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Abstract

This paper implemented four transactional memory algorithms one
hardware transaction algorithm and three software transaction algorithms.
The goal of this research was to investigate the cost of determinism in a
parallel world. The current standard for top performing parallelism is working
on jobs that are independent such as a Map Reduce, because it isolates each
job. This paper attempts to investigate the cost of obtaining deterministic
output on independent and non-independent tasks while being parallel. It is
obvious that the cost of determinism will be steep, and the results presented
will not exceed the independent parallel cases. But how damaging is
determinism, can it exceed serial executions, if so when is it appropriate to run
a deterministic parallel execution over a serial execution. The findings
concluded that ordered parallelism performed much worse than serial
executions. To perform parallel operations in a deterministic way efficiently
would require a high level of knowledge about the specific hardware and

benchmark.



Introduction

For over 20 years, Transactional Memory (TM) [3] has been viewed as
the most promising proposal for simplifying the creation of correct, scalable
concurrent programs. The concept behind TM is tantalizingly simple:
programmers merely annotate regions of code that must appear to execute
atomically, and then a run-time system, augmented with custom hardware,
executes those regions concurrently (as “transactions”). During execution, the
run-time system tracks memory accesses, detects conflicts, and aborts and
retries transactions as necessary to ensure that the program behavior is
equivalent to one in which the execution of transactions does not overlap.

The recent addition of TM support to IBM [6,11] and Intel [5]
processors brings the field of concurrent programming much closer to a state
in which programmers can eschew locks in favor of transactions. However,
first-generation hardware TM systems carry a number of limitations. Most
significantly, these implementations are “best effort” [7], in that they do not
guarantee that any transaction attempt will commit. In particular, a
transaction attempt may fail if it accesses more unique locations than the
hardware can support, or if there is an interrupt (e.g., a timer interrupt) during
its execution. Consequently, a TM runtime that wishes to use hardware TM
must provide a software fall-back path. This fall-back path also provides a

means of circumventing the hard-coded conflict resolution strategy



(“requester wins” [1]) that the hardware enforces, so as to allow the run-time
system to improve the chance that a long-running transaction does not starve.

This research looks to expand on TM current TM algorithms found in
LIBITM, such as the multi-lock, and hardware transactional work. There are
two more algorithms added, one being a lazy implementation and the final
being a hybrid algorithm loosely based on the algorithm presented by Oancea
[8]. The work here is utilizing Intel's Threading Building Blocks [4] library to
combine the worlds of speculative parallelism and transactional memory
(GCC's LIBITM). It utilizes a simple framework to enable faster TM algorithm
development. These results presented here attempt to quantify the cost of
determinism in a concurrent world. Given a job is mostly independent and
deterministic output is desired, how much does that cost in terms of
performance as compared to a serial execution and to a non-deterministic
parallel execution. Clearly, this should not exceed a non-deterministic parallel
execution since this deterministic parallel execution is much more restrictive
on parallelism, but the question comes down to, when is this better than a
serial execution.

All development and testing was completed on an 64bit Ubuntu box
with 8 Intel(R) Core i7-4770 chips that clock 3.40Ghz. Each core has an L1
cache of 32K, L2 cache of 256K and an L3 cache that is 8MB and runs at

800MHz. It utilized a core TBB [4] version 4.3, with slight modifications to



support a deterministic parallel_for loop, called a parallel_for_ordered loop
here. An experimental version of GCC 4.9.0 was used for compilation and
development, the core of LIBITM was also taken from this version of GCC.

This paper is broken into a few sections the first discussing the
implementation of the hardware transactional algorithm, then the lazy
algorithm, multi-lock algorithm, oancealLite algorithm, evaluation, and finally a
conclusion that wraps up the paper and looks into future work and

improvements for this area of research.

HTM Implementation

This hardware transaction implementation utilizes Intel's
Transactional Synchronization in Haswell, also called TSX. Essentially Intel's
hardware transaction API. The HTM algorithm presented here utilizes a few
global variables that can be found in Appendix A: Listing 1. A code snippet can
be found in Appendix A: Algorithm 1 has all transactions attempt to complete
their own transaction and loop until it is complete. Each transaction will call
xbegin() and examine its output for a successful return code, the handling of
all return codes is described below.

