configuration with k pebble-free vertices in S. Let k be even, CT = k + 2, and one

even vertex x ∈ T . Let k∗ be the number of pebble-free vertices in Kmj
, where Kmj

has the least number of unpebbled vertices in S The mover has a winning strategy if

and only if C(x) ≥ k∗ + 2.

Proof. By induction on k∗.

Base: The case when k∗ = 0 is proven in a more general case by Lemma 3.5.3

and Lemma 3.5.4.

Induction: Assume this is true for all i < k∗. Let C be a configuration with

k∗ pebble-free vertices in Kmj
, where Kmj

has the minimum number of unpebbled

vertices in S. First, suppose C(x) ≥ k∗ + 2. The mover will pebble from a vertex

in T not x to one of the pebble-free vertices in Kmj
. The defender will pebble to

any pebble-free vertex in S (or lose). The resulting configuration C ′ is such that

C ′(x) ≥ k∗, CT = k and Kmj
has at least k∗−1 pebble-free vertices. So by induction,

the mover has a winning strategy.

Conversely, suppose C(x) ≤ k∗. The mover can either pebble to an unpebbled

vertex or to a pebbled vertex of S. If the mover pebbles to an unpebbled vertex

of S, then the defender will pebble from x to an unpebbled vertex not in Kmj
.

The new configuration C ′ has C ′(x) ≤ k∗ − 2 and there are at most k∗ pebble-free

vertices in Kmj
. By induction, the defender has a winning strategy. If the mover
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pebbles to a pebbled vertex of S, then the defender will pebble to an unpebbled

neighbor. Now the mover has the same two options and the defender has the same

two responses. No matter which one the mover choose, after two rounds the new

configuration C ′′ has C ′′(x) ≤ k∗ − 2 and there are at most k∗ unpebbled vertices

in Kmj
. By induction, the defender has a winning strategy

Lemma 3.6.1, along with Lemma 3.5.7, characterize the winning player for com-

plete multipartite graphs.

So, we have the following:

G is Complete Multipartite C(X) Winning Player

k` Pebble-Free Vertices in A`, Where A` has
Minimum Number of Unpebbled Vertices in
G− A1

C(x) ≥ 2(k − k`) + 2 Mover

k` Pebble-Free Vertices in A`, Where A` has
Minimum Number of Unpebbled Vertices in
G− A1

C(x) ≤ 2(k − k`) Defender

Table 3.5: G Multipartite and its Winning Player

3.7 Determining η(Gs,t, r)

Now we have the main result of the section which follows from the previous lemmas.

Theorem 3.7.1. Let G in Gs,t and C be a configuration with k pebble-free vertices

in S. If t ≥ 2, then we have the following:

The mover has a winning strategy on G The defender has a winning strategy on G

k is odd and CT ≥ k + 1 k is odd and CT ≤ k
k is even and CT ≥ k + 3 k is even and CT ≤ k + 1
k is even and CT = k+2 and all vertices
in T are odd

k is even and CT = k + 2 and T has at least
one unpebbled vertex or two even vertices
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And if k is even and CT = k + 2 and exactly one vertex in T is even, then the

game is equivalent to the Element Selecting Game.

There is still one case we have not discussed yet: the case when T is a single

vertex, because previous results allowed for a move back to T by the defender.

Lemmas 3.7.2 and 3.7.3 are the base case of induction for Lemma 3.7.4, Lemma

3.7.5 and Lemma 3.7.6

Lemma 3.7.2. Let G ∈ Gs,t and C be a nontrivial configuration with k pebble-free

vertices in S and T = {x} If there exists a pebbled vertex v ∈ S such that all of its

neighbors in S are pebbled and C(x) ≥ 2, then the mover has a winning strategy.

Proof. The mover will pebble to v. The defender can not pebble back to x. So the

defender can either pebble to a neighbor of v, which all have pebbles, or to r. In

either case, the mover wins.

Lemma 3.7.3. Let G ∈ Gs,t and C be a nontrivial configuration with k pebble-free

vertices in S and T = {x}. For every v ∈ S, suppose there exists at least one

u ∈ NS[v] such that u is not pebbled. If C(x) ≤ 2, then the defender has a winning

strategy.

Proof. If C(x) < 2, then there are no pebbling moves in T and the defender wins. If

C(x) = 2, then the mover will pebble to some vertex v ∈ S. If v is unpebbled, then

the defender wins. If v is pebbled, then there must exist an unpebbled neighbor by

assumption. The defender will pebble to this vertex and win.

Lemma 3.7.4. Let G ∈ Gs,t and C be a nontrivial configuration with k pebble-free

vertices in S and T = {x}. For every v ∈ S, suppose there exists at least one

u ∈ NS[v] such that u is not pebbled and S 6= N [v] for some v. Let k∗ be the

number of pebble-free vertices in N [v∗] where N [v∗] ∈ S has the minimum number

of unpebbled vertices and k ≥ 2k∗. Then the mover has a winning strategy if and

only if C(x) ≥ 4k∗ + 2.

Proof. By induction on k∗.
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Base: Let k∗ = 0. This is done by Lemmas 3.7.2 and 3.7.3.

Induction: Let k∗ be even. First, suppose C(x) ≥ 4k∗ + 2. The mover will a

pebble-free vertex of N [v∗]. If the defender places a second pebble on a vertex in

S, then the mover wins. If the defender pebbles to a pebble-free vertex in S, then

for the new configuration C ′ we have C ′(x) ≥ 4k∗− 2 = 4(k∗− 1) + 2 and there are

k∗−2 unpebbled vertices in N [v∗]. By induction, the mover has a winning strategy.

Conversely, suppose C(x) < 4k∗ + 2. The mover can pebble to any pebble-

free vertex or place a second pebble on a vertex in S. If the mover pebbles to an

unpebbled vertex in S, then the defender will pebble to an unpebbled vertex not in

N [v∗]. The new configuration C ′ has C ′(x) < 4k∗ − 2 = 4(k∗ − 1) + 2 and there are

at most k∗ unpebbled vertices in N [v∗]. By induction, the defender has a winning

strategy. If the mover places a second pebble on a vertex, then the defender will

pebble to its unpebbled neighbor. Now the mover has the same two options and the

defender has the same two responses. No matter which one the mover choose, after

two rounds the new configuration C ′′ has C ′′(x) < 4k∗− 2 = 4(k∗− 1) + 2 and there

are at most k∗ unpebbled vertices in N [v∗]. The defender wins by induction.

Lemma 3.7.5. Let G ∈ Gs,t and C be a nontrivial configuration with k pebble-free

vertices in S and T = {x}. For every v ∈ S, suppose there exists at least one

u ∈ NS[v] such that u is not pebbled and S 6= N [v] for some v. Let k∗ be the

number of pebble-free vertices in N [v∗] where N [v∗] ∈ S has the minimum number

of unpebbled vertices and k < 2k∗. Then the mover has a winning strategy if and

only if C(x) ≥ 2k + 2.

Proof. By induction on k.

Base: Let k = 0. This is done by Lemmas 3.7.2 and 3.7.3.

