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Abstract

The primary focus of this dissertation is on optimization problems that involve uncer-

tainty unfolding over time. In many real-world decisions, the decision-maker has to make

a decision in the face of uncertainty. After the outcome of the uncertainty is observed,

she can correct her initial decision by taking some corrective actions at a later time stage.

These problems are known as stochastic optimization problems with recourse. In the case

that the number of time stages is limited to two, these problems are referred to as two-

stage stochastic optimization problems. This class of optimization problems is the focus

of this dissertation. The optimization problem that is solved before the realization of

uncertainty is called the first-stage problem and the problem solved to make a corrective

action on the initial decision is called the second-stage problem. The decisions made

in the second-stage are affected by both the first-stage decisions and the realization of

random variables. Consequently, the two-stage problem can be viewed as a parametric

optimization problem that involves the so-called value function of the second-stage prob-

lem. The value function describes the change in optimal objective value as the right-hand

side is varied and understanding it is crucial to developing solution methods for two-stage

optimization problems.

In the first part of this dissertation, we study the value function of a MILP. We review

the structural properties of the value function. We propose a discrete representation of the

MILP value function. We show that the structure of the MILP value function arises from

two other optimization problems that are constructed from its discrete and continuous

components. We show that our representation can explain certain structural properties

1



of the MILP value function, such as the sets over which the value function is convex. We

then provide a simplification of the Jeroslow Formula obtained by applying our results.

Finally, we describe a cutting plane algorithm for its construction and determine the

conditions under which the proposed algorithm is finite.

Traditionally, the solution methods developed for two-stage optimization problems

consider the problem in which the second-stage problem involves only continuous vari-

ables. In recent years, however, two-stage problems with integer variables in the second-

stage have been visited in several studies. These problems are important in practice and

arise in several applications in supply chain, finance, forestry and disaster management,

among others. The second part of this dissertation concerns the development and imple-

mentation of a solution method for the two-stage optimization problem where both the

first and second stage involve mixed integer variables. We describe a generalization of the

classical Benders’ method for solving mixed integer two-stage stochastic linear optimiza-

tion problems. We employ the strong dual functions encoded in the branch-and-bound

trees resulting from solution of the second-stage problem. We show that these can be used

effectively within a Benders’ framework and describe a method for obtaining all required

dual functions from a single, continuously refined branch-and-bound tree that is used to

warm start the solution procedure for each subproblem.

Finally, we provide details on the implementation of our proposed algorithm. The

implementation allows for construction of several approximations of the value function of

the second-stage problem. We use different warm-starting strategies within our proposed

algorithm to solve the second-stage problems, including solving all second-stage problems

with a single tree. We provide computational results on applying these strategies to the

stochastic server problems (SSLP) from the stochastic integer programming test problem

library (SIPLIB).

2



Chapter 1

Introduction

We begin by considering the general optimization problem

inf
x∈U

f(x), (1.1)

where the f : Rn → R is called the objective function and the set U ⊆ Rn is the feasible

region of the problem. A vector x ∈ U is referred to as a feasible solution, which expresses

a decision, and f(x) is its associated solution value, or the cost of the decision. If the set

U is an empty set, the problem is called infeasible. Any x∗ ∈ U such that f(x∗) = zG is

called an optimal solution and f(x∗) is called the optimal value.

The optimization problem (1.1) assumes a single decision-maker with a single objective

function making a single set of decisions at a single point of time where the descriptions

of the objective function f and the feasible region U are fixed and known. Optimization

problems in real-world, however, often involve multiple decision-makers with congruent

or conflicting objective functions that make decisions in multiple points of time. The

decisions made at a given point of time often affect future decisions and are affected

by future uncertainty themselves. Several frameworks have been developed that extend

(1.1) by adding one or more of these features to it. One such framework is multi-objective

optimization, which extends the traditional framework to capture the decisions involving

a single decision-maker trading off multiple objective functions. The setting of multi-

3



1.1. OPTIMIZATION UNDER UNCERTAINTY

objective optimization problems is still restricted to centralized decision processes that

are controlled by a single decision-maker. A class of optimization problems that general-

izes this setting is multi-level optimization problems. This setting allows for the modeling

of situations that involves several levels of decision-maker whose decisions are made se-

quentially with each decision potentially affecting the decisions made in higher or lower

levels of the overall hierarchy. Multi-level optimization problems provide a representa-

tion of game-theoretic processes in which decision-makers make sequential decisions in

multiple rounds. In this setting each player strives to optimize her individual, competing

objective function by making a decision that takes into account the reactions of the other

players. This setting assumes perfect information, meaning that the decision-maker is

able to predict the reaction of other players to her decision.

Both multi-objective and multi-level optimization problems assume that at the time

of decision-making, the decision-makers have complete information about the parameters

of the optimization problems to be solved by other players lower in the hierarchy. In

this sense, these problems are deterministic. In practice, however, one frequently faces

problems where the actual cost or feasibility of a decision is only determined after the

decision is made. There are several frameworks that allow for modeling uncertainty in

optimization problems. Like the deterministic case, these frameworks allow for single or

multiple decision makers who make decisions hierarchically or at a single point of time.

We discuss these frameworks more formally next.

1.1 Optimization Under Uncertainty

We now consider a generalization of (1.1) formulated as

inf fω(x)

s.t. gi(x, ω) ≤ 0, i = 1, . . . ,m, ω ∈ Ω,

(1.2)

where ω represents an uncertain element of the problem that comes from a set of outcomes,

Ω. The uncertain element is said to be realized or observed when it actually happens and

4



1.1. OPTIMIZATION UNDER UNCERTAINTY

its value is observed.

Chance-Constrained Optimization Problems. In problem (1.1), a feasible point

must satisfy all the constraints, gi(x, ω) ≤ 0 for i = 1, . . . ,m and ω ∈ Ω. Chance-

constrained optimization, on the other hand, allows for incorporating uncertainty by

relaxing some or all of the constraints probabilistically. The goal in solving a chance-

constrained optimization problem is to satisfy the constraints in “most” cases. Chance-

constrained models assume that the uncertain terms in the problem can be modeled

as random variables derived from a probability distribution that is known or can be

estimated. That is, Ω is assumed to be the set of all possible outcomes of a probability

space. The requirement in the constraints is to ensure that for a given decision x̂, the

probability that the constraint is violated is no more than a given value αi where 0 ≤

αi ≤ 1, i = 1, . . . ,m.

