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Abstract 

 Epilepsy and its onset, epileptogenesis, have complicated underlying 

mechanisms that can often be studied in greater detail when in vitro. In vitro 

hippocampal cultures develop epileptic symptoms in a period of approximately 

ten to fourteen days in vitro. Working in vitro allows for an easier manipulation of 

elements such as growth factors that can affect epileptogenesis as well as multiple 

methods of analyzing data to ensure significant results. The capability of 

electrophysiology recordings to directly quantify changes in epileptogenesis in 

vitro is the main focus of this work. Using this method, recordings of different 

regions of the brain capable of developing epilepsy were performed.  

The main concern of working in vitro is the artificial environment created 

for culture in which they are kept is not parallel to the natural environment they 

encounter in the cerebrospinal fluid (CSF). Therefore there is reason to be 

concerned that the media itself could contribute to epileptogenesis. Two distinct 

culture media, Neurobasal-A (NeurA) and CSF-based medium (CBM) were used 

to determine if this was the case.  We were able to conclude epileptogenesis 

occurred regardless of the media type, although specific adjustments help to 

reduce seizures and the associated cell death.  
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Chapter 1: Introduction  

1.1 A history of epilepsy and its onset    

Epilepsy is a disorder in which chronic seizures occur in a manner that is 

often unpredictable due to abnormal activity in the brain [1]. These seizures can 

be of different type and severity for different individuals that can range from 

tremors to complete unconsciousness. Furthermore, even a single individual with 

epilepsy can have multiple types of seizures and other varying symptoms.  An 

epileptic seizure is a temporary occurrence of abnormal, excessive or synchronous 

neuronal activity in the brain [1]. There is a general lack of understanding of the 

fundamental mechanisms of epileptogenesis, the pathophysiological process 

underlying the development of epilepsy [2]. The seizures associated with epilepsy 

increase in severity and frequency as the disease develops over time [3]. The 

onset of epilepsy is a vicious cycle where seizures can lead to a progression of the 

disease and initial seizures are also thought to be one of the causes of epilepsy. 

Inhibiting the initial seizures is one target of study that could significantly reduce 

its prevalence.  

The main known cause of epilepsy is traumatic brain injury. However, the 

likelihood of epileptogenesis is variable among levels of injury and individuals. A 

severe brain injury is characterized by loss of consciousness or amnesia for more 

than 24 hours, subdural hematoma, or brain contusion [4]. It is known that a clear 

correlation does exist, as the overall standardized incidence ratio of seizures for 

severe injury was 17 when compared to population rates [4]. Posttraumatic 

epilepsy (PTE) is the most common cause of new-onset epilepsy in young adults 
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with up to 30,000 new cases each year in the United States [5]. The frequency of 

post-combat PTE is unsurprisingly increased in comparison with the civilian 

population [5]. Of the subjects of PTE, most receive anticonvulsants to combat 

the seizures and related symptoms, the role of which is often neuroprotective by 

trying to minimize the brain damage by preventing early seizures [6]. After a 

period of roughly 7 days, these anticonvulsants no longer work functionally as a 

neuroprotective tool, and also are varied in their anti-seizure ability.  

It is well known that current treatments after this initial onset vary widely 

in type and efficacy. The aforementioned anticonvulsants often control or reduce 

the frequency of seizures in some patients while others show no improvement [1]. 

This is hypothesized to be due to the level of progression of the disease. Many 

antiepileptic drugs focus on the reduction of sodium channel activation [1]. This 

increase in the inactive state of the channel causes a decrease in firing of axons, 

thereby reducing seizures. Other sets of similar drugs typically all focus on the 

same goal, reducing firing of cells in the brain. This has side effects commonly 

including cognitive impairment, fatigue and other similar effects.  

