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Abstract 

In this thesis, we analyze multi-agent systems under the leader/follower control scheme. We take 

a graph-theoretic approach to defining the system which allows us to create a state-space 

representation of the agents. Using this model we can consider the group of agents as a linear time-

invariant system under point mass dynamics. Linear control theory is used to examine the 

controllability of these systems. Uncontrollability from graph topology and symmetry is also 

explored. The process of electing both an optimal leader and set of optimal leaders to bring the 

agents to a consensus is investigated. Conditions of optimality require the leaders to minimize a 

cost function while simultaneously leading to a controllable network. At the end, we decompose 

the cost index in such a way as to show its relation to the underlying commutation graph of the 

network and the desired location of the agents. Finally, we demonstrate how varying the weights 

and the leader configuration affects the performance of the network.  
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Chapter 1:  Background 

1.1 Introduction 

Over recent decades networked systems have dramatically increased in size [15].  Consequently, 

so has their computational complexity [16] and [17]. Problems such as scalability, controllability 

and energy management arose to the forefront, which required a new computing paradigm to solve 

[11], [14], [18], [19] and [21]. Hence, the multi-agent system emerged as a viable model to tackle 

these serious and important problems. A multi-agent system, in this context, is a computerized 

system that is comprised of multiple intelligent agents who are able to cooperate, communicate 

and exercise control over their behavior to reach a consensus. An agent can either be a human or 

autonomous robot. Other than computational efficiency and robustness, another advantage to using 

a multi-agent system is that it is a decentralized architecture, thereby providing immunity to the 

“single point of failure” problem.  

Some of the many applications which utilize multi-agent systems include formation achievement 

and control of mobile robotics, traffic telematics and intelligent manufacturing systems (IMS) [20] 

and [23]. There exists three main methods to control a multi-agent system: Leader/follower, 

Virtual Structure and Behavioral. [2], [3] and [7] use the leader/follower approach where a single 

agent is selected as a leader while the remaining agents are designated as followers which move 

based on the leader’s movements. The virtual structure method dictates that the agents attempt to 

maintain a semi-rigid geometric relationship with respect to each other and to a frame of reference 

[4]. Finally the behavioral control scheme focuses on goal oriented behaviors which is analogous 

to the flocking of birds and schooling of fish [5]. This thesis contains aspects of all three 

approaches but primarily deals with the leader/follower dynamic under which the follower agents 

execute a linear consensus algorithm [22].  
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Energy management plays a crucial role in the efficacy of multi-agent systems under the 

leader/follower control paradigm. An optimal leader or leaders must be chosen for this particular 

model in order to minimize the energy expelled by the agents. A leader is optimal if it leads to a 

controllable network and simultaneously minimizes the cost of reaching a target for all the other 

agents in the network [7]. The process of choosing an optimal leader or leaders is not simple and 

becomes more complicated as the size of the network increases. There are many ways to approach 

this optimization problem. The algebraic Riccati equation can be applied in order to find an optimal 

leader [8]. However, this method has a major drawback in that it becomes computationally 

impractical for large-scale networks. One can use matroid optimization to find the optimal leaders, 

but again, this is an iterative process which can fall victim to computational problems [14]. 

However, with use of submodular relaxation the matroid optimization framework can be 

computationally viable.  

 

1.2 Algebraic Graph Theory 

Algebraic graph theory serves as the mathematical tool to describe the interactions and information 

exchange between the agents. It is the mathematical foundation for analyzing the dynamics of 

multi-agent systems under leader/follow control. The purpose of this section is to present the 

preliminaries of algebraic graph theory as it pertains to these specific topics. For a more detailed 

and expansive review of this branch of mathematics refer to [9].  

An undirected graph 𝐺 consists of a node set 𝑁 and an edge set 𝐸. An edge is an unordered pair of 

two distinct nodes in the graph 𝐺 such that if  𝑖, 𝑗 ∊ 𝑁 and (𝑖, 𝑗) ∊ 𝐸 then 𝑖 and 𝑗 are neighbors 

denoted by 𝑖 ~ 𝑗.  For a weighted graph each edge is assigned a weight 𝑤𝑖𝑗. The weights discussed 
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in this thesis are non-negative numbers representing the strength of sensing between neighboring 

nodes. 

  

 

 

 

The degree or valency of a node is the number of neighbors it has. We define the valency 

matrix ∆(𝐺) of a graph 𝐺 as a diagonal matrix in which the (𝑖, 𝑖)-entry is the valency of node 𝑖. 

The adjacency matrix 𝐴(𝐺) holds the information on the weights in a graph 𝐺.  

The adjacency matrix 𝐴(𝐺) is defined as 

𝐴(𝐺)(𝑖,𝑗) = {
𝑤𝑖𝑗            (𝑖, 𝑗) ∊ 𝐸

0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 where 𝑤𝑖𝑗 ∊ ℝ ∶  𝑤𝑖𝑗 > 0. This matrix is symmetric; therefore, it has the property (𝑖, 𝑗) = (𝑗, 𝑖). 

