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ABSTRACT 

 

Fatigue cracking of structures in fluid-structure interaction (FSI) applications is a 

pervasive issue that impacts a broad spectrum of engineering activities, ranging from 

large-scale ocean engineering and aerospace structures to bio-medical prosthetics.  

Fatigue is a particular concern in the offshore drilling industry where the problem is 

exacerbated by environmental degradation, and where structural failure can have 

substantial financial and environmental ramifications.  As a result, interest has grown for 

the development of structural health monitoring (SHM) schemes for FSI applications that 

promote early damage detection.  FSI simulation provides a practical and efficient means 

for evaluating and training SHM approaches for FSI applications, and for improving 

fatigue life predictions through robust parametric studies that address uncertainties in 

both crack propagation and FSI response.  To this end, this paper presents a numerical 

modeling approach for simulating FSI response with crack propagation.  The modeling 

approach couples a massively parallel lattice Boltzmann fluid solver, executed on a 

graphics processing unit (GPU) device, with an extended finite element (XFE) solid 

solver.  Two-way interaction is provided by an immersed boundary coupling scheme, in 

which a Lagrangian solid mesh moves on top of a fixed Eulerian fluid grid.  The 

theoretical basis and numerical implementation of the modeling approach are presented, 

along with a simple demonstration problem involving subcritical crack growth in a 

flexible beam subject to vortex-induced vibration. 
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CHAPTER 1 

INTRODUCTION 

 

1.1  MOTIVATION  

Fatigue cracking of structures in fluid-structure interaction (FSI) applications is a 

pervasive issue that impacts a broad spectrum of engineering activities, ranging from 

large-scale ocean engineering and aerospace structures to biomedical prosthetics.  The 

driving mechanism for fatigue failure in FSI applications can be extraneously-induced 

excitation (an example of which is shown in Figure 1.1 where a stress concentration in 

the steel shaft of a power generation buoy led to fatigue failure under wave loading), 

vortex-induced vibration (which impacts submerged pipelines (Huang, 2012)), and/or 

movement-induced excitation (which has caused problems for flexible components in the 

aerospace (Cecrdle, 2015) and biomedical fields (Jacobs et al. 2003)). 

 

Fatigue failure is a particular concern in the offshore drilling industry where structural 

failure can have substantial financial and environmental ramifications, including the 

cessation of production operations and the spillage of hazardous pollutants.  An 

illustrative example is the fatigue vulnerability of deep water risers for offshore floating 

production platforms.  As shown in Figure 1.2, risers are conduits, generally constructed 

using a steel or aluminum alloy, that connect the production platform with its network of 

subsea wellheads for petroleum or natural gas extraction.  Risers can be several hundred 

to several thousand meters in length (for ultra-deep water exploration) and are subject to 
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flow-induced vibration from chaotic sea motion, wave loading of the platform, and 

vortex-induced vibration.  As a result, risers are subject to high-cycle cyclic loading, as 

well as environmental degradation from the corrosive marine environment.   

 

In recent years, structural health monitoring (SHM) approaches have been investigated 

for early identification of riser damage, so that repairs can be made in advance of a 

catastrophic failure.  Riveros et al. (2007) investigated a statistical pattern recognition 

approach based on measured vibration data, considering both auto-regressive (AR) and 

auto-regressive with exogeneous inputs (ARX) models.  More recently, Huang et al. 

(2012) investigated the use of an integrated magnetic flux leakage (MFL) and vibration-

based monitoring approach, in which a robotic crawler carrying MFL sensors would be 

deployed to potential damage locations identified through vibration-based monitoring.           

One of the biggest challenges in developing a robust structural health monitoring 

approach for deep water risers, as well as other FSI applications, is addressing the 

considerable uncertainty in FSI response and in fatigue crack propagation.  FSI 

simulation, however, provides a powerful tool for addressing these uncertainties through 

robust parametric studies, which can both improve fatigue life prediction, and can be 

used to evaluate and train SHM approaches.  To this end, and as an extension to the 

aforementioned studies, this paper presents a numerical modeling approach for FSI 

simulation with crack propagation.  The modeling approach couples a massively parallel 

lattice Boltzmann (LB) fluid solver (executed on a graphics processing unit (GPU) 

device) with an extended finite element (XFE) solid solver.  Two-way interaction 

between the solvers is handled by an immersed boundary (IB) coupling scheme, in which 
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a Lagrangian solid mesh moves on top of a fixed Eulerian fluid grid.  The modeling 

approach takes advantage of several inherent features of the integrated solvers, namely:  

(1) scalable GPU parallelization of the LB fluid solver, as well as its ability to handle 

unsteady turbulent flow with relative ease; (2) the reduced mesh-dependence of the XFE 

method for modeling crack propagation; and (3) the ability of the IB coupling scheme to 

handle large-displacement response without global adaptive meshing.  The coupled LB-

XFE framework developed in this paper offers a versatile and computationally efficient 

approach for simulating FSI response with crack propagation.  Through the development 

of robust parametric studies, the modeling approach will improve fatigue life prediction 

for FSI applications, and will aid in the development of SHM approaches for early 

damage detection by facilitating investigations of damage-sensitive features and sensor 

arrays.   

 

1.2  ORGANIZATION 

The remainder of this thesis is organized as follows: 

 Chapters 2, 3, and 4 present the theoretical basis and numerical implementation of the 

LB fluid solver, the XFE solid solver, and the IB coupling scheme, respectively. 

 Chapter 5 presents the benchmark simulations used to validate the modeling approach 

for FSI and crack propagation simulation. 

 Chapter 6 presents an idealized, yet illustrative, demonstration problem for the 

modeling approach that investigates subcritical crack growth in a flexible beam 

excited by vortex-induced vibration.   
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 Chapter 7 provides a comprehensive summary for the study and presents 

recommendations for future work.   
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Figure 1.1.  Fatigue failure of a power generation buoy                                                                   

(Photographs and illustration provided by H. Nied) 
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Figure 1.2.  Offshore floating production platforms (ACRIGS, 2015) 
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CHAPTER 2 

LATTICE BOLTZMANN FLUID SOLVER 

 

2.1  THEORY AND NUMERICAL IMPLEMENTATION  

The lattice Boltzmann (LB) method is a mesoscale modeling approach that simulates 

fluid dynamics through the transport of fluid particles.  Macroscopic physical 

phenomena, such as the conservation laws described by the Navier-Stokes equations, 

emerge from the large number of local interactions, considering particle streaming and 

collision processes.  The LB method is generally formulated for a regular fixed point 

lattice (Eulerian grid), such as the D2Q9 (2-dimension, 9-directional vector) and the 

D3Q24 (3-dimension, 24-directional vector) lattices shown in Figure 2.1, where the 

particle streaming directions are governed by the lattice type.  The macroscopic fluid 

dynamics of the system are determined by solving the discrete Boltzmann equation at 

each node, which in the absence of external forces can be expressed as: 

𝜕𝑓𝛼
𝜕𝑡

+ 𝑒𝛼 ∙ ∇𝑓𝛼 = Ω𝛼 , 𝛼 ∈  [0, … , 𝑞] , 𝑒𝛼 ∈  ℝ
𝑑 

(Equation 2-1) 

 

In Equation 2-1,  𝑓𝛼 is the particle velocity distribution function for direction 𝛼, 𝑒𝛼 is the 

set of 𝑞 discrete directional velocities at each node, and Ω𝛼 is a collision operator that is 

used to relax the particle density at a node to an equilibrium value based on Maxwell-

Boltzmann distribution.  Instead of numerically integrating the temporal and spatial 

derivative operators, the LB method handles them discretely in time and space by 
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streaming particle distributions from a source node to neighboring sites in each direction, 

as expressed by Equation 2-2.  

𝑓𝛼(𝒓 + 𝑒𝛼, 𝑡 + 1) − 𝑓𝛼(𝒓, 𝑡) = Ω𝛼 

(Equation 2-2) 

In Equation 2-2, 𝒓 is the position vector for a given node and 𝑡 is the current time in 

lattice units.  Local macroscopic fluid density 𝜌 and velocity �̇� are then computed as 

moments of the particle distribution function 𝑓𝛼 using Equations 2-3 and 2-4, 

respectively. 

𝜌 = ∑𝑓𝛼

𝑞−1

𝛼=0

 

(Equation 2-3) 

�̇� =
1

𝜌
∑ 𝑓𝛼𝑒𝛼

𝑞−1

𝛼=0

 

(Equation 2-4) 

 

Local fluid pressure is then determined according to Equation 2-5 as the product of the 

local density 𝜌 and the square of the lattice speed of sound 𝑐𝑠. 