Alternatives to, or additions to, medication include dietary restrictions, 

nutritional supplements, and hormones have also helped certain patients reduce 

symptoms [1]. The ketogenic diet is one example where decreased carbohydrates 

and increased fat and protein cause the brain chemistry to be more resistant to 

seizures, yet only works for a minority of patients [1]. Other options include 

implantable devices, which show promise but have yet to be fine-tuned.  Another 

option is surgery, typically removing the portion of the brain where the seizures 
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are thought to originate from. All of these treatments focus on symptomatic 

approaches rather than focusing on modification of the disease, that is, altering the 

natural progression of epilepsy onset [2] 

1.2 The role of in vivo and in vitro studies 

Epilepsy causes a series of changes at the molecular, cellular and network 

levels in the brain [7,8]. These changes need further study to establish underlying 

mechanisms and pathways that contribute to epileptogenesis and ways to combat 

or interfere with each. Many experiments currently rely on in vivo testing, relying 

on mostly rodent models to evaluate response to alterations in brain chemistry due 

to alterations of natural function or due to influx of drugs. These experiments 

commonly use in vivo extracellular or intracellular recordings, using electrodes 

placed directly into the animal’s brain [9]. This allows for a measurement of field 

potentials, as well as other types of signaling such as inhibitory postsynaptic 

potentials (IPSP’s) depending on the goal of the experiment [9]. These types of 

models most closely mimic clinical features of human epilepsy in terms of having 

behavioral and electroencephalographic seizures.  Although since these models 

vary widely, each set of experiments requires a new set of parameters and careful 

evaluation before conclusions can be drawn [10].  

The complexity of epilepsy lends itself to requiring a more simplified 

model that can have smaller adjustments made incrementally to more distinctly 

understand the mechanisms of epileptogenesis. In vitro models allow for 

investigations of cellular and molecular mechanisms while still preserving the 

critical network phenotypic features of epilepsy, the development of spontaneous 
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seizures, in particular [10]. The advantage of slice preparation, in vitro, is the 

ability to control external medium, to apply known concentrations of drugs, and to 

record from known layers or from visually identified neurons [10]. Testing for 

changes in number of cells dying, or for the general heath of each individual 

neuron gives in vitro experiments a benefit that doesn’t exist in vivo. Previous 

studies of organotypic slice cultures focus on ictal activity that is the seizure 

activity itself and electrographic seizures that have occurred over a shorter period 

of time, typically on the order of days [10]. However, slices can be kept in culture 

in vitro in some cases up to 12 weeks, during which they develop epileptiform 

activity in the absence of pharmacological manipulation or orthodromic 

stimulation [11]. This occurrence has led to the generally accepted hypothesis that 

the trauma of slice dissection can be the trigger of epileptogenesis in culture slices 

[12].  

1.3 Culture media and its potential role in epileptogenesis 

The difference for in vitro models compared to in vivo, is organotypic 

slices are maintained in an artificially controlled environment. The basic features 

of this environment are crucial for their survival. Specifics may differ but being 

kept in culture is to mimic the environment in which the cells in the hippocampal 

slices would normally be accustomed to. After dissection and slicing, the ability 

of the slices to survive depends on temperature, gas content, and humidity. The 

actual medium in which the slices are kept while in culture is one of the most 

important components for keeping the cells alive. There is concern, however, that 

it may be possible that these environmental factors drive epileptogenesis in 
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organotypic cultures. Our hypothesis focused on testing the most artificial aspect 

of organotypic culture environment: the culture medium [13].  

 It has long been recognized that mammalian tissues must be bathed in a 

mixture of metabolic substrates, hormones, and growth factors to maintain them 

in vitro longer than 24 hours [13]. Early versions of these types of culture media 

were based on the composition of blood plasma, often supplemented by actual 

blood derived serum [14,15]. These samples of animal serum can have variable 

concentrations of hormones and metabolites, which caused the need for 

chemically, defined media [16, 17]. We have previously used both serum-

supplemented and chemically defined media to maintain organotypic 

hippocampal cultures, and found that epileptogenesis occurs in both types of 

medium [18,19]. This chemically defined culture medium is based on the 

composition of blood plasma, not of CSF. This difference relates to one of the 

proposed causes of epileptogenesis; the opening of the blood-brain barrier (BBB) 

due to a brain insult [20,21]. Direct exposure of brain tissue to components of 

blood that do not naturally cross the BBB, or to compounds that are present in 

blood at different concentration than in CSF, may contribute to epileptogenesis 

[22, 23]. Therefore, it may be possible that epileptogenesis in organotypic cultures 

is not triggered by trauma (dissection), but by exposure of hippocampal tissue to a 

cocktail of compounds that are present at a much lower concentration or not 

present at all in normal CSF [13].  