Let prob{gi(x, ω) ≤ 0} denote the probability that the ith constraint holds. Then the

chance-constrained problem can be written as

min f(x)

s.t. prob{gi(x, ω) ≤ 0} ≥ 1− αi for i = 1, . . . ,m.

(1.3)

In the above case, the constraints are assumed to be independent of each other. Chance-

constrained problems can also model the case where interactions exists between the con-

straints. In this case, the set of constraints can be written as

prob{gi(x, ω) ≤ 0 for i = 1, . . . ,m} ≥ 1− α.

Chance-constraints are appealing from a modeling perspective, as they provide means

to model real-world requirements of an optimization problem such as the desired service-

level. However, determining the probability levels and information about the joint proba-

bility distribution with potentially a large number of random variables can be a challenge.

5



1.1. OPTIMIZATION UNDER UNCERTAINTY

Robust Optimization Problems. Another framework that is used to model uncer-

tainty is robust optimization. This framework captures the case where a single decision-

maker aims to protect against the risk by a one-time decision that is made in the presence

of uncertainty. In particular, the decision-maker is interested in minimizing the maxi-

mum cost that can incur as a result of the uncertainty. Here, the minmax goal is used

to protect the decision against the worst-case outcome. The robust framework assumes

the uncertainty belongs to an uncertainty set. That is, the set of outcomes where the

uncertain element is coming from is this uncertainty set. This set can be a complicated

convex or polyhedral set, or simply is the bounds of the uncertain parameters. This allows

for modeling uncertainty whose specific probability distribution is not known. This is an

appealing property where historical data is not available and probabilities are challenging

to estimate.

The general model of a robust optimization problem is

min max
γ0∈γ0

f(x, γ0)

s.t. g(x, γ) ≤ 0, γ ∈ Γ,

(1.4)

where γ denotes the uncertain elements and Γ0 and Γ are given uncertainty sets and have

special forms such that the problem can be solved with efficient algorithms. For example,

these sets can be assumed to be convex or polyhedral.

Stochastic Optimization Problems. A critical difference between models of opti-

mization problems that involve uncertainty origins from the way they immunize the deci-

sion against the outcome of uncertain elements. While in the robust optimization frame-

work the goal is to minimize the maximum possible cost, in the stochastic optimization

problem the expected cost of decisions is minimized. In this scheme, the random cost is

replaced by its expected value, denoted by E. In this case, the general problem (1.2) takes

the form

inf Eω∈Ωf(x, ω). (1.5)

6



1.1. OPTIMIZATION UNDER UNCERTAINTY

When the probability space Ω is discrete and finite, ω represents which one of a finite

number of explicitly enumerated scenarios is realized and pω represents the probability

of such an outcome. Then, (1.5) can be written as

inf
∑
ω∈Ω

pωf(x, ω). (1.6)

Similarly, if Ω represents a continuous space with the probability density function ρ(ω)

defined for ω ∈ Ω, then (1.5) is equivalent to

inf

∫
Ω
f(x, ω)ρ(ω)dω. (1.7)

There are studies that consider random variables that follow an infinite distribution. For

a review of the assumptions and properties of this case we refer the reader to (Ruszczynski

and Shapiro, 2003). A standard approach to solve stochastic optimization problems is

by generating scenarios. A scenario is a realization of a future event consisting of an

outcome of random variables. In the case of stochastic optimization, scenarios can be

constructed by drawing samples from the known probability space(s) and observing their

values, rendering the outcome space where the uncertainties come from finite.

Both the chance-constrained and robust optimization frameworks consider decisions

that are made at a single point of time. In practice, however, the decision-maker is of-

ten able to react to the new situation as new information becomes available. While the

decision-maker makes the initial decision in the face of the unknown, she can take recourse

actions at one or more points of time in future. This framework is known as stochastic

optimization with recourse. This framework resembles multi-level optimization problems

in that decisions are made dynamically and they change according to the realization of

uncertainty. We can also view these problems as multi-level problems in which decision

makers cooperate and their objectives align with one another and therefore, can be in-

terpreted as a problem with a single decision-maker. Stochastic optimization problems,

however, extend the multi-level framework by allowing uncertainty to be explicitly mod-

7



1.1. OPTIMIZATION UNDER UNCERTAINTY

eled. Like chance-constrained optimization, stochastic optimization assumes a known

probability distribution where the random variables can be drawn from a probability

space.

A classical example of stochastic optimization problems with recourse is the unit com-

mitment problem in which the utility company has to decide ahead of time whether to

start up/shut down power generators to meet an unknown future demand load. In this

case, the distribution of demand maybe known or can be estimated from statistical data.

Other examples arise in areas such as disaster planning, where decisions on dispatching

storm/wildfire protections equipment are made before the weather conditions are ob-

served. In supply chain management, for example, decisions on the quantity of order for

retail goods are made with non-deterministic demand and holding costs.

Studying stochastic optimization problems with recourse is the focus of this thesis.

We mentioned earlier that in the setting of stochastic optimization, the decision-maker

has to commit to certain actions before the unknown terms are observed (the problems is,

of course, deterministic if she can postpone making commitments after the observation).

Stochastic optimization with recourse also assumes there is a possibility of recourse that

allows the decision-maker to correct her earlier decisions in one or multiple times in future.

This decision-making process can be illustrated with:

x0 ∈ U0 initial decision

ω1 ∈ Ω1 observation

x1 ∈ U1(x0) recourse decision

ω2 ∈ Ω2 observation

...

ωN ∈ ΩN observation

xN ∈ UN (x0, . . . , xN−1) recourse decision.