A graph 𝐺 is connected if there exists a path between any two nodes. The Laplacian of a graph is 

defined as 

𝐿(𝐺)(𝑖,𝑗) =

{
 
 

 
 ∑𝑤𝑖𝑗

𝑖≠𝑗

           𝑖 = 𝑗

−𝑤𝑖𝑗            (𝑖, 𝑗) ∊ 𝐸

0               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The Laplacian has many special properties such as always being positive semi-definite, symmetric 

and where the multiplicity of its zero eigenvalue is equal to the number of connected components 

in the graph.  

Figure 1: Depiction of nodes and edges   
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1.3 Common Graph Topologies 

There exists around eight basic network topologies. I will present four of the most common ones. 

If the reader is interested they may find all of them in [9].  

 

 

 

 

1.4 General Dynamics of Agents 

Each agent is modeled as a point mass with consensus dynamics defined as 

�̇�𝑖 = 𝑛𝑖  

where  

𝑛𝑖 = −∑𝑤𝑖𝑗(𝑥𝑖 − 𝑥𝑗)

𝑖~𝑗

 

which can be rewritten as 

�̇� = −𝐿𝑥 

where 𝐿 ∊ ℝ𝑁×𝑁 is the Laplacian of the system and 𝑁 is the number of agents. The effect of 𝑛𝑖 is 

that neighboring agents will try to converge to each other’s position. How fast they converge is 

dependent on the weight 𝑤𝑖𝑗 and the distance between them.   

 

Figure 2: Ring Graph   Figure 4: Path Graph  Figure 3: Star Graph   Figure 5: Complete Graph   
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1.5 Dynamics of Agents under Leader/Follower Control 

When an agent is chosen as a leader it no longer converges to other agents. More precisely, if 

agent 𝛼 is chosen as a leader then  

�̇�𝛼 = 0 

now the system can be rewritten as 

�̇� = −𝑆𝑥 

where 𝑆 ∊ ℝ𝑁×𝑁 is the Laplacian matrix where the row associated with the leader is replaced with 

zeros. The control input 𝑢 is given only to the leaders. Therefore, the group dynamics are written 

as 

�̇� = −𝑆𝑥 + 𝐵𝑙𝑢 

where 𝐵𝑙 is the input matrix defined as 

𝐵𝑙(𝑖,𝑗) = {
1           𝑖 = 𝑗 𝑎𝑛𝑑 𝑛𝑜𝑑𝑒 𝑖 𝑖𝑠 𝑎 𝑙𝑒𝑎𝑑𝑒𝑟
0                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Using this scheme the leaders can only manipulate the movements of the followers through 

movement alone. Hence, the leaders show the agents where to go rather than telling them directly.  

 

1.6 Controllability Gramian 

In control theory, the controllability Gramian 𝑊𝑐 is used to determine whether a LTI (linear time-

invariant) system is controllable or not. Given a LTI system with initial conditions equal to zero  

�̇� = 𝐴𝑥 + 𝐵𝑢 



7 
 

the controllability Gramian is 

𝑊𝑐 = ∫ 𝑒𝐴𝜏𝐵𝐵𝑇𝑒𝐴
𝑇𝜏𝑑𝜏

𝑡𝑓

0

 

The LTI system is controllable if and only if 𝑊𝑐 is positive definite. In order to be positive definite 

𝑊𝑐 must satisfy 

𝑥𝑇𝑊𝑐𝑥 > 0 

If all the eigenvalues of 𝐴 lie in the left-half plane then 𝑊𝑐 is the unique solution to the Lyapunov 

equation  

𝐴𝑊𝑐 + 𝑊𝑐𝐴
𝑇 = −𝐵𝐵𝑇 

 

1.7 Minimum Energy Control 

For a LTI system a control input 𝑢 can be constructed such that it will take the system to a desired 

state 𝑥𝑓 with a minimum expenditure of energy. With initial conditions set to zero, this control 

input 𝑢 is defined as 

𝑢 = 𝐵𝑇𝑒𝐴
𝑇(𝑡𝑓−𝑡)𝑊𝑐−1𝑥𝑓 

Note that 𝑊𝑐
−1only exists if and only if 𝑊𝑐 is positive definite. Therefore, this input can only be 

constructed for controllable systems.  
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Chapter 2: Controllability of Leader Based Networks 

2.1 Structural Controllability 

Before the question of how to control a system is posed, we must ask if the system is able to be 

controlled.  To find out the controllability of the Multi-Agent System we must analyze its graph 

topology along with the weights of the edges. The topology is dependent on the arrangement of 

agents and which of them are sensing each other. And the weight assignment is based upon how 

strong the sensing is between particular nodes.  