XBegin Successful
Given a successful begin of a transaction there are three options to

handle. The first is when we have the currentOrderNumber != tx.range.begin,



this transaction will backoff and wait for its turn. If the currentOrderNumber
== tx.range.begin and the spin lock was not held it will commit. The spin lock
is a global lock over execution of xbegin(). Given the spin lock was held at the
time it is forced to abort, which is detrimental since this is the next transaction
that needs to commit. The abortFlag will be set, which stops all transactions
from operating and backs off. This will ensure all other transactions stop, and
the next desired transaction will execute and complete, hence making
progress.

XBegin Unsuccessful or Aborted

The first potential option with this set is an ABORT.EXPLICIT, in this
case an abort was instantiated for some reason above. The first case is when it
isn't our turn and the abortFlag has not been set we will backoff and try again.
If the abortFlag is set, we will spin until the abortFlag has been released. The
second case when this transaction equals the currnetOrderNumber and the
spinlock is held, this will wait for the lock to release, once released it tries to
commit again.

Lastly, there are some special cases where Intel provides meta-data
when a transaction aborts. One such case is ABORT.CONFLICT, this is when an
abort is caused by a memory conflict. If a transaction aborts for this reason it
will backoff and try again. Another special case is ABORT.CAPACITY, this

indicates that the memory is simply not large enough to support the



transaction pool. In this scenario the transaction will backoff and set the
abortFlag to stop all transactions from operating. In every other case the

transaction will simply backoff and try again.

Lazy Implementation

The lazy transactional memory algorithm [9] is implemented here to
investigate how different transactional memory algorithms will affect
deterministic outcomes. As is with lazy concurrency, no blocking locks are
taken during processing. At commit time the transaction will ensure its
correctness and obtain locks to proceed. The benefit of this method is to
minimize the amount of overhead. As long as there is a low level of overlap
this method should be one of the higher performing algorithms presented in
this paper. It minimizes the memory load and book keeping on the software
side. The global and local variables can be found in Appendix A: Listing 2 The
following sections will discuss the implementation details, first starting off
with a crucial component of the lazy method, the redo log. This redo log will
track all the operations made by the transaction and only commit them at
commit time. Its implementation is key to the success of a lazy algorithm
because it must be searched constantly to see the changes and make
modifications. This is followed by three critical functions, pre-load, pre-write

and trycommit.



Redo Log - Binary Search Tree

The redo log here is a Binary Search Tree that contains the addresses
and values that should be written to those locations given a it can commit. This
tree is used by each transaction to track the changes it makes. A binary search
tree was used to minimize the search time in looking for and making updates.
This binary search tree is made up of nodes that are 64 byte slabs of data. Each
node has a mask that shows which bytes are written in that slab. This BST
utilizes integer indexes to specify nodes and slabs. This enables one to realloc
nodes / slabs and still use the same index value to identify the node or slab by
indexing the proper number in the nodepool or slab pool.

Looking at this BST one could look into using a red-black tree or some
balanced tree to ensure the depth of the tree remains at a consistent level in
relation to the nodes present in the tree. For the needs of this research, this
BST was found to be sufficient for storing, and recalling the modifications
made by each transactions
Pre-Load

This function prepares a transaction for reads by scanning the orecs for
conflict. This method conducts a relaxed read of memory, and cycles through
the orecs and records any effects. Given the orec is locked and not too new it is
considered a successful read and add it to the readlog. Given the orec is very

new, we will extend our time and deem it a successful read and add it to the



readlog. Given the orec is locked, we will abort and try again. This function
completes and returns the starting location of the readlog.
Pre-Write

This function starts by obtaining a start time, which will be used to
indicate this transactions time. The transaction will look to lock all its orecs if
it hasn't already locked them. Given another transaction holds the orec this
transaction will abort and try again. A memory fence is required to ensure
orecs are obtained in the proper order. Lastly, these writes are added to the
writelog given no aborts were taken in the prior loop.
TryCommit

The code is shown in Appendix A: Algorithm 2, walking through this
psuedo-code one can observe that this starts by looking at the redo-log. Given
it is empty, this transaction is clear to commit. If it is not, it will cycle through
the addresses found in the redo-log and it obtains a snapshot time to indicate
its presence. It also will validate all its read operations and ensure they have
not changed, given a change is found it will abort. Once the validation is
deemed successful this will write out all the items in the redo-log to memory.
Lastly, it will clear all the logs and update the currentOrderNumber to the

tx.range_end value.