We refer to the point of time when a decision is made as a time stage. In the above

8



1.2. DISCRETE OPTIMIZATION

illustration, the initial stage x0 is followed by N recourse actions taken in N future time

stages. The numberN is usually assumed to be finite. Typically, a stochastic optimization

problem that involves a large number of time stages is very challenging to solve. A simpler

variation that is often considered is where the first observation is followed by only one

corrective decision. The resulting recourse problems are important in theory and practice

and are referred to as two-stage stochastic optimization problems. Next, we introduce two

fundamental concepts in this class of problems.

In this thesis, we focus on two-stage stochastic optimization problems which involves

random variables that follow a discrete distribution. We consider the case where all or

some of the variables in the first or second-stage problems have to be integer. We also

focus on the case where the objective function and constraints in both stages are linear

functions. These problems lie at the intersection of stochastic linear optimization with

recourse and discrete linear optimization. We review these problems in more depth in

the upcoming Section 1.3. In the remainder of this section, we provide an overview of

some of the fundamental concepts in discrete optimization that are necessary for this

work. We then review the principle of Benders’ decomposition applied to optimization

problems and in particular, to two-stage linear optimization problems.

1.2 Discrete Optimization

A mixed integer linear optimization problem (MILP) is a variation of the optimization

problem (1.1) with a linear objective function and a polyhedral feasible region where a

subset of the variables are integer variables. Consider the nominal MILP instance

inf
x∈S

c>x, (MILP)

where c ∈ Rn is the objective function vector and S = {x ∈ Zr+ × Rn−r+ | Ax = b̃} is the

feasible region, described by A ∈ Qm×n, b ∈ Rm, and a scalar r indicating the number

of integer variables. We refer to this problem as the primal problem. Throughout the

thesis, we assume rank(A, d) = rank(A) = m. The variables of the instance are indexed

9



1.2. DISCRETE OPTIMIZATION

on the set N = {1, . . . , n}, with I = {1, . . . , r} denoting the index set for the integer

variables and C = {r+ 1, . . . , n} denoting the index set for the continuous variables. For

any D ⊆ N and a vector v indexed on N , we denote by vD the sub-vector consisting of

the corresponding components of v. Similarly, for a matrix M , we denote by MD the

sub-matrix constructed by columns of M that correspond to indices in D.

In many applications of integer optimization, we are interested in a parametric version

of (MILP) that allows for analyzing the changes in the optimal value of the problem

when the parameters of the problem are perturbed. In the case of two-stage stochastic

optimization problems, it will be clear soon that we are interested in the change in the

optimal value as the right-hand side of a given MILP instance is modified. In what comes

next, we introduce a function that is designed to provide such information.

Value Function

The value function of a MILP is a function z : Rm → R ∪ {±∞} that describes the

change in the optimal solution value of a MILP as the right-hand side is varied. In the

case of (MILP), we have

z(b) = inf
x∈S(b)

c>x ∀b ∈ B, (1.8)

where for b ∈ Rm, S(b) = {x ∈ Zr+ × Rn−r+ | Ax = b}. The set of right-hand sides, B, is

the set of real vectors such that the corresponding feasible region is non-empty. That is,

B = {b ∈ Rm | S(b) 6= ∅}. By convention, we let z(b) = ∞ if S(b) = ∅ and z(b) = −∞

when the infimum is not attained at any feasible point. To simplify the presentation, we

assume that z(0) = 0.

A special case of a MILP is where none of the variables have integrality restrictions,

e.g., r = 0. The resulting problem is known as a linear optimization problem (LP) and is

defined as

inf
x∈SLP

c>x, (1.9)

10
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where the feasible region SLP is defined as

SLP = {x ∈ Rn+ | Ax = b̃}. (1.10)

We will discuss in Chapter 2 that the structure of the MILP value function (1.8) is closely

related to that of a certain LP. We define the LP value function as

zLP (b) = inf
x∈SLP (b)

c>x ∀b ∈ B, (1.11)

where for b ∈ Rm, SLP (b) = {x ∈ Rn+ | Ax = b}. Let us look at an example first.

Example 1.1. Consider

zLP (b) = inf 4x1 + 6x2 + 7x3

s.t. x1 + 2x2 − 7x3 = b

x1, x2, x3 ∈ R+.

(1.12)

The function z is plotted in Figure 1.1. We have

zLP (b) =


−b if b < 0

3b if b ≥ 0,

From the figure we can see that the value function is a piecewise convex and continuous

function. This structure arises from the properties of the so-called dual functions to the

LP value function. A dual function is simply a function that bounds the value function

from below.

Definition 1.1. A function f : Rm2 → R∪{±∞} is said to be dual to the value function

z if

f(b) ≤ z(b) ∀b ∈ Rm2 . (1.13)

f is strong at b̂ ∈ Rm2 if f(b̂) = z(b̂).

11
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Figure 1.1: The LP value function (1.12)

The properties of dual functions, as well as methods for constructing them are studied

in the theory of duality. The goal is to construct dual functions that approximate the value

function closely. In this respect, the value function is the best dual function. However, an

explicit construction of the value function, as we will see later, can be very challenging.

In practice, we often need a method to generate a dual function that provides the best

bound for a given instance. This is done by solving an optimization problem for a given

b̂, called the dual problem

sup{f(b̂) | f(b) ≤ z(b) ∀b ∈ Rm, f : Rm2 → R ∪ {±∞}}. (1.14)

We call a dual function optimal if it is optimal for the problem (1.14). Although the

definition of a dual problem allows for a wide range of dual functions to be selected, the

search space in (1.14) is often in practice restricted to special families of functions which

can be constructed with tractable methods.

Consider the case of an LP. Let us restrict the dual functions to be linear. For a given

b̂ ∈ Rm, the dual problem (1.14) can be written as

sup{b̂>ν | b̂>ν ≤ zLP (b̂) ∀ν ∈ Rm}, (1.15)

12
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where zLP is defined in (1.11). The problem (1.16) is equivalent to

sup
ν∈DLP

b̂>ν, (1.16)

where DLP = {ν ∈ Rm | A>ν ≤ c}. The latter problem is another LP which is referred to

as the dual to (1.9). The primal-dual relationship between the problems (1.9) and (1.16)

is important to study the properties of the LP value function and construction of dual

functions to it. The following result is key to LP duality.