𝑝 = 𝜌𝑐𝑠
2 

(Equation 2-5) 

 

For the D2Q9 lattice, the speed of sound is set to √1 3⁄ , and the discrete velocities 𝒆𝛼 are 

given by Equation 2-6.  
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𝒆𝛼 = {

(0,0)                                                                                                                𝛼 = 0

(𝑐𝑜𝑠[(𝛼 − 1) 𝜋 2⁄ ], 𝑠𝑖𝑛[(𝛼 − 1) 𝜋 2⁄ ])𝑐𝑠                                    𝛼 = 1, 2, 3, 4

(𝑐𝑜𝑠[(𝛼 − 5) 𝜋 2⁄ + 𝜋 4⁄ ], 𝑠𝑖𝑛[(𝛼 − 5) 𝜋 2⁄ + 𝜋 4⁄ ])√2𝑐𝑠      𝛼 = 5, 6, 7, 8

 

          (Equation 2-6) 

The LB method is formulated in lattice units, which involves nondimensionalizing the 

physical system and then converting to the lattice scale.  Two input parameters (e.g. 

spatial and temporal resolution) are specified, leaving the relaxation parameter(s) and 

viscosity to be calculated accordingly in order to preserve Reynolds number (Re) (i.e. Re 

is similar in the physical and lattice scales).   

2.1.1  Single Relaxation Time Bhatnagar-Gross-Krook (BGK) Scheme 

The simplest form of the collision operator is the single relaxation time Bhatnagar-Gross-

Krook (BGK) operator (Equation 2-7), which assumes that all kinematic modes relax at 

the same rate (Bhatnagar et al. 1954). 

Ω𝛼
𝐵𝐺𝐾 = −

1

𝜏
(𝑓𝛼 − 𝑓𝛼

𝑒𝑞)    

(Equation 2-7) 

In Equation 2-7, 𝜏 is a tunable relaxation parameter and 𝑓𝛼
𝑒𝑞

 is the equilibrium particle 

distribution given by Equation 2-8. 

𝑓𝛼
𝑒𝑞 = 𝜌𝑤𝛼 [1 +

(𝒆𝛼 ∙ 𝒖)

𝑐𝑠2
+
(𝒆𝛼 ∙ 𝒖)

2

𝑐𝑠4
−
1

2
(
𝒖 ∙ 𝒖

𝑐𝑠2
)] 

           (Equation 2-8) 
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The weight functions 𝑤𝛼 in Equation 2-8 are given by Equation 2-9: 

𝑤𝛼 =

{
 
 

 
 
4

9
                  𝛼 = 0

1

9
     𝛼 = 1, 2, 3, 4

1

36
      𝛼 = 5, 6, 7, 8

 

(Equation 2-9) 

The BGK relaxation parameter 𝜏 is related to the fluid kinematic viscosity 𝜈 through 

Equation 2-10. 

𝜏 =
𝜈

𝑐𝑠2
+
1

2
 

         (Equation 2-10) 

 

2.1.2  Effect of Relaxation on the Stability and Accuracy of the BGK Scheme 

The value of the relaxation parameter 𝜏  has to be carefully monitored since it impacts 

both the stability and accuracy of the simulation.  The relaxation parameter has to be 

larger than 0.5 to maintain non-negative viscosity (below this value, the particle 

distribution has unbounded growth).  On the other end of the spectrum, when 𝜏 is greater 

than 1.0, the system is under-relaxed, where the distribution gradually relaxes toward 

equilibrium.  However, in this scenario, accuracy is degraded as 𝜏 becomes much larger 

than 1.0 due to the presence of error terms that are otherwise effectively canceled when 𝜏 

is less than 1.0.  The desired behavior generally occurs when 𝜏 is between 0.7 and 1.0.  In 

this region, the system is over-relaxed and the particle distribution oscillates around 
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equilibrium with decaying amplitude.   As 𝜏 approaches 0.5, the combined effect of these 

oscillations along with the inherent noise in the streaming process can lead to unbounded 

growth of the particle distribution function or to the particle distribution function going to 

zero, in which case the velocity becomes unbounded.   

2.1.3  Multiple Relaxation Time (MRT) Scheme  

While easy to implement and computationally efficient, the BGK model suffers from 

stability problems, and is generally limited to simulations where Re is less than 200.  This 

limitation can be attributed to a fixed Prandtl number of 1.0, as well as a fixed ratio 

between kinematic and bulk viscosity.  In order to resolve these deficiencies, a multiple 

relaxation time (MRT) collision operator was developed by d’Humieres (1992).  In the 

MRT scheme, the basis of the collision operator is changed, using a transformation 

matrix 𝑴, in order to form a diagonal relaxation matrix 𝛀𝑴𝑹𝑻, which is used to control 

the different modes (kinematic moments) of the system independently.  First, the particle 

distribution functions 𝒇𝛼 are projected to moment space using Equation 2-11.   

𝒎 =

(

 
 
 
 
 
 

𝜌
𝐸
𝜀
𝑗𝑥
𝑞𝑥
𝑗𝑦
𝑞𝑦
𝑝𝑥𝑥
𝑝𝑦𝑦)

 
 
 
 
 
 

=

(

 
 
 
 
 
 

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1)

 
 
 
 
 
 

(

 
 
 
 
 
 
 

𝑓0
𝑓1
𝑓2
𝑓3
𝑓4
𝑓5
𝑓6
𝑓7
𝑓8)

 
 
 
 
 
 
 

= 𝑴 ∙ 𝑓𝛼 

(Equation 2-11) 
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In Equation 2-11, the individual modes correspond to density (𝜌), energy (𝐸), energy 

squared (𝜀), momentum in the X-direction (𝑗𝑥), energy flux in the X-direction (𝑞𝑥), 

momentum in the Y-direction (𝑗𝑦), energy flux in the Y-direction (𝑞𝑦), the diagonal 

stress tensor (𝑝𝑥𝑥), and the off-diagonal stress tensor (𝑝𝑥𝑦), respectively.  The collision 

process is then calculated in moment space using Equation 2-12.  

𝑓𝛼(𝒓 + 𝑒𝛼, 𝑡 + 1) − 𝑓𝛼(𝒓, 𝑡) = 𝑴−1𝑺(𝒎(𝒓, 𝑡) −𝒎𝒆𝒒(𝒓, 𝑡)) 

(Equation 2-12) 

In Equation 2-12, 𝑺 is a diagonal relaxation matrix equal to: 

𝑺 = 𝑑𝑖𝑎𝑔(𝑠0, 𝑠1, … , 𝑠8)    

(Equation 2-13) 

The relaxation rates 𝑠7= 𝑠8= 𝑠𝜈 and 𝑠1= 𝑠𝐸 are related to the kinematic viscosity 𝜈 and 

bulk viscosity 𝜁, respectively, through Equation 2-14 and Equation 2-15. 

𝜈 = 𝑐𝑠
2 (
1

𝑠𝜈
−
1

2
) 

            

        (Equation 2-14) 

𝜁 = 𝑐𝑠
2 (
1

𝑠𝐸
−
1

2
) 

           

 (Equation 2-15) 
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Since collisions do not change the conserved quantities (e.g. density and momentum), 

only the non-conserved moments are updated (i.e.  𝑠0 = 𝑠3 = 𝑠5 = 0).  Therefore, 𝑠1, 𝑠2, 

𝑠4, 𝑠6, 𝑠7, and 𝑠8 are available as tunable parameters.   

In Equation 2-12, 𝒎𝒆𝒒(𝒓𝑖 , 𝑡) is the corresponding equilibrium state in momentum space, 

given by Equation 2-16. 

𝒎𝒆𝒒(𝒓𝑖, 𝑡) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 

𝜌
1

4
𝛽2𝜌 +

1

6
𝛾2(𝑗𝑥

2 + 𝑗𝑦
2)

1

4
𝛽3𝜌 +

1

6
𝛾4(𝑗𝑥

2 + 𝑗𝑦
2)

𝑗𝑥
1

2
𝑐1𝑗𝑥

𝑗𝑦
1

2
𝑐1𝑗𝑦

3

2
𝛾1(𝑗𝑥

2 − 𝑗𝑦
2)

3

2
𝛾3(𝑗𝑥𝑗𝑦) )

 
 
 
 
 
 
 
 
 
 
 
 
 

 

           

 (Equation 2-16) 

This equilibrium vector introduces seven additional parameters: 𝛽2, 𝛽2, 𝑐1, 𝛾1, 𝛾2, 𝛾3, and 

𝛾4.  Galilean invariance of the transverse and sound modes leads to:  𝛾1 = 𝛾3 =
2

3
 , and 

𝛾2 = 18.  In addition, isotropy of the attenuation of the transverse mode and Galilean 

invariance of the attenuation of the sound modes lead to:  𝑐1 = −2 and 𝛽2 = −8.  This 

leaves only two remaining adjustable parameters:  𝛽2 and 𝛾4.  If 𝛽2 = 4 and 𝛾4 = −18, 
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then 𝑠1 = 𝑠2 = 𝑠4 = 𝑠6 = 𝑠7 = 𝑠8 =
1

𝜏
 and the MRT scheme degenerates to the BGK 

model.  The reader is referred to Lallemand and Luo (2000), d’Humieres et al. (2001), 

Bouzidi et al. (2001), Fakhari and Lee (2013), and Guo et al. (2013) for additional details. 

The MRT scheme provides enhanced control over the dissipation of system noise and, as 

a result, is able to simulate higher Re flows compared with the BGK model.  As an 

illustration, Gorban and Packwood (2014) present stable MRT LB simulations with Re 

approaching 1x105.  