A system is considered to be structurally controllable if there exists non-zero weights such that the 

system is able to be controlled [7]. The graph topology determines if there can exist a weighting 

scheme such that will lead to a structurally controllable system [7]. Consider the Leader-based 

system with fixed weights 𝑤𝑖𝑗 

�̇� = −𝑆𝑥 + 𝐵𝑙𝑢 

Lemma 1 from [7] states that this system is controllable if the controllability matrix 𝐾 defined as  

𝐾 = [𝐵𝑙   𝑆𝐵𝑙   …  𝑆
𝑁−1𝐵𝑙]    

is full rank where 𝑁 is the number of agents in the network. This lemma is analogous to the 

controllability matrix found in linear system control theory [10] where a given LTI system 

�̇� = 𝐴𝑥 + 𝐵𝑢 

is controllable if the matrix  

[𝐵  𝐴𝐵…𝐴𝑁−1𝐵] 
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has an inverse which is equivalent to having full rank. Note that once the weighting is fixed the 

leader-based system is a LTI system. Therefore, additional conditions are necessary to determine 

structural controllability for leader-based multi-agent systems when weights are not fixed. Lemma 

3 from [7] states that the pair (𝑆, 𝐵𝑙) is structurally controllable if and only if it is neither reducible 

or can be written as   

𝑄 = (
𝑄11
𝑄22

) 

where 𝑄22 ∊ ℝ
(𝑁−𝑝)×𝑁 and 𝑄11 ∊ ℝ

𝑝×𝑁  with at maximum (𝑝 − 1) nonzero entries and the rest 

of the columns are all zero. Reducible is defined in [11] as 

𝐿 = [
𝐿11 0
𝐿21 𝐿22

],                           𝐵𝑙 = [
0
𝐵𝑙22

] 

where 𝐿11 ∊ ℝ
𝑝×𝑝 , 𝐿21 ∊ ℝ

(𝑁−𝑝)×𝑝, 𝐿22 ∊ ℝ
(𝑁−𝑝)×(𝑁−𝑝) and 𝐵𝑙22 ∊ ℝ

(𝑁−𝑝)×𝑁. If a system 

satisfies any of these two conditions, no weighting scheme can make the system controllable. As 

a consequence some topologies are impossible to control, no matter the weighting scheme, using 

leader/follower control. This section makes clear that the topology of the network affects the ability 

to control the system.  

 

2.2 Popov-Hautus-Belevitch (PHB) Test 

From linear systems theory, we can use the Popov–Hautus–Belevitch (PHB) test to determine 

controllability of our LTI system [10]. The system  

�̇� = −𝑆𝑥 + 𝐵𝑙𝑢 

is uncontrollable if and only if there exists a left eigenvector 𝑣𝑇 of 𝑆 such that  
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𝑣𝑇𝐵𝑙 = 0 

Since 𝑆 is a symmetric matrix, its left and right eigenvectors are the same.  Thus, the condition 

transforms into if any eigenvector of – 𝑆 is orthogonal to 𝐵𝑙 the system is uncontrollable. Note 

that this is equivalent to the controllability matrix   

[𝐵𝑙   𝑆𝐵𝑙   …  𝑆
𝑁−1𝐵𝑙]    

being full rank since 𝑆 can be eigen-decomposed into 𝑉Ω𝑉−1 where 𝑉 is defined as the matrix 

comprising the eigenvectors of 𝑆 

𝑉 = [𝑣1 𝑣2 … 𝑣𝑁] 

and Ω is the diagonal matrix comprising the eigenvalues of 𝑆 

Ω = [

𝜆1 0 … 0
0 𝜆2 … 0
⋮ 0 ⋱ ⋮
0 0 … 𝜆𝑁

] 

Now using the fact that 𝑆 is a real symmetric matrix 𝑉Ω𝑉−1 can be re-written as 𝑉Ω𝑉𝑇 where 𝑉𝑇 

is 

𝑉𝑇 =

[
 
 
 
𝑣1
𝑇

𝑣2
𝑇

⋮
𝑣𝑁
𝑇]
 
 
 
 

Thus, the controllability matrix can be written as 

[𝐵𝑙   𝑉Ω𝑉
𝑇𝐵𝑙…  𝑉Ω

𝑁−1𝑉𝑇𝐵𝑙] 

where 𝑉𝑇𝐵𝑙 is defined as  
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[
 
 
 
𝑣1
𝑇

𝑣2
𝑇

⋮
𝑣𝑁
𝑇]
 
 
 
𝐵𝑙 =

[
 
 
 
𝑣1
𝑇𝐵𝑙
𝑣2
𝑇𝐵𝑙
⋮

𝑣𝑁
𝑇𝐵𝑙]

 
 
 
 

if one of the eigenvectors of 𝑆 is orthogonal to 𝐵𝑙 it is obvious that  

[𝐵𝑙   𝑉Ω𝑉
𝑇𝐵𝑙…  𝑉Ω

𝑁−1𝑉𝑇𝐵𝑙] 

cannot be full rank. Therefore the PHB test and the controllability matrix rank test are 

equivalent.  