Theorem 1.1. (LP weak and strong duality by Bazaraa et al. (1990)) For a given b̂ ∈ Rm

with finite zLP (b̂), we have b>ν ≤ zLP (b̂) for any ν ∈ Rm that is a feasible solution

to (1.16). Furthermore, there always exists an optimal solution ν∗ to the dual problem

such that f(b) = b>ν∗, b ∈ Rm is a strong dual function to the value function w.r.t. b̂.

The first and second parts of the Theorem 1.1 are respectively known as the weak

and strong duality theorems. As a consequence of the weak duality theorem, we have a

dual function for the LP value function f(b) = b>ν, where ν is a feasible solution to the

dual problem (1.16). This in fact holds even when the instance of the LP problem is not

finite. The only case that the weak duality theorem does not hold is when both the dual

and the primal problems are infeasible.

Strong and weak duality theorems reveal important structural properties of the LP

value function. To explain this relation, we first need some definitions.

Definition 1.2. A set C ⊆ Rn is a called a cone if for any x ∈ C and λ ≥ 0 we have

λx ∈ C.

Furthermore, a polyhedron that can be described in the form S = {x ∈ Rn : Ax ≥ 0}

for some A ∈ Rm×n is called a polyhedral cone.

Definition 1.3. The epigraph of the function f : Rn → R is defined as

epi f = {(x, t) ∈ Rn × R : t ≥ f(x)}.

Definition 1.4. A function f : Rn → R is called polyhedral if its epigraph are polyhedral.

13
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Let us define KLP to be the polyhedral cone that is the positive linear span of A, i.e.,

KLP = {λ1A
1 . . . + λnA

n : λ1, . . . , λn−r ≥ 0}, where Aj is the jth column of A. This

cone is the set of right-hand sides over which zLP is finite and plays an important role in

the structure of the LP value function. We assume the cone KLP is non-empty, therefore

DLP 6= ∅. Then, we can write the LP value function as

zLP (b) = sup
ν∈DLP

b̂>ν. (1.17)

Since DLP 6= 0, from the Minkowski-Weyl theorem, we have that there exists a non-

empty set {νi}i∈K , the set of a finite number of extreme points of DLP indexed by set K.

Furthermore, when DLP is unbounded, there exists a non-empty set of a finite number

of extreme directions {dj}j∈L be indexed by set L. If the LP with right-hand side b̂ has

a finite optimum, then

zLP (b̂) = sup
ν∈DLP

b̂>ν = sup
i∈K

b̂>νi. (1.18)

Otherwise, for some j ∈ L, we have b̂>dj > 0 and zLP (b̂) = +∞.

The convexity of zLP follows from the representation (1.18), since zLP is the maximum

of a finite number of affine functions and is hence a convex polyhedral function (Bazaraa

et al., 1990; Blair and Jeroslow, 1977). For such a function, we can derive dual functions

using its subgradient information. We discuss this next. The first following result guar-

antees the existence of subgradients for zLP , while the second result provide means to

generate them.

Proposition 1.1. (Ruszczynski and Shapiro, 2003) If f : Rm → R is a convex function

and x ∈ Rm, then ∂f(x) is non-empty and bounded.

Definition 1.5. A real function f is said to be differentiable at a point if its derivative

exists at that point.

Intuitively, for a function to be differentiable at a point x0 of its domain, the right and

left limit used in the usual differentiability definition along any path through x0 should

14
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be the same. For the scope of our work, it suffices to note that if f is differentiable in a

neighborhood of x0 then

f ′(x0, p) = ∇f(x0)>p.

Definition 1.6. A vector g ∈ Rn is a subgradient of a convex function f : Rn → R at a

point x0 if

f(x)− f(x0) ≥ g>(x− x0) ∀x ∈ Rn.

The above inequality is called the subgradient inequality. The set of all subgradients

of f at x0 is called the subdifferential. We denote this set by ∂f(x0).

Definition 1.7. The function f is called subdifferentiable at x0 if ∂f(x0) 6= ∅.

If a function is differentiable at a point, then its subdifferential is a singleton consisting

of the gradient of the function at that point.

Proposition 1.2. (Blair and Jeroslow, 1977; Bazaraa et al., 1990)

– zLP is convex, continuous and sub-differentiable on KLP .

– At a given b̂ ∈ KLP , we have

∂zLP (b̂) = cl(conv({ν1, . . . , νk, d1, . . . , dl})),

where ν1, . . . , νk, d1, . . . , dl respectively denote the extreme points and directions that

are optimal to the dual LP (1.16) with b = b̂.

– If zLP is differentiable at b̂ ∈ Rm, then the gradient of zLP at b̂ is the unique

ν∗ ∈ DLP such that zLP (b̂) = b̂>ν∗.

Let us apply the above proposition to an example.
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Figure 1.2: The LP value function (1.12) and the set of its subgradients at zero.

Example 1.2. The dual problem of an instance of (1.12) when b is fixed to b̂ is

sup b̂ν

s.t. ν ≤ 4

2ν ≤ 6

−7 ν ≤ 7

(1.19)

The extreme points of the feasible region of the dual problem above are −1 and 3. The

function zLP is plotted in Figure 1.2. As one can observe, this function is differentiable

everywhere except at b = 0. The gradient of the function at a given point b̂ ∈ (−∞, 0)

is −1, an extreme point of the feasible region to (1.19). Similarly, the gradient of the LP

value function over (0,∞) is 3. At the origin, the function is subdifferentiable and we

have

∂zLP (0) = cl(conv({−1, 3})).

Proposition 1.2 enables us to derive polyhedral dual functions for the value function

of an LP by solving the dual LP instance at a given right-hand side. For example, if the

dual problem of (1.12) with b fixed at −1 is solved, from the optimal solution we derive
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the dual function f(b) = −2b. If b is fixed to 4, the optimal dual solution is 0.5 and we

obtain f(b) = 3b, another dual function. In the case where the right-hand side b is fixed

to zero, we can obtain a dual function from the subgradient inequalities

zLP (b)− zLP (0) ≥ g(b− 0) = gb,

where g ∈ cl(conv({−1, 3})) and zLP (0) = 0 because the feasible region of the dual

problem (1.19) is non-empty.