 Composition of culture medium that is typically used for culture of 

postnatal neurons, and that we have used, as have many other researchers, for 
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organotypic hippocampal cultures is Neurobasal-A [13]. It can readily be seen 

that concentrations of glucose, potassium, and magnesium in Neurobasal-A are 

substantially different than those found in CSF [24-26], and may contribute to in 

vitro hyper-excitability [22,27]. In addition, many amino acids are contained in 

Neurobasal-A at significantly higher concentrations than in CSF [28-31]. Altered 

concentrations of amino acids such as glycine, serine, leucine, isoleucine, valine, 

phenylalanine and others are found in metabolic epilepsies [32,33]. This may play 

a role in the development of spontaneous epileptiform activity in organotypic 

cultures [13].  

 In part of this work, we tested the hypothesis that composition of culture 

medium has an effect on epileptogenesis in organotypic hippocampal culture. We 

also examined the influence of individual components of media on 

epileptogenesis in this model [13].  

1.4 Electrophysiology introduction  

 Electrophysiology experiments have been performed to determine 

characteristics of cells and regions of cells, specifically neurons, since the early to 

mid 1900’s. A micropipette can be inserted into the axon in order to perform 

voltage clamp experiments to test changes in cellular membrane impedance as 

well as action potentials [34]. The discovery of this technique led to major 

breakthroughs in the understanding of neuronal modeling and ion currents by 

using the giant squid axon due to its size and ability to be studied more easily 

[35]. The development of electrophysiology has increased exponentially since 

then and multiple types of recording setups such as multiple electrode array 
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(MEA’s), biphasic stimulation electrodes, patch clamp recordings and others 

allow for a variety of studies to be performed to expand our knowledge of neural 

pathways. These tools can also be used to study the effects of behavioral changes, 

drug application, and signaling pathways in individual cells or cell regions. 

Methods similar to the ones used in this experiment using a single microelectrode 

rather than two contributed to the understanding of signaling pathways in 

epileptogenesis [3].  

The experiments presented focus on large regions of activity in 

organotypic hippocampal slices. These recordings allow visual representation of 

the activity occurring within the slice. This emphasis was on determining if 

interictal activity (between seizures) or ictal activity (during seizures) was present 

[13, 36]. Although described further in experimental methods, organotypic 

hippocampal slices are used for these experiments. The regions we are testing for 

this activity using electrophysiology recordings are the CA3 and CA1 regions of 

the hippocampus (Figure 1).  These regions are crucial for study due to the 

connection of axons from CA3 to CA1 allowing for the testing of population 

spikes that tend to propagate throughout the entire slice.  
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Figure 1: The CA3, CA1, and dentate gyrus regions of the hippocampus. 
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Chapter 2: Experimental Methods 

2.1 Culture Media preparation 

 Customized culture media were prepared with different compositions and 

concentrations of electrolytes, amino acids, and glucose (SigmaAldrich) as 

described in the text.  Osmolarity of all media was matched to Neurobasal-A (240 

– 260 mOsm/kg) by adjusting NaCl concentration.  All culture media were 

supplemented with bovine serum albumin (250 mg/L, physiological range of 

albumin in healthy CSF is 70 – 266 mg/L [34-37]), insulin (3.5 mg/L), selenium 

(14 µg/L), from Sigma, and glutaMAX (0.5 mM) and gentamicin (30 mg/L), from 

Life Technologies [13].   

2.2 Organotypic hippocampal slice preparation 

Hippocampi were dissected from postnatal day 7-8 Sprague-Dawley rat 

pups (Charles River Laboratories), cut into 350 µm slices on a McIlwain tissue 

chopper (Mickle Laboratory Eng. Co., Surrey, United Kingdom) and placed onto 

poly-D-lysine (Sigma-Aldrich) coated glass cover slips in 6-well tissue culture 

plates.  Slice cultures were maintained in various culture media at 37 °C in 5% 

CO2 on a rocking platform. Medium was changed twice a week. All animal use 

protocols were approved by the Institutional Animal Care and were conducted in 

accordance with the United States Public Health Service Policy on Humane Care 

and Use of Laboratory Animals [13]. 
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2.3 Electrophysiology in a laboratory setting 

The system used to manage these recordings had a myriad of components 

that needed to be optimized to be able to mimic the brain environment properly 

and allow for accurate recordings (Figure 2). The chamber where the recordings 

took place is shown placed in a faraday cage. Micromanipulators controlled the 

tungsten microelectrodes (0.1 MOhm) for placement into the aforementioned 

CA1 and CA3 regions of the culture slices. The culture slices were originally 

placed on cover slips when dissections occurred and were transferred to a 35 mm 

petri dish for recording.  

