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Abstract 

 The Lehigh Ocean Research Craft Autonomous, or LORCA, was designed and built 

at Lehigh University’s Composites Laboratory as a versatile unmanned boat, or 

Unmanned Surface Vehicle (USV).  Ten 1.2m long boats have been built in various 

configurations, with the last seven built identically.  The boat is fully self-righting with an 

enclosed electric motor, allowing it to be deployed in ocean conditions and rolled over 

without losing power or damaging equipment.  Composite materials were used wherever 

possible in construction resulting in a craft that is strong, fast, and lightweight.  

 The LORCA platform is unique in its combination of high speed, measured at over 

21m/s in flat conditions, and capability of operating in ocean waves.  Typically boats with 

these capabilities are significantly larger and require trailers and infrastructure to launch.  

Weighing less than 12kg our craft is man-portable and can be launched nearly anywhere.  

Construction of the craft is currently being completed and testing of the autonomous 

algorithms is underway. 
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Background  

The continually increasing affordability and portability of computing power has 

paved the way for the rapid development unmanned, autonomous vehicles.  In the air, 

on sea and on land new types of vehicles are possible now that they are no longer 

limited by the requirement of carrying a driver.  Unmanned vehicles can be designed to 

operate at accelerations and shock loading that exceed human limits, and can be 

deployed for extended periods of time while consuming minimal resources.  

Autonomous boats, or Unmanned Surface Vehicles (USVs), are already being put to use 

collecting hydrographic data, but there is still much room for development of more 

advanced platforms.   

The eventual success of USV platforms will hinge on both the physical systems 

and the software that control them.  One of these areas of advancement in software that 

researchers at Lehigh University would like to study is the coordinated movement of a 

fleet of boats, known as swarming.  While the computer algorithms that control these 

vehicles may be simulated, they must ultimately be tested in the real world to prove 

their efficacy.  Initial testing can be done on land, but does not replicate the complexity 

of a dynamic ocean environment. 

Many USVs exist today in forms ranging from small hobby boats to larger 

experimental military craft, but presumably none offer the combination of features 

desired by our lab for testing.  The hobby boats are generally the smallest and lowest 

cost unmanned platforms available, commonly measuring less than 1m long.  These 

boats are very portable, designed to be carried and deployed by hand, but are designed 
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primarily for flat lake and pond conditions.  They are generally not self-righting, are not 

very reliable, easily damaged, and do not have the extra space necessary for mounting 

electronics.  Larger platforms exist that are designed for the ocean, but are comparably 

very expensive to build and operate.  Our lab set out to design a USV platform that was 

small, fast, and fully self-righting for operating in ocean conditions. 
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The LORCA Design Concept 

The Lehigh University Composites Lab has developed the Lehigh Ocean Research 

Craft Autonomous, or LORCA.  This platform is designed to be robust enough for ocean 

deployment, while small enough to be launched by hand.  Due to its simplicity and small 

size, the LORCA is inexpensive enough that a fleet of ten boats can be built, stored and 

maintained on a reasonable budget.  To help keep down cost and development time a 

number of standard hobby components are used on the LORCA, such as the motor, 

propeller, speed controller and rudder servo.  The LORCA platform is fast, designed to 

reach peak speeds in excess of 20m/s, so it may be deployed from shore and quickly 

reach a testing area. 

The LORCA deck and hull are made as a single piece carbon fiber shell.  The deck 

is domed so that the system is self-righting, and has only one small hatch for accessing 

internal components.  This design is stiff, light, and easily made water-tight for operating 

in ocean conditions.   The boats are outfitted with batteries and an electric motor, 

eliminating the need for an air intake or exhaust.  The electric motor drives a straight 

drive shaft and a single, fully submerged propeller.  The direction of the boat is 

controlled by a spade rudder, operated inside the boat by a servo.  Initially controlled 

remotely by a human for testing, the LORCA platform is outfitted with an autonomous 

control system and sensors.  Seven boats are made to this configuration. 

Three other configurations have been built using the same shell with some 

different components.  One design is nearly identical, but with the propeller and rudder 

shifted as far towards the stern as possible.  Another design utilizes two outboard 
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motors.  These outboards are mounted on the transom of the LORCA shell.  The last 

configuration utilizes a surface-piercing propeller mounted behind the LORCA.  These 

configurations were built by Grenestedt and will not be covered in detail in this Thesis. 
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Design and Construction of the LORCA Shell 

 The LORCA shell is a single piece hull and deck with a small access hatch.  The hull 

was designed by Grenestedt to suite our needs for speed and cargo capacity.  Software 

was then written to aid in the design of a self-righting deck.  This software was 

successfully used to create a shape that is self-righting, but is also aerodynamically 

shaped for reasonably low drag at high speeds.  After the design was completed, plugs 

for the hull and deck were cut at Lehigh University and sent to Marstrom Composite AB, 

who made a carbon fiber mold and 10 shells.  These shells were shipped back to Lehigh 

for trimming and installation of internal components. 

 

Figure 1: LORCA Model 

Designing the Hull 

 The overall size and shape of the hull was chosen by Grenestedt as a size that is 

large enough to carry all future electronics, but still small enough to use standard hobby 

components.  Model racing boats are commonly about 1m long, and Grenestedt 

extended that length to 1.2m for additional cargo capacity.  A stepped hull was used to 
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create a boat that is efficient to operate over a wide range of center of gravity by 

creating a relatively large angle of attack for all running surfaces while the boat runs flat 

in the water.  These features are expected to make the LORCA platform versatile and 

reconfigurable in the future. 