2.1.4  Mach Restriction 

In addition to its intrinsic noisy character, the LB method is also plagued by physical 

properties such as non-Galilean invariance (due to the density dependence of convection) 

and a non-physical dependence of the pressure on velocity (Succi, 2001).  Both of these 

shortcomings are related to the fact that the LB method is based on perturbative 

expansion so that it cannot exactly match the Navier-Stokes inertial and pressure tensors.  

However, for quasi-incompressible low Mach flows (generally less than 0.2) these errors 

become small and the solution mimics incompressible Navier-Stokes flow. 

2.1.5  Boundary Conditions 

In the LB method, non-slip, fixed wall boundaries can be modeled as bounce-back 

conditions, where the particle concentration directed into the wall is reflected back into 

the fluid domain (Maier et al. 1996), as illustrated in Figure 2.2.  Velocity and pressure 

gradient boundaries can be modeled using the approach developed by Zou and He (1997), 

which assumes bounceback of the non-equilibrium particle distribution to solve for the 
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component  distributions at the boundary (an otherwise indeterminate problem).  Curved 

or inclined boundaries are handled in the LB method through nodal interpolation.   

 

2.2  IMPLEMENTATION ON GRAPHICS PROCESSING UNIT (GPU) DEVICES 

While conceptually straightforward and relatively easy to implement, it is well 

recognized that the LB method is particularly computationally intensive and memory 

demanding.  Considerations for precision and stability, along with the typical restriction 

to a regular grid, require that a large number of lattice points are generally needed to 

discretize a problem domain.  In addition, the LB method requires storage of each 𝑓𝛼 

value throughout the lattice (e.g. 9 values for the D2Q9 lattice or 27 values for the 

D3Q27 lattice).  This storage demand is roughly double the requirement of more 

traditional finite volume or finite element Navier-Stokes solvers, and also requires greater 

memory bandwidth for the data to be streamed into the computing cores.   In fact, 

researchers have found that this memory bandwidth requirement is generally what 

governs the performance of an LB simulation, requiring a large number of CPU cores due 

to the comparatively limited memory bandwidth that each CPU core has available to it 

(Blair, 2012). 

In order to address the aforementioned computational demands and improve the 

efficiency of LB simulations, researchers have investigated implementing the LB method 

on graphics processing unit (GPU) devices (Blair, 2012).  These high-throughput devices 

can run hundreds to thousands of threads (as compared to 16-threads on an 8-core multi-
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threaded CPU workstation).  For single precision arithmetic, GPU devices can provide a 

significant boost in the number of floating point operations performed per second, and 

can outcompete CPU clusters for applications with high memory bandwidth demands, 

such as LB simulation.   

As an illustration of realizable GPU acceleration, Figure 2.3 presents the observed 

speedup for 2-D channel flow simulations with 4x106 and 18x106 degrees of freedom 

(DOF), respectively.  The serial CPU-based simulations were run on a 3.1 GHz XEON 

E5-2687 processor (51.2 GB/s memory bandwidth), while the parallel GPU-based 

simulations were run on an NVIDIA K5000 graphics card (1536 CUDA cores, 173 GB/s 

memory bandwidth).  Performance was measured in terms of lattice updates per second.  

For the 4x106 and 18x106 DOF models, the observed speed-ups were 19x and 34x, 

respectively.  
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Figure 2.1  D2Q9 and D3Q24 lattices (adapted from Chirila, 2010). 
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Figure 2.2  Bounceback scheme for non-slip boundaries (Blair, 2012). 
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Figure 2.3  Comparison of CPU and GPU performance 
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CHAPTER 3 

EXTENDED FINITE ELEMENT SOLID SOLVER 

 

The extended finite element (XFE) code used in this study extends the XFE code developed 

by Pais (2011) by accounting for dynamic effects and subcritical crack growth during 

variable amplitude loading from feedback-driven fluid-structure interaction.  An overview 

of the XFE method is provided in this Chapter.  The reader is referred to Belytschko and 

Black (1999), Karihaloo and Xiao (2003), Sukumar et al. (2005), Bordas et al. (2006), 

Yazid et al. (2009), Belytschko et al. (2009), and Fries and Belytschko (2010) for additional 

details.   

3.1  EXTENDED FINITE ELEMENT METHOD  

3.1.1  Displacement Field Enrichment 

The XFE method modifies conventional finite element (FE) analysis by enriching the 

displacement field to model arbitrarily oriented discontinuities in a traditional FE mesh.  In 

contrast to cohesive zone models that restrict cracking along defined interfaces, the XFE 

method models discontinuities independent of the mesh by enriching the degrees of 

freedom (DOF) for the elements cut by the discontinuity.  For a simple 2-D plane 

strain/plane stress element, the displacement field becomes a linear combination of 

conventional FE DOF and enriched DOF, as shown in Equation 3-1.   
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𝒖ℎ(𝑥) = ∑ 𝑁𝐼(𝑥) [𝒖𝐼 + ∑ 𝑣(𝑥)𝒂𝐼

𝐼∈Ω𝑑

]

𝐼∈Ω

 

            

         (Equation 3-1) 

In Equation 3-1, Ω is the analytical domain, Ω𝑑 is the subdomain containing discontinuities, 

𝑁𝐼(𝑥) are the traditional finite element shape functions, 𝑣(𝑥) is the discontinuous 

enrichment function, and 𝒖𝐼 and 𝒂𝐼 are the traditional and enriched DOF, respectively.   

3.1.2  Tracking of Discontinuities 

Since the discontinuities are not defined by the FE mesh, the level set method (Osher and 

Sethian, 1988) is used to track their boundaries.  For crack modeling, this approach utilizes 

two tracking functions.  The first is based on the Heaviside function and is used for tracking 

elements completely cut by a crack (Moes et al. 1999).   

𝜓(𝑥) = {
+1 Above Crack
−1 Below Crack

     

         

 (Equation 3-2) 

 

The second tracking function is for partially cut elements containing the crack tip, and is 

formulated in the local crack tip coordinate system in order to more easily track crack tip 

orientation (Fleming et al. 1997). 

𝜙𝑎(𝑥) =  [√𝑟 𝑠𝑖𝑛
𝜃

2
, √𝑟 𝑐𝑜𝑠

𝜃

2
, √𝑟 sin 𝜃 𝑐𝑜𝑠

𝜃

2
, √𝑟 sin 𝜃 𝑠𝑖𝑛

𝜃

2
, ] 

       

 (Equation 3-3) 
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Illustrations of the signed distance function for a closed domain (inclusion type) and an 

open section (crack type) are presented in Figure 3.1  The tracking functions are set to zero 

along the crack surface so that the crack path can be defined at a particular time point by 

differentiating with respect to time and setting the function to zero.  

𝜕𝜙

𝜕𝑡
+

𝜕𝑥(𝑡)

𝜕𝑡
∙

𝜕𝜙

𝜕𝑥(𝑡)
= 0 

(Equation 3-4) 

Figure 3.2 illustrates how a discontinuity (e.g. an edge crack) can be accommodated by 

enrichment of the displacement field, and how the level set functions are used to track the 

boundaries of the discontinuity (e.g. the crack path).     

It is noted that in the XFE method, the integrands for numerical integration can contain a 

discontinuity, which presents problems for a conventional Gauss quadrature rule.  One 

solution is to use Delaunay triangulation to subdivide the enriched elements into triangular 

regions between the crack and element boundaries (Mohammadi, 2008).  The process is 

illustrated in Figure 3.3 for an element completely cut by a crack and an element containing 

a crack tip.  Separate integration points and weights are the used for each triangular 

element, and the final integral is calculated as the summation over all of the Gauss points 

in the original element. 
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3.2  CRACK GROWTH MODEL  

3.2.1  Angle of Divergence and Growth Rate 

Crack growth in the XFE solver is based on the maximum circumferential tensile stress 

criterion (Sih, 1974), where crack extension occurs in the direction of maximum 

circumferential stress.  The divergence angle of crack growth, relative to the current 

orientation of the crack tip, is then given by Equation 3-4 (Moes et al. 1999). 

𝜃𝑐 = 2 arctan
1

4
[

𝐾𝐼

𝐾𝐼𝐼
− +(𝐾𝐼𝐼)√(

𝐾𝐼

𝐾𝐼𝐼
)

2

+ 8]  

(Equation 3-4) 

In Equation 3-4,  𝐾𝐼 and 𝐾𝐼𝐼 are the mode I (crack opening) and mode II (crack sliding) 

stress intensity factors (SIF), respectively, where the crack deformation modes are 

illustrated in Figure 3.4.   