 

2.3 Uncontrollability from Leader Symmetry 

Sometimes a graph topology might be controllable only if certain agents are selected as leaders. 

With these networks we need find conditions to test if an agent is a viable leader candidate. 

Propositon 5.8 from [12] states that the system  

�̇� = −𝑆𝑥 + 𝐵𝑙𝑢 

is uncontrollable if it is leader symmetric. A system is leader symmetric if it can be written as  

𝐽𝑆 = 𝑆𝐽    𝑎𝑛𝑑    𝐽𝐵𝑙 = 𝐵𝑙
𝑇𝐽 = 𝐵𝑙 

where 𝐽 ∊ ℝ𝑁×𝑁 is a {0,1} non-identity permutation matrix with a single non-zero entry in each 

row and column [12]. Through eigendecomposition of 𝑆 it can be proved this will lead to an 

uncontrollable system. From  

𝐽𝑆 = 𝑆𝐽 

we can write 𝑆 as  
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𝑆 = 𝐽𝑆𝐽−1 

thereby we can find a right eigenvector 𝑣 of 𝑆 by 

𝑆(𝐽𝑣) = 𝜆(𝐽𝑣) 

Thus, 𝐽𝑣 is an eigenvector of 𝑆 corresponding to the eigenvalue λ. Since λ is distinct and all of 𝑆’s 

eigenvectors are orthonormal to each other, there exists another right eigenvector of 𝑆 defined 𝑣 −

𝐽𝑣 [12]. Now using the PHB test we have 

(𝑣 − 𝐽𝑣)𝑇𝐵𝑙 = 𝑣
𝑇𝐵𝑙 − 𝑣

𝑇𝐽𝑇𝐵𝑙 = 𝑣
𝑇𝐵𝑙 − 𝑣

𝑇𝐵𝑙 = 0 

which results in an uncontrollable system.  

Note that all leader symmetric systems are uncontrollable. However, the inverse is not true. You 

can have an uncontrollable system that is leader asymmetric. Hence, Proposition 5.9 from [12] 

states that leader symmetry is not a necessary condition for the uncontrollability of a system. The 

proof can be found in [12] if the reader is interested.  

 

2.4 Uncontrollability due to Graph Topology 

There exists graph topologies that cannot be controlled by a single leader in an unweighted 

network, the complete graph being the most well-known among these special cases. Theorem 

IV.1 from [3] states that the system  

�̇� = −𝑆𝑥 + 𝐵𝑙𝑢 
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is controllable if and only if the eigenvalues of 𝑆 are all distinct and the corresponding 

eigenvectors are not orthogonal to 𝐵𝑙. Now, take a complete graph 𝐺𝑐 with 𝐿𝑐 as its resulting 

Laplacian where 𝐿𝑐 can be written as  

𝐿𝑐 = 𝑁𝐼𝑁 − 1
𝑇
𝑁1𝑁 

where 𝑁 is the number of agents, 𝐼𝑁 is a 𝑁-dimenisonal identity matrix and 1𝑁 is the column vector 

of ones. Now, no matter which agent is chosen as a leader the resultant 𝑆𝑐 matrix will have spectra 

{
1

𝑁
, 1(𝑁−2)} [3]. As a consequence this would produce a multiplicity of the eigenvalue value 1 

which violates Theorem IV.1 from [3], thus making the system uncontrollable. Note that if 𝑁 = 2, 

the trivial case, this result does not hold meaning the system would be controllable.  

Another uncontrollable network topology is the ring graph. Proposition 5.15 from [12] states that 

a ring graph, with one leader, is never controllable. This is due to the fact that no matter what 

agent is chosen as a leader the system  

�̇� = −𝑆𝑥 + 𝐵𝑙𝑢 

is leader symmetric and thus uncontrollable. The proof is derived using Proposition 5.13 in [12] 

which states that the system 

�̇� = −𝑆𝑥 + 𝐵𝑙𝑢 

is leader symmetric if and only if there is a nonidentity automorphism for the follower graph 𝐺𝑓 

such that the indicator function remains invariant under its action. An automorphism is a term that 

describes a mapping of a system to itself while simultaneously preserving its structure.  The 

indicator function 𝛿 is a way to track which nodes are neighbors with the leader. Thus, the indicator 

function 𝛿 for this system is defined as the column vector 
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𝛿(𝑖) = {
1      𝑖𝑓 𝑛𝑜𝑑𝑒 𝑖~𝑙𝑒𝑎𝑑𝑒𝑟 𝑛𝑜𝑑𝑒 
0                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Now consider a ring graph with 𝑁 nodes. Without loss of generality, choose a node to be a leader 

and label it “1”. Then index the remaining follower nodes in a clockwise fashion. This results in 

an indicator function vector 

𝛿 = [1,0, … 0,1]𝑇 

since the leader is neighbors with node 2 and node 𝑁. Using the permutation 

𝑖 → 𝑁 − 𝑖 + 2  for 𝑖 = 2,… . , 𝑁 

is an automorphism of the follower graph 𝐺𝑓 [12]. During this permutation, the leader is still 

connected to node 2 and 𝑁 thus the indicator function is time-invariant. We can conclude that the 

system is leader symmetric and thus uncontrollable.  
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Chapter 3: Leader Selection Processes 