Design of Self-Righting Analysis Code 

 Numerical computer simulations can be used to quickly determine the stability of 

a boat independent of the specific geometry.  Commercially available marine design 

software packages were researched in hopes of finding suitable software, but all fell 

short.  Packages such as DELFTship™ only simulate stability about the longitudinal axis to 

±90° of rotation.  While this may be suitable for most vessels, LORCA is designed to 

recover from any angle of rotation.  For this reason custom code was developed to 

calculate the hydrostatic stability of the craft. 

 The stability analysis code used in the design of LORCA was based upon code 

written in FORTRAN by Grenestedt.  Grenestedt's program reads in an STL file for any 

solid body, and calculates the buoyancy point of the solid body immersed in still water at 

any angle of rotation.  This is done by first rotating the part to a desired angle of pitch 

and roll.  Holding this orientation constant the craft is moved vertically in and out of the 

water.  The secant method is used to converge on the buoyancy point, where the mass 

of the displaced water is equal to the mass of the boat.  At this point the normal force is 

equal to the weight of the craft, the shear forces are zero, and the reaction moments 

may be nonzero and are calculated.  This code by Grenestedt forms the core 
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functionality of the stability code, though further development was desired to use this 

information to predict the stability of the craft. 

 The self-righting capability of the LORCA was designed only as a recovery 

mechanism, and it was therefore sufficient to only consider the static stability of the 

craft.  If the boat were to flip or tumble, power to the propeller will be eliminated and 

sufficient time may be allowed for the craft to reach a fully righted state.  For the static 

case the stability of the system can be directly determined from its potential energy.  Any 

local minima in the potential energy across the full range of pitch and roll are considered 

to be stable points, and should therefore be avoided.  Ideally the LORCA will have only 

one stable point in the upright position.  Treating the system as a rigid body the potential 

energy is simply: 

 𝑃𝐸 = 𝑚𝑔ℎ (1) 

where m is the mass, g is the acceleration due to gravity, h is the height of the center of 

gravity of the craft.   

To extrapolate static stability of the craft, three different tools were built around 

this code in FORTRAN.  The first tool, CGHeight, calculates the potential energy at points 

evenly distributed across all angled of pitch and roll of the craft for a single CG location 

and mass.  Two rotations about fixed axes were applied to analyze the craft.  With the 

boat aligned with the bow to the north, the boat is first turned clockwise to the east at 

an angle θ.  The boat is then rotated about the east-west axis at an angle φ.  Results 

were input into MATLAB and plotted as a three dimensional graph, as shown in Figure 2. 
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Figure 2: LORCA Potential Energy Map 

 Visualization of the data provided a means of quickly identifying orientations that 

were stable.  The peaks in Figure 2 show a high potential associated with the boat when 

it is balanced vertically with either the bow or stern in the water.  In these orientations 

the center of gravity is highest off the water.  The lowest potential energy is at θ=0, 

corresponding to the boat in its intended upright position.  This visualization would also 

show the location of any energy wells if present, and directly communicate their shape 

and size. 
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A second tool, CGHeightBatch, runs this code for a discrete range of center of 

gravity and mass, allowing for a more thorough analysis of a particular geometry.  To 

handle analysis of the much larger data set produced by this program, code was written 

to discretely determine local minima within the data set.  Local minima are determined 

to be the points that have no lower potential energy in the surrounding 8 data points of 

the array.   To quantitatively evaluate the severity of each minimum, another portion of 

code was written to find the next closest point with a lower energy and display the 

angular distance between the points.  If significant minima were found, the first tool 

could be called up to the specific mass and CG for further analysis.   

Part of Grenestedt’s code was isolated as a third tool, CGHeightSingle, which 

outputs the portion of the solid geometry that is submerged in water for a specific 

rotation, mass, and CG.  This produces an STL file that can be viewed in solidworks.  

Knowing which portion of the boat is wetted at a stability point provided insight into 

what to change to improve stability.  Figure 3 below shows a sample output for a local 

stability point in an early version of the LORCA.  This is the part of the rear deck that 

would be under water for an 11kg boat rolled upside down. 

 

Figure 3: Sample Output from CGHeightSingle 
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Development of LORCA Deck Shape 

  Once a set of visual and quantitative tools were created for analyzing the 3D 

stability of a solid geometry, the actual shape of the LORCA platform was designed.  The 

hull to which the deck is attached was designed by Grenestedt as shown in Figure 4. 

 

Figure 4: Lorca Hull 

 A deck was added on top, starting from a spherical cap in the bow and returning 

to a low profile in the stern.  Ellipses were used to form six cross sections where angle at 

the parting plane and midpoint height were variables in a design table.  The cross 

sections were then lofted into a smooth deck shape that comes to a sharp corner at the 

stern. The origin of the boat coordinate system is the intersection of the parting plane, 

the stern plane and the centerline.  In this coordinate system the Y-axis is up, the X-axis is 

left, and the Z-axis is forward, shown in Figure 5. 
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Figure 5: Lorca Deck Defining Geometry 

 

Figure 6: LORCA Deck Cross Sections 

 In order to calculate the stability of the craft assumptions were made for the 

location of the center of gravity.  For simplicity the center of gravity was assumed to be 

along the Y-Z plane.  The center of gravity was also assumed to be along the parting 

plane, a height of Y=0, which is a conservative assumption given most internal 
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components will be mounted below this point.  From a summation of the main internal 

components the CG of the fully constructed boat was predicted to fall in the range 

Z=[400mm, 550mm] from the stern.  The mass was expected to range from 7kg to 15kg 

depending on the number of batteries and electronics used.   