In fatigue load simulations, accurate modeling of mixed-mode crack growth would require 

extensive experimental data that considers all possible load configurations and load 

histories.  However, a practical (albeit idealized) simplification can be made by assuming 

mode I dominance and basing crack extension on experimentally measured mode I 

behavior.  Under the assumption of small scale yielding at the crack tip (i.e. linear elastic 

fracture mechanics (LEFM)), a relationship can then be established between the crack 

growth increment (
𝑑𝑎

𝑑𝑁
) and the change in the mode I SIF (Δ𝐾𝐼).  The form of this 

relationship for a particular application is derived by fitting experimental data, and should 
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consider all applicable conditions that impact crack extension (e.g. stress range, loading 

rate, overload occurrence, crack closure, and crack surface loading).  Since the objective 

of the current study is to integrate a general crack modeling approach into an FSI 

framework, the simple two-parameter power law model developed by Paris et al. (1961) is 

used in the present study: 

𝑑𝑎

𝑑𝑁
= 𝐶(Δ𝐾𝐼)𝑛   if   Δ𝐾𝐼 > Δ𝐾𝑡ℎ 

(Equation 3-5) 

 

In Equation 3-5, 𝐶 and 𝑛 are empirical constants used to fit the experimental data.  Crack 

extension occurs when Δ𝐾𝐼 is larger than an experimentally obtained threshold (ΔK𝑡ℎ), 

which is typically an order of magnitude smaller than the fracture toughness of the material 

(K𝐼𝐶).  

3.2.2  J-Integral  

The SIF utilized in Equation 3-4 and 3-5 are determined in a FE simulation using a path-

independent contour integration referred to as the J-integral (Rice, 1968).  The linear elastic 

fracture mechanics (LEFM) formulation of the J-integral is defined in Equation 3-6 as the 

relationship between the strain energy near the crack tip and the external work done by 

tractions acting through the displacement field.   

𝐽 = ∫ [𝑊𝑑𝑦 − 𝒕
𝜕𝒅

𝜕𝑥
] 𝑑𝑠

 

𝛤

 

(Equation 3-6) 
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In Equation 3-6, the strain energy density (𝑊) and external work (𝒕
𝜕𝒅

𝜕𝑥
) are given by 

Equations 3-7 and 3-8, respectively. 

 

 

𝑊 =
1

2
[𝜎𝑥

𝜕𝑢

𝜕𝑥
+ 𝜏𝑥𝑦 (

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

𝜕𝑢

𝜕𝑥
+ 𝜎𝑦

𝜕𝑣

𝜕𝑦
] 

 

(Equation 3-7) 

 

𝒕
𝜕𝒅

𝜕𝑥
= [(𝜎𝑥𝑛1 + 𝜏𝑥𝑦𝑛2)

𝜕𝑢

𝜕𝑥
+ (𝜏𝑥𝑦𝑛1 + 𝜎𝑦𝑛2)

𝜕𝑢

𝜕𝑥
] 

(Equation 3-8) 

 

 

In Equations 3-7 and 3-8, 𝜎𝑥, 𝜎𝑦, and 𝜏𝑥𝑦 are the stress components; 
𝜕𝑢

𝜕𝑥
, 

𝜕𝑣

𝜕𝑦
, 

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
  are the 

strain components; and 𝑛1 and 𝑛2 are the surface normals; where all terms are in Cartesian 

coordinates.   

The path independence of the J-integral comes from Cauchy’s Theorem and the assumption 

of traction-free boundary conditions along the crack surface.  As an illustration, Figure 3.5 

shows a closed contour drawn around the tip of a crack, which is formed by two line 

integrals (C+ and C- along the crack path) and two contours C and Γ.  By Cauchy’s 

Theorem, the integration along the closed contour is zero if no singularities are present in 

the domain.  Under the assumption of traction-free boundaries along the crack surface, the 

line integral contributions are zero because the integration is along the local x-direction 

(i.e. both terms in Equation 3-6 are zero).  The resulting equation states that the integration 

along contour C plus contour gamma is zero, or, equivalently, that the two integrals are 
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equal.  This path independence enables consistent calculation of the J-integral from FE 

results for any reasonably prescribed J-integral search radius (Figure 3-6). 

It is noted that the assumption of traction-free boundaries at the crack surface is clearly 

violated in FSI applications where the crack surface is loaded by hydraulic pressure.  

However, if the strain demand from the crack surface loading is small relative to the 

integrated effect of the structural surface tractions and body forces, the assumption of a 

traction-free crack surface may still be appropriate.  For simplicity, the simulations in this 

thesis neglect hydraulic loading of the crack surface. 

3.2.3  Interaction Integral Method  

The separation of mode I and mode II SIFs, is accomplished through the interaction integral 

method (Nikishkov and Atlui, 1987).  In this approach, auxiliary stress fields (considering 

pure mode response) are superimposed on top of the real stress fields.  For this study, the 

auxiliary stress and displacement equations developed by Westergaard (1939) and 

Williams (1957) are utilized.  This choice results in the superposition of separate J-integral 

terms for the real and auxiliary stress fields as well as an interaction integral (𝐼) for the 

actual stresses acting through the auxiliary strain field, integrated over the element area 

(A).   

𝐼(𝑀𝑜𝑑𝑒 𝐼,   𝑀𝑜𝑑𝑒 𝐼𝐼) = ∫ [𝜎𝑖𝑗
(1) 𝑑𝑢𝑖

(2)

𝑑𝑥1
− 𝜎𝑖𝑗

(1) 𝑑𝑢𝑖
(1)

𝑑𝑥1
− 𝑊(1,2)𝛿1𝑗]

 

A

𝜕𝑞

𝜕𝑥𝑗
𝑑A  

(Equation 3-9) 
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In Equation 3-9, superscripts 1 and 2 denote the real and auxiliary fields, respectively; and 

𝛿1𝑗 is the Dirac delta function.  Since we can also relate the modal SIFs to the stress/strain 

fields, Equation 3-9 establishes a relationship between the interaction integral and the SIFs.  

By advantageously choosing pure mode response for the auxiliary fields, we can then 

separate the mode I and mode II SIFs using Equation 3-10 and 3-11. 

𝐾𝐼 =
𝐼(𝑀𝑜𝑑𝑒 𝐼)𝐸𝑒𝑓𝑓

2
  

(Equation 3-10) 

 

𝐾𝐼𝐼 =
𝐼(𝑀𝑜𝑑𝑒 𝐼𝐼)𝐸𝑒𝑓𝑓

2
  

(Equation 3-11) 

In Equation 3-10 and 3-11, 𝐸𝑒𝑓𝑓 is the effective elastic modulus, equal to 𝐸 for plane stress 

or 
𝐸

1−𝜈2 for plane strain.   

 

3.3  DYNAMIC SOLID SOLVER 

3.3.1  Equations of Motion 

The dynamic equations of motion for the solid solver are given by:    

𝑴�̈� + 𝑪�̇� + 𝑲𝒖 = 𝑭 
(Equation 3-12) 

 

In Equation 3-12, 𝑴, 𝑪, and 𝑲 are the global mass, damping, and stiffness matrices, 

respectively.  The global force vector is denoted as 𝑭.  The property matrices utilized in the 



29 

equations of motion include both conventional and XFE terms, as illustrated in Equation 

3-13 for the tangent stiffness matrix (𝑲𝑇).   

𝑲𝑇 = [𝑲𝒄𝒄 𝑲𝒄𝒙

𝑲𝒙𝒄 𝑲𝒙𝒙] 

(Equation 3-13) 

 

In Equation 3-13, c and x denote conventional and enriched DOF, respectively.  The mass 

matrix is expanded in a similar fashion using the approach developed by Menouillard 

(2006) to activate and deactivate inertial DOF. 

𝑴𝒆
𝒏 =

𝑀𝑜

𝑁𝑛
∫ 𝜓𝑖

2𝑑𝛺

 

𝛺

 

(Equation 3-14) 

 

In Equation 3-14, 𝑴𝒆
𝒏 is the lumped mass at node 𝒏 in element 𝒆, 𝑀𝑜 is the element mass, 

𝑁𝑛 is the number of nodes in the element, 𝜓 is the previously defined tracking function, 

and 𝛺 is the element domain. Crack closure is modeled by reverting to the initial stiffness 

matrix when a set of predefined contact conditions are met, which involves monitoring 

both crack opening amplitude and direction.  

3.3.2  Damping 

In order to reduce artificial high frequency excitation stemming from numerical noise in 

the lattice Boltzmann (LB) fluid solver (discussed in Chapter 4), Rayleigh mass and 
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stiffness proportional damping was utilized with target modal damping ratios of 1% of 

critical in the first and second modes of vibration. 

𝑪 = 𝑎𝑜𝑴 + 𝑎1𝑲 
(Equation 3-15) 

 

In Equation 3-15, 𝑎𝑜 and 𝑎1 are the mass and stiffness proportionality coefficients, 

respectively.  It is noted, however, that Rayleigh damping is a computationally expensive 

approach to controlling system noise since the proportionality coefficients need to be 

updated at each nonlinear event in order to preserve the target modal damping ratios.  With 

this in mind, future development of the code will likely move to an integration scheme like 

the Hilber-Hughes-Tayler (HHT) model (Hilber et al. 1977), which provides numerical 

damping in the higher modes, while keeping damping in the fundamental modes at a 

minimum.  This minimization can be important for movement-induced excitation (MIE) 

scenarios where the response is sensitive to damping in the fundamental modes.  In 

addition, and as will be discussed in Chapter 4, running the fluid and solid solver at 

different time scales and averaging hydraulic pressures has been shown to significantly 

reduce this artificial high frequency excitation. 