The electrodes are connected to the PZ2 preamplifier, which relays the 

output recording to the RZ3 amplifier. Additionally, in order to maintain the 

conditions necessary inside the chamber, there is an inflow of gas from the tank 

and water from the water heater. The main focus of the system was to mimic the 

temperature, humidity, and gas content of the environment that hippocampal cells 

would be subjected to while performing electrophysiology recordings.  
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Figure 2: Schematic of recording system: indicating recording chamber, 

components leading into it such as the gas and heated water, and the recording 
setup including electrodes from micromanipulators, the preamplifier, and 
amplifier.  

 

In order to ensure the culture medium would remain at the required 37 °C, 

a Thermo Scientific HAAKE S7 heated circulating bath was used to create a 

constant temperature of the water within the chamber. The chamber was filled 

with water to a level of just below the location of petri dish placement on the 

column. Given that the chamber is well insulated, it was not difficult to ensure the 

water temperature inside the chamber stay constant with the set temperature of the 

heated bath (Figure 3). However, given the space of air above the water in the 

chamber would hold a different temperature, a series of tests needed to be 

performed to ensure the culture itself would be at 37 °C. This required the heated 
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bath to be set at 45 °C and for the chamber cover to remain on as often as 

possible, especially during recordings which is not indicated in figure 3. 

Additionally to raise the chamber to the correct temperature required 35 minutes 

of pre-heating of the water heater and chamber. 

	

	 	 		(a)	 	 	 	 													(b)	

Figure 3: (a) Photograph of recording chamber and micromanipulators. (b) 
Zoomed in image showing microelectrodes and example placement.  

 

Secondly, in order to guarantee the correct percentage of gases in the 

chamber, we had to pump in 5% CO2, and 20% O2, and a balance of nitrogen. The 

carbon dioxide component is the main focus due to its increased content in 

hippocampal regions compared to the outside air. The difficulty of infusing this 

gas into the chamber is twofold: it has to be inputted below the surface of the 

water as to bubble up and create the necessary 100% humidity. This is once again 

to mimic the natural condition and to avoid the slices drying out and dying, but 

the gas content must also be present in the correct concentration so that the cells 
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survive. This balance is crucial although if the bubbling increases too much then 

the petri dish can be disturbed causing the slice and electrodes to move. 

Movement of the petri dish can cause movement of the electrodes in the slice and 

often mean the entire recording will be void due to cell damage within the slice. 

In some cases this movement can even cause damage of the electrodes, therefore 

this must be avoided. The slice could also detach from the cover slip if this 

movement occurred. In order to combat this problem, the correct amount of gas 

input should be set and humidity should be calculated with a hygrometer. Then 

once this is done, the slice with the petri dish present can be introduced to the 

chamber and secured via malleable wax.   

The next challenge to these electrode recordings is the placement of 

electrodes within the thin hippocampal slices. The region of placement is the CA3 

and CA1 area of the slice, for each electrode, respectively. Locating these regions 

often requires reference of a more fine-tuned microscope than the one present in 

the chamber itself, therefore it is advisable to view the slices quickly under a 

microscope with OptixCam OCView or similar software that allows you to 

visualize the slice on a computer screen and pinpoint the regions of electrode 

placement before using a standard microscope within the Technical 

Manufacturing Corporation faraday cage.  The microscope within the cage has a 

reduced magnification and no connection to a computer or similar system because 

it would create impeding noise in the system. The use of a fiber optical 

illuminator can also be helpful in order to visualize the slice better in dim lighting 

and its snakelike attachments can be moved in and out of the cage easily since it 
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can cause electrical noise if left within. Once this is established the 

microelectrodes can be placed into the slice with the use of micromanipulators. 

The electrodes are quite thin and vibrate when moved which makes the insertion 

process even more difficult as they are still moving when placement is being 

attempted. To combat this, a thin glass pipette was used to surround the electrode 

so its movement was variable (Figure 4). Even so this process is often difficult at 

first to ensure the electrodes don’t penetrate the slice fully and cause damage to 

the slice and the electrodes. In this regard, patience is an essential tool to have 

effective placement.  