An initial estimate of a self-righting shape was designed with aerodynamics in 

mind.  Testing with the software tools created revealed multiple stability points, 

primarily when the craft was fully upside down, tilted towards the stern.  The shape of 

the hull was expanded in some places and reduced in others to eliminate any local 

minima of the potential energy.   

This process of simulation and adjustment was iterated until the design was 

stable in only the upright position for the proposed range of center of gravity and mass.  

Some shallow energy wells were considered acceptable since the boat will have 

disturbances in a real world environment.  The remaining minima had activation energies 

that were found by inspection to be on the order of one percent of the available 

potential energy.  These local minima are not expected to be an issue in real world 

dynamic conditions.  

Configuring the Access Hatch 

 Another important feature of the LORCA is for its watertight seal for deployment 

in ocean conditions.  Many boats of this size have decks that are removable to allow for 

access to internal components.  To achieve the best strength and water seal, the inside 

of the LORCA is accessible only through a single hatch on the port side.  The internal 

components that were accessed for construction and later use range from the stern to 
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the motor mount 800mm forward.  For best ease of access the hatch was located 

between 250mm and 450mm forward.  The size was kept as small as possible while still 

allowing the largest internal component, the motor mount assembly, to be inserted.  A 

15mm lip around the hole was recessed 5mm deep to allow a hatch cover to sit flush 

against the outer hull.  Using a small access hatch will increase assembly time, but 

ultimately produced a stronger and more seaworthy boat. 

Design of the LORCA Hull Molds 

 The LORCA was designed to be molded out of carbon fiber reinforced composite, 

allowing for a single piece shell that contains the complex geometry of the hull and deck 

without compromising on weight or strength.  The outer shell serves as the full structure 

of the boat, and all internal and external components are mounted to the shell.   

 The geometry of the LORCA shell is well suited for a two part mold female mold.  

Using a female mold allows for the critical outer surface to have the best surface finish 

and the highest tolerance of the part.  Peel-ply may then be used on the inside to provide 

easier bonding of internal components.  The plane between the hull and the deck 

provides a natural parting plane for the mold.  Minor changes were made to the stern 

and the steps in the hull to remove undercuts that would have impeded the removal of 

the finished part from the mold.  Removing these undercuts only required the angle of 

the stern plane to be rotated about 3° and should have negligible effects on the 

performance of the boat.  Two plugs were created with flanges on all four sides, and 

cylindrical alignment grooves to allow for the insertion of 9.25mm (3/8”) dowel pins. 
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Machining the LORCA Hull Molds 

The mold plugs were machined from a block of epoxy tooling board using the 

Lehigh Composite Lab’s Hendrick 5-axis router.  NX Manufacturing was used as the CAM 

software to create the tool paths and output machine G-code.  A custom post was 

written to configure the CAM software to output the proper G-code for the CNC machine 

controller.  Roughing was done with a 25.4mm (1”) square end mill, and surface profiling 

was done with both a 25.4mm (1”) ball end mill and a 9.25mm (3/8”) ball end mill.  

Styrofoam was used as a test material to validate the code on the router, and a few 

minor issues were found and eliminated.  The finished plugs were loaded into a crate and 

packed with foam for transport to Marstrom Composite AB.  Marstrom was contracted 

to use the plugs to make a carbon fiber mold, and then 10 LORCA shells. 

 

Figure 7: Machining LORCA Hull Plug 
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Figure 8: Completed LORCA Mold Plugs  



17 

 

Design and Construction of Internal Components 

 The LORCA was designed to be a versatile platform and has been constructed 

with multiple types of propulsion systems.  Seven of the boats were built identically with 

the remaining three serving as an experiment for different propulsion systems.  The 

seven similar boats are each driven by a single Neu 2230-12-1Y brushless electric motor 

capable of 5kW sustained and 10kW of peak power.  The motor is connected to a straight 

drive shaft leading to a fully submerged propeller.  Roughly 100mm behind the propeller 

is a rudder, operated by a servo.  An electronic speed controller (ESC) and battery 

eliminating circuit (BEC) provide the correct voltages for the motor and any onboard 

electronics, respectively.  The electric motor is at present powered by up to eight 

6200mAh 5S 18.5V lithium polymer (LiPo) batteries, stored at the stern in removable 

trays.  The batteries are connected in parallel with sets of 2 batteries in series to provide 

37V to the ESC.  This allows batteries to be added or removed in sets of two as needed. 

  

Figure 9: LORCA Internal Components 

The motor and ESC are cooled by water picked up from behind the propeller, 

forced into the tube by the forward motion of the boat and the propeller slip stream.  No 
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pump is needed since the motor and ESC will not require much cooling while the boat is 

stationary.  The brass section of the cooling line is shown in the CAD model below in 

Figure 10.  The connection between the brass line and the ESC, motor, and outlet 

through the side of the hull are made with flexible silicone tubing, not shown.    