3.3.3  Nonlinear Newmark Average Acceleration Method 

Solution of the system of equations is accomplished using the implicit nonlinear Newmark 

average acceleration method (Chopra, 2007).  A summary of the procedure is outlined 

below. 
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Initial calculations… 

 Set the initial acceleration of the system �̈�𝟎 

 

�̈�𝟎 = (𝑭0 − 𝑪�̇�𝟎 − (𝒇𝒔)𝟎) 𝑴⁄  

(Equation 3-16) 

 

In Equation 3-16, 𝑭0 and �̇�𝟎 are the initial values of external force and nodal velocity, 

respectively, and (𝒇𝒔)𝟎 is the initial force due to imposed displacement. 

 

 Select time step 𝛥𝑡 

 

 

 Calculate constants of integration 𝒂 and 𝒃 

 

𝒂 =
1

𝛽𝛥𝑡 
𝑴 +

𝛾

𝛽
𝑪                𝒃 =

1

2𝛽 
𝑴 + Δ𝑡 (

𝛾

2𝛽
− 1) 𝑪        

(Equation 3-17) 

 

In Equation 3-17, 𝛾 and 𝛽 are integration constants taken as 1/2 and 1/4, respectively, 

for the Newmark average acceleration method. 

 

Calculations for earch time step i… 

 Calculate the effective change in the forcing function  𝜟�̂�𝒊   

 

𝜟�̂�𝒊 = 𝛥𝑭𝒊 + 𝒂�̇�𝒊 + 𝒃�̈�𝒊 

(Equation 3-18) 
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 Determine the tangent property matrices 𝑲𝒊, 𝑴𝒊, 𝑪𝒊 

 

 

 Calculate the effective stiffness matrix  �̂�𝒊 

 

�̂�𝒊 = 𝑲𝒊 + (
𝛾

𝛽 Δ𝑡
) 𝑪𝒊 + (

1

𝛽(Δ𝑡)2
) 𝑴𝒊 

(Equation 3-19) 

 

 Solve for the incremental nodal displacements 𝜟𝒖𝒊 from… 

 

𝜟�̂�𝒊 = �̂�𝒊 𝜟𝒖𝒊 
(Equation 3-20) 

 

 

 Solve for the incremental nodal velocities and accelerations  𝜟�̇�𝒊 and 𝜟�̈�𝒊 

𝜟�̇�𝒊 = (
𝛾

𝛽 Δ𝑡
) 𝜟𝒖𝒊 −

𝛾

𝛽
�̇�𝒊 + Δ𝑡 (1 −

𝛾

2𝛽
) �̈�𝑖  

(Equation 3-21) 

 

𝜟�̈�𝒊 = (
1

𝛽(Δ𝑡)2
) 𝜟𝒖𝒊 −

1

𝛽 Δ𝑡
𝜟�̇�𝒊 −

1

2𝛽
�̈�𝑖 

(Equation 3-22) 

 

 

 

 Solve for the instantaneous nodal displacements, velocities, and accelerations 

 

 

𝒖𝒊+𝟏 = 𝒖𝒊 + 𝜟𝒖𝒊 

(Equation 3-23) 
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�̇�𝒊+𝟏 = �̇�𝒊 + 𝜟�̇�𝒊 

(Equation 3-24) 

 

 

�̈�𝒊+𝟏 = �̈�𝒊 + 𝜟�̈�𝒊 

(Equation 3-25) 

 

 

 

Repeat for next time step… 

 

 

 

 

3.4  ADDITIONAL CONSIDERATIONS FOR FATIGUE CRACK MODELING IN 

FSI APPLICATIONS 

There are a number of issues related to modeling fatigue crack growth, particularly for the 

target FSI application.  The first is that the previous derivation of the J-integral assumes 

monotonic and proportional loading, both of which are violated in cyclic load fatigue 

cracking scenarios.  The previously discussed approach can provide useful information, 

however, if these conditions are not violated that severely.  However, this is a rather 

subjective statement and, as a result, it clear that experimental data is critical to establishing 

a relationship between the change in the J-integral and crack growth rate.   The combination 

of SIFs for mixed mode behavior is also problematic when the crack path is curved since 

the theoretical basis of these factors assumes self-similar or straight line crack advance.  As 

before, if this condition is not violated that severely, the previously described combination 

may still be appropriate.   

Other issues that complicate fatigue crack modeling in FSI applications include crack 

closure and pressure loading of the crack surface (both of which impact stress conditions 
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at the crack tip), as well as variable loading in highly turbulent conditions and dynamic 

response, which make it difficult to develop robust empirical fatigue growth models.  The 

crack growth model, therefore, is only as good as the experimental data used to calibrate 

it.  With this in mind, the goal of the present study was to integrate a general crack modeling 

approach in FSI simulation, one which could be readily adaptable to more sophisticated 

experimentally driven growth models. 
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Figure 3.1  Illustration of the signed distance function for (a) a closed domain                                      
and (b) an open section (Pais, 2011)  

 
 
 

(a) 

(b) 
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Figure 3.2  Gap opening and crack extension in a                                                                               
pre-cracked beam during lateral load response  

 
 
 
 
 
 
 
 
 
 
 

Gap opening and   

crack extension     
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Pre-crack      
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Figure 3.3  Elements containing a discontinuity and the continuous subdomains for 
integration:  (a) element completely cut by the crack, (b) element completely cut by the 
crack divided into four continous subdomains, (c) element containing the crack tip, and 

(d) element containing the crack tip divided into five continuous subdomains (Pais, 2011)   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 

(c) 

(b) 
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Figure 3.4  Crack deformation modes:  mode I (opening),                                                                   

(b) mode II (sliding), and (c) mode III (tearing) (Sanford, 2003) 
 
 
 
 
 

 
Figure 3.5  Contour integration at the crack tip (Sanford, 2003) 
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Figure 3.6  J-integral search radius  
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CHAPTER 4 

FLUID-STRUCTURE COUPLING 

 

4.1  GENERAL FRAMEWORK 

Coupling of the fluid and solid solvers is accomplished using a variation of the immersed 

boundary (IB) method (Peskin, 2002), in which a deformable (Lagrangian) solid mesh 

moves on top of a fixed (Eulerian) fluid lattice.  A flowchart for the proposed modeling 

process is presented in Figure 4.1.  After model generation and initialization, hydraulic 

stresses are calculated at the fluid-structure boundaries.  These stress demands, along with 

inertial forces and strain histories, are used to determine crack growth/closure and the 

instantaneous material properties for the system.  These properties are then fed to the 

dynamic solid solver, which calculates the incremental change in structural displacement, 

velocity, and acceleration.  The structural velocities are transferred back into the fluid by 

enforcing continuity along the fluid-structure boundaries.  The flow field is then updated 

to calculate hydraulic pressure at the next time step. 

The two-way coupling scheme is summarized by Equations 4-1 and 4-2. 

 

𝑝𝑓𝑙𝑢𝑖𝑑(𝒙, 𝑡) → 𝑝𝑠𝑜𝑙𝑖𝑑(𝒙, 𝑡) 

(Equation 4-1) 

�̇�𝑠𝑜𝑙𝑖𝑑(𝒙, 𝑡) → �̇�𝑓𝑙𝑢𝑖𝑑(𝒙, 𝑡) 

(Equation 4-2) 
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Fluid pressures drive structural response and, in turn, the structural velocities are 

transferred back into the fluid by enforcing velocity continuity along the shared interfaces.  

This coupling approach is able to handle very stiff to very soft structures, as shown in 

Figure 4.2 for the case of a flexible beam in steady channel flow.  The beam is attached to 

a rigid circular obstruction and is excited by vortex shedding.  Figure 4.2(a) and (b) 

respectively, show the vibratory response when the beam is relatively stiff (higher elastic 

modulus), where vibration is dominated by the fundamental mode, and when the beam is 

relatively flexible (lower elastic modulus), where vibration includes higher modes of 

response.  It is noted that the depiction of the latter case (Figure 4.2(b)) is during the 

passage of an initial shock wave front that is triggered during initialization of the LB fluid 

solver.  

 

4.2  BOUNDARY INTERPOLATION FUNCTIONS 

Boundary information is exchanged between the two domains by interpolating information 

from the neighboring nodes, as illustrated in Figure 4.3.  It is noted that the choice of 

distribution functions for information exchange should be evaluated against benchmark 

data, as it can impact both the stability and accuracy of the simulation.  For the present 

study, the distribution functions presented in Lai and Peskin (2000) are utilized.   