ML Implementation

The mulit-lock ordered transactional implementation [2] is very similar
to the standard LIBITM multi-lock implementation. It differs with the addition
of a range object that contains the range_begin, range_end, range_grainsize, a
global currentOrderNumber and an abortFlag. The general strategy for this
implementation is to maintain as much of the multilock implementation as
was there. The modifications come during the major functions such as,
pre_write, pre_load, post_write, and post_load.

In each of these functions there is an initial check that looks if the
abortFlag has been set and if the current transaction is not equal to the
currentOrderNumber. If both are true it will abort. In each of these functions, if
any sort of conflict is found we will abort as the standard multi-lock will but do
an additional check to see if it should set the abortFlag. If the aborting
transaction is equal to the currentOrderNumber, it will set the abortFlag. The
abortFlag will make all other transactions stop working and abort at their
earliest convenience. It ensures progress will be made and that the
currentOrderNumber will advance. In this case a Compare And Set operation
is not needed because at any time there will be only one transaction that can
set the abortFlag, this transaction will be the next transaction to commit.

(tx.range_begin == currentOrderNumber)



Trycommit handles a few cases, the first being if a transaction reaches
here and is not the next desired transaction. Given this a transaction it will
simply abort and start over. A transaction that is equal to the
currentOrderNumber will commit. If this transaction set the abortFlag it will
also reset the abortFlag before committing. By turning off the abortFlag this
releases all other transaction and enables the pool of transactions to continue.
The transaction will then run its validation clear its logs, move up the

currentOrderNumber and commit.

Oancealite Implementation

Instantiation of Oancea
In starting this method there are numerous globals that need to be

instantiated. The first setting up the global currentOrderNumber, so the first
transaction that is allowed to commit is the transaction that has a
tx.range_begin value that is equal to the first loop iteration. The master_index
tracking array will need to be instantiated to the length equal to the maximum
active transaction count.
Transactions Entering the Pool

When transactions are initialized one must set up its local variables,
this includes the three range items, range_begin, range_end, and
range_grainsize. The is_active boolean and is_abort flags are set to false.

During this initiation the transaction then looks to set its localAbortCount to

10



the globalAbortCount and acquire a master_index. A master_index is an index
that it can write its logs to in each orec, that it owns as long as it is an active
transaction. The Hybrid_Word was used here to enable all transactions to
detect potential conflicts without CAS'ing a single variable in the orec, instead
each transaction owns one index in this array that is the length of the
maximum number of active transactions. In order to avoid abort order
discrepancies, new transactions cannot enter the transaction pool during an
abort sequence. The entering transaction acquires the abortFlag, and sets the
localAbortCount to the globalAbortCount then unlocks the abortFlag without
stopping execution of the active transactions. (This locking of the abortFlag
does not stop all transactions, it simply prevents an abort sequence from
starting) Hence the use of the isActive flag, see the rollBack section for more
details on how each abort sequence is handled.
Hybrid_Word: Orec Structure

In order to make this method work a custom word had to be made to
log in each orec, here we “exploded” the orec log to cover each active
transaction. One could see the details of the hybrid_word in the Appendix A:
Listing 4. The word has a lock on it to ensure only one transaction makes edits
to the word at a time. Besides that there is a read_log and a write_log where
each are the length of the maximum number of active transactions. At this time

TBB will maximize the number of transactions at double the processor count.
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So an 8 core hyper-threaded machine will have a read_log and write_log length
of 16. Each location records the last transaction that either read or wrote to
that location. When transactions are initialized they are given a master_index
that is the index in the read_log and write_log. Since it is guaranteed that at any
time one transaction can own an index in the read_log and write_log there is
no need to CAS updating the logs and each transaction can just write their own
range_begin value in their index. Avoiding a CAS is a large time savings for this
algorithm. The following sections describe the code, a snippet of pseudo-code
can be found in Appendix A: Algorithm 3.
Pre-Write and Pre-Load

Pre-Write and Pre-Load are very similar functions in their structure.
They each start by checking if there is an abortSequence, if it is set it will
unlock any orecs it is holding and wait in rollback for its turn to rollback. Given
no abort sequence is active, the transactions will cycle through their orecs,
acquire them, check for conflicts, and continue if no conflicts are found.