Induction: Let k be even. First, suppose C(x) ≥ 2k + 2. The mover will a

pebble-free vertex of S. If the defender places a second pebble on a vertex in S,

then the mover wins. If the defender pebbles to a pebble-free vertex in S, then for

the new configuration C ′ we have C ′(x) ≥ 2k − 2 and there are k − 2 unpebbled

vertices in S. By induction, the mover has a winning strategy.
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Conversely, suppose C(x) < 2k + 2. The mover can pebble to any pebble-free

vertex or place a second pebble on a vertex in S. If the mover pebbles to an

unpebbled vertex in S, then the defender will pebble to an unpebbled vertex not

in S. The new configuration C ′ has C ′(x) < 2k − 2 and there are at most |S0|
unpebbled vertices in S. By induction, the defender has a winning strategy. If

the mover places a second pebble on a vertex, then the defender will pebble to its

unpebbled neighbor. Now the mover has the same two options and the defender has

the same two responses. No matter which one the mover choose, after two rounds

the new configuration C ′ has C ′(x) < 2k − 2 and there are at most k unpebbled

vertices in S. The defender wins by induction.

Lemma 3.7.6. Let G ∈ Gs,t and C be a nontrivial configuration with k pebble-free

vertices in S and T = {x}. Suppose S = N [v] for some v. Then the mover has a

winning strategy if and only if C(x) ≥ 2k + 2.

Proof. By induction on k.

Base: Let k = 0. This is done by Lemmas 3.7.2 and 3.7.3.

Induction: Let k be even. First, suppose C(x) ≥ 2k + 2. The mover will a

pebble-free vertex of S. If the defender places a second pebble on a vertex in S,

then the mover wins. If the defender pebbles to a pebble-free vertex in S, then for

the new configuration C ′ we have C ′(x) ≥ 2k− 2 = 2(k− 2) + 2 and there are k− 2

unpebbled vertices in S. By induction, the mover has a winning strategy.

Conversely, suppose C(x) < 2k + 2. The mover can pebble to any pebble-free

vertex or place a second pebble on a vertex in S. If the mover pebbles to an

unpebbled vertex in S, then the defender will pebble to an unpebbled vertex in S.

The new configuration C ′ has C ′(x) < 2k − 2 = 2(k − 2) + 2 and there are k − 2

unpebbled vertices in N [v]. By induction, the defender has a winning strategy. If

the mover places a second pebble on a vertex, then the defender will pebble to its

unpebbled neighbor. Now the mover has the same two options and the defender has

the same two responses. No matter which one the mover choose, after two rounds

the new configuration C ′′ has C ′′(x) < 2k − 2 = 4(k − 2) + 2 and there are at most
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k unpebbled vertices in S. The defender wins by induction.

Obtaining the winning configurations for the mover allow us to get η(G, r) for

G ∈ Gs,t.

Theorem 3.7.7. If G ∈ Gs,t, then η(G, r) =

t+ 2s+ 4, s is even

t+ 2s+ 3, s is odd.

Proof. Case 1: Let s be even. A configuration of t+ 2s+ 3 pebbles on the vertices

of G which gives the defender a winning strategy is the following: in T , leave one

vertex pebble-free, put one pebble on t−2 vertices and the remaining 2s+5 pebbles

on one vertex and keep S pebble-free. With this configuration, CT = s+ 2 with one

vertex in T having no pebbles on it. By Lemma 3.4.2, the defender wins.

Now suppose there are m ≥ t + 2s + 4 pebbles on the vertices in G. Let k of

the vertices in S be pebble-free. Thus there are (s− k) pebbles in S. Now there are

m − (s − k) ≥ t + 2s + 4 − s + k = t + s + k + 4 pebbles on the vertices in T . To

show the mover has a winning strategy, we show any configuration of the remaining

pebbles on T , CT and the configuration satisfies the condition of one of the previous

lemmas.

If all of the vertices in T are pebbled, then at most t pebbles can be placed on

the vertices and CT = 0. There are s+ k+ 4 pebbles left to arrange. First, let k be

even. Then no matter how the rest are arranged, CT ≥ s+k
2

+ 2 ≥ k + 2. If there

are all distributed evenly, then all vertices have an odd number of pebbles on them.

So the mover wins. If they are not distributed evenly, then CT ≥ k + 3. So the

mover has a winning strategy by Lemma 3.7.1. Now let k be odd. No matter how

the s + k + 4 pebbles are broken up, CT ≥ s+k
2

+ 2 ≥ k + 2. Since k is odd, the

mover has a winning strategy by Theorem 3.7.1.

Now suppose not all of the vertices of T have pebbles on them. Let ` of the

vertices in T be pebble-free. Then at most t − ` pebbles can be placed on T so

CT = 0. There are s + k + ` + 4 pebbles left. Let k be even. If the pebbles

are broken up in piles of even numbers, then CT = s+k
2

+ `
2

+ 2 ≥ k + 2. The

mover wins. If the pebbles are broken up with some odd piles, then CT ≥ k + 3
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and the mover wins. Now let k be odd. No matter how the pebbles are arranged,

CT ≥ s+k
2

`
2

+ 2 ≥ k + 2. Since k is odd, the mover has a winning strategy.

Case 2: Let s be odd. The configuration of t + 2s + 2 pebbles on the vertices

of G which give the defender a winning strategy is the following: place 1 pebble on

any vertex in S, place 1 pebble on t−1 vertices and the remaining 2s+1 pebbles on

one vertex. With this configuration, CT = s and there are s− 1 pebble-free vertices

in S, with s− 1 even. By Lemma 3.3.2, the defender has a winning strategy.

A similar argument holds from above for m ≥ t+ 2s+ 3 pebbles on the vertices

of G.

3.8 Complete Bipartite & Complete Multipartite

Graphs

Now we get η for complete bipartite and multipartite graphs. We notice that com-

plete bipartite graphs and complete multipartite graphs fall into the class Gs,t, with

the root in one partite set begin equivalent to T ∪ r. Since Ku,v ∈ Gs,t with partite

sets U and V , we have u = s and v = t+ 1 if r ∈ V or u = t+ 1 and v = s if r ∈ U

Corollary 3.8.1. Let 3 ≤ u ≤ v. Then η(Ku,v) =

v + 2u+ 3, u is even

v + 2u+ 2, u is odd.

Proof. We need to check which placement of the root yields a larger configuration

to be r-solvable.

Let u = v + i.

If r ∈ V , then by Theorem 3.7.7, η(Kv+i,v, r) =

v + 2v + 2i+ 3, v + i is even

v + 2v + 2i+ 2, v + i is odd.

If r ∈ U , then by Theorem 3.7.7, η(Kv,v+i, r) =

v + i+ 2v + 3, v is even

v + i+ 2v + 2, v is odd.

We can see for every value of i ≥ 0, the maximum configurations will be when

r ∈ V .
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Theorem 3.8.2. If u = 2, then η(K2,v) = v + 7.

Proof. If r ∈ U , then Lemma 3.7.4 says we need at least 6 pebbles in U with no

pebble in V so the mover has a winning strategy. By the Pigeonhole Principle, we

need v+1 pebbles in V and no pebbles in U for the mover to have a winning strategy.

So we need a total of max{v+1, 6} pebbles for the mover to have a winning strategy.

If r ∈ v, then Theorem 3.7.7 says we need v − 1 + 2u + 4 = v − 1 + 4 + 4 = v + 7

pebbles for the mover to have a winning strategy.

Corollary 3.8.3. Let v ≥ 3. If u = 1, then η(K1,v) = v + 4.

Proof. If U = {r}, then by the Pigeonhole Principle the mover has a winning strat-

egy with v + 1 pebbles. If r ∈ V , then Theorem 3.7.7 says v − 1 + 2(1) + 3 = v + 4

pebbles gives the mover a winning strategy.