3.1 Optimal Leader Election using Riccati Equation 

The process of finding an optimal leader begins once the controllability of the network has been 

established and verified. Neglecting the trivial case in which only one node can become leader, an 

optimization problem is formulated to seek out the best leader in the group. When discussing the 

topic of optimality one must create an objective function to minimize or maximize and constraints 

to bound the problem in order have proper conditions of optimal.  In [8] the objective function to 

be minimized is  

𝐽 = ∫ (𝑢𝑇𝑅𝑢 + 𝑥𝑇𝑄𝑥)𝑑𝑡
∞ 

0

 

where 𝑢 is the control input, 𝑅 is a positive definite symmetric matrix, 𝑄 is a positive semi-definite 

symmetric matrix and 𝑥 is the state of the system defined as 

�̇� = −𝑆𝑥 + 𝐵𝑙𝑢 

[8] assumes the velocity of the agents to be unconstrained and the time allotted for the agents to 

obtain the desired states is infinite. From [13] the optimal control input 𝑢 which minimizes 𝐽 is 

𝑢 = −𝑅−1𝐵𝑙
𝑇𝑃𝑥 

where 𝑃 is found by solving the algebraic Riccati equation  

−𝑆𝑇𝑃 − 𝑃𝑆 − 𝑃𝐵𝑙𝑅
−1𝐵𝑙

𝑇𝑃 + 𝑄 = 0 

Any leader candidate who minimizes 𝐽 is elected as the optimal leader. However, for a network 

with many nodes this process of election becomes computationally impractical. Thus, 

development of a method which utilizes the graph’s properties to determine optimality might be 
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more efficient. [8] poses that the leader node with highest degree, most neighbors, and closeness 

centrality, connected to the most important edges, is most cost-optimal. It should be noted that 

this conclusion was found using statistical methods.   

 

3.2 Optimal Set of Leaders Election using Matroid Optimization Framework 

In [14] they design their matroid optimization framework with the following criteria: the leader 

set 𝑆 cannot exceed a fixed number 𝑘,  the system should be controllable under the selected leaders 

and the leaders should minimize the supermodular objective function 𝑓(𝑆). Thus, the optimization 

problem is  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑆) 
𝑆         

  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     |𝑆| ≤ 𝑘 

𝑆 ∊ 𝐶 
 

Where 𝐶 is the set of leaders that lead to a controllable network. They pose a general algorithm 

which uses a graph theoretic approach to determine controllability at each iteration, and then check 

if they minimize the cost function when added to the set of leaders. If they do not minimize the 

function they are discarded and the algorithm moves to the next leader. This process continues 

until the set of leaders is exhausted or the maximum number of leaders 𝑘 are elected. The details 

of [14] are not presented here due to the extensive amount of mathematical background needed to 

cover this topic. 4.2 acts as devil’s advocate to the optimization problem of leader selection using 

linear algebra methods.  
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3.3 Matroid Optimization with Submodular Relaxation 

There are some cases in which a fixed number of leaders 𝑘 cannot fully control a network. Thus, 

the aim is then to find the set of leaders 𝑆 that can control most of the follower nodes. [14] 

introduces a term called the graph controllability index (𝐺𝐶𝐼) which represents the fraction of 

nodes controlled by a particular set of leaders. It is defined as  

𝐺𝐶𝐼 =
𝑐(𝑆)

𝑁
 

where 𝑁 is the number of nodes in the graph and 𝑐(𝑆) is the number of nodes that can be controlled 

by the set of leaders. Note that 𝐺𝐶𝐼 is equal to 1 when the leader set can control all the nodes in 

the graph. Using the notation of 4.2 we can formulate this optimization problem as 

Figure 6: Pseudocode for selecting a set of leaders [14]  
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𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒  
𝑐(𝑆)

𝑁
− Ω𝑓(𝑆) 

𝑆                              

  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     |𝑆| ≤ 𝑘 

where Ω is a nonnegative constant. Under this formulation the goal is to find the set of leaders that 

controls the most nodes, maximizing controllably, while being subject to the penalty of the cost 

function. The severity of the cost penalty is tuned using Ω. Now if  
𝑐(𝑆)

𝑁
 is a submodular function 

of 𝑆 and Ω𝑓(𝑆) is supermodular function of 𝑆 then 
𝑐(𝑆)

𝑁
− Ω𝑓(𝑆) is submodular and as a result 

efficient algorithms can now be used to solve such a problem [14].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Pseudocode for selecting a set of leaders to maximize controllability [14]  
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Chapter 4: Results and Conclusions 