We mentioned earlier that construction of dual functions to the second-stage value

function is key in classical methods of solving two-stage optimization problems. In the

case of a linear second-stage problem, dual functions can be derived by obtaining subgra-

dients of the value function as shown in Proposition (1.2). However, such linear functions

do not give valid dual functions for the case where the second-stage problem contains in-

teger variables. We show this with an example next and discuss further technical details

in Chapter 2 and Chapter 3.

Example 1.3. Consider the MILP value function defined by adding integer variables

to (1.12).

z(b) = inf 4x1 + x2 + 4x3 + 6x4 + 7x5

s.t. 2x1 − 2x2 + x3 + 2x4 − 7x5 = b

x1, x2 ∈ Z+, x3, x4, x5 ∈ R+.

(1.20)

Figure 1.3 shows this non-convex and non-concave function, along with the LP value

function in Example 1.1. The function f(b) = 2.5b is plotted in red. As one can observe

in the figure, this function is a dual function for zLP (in dashed blue), but not for the

MILP value function z.

What we illustrated in the previous example in fact can be generalized: the general

dual functions to the MILP value function cannot be linear functions. However, there

are classes of functions that result in dual functions for the MILP value functions. We

discuss these classes and review their construction methods in Chapter 2.
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Figure 1.3: The MILP value function (1.20).

Benders’ Principle

Consider the linear optimization problem (1.9) where the variables are partitioned into

two groups. The problem can be written equivalently as

zLP = inf c>1 x1 + c>2 x2

s.t. A1x1 +A2x2 = b̃

x1 ∈ Rp+, x2 ∈ Rn−p+ .

(1.21)

Suppose that the variables x1 are “complicating” variables, in the sense that the problem

becomes easy to solve if these variables are fixed. The idea of Benders’ decomposition is

to partition the problem into two problems, one called the master problem which contains

the complicating variables x1, the second called the subproblem that contains the variables

x2. We formulate these problems next. Let us first rewrite (1.21) as

inf
x1∈Rp

+

c>1 x1 + z′(b̃−A1x1), (1.22)
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where z′ is the LP value function

z′(b̃−A1x1) = inf c>2 x2

s.t. A2x2 = b̃−A1x1

x2 ∈ Rn−p+ .

(1.23)

From the formulation of the dual problem of an LP in (1.16), we have that the feasible

region of the dual of (1.23) does not depend on x1. Assuming that this feasible region

is non-empty, we have a representation of (1.23) in terms of its dual extreme points and

directions as

z′(b̃−A1x1) = inf θ (1.24)

s.t. 0 ≥ (b̃−A1x1)>dj ∀j ∈ L (1.25)

θ ≥ (b̃−A1x1)>νi ∀i ∈ K, (1.26)

where νi with i ∈ K and dj with j ∈ L are respectively the dual extreme points and

directions defined in (1.18). Therefore, the original problem (1.21) can be equivalently

written as

zLP = inf c>1 x1 + θ

s.t. 0 ≥ (b̃−A1x1)>dj ∀j ∈ L (1.27)

θ ≥ (b̃−A1x1)>νi ∀i ∈ K, (1.28)

x1 ∈ Rp+.

Note that if b̃ is replaced with the parameter b, the right-hand side of each constraint in

(1.28) is a dual function to the LP value function z′. That is,

(b−A1x1)>νi ≤ z′(b−A1x1). ∀i ∈ K (1.29)

Since the size of the sets L and K are typically large, it is not practical to include
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all the constraints (1.27) and (1.28) in the problem. Instead, Benders’ decomposition

dynamically generates a subset of these sets in the master problem in such a way that

the optimal solution is still obtained. The master problem is formulated as

zLP = inf c>1 x1 + θ

s.t. 0 ≥ (b̃−A1x1)>dj ∀j ∈ L′ ⊆ L (1.30)

θ ≥ (b̃−A1x1)>νi ∀i ∈ K ′ ⊆ K, (1.31)

x1 ∈ Rp+.

Benders’ decomposition algorithm starts with L′ = ∅ and K ′ = ∅ to obtain an initial

solution (x̂1, θ̂) from the master problem. We then solve the resulting subproblem (1.23)

by fixing x1 to x̂1 and obtaining a new dual extreme point or direction to form a constraint

in the form of (1.30)–(1.31). For a given x̂1, if the dual of (1.23) is unbounded, then (1.23)

is infeasible and we can obtain an extreme direction to form a constraint in the form

of (1.30). Constraints of this type are called Benders’ feasibility cuts. When the dual

problem w.r.t. x1 has a finite optimum and x1 is not feasible, we can generate a constraint

in the form of (1.31) which is violated by x1, which are known as a Benders’ feasibility

cut. These constraints are appended to the master problem, which is then resolved. The

method terminates when the solution to the master problem satisfied θ̂ = z′(b̃ − A1x̂1).

That is, the approximation of the value function of the subproblem obtained from the

master problem in the final iteration should coincide with the exact value function of the

subproblem at the right-hand side b̃−A1x̂1.

Benders’ method can be applied to MILPs. In this case, the variables are normally

partitioned into the sets of integer and continuous variables. The integer variables are

considered the complicating variables. The assumption is that by fixing the integer vari-

ables, the remaining problem is an LP that can be solved efficiently. Like the LP case, in

each iteration of the Benders’ algorithm, a new dual feasible solution to the subproblem

is obtained that is used to construct an optimality or feasibility constraint. Due to the

integrality restriction on the complicating variables, the master problem is, however, an
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integer optimization problem. In what comes next, we discuss the application of Benders’

decomposition to two-stage stochastic optimization problems.