Corollary 3.8.4. If 3 ≤ a1 ≤ a2 ≤ · · · ≤ am < n and
m∑
i=1

ai = n, then

η(Ka1,a2,...,am) =


2n− a1 + 3,

m∑
i=2

ai is even

2n− a1 + 2,
m∑
i=2

ai is odd.

Proof. If r ∈ Ak for k 6= 1, then by Theorem 3.7.7,

η(Ka1,a2,...,am , r) =

ak + 2
∑

i 6=k ai + 3,
∑

i 6=k ai is even

ak + 2
∑

i 6=k ai + 2,
∑

i 6=k ai is odd.

Hence, in this case we have the following:

η(Ka1,a2,...,am) =


2n− ak + 3,

∑
i 6=k

ai is even

2n− ak + 2,
∑
i 6=k

ai is odd.

If r ∈ A1, then by Theorem 3.7.7,

η(Ka1,a2,...,am , r) =

a1 + 2
∑n

i=2 ai + 3,
∑n

i=2 ai is even

ak + 2
∑n

i=2 ai + 2,
∑n

i=2 ai is odd.
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So, in this case we have

η(Ka1,a2,...,am) =


2n− a1 + 3,

m∑
i=2

ai is even

2n− a1 + 2,
m∑
i=2

ai is odd.

Since a1 ≤ ak for all k ≥ 2,

η(Ka1,a2,...,am) =


2n− a1 + 3,

m∑
i=2

ai is even

2n− a1 + 2,
m∑
i=2

ai is odd.

Corollary 3.8.5. If 2 = a1 ≤ a2 ≤ · · · ≤ am < n and
m∑
i=1

ai = n, then

η(Ka1,a2,...,am) =


4n− 4am − 3a1, am ≥

m−1∑
i=2

ai

2n− a1, am <
m−1∑
i=2

ai.

Proof. If r ∈ Ak for ak ≥ 3, then by Theorem 3.7.7,

η(Ka1,a2,...,am , r) =


ak + 2

∑
i 6=k

ai + 3,
∑

i 6=k ai is even

ak + 2
∑
i 6=k

ai + 2,
∑

i 6=k ai is odd.

If r ∈ A1 and am ≥
∑m−1

i=2 ai, then by Lemma 3.7.4,

η(Ka1,a2,...,am , r) = 4
m−1∑
i=2

ai + 2

.

If r ∈ A1 and am <
∑m−1

i=2 ai, then by Lemma 3.7.5,

η(Ka1,a2,...,am , r) = 2
m∑
i=2

ai + 2
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Corollary 3.8.6. If 1 = a1 ≤ a2 ≤ · · · ≤ am < n with ak the size of the smallest

partite set not equal to 1 and
m∑
i=1

ai = n, then

η(Ka1,a2,...,am) =



4n− 4am − 3a1, ak = 2 and am ≥
m−1∑
i=2

ai

2n− a1, ak = 2 and am <
m−1∑
i=2

ai

2n− ak + 3, ak > 2 and
∑
i 6=k

ai is even

2n− ak + 2, ak > 2 and
∑
i 6=k

ai is odd.

Proof. If r ∈ A1, then by the Pigeonhole Principle the mover has a winging strategy

with
∑

i 6=1 ai + 1 pebbles.

If r ∈ Ak where ak the size of the smallest partite set not equal to 1, then see

Corollary 3.8.4 and 3.8.5.
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Chapter 4

Two-Player Pebbling on Paths

4.1 A Result in Classical Pebbling

We begin with a definition.

Definition 4.1.1. For a graph G with configuration C, the value of a vertex, f(v),

with respect to a given root r is f(v) = C(v)

2dist(v,r)
. We say the value of a configuration

C, with respect to a given root r, is f(C) =
∑

v∈V (G)

f(v).

One thing we notice is that for greedy pebbling moves, from v to u, the value of

the configuration is unchanged because dist(v, r) = dist(u, r) + 1 .

C(v)− 2

2dist(v,r)
+
C(u) + 1

2dist(u,r)
=

C(v)

2dist(v,r)
+

C(u)

2dist(u,r)
− 2

2dist(v,r)
+

1

2dist(u,r)

=
C(v)

2dist(v,r)
+

C(u)

2dist(u,r)
− 2

2dist(u,r)+1
+

1

2dist(u,r)

=
C(v)

2dist(v,r)
+

C(u)

2dist(u,r)
− 2

2dist(u,r) · 2
+

1

2dist(u,r)

=
C(v)

2dist(v,r)
+

C(u)

2dist(u,r)
− 1

2dist(u,r)
+

1

2dist(u,r)

=
C(v)

2dist(v,r)
+

C(u)

2dist(u,r)

With this we give an alternate method for finding the classical pebbling number

of paths.
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Lemma 4.1.2. For any path Pn with r = v1 with an initial configuration C, f(C) ≥
1 ⇐⇒ C is r-solvable in the classical pebbling sense.

Proof. Let the path be v1v2 . . . vn with v1 as the root. Suppose we have any config-

uration on Pn that is r-unsolvable. Given the starting configuration, if a vertex has

two or more pebbles on it, then make pebbling moves towards the root whenever

possible. Once we make all possible pebbling moves, all vertices must have at most

one pebble on them. Thus

f(C) =
∑
v∈P

f(v) =
n∑

i=2

C(vi)

2dist(vi,r)
≤

n∑
i=2

1

2dist(vi,r)
<

∞∑
i=1

1

2i
= 1

Conversely, suppose we have an r-solvable configuration C. For all the vertices

with two or more pebbles on them, make pebbling moves towards the root. This will

not change the sum of the values. We know that we can place at least one pebble

on the root. Thus

f(C) =
∑

f(v)

=
C(vn)

2n−1 +
C(vn−1)

2n−2 + · · ·+ C(v2)

2
+
C(v1)

1

≥ C(v1)

1

≥ 1

1

= 1

We can still look at the sum of the values of the vertices if the root is an inner

vertex. If this is the case, the we can break up the path into two subpaths, i.e. if

r = vk, then we consider v1v2 . . . vk−1r as one subpath and rvk+1 . . . vn as the other

subpath.

Corollary 4.1.3. For any path Pn with r = vk for k 6= 1, n and a initial configura-

tion C. Then C is r-solvable in the classical pebbling sense ⇐⇒
k∑

i=1

f(vi) ≥ 1 or
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n∑
i=k

f(vi) ≥ 1.

Proof. We apply Lemma 4.1.2 to the two subpaths.

Now we can verify the classical pebbling number for paths.

Theorem 4.1.4. For every positive integer n, we have π(Pn) = 2n−1.

Proof. Case 1: Let r = v1. If we have a configuration of 2n−1−1 pebbles all of which

are on vn, then
∑

v∈Pn
f(v) = 2n−1−1

2n−1 . By Lemma 4.1.2, the root is not reachable.

Suppose C is a configuration with at least 2n−1 pebbles. Then,

∑
f(v) =

C(v)

2n−1 +
C(vn−1)

2n−2 + · · ·+ C(v2)

2

=
C(v) + 2C(vn−1) + 22C(vn−2) + · · ·+ 2n−2C(v2)

2n−1

≥ 2n−1

2n−1

= 1

Case 2: Let r = vk for k 6= 1, n. Let dist(v1, vk) = k−1 and dist(vk, vn) = n−k.

By the Pigeonhole Principle, either the subpath v1 . . . vk has at least 2k−1 pebbles

on it or vk . . . vn has at least 2n−k pebbles on it. In either case, we can pebble to r

by the argument in Case 1.