4.1 Cost Index Minimization via Minimum Energy Control 

Consider a controllable system of the form  

�̇� = −𝑆𝑥 + 𝐵𝑙𝑢 

where initial conditions are equal to zero and given control input 𝑢  

𝑢 = 𝐵𝑙
𝑇𝑒−𝑆

𝑇(𝑡𝑓−𝑡)𝑊𝑐−1𝑥𝑓 

where 𝑥𝑓 is the desired state of the agents. With the cost index 𝐽 

𝐽 = ∫ 𝑢𝑇𝑢
∞

0

𝑑𝑡 = 𝑥𝑓
𝑇𝑊𝑐

−1𝑥𝑓 

we can relate 𝐽 to the eigenvalues and eigenvectors of the Gramian matrix. Since the system is 

controllable the Gramian is full rank and spans ℝ𝑁. Thus, the desired state of the agents can be 

written as a weighted linear sum of the Gramian’s eigenvectors.  

𝑥𝑓 = 𝛼1𝑣1 + 𝛼2𝑣2 +⋯+ 𝛼𝑁𝑣𝑁 

where 𝛼𝑖 are constants and 𝑣𝑖 are the eigenvectors of the Gramian matrix. Now, 𝐽 can be 

rewritten as  

𝐽 = ∫ 𝑢𝑇𝑢
∞

0

𝑑𝑡 = 𝑥𝑓
𝑇𝑊𝑐

−1𝑥𝑓 =
𝛼1

2

𝜆1
+
𝛼2

2

𝜆2
+⋯+

𝛼𝑁
2

𝜆𝑁
 

where 𝜆𝑖 are the eigenvalues of the Gramian. From here it is clear that a 𝑥𝑓 which lies in the 

direction of the eigenvector corresponding with the largest eigenvalue minimizes 𝐽. The 

eigenvalues of the Gramian can be altered by changing the weights on the edges connecting the 
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nodes. Also, the eigenvalues can be affected by which agents are leaders. Thus, from here we 

have two ways to minimize 𝐽 given a desired state 𝑥𝑓.  

 

4.2 Simulation Results from varying Leaders 

 

 

 

Without loss of generality, we can simulate in the 2-D case where the agents’ 𝑥 and 𝑦 positions 

are controlled by the same dynamics. Thus, the system has the form  

�̇� = −𝑆𝑥 + 𝐵𝑙𝑢𝑥                      

�̇� = −𝑆𝑦 + 𝐵𝑙𝑢𝑦                       

Case 1: Consider Figure 8 with node 1 being selected as the leader and assume weights 𝐶1 =

𝐶2 = 1. Therefore the resultant 𝑆 and 𝐵𝑙 matrices will be  

𝑆 = [
0 0 0
−1 2 −1
0 −1 1

] 

𝐵𝑙 = [
1 0 0
0 0 0
0 0 0

] 

Now take 𝑥𝑓 and 𝑦𝑓 to be 

𝑥𝑓 = [
1
2
3
]           𝑦𝑓 = [

5
5
5
] 

Figure 8: Path graph of three nodes  
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With control input 𝑢 respectively  

𝑢𝑥 = 𝐵𝑙
𝑇𝑒−𝑆

𝑇(𝑡𝑓−𝑡)𝑊𝑐−1𝑥𝑓                𝑢𝑦 = 𝐵𝑙
𝑇𝑒−𝑆

𝑇(𝑡𝑓−𝑡)𝑊𝑐−1𝑦𝑓  

 

 

 

 

 

 

 

Figure 9: Path graph of three nodes with node 1 selected as a leader  

Figure 10: Position of agents at specific time intervals for Case 1 
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The eigenvalues of the Gramian are  

𝜆 = [
51.7427
0.7511
0.0100

] 

and the 𝛼𝑖 constants that relate the desired x and y locations to the eigenvectors of the Gramian 

are 

𝛼𝑥 = [
−3.3899
1.5451
0.3482

]    𝛼𝑦 = [
−8.6494
0.4330
0.0300

]       

Note that in Figure 10 and Figure 11, the leader node needs to swing a considerable distance from 

its optimal trajectory (straight-line) to put the followers in their desired locations. This 

consequently requires the leader to expend excess energy. The cost index for this case is 𝐽1 =

 17.2575. 