 

Figure 10: LORCA Rear Components 

 

Figure 11: LORCA Forward Components 

 Control of the LORCAs is fully autonomous using an autopilot system currently 

under development in collaboration with Lehigh University’s VADER Lab.  Manual control 
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of the boat is included for use in testing, and configuring the autopilot.  Once the 

autopilot system is developed manual control may still be used for near shore 

operations.  A watertight enclosure mounted amidships to the hull houses the autopilot’s 

electronics.  Two antennas protrude through the deck along the center line of the boat 

towards the stern for manual remote control and a data link.  A GPS receiver is also 

mounted in the hatch opening to give it clear satellite reception.  

 Many internal components had already been designed by Grenestedt at the start 

of my involvement in the project.  The rudder assembly, drive train couplings, and drive 

train supports had already been machined.  The motor mounts and battery trays had 

already been designed. 

Motor Assembly 

 The base of the motor assembly is a molded carbon fiber motor mount that 

bonds directly to the hull, and has 8 clearance holes for mounting the motor.  An 

aluminum plate towards the stern is bolted to the motor mount and screwed into the 

motor.  A larger aluminum plate forward holds the motor with a rubber O-ring.  A small 

retainer plates is riveted on each side to capture the O-ring.  A bent aluminum bracket 

that supports the ESC and BEC is mounted above the motor.  All machine screws are 

terminated in anchor nuts riveted to the aluminum plates.  A water jacket is slid around 

the motor for cooling.  Stainless steel reinforcement plates are bonded around the motor 

mount holes to help reduce wear on the carbon fiber. 



20 

 

 

Figure 12: Motor Mount Assembly 

Making the Plate Components 

 The 6061 aluminum plates as well as 304 stainless steel reinforcement plates 

were manufactured using Lehigh University’s CNC waterjet cutting machine.  The parts 

were then deburred with a wire wheel and a rotary abrasive pad.  All holes were cut 

undersized on the waterjet machine and were subsequently drilled to the proper size.  

This method allows for quick and accurate placement of the holes while maintaining 

diametral tolerance.  The 5052 aluminum ESC mounting bracket was also cut on the 

waterjet cutter and then bent to shape.  MS20470 universal head solid aluminum rivets 

were used to join the aluminum plates.  Countersunk MS20426 solid aluminum rivets 

were used to attach the captured nuts for a flush fit to the carbon fiber motor mount. 

Designing the Motor Mount Mold 

 The carbon fiber motor mount geometry was designed using the hull profile from 

the desired area of attachment, with flanges for mounting the aluminum plates.  A male 
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mold was selected so that the aluminum plates mate with the mold surface for accuracy, 

and the bonded face could be covered in peel-ply to provide a rough surface finish for 

bonding. To create a strong, continuous part out of carbon fiber, all edges were filleted 

to at least 4mm radius.  The mold was then extended at any carbon fiber edge, so the 

final parts could be trimmed to size.  This method ensures the parts are at their full 

strength and thickness up to all edges. 

 

Figure 13: Motor Mount 

 The small size of the motor mount at less than 150mm on all sides makes 

aluminum the choice mold material when compared to tooling foam and carbon fiber.  

Aluminum molds do not need to be sealed, can be cut to tighter tolerances than foam 

molds, and polished to a mirror finish, producing a smooth part.  Since the size of the 

part is small, the differences in thermal expansion between the carbon and the mold will 
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be negligible for the cure temperature used.  This eliminates the greatest benefit of using 

a carbon fiber mold for carbon fiber parts.  A carbon fiber mold would also be a multiple 

step process, requiring a plug to first be machined. 

Making the Motor Mount Mold 

The motor mount mold was machined on a HAAS VF-2 3-axis vertical milling 

machine out of aluminum billet.  A fixture plate was created that could be clamped in the 

vice and bolted to the underside of the mold.  This allowed the five contoured sides of 

the mold to be machined at once.  NX Manufacturing was used to create the tool paths, 

as shown below. 

 

 Figure 14: Motor Mount Side Profiling Operation 
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The first machining step was to manually face one side of the billet and add the 

four mounting holes.  That side was then bolted to the fixture plate.  A 25.4mm (1”) 

square end mill was used first for the rough cut, and then used to profile the sides, 

shown in  Figure 14.  A 19.05mm (¾”) and a 6.35mm (¼”) ball end mill were then used to 

contour the remaining surfaces.  The mold also had to be rotated twice to reach into the 

fillet along the protruding tab.  The 25.4mm (1”) square end mill and 6.35mm (¼”) ball 

mill were used to complete the side profiles.   The tool paths were computed to leave a 

surface finish with a maximum scallop height of 0.013mm. 

 

Figure 15: Machining the Motor Mount Mold 

 Once the motor mount mold was machined it was sanded and polished to create 

a smooth surface.  An orbital sander was used starting at 400 grit and moving 

progressively up through 1000 grit.  The mold was then polished using a wet abrasive 

and a buffing pad.  This treatment resulted in a near mirror finish and eased the process 

of releasing the parts from the mold.  The molds were also coated with five layers of 

Chemlease 41-90 EZ mold release, which was applied wet and then buffed dry.  The 

resulting surface easily released the finished parts. 
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Figure 16: Finished Motor Mount Mold 

Heating the Motor Mount Mold 

 Carbon fiber pre-preg was chosen as the material of choice for the motor mount.  