4.2 Configurations Winnable for the Mover

One thing we want to discuss is the placement of the root in Pn. When considering

paths, we will let r = v1. Here is a general lemma that speaks to why we want

r = v1.

Lemma 4.2.1. If r is a cut vertex of G and G1, G2, . . . Gk are the graphs induced

by the components G− r and r, then η(G, r) = 1 +
k∑

i=1

(η(Gi, r)− 1).
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Proof. Let r be a cut vertex of G and G1, G2, . . . Gk be the graphs induced by the

components G− r and r. Let C be a configuration with
∑k

i=1(η(Gi, r)− 1) pebbles

arranged so that component Gi receives η(Gi, r) − 1 pebbles in such a way that

each component is r-unsolvable. Since each component has less than the number of

pebbles needed to place a pebble on the root, the defender has a winning strategy.

Now, suppose C ′ is a configuration with
∑k

i=1(η(Gi, r)− 1) + 1 pebbles. By the

Pigeonhole Principle, at least one component Gk will have at least η(Gk, r) pebbles

distributed on it. Thus the mover wins.

Next, we find three configurations on a path for which the mover can always win,

one when it is the mover’s turn and the other two when it is the defender’s turn.

Lemma 4.2.2. Given it is the mover’s turn, a winning configuration on Pn for the

mover is 1 pebble each on vertices v2, v3, . . . vk, at least 2 pebbles on vk+1 and any

number of pebbles on the rest of the path.

Proof. We show a winning strategy for the mover. The mover will pebble to vk−1.

Now we have 1 pebble on v2, v3, . . . vk−2 and two pebbles on vk−1. The defender

has three options for moves: pebbling from vk−1 to vk−2, pebbling from vk to vk−1

or pebbling anywhere after vk. In any of the three cases, we have 1 pebble on

v2, v3, . . . , vi and at least two pebbles on vi+1 for i < k. Thus, by induction, the

mover can win.

r
1 1

vk
1

vk+1

≥ 2

Figure 4.1: Configuration for Lemma 4.2.2

The following Lemma shows configurations that reduce to the one described in

Lemma 4.2.2 but with the extra condition of the defender starting play.

Lemma 4.2.3. Given it is the defender’s turn, the following configurations are

always winnable for the mover:
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• 1 pebble each on vertices v2, v3, . . . vk, at least 4 pebbles on vk+1 and any number

of pebbles on the rest of the path,

• 1 pebble each on vertices v2, v3, . . . vk, at least 3 pebbles on vk+1, at least 2

pebbles on vk+2 and any number of pebbles on the rest of the path.

Proof. For the first configuration, we can let the defender make any pebbling move.

Now it’s the mover’s turn and we have a configuration as in Lemma 4.2.2. Thus the

mover wins.

Now for the second configuration, if the defender pebbles vk to vk+1, it is the

mover’s turn and we have a configuration as in Lemma 4.2.2 with vk+1 as the vertex

with at least 2 pebbles. If the defender pebbles vk+1 to vk+2, it is the mover’s turn

and we have a configuration as in Lemma 4.2.2 with vk as the vertex with at least

2 pebbles. If the defender pebbles on a vertex not vk or vk+1, it is the mover’s turn

and we have a configuration as in Lemma 4.2.2 with vk as the vertex with at least

2 pebbles. In any of the cases, the mover wins.

r
1 1

vk
1

vk+1

≥ 4

Figure 4.2: First Configuration for Lemma 4.2.3

r
1 1

vk
1

vk+1

≥ 3

vk+2

≥ 2

Figure 4.3: Second Configuration for Lemma 4.2.2

Next is a definition similar to a configuration being reachable in classical pebbling

Definition 4.2.4. Given two configurations C and D with |C| > |D|, we say con-

figuration C reduces to configuration D provided there is a sequence of pebbling

moves for both players in C that leads to configuration D.

The lemma below shows the importance of the three configurations always

winnable for the mover.
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Lemma 4.2.5. If C is a configuration on any path Pn for which the mover has a

winning strategy, then C reduces to one of the three winnable configurations.

Proof. Suppose we have a configuration C ′ that is winnable and does not reduce to

one of the three configurations in Lemmas 4.2.2 and 4.2.3. Then, while playing, we

must have at least one of v2, v3, . . . vk have 0 pebbles on them (Else, it would be one

of the three configurations). Let vi be the vertex closest to r with no pebbles on it

to this point. Since C ′ is winnable, we must eventually be able to put 1 pebble on

vi. Now we either have a winnable configuration or another vertex farther from the

root than vi has no pebbles on it. Since C ′ is winnable, we must eventually be able

to put 1 pebble this vertex. This can continue to vn. So after playing, we have a

path with all 0’s and 1’s. Thus the defender wins. A contradiction.

We can see that is any configuration has at least 2 pebbles on v2, then the mover

can pebble to v1 and win. So, for paths, a non-trivial configuration C will have 0

pebbles on v1 and 0 or 1 pebbles on v2.

4.3 Strategies on Paths

An initial study of paths led us to believe that they would be straightforward,

having η(Pn) = π(Pn). Notice that if the defender ever pebbles back towards vn,

then η(Pn) 6= π(Pn).

One aspect of paths that the mover will take advantage of is the fact that paths

are 1-dimensional. Pebbling moves can only move towards the root or away from

the root. What makes this useful for the mover is the end of the path. There are

many configurations that give the mover the opportunity to force the defender to

pebble towards the root. The mover’s winning strategies will take advantage of this.

For now, we will consider initial configurations C on paths with all pebbles placed

on vn; we are restricting the configurations because of difficulty. Consider Figure

4.4, classical pebbling on P5 with 16 pebbles on v5.
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16

8

4

2

1

r

r

r

r

r

Figure 4.4: π(P5) = 16

As long as all of the pebbling moves go towards the root, the configuration is

r-solvable.

16
M

1 14
D

2 12

1 12 3 10

M

1 1 10

D

4 8
M

1 2 8 1 2 8 5 6

r

r

r

r r

r r

r r r

Figure 4.5: Game Tree for P5

Yet, when we transition to Two-Player Pebbling, it is not so simple. Because

there are two players, we need to consider possible pebbling moves of each player.

We use the game tree to try to investigate each player’s best possible moves. We are

able to see the different choices for moves the mover or defender could make. With

Figure 4.5, we take a look at the beginning of the game tree of P5 with 16 pebbles

to find η(P5). Notice that on the right side of the game tree, the defender is able to
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pebble backwards. Thus, the mover loses on those branches of the tree. So, if we

only consider the left side, we continue and obtain Figure 4.6.

1 2 8
D

1 3 6
M

2 1 6
D

2 2 4
M

3 0 4
D

3 1 2
M

1 1 1 2

r

r

r

r

r

r

r

Figure 4.6: The Branch of the Game Tree for P5

However, when we consider a P6 a different situation become clear. If we try to

use 32 pebbles on v6 of P6, as the pattern would suggest, then we come to a problem.

32

6 rounds

1 1 2 16
M

1 2 0 16
D

1 2 1 14
M

2 1 14
D

2 2 12
M

1 2 12
D

1 13

r

r

r

r

r

r

r

r

Figure 4.7: Playing on P6
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From Figure 4.7 we can see the resulting configuration when the defender pebbles

to v6. The defender finally has an opportunity to pebble backwards. Thus η(P6) 6=
π(P6). Every path after this must account for the choice by the defender. We

restrict the strategies each player can use. The most natural strategy for the mover

is pebbling towards r as close to r as possible. Let this strategy be SM . The most

natural strategy for the defender is pebbling away from r as close to r as possible

and, if forced to move towards r, only pebbling towards r as far from r as possible.