1.3 Two-stage Stochastic Linear Optimization

Two-stage stochastic optimization problems involve decisions that are made in two points

of time. The decisions made in the absence of information about the uncertainty are called

the first-stage decisions, while the decisions made after the uncertainty is realized with the

goal of correcting the initial decisions are called the second-stage decisions. We consider

the following formulation of the two-stage stochastic mixed integer linear problem

min
x∈S1

Ψ(x), (SP)

where S1 = {x ∈ Zr1+ × Rn1−r1
+ | Ax = b} is the first-stage feasible region defined by

A ∈ Qm1×n1 and b ∈ Qm1 . The objective function Ψ is defined by

Ψ(x) = c>x+ Ξ(x), (1.32)

where c ∈ Rn1 reflects the immediate cost of implementation of the first-stage solution

and Ξ is a risk measure reflecting the additional cost incurred as a result of uncertainty

about the future. As is conventional for stochastic optimization problems, we take Ξ to

be the expected cost of the recourse problem, henceforth referred to as the second-stage

problem. The second-stage problem is a MILP parameterized on both the value of the

first-stage solution and a random variable ω. Formally, the function Ξ is defined by

Ξ(x) = Eω∈Ω[z(hω − Tωx)], (1.33)

for x ∈ S1, where Tω ∈ Qm2×n1 and hω ∈ Qm2 represent the realized values of the

stochastic inputs to the second stage for scenario ω ∈ Ω. The function z is the second-

stage value function, which encodes the cost of the recourse decision for a given first-stage

solution x and realization ω. This value function is defined earlier in (1.8). We rewrite it
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in the context of the stochastic problem. For any b ∈ Rm2 , we have

z(b) = inf{q>y | y ∈ S2(b)}, (RV)

where S2(b) = {y ∈ Zr2+ × Rn2−r2
+ | Wy = b}. For a given b̂ ∈ Rm, S2(b̂) is the second-

stage feasible region with respect to b̂, defined by constraint matrix W ∈ Qm2×n2 , and

the second-stage objective function q ∈ Rn2 , which represents the cost of recourse action.

In general, we may have a stochastic matrix Wω and a stochastic vector qω. In this case,

one has to work with |Ω| individual second-stage value functions. Although our results on

the MILP value function in Chapter 2 and the method we propose to solve the two-stage

problem in Chapter 3 remain valid in this case, we assume a fixed W and q to be able to

work with a single value function in the second-stage problem. We next illustrate that the

two-stage problem (SP) has a desirable structure which can be exploited in the Benders’

framework to solve these problems.

The structure of the function Ψ is closely related to the structure of φ. The following

example illustrates this.

Example 1.4. Consider the following instance of a continuous two-stage problem (r1 =

r2 = 0).

min Ψ(x) = −3x1 − 3.8x2 +
∑
ω∈Ω

0.5z(hω − 2x1 − 0.5x2),

s.t. x1 ≤ 5, x2 ≤ 5,

x ∈ R2
+,

(1.34)

where

zLP (b) = min 6y1 + 4y2 + 3y3 + 4y4 + 5y5 + 7y6

s.t. 2y1 + 5y2 − 2y3 − 2y4 + 5y5 + 5y6 = b,

y ∈ R6
+,

(1.35)

where Ω = {1, 2}, h1 = 6, h2 = 12. Figures 1.4a and 1.4b show the form of the objective

function Ψ and second-stage value function zLP , respectively, for Example 1.4. Both these

functions are convex and can be approximated from below by subgradient inequalities in
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(a) The objective function Ψ (b) The value function z

Figure 1.4: The objective function Ψ and second-stage value function z in Example 1.4.

the form of (1.29). Note the similarities in shape of the two functions. The structure of

Ψ clearly derives from that of zLP .

In the next example, we illustrate the form of the value function in the pure integer

case for which r2 = n2.

Example 1.5. Figure 1.5 shows two value functions resulting from the addition of in-

tegrality constraints to the problem of Example 1.4 for all variables in the second stage.

The points plotted in blue (closed circles) are the finite values of the value function of

the resulting recourse problem, while the function in red (dashed lines and open circles)

is the value function of the recourse problem when the single linear constraint is relaxed

to the inequality 2y1 + 5y2 − 2y3 − 2y4 + 5y5 + 5y6 ≤ b.

In the pure integer case, the discrete nature of the problem is evident in the structure

of the value function, which is only finite on a discrete set of points. In the inequality

form, the value function remains constant over a countable number of regions of the

domain. The discrete structure of the value function in this special case has been exploited

in the development of several solution methods relying on combinatorial enumeration

schemes (Ahmed et al., 2004; Kong et al., 2006; Trapp et al., 2013; Schultz et al., 1998).

The structure above changes substantially when we have both continuous and integer

variables in the second-stage problem. Let us modify the previous example such that we
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Figure 1.5: The value functions of two pure integer variations of (1.35)

have a MILP in the second-stage.

Example 1.6. Consider the mixed integer variation of Example 1.4 where

z(b) = min 6y1 + 4y2 + 3y3 + 4y4 + 5y5 + 7y6

s.t. 2y1 + 5y2 − 2y3 − 2y4 + 5y5 + 5y6 = b

y1, y2, y3 ∈ Z+, y4, y5, y6 ∈ R+.

(1.36)

Figures 1.6a and 1.6b respectively show the objective function and second-stage value

function, respectively, for this mixed integer variation of the problem from Example 1.4.

We discussed earlier zLP defined in (1.11) is a convex function in the continuous case.

As a result, Benders’ method can be applied straightforwardly in the same fashion we de-

scribed in Section 1.2. This is true even with the introduction of integrality constraints in

the first stage (r1 > 0), as shown by Van Slyke and Wets (1969). Thus, when r2 = 0, (SP)

can be solved in principle using little modification in the Benders’ method. When r2 > 0,

z is non-convex and discontinuous in general. As Example 1.6 should make clear, solution

methods for the more general non-convex case must either exploit special structure, such

as in Example 1.5, or rely on a more general class of functions for approximating the value

function from below. In this thesis, we take the latter approach. To start, we need to
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(a) The objective function Ψ in Example 1.6. (b) The value function z in Example 1.6.

Figure 1.6: The objective and second-stage value functions for Example 1.6.

describe the Benders’ method with general lower bounding functions for the second-stage

value function.