Pre-preg is fiber that is already impregnated with resin and needs only to be thermally 

cured under vacuum.  This method is more expensive than infusing dry fibers, but is 

much easier to work with on a part like the motor mount.  Parts made in the Lehigh 

University Composites Lab have previously been cured in an oven, where the oven is 

heated and the heat is transferred to the part through the vacuum bag and mold.  This 

works well for foam molds, and thin walled aluminum molds with a small thermal mass.  

The motor mount mold is roughly cubic and has a large thermal mass compared to its 

surface area, which raised concerns about the ability to heat the mold fast enough.  Our 

oven can only reach temperatures of about 120°C, and Gurit SP Systems SE-84LV pre-

preg must be held between 80°C and 120°C to cure.  A higher cure temperature will 

reduce cycle time and is therefore preferable. 
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Figure 17: Minimum Cure Time vs Temperature for a 2mm SE 84LV Laminate 

 One option to increase the temperature ramping rate would be to machine away 

as much of the extra mold material as possible.  This option would require a machined, 

contoured, fixture to hold the mold in the CNC machine.  It was decided instead to heat 

the mold directly.  A 9.52mm (3/8”) hole was drilled and reamed in the bottom of the 

mold to accept a cylindrical 120V heater.  The Biot number was calculated to determine 

if the mold could be analyzed as a lumped mass, where the temperature is assumed to 

be uniform throughout the part.  Here h is the convection coefficient, V is the volume, k 

is the thermal conductivity of aluminum and A is the surface area of the mold. 

 𝐵𝑖 =  
ℎ ∗ 𝑉

𝑘 ∗ 𝐴
=

20
𝑊

𝑚2𝐾
∗ 0.00116𝑚3

237
𝑊

𝑚𝐾 ∗ 0.0699𝑚2
= 0.0014 (2) 

 This assumption is valid since the Biot number is considerably less than the 

criteria Bi<0.1.  Using this assumption the power required to heat the mold at the 

suggested rate of 1-2°C/min can be estimated as follows: 

 𝑞 = 𝑚 ∗ 𝑐𝑝 ∗ 𝑇̇ + ℎ ∗ ∆𝑇 ∗ 𝐴 (3) 

𝑞 = 3.14𝑘𝑔 ∗ 897
𝐽

𝑘𝑔𝐾
∗ .033

𝐾

𝑠
+ 20

𝑊

𝑚2𝐾
∗ (110℃ − 25℃) ∗ .0699𝑚2 = 95.8𝑊 
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where m is the mold mass, cp is the heat capacity of aluminum, Ṫ is the temperature rate 

of change, and ΔT is the difference between the mold and ambient temperature.  A 

150W heater was chosen to allow for additional heating capacity above the calculated 

requirement of 96W.  A simple control system was built using a rotary light dimmer in an 

electrical box, allowing the power to be manually throttled from 0-100%.  In testing, the 

mold was able to maintain a heating rate of 1.1°C/min at 110°C, which was lower than 

expected but still within the target range.  Possible explanations for the discrepancy 

include a higher than expected convection coefficient, significant radiative losses, or 

thermal resistance between the heater and the mold.  The actual power of the heater 

was also not measured. 

Designing the Battery Tray Molds 

A carbon fiber battery tray mold was made in a manner similar to the design and 

construction process of the motor mount mold.  Each tray will hold two 6200mAh 5S LiPo 

batteries.  Given a desired geometry for a C-channel battery holding tray, a male mold 

was designed to be made out of aluminum.  The mold was lengthened at the edges of 

the carbon fiber to allow for some misplacement of the plies during layup.  Two molds 

were made to increase production speed since each boat will require four battery trays.  

Molds were profiled on a waterjet cutter out of 2” aluminum plate and machined square 

on a Bridgeport vertical mill.  The mold detail was machined on the HAAS VF-2 milling 

machine, and then sanded and polished.  A thin retainer plate was added to hold each 

heater in the mold, secured by two screws.  Binding undercut machine screws were 

selected for a robust connection to the ground cable. 
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Figure 18: Battery Tray Molds 

 Analysis was done to determine how many insert heaters would be needed to 

achieve acceptably even heating.  Again calculating the Biot number confirmed that the 

aluminum can be treated as a uniform temperature lumped mass. 

 𝐵𝑖 =  
ℎ ∗ 𝑉

𝑘 ∗ 𝐴
=

20
𝑊

𝑚2𝐾
∗ 0.001185𝑚3

237
𝑊

𝑚𝐾 ∗ 0.0946𝑚2
= 0.0010 (4) 

This mold has roughly the same mass and 35% more surface area than the motor mount 

mold.  Since the motor mount mold performed at the low end of expectation, the 

battery tray mold was designed to have more heating power.  A simple solution was to 

use two 150W heaters, keeping the heaters interchangeable and increasing the ramping 

rate. 

SolidWorks Simulation was also used to confirm that this mold would have a 

consistent surface temperature using only two heaters.  Assuming a convection 

coefficient of 20, a temperature difference of ±2°C could be held across the carbon-

covered surfaces at 120°C as shown in Figure 19.  This tolerance is sufficient for getting 

an even cure.  In use the battery tray molds maintained a ramp rate of more than 

1.5°C/min up through the target cure temperature of 110°C, cutting down on cycle time. 
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Figure 19: Solidworks Thermal Simulation of the Battery Tray Mold 

Molding the Motor Mounts and Battery Trays 

 Both the battery trays and the motor mounts were molded out of Gurit SE-84LV 

twill weave pre-preg carbon fiber.  Since the same material was used both parts were 

easily manufactured at the same time.  Steel patterns were drawn in SolidWorks and cut 

out on the waterjet cutter.  The edges were deburred by hand and with a wire wheel.  