Let this be SD. Both of these strategies are greedy. We define both strategies below:

• Mover: SM

– First i such that C(vi) > 1

∗ Pebble from vi to vi−1

• Defender: SD

– First i such that C(vi) > 1 and Mover did not pebble to vi

∗ Pebble from vi to vi+1

– If only i is at vn or Mover pebbled to vi

∗ Pebble from vi to vi−1

We define a variation on η that will aid in finding the two-player pebbling number

for paths.

Definition 4.3.1. Given a Pn, let η(Pn, C, SM , SD) be the minimum number of

pebbles given a collection of configurations C with the mover playing strategy SM

and the defender playing SD such that the mover can win.

We restrict our search to configurations with all pebbles on vn and the mover

and defender playing SM and SD, respectively. Table 4.1 shows a sample of the

results from a computer program we created.
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SM vs SD η(Pn, C, SM , SD)

P6 38
P7 79
P8 164
P9 331
P10 668
P11 1345

Table 4.1: Mover & Defender Playing Natural Strategies

The next question we tried to answer is, can both players do any better. Is there

some way to change their strategy so that they could play better? The answer is

yes. The mover has a new strategy, S∗M . The defender has a new strategy, S∗D.

Below are the strategies:

• Mover: S∗M

– First i such that C(vi) > 1.

∗ If C(vi−2) = C(vi−1) = 1, C(vi) = 2 and C(vi+1) = 2, 3, then pebble

from vi to vi−1.

∗ Else, if C(vi) = 2 and C(vi+1) = 2, 3, then pebble from vi+1i to vi

∗ Else, if C(vi+1) = 2, 3 and i+ 1 = n, then pebble from vi+1i to vi

∗ Else, if C(vi) ≡ 0 (mod 2) and C(vi+1) = 2, 3, then pebble from vi+1i

to vi

∗ Else, if ∀ k ≥ i+ 1, C(vk) ≤ 1, then pebble from vi+1 to vi.

∗ Else, pebble from vi to vi−1.

• Defender: S∗D

– Look for the first i such that C(vi) > 1 and the Mover has not pebbled

to vi.

∗ If ∀ k 6= i, C(vk) ≤ 1, then pebble from vi to vi−1.
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∗ Else, if C(vi−1) = 1 and ∃ k < i such that C(vk) > 1, then pebble

from vi to vi−1.

∗ Else, if C(vi−1) = 1 and C(vi) = 2 and ∃ k < i such that C(vk) > 1,

then pebble from vi to vi−1.

∗ Else, if C(vi+1) = 2 and ∃ k < i such that C(vk) > 1, then pebble

from vi to vi+1.

∗ Else, if C(vi+1) = 2 and ∀ k < i, C(vk) ≤ 1, then pebble from vi+1

to vi+2.

∗ Else, pebble from vi to vi+1.

Some finer points of these strategies appear peculiar, however, they are necessary.

For instance, consider the mover’s instruction to check the parity of the first vertex

with more than one pebble on it. Figure 4.8 is an example of such an instance.

4 3 4

3 4 4

r

r

Figure 4.8: Parity of First Playable Vertex

It can verified that if the mover pebbles from v3 to v2, then they would lose on

the first configuration and win on the second. However, if the mover initially pebbles

from v4 to v3, then they would win on the first configuration and lose on the second.

The reason for this is the even and odd parity. Pebbling from v3 to v2 would not

add any pebbling moves in the first configuration but would add a pebbling move

in the second, helping the defender. So the mover needs to be aware of when and

how adding a pebbling move can affect the game.

Another example comes from the defender’s strategy. It would seem counter-

productive for the defender to pebble forward when they are not forced to. Yet,

consider Figure 4.9:
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M

D

1 2 1 2 32

M

2 1 2 32

D

2 2 32

1 2 32

1 1 32

r

r

r

r

r

Figure 4.9: Defender Pebbling Forward

We see that, instead of the defender pebbling from v6 to v7 on their first move,

they pebble from v6 to v5. On their next move, they pebble from v5 back to v6.

If the defender did not play this way, then it can be verified that the mover has a

winning strategy. However, we see that the defender can pebble forward to obtain

a better configuration later. Table 4.2 shows a sample of the updated results from

improving the strategies in our computer program.

Pn η(Pn, C, S∗M , S∗D) η(Pn, C, SM , SD)
P6 35 38
P7 73 79
P8 152 164
P9 307 331
P10 620 668
P11 1249 1345

Table 4.2: Mover & Defender Playing Improved Strategies

4.4 Adjusted η values of Paths

The goal is to recursively define η(Pn, C, S∗M , S∗D) as a function of η(Pn−1, C, S∗M , S∗D).

The strategies S∗M and S∗D were written into a computer program. It seems reason-

able that the minimum number of pebbles needed for the mover to win on Pn should
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be on the order of twice the number of pebbles needed for Pn−1. In fact, this is the

case.

For some shorter paths, n ≤ 5, the mover has a winning strategy using π(Pn)

pebbles.

Lemma 4.4.1. For n ≤ 5, we have η(Pn, C, S∗M , S∗D) = 2n−1.

Proof. Let n = 2. Any configuration C ′ of 2 pebbles on P2 is a trivial configuration.

So the mover wins.

Let n = 3. Let v3 have all 4 pebbles. The mover will pebble to v2. The defender’s

only move is to pebble to v2 as well. Now our new configuration has 2 pebbles on

v2 and is trivial. So the mover wins.

Let n = 4. Let v4 have all 8 pebbles. The mover and defender must pebble to

v3. The mover will pebble from v3 to v2. The defender will pebble from v4 to v3.

Our new configuration C ′ has 1 pebble on v2, 1 pebble on v3, and 2 pebbles on v4.

By Lemma 4.2.2, the mover has a winning strategy.

Let n = 5. Let v5 have 16 pebbles on it. The mover and defender will pebble to

v4. The mover will pebble from v4 to v3. The defender will pebble from v5 to v4.

Now, the mover and defender will pebble to v4. The mover will pebble from v4 to v3.

The defender will pebble from v5 to v4. Our new configuration C ′ has 2 pebbles on

v3, 2 pebble on v4, and 4 pebbles on v5. By the strategy S∗M , the mover will pebble

from v4 to v3, placing a third pebble on v3. The defender will pebble from v5 to v4.

The mover will pebble from v3 to v2 and the defender is forced to pebble from v5 to

v4. Our new configuration C ′′ has 1 pebble on v2, 1 pebble on v3, 2 pebbles on v4

and 0 pebbles on v5 . By Lemma 4.2.2, the mover has a winning strategy.

Now, we move on to paths with 6 or more vertices. These are unique cases

because no matter how the mover plays, the defender will be able to make move

away from the root. For a recursion, we need an initial case.

Lemma 4.4.2. η(P6, C, S∗M , S∗D) = 35.
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Proof. Following the strategies S∗M and S∗D, we get the following

35

2 31

1 1 29

1 3 25

2 2 23

3 1 21

1 1 2 19

1 2 1 17

2 2 15

1 16

r

r

r

r

r

r

r

r

r

r

Figure 4.10: Finding η(P6, C, S∗M , S∗D)

By Lemma 4.4.1, the mover can places a second pebble on v2 which the defender

can not undo. Thus the mover wins.