 

 

 

 



42 

4.3  HYDRAULIC PRESSURE  

Stresses exerted by the fluid on the solid boundaries are calculated within the fluid solver 

and are transferred to the solid solver as external forces integrated along the solid 

boundaries (He and Doolen, 1997): 

𝑭 = ∫ 𝒏 ∙ [𝑝𝑰 + 𝜌𝜐(∇�̇� + (∇�̇�)𝑇)] 𝑑𝐴 = ∑ 𝑒𝛼 ∙ [𝑝𝑰 + 𝜏𝑖𝑗]

4

𝛼=1

𝛿𝑥  

(Equation 4-3) 

 

In Equation 4-3, 𝑭 are the resultant structural forces from hydraulic loading, 𝒏 is the 

outward surface normal, 𝑰 is the identity matrix, and 𝛿𝑥 is the Dirac delta function.  The 

skin friction component (𝜏𝑖𝑗) is based on the deviatoric stress, which requires spatial partial 

derivatives that can interfere with the locality of the LB method.  An approach has been 

developed by Kruger et al. (2009) to approximate the deviatoric stress, while still 

preserving locality, using the non-equilibrium portion of the particle density.  In this 

approach, the shear stress is calculated according to Equation 4-4. 

 

𝜏𝑖𝑗 = (1 −
1

2𝜏
) ∑[𝑓𝛼(𝒙, 𝑡) − 𝑓𝛼

𝑒𝑞(𝒙, 𝑡)] × (𝑒𝛼𝑖 ∙ 𝑒𝛼𝑗 −
1

2
𝑒𝛼 ∙ 𝑒𝛼𝛿𝑖𝑗)

8

𝛼=1

 

(Equation 4-4) 

 

 

Combining the instantaneous hydraulic forces from Equation 4-3 with the inertial forces, 

the dynamic solid solver then calculates the dynamic response of the structure.   
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4.4  ENFORCEMENT OF VELOCITY CONTINUITY  

Velocity continuity at the fluid-solid interface is subsequently enforced by modifying the 

particle distribution at the neighboring fluid nodes using the approach developed by Kwon 

(2006), as illustrated in Equation 4-5.    

 

𝑓2 ← 𝑓2 +
�̇�𝑥

3
     𝑓3 ← 𝑓3 +

�̇�𝑦

3
      𝑓4 ← 𝑓4 −

�̇�𝑥

3
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12
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12
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     𝑓9 ← 𝑓9 +

�̇�𝑥

12
−

�̇�𝑦

12
 

 

(Equation 4-5) 

 

4.5  SUBCYCLING OF THE FLUID SOLVER  

An important note regarding the coupling scheme is that the inherent high-frequency 

fluctuations in the LB fluid solver can artificially excite higher mode structural vibrations, 

as illustrated in Figure 4.4.  These artificial high-frequency vibrations can degrade the 

accuracy of the simulation and can lead to instability.  Time averaging of the fluid pressure 

has been shown to significantly reduce the effect of this artificial noise.  This approach is 

particularly effective and efficient when the minimum time step required for the dynamic 

solid solver is significantly larger than the time step required for the LB fluid solver.  The 

simulations developed for this study, for example, utilize a solid model where the time step 

required to capture the vibration modes of interest is an order of magnitude larger than the 

lattice time step.  As a result, running the fluid and solid solvers on different time scales 
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(e,g. running the fluid solver at every lattice time step and the solid solver at every tenth 

lattice time step), and using a time-averaged pressure loading has two distinct advantages:  

(1) reduction of high-frequency noise in the fluid solver and the resulting high-frequency 

structural excitation, and (2) computational efficiency since the solid solver is only 

executed at a frequency required to capture the modes of interest.  The effect of this time-

averaging approach, however, should be investigated against benchmark data to ensure an 

accurate and stable solution.     
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Fluid pressures drive structural response and, in turn, the structural velocities are 

transferred back into the fluid by enforcing velocity continuity along the shared interfaces.  

This coupling approach is able to handle very stiff to very soft structures, as shown in 

Figure 4.2 for the case of a flexible beam in steady channel flow.  The beam is attached to 

a rigid circular obstruction and is excited by vortex shedding.  Figure 4.2(a) and (b) 

respectively, show the vibratory response when the beam is relatively stiff (higher elastic 

modulus), where vibration is dominated by the fundamental mode, and when the beam is 

relatively flexible (lower elastic modulus), where vibration includes higher modes of 

response.   

 

4.2  BOUNDARY INTERPOLATION FUNCTIONS 

Boundary information is exchanged between the two domains by interpolating information 

from the neighboring nodes, as illustrated in Figure 4.3.  It is noted that the choice of 

distribution functions for information exchange should be evaluated against benchmark 

data, as it can impact both the stability and accuracy of the simulation.  For the present 

study, the distribution functions presented in Lai and Peskin (2000) are utilized.   
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4.3  HYDRAULIC PRESSURE  

Stresses exerted by the fluid on the solid boundaries are calculated within the fluid solver 

and are transferred to the solid solver as external forces integrated along the solid 

boundaries (He and Doolen, 1997): 
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4

𝛼=1

𝛿𝑥  

(Equation 4-3) 

 

In Equation 4-3, 𝑭 are the resultant structural forces from hydraulic loading, 𝒏 is the 

outward surface normal, 𝑰 is the identity matrix, and 𝛿𝑥 is the Dirac delta function.  The 

skin friction component (𝜏𝑖𝑗) is based on the deviatoric stress, which requires spatial partial 

derivatives that can interfere with the locality of the LB method.  An approach has been 

developed by Kruger et al. (2009) to approximate the deviatoric stress, while still 

preserving locality, using the non-equilibrium portion of the particle density.  In this 

approach, the shear stress is calculated according to Equation 4-4. 
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(Equation 4-4) 

 

 

Combining the instantaneous hydraulic forces from Equation 4-3 with the inertial forces, 

the dynamic solid solver then calculates the dynamic response of the structure.   
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particle distribution at the neighboring fluid nodes using the approach developed by Kwon 

(2006), as illustrated in Equation 4-5.    
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An important note regarding the coupling scheme is that the inherent high-frequency 
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has been shown to significantly reduce the effect of this artificial noise.  This approach is 

particularly effective and efficient when the minimum time step required for the dynamic 

solid solver is significantly larger than the time step required for the LB fluid solver.  The 

simulations developed for this study, for example, utilize a solid model where the time step 

required to capture the vibration modes of interest is an order of magnitude larger than the 

lattice time step.  As a result, running the fluid and solid solvers on different time scales 
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(e,g. running the fluid solver at every lattice time step and the solid solver at every tenth 

lattice time step), and using a time-averaged pressure loading has two distinct advantages:  

(1) reduction of high-frequency noise in the fluid solver and the resulting high-frequency 

structural excitation, and (2) computational efficiency since the solid solver is only 

executed at a frequency required to capture the modes of interest.  The effect of this time-

averaging approach, however, should be investigated against benchmark data to ensure an 

accurate and stable solution.     
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Figure 4.1.  Simulation flowchart  
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Figure 4.2.  FSI simulations for a beam excited by vortex-induced vibration:                                                     

(a) stiff case (higher elastic modulus) and (b) flexible case (lower elastic modulus) 
 
 
 
 
 
 
 

 
 

Figure 4.3.  Distribution functions (Mittal and Iaccarino, 2005) 
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Figure 4.4.  Artificial excitation of higher mode structural response                                                                    

due to inherent fluctuations in the LB fluid solver 
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Figure 4.2.  FSI simulations for a beam excited by vortex-induced vibration:                                                     

(a) stiff case (higher elastic modulus) and (b) flexible case (lower elastic modulus) 
 
 
 
 
 
 
 

 
 

Figure 4.3.  Distribution functions (Mittal and Iaccarino, 2005) 
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Figure 4.4.  Artificial excitation of higher mode structural response                                                                    

due to inherent fluctuations in the LB fluid solver 
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CHAPTER 5 

BENCHMARK SIMULATIONS 

 

5.1  FLUID-STRUCTURE INTERACTION 

A 2-D FSI simulation benchmark developed by Turek and Hron (2006) was utilized to 

validate the code for large-displacement FSI response.  A schematic illustration of the 

problem is provided in Figure 5.1 (denoted as case FSI3 in Turek and Hron (2006)).  

Similar to previous examples presented in this paper, the benchmark simulation considered 

a flexible beam immersed in steady channel flow, such that the beam is excited by vortex 

shedding from the rigid circular obstruction to which it is attached.  The channel is 41cm 

wide by 250 cm long with a peak inlet velocity of 2 m/s.  The fluid has a density of 1000 

kg/m3 and a kinematic viscosity of 0.001 m2/s.  The flexible beam is 35 cm long by 2 m 

thick, and is constructed of a material with a density of 1000 kg/m3, a Poisson ratio of 0.4, 

and an elastic modulus of 5.6 MPa.  The beam is oriented in the direction of the flow and 

is attached to a rigid circular obstruction of diameter 10 cm.  The center of the circular 

obstruction is located 20 cm from the inlet and 20 cm from the upper wall.  Non-slip 

conditions were assumed for both wall boundaries.  The Reynolds number for the flow, 

based on a characteristic length equal to the diameter of the circular obstruction, was 200. 

The LB fluid solver was run on a D2Q9 lattice with a grid resolution of 1 mm and a time 

step of 0.1 ms.  For computational efficiency, the BGK algorithm was utilized with the 

relaxation parameter τ set to 0.83.  For consistency, the flexible beam was discretized to 

match the resolution of the fluid solver (20 elements in the through thickness direction).   
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Quadrilateral plane strain continuum elements with 2x2 Gauss quadrature were utilized.   