Figure 11: Trajectory of agents for Case 1 
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Case 2: Consider Figure 8 with nodes 1 and 3 being selected as the leaders and assume weights 

𝐶1 = 𝐶2 = 1. Therefore the resultant 𝑆 and 𝐵𝑙 matrices will be  

𝑆 = [
0 0 0
−1 2 −1
0 0 0

] 

𝐵𝑙 = [
1 0 0
0 0 0
0 0 1

] 

Now take 𝑥𝑓 and 𝑦𝑓 to be 

𝑥𝑓 = [
1
2
3
]           𝑦𝑓 = [

5
5
5
] 

With control input 𝑢 respectively  

𝑢𝑥 = 𝐵𝑙
𝑇𝑒−𝑆

𝑇(𝑡𝑓−𝑡)𝑊𝑐−1𝑥𝑓                𝑢𝑦 = 𝐵𝑙
𝑇𝑒−𝑆

𝑇(𝑡𝑓−𝑡)𝑊𝑐−1𝑦𝑓 

 

 

Figure 12: Path graph of three nodes with node 1 and 3 selected as leaders  
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Figure 13: Position of agents at specific time intervals for Case 2 

Figure 14: Trajectory of agents for Case 2 
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The eigenvalues of the Gramian are  

𝜆 = [
0.0805
20.00
29.5442

] 

And the 𝛼𝑖 constants that relate the desired x and y locations to the eigenvectors of the Gramian 

are 

𝛼𝑥 = [
−0.0347
1.4142
3.4639

]    𝛼𝑦 = [
−0.0867

0
8.6598

]       

Note that in Figure 13 and Figure 14, the leaders and followers follow an optimal trajectory. 

Comparing with Figure 10 and Figure 11 it seems that the two leader case allows the agents to get 

to the desired location better than the single leader case. This observation is proven by looking at 

the cost index for this case which is 𝐽2 = 3.1526. 

The 𝛼𝑖 constants for case 2 are of lesser value than in case 1. Also, the numerical eigenvalues of 

the Gramian Matrix are distributed more uniformly across the eigenvectors than in case 1. These 

two facts are the reasons why the cost index 𝐽2 is much less than 𝐽1. We can then conclude that 

having two leaders placed at the ends of the graph will lead to a more optimal system when it 

comes to minimizing energy of the leaders. 

 

4.3 Simulation Results from varying Weights 

Case 1: Consider Figure 8 with node 3 being selected as the leader and assume weights 𝐶1 = 𝐶2 =

1. Therefore the resultant 𝑆 and 𝐵𝑙 matrices will be  
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𝑆 = [
1 −1 0
−1 2 −1
0 0 0

] 

𝐵𝑙 = [
0 0 0
0 0 0
0 0 1

] 

Now take 𝑥𝑓 and 𝑦𝑓 to be 

𝑥𝑓 = [
1
2
3
]           𝑦𝑓 = [

5
5
5
] 

With control input 𝑢 respectively  

𝑢𝑥 = 𝐵𝑙
𝑇𝑒−𝑆

𝑇(𝑡𝑓−𝑡)𝑊𝑐−1𝑥𝑓                𝑢𝑦 = 𝐵𝑙
𝑇𝑒−𝑆

𝑇(𝑡𝑓−𝑡)𝑊𝑐−1𝑦𝑓  

 

 

 

 

 

 

 

 

 

 

Figure 15: Path graph of three nodes with node 3 selected as a leader  
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Figure 16: Position of agents at specific time intervals for Case 1  

Figure 17: Trajectory of agents for Case 1 
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The eigenvalues of the Gramian are  

𝜆 = [
51.7427
0.7511
0.0100

] 

And the 𝛼𝑖 constants that relate the desired x and y locations to the eigenvectors of the Gramian 

are 

𝛼𝑥 = [
−3.5296
1.1987
−0.3242

]    𝛼𝑦 = [
−8.6494
−0.4330
0.0300

] 

Note the similarities between case 1 of section 4.2 and case 1 of section 4.3. As such the cost 

index for this case is 𝐽1 = 14.4062.  

Case 2: Now assume weights 𝐶1 = 𝐶2 = 5. Therefore the resultant 𝑆 and 𝐵𝑙 matrices will be  

𝑆 = [
5 −5 0
−5 10 −5
0 0 0

] 

𝐵𝑙 = [
0 0 0
0 0 0
0 0 1

] 

Now take 𝑥𝑓 and 𝑦𝑓 to be 

𝑥𝑓 = [
1
2
3
]           𝑦𝑓 = [

5
5
5
] 

With control input 𝑢 respectively  

𝑢𝑥 = 𝐵𝑙
𝑇𝑒−𝑆

𝑇(𝑡𝑓−𝑡)𝑊𝑐−1𝑥𝑓                𝑢𝑦 = 𝐵𝑙
𝑇𝑒−𝑆

𝑇(𝑡𝑓−𝑡)𝑊𝑐−1𝑦𝑓  
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Figure 18: Path graph of three nodes with node 3 selected as a leader  

Figure 19: Position of agents at specific time intervals for Case 2  

Figure 20: Trajectory of agents for Case 2 
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The eigenvalues of the Gramian are  

𝜆 = [
58.3254
0.1715
0.0021

] 

And the 𝛼𝑖 constants that relate the desired x and y locations to the eigenvectors of the Gramian 

are 

𝛼𝑥 = [
−3.4762
1.3459
−0.3231

]    𝛼𝑦 = [
−8.6599
−0.0760
0.0047

] 

The cost index for this case is 𝐽2 = 61.3575 which is significantly higher than case 1. Therefore, 

increasing the weights consequently increases the cost index for these two cases. As observed, by 

increasing the weights the 𝛼𝑖 increased and the second and third eigenvalues of the Gramian 

dramatically decreased, thereby causing the cost index to increase. This is a sub-optimal leader 

configuration, as proven in section 4.2. Thus, it makes intuitive sense that increasing the weights 

has a negative effect on the performance of the network. 