We have the following definition:

Definition 4.4.3. We say two configurations C and D are equivalent provided

they reduce to the same configuration when playing the same strategy on both

configurations.

When playing the game, we noticed that frequently we had situations with a

leading 1, followed by 0’s, and then a 0, 1, or 2 on vn−1 and some surplus of pebbles

on vn. Thus in trying to find the configuration with the largest number of pebbles, it

seems that we should see which starting configuration would need the most pebbles.

Lemma 4.4.4. Given P7 with a configuration with 0 pebbles on r and v2 and 1

pebble on v3, v4, v5, 2 pebbles on v6 and sufficiently large N on v7. When v2 has 1

pebble on it, then v3, v4, and v5 will have 0 pebbles on them, v6 will have 1 pebble

on it, and v7 will have N − 5 pebbles on it.

Proof. The strategies S∗M and S∗D state that the mover will pebble to v5. The

defender will pebble to v6, placing 1 pebble on it. Now the mover will make 3

pebbling moves towards v2 to place a pebble on v2. The defender will pebble to v6,

placing a second pebble on it, pebble back to v7, then lastly pebbling to v6. The
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current configuration has 1 pebble on v2, no pebbles on vi for i = 3, . . . , 5 and 1

pebble on v6. The defender makes a total of 3 pebbling moves from v7 and one

pebbling move to v7 for a total of N − 5 pebbles left.

Lemma 4.4.5. Given Pn with n ≥ 8 and N sufficiently large, the following config-

urations are equivalent:

N

1 N − 5

2 N − 4

r

r

r

Figure 4.11: Equivalent Configuratoins

Proof. The three configurations will be labeled C1, C2, and C3, respectively. Playing

one round of C1 yields C3. Playing 40 rounds of C1 with S∗M and S∗D yield the same

configuration as playing 38 rounds of C3 with S∗M and S∗D.

The main difference between Lemma 4.4.4 and Lemma 4.4.5 is the number of

rounds played. If the game is played on Pn with n ≤ 7, then the mover and defender

will play under 40 rounds. Thus we need a separate case for when they play more

than 40 rounds. Now that we have three equivalent configurations, we would like to

know how many pebbles are needed so the mover has a winning configuration.

Lemma 4.4.6. Given Pn, n ≥ 8 and a configuration C having 0 pebbles on r, 1 peb-

ble on v2, and 0 pebble on v3, v4, . . . , vn−2. If vn−1 has 0 pebbles, 1 pebble or 2 pebbles

on it, then vn needs η(Pn−1, C, S∗M , S∗D), η(Pn−1, C, S∗M , S∗D)−5, η(Pn−1, C, S∗M , S∗D)−4

pebbles, respectively, for the mover to have a winning strategy.

Proof. By definition, if there are at least η(Pn−1, C, S∗M , S∗D) pebbles on vn, then the

mover can place on pebble on v2. Since there is already 1 pebble on v2, when the

second pebble is moved to v2, the defender will not be able to undo it. Thus, the

mover wins.
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By Lemma 4.4.5, if vn−1 initially had 1 pebble on it, then the mover only needs

η(Pn−1, C, S∗M , S∗D) − 5 pebbles on vn to place a second pebble on v2 and thus on

the root. Likewise, if vn−1 initially had 2 pebbles on it, then the mover only needs

η(Pn−1, C, S∗M , S∗D)− 4 pebbles on vn to place a second pebble on v2

We continue with a lemma regarding when we see the configuration described

above.

Lemma 4.4.7. Given Pn, n ≥ 8 with a configuration with 0 pebbles on r and v2 and

1 pebble on v3, v4, . . . , vn−1 and sufficiently large N on vn. When v2 has 1 pebble on

it, vi will have 0 pebbles on it for i = 3, . . . , n − 2, vn−1 will have n + 1 (mod 3)

pebbles on it, and vn will have N − 5− 3
⌊
n−5
3

⌋
− 2(n+ 1) (mod 3) pebbles on it.

Proof. Given a configuration as in Figure 4.12:

r
1 1 1 1 1 N

Figure 4.12: Starting Configuration for Lemma 4.4.7

The strategies S∗M and S∗D state that the mover will pebble forward through the

string of 1’s.

1

1

round

round

1 1

1 1

1 1

1 1 3 N − 4

1 2 2 N − 6

2 0 0 N − 5

r

r

r

Figure 4.13: Playing S∗M and S∗D on Figure 4.12

From this point, the mover will pebble forward to v2 and pebble across n − 5

vertices to reach v2. The defender will now pebble to vn−1, then put a second pebble

on vn−1, and finally pebble back to vn. Since it takes three rounds for the defender

to pebble back to vn, the value of n+ 1 (mod 3) will determine how many pebbles
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are left on vn−1. While the mover is pebble to v2 along the n − 5 vertices, the

defender will be pebbling twice to vn−1 and once back to vn. This uses 3
⌊
n−5
3

⌋
pebbles. However, since vn−1 will have n + 1 (mod 3) pebbles on it, the defender

will use an additional 2(n+ 1) (mod 3) pebbles.

Here we find the recursive formula for η(Pn, C, S∗M , S∗D), the main result in Chap-

ter 4. Our final goal is to find an explicit, non-recursive, formula for η(Pn, C, S∗M , S∗D)

that only depends on n.

Theorem 4.4.8. Given Pn, n ≥ 7,

η(Pn, C, S∗M , S∗D) =


2 · η(Pn−1, C, S∗M , S∗D) + n− 6 if n ≡ 0 (mod 3)

2 · η(Pn−1, C, S∗M , S∗D) + n− 4 if n ≡ 1 (mod 3)

2 · η(Pn−1, C, S∗M , S∗D) + n− 2 if n ≡ 2 (mod 3).

Proof. Let n = 7. Suppose there are 73 pebbles on v7. By Lemma 4.4.2, we will get

the configuration seen in Figure 4.14.

r
1 54

Figure 4.14: First Resulting Configuration on P7

Then by Lemma 4.4.1, we will have the configuration seen in Figure 4.15.

r
1 1 1 2 38

Figure 4.15: Second Resulting Configuration on P7

The mover will pebble to v2 and, by Lemma 4.4.4, we will obtain the configura-

tion in Figure 4.16.

r
1 1 33

Figure 4.16: Third Resulting Configuration on P7
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Playing S∗M and S∗D for 14 rounds yields Figure 4.17. By Lemma 4.2.2, the mover

wins.

r
1 1 1 1 1 2

Figure 4.17: Fourth Resulting Configuration on P7

Let n ≥ 8. Suppose there are η(Pn, C, S∗M , S∗D) pebbles on vn. By Induction,

the mover will need η(Pn−1, C, S∗M , S∗D) − 2 pebbles to have 1 pebble on vi for i =

3, 4, . . . n− 1. Now, the mover will continue to pebble to v2. By Lemma 4.4.7, when

the mover places 1 pebble on v2, the defender would have used 5+3
⌊
n−5
3

⌋
+2(n+13)

pebbles on vn. Our new configuration has 1 pebble on v2, n + 1 (mod 3) pebbles

on vn− 1. By Lemma 4.4.6, for the mover to win, there needs to be an additional

η(Pn−1, C, S∗M , S∗D) − 5, η(Pn−1, C, S∗M , S∗D) − 4, or η(Pn−1, C, S∗M , S∗D) pebbles on vn

for n ≡ 0, 1, 2 (mod 3), respectively.