Pre-write will check for a WAR (Write after Read) conflict and WAW
(Write after Write) conflict. In both scenarios an abort sequence will be
started upon discovery of any of these conflicts. In each of these cases the
abort sequence will begin with the current transaction causing all transactions
with a range_begin greater than this transaction to stop and follow the abort

sequence protocol (see details in Roll-Back section)
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Pre-load checks for only a RAW (Read after Write) conflict. Pre-load
will start an abort sequence in the RAW case because it is reading an orec after
a write ahead has occurred. Checking for RAR (Read after Read) is not
necessary, since it does not make anything invalid. If one had a constant in an
orec and all transactions read from it, and no transaction wrote to this
location, one would not want that to cause aborts due to read aheads. So in this
case pre-load will only look for RAW conflicts.

Once an orec is confirmed to not conflict the transaction must log that it
has been to this orec. By first logging in the transaction local logs. Then it will
write to the orec / hybrid word log to its master_index location it claimed
when it entered the transaction pool. This ensures that this transaction can
properly rollback and it can give other transactions the ability to detect
conflict. Without the master_index one could not see under reads, meaning
only the front most read is visible, and it would be unknown who needs to
rollback given an abort sequence.

TryCommit

Transactions that enter here have passed through both pre-write and
pre-load without detecting any conflicts or being interrupted by any abort
sequence. This leaves three cases in which transactions get to this point. 1) A
Transaction started the abortSequence and passed to this place without

conflicts, 2) A transaction that is equal to the currentOrderNumber arrived

13



without conflict. 3) A transaction that is not equal to the currentOrderNumber

arrived without conflict.

Case 1 (started an abortSequence): This transaction must ensure that all active
transactions above it have aborted. Once it confirms this it will end the

abort sequence as described in the Roll-Back section.

Case 2 (==currentOrderNumber): This transaction should be able to pass
straight through trycommit since it is the next transaction to commit,
no abortSequence could be started that is smaller than it. It will pass

and simply commit.

Case 3 (!= currentOrderNumber): This transaction will get here and spin and
randomly backoff, checking two conditions. The first being if it needs to
abort due to an abort sequence being started. If another transaction
that is earlier than it causes an abort sequence it must go to roll-back. If
during its waiting period no abort sequence smaller than it is started

and its range_begin equals the currentOrderNumber it will commit.

Upon successful commit transactions will transactions will clear their logs,

unlock all their orecs and move the currentOrderNumber up.
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Rollback

Rollback is unique in this TM algorithm because one must rollback in
the a strictly decreasing order. Given transactions 3,4,5,6,7,8 are running and
transaction 4 begins and abort sequence. It will first obtain the abortFlag, then
it will set the globalAbortNumber to itself and increase the globalAbortCount.
It also sets its localAbortCount to the new globalAbortCount. The order of
these operations is critical to ensure no transactions get locked into thinking
an abort is happening when it may not be. Transactions will first check for a
discrepancy between their localAbortCount and the globalAbortCount, given
that discrepancy, they will then check to see if they are greater than the
globalAbortNumber. If they are they will go to abort, if not they can continue
as is. Setting these variables kicks off all rollback sequences. Once 4 sets this,
all active transactions greater than 4 will also rollback. When a transaction
sees the abortFlag is set and that it must abort, it will first unlock all of its
orecs, then potentially spin to wait for its turn to abort. Once it confirms that
the transaction above it has aborted it will abort. In this example, transaction 8
would have to abort, then 7, then 6, then 5, and finally 4. A transaction will
rollback its own changes if there are changes to be made, and will set its own
abortFlag to true. If a transaction is waiting to enter the active pool, but is in
the transaction_list, its isAbort flag will already be set to true so it does not

halt an abort sequence. Once this is complete these transactions will spin, and
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4 will reach trycommit then release the abortFlag enabling these transactions
to continue. This strict ordering is due to the fact that dependencies among
transactions is very hard to monitor even in this case, this is the safest way to
roll back and ensure correctness, without incurring a large amount of
metadata overhead.