 
Figure 4: Micro-electrode contained within a glass pipette  

Lastly, in order for these recordings to be useful, noise needs to be 

minimized as much as possible due to its magnitude relative to activity. One of 

the main issues originally was the noise created from the vibration of the 

electrodes themselves as they are incredibly thin and shake upon any disturbance, 

which as aforementioned was improved by the use of a pipette surrounding. 

Anything over the range of 10-20mV will interfere with the viewing of interictal 

activity although interictal activity usually has a magnitude on the order of 

100mV and will still be visible. The faraday cage itself is the best way to 

eliminate noise but it needs to be shut completely and remain that way during the 

entirety of the recording. A proper ground between the ground in the solution 

containing the slices, the ground for each of the electrode pre-amps and a 



	 16	

complete ground in the system is the best way to minimize noise. Ground within 

the system to a stable point rather than to an exterior ground created the most 

effective minimization of noise in our system.  

2.4 Experimental setup organization 

 In order to ensure the fair comparison of data and no bias between 

different recordings, we put in place a set of requirements for each data set. Each 

data set included an equal number of slices treated with NeurA and CBM, six of 

each. Recordings were taken throughout the period of 0-14 DIV in each of the 

sets of slices in the greatest variety possible to ensure unbiased results (Table 1). 

There were 12 data sets used which included 12 slices per data set as indicated. 

Some slices were excluded from analysis due to factors such as slice detachment 

or inadequate humidity and slice death due to drying out during recordings.   

DIV 1 2 4 5 13 14 
Number of 

NeurA 
Recordings 

1 1 1 1 1 1 

Number of 
CBM 

Recordings 

1 1 1 1 1 1 

Table 1: Idealized recording setup based on equal distribution of recordings on 
different DIV’s for a single batch of 12 slices from the same rat pup.  

2.5 Data input and analysis  

 The electrophysiology recordings themselves are inputted from the 

electrodes that are connected to an amplifier (RZ2, Tucker Davis Technologies) 

fitted with high-impedance multiple-channel pre-amplifier stage (PZ2-64, Tucker 

Davis Technologies) (band-pass 1 Hz-3 kHz, gain ×1000). Sampling rate was 6 
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kHz per channel. The amplifier is connected to our laboratory computer. Software 

is then used to input the signal, filter it further with an adjustable preset 

NeuroFilter, convert it to a single channel and then store the data (Figure 5). 

 
Figure 5: Image of circuit used for data input from amplifier and initial filtering 

 

Once the data is stored in a data tank, Matlab programming was used to 

evaluate the presence of ictal activity. These electrographic seizures, as the analog 

to epileptic seizures in vivo, can be defined in two ways. They can be paroxysmal 

events of much larger amplitude than the background multiple unit activity and 

lasting longer than 10 s, or shorter paroxysmal events that occurred with event 

frequency of at least 2Hz for at least 10 s [13].  
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2.6 Other supporting information setup 

 Electrophysiology recording information was supplemented by the 

analysis of lactate dehydrogenase (LDH) and lactate levels in culture medium, as 

well as by brightfield microscopy. LDH levels indicate the amount of dead or 

plasma membrane-damaged cells in the culture while lactate levels indicate the 

amount of ictal activity present. Together, this information can help draw 

conclusions about the effects of different media and media components tested. 

These factors were tested by collection twice a week and using LDH-Cytotoxicity 

Detection kit (Roche) and L-lactate Assay kit (Eton Bioscience) respectively, 

according to the manufacturers’ protocols. Lactate concentrations were calculated 

relative to known lactate standards, while LDH concentrations were calculated a 

and normalized to the 0 - 3 DIV average of LDH concentration in control culture 

supernatant [13].  

 Brightfield microscopy was also used to supplement data collected 

through electrophysiology recordings. Culture health was evaluated based on 

three morphological characters: blurriness of the culture edge, brightness of the 

slices, and integrity and distinctness of the neural layers. Blurry edges indicate 

that the slice attached well on the substrate, while distinct edges indicate that the 

slice didn’t integrate well with the substrate. Some unhealthy slices would lose 

the attachment and even float. Unhealthy slices will look darker than healthy 

slices due to dead cell accumulation. Healthy slices have well-preserved 

cytoarchitecture with CA1, CA3 neural layers and dentate gyrus (DG) [13]. 
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Chapter 3: Results and Discussion 

3.1 NeuroA vs CBM 

3.1.1 Electrophysiology recording results of NeuroA vs CBM 

 As mentioned in the methods section, the requirements for electrographic 

seizures are frequency and magnitude dependent, requiring a frequency of 2Hz 

and a magnitude normalized at roughly 100mV. These metrics are evaluated using 

Matlab coding custom-designed for the purpose of seizure detection (Figure 6a). 