If n ≡ 0 (mod 3), then

η(Pn, C, S∗M , S∗D) = η(Pn−1, C, S∗M , S∗D) + 3 + 3
⌊n− 5

3

⌋
+ 2 + η(Pn−1, C, S∗M , S∗D)− 5

= 2 · η(Pn−1, C, S∗M , S∗D) + 3
⌊n− 5

3

⌋
= 2 · η(Pn−1, C, S∗M , S∗D) + 3

⌊3k − 5

3

⌋
= 2 · η(Pn−1, C, S∗M , S∗D) + 3k − 6

= 2 · η(Pn−1, C, S∗M , S∗D) + n− 6
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If n ≡ 1 (mod 3), then

η(Pn, C, S∗M , S∗D) = η(Pn−1, C, S∗M , S∗D) + 3 + 3
⌊n− 5

3

⌋
+ 4 + η(Pn−1, C, S∗M , S∗D)− 4

= 2 · η(Pn−1, C, S∗M , S∗D) + 3
⌊3k + 1− 5

3

⌋
+ 3

= 2 · η(Pn−1, C, S∗M , S∗D) + 3
⌊3k − 4

3

⌋
+ 3

= 2 · η(Pn−1, C, S∗M , S∗D) + 3k − 6 + 3

= 2 · η(Pn−1, C, S∗M , S∗D) + 3k + 1− 4

= 2 · η(Pn−1, C, S∗M , S∗D) + n− 4

If n ≡ 2 (mod 3), then

η(Pn, C, S∗M , S∗D) = η(Pn−1, C, S∗M , S∗D) + 3 + 3
⌊n− 5

3

⌋
+ η(Pn−1, C, S∗M , S∗D)

= 2 · η(Pn−1, C, S∗M , S∗D) + 3
⌊3k + 2− 5

3

⌋
+ 3

= 2 · η(Pn−1, C, S∗M , S∗D) + 3
⌊3k − 3

3

⌋
+ 3

= 2 · η(Pn−1, C, S∗M , S∗D) + 3k − 3 + 3

= 2 · η(Pn−1, C, S∗M , S∗D) + 3k + 2− 2

= 2 · η(Pn−1, C, S∗M , S∗D) + n− 2

We can further simplify our recursion to get closer to finding a non-recursive

formula by obtaining recursions that only depend on 1 equivalence class modulo 3.

Corollary 4.4.9. Given Pn, n ≥ 9,

η(Pn, C, S∗M , S∗D) =


8 · η(Pn−3, C, S∗M , S∗D) + 7n− 36 if n ≡ 0 (mod 3)

8 · η(Pn−3, C, S∗M , S∗D) + 7n− 34 if n ≡ 1 (mod 3)

8 · η(Pn−3, C, S∗M , S∗D) + 7n− 44 if n ≡ 2 (mod 3).
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Proof. Let n ≡ 0 (mod 3).

η(Pn, C, S∗M , S∗D) = 2 · η(Pn−1, C, S∗M , S∗D) + n− 6

= 2 · [2 · η(Pn−2, C, S∗M , S∗D) + (n− 1)− 2] + n− 6

= 4 · η(Pn−2, C, S∗M , S∗D) + 3n− 12

= 4 · [2 · η(Pn−3, C, S∗M , S∗D) + (n− 2)− 4] + 3n− 12

= 8 · η(Pn−3, C, S∗M , S∗D) + 7n− 36

Let n ≡ 1 (mod 3).

η(Pn, C, S∗M , S∗D) = 2 · η(Pn−1, C, S∗M , S∗D) + n− 4

= 2 · [2 · η(Pn−2, C, S∗M , S∗D) + (n− 1)− 6] + n− 4

= 4 · η(Pn−2, C, S∗M , S∗D) + 3n− 18

= 4 · [2 · η(Pn−3, C, S∗M , S∗D) + (n− 2)− 2] + 3n− 18

= 8 · η(Pn−3, C, S∗M , S∗D) + 7n− 34

Let n ≡ 2 (mod 3).

η(Pn, C, S∗M , S∗D) = 2 · η(Pn−1, C, S∗M , S∗D) + n− 2

= 2 · [2 · η(Pn−2, C, S∗M , S∗D) + (n− 1)− 4] + n− 2

= 4 · η(Pn−2, C, S∗M , S∗D) + 3n− 12

= 4 · [2 · η(Pn−3, C, S∗M , S∗D) + (n− 2)− 6] + 3n− 12

= 8 · η(Pn−3, C, S∗M , S∗D) + 7n− 44

Finally, we come to an explicit formula for η(Pn, C, S∗M , S∗D) that only depends

on n.

Corollary 4.4.10. Given Pn, n ≥ 9,

η(Pn, C, S∗M , S∗D) =


275
224
· 2n−1 − n+ 12

7
if n ≡ 0 (mod 3)

275
224
· 2n−1 − n+ 10

7
if n ≡ 1 (mod 3)

275
224
· 2n−1 − n+ 20

7
if n ≡ 2 (mod 3).

72



Proof. Let n ≡ 0 (mod 3).

η(P3k, C, S∗M , S∗D) = 8 · η(P3(k−1), C, S∗M , S∗D) + 21k − 36

= 8 · [8 · η(P3(k−2), C, S∗M , S∗D) + 21(k − 1)− 36] + 21k − 36

= 82 · η(P3(k−2), C, S∗M , S∗D) + 21[8(k − 1) + k]− 36(8 + 1)

= 82 · [8 · η(P3(k−3), C, S∗M , S∗D) + 21(k − 2)− 36] + 21[8(k − 1) + k]− 36(8 + 1)

= 83 · η(P3(k−2), C, S∗M , S∗D) + 21[82(k − 2) + 8(k − 1) + k]− 36(82 + 8 + 1)

= 8m · η(P3(k−m), C, S∗M , S∗D) + 21
m−1∑
i=0

8i(k − i)− 36
m−1∑
i=0

8i

The base case for our recursion is η(P6, C, S∗M , S∗D) = 35. So if k −m = 2, then

m = k − 2. So,

η(P3k, C, S∗M , S∗D) = 8m · η(P3(k−m), C, S∗M , S∗D) + 21
m−1∑
i=0

8i(k − i)− 36
m−1∑
i=0

8i

= 8k−2 · η(P6, C, S∗M , S∗D) + 21
k−3∑
i=0

8i(k − i)− 36
k−3∑
i=0

8i

= 8k−2 · η(P6, C, S∗M , S∗D) + (21k − 36)
k−3∑
i=0

8i − 21
k−3∑
i=0

i8i

We will use the known formulas
N∑
i=0

xi =
xN+1 − 1

x− 1
and

N∑
i=0

ixi =
(N + 1)xN+1

x− 1
− x(xN+1 − 1)

(x− 1)2

for N = k − 3 and x = 8 to solve the recursion. Thus,

η(P3k, C, S∗M , S∗D) = 8k−2 · η(P6, C, S∗M , S∗D) + (21k − 36)
k−3∑
i=0

8i − 21
k−3∑
i=0

i8i

= 8k−2 · η(P6, C, S∗M , S∗D) + (21k − 36)
8k−2 − 1

7

− 21

[
(k − 2)8k−2

7
− 8(8k−2 − 1)

49

]
= 35 · 8k−2 +

30

7
8k−2 − 3k +

12

7

=
275

7
8k−2 − 3k +

12

7

=
275

7
23k−6 − 3k +

12

7
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Substituting n for 3k, we get

η(Pn, C, S∗M , S∗D) =
275

7
2n−6 − n+

12

7

=
275

224
2n−1 − n+

12

7

Let n ≡ 1 (mod 3).