In order to reduce the effect of numerical noise in the fluid solver, and to improve 

computational efficiency, the fluid solver was subcycled relative to the solid solver by a 

factor of 10 (as discussed in Chapter 4) and hydraulic pressures at the fluid-solid boundary 

were time averaged.  In addition, structural damping was included in the form of Rayleigh 

mass and stiffness proportional damping with 1% of critical in the first and second modes 

of vibration.  

 The BGK simulation produced a lateral beam tip displacement of 3-4 cm at an average 

frequency of 4-5 Hz.  Figure 5.2 shows a snapshot of the deformed geometry of the beam 

and the velocity field, along with a time history plot of lateral beam tip displacement.  These 

simulation results compare relatively well with the benchmark data of 3.4 cm and 5.3 Hz. 

 

5.3  CRACK TIP STRESS INTENSITY  

Prediction of crack tip stress intensity was compared with linear elastic fracture mechanics 

(LEFM) theory for two load configurations: (1) an edge cracked plate under remote 

uniaxial tension (pure mode I response), and (2) an asymmetric four-point bending 

configuration (mixed-mode response).  Schematic illustrations of the load configurations 

are presented in Figure 5.3.  In both cases, the simulations were run using quadrilateral 

plane strain continuum elements with 2x2 gauss quadrature.  For the subdivided elements 

along the crack path, three gauss points were utilized for each triangular region within an 

element completely cut by the crack, and seven gauss points were utilized for the element 
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containing the crack tip.  The theoretical mode I SIF for the edge cracked plate under 

remote uniaxial loading is given by Tada et al. (2000), and is presented in Equation 5-1. 

𝐾𝐼 = 𝜎𝑜√𝜋𝑎 𝑓(𝜆),   𝜆 = 𝑎/𝑊, 

𝑓(𝜆) =
1

√𝜋
[ 1.99 − 0.41𝜆 + 18.70𝜆2 − 38.48𝜆3 + 53.85𝜆4 ] 

(Equation 5-1) 

 

In (Equation 5-1), 𝜎𝑜 is the remote uniaxial stress demand, 𝑊 is the plate width, and 𝑎 is 

the crack length.  For a scenario where 𝜎𝑜 is equal to 1 MPa, 𝑊 is 25 mm, and 𝑎 is 2.5 mm, 

the theoretical mode I SIF is 1.1 MPa-m1/2.  Run for static loading with a mesh resolution 

of 1.25 mm, the XFE solver calculates a mode I SIF of 1.0 MPa-m1/2 with a negligible 

mode II contribution of 3.8 kPa-m1/2.  Figure 5.4(a) presents the von Mises stress 

distribution, which includes a high intensity region around the crack tip.    

The theoretical mode I and II SIFs for the four-point bending configuration are given by 

He and Hutchinson (2000), and are presented in Equations 5-2 and 5-3, respectively. 

 

𝐾𝐼 =
6𝑐𝑄
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𝑊
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𝑊
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2

− 19.05 (
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+ 22.55 (
𝑎

𝑊
)
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(Equation 5-2) 
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𝐾𝐼𝐼 =
𝑄

𝑊1 2⁄
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𝑎
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3 2⁄

(1 −
𝑎
𝑊)

1 2⁄  𝐹𝐼𝐼 (
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𝑎

𝑊
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3
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𝑎

𝑊
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4

 

(Equation 5-3) 

 

In Equations 5-2 and 5-3, 𝑄 is given by Equation 5-4. 

 

𝑄 =
𝑃(𝑏2 − 𝑏1)

(𝑏2 + 𝑏1)
 

(Equation 5-4) 

 

For a scenario where 𝑃 is equal to 1.2 MN; 𝑏1 and 𝑏2 are 12.5 mm and 62.5 mm, 

respectively; 𝑊 is 25 mm; 𝑎 is 2.5 mm; and 𝑐 is 0.625 mm, the theoretical mode I and 

mode II SIFs are 0.45 MPa-m1/2 and 1.1 MPa-m1/2, respectively.  The corresponding XFE 

calculations for a mesh resolution of 0.625 mm are 0.48 MPa-m1/2 and 1.3 MPa-m1/2, 

respectively.  The von Mises stress distribution is shown in Figure 5.4(b).  The contour plot 

shows high stress demand along a narrow banded diagonal between the interior loading 

points, which is indicative of shear loading. 
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Figure 5.1.  FSI benchmark simulation 

 

 

 

 

Figure 5.2.  Beam tip displacement response for the BGK simulation 
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Figure 5.3.  Crack tip stress intensity benchmark simulations:                                                         

(a) edge cracked plate under remote uniaxial tension (pure mode I response),                                      

and (b) four-point bending configuration (mixed-mode response) 
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Figure 5.4.  von Mises stress distribution:  

(a) edge cracked plate under remote uniaxial tension (pure mode I response),                                      

and (b) four-point bending configuration (mixed-mode response) 
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CHAPTER 6 

DEMONSTRATION PROBLEM 

 

6.1  NUMERICAL MODEL   

In order to demonstrate the application of the LB-XFE modeling approach to fatigue life 

prediction and to developing/evaluating SHM schemes for crack detection, a simple 2-D 

case study was developed for a flexible beam subject to vortex-induced vibration.  The case 

study was similar in form to the aforementioned FSI benchmark simulation but 

incorporated geometric and material property modifications in order to investigate a 

broader range of vibration characteristics during crack propagation.  As shown in Figure 

6.1, the model consisted of a 25 cm long by 2.5 cm thick beam connected to a 20 cm 

diameter rigid circular obstruction (fixed in space).  The beam was immersed in a 50 cm 

wide by 200 cm long channel with a maximum inlet velocity of 2 m/s and an apparent Re 

of 236, based on a characteristic length equal to the diameter of the obstruction.  The 

material properties for the solid and fluid domains, which are presented in Figure 6.1, are 

representative of an industrial plastic (e.g. polypropylene) and a viscous fluid (e.g. 

glycerin), respectively, but it is noted that the case study is intended to be arbitrary in nature 

(i.e. not representative of a particular real world application).  

The LB fluid solver was run on a 400 x 1600 D2Q9 lattice with a grid resolution of 1.25 

mm and a time step of 0.14 ms, using the BGK relaxation scheme with τ equal to 0.81.  In 

order to reduce the effect of numerical noise in the fluid solver, and to improve 

computational efficiency, the fluid solver was subcycled relative to the solid solver by a 
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factor of 10 (as discussed in Chapter 4) and hydraulic pressures at the fluid-solid boundary 

were time averaged.    

The FE model for the flexible beam utilized quadrilateral plane strain continuum elements 

with 2x2 Gauss quadrature and enrichment for crack modeling.  Twenty elements were 

used in the thickness direction with 200 element columns along the length of the beam. 

Subcritical crack growth was modeled using the idealized power law presented in Equation 

3-5, considering a critical threshold SIF range (Δ𝐾𝑡ℎ) of 0.1 MPa-m1/2 and fitting 

parameters (𝐶,𝑚) equal to 3x10-11 MPa-m1/2 and 3, respectively.  For the subdivided 

elements along the crack path, three Gauss points were utilized for each triangular region 

within an element completely cut by the crack, and seven Gauss points were utilized for 

the element containing the crack tip.  The implicit nonlinear Newmark average acceleration 

method was used to integrate the dynamic equations of motion, considering Rayleigh 

damping with 1% of critical in the first and second modes of vibration (preserved 

throughout the simulation by updating the proportionality coefficients following each 

nonlinear event).   

The simulation was run for 10 seconds before a 1 mm edge crack was instantaneously 

introduced along the upper surface, located 5 cm from the fixed base.  The crack was 

allowed to propagate during the simulation according the specified growth law, as 

illustrated in Figure 6.2.  Transverse accelerations in the beam were monitored at quarter 

points along the length, designated as virtual sensor locations L/4, 3L/4, and L (Figure 6.3).  

These acceleration records were then integrated to obtain the displacement histories at the 
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virtual sensor locations (Figure 6.4).   Stress intensity at the crack tip and crack length were 

also recorded during the simulation.     

 

6.2  TRANSVERSE MOTION  

Transverse accelerations and displacements recorded for the uncracked condition are 

presented in Figures 6.5 and 6.6, respectively.  As shown in Figure 6.6, the displacement 

response is dominated by the vortex shedding (forcing) frequency (2.3 Hz), but also 

includes a higher frequency component associated with the fundamental mode of vibration 

for the beam (32 Hz).  The vortex shedding frequency 𝑓𝑣 is calculated according to 

Equation 6-1. 

𝑓𝑣 =
𝑆𝑡 ∙ 𝑈𝑚𝑎𝑥

𝐷
 

(Equation 6-1) 

In Equation 6-1, 𝑆𝑡 is the dimensionless Strouhal number,  𝑈𝑚𝑎𝑥 is the peak free-stream 

velocity, and 𝐷 is the diameter of the circular obstruction.   