 

Figure 20: Motor Mount Ply Patterns 
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The motor mounts were made using three layers of weave over the main section 

of the mold in the orientations 0°/90°, ±45°, 0°/90°.  Two layers of 0°/90° weave were 

then added to the front flange as reinforcement, and two reinforcement strips were add 

to each of the smaller flanges.  The battery trays used weave in only the 0°/90° direction.  

Reinforcement strips were laid first on each side, followed by two layers of weave 

covering the whole mold, and finally two more reinforcement strips on each side. 

 

Figure 21: Laying Pre-Preg onto Battery Tray Molds 

Once the plies were laid up the carbon was covered with a layer of peel ply and a 

layer of breather cloth.  The heater cartridges were then inserted, the grounding wire 

was screwed in place, and a thermocouple was attached to the side of each mold with 

aluminum tape.  The molds were then sealed inside a vacuum bag.  The molds were 

allowed to sit under vacuum for at least an hour before beginning the cure cycle.  
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Figure 22: Battery Tray Mold Wrapped with Peel Ply, Breather 

 

Figure 23: Two Molds Sitting under Vacuum 
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 A three stage cure cycle was used consisting of a ramp up, a hold, and a ramp 

down period.  As per the specifications of the SE84LV epoxy resin, the parts were ramped 

up at a rate of 1-2°C/min.  The target cure temperature was 115°C, which required a 

minimum cure time of 90 minutes.  Since no damage is done to the parts by holding 

them at temperature longer, the parts were held for at least two hours at cure 

temperature.  Power was then shut off and the parts were allowed to cool.  For safety of 

handling the parts were cooled to 40°C before being removed from the vacuum bag.  

Below is a recording of the temperature vs time for an actual cure cycle. 

 

Figure 24: Recorded Motor Mount Cure 

The first few parts from each mold had some minor defects.  The motor mounts 

showed some bridging on the inner radius of the flange.  More attention was paid in 

subsequent layups to working the carbon into these edges, and leaving sufficient pleats 

in the vacuum bag.  These changed effectively eliminated defects in the inner radius.  



32 

 

The early battery trays were showing some bunching of the fibers along the edges.  

Similarly more attention was paid to working the carbon tightly around the edges, and 

pleats were left in the vacuum bag along these edges.  These changes made a significant 

improvement in the quality of the edges. 

Trimming Battery Trays and Motor Mounts 

 The molding process produces near net shape parts that only need minor 

trimming before use.  Steel patterns were used to reliably locate holes and achieve 

repeatable, straight edges.  Holes were first drilled undersize using the patterns and then 

filed clean to their final diameter.  This process left the holes free of splinters and 

hopefully without delaminations.  The patterns were then bolted to the holes, and the 

surrounding edges were trimmed.  A cut-off wheel on a Dremel tool was first used to 

trim the part to near the final shape.  A sanding block was used on any straight edges to 

produce a square edge.  A sanding wheel on a Dremel tool was used to trim the curved 

inside edge of the motor mount.  The sanding block was also used to round external 

corners.  All edges were also rounded by hand with sand paper to make them smooth to 

the touch. 
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Figure 25: Battery Tray Being Trimmed 

Once trimmed the parts were wiped clean with acetone to remove carbon dust.  

The areas around the holes were sanded, and the stainless steel reinforcements were 

grit blasted to prepare for bonding.  Both parts were cleaned thoroughly with acetone 

and bonded together using ProSet 176-276 epoxy.  Cleco fasteners were used to clamp 

the reinforcements to the parts until the epoxy cured.  After curing the holes were 

chased with a drill to clean out unwanted epoxy.  Figure 26 shows a battery tray before 

and after the trimming and bonding processes.

 

Figure 26: Battery Trays Before and After Trimming 
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Outfitting of the LORCAs 

 The LORCA shells were delivered from MARSTROM directly out of the mold 

untrimmed.  The shells were first trimmed smooth to the touch around the parting plane 

and hatch opening, and then the required through holes were added.  All components 

were bonded in place and the electrical system was connected.  Once the electrical 

system was made the components were assembled and the system was tested. 

Modifications to the Shell 

The outside parting plane was first block sanded to make the boats safe to touch 

without causing splinters or drawing blood.  The hatch openings were sanded next, 

leaving a 15mm flange for attaching the hatch cover.  Hand sanding was required to 

round the edges and make them smooth to the touch.  It was critical to make these 

edges as smooth and blunt as possible since all components will be installed through this 

hatch.  Many hours were spent working with one arm sticking through the opening. 

 The shell of the LORCA was constructed with the hatch as the only opening, so all 

components that protrude through the hull required holes to be drilled and sanded to 

size.  The rudder, drive shaft, drive shaft support, cooling inlets, cooling outlets, and 

antennae all required holes in the hull.  Since the hull was created from a CAD model it 

was easy to model the desired locations of all components in SolidWorks, and create 

fixtures to correctly locate the holes.  Fixtures, as shown in Figure 27, were most 

important for the drive train and rudder since any misalignment could significantly affect 



35 

 

performance.   These fixtures were designed to key into the hull to accurately and 

precisely place the holes for all boats. 