The transaction that initiated the abort sequence may not have to abort
given the type of conflict is a read after read conflict. The code to end the abort
sequence is found in the trycommit function, at this point the transaction has
completed its work without conflict giving us progress. It will check the
transaction list and ensure all active transactions with a range_begin greater
than it have actually aborted. It will then set the globalAbortNumber to
INT_MAX, update all other transactions localAbortCounts and set each
transactions isAbort flag to false. This order is crucial because transactions
spin after their abort as long as their isAbort is true and localAbortCount is
different from the globalAbortCount. Once these transactions continue, one
needs to guarantee that it won't accidentally enter an abort sequence again,
which is why the globalAbortNumber is set to INT_MAX before any transaction
is let loose again. This ensures that even if a transaction might see its
localAbortCount different from the globalAbortCount it still will not abort, but

would see that it is less than the globalAbortNumber and continue processing.
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Evaluation

All development and testing was completed on an 64bit Ubuntu box
with 8 Intel(R) Core i7-4770 chips that clock 3.40Ghz. Each core has an L1
cache of 32K, L2 cache of 256K and an L3 cache that is 8MB and runs at
800MHz. It utilized a core TBB version 4.3, with slight modifications to
support a deterministic parallel_for loop, called a parallel_for_ordered loop
here. An experimental version of GCC 4.9.0 was used for compilation and
development, the core of LIBITM was also taken from this version of GCC.

The benchmark used in this experiment was fairly extensive. At a high
level it created a main array of some argument specified size and would
populate it with random numbers, this seed was provided via command line
args. There was an auxiliary array, which was also populated with random
numbers (again command line seeded), this auxiliary array was used to supply
random seeds for the main array. The benchmark also had arguments to
specify the amount of work for each iteration, there was a MIN_WORK value,
which indicated the number of random numbers to compute. Additionally,
there was a WORK_MOD argument, that would add some random amount of
work to each iteration, by computing no more than the WORK_MOD many
random numbers. The process was achieved by stepping through the main
array, fetching the auxiliary array value found at the same index. Using that

aux number to seed rand_r. It used the first number mod the WORK MOD
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value to be the varied work in that iteration. The bench then entered a loop
that would loop from 0 to the MIN_WORK + VARIED_WORK value. This
process gave great granularity in how the benchmark worked. It could
construct jobs where each iteration had the same workload, workloads that
were reasonably similarly, or workloads that were very different. These three
signatures could be achieved by manipulating these work arguments.

This benchmark also enabled one to specify if the test should be
overlapping or non-overlapping. The above process describes the type of work
and amount of work that could be specified. This next stage specifies where to
save the last random number generated from the above process. This was
done through 4 arguments, a CHANCE_LEFT, CHANGE_RIGHT, DIST_LEFT, and
DIST_RIGHT arguments. The chance variables are the odds that an iteration i
would look at another index. The distance variables would specify how far
from i the modification would take place. For example, it would compute one
more random value, and see if it was less than or equal to the percentage
chance provided. If it was the value would be saved in index, i - DIST_LEFT,
given we had a CHANCE_RIGHT the index modified would be i + DIST_RIGHT.
If one were to walk out of the array by modifying a value less than index 0 or
greater than index length, this would make that index be the edge. So any
negative became 0 and any number greater than length was made to equal

length.
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The process described above shows the process varied in workload,
and varied in overlapping vs. non-overlapping. The benchmark also used PAPI
[10] to obtain the hardware counters on Last Level Cache references and Last
Level Cache Misses. The machine did not have L1 and L2 cache counters,
which would have been much more useful for this experiment. Each execution
of the benchmark ran one test in serial mode, and one in speculative parallel
mode then compared run times and cache statistics. Looking at the Speed up
Ratios which is found by (serial_time/specpar_time), so a score of 1.0 would
be same time execution, a score of 2, would mean specpar runs in half the time
of the serial. The expectation was that hardware transactions would perform
the best and it was unclear which of the software implementations would be
best.

Looking at the results in Appendix A: Table 1 one can see the
assumption that hardware transactions did perform best. One area of caution
is to monitor the grainsize used for htm, given larger grainsizes, it could turn
this execution into an essentially serial execution. The next best performer
was the lazy implementation, followed by the ordered ml and lastly
Oancealite. Looking back at the table presented above one can see these
numbers are not promising for ordered speculative parallelism. It is not
terribly surprising, non-ordered parallelism is often only useful in specific

scenarios where there is enough work to go around and a proper management
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system is in place to ensure threads avoid common problems such as
deadlock, and thrashing the cache. To enforce an ordered, or deterministic
output on a parallel execution is clearly even more difficult to do well. Many
more controls are required to ensure all transactions do not clobber each
other out of their work.