η(P3k+1, C, S∗M , S∗D) = 8 · η(P3(k−1)+1, C, S∗M , S∗D) + 7(3k + 1)− 34

= 8 · η(P3(k−1)+1, C, S∗M , S∗D) + 21k − 27

= 8m · η(P3(k−m)+1, C, S∗M , S∗D) + 21
m−1∑
i=0

8i(k − i)− 27
m−1∑
i=0

8i

The base case for our recursion is η(P7, C, S∗M , S∗D) = 73. So if k −m = 2, then

m = k − 2. So,

η(P3k+1, C, S∗M , S∗D) = 8m · η(P3(k−m)+1, C, S∗M , S∗D) + 21
m−1∑
i=0

8i(k − i)− 27
m−1∑
i=0

8i

= 8k−2 · η(P7, C, S∗M , S∗D) + (21k − 27)
k−3∑
i=0

8i − 21
k−3∑
i=0

i8i

= 8k−2 · η(P7, C, S∗M , S∗D) + (21k − 27)
8k−2 − 1

7

− 21

[
(k − 2)8k−2

7
− 8(8k−2 − 1)

49

]
= 73 · 8k−2 +

39

7
8k−2 − 3k +

3

7

=
550

7
8k−2 − 3k +

3

7

=
550

7
23k−6 − 3k +

3

7

=
550

7
23k+1−7 − (3k + 1) +

10

7

Substituting n for 3k + 1, we get

η(Pn, C, S∗M , S∗D) =
550

7
2n−7 − n+

10

7

=
275

224
2n−1 − n+

10

7
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Finally, let n ≡ 2 (mod 3).

η(P3k+2, C, S∗M , S∗D) = 8 · η(P3(k−1)+2, C, S∗M , S∗D) + 7(3k + 2)− 44

= 8 · η(P3(k−1)+2, C, S∗M , S∗D) + 21k − 30

= 8m · η(P3(k−m)+2, C, S∗M , S∗D) + 21
m−1∑
i=0

8i(k − i)− 30
m−1∑
i=0

8i

The base case for our recursion is η(P8, C, S∗M , S∗D) = 152. So if k −m = 2, then

m = k − 2. So,

η(P3k+2, C, S∗M , S∗D) = 8m · η(P3(k−m)+1, C, S∗M , S∗D) + 21
m−1∑
i=0

8i(k − i)− 30
m−1∑
i=0

8i

= 8k−2 · η(P8, C, S∗M , S∗D) + (21k − 30)
k−3∑
i=0

8i − 21
k−3∑
i=0

i8i

= 8k−2 · η(P8, C, S∗M , S∗D) + (21k − 30)
8k−2 − 1

7

− 21

[
(k − 2)8k−2

7
− 8(8k−2 − 1)

49

]
= 152 · 8k−2 +

36

7
8k−2 − 3k +

6

7

=
1100

7
8k−2 − 3k +

6

7

=
1100

7
23k−6 − 3k +

6

7

=
1100

7
23k+2−8 − (3k + 2) +

20

7

Substituting n for 3k + 1, we get

η(Pn, C, S∗M , S∗D) =
1100

7
2n−8 − n+

20

7

=
275

224
2n−1 − n+

20

7
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Chapter 5

Conclusion

In addition to presenting the basics of graph pebbling, this dissertation introduces

a new two-player game played in the context of graph pebbling and determines the

winning player for certain classes of graphs. In Chapter 2, we found various upper

bounds for path, cycles, and fan graphs. We note that the study of Fan Graphs in

Chapter 2 is an extension of the diameter-2 graphs, Gs,t, described in Chapter 3. We

can see that if for some graph G the set T is a cycle, then Gs,t satisfies the conditions

of Theorem 2.4.1, hence η(Gs,t, r) = ∞. Determining the value of η(Gs,t, r) when

the set T is a path seems an interesting problem and natural extension of the results

completed in Chapters 2 and 3.

To determine whether the kth powers of paths were finite or not, it was necessary

to partition the class based on the relationship between n and k. Some values of n

and k were found to yield an infinite value for η(P k
n ). Conjecture 2.3.6 deals with

the values of n and k for which there is not an answer currently.

In determining these upper bounds, we found that, for some configurations, it

may not be possible for the mover to win. Theorem 2.4.1 characterizes a structure

and configuration for which the defender has a winning strategy. Specifically, some

classes of graphs that fit this structure are bipartite graphs, line graphs, trees, and

n×m grids where n,m ≥ 4. We saw in Chapter 2 that η(Pm�Pn) =∞ for m,n ≥ 4.

We found that when n = 2k + 4, P k
n does not satisfy the conditions of Theorem

2.4.1 and η(P k
n ) = ∞. We would like to find a more complete result to classify
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the structure of graphs for which the defender has a winning strategy. It would be

interesting to determine η(P2�Pn), η(P3�Pn), and η(P2�G) for various graphs G.

In order to find more graphs for which the mover has a winning strategy, we had

to restrict the classes we considered. Because there is no necessary and sufficient

condition for a graph to have an infinite value for η, it would be helpful to know

that there is a limit to the size of configurations one must check in hopes of finding

a finite η value for a graph. Conjecture 2.4.2 poses such a bound.

A constructed class of diameter-2 graphs was studied in Chapter 3. Comparing

the number of unpebbled vertices in one subset to the number of pebbling moves in

another subset yielded the results necessary to find the two-player pebbling number

for complete bipartite and complete multipartite graphs. However, there was one

case in the more general constructed class of diameter-2 graphs that is still open. It

was found to be equivalent to a new Element Selecting Game, also played with two

players. We conjecture that the task of finding the winning player in the Element

Selecting Game is NP-Complete.

While Chapter 2 found the upper bound for η(Pn), Chapter 4 aimed to find an

exact value for η(Pn). Three configurations were found for which the mover has a

winning strategy. To this point, the strategies S∗M and S∗D are the best strategies for

the mover and defender that we have found. Corollary 4.4.9 does not establish η(Pn)

exactly, but instead establishes a value for stacking everything on the last vertex

with the mover playing S∗M and the defender playing S∗D. A computer program was

used to accomplish some of the larger, more cumbersome cases. We believe that

this value for η(Pn) will hold if we allow any configuration of the pebbles on Pn. We

also believe that this value of η(Pn) will hold if we allow the defender to play any

strategy. This will allow us to be able to find an exact value for η(Pn).

Finding η(G) for a graph appears to be more difficult that determining π(G).

When another player is added with an opposite objective, each player’s strategy

needs to be considered. An example of this is π(Pn) versus η(Pn). The only con-

sideration for determining π(Pn) is how many pebbles are needed to pebble towards

the root. Specifically, when trying to narrow down η(Pn), we found that the current

best strategy for the defender is not intuitive. There is a configuration for which
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pebbling towards the root, while not being forced to, turns out to put the defender

in a better position than if they had not. With classical pebbling, paths are greedy.

With two-player pebbling, they are not.

In conclusion, it is our belief that Two-Player Graph Pebbling is a very inter-

esting area of research. Many problems have proven to be challenging to solve or

are still waiting to be solved. The techniques developed here can be used to find

the two-player pebbling number of other classes of graphs and have applications in

other discrete mathematical games.
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