Often the recordings, especially in later DIV’s, have seizures that initially are 

within both the frequency and magnitude requirements but upon further 

inspection fail either one or both of these criteria (Figure 6b). Therefore it is 

important to use a method to analyze data that is unbiased as in the custom code 

we developed that measures magnitude of ictal activity, frequency of ictal 

activity, and duration of single seizure. If all of these parameters are met, then the 

program indicates that it is an electrographic seizure and outputs its duration.   
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         (a)        (b) 

Figure 6: (a) Single seizure (b) Entire recording 

 

The initial analysis had each data set organized with specific information 

from each slice and recording (Table 2). This information included the type of 

medium the slice was in, number of days in vitro, overall recording time, number 

of seizures, and length of time seizing. Overall results could then be interpolated 

from this basic information to create a more quantified set, more clearly shown 

later.  

Table 2: Information to be documented from each data set 

There was a large amount of variability in each data set for these 

parameters (figure 7). This data set was chosen to be representative of the 

variability and general trend of seizure duration. It is apparent by the data points 

for two slices at 1 DIV and 12 DIV, with 10 seizures and 34 seizures respectively, 
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that the amount of seizures increased over time. Yet as visible by the general 

changes in number of seizures over time of DIV when observing each data point 

in figure 7, the changes are less significant and conclusive when only looking at 

one data set.   

 
Figure 7: Data points showing the number of seizures for each slice present in the 
data set.  

We then quantified electrographic seizures (ictal events) in NeurA and 

CBM cultures from 0 to 14 DIV from the 12 data sets. Data were grouped into 

four time periods, 0-3 DIV, 4-7 DIV, 8-10 DIV, and 11-14 DIV (for each 

condition at each time point, n = 17, 9, 8, 10, respectively).  Significant 

differences were found in number of seizures only in the 0-3 DIV time period 

where no seizures occur in the CBM medium in CA1 or CA3, although this 

significance can be misleading due to the low number of seizures in both types of 

media (Figure 8). Consequently, significant differences were found in average 

seizure duration in the 0-3 DIV time period in CA1. However, significant 
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differences were found in average seizure duration in both the 0-3 DIV time 

period, and the 4-7 DIV time period in CA3.  

 
Figure 8: (a) Number of seizures per hour for NeurA and CBM in CA1 (b) 
Number of seizures per hour in NeurA and CBM in CA3. (c) Average seizure 
duration in seconds for NeurA and CBM in CA1 (d) Average seizure duration for 
NeurA and CBM in CA3. 

 

In order to best quantify the amount of pseudo-epileptic activity, it seemed 

crucial to make a correlation between number of seizures and average time 

seizing, indicating the amount of actual seizure activity unbiased by length of 

individual seizure. There are significant differences in the average time seizing in 

11-14 DIV time period in the CA1 region, and the 4-7 DIV time period in the 

CA3 region.  
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  (a)      (b) 

Figure 9: (a) Average time seizing in minutes per hour for NeurA and CBM in the 
CA1 region. (b) Average time seizing in minutes per hour for NeurA and CBM in 
the CA3 region. 

 

3.1.2 Supporting information 

 These two main types of media have certain crucial qualities. Simplified 

NeurA medium was created using necessary amino acids determined by previous 

LDH and lactate analysis. CBM was created with the proper concentrations of 

electrolytes to reflect concentrations in rat CSF, while glucose concentration was 

changed to match typical concentrations in aCSF for acute slice experiments [13].  

 Cultures kept in NeurA and CBM media had no significant differences in 

LDH release. However, significantly lower lactate release was observed in CBM 

than in NeurA starting from 7 DIV on. Additionally confocal images showed no 

significant differences in the number of surviving neurons between NeurA and 

CBM in either CA1 or CA3.  
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3.2 CBM vs. modified medium 

3.2.1 Electrophysiology recording results of CBM vs. modified medium  

 Experiments have shown that the reduction of certain amino acids in 

media has played a significant role in the onset of epilepsy. The reduction of 

glycine and L-serine concentrations to 0.01 mM and increase of [Mg2+] to 2mM 

significantly decreased cell death and reduced ictal activity [13]. These two 

modifications were integrated into a “modified medium”, and compared with 

CBM. Electrographic recordings, as done previously in CBM and the modified 

media, were recorded from 10 DIV to 14 DIV (Figure 10). Since recording data 

from both the CA1 and CA3 regions proved to be entirely similar, only the CA3 

regions were included. There were no significant differences in number of 

seizures per hour, average seizure duration, or overall time seizing.  