Another type of test was executed here, which was an overlapping test.
The benchmark enabled one to specify the probability of editing an index to
either the left or right of the current place. It also enabled the tester to specify
how far left or right to look, this was intended to test editing items off our own
cacheline. Given higher levels of conflict and transactions editing more than
their own cache line and potentially fighting over indices with other
transactions the expectation was that this would perform significantly worse
than the non-overlapping test.

Observing Appendix A: Table 2 it is surprising to see that the
overlapping results are very comparable if not nearly identical to the non-
overlapping tests. The led to an investigation into the benchmark, and trying
to discover if our non-overlapping implementation was still fighting over the
cache, or if the overlapping implementation just performed to a really high
level.

After more tests and some refinements, such as padding out structs to

be some multiple of 256 bytes. A potential concern was that the items
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”i

transactions operate on, even though they are “independent” may still live in
the same cache line which would cause memory sharing, presenting serious
problems to all the software transactions and causing the hardware
transactions to abort. Another potential cause of bad performance is Intel's

Al

pre-fetching model, given one uses “memory block 1", the Intel Memory
management will pre-fetch the next memory block. This causes problems
because the next cache line may be needed by another transaction. Even if this
specific transaction only utilizes “memory block 1", we may conflict with

”

another transaction that only utilizes “memory block 2”' due to this pre-
fetching.

Due to this problem the implementation was changed. The benchmark
used a struct instead of a singular array index to separate our data by memory
blocks. The struct was padded out to be 256 bytes (The size of 2 L1 Cache
Blocks: hopes to prevent pre-fetching conflicts), running a series of tests with
this addition did not show any improvement. Another padding attempt was
made in libitm_htm's implementation. LIBITM_HTM may be the location where
this shares memory. After padding the htm structs out and running more tests
this did not give any sort of improvement. Lastly, it may have been how TBB
was implemented, the shared TBB items may be causing this problem. After

padding it out and running many more tests it was shown that this did not give

any improvement.
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Take Away

This paper describes a few different transactional memory algorithms,
each method varies in its implementation and performance. It is clear that
these methods may not be practical for use since each of them cannot compete
with a serial execution. The best method presented here approaches serial
execution time, and this is done by implementing the grainsize to act as if it is
serial. The software TM algorithms perform even worse, some to a large
magnitude worse than serial. But given this, it is clear that transactional
memory algorithms are challenging, it is clear that deterministic parallelism is
also challenging, and that hardware transactions out perform software
transactions. It was obvious that this area of research would be difficult, if not
impossible, to out perform pure non-deterministic parallel executions, and it
might be possible to perform faster than a serial implementation. In order to
perform very well, it appears that one must know their hardware very well.
For example, this area of research was heavily influenced by Intel's pre-
fetching standard. This research attempted to make a general solution that
could work on any machine, but that may not be possible at this time.
Transactional Memory algorithms are highly dependent on the hardware and
if one is to optimize their transactional memory algorithm they must be in

tune with the hardware, more specifically with the cache.
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Lastly, this research proved that one can quickly implement and test
transactional memory algorithms in a deterministic environment and a non-
deterministic environment. Utilizing GCC's LIBITM library and Intel's TBB
library give other researchers a means to conduct research in transactional
memory algorithms without reinventing the wheel. Researchers can utilize
these two very large and standard libraries to investigate ideas about
transactional memory. A great positive to this framework is given positive
results, one does not have to make many changes to distribute this to the
world. GCC and TBB are used by many people for transactional memory and

speculative parallelism.

Conclusion and Future Work

Overall the work presented here is useful to the transactional memory
field since this provides a simple testing ground for transactional memory
algorithms. In a short period of time this research was able to look at 4
different transactional memory algorithms with very little overhead. This is a
great example for the research community to quickly prototype a TM
algorithm with little to no cost. This work is also impactful because it utilizes
two very major libraries being GCC and TBB, even though these tests may not

provide great performance results, they provide an impactful experiment that
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works with two major standards in the speculative parallelism and
transactional memory research area.