 

Figure 27: Hole Patterns on a LORCA Hull 

 The fixtures were used to cut holes for drive shaft support, drive shaft support 

tube and rudder.  A hole saw was used to cut the near shape of the rudder hole.  This 

process was quick but left splintered, fractured edges which were subsequently cleaned 

up with a sanding drum on a Dremel tool.  The result is shown below in Figure 28. 

 

Figure 28: LORCA with Drive Train and Rudder Clearance Holes 
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Installation of the hatch covers was the last modification of the LORCA shell.  

Polycarbonate covers were cut on the waterjet cutter to fit into the recess around the 

hatch.  A test hatch was first cut and the fit was perfected.  These covers are held in 

place with 9 stainless steel machine screws which terminate in anchor nuts riveted to the 

carbon.  This design is not perfectly water tight, so the gap around the hatch will be 

sealed over with tape during boat operation.   

 

Figure 29: Access Hatch Lip 

Installing the Drive Train and Motor Mount 

The motor mount assembly was the first component to be bonded in place inside 

the hull.  Both mating faces were thoroughly sanded and cleaned with acetone before 

being bonded in place with ProSet 176-276.  The motor mount keys into the hull, and a 

fixture was needed only to control the longitudinal position.  
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Figure 30: Bonded LORCA Motor Mount 

Once the holes were cut, the drive shafts and drive shaft support tubes were 

turned to length, and the drive train was assembled dry to test the fit.  The drive shaft 

will spin at speeds exceeding 30,000 RPM, so a clean fit is critical to minimize wear and 

fatigue.  The initial hole cut in the hull for the drive shaft turned out to be slightly 

misaligned.  This is likely the result of a buildup of tolerances in the placement of the 

motor mount.  The thickness of the hull and thickness of the epoxy layer between the 

hull and motor mount appear to have been less than assumed in the CAD model.  It is 

also possible that the motor mounts were installed slightly further forward than 

intended.  Sanding the clearance hole about 5mm to towards the bottom allowed the 

drive shaft to fit freely.  Once the drive train was fit, all bonding areas were thoroughly 

sanded, and all metal components were grit blasted.  All surfaces were cleaned with 
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acetone and the drive train was assembled with fixtures to hold proper alignment during 

bonding.   The drive train and rudder were then bonded in place with ProSet 176-276. 

 

Figure 31: Drive Shaft Supports and Rudder Post Bonded in Place 

With the supports for the drive train bonded, the drive shaft components were fit 

to each boat.  The drive shaft was threaded M5 on one end for attaching the propeller, 

and flats were machined into the first 10mm of the other end for the coupling set 

screws.  A notch was cut in the middle for a split ring that transfers the thrust to a thrust 

collar which presses on the inner race of a deep groove ball bearing.  The length of the 

drive shaft and location of the notch were measured for each boat so that the thrust is 

properly transferred to the ball bearing and not to the motor.  Sleeve bearings were also 

used between the shaft and the shaft housing, spaced out by thin-walled brass tubes.  

Figure 32 shows these components and their relative placement. 

 

Figure 32: Drive Train Components 
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Installing the Cooling System 

After the drive train was bonded, the holes for the cooling inlet, cooling outlet 

and antenna were drilled out and sanded smooth.  A pattern was created for the brass 

cooling water tubes, and the tubes were bent with a tube bender to match.  The first 

cooling tube shape turned out to be difficult to make due to the relative proximity of the 

bends.  A second pattern was created which allowed more space between bends, 

improving the quality of the bends.  These tubes fit in place well thanks to the use of the 

pattern.  Bonding areas were again sanded and subsequently cleaned with acetone 

before bonding.  A foam fixture was used to hold the cooling line upright and in place 

during bonding.  The area around the pickup on the hull was taped off with masking tape 

to contain the application of the epoxy.  Extra material was left on the water pickup side 

of the tube to prevent epoxy getting into the tube when it was bonded.  After the epoxy 

had cured the extra brass was filed away to leave a clean, low drag pickup. 

 

Figure 33: Water Pickup 
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Bonding the Mounting Studs 

The last components to be bonded in place were the Weld Mount studs for the 

battery trays, servo, and tie down for cables.  The studs used are UNC 10-24 threaded 

stainless steel posts welded to a 32mm diameter flange.  Foam bonding fixtures shown in 

Figure 34 were made for locating the studs for the battery mounts.  The servo mount did 

not require a fixture.  The servo assembly was put together and bonded in place 

assembled, ensuring the proper clearances.  All carbon fiber bonding faces were sanded 

thoroughly and all stainless faces were grit blasted.  Bonding faces were cleaned 

thoroughly with acetone before bonding. 

 

Figure 34:  Bonding Mounting Studs for Battery Trays 

Seven of the ten LORCAs are built to the same configuration.  To tell them apart, 

name plates were created from thin stainless steel and bonded into the hulls.  The plates 

were cut on the water jet cutter out of 0.4mm 304 stainless steel, brushed smooth on 

the showing face and grit blasted on the bonding face. 
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Installing the Electrical System 

With all of the subsystems bonded in place electrical cables were sized and 

soldered between the motor, ESC, BEC, and batteries.  Connections between the 

autopilot systems, servo, and throttle were also sized and connected.  All subsystems 

were then installed in the boats.  The boats are currently being tested. 