We assume ω is drawn from a given discrete and finite probability space (Ω,A, P )

so that ω represents which one of a finite number of explicitly enumerated scenarios is

realized and pω represents the probability of such realization. Then, (1.33) is equivalent

to

Ξ(x) =
∑
ω∈Ω

pωz(hω − Tωx). (1.37)

Therefore, the expectation in (SP) can be expressed as the sum of a finite number of terms,

which allows for reformulation of (SP) as a large-scale MILP, the so-called deterministic

equivalent problem:

min c>x+
∑
ω∈Ω

pωq
>yω

s.t. Ax = b

Tωx+Wyω = hω ∀ω ∈ Ω

x ∈ Zr1+ × Rn1−r1
+ , y ∈ Zr2+ × Rn2−r2

+ .

(DE)

Figure 1.7 illustrates the structure of the constraints of (DE). From this figure, one can

observe that the variable x acts as a “linking” or “complicating” variable. That is, if x is
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
A
T1 W

. . .

T|Ω| W




x
y1
...

y|Ω|
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
b̃
h1
...

h|Ω|


Figure 1.7: The constraints of (DE)

fixed, the constraint matrix can be separated into |Ω| individual blocks, each consisting

of the the matrix W . Consider (DE) with a fixed x̂. The resulting problem is

min {c>x̂+
∑
ω∈Ω

pωq
>yω}

s.t. Wyω = hω − Tωx̂ ∀ω ∈ Ω

y ∈ Zr2+ × Rn2−r2
+ .

(1.38)

Clearly, (SP) can be decomposed into |Ω| independent subproblems. Naturally, the

majority of the methods developed to solve (SP) are decomposition based methods that

take advantage of the underlying block structure of the problem. As we discussed earlier,

Benders’ decomposition is designed in such a way to take advantage of the fact that the

resulting problem after fixing the first-stage variables is relatively easy to solve. In this

case, the remaining problem (1.38) is itself a separable problem. Due to the shape of the

building blocks forming (DE)’s constraints, this method is also known as the L-shaped

method. We will provide technical details of this method in Chapter 3. Here, we briefly

explain the outline of the method when applied to (SP) and discuss its connection with

the structure of the value function of the second-stage.

Consider (SP). We first begin by rewriting the problem (SP) as

min c>x+ θ

s.t. θ ≥
∑
ω∈Ω

pωz(hω − Tωx)

x ∈ S1.

(1.39)
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Like the classical Benders’ method, the idea is to approximate the right-hand side

of the first set of constraints in (1.39) by a set Fω of dual functions for each scenario

and to iteratively strengthen the approximation yielded by these dual functions through

the generation of additional such functions. To form the master problem, we therefore

replace the value function with such an approximation to obtain

min{c>x+ θ | θ ≥
∑
ω∈Ω

pω max
f∈Fω

f(hω − Tωx)}, (1.40)

where Fω represents the set of all dual functions associated with scenario ω that have been

generated so far. In iteration k, a strong dual function fkω is produced for each scenario

with respect to a proposed first-stage solution xk ∈ S1, the solution to the master problem

in the previous iteration, by solving the dual problem

max
f
{f(hω − Tωxk) | f(Wy) ≤ q>y}. (1.41)

The collection of dual functions is then enlarged appropriately. With this approximation,

the master problem after k iterations of the algorithm is

min c>x+ θ

s.t. θ ≥
∑
ω∈Ω

pω max
i=1,...,k

f iω(hω − Tωx)

x ∈ S1.

(1.42)

The algorithm terminates at iteration K if the solution to the master problem (x∗, θ∗)

satisfies θ∗ = maxi=1,...,K f
i
ω(hω − Tωx

∗), that is, the approximation of the expected

recourse at the final iteration is exact.

It should be clear by now that applying Benders’ decomposition to the general (SP)

requires constructing dual functions for MILPs. Later in Section 2.6, we discuss that

in practice, we are interested in finding dual functions that can be constructed as a by-

product of integer optimization algorithms to solve scenario subproblems. We study the

derivation of such dual functions and provide details about incorporating them into the
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Benders’ method in Sections 2.6, 3.3 and 3.4.

1.4 Contributions

In Chapter 2, we provide an in-depth review of the structure and properties of the general

MILP value function. We extend previous results by demonstrating that the MILP value

function has an underlying discrete structure similar to the value function of a pure integer

optimization problem (PILP), even in the general case. This discrete structure emerges

from separating the function into discrete and continuous parts, which in turn enables

a representation of the function in terms of two discrete sets. We discuss the role of

integer and continuous variables in the structure of the value function and in defining the

discrete set. We provide a new representation of the value function using the discrete set

and demonstrate that this representation can be applied to represent the value function

of an LP and a PILP. Furthermore, we show the correspondence between the discrete

set and the regions over which the MILP value function is continuous and convex. We

show that the representation we provide can be constructed and propose an algorithm

for doing so.

Using our earlier discrete representation of the MILP value function, we propose a

deterministic reformulation of the two-stage problem in Chapter 3. We then describe

a generalization of the classical Benders’ method for solving two-stage mixed integer

optimization problems and demonstrate that the algorithm is convergent if strong dual

functions encoded in the branch-and- bound trees that are used to solve the second-

stage subproblems are employed to approximate the second-stage value function. We

demonstrate that it is possible to solve all second-stage subproblems with a single branch-

and-bound tree and to refine the approximation using this tree. Finally, we show that

this procedure allows us to conclude that there exists a single branch-and-bound tree that

encodes the full value function.

In Chapter 4, we propose three warm-starting strategies to apply to the Generalized

Benders’ method we propose. We illustrate that each strategy leads to a different approx-
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imation of the second-stage value function within the Benders’ method. We use cut-pool

management techniques to keep the size of the approximation manageable. Finally, we

apply the algorithm to the problems in stochastic server location test set and analyze the

performance of the algorithm under different warm-starting techniques.