The effect of cracking on the transverse accelerations and displacements of the beam is 

illustrated in Figures 6.7 and 6.8, which present the respective measurements between 18 

and 19 s into the simulation.  During this snapshot in time, the crack extends 7-8.5 mm into 

the beam.  The resulting softening of the beam brings the fundamental frequency of 

vibration closer to the forcing (vortex shedding) frequency and amplifies both the 

displacements and accelerations due to greater transmissibility.  This cracking also 
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elongates the vibration periods of the beam, which, in turn, alters the vibration response to 

the forcing function.  As will be shown in Section 6.4, this change in vibration frequency 

can be used to identify the presence of the crack through signal-based SHM methods.  By 

22 s into the simulation, crack-induced softening of the beam triggers a terminal instability.  

  

6.3  STRESS INTENSITY AND CRACK EXTENSION  

As noted earlier, the practical value of the modeling approach is in its ability to improve 

fatigue vulnerability assessment, and to evaluate crack detection schemes.  By tracking 

demand measures like stress intensity at the crack tip (Figure 6.9) and crack extension 

(Figure 6.10), the modeling approach can be utilized in a reliability-based framework 

(through robust parametric studies) for evaluating the risk associated with fatigue cracking, 

as well as for estimating the lifespan of the structure.  For example, a simulation-based 

fatigue assessment evaluation could consider variations in flow conditions, crack growth 

behavior, and defects.  This information would be useful in the assessment of existing 

structures and for the design of new structures for FSI applications (e.g. evaluation of 

defect tolerance and critical flow conditions).   

It is worth noting that stress intensity at the crack tip increases during the simulation due 

to greater transmissibility between the forcing function (vortex shedding) and the vibrating 

beam, which is attributed with crack-induced softening of beam lateral load response.  As 

a result, crack growth is nonlinear due to the increase in time each cycle that crack opening 

is driven by tensile stress demands.  Both stress intensity and crack length increase rapidly 

prior to the onset of numerical instability. 
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6.4 DEVELOPMENT AND ASSESSMENT OF STRUCTURAL HEALTH 

MONITORING SCHEMES FOR CRACK DETECTION  

As an illustration of the utility of the modeling approach in the development and 

assessment of SHM schemes for crack detection, an autoregressive (AR) model was used 

to fit the transverse beam tip displacement data and a Cosh spectral distance damage feature 

(Wei and Gibson, 2000; Yao et al. 2012) was used to evaluate crack detection sensitivity.  

This signal-based approach to crack detection involves measuring the variation in the 

response (e.g. the transverse beam tip displacement) from a known baseline (healthy or 

uncracked condition).  Since the recorded data is a collection of discrete points, regression 

models are employed to develop best-fit functions for statistical comparison.  AR models 

are a particular classification of regression model that relate the current value of a predicted 

time series to past values of the same series, as defined by Equation 6-2. 

𝑦𝑗(𝑡) = ∑𝛼𝑝𝑦𝑗(𝑡 − 𝑝) + 𝜀𝑦(𝑡)

𝑃

𝑝=1

 

(Equation 6-2) 

In Equation 6-2, 𝛼𝑝 are the model coefficients, 𝑦𝑗 is the output at location j,  𝜀𝑦(𝑡) is the 

model residual, 𝑡 is the time index, and 𝑃 is the model order.   

The Cosh spectral distance feature 𝐶(𝑆, 𝑆̅) is defined in Equation 6-3 and quantifies the 

change in spectral peaks, where a larger change is indicative of a change in structural 

condition (i.e. damage). 
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𝐶(𝑆, 𝑆̅) =
1

2𝑁
∑[

𝑆(𝜔𝑗)

𝑆̅(𝜔𝑗)
− 𝑙𝑜𝑔

𝑆(𝜔𝑗)

𝑆̅(𝜔𝑗)
+
𝑆(𝜔𝑗)

𝑆̅(𝜔𝑗)
− 𝑙𝑜𝑔

𝑆(𝜔𝑗)

𝑆̅(𝜔𝑗)
− 2]

𝑁

𝑗=1

 

(Equation 6-3) 

 

 

In Equation 6-3, 𝑆̅(𝜔𝑗) is the mean baseline spectra, 𝑆(𝜔𝑗) is unknown state spectrum, and 

𝑁 is the length of each spectrum vector. 

Since the transverse motion of the beam is dominated by the fundamental mode of 

response, as evidenced by the correlation between displacement peaks recorded at the 

virtual sensor locations (Figures 6.6 and 6.8), only the beam tip displacement data was 

utilized for the crack detection study.  Figure 6.11 presents the time evolution of the Cosh 

spectral distance damage feature for a model order of 2.  Each recording is representative 

of a 3 s snapshot sampled at 710 Hz.  The healthy baseline measurement was taken as the 

recording from 4-7 s seconds, and the control data (uncracked condition) presented in 

Figure 6.11 was recorded from 7-10 s.  Figure 6.11 shows a progressive increase in the 

damage feature, corresponding to a greater likelihood of identifying the presence of the 

crack as a statistically significant deviation.   

For this simple test case, cracks at least as small as 5% of the beam thickness can be 

identified through monitoring of the beam tip displacement and evaluating the Cosh 

spectral distance damage feature.  For more complex structures, the type of measurement 

and the sensor array become more important, especially for applications where crack 
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location is of interest.  Parametric studies facilitated by the proposed modeling approach 

can be used to optimize the monitoring approach for anticipated service conditions. 
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Figure 6.1.  Demonstration problem: flexible beam excited by vortex-induced vibration  

 

 

 

 

 

 
 

 

Figure 6.2.  Crack growth during vortex-induced vibration  

 

 

 

 

 

 

 

 

 



62 

 

 

 

 
 

Figure 6.3  Virtual sensor transverse acceleration records 

 

 

 

 

 
 

Figure 6.4.  Virtual sensor transverse displacement records  
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Figure 6.5  Virtual sensor transverse acceleration records from 6-7 s                                

(uncracked condition) 

 

 

 

 

 
 

 

Figure 6.6  Virtual sensor transverse displacement records from 6-7 s                              

(uncracked condition) 
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Figure 6.7  Virtual sensor transverse acceleration records from 18-19 s                                           

(7-8.5 mm crack) 

 

 

 

 
 

Figure 6.8  Virtual sensor transverse displacement records from 18-19 s                                              

(7-8.5 mm crack) 
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Figure 6.9  Mode I stress intensity 

 

 

 

 

 
 

Figure 6.10  Crack length 
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Figure 6.11.  Time evolution of the Cosh spectral distance damage feature 
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CHAPTER 7 

SUMMARY, CONCLUSIONS, AND FUTURE WORK 

 

11.1  SUMMARY AND CONCLUSIONS 

This study presented a modeling approach for fluid-structure interaction (FSI) simulation 

with dynamic crack propagation, with the objective of utilizing simulation-based 

parametric studies to improve fatigue life prediction and crack detection in FSI 

applications.  The modeling approach pairs a GPU (graphics processing unit)-accelerated 

lattice Boltzmann (LB) fluid solver with an extended finite element (XFE) solid solver 

through an immersed boundary (IB) coupling scheme.  The modeling approach takes 

advantage of several inherent features of the integrated solvers, namely:  (1) scalable 

GPU parallelization of the LB fluid solver, as well as its ability to handle turbulent and 

multi-phase flows with relative ease (not implemented in this study); (2) the reduced 

mesh-dependence of the XFE method for modeling crack propagation; and (3) the ability 

of the IB coupling scheme to handle large-displacement response without global adaptive 

meshing.  The coupled LB-XFE framework developed in this paper offers a versatile and 

computationally efficient approach for simulating FSI response with crack propagation.     

For demonstration purposes, the modeling framework was used to develop a subcritical 

crack growth simulation for a flexible beam subject to vortex-induced vibration.  The 

demonstration problem illustrates the utility of the modeling approach in its ability to 

track demand measures such as SIF at the crack tip and crack growth for fatigue 

vulnerability assessment, and in its ability to evaluate crack detection schemes. 
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The modeling approach, however, does have several limitations.  Because of physical 

deficiencies with the LB fluid solver, simulations are restricted to low Mach flow 

(generally less than 0.2-0.3).  In addition, the empirical fatigue crack growth model 

utilized by the XFE solver requires calibration.  This calibration process is complicated 

for FSI applications due to physical conditions that violate many of the assumptions 

commonly utilized in fracture mechanics (e.g. hydraulic loading of the crack surface; 

surface contact during crack closure; and variable amplitude loading).  The relative 

influence of these conditions should be investigated for a particular application.  

 

11.4  FUTURE WORK 

The following research tasks are proposed in order to extend the capability of the code to 

study more realistic applications: 

 Extension to 3-D simulation by developing 3-D continuum and 3-D shell 

elements with crack modeling capability, noting that one of the strengths of the 

LB fluid solver is its ability to handle complex 3-D geometries.  

 Full GPU-implementation of the code in order to improve efficiency. 

 Implementation of turbulent flow and multi-phase flow modeling in the LB fluid 

solver. 
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