 

Figure 35: Looking Forward at Assembled LORCA 

 

Figure 36: Looking Aft at Assembled LORCA  
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Testing 

 Two of the boats have so far been tested on the water with much success.  The 

boats are very unstable upside down as desired, and when placed in the water in any 

orientation will quickly return to upright.   At high speed the boats can roll erratically if 

turned too quickly but will immediately return to upright stopped.  In initial testing the 

boats have reached speeds in excess of 21m/s.  This speed is expected to increase as the 

boat is trimmed.  So far no visible damage has been seen from the boats wiping out, 

flipping, and rolling.  Some water has been found inside the boat after testing, and more 

testing will be required to pinpoint the sources of the leaks.  It appears at this time that 

the leaking is predominantly caused by a poor seal around the access hatch. 

 

Figure 37: LORCA Pond Testing 

 Performance of the boats at high speeds will also require some tuning.  The 

turning response of the boat is very speed dependent, operating smoothly at some 

speeds and more erratic at others.  At high speed the boats can make nice long turns, but 

tend to spin out when turned more sharply.  Hopefully in future refinement these 

behaviors can be minimized through tuning the hull, rudder shape, etc. 
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 The first two boats completed are now operating reliably and testing has begun 

with the autopilot system under development in collaboration with the Lehigh University 

VADER Lab.  The hardware has been successfully integrated into the LORCA platform, but 

further development of the software is needed before the boats can be reliably deployed 

fully autonomously. 
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Additional Project: The JetStreamer Motor Pod 

 Another project currently in development at Lehigh University’s Composites Lab 

is the JetStreamer, a 6.5 meter wing span unmanned aerial vehicle.  This aircraft is 

designed to stay aloft for extended periods of time using a technique known as dynamic 

soaring, where the aircraft flies a pattern through varying winds to extract energy.  The 

entire aircraft is being designed and manufactured at Lehigh University, predominantly 

out of carbon fiber reinforced composite.  For propulsion in takeoff and landing the 

aircraft may utilize a brushless electric motor fixtured above the wing using a motor pod.  

Figure 38 shows the motor pod designed by Grenestedt that can be made as a single 

carbon fiber shell and mounted to the wing. 

 

Figure 38: Motor Pod CAD Model 

  Given the design for the motor pod, a mold was designed and constructed out of 

aluminum.  Aluminum jig plate was chosen as the mold material for dimensional stability.  

With external dimensions of roughly 700mm x 355mm x 50mm the mold was just able to 

fit on the HAAS VF-2 CNC machine at Lehigh University.  Four mounting holes were 
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added around the periphery of the mold to bolt it directly to the CNC machine bed.  

Three half-cylindrical grooves were added to hold 9.252mm (3/8”) precision ground 

dowel pins used to align the two mold halves when put together. 

 The mold profile was first cut out of a rectangular plate on the waterjet cutter to 

minimize machining time and reduce the weight on the CNC milling machine bed.  The 

waterjet was also used to locate the four mounting holes which were subsequently 

manually drilled and counter bored.  Figure 39 shows the mold blank after waterjet 

cutting on the left and the final shape on the right. 

 

Figure 39:  Motor Pod Mold Blank and Machined 

 NX Manufacturing was used as the CAM software to develop the tool paths.  A 

25.4mm (1”) square end mill was used to profile the outer surface and hog out the 

majority of the material.  The majority of the surface profiling could then be done with a 

19.05mm (3/4”) end mill.  The pointed trailing corner also required the use of two 

smaller ball end mills.  Each mold half took roughly three hours to machine.  22.6kg of 

aluminum was removed during machining, resulting in a mold weighing a total of 25.8kg.  

After machining the molds were sanded, polished and coated with mold release. 
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Figure 40: Jetstreamer Motor Pod Mold 

 

Figure 41: Jetstreamer Motor Pod Mold Half 

 The motor pods were made using Gurit SE84LV unidirectional carbon fiber 

prepreg.  Different ply schedules were used in the tube section and the supporting 

structure.  In the tube section a balanced but not symmetric layup of (0°,-45°,+45°,0°) 

was used, where 0° is longitudinally down the tube.  The body of the motor mount 

utilized a symmetric but not balanced layup of (90°,-45°,+45°,-45°,90°).  Reinforcement 

strips were added along the inside corner between the tube and the vertical support, 

and along the transition between the tube and vertical support.  Extra strips were added 

along the trailing edge of the airfoil to build up material where the motor pod comes to a 

sharp edge, bonding both sides.  Peel ply was added to all internal surfaces of the motor 
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pod.  An internal and an external bag were used to vacuum seal the mold.  The mold was 

then brought up to 110°C in the Lehigh University Composites Lab’s oven and held for at 

least 2 hours to achieve a full cure before cooling.  Figure 42 and Figure 43 show one of 

the five motor pods built.  

 

Figure 42: Jetstreamer Motor Pod 

 

 

Figure 43: Jetstreamer Motor Pod  
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Future Work 

While the majority of the design and construction work of the LORCA crafts has 

been completed, not all boats are yet operational.  Electrical connections need to be 

soldered, and some components of the drive train need to be installed.  The boats will all 

need to be tested on the water to verify the integrity of the mechanical systems. 

A water tight autopilot enclosure has been designed and deployed in one of the 

boats.  Enclosures will need to be built for the remaining boats, and possibly modified to 

suit future needs.  The LORCA platform may also receive the integration of some sensing 

equipment, for example a camera system.  The processing power may also be upgraded, 

and additional communication systems may need to be added to enable coordination 

between multiple boats. 
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