 
  (a)                     (b)              (c) 

Figure 10: Comparison of CBM and modified media from left to right includes: 
(a) number of seizures per hour, (b) average seizing duration, and (c) time seizing.  
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3.2.2 Supporting information 

 

 Additionally microscope images at 14 DIV revealed that cultures in 

modified media had brighter neural layers than cultures in CBM. Cultures 

maintained in modified medium released significantly less LDH than slices in 

CBM at 14 DIV.   No significant differences were observed in lactate release 

between two groups [13].  
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Chapter 4: Electrophysiology for MEA recordings 

 4.1 Methods and Results 

Electrophysiology recordings were used for the determination of MEA 

efficacy. The MEA device is used to take recordings constantly in terms of time 

without adjustments of electrodes or concerns of the cells within the slice dying. 

Although this yields certain results, it is necessary to get confirmation that these 

slices on the MEA are developing epilepsy as expected before further conclusions 

can be drawn. The electrophysiology recording system implemented for single 

slice recordings was adjusted to take recordings from multiple hippocampal slices 

in this MEA device (Figure 11). A series of experiments was run using an 

adjusted version of the recording system to test the epileptic output of four slices 

already placed on this device by placing electrodes in each of the slices CA1 

region.  
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Figure 11: Schematic of MEA device containing four slices and indicated 
electrodes and micromanipulators for recording.  

 

The initial difficulty regarding the recording of four different slices is the 

positioning of the microelectrodes themselves in relation to each other. This was 

exacerbated by the placement of micromanipulators as indicated by the tight 

spacing of micromanipulators in the schematic. The chamber as used before, 

needs to continue to have the same conditions that are required for slice survival. 

This becomes more difficult when you need a larger opening in the cover of the 

chamber to allow the entry of all four electrodes into the system while still 

covering enough of the chamber to keep 100% humidity and correct temperature 

and gas content.  

Recordings were taken using these new parameters and while certain 

slices yielded electrographic seizures, the majority either dried out or were 
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damaged by the movement of the MEA device itself. Over the course of several 

months, optimization was attempted yet this system proved difficult to generate 

consistent recordings. This setup failed to produce sufficient data but yielded 

important information about the alternate uses for an electrode recording system. 
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Chapter 5: Conclusions 

Electrophysiology experiments in conjunction with lactate analysis, LDH 

analysis, and bright field microscopy were able to show not only the effects of 

different media on epileptogenesis but also the affects of certain amino acids and 

electrolytes within the media itself. The different media within the facets of this 

experiment, whether it is CBM, NeurA, or the modified medium could not 

prevent the onset of epilepsy, even when optimized. Therefore medium 

composition is unlikely to be the cause of epileptogenesis in the organotypic 

hippocampal culture model of epilepsy.  

The scope of electrophysiology experiments is wider than the initial single 

slice recordings but as shown by the MEA recording experiments, requires fine-

tuning to be effective. Electrophysiology recordings have a multitude of uses but 

without proper adjustment of the overall recording system are best suited for 

single slice recordings. This would include overhauling the entire system to make 

one more appropriately fit for the demands of a larger testing setup.  
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Chapter 6: Future Work 

There is concern that if the population spikes are of a high enough 

magnitude that the highly sensitive microelectrodes could record ictal activity that 

isn’t in the location of electrode placement. In most recordings where electrodes 

are placed in both the CA1 and CA3 regions of the hippocampal slices, population 

spikes occur in both regions with a time delay between each region. This is 

caused by the relatively slow nature of neuron firing. However, if the second 

electrode is simply recording the population spikes in the first region, then these 

results would be skewed as this result. It is crucial to further test this hypothesis 

by utilizing stimulation electrodes in a similar media with and without a 

hippocampal slice present to test the range that a voltage spike similar to a 

population spike will travel through the media.  
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