This research as many opportunities for future work. One potential
option to move this research forward is to record each transactions beginning
and ending orec. Given this range one can see if any transaction orec ranges
overlap, if they do, checks must be made across orecs to ensure no conflict. If
there is no overlap, it could save much of the overhead seen here, it is not clear
how many cases this would be true for. Given a standard program that
concerns itself with locality it may cause this modification to provide very
marginal gains. Another potential improvement could be properly
implementing the Oancea algorithm [8], the difficulty presented here was
making this algorithm more general to work on all types of machines. It also
looked to make a hybrid of oancea and the standard libitm ml implementation.
This research could have also enabled transactions to work and move on
instead of waiting for their commit turn as they do in the Oancea paper. Since
there is no guarantee on transaction locality it put this research in a place
where one transaction might have to work on numerous iterations on its own,
lacking any parallelism. Another possible improvement is utilizing the range
object, in this research the range was not modified in anyway, but one could
get a range from TBB and split that range into more manageable sizes given

observations on transaction performance. For example, if TBB gave ranges
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that contained 100 iterations and that was found to be a lot of work per
transaction, the TM algorithm could have split that range into 5 chunks of 20
to better divide the work presented. Having an intelligent work distributor
could optimize the load for each transaction and properly separate the work
so the transactions do not fight over the same cache lines. Finding better
statistics on the L1, L2 and L3 cache would also be useful to exactly identify

the main source of poor performance.
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Appendix A

Listing 1: HTM Metadata

Thread Variables

range_begin : Integer - Number specifying the start iteration number of the
parallel_for loop from TBB

range_end : Integer : - Number specifying the last iteration number +1 of the
parallel_for loop from TBB

range_grainsize : Long Unsigned - Number of iterations a thread should

handle, specified in parallel_for from TBB

Global Variables

abortFlag : Atomic Boolean - Flag to stop all transactions from working and
ensure progress is made

currentTxNumber : Atomic Integer - Number that identifies the range\_begin of
the transaction that is next to commit

retryCount : Integer - Upper bound on retries before acquiring global lock to
make progress

waitFraction : Double - Number to multiply by the prior transaction time to be

set as the backoff time
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Algorithm 1: Begin and Commit Instrumentation for HTM

Algorithm 1: Begin and commit intstumentation for HTM

function TXBEGINHTM()
1 while rrue do
// Will backoff for backoffFraction * last tx cycles time
2 if backof f == true then
| backOff()
// If not next and abortFlag stop working and spin
3 while abortFlag A tz.range_begin #
currentOrder Number do spin
4 zbegin()
5 if XBEGIN_STARTED then
6 if tz.range_begin # currentOrder Number then
7 backof f = true
8 \\ zabort()
// If next and spinlock is free, can continue to commit
9 else if spinlockis free then
10 | break
// If next and spinlock is taken, need to wait, stop all
others
1 else
12 backof f = true
13 abortFlag =1
14 | zabort()
15 else
16 if ABORT.EXPLICIT then
17 if tx.range_begin # currentOrder Number
then
18 backof f = true
19 L zabort()
20 else
21 if spinlockheldbyother then
2 backof f = true
23 L abortFlag = true
24 elseif ABORT.CONFLICT then
25 | backof f = true
26 elseif ABORT.CAPACITY then
27 backof f = true
28 \\ abortFlag = true
29 else
30 | backoff =true
function TXCOMMITHTM()
1 if abortFlag == true then
2 | abortFlag = false
3 | currentOrder Number = tx.range_end
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Listing 2: Lazy Metadata

Thread Variables

range_begin : Integer - Number specifying the start iteration number of the
parallel_for loop from TBB

range_end : Integer : - Number specifying the last iteration number +1 of the
parallel_for loop from TBB

range_grainsize : Long Unsigned - Number of iterations a thread should
handle, specified in parallel_for from TBB

commit_count : Integer Unsigned - Count of number of transactions that have
already committed

redo_log : Binary Search Tree - Binary Search Tree containing key value pairs

of [MemoryAddress, Value]

Global Variables

currentTxNumber : Atomic Integer - Number that identifies the range\_begin of

the transaction that is next to commit
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Algorithm 2: commit Instrumentation for LAZY