Case 3: Consider Figure 8 with node 1 and 3 being selected as the leaders and assume weights 

𝐶1 = 𝐶2 = 5. Therefore the resultant 𝑆 and 𝐵𝑙 matrices will be  

𝑆 = [
0 0 0
−5 10 −5
0 0 0

] 

𝐵𝑙 = [
1 0 0
0 0 0
0 0 1

] 

Now take 𝑥𝑓 and 𝑦𝑓 to be 
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𝑥𝑓 = [
1
2
3
]           𝑦𝑓 = [

5
5
5
] 

With control input 𝑢 respectively  

𝑢𝑥 = 𝐵𝑙
𝑇𝑒−𝑆

𝑇(𝑡𝑓−𝑡)𝑊𝑐−1𝑥𝑓                𝑢𝑦 = 𝐵𝑙
𝑇𝑒−𝑆

𝑇(𝑡𝑓−𝑡)𝑊𝑐−1𝑦𝑓 

 

 

 

 

 

 

Figure 21: Path graph of three nodes with node 1 and 3 selected as leaders 

Figure 22: Position of agents at specific time intervals for Case 3  
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The eigenvalues of the Gramian are  

𝜆 = [
0.0167
20.00
29.9080

] 

And the 𝛼𝑖 constants that relate the desired x and y locations to the eigenvectors of the Gramian 

are 

𝛼𝑥 = [
−0.0069
1.4142
3.4641

]    𝛼𝑦 = [
−0.0171

0
8.6602

]       

The cost index for this case is 𝐽3 = 3.0293. So here increasing the weights reduced the cost index 

because the 𝛼𝑖 were reduced when the weights were increased. This is an optimal leader 

configuration, as proven in section 4.2. Thus, it also makes intuitive sense that increasing the 

weights in this case has a positive effect on the performance of the network. Thus, increasing 

Figure 23: Trajectory of agents for Case 3 
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weights in a graph controlled by a sub-optimal configuration leads to a higher cost index. On the 

other hand, increasing the weights of a graph controlled by an optimal leader configuration leads 

to a lower cost index.  

 

4.4 Closing Remarks 

Numerous methods exist on determining controllability of leader based systems due to the fact that 

these systems can be transformed or viewed as LTI systems which are extensively studied in 

control theory. Consequently, finding conditions of controllability from a linear algebra point of 

view are vast and more work should be done to approach controllability from other branches of 

mathematics such as graph theory. Using a graphic theoretic approach would be more scalable 

from a computation standpoint and will provide more insight on how the structure of a network 

affects its ability to be controlled, which would be extremely useful in future research. 

To our knowledge, leader selection processes mainly exist in mathematical contexts which do not 

account for various dynamics inherent in the systems with which most engineers in the field of 

robotics deal. Thus, additional work on making connections between these processes and practical 

engineering applications would be beneficial. It would also be interesting to see additional research 

considering dynamics such as non-linear and time varying and how those particular dynamics 

change optimality conditions on leaders. Likewise, it would be valuable to study leaders with time 

varying weights so that they are only leading for a finite time and then switching the responsibility 

to other nodes, i.e., switching topologies. It would also be valuable to create performance measures 

on the effects of removing follower nodes from the graph given a fixed set of leaders. 
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There is an obvious link between the number of nodes in the graph and the number of leaders 

needed to control the network. Also, there is a relation between the underlying communication 

graph and who can be chosen as leaders. In some cases, particular graphs cannot be controlled due 

to who the nodes communicate with. Thus, future work on reconstructing the communication 

graph to an optimal form to satisfy controllability standards and to meet performance measures 

might be of interest, as well as formulation of a semi-definite program (SDP) that solves the 

optimal weights for a graph in order to reduce the leader’s energy. Also, it would be instructional 

to conduct more research on how changing weights affects the Gramian’s eigenvalue and 

eigenvectors.  

It is interesting to note that increasing the weights for graphs controlled by a sub-optimal leader 

configuration causes the leaders to expel more excess energy while on the other hand, increasing 

the weights for graphs under optimal leader control causes the leaders to expel less energy. Future 

work could also be done on how to develop trade off curves that plot the diminishing returns of 

increasing the weights to increase performance. It is obvious that the more leaders which exist in 

a network, the more controllable the nodes will be. However, there exists diminishing returns on 

adding leaders to the group. Finally, development of an optimization problem that determines the 

optimal number of leaders to have in a network under certain performance and energy criterion 

should be investigated.  
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