Algorithm 2: Commit intstumentation for LAZY

AW N =

10

11
12
13
14

function TRYCOMMIT()

if tx.redolog_bst.isEmpty() then
clear readlog

currentOrder Number = tx.range_end
return true

for all redolog items do
L write changes to memory locations

Get a commit time
Validate no one interleaved and committed since start

if Invalidated then
| returnfalse

for each in writeLog do
| store

clear all logs

return our commit time

currentOrder Number = tx.range_end
return {rue
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Listing 3: ML Metadata

Thread Variables

range_begin : Integer - Number specifying the start iteration number of the
parallel_for loop from TBB

range_end : Integer : - Number specifying the last iteration number +1 of the
parallel_for loop from TBB

range_grainsize : Long Unsigned - Number of iterations a thread should
handle, specified in parallel_for from TBB

Global Variables

abortFlag : Atomic Boolean - Flag to stop all transactions from working and
ensure progress is made

currentTxNumber : Atomic Integer - Number that identifies the range\_begin of

the transaction that is next to commit

32



Listing 3: Oancealite Metadata

Thread Variables

range_begin : Integer - Number specifying the start iteration number of the
parallel_for loop from TBB

range_end : Integer : - Number specifying the last iteration number +1 of the
parallel_for loop from TBB

range_grainsize : Long Unsigned - Number of iterations a thread should
handle, specified in parallel_for from TBB

local_abort_count : Atomic Integer - The transaction local count of abort
sequences that have occured

is_abort : Atomic Boolean - The flag that indicates if this transaction has
aborted during this sequence

is_active : Atomic Boolean - The flag that indicates if this transaction as
entered the transaction pool

master_index : Integer - The number in the master array that this transaction

should log its reads and writes

Hybrid_Word Variables
lock : Atomic Boolean - A Boolean that indicates if this word is being editted
read_log[] : Atomic Integer Array - An array of length: maximum transaction

count. Holds the record of who has read this orec
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write_log : Atomic Integer Array - An array of length: maximum transaction

count. Holds the record of who has written this orec

Global Variables

abortFlag : Atomic Boolean - Flag to stop all transactions from working and
ensure progress is made

currentTxNumber : Atomic Integer - Number that identifies the range\_begin of
the transaction that is next to commit

globalAbortNum : Atomic Integer - The number that identifies the
range\_begin of the transaction that started the abort sequence

globalAbortCount : Atomic Integer - The number that counts how many abort

sequences have happened
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Algorithm 3: Pre-Write, TryCommit and Roll-Back instrumentation for

Oancealite

Algorithm 3: Pre-Write, TryCommit, Roll-Back intstumenta-
tion for OANCEALITE

function TXWRITEOANCEA()
1 check AbortSequence()

2 for eachorectoload do

// Tries to lock orec, if exceeds a TRYLIMIT will
abort and begin an abortSequence
acquireOrec()

if is_write_con flict() then
release_current_orec()

abortProtocol()

else if is_read_con flict() then
release_current_orec()

| abortProtocol ()
10 else

A Ui A W

o 0 2

// Success: No conflict found

// Saves the orec memory location and prior
value there

1 tz.add to_writelog()

// Puts own number into exploded orec in its
owned master_index

12 orec.write_log[tz.master_index] =
tz.range_begin

13| t:v_.undo_log.log()

function TXCOMMITOANCEA()
1 if abortFlag == true then
2 | abortFlag = false

3 currentOrder Number = tx.range_end

function TXROLLBACKOANCEA()
1 if abortFlag == true then
2 | abortFlag = false

3 currentOrder Number = tx.range_end
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Table 1: Non-overlapping Benchmark Results

Method Average Speedup
HTM 0.8642
LAZY 0.1631
ML 0.1684
OANCEALITE 0.0079
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Table 2: Overlapping Benchmark Results

Method Average Speedup
Overlapping Look-ahead

HTM 0.8149
LAZY 0.1517
ML 0.1672
OANCEALITE 0.0073
Overlapping Look-behind

HTM 0.8112
LAZY 0.1518
ML 0.1673
OANCEALITE 0.0073
Overlapping Look-both

HTM 0.8136
LAZY 0.1567
ML 0.1669
OANCEALITE 0.0076
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