1.5 Outline of Thesis

Chapter 2 includes the result of our work on the value function of a mixed integer opti-

mization problem. Section 2.1 provides a review of duality in integer optimization. The

discrete structure of the value function is examined in Section 2.2. Sections 2.3 and 2.4

respectively contain our results on the structural properties of the value function and a

simplification of the Jeroslow formula that we propose by using our discrete represen-

tation. The proposed algorithm for construction is stated in Section 2.5. Finally, in

Section 2.6 we review the upper and lower bounding methods to approximate the value

function.

Chapter 3 contains our contributions in solving two-stage stochastic mixed integer

optimization. we review the structural properties and solution methods of the continuous

two-stage stochastic problems in Section 3.1. Section 3.2 included the literature review

on the algorithms for the two-stage integer optimization problems. In Section 3.3, we

provide a new formulation for this problem and discuss the implication of warm-starting

the constructions approximating functions for the second-stage value function. Section 3.4

contains details and convergence results of the proposed algorithm to solve the two-stage

mixed integer optimization problem.

We review MILP sensitivity analysis as well as the techniques to warm-start MILPs

in Section 4.1. We overview current warm-starting techniques implemented in the MILP

solver, SYMPHONY in Section 4.2. Section 4.3 contains the implementational details

of the generalized Benders’ algorithm, as well as alternative methods to construct ap-

proximations of the second-stage value function and several bunching and warm-starting

strategies that can be used in the algorithm. Finally, we report our computational results
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obtained by applying the algorithm to problems from the literature and SIPLIB.

Finally, Chapter 5 includes the summary of this work and remarks for future research.
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Chapter 2

The Value Function of a Mixed

Integer Linear Optimization

Problem

Understanding and exploiting the structure of the value function of an optimization prob-

lem is a critical element of solution methods for a variety of important classes of multi-

stage and multi-level optimization problems. Previous findings on the value function of

a PILP have resulted in finite algorithms for constructing it, which have in turn enabled

the development of solution methods for two-stage stochastic pure integer optimization

problems (Schultz et al., 1998; Kong et al., 2006) and certain special cases of bilevel

optimization problems (Bard, 1998). Studies of the value function of a general MILP,

however, have not yet led to algorithmic advances. The goal of this chapter is to overview

the previous work and provide new results on the structure and construction methods of

the general MILP value function.

We start this section by reviewing the fundamental concepts that are necessary for

the remainder of the chapter. We review MILP duality and the known results about

the structure of the MILP value functions. In Section 2.2, we extend previous results

by demonstrating that the MILP value function has an underlying discrete structure
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similar to the PILP value function, even in the general case. We demonstrate that

discrete structure emerges from separating the function into discrete and continuous parts,

which in turn enables a representation of the function in terms of two discrete sets. In

Section 2.3, we show how this discrete structure can explain certain structural properties

of the MILP value function and use our representation to characterize regions over which

the value function is convex and continuous.

We review lower and upper bounding approximation methods for the MILP value

function in Section 2.6. Using our discrete representation, we develop an exact algorithm

to construct the value function. We show this and the proof of finiteness of the algorithm

in Section 2.5.

In the final section of this chapter, we show how that our discrete representation

can explain several previously known properties of two well-known special cases of the

MILP value function: the value function of a MILP with a single constraint and the value

function of a PILP.

2.1 Overview

Recall that we defined a mixed integer optimization problem in (MILP) with

z = inf
x∈S

c>x, (MILP)

where c ∈ Rn is the objective function vector and S = {x ∈ Zr+ × Rn−r+ | Ax = b} is the

feasible region, described by A ∈ Qm×n, b ∈ Rm, and a scalar r indicating the number of

integer variables. We also defined the value function of a MILP in (1.8) in

z(b) = inf
x∈S(b)

c>x ∀b ∈ B, (2.1)

where for b ∈ Rm, S(b) = {x ∈ Zr+ × Rn−r+ | Ax = b̂} and B = {b ∈ Rm | S(b) 6= ∅}.

We assumed by convention that z(0) = 0. Let us introduce a few further notation that

will be used widely in this chapter to find the discrete structure of z. We introduce
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the discrete analogue to S(b) and B by letting SI(b) = {xI ∈ Zr+ : AIxI = b} and

BI = {b ∈ Rm : SI(b) 6= ∅}. Finally, we let SI = ∪b∈B SI(b).

In Chapter 1, we defined a dual function in Definition 1.1 and showed that it follows

from the LP duality theory that linear functions can be strong dual functions for the LP

value functions. In what comes next, we overview major results in the duality theory for

integer optimization problems. Mainly, we introduce certain classes of functions that can

be used as dual functions for the MILP value function and discuss several methods for

their construction.

The definition of dual functions in (1.13) is rather broad and does not impose a

particular structure on the dual function. When dual functions are used within solution

methods, such as the Benders’ method we discussed in the previous chapter, then it is

desirable for the dual function to be computable in practice. We saw earlier in Chapter 1

that linear functions are not dual to the MILP value function in general. The next natural

class of functions to consider is convex functions.

The Subadditive Dual Let us once more consider the MILP value function (1.20). In

Figure 2.1, the best piecewise linear convex function that is dual to the MILP is plotted

along with the original value function. As one can observe in the figure, this function

is strong only at the lower break points of the value function. The weak approximation

provided by this convex function elsewhere is not a surprise, given that the MILP value

function is non-convex and can clearly be best approximated by a non-convex function.

It turns out that the optimal convex dual function is in fact the value function of the

LP relaxation of the MILP. In the case of the MILP (1.20), this problem is

zLP (b) = inf 4x1 + x2 + 4x3 + 6x4 + 7x5

s.t. 2x1 − 2x2 + x3 + 2x4 − 7x5 = b

x1, x2, x3, x4, x5 ∈ R+.

(2.2)
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Figure 2.1: The value functions (1.20) and (2.2).

which is equivalent to

zLP (b) = sup bν

s.t. − 0.5 ≤ ν ≤ 2

ν ∈ R.

(2.3)

(2.3) can be explicitly written as

zLP (b) =

 2b if b ≥ 0

−0.5b if b < 0

which is precisely the convex function plotted in Figure 2.1.

Searching for candidate classes of functions, Johnson (1973) first proposed the idea of

restricting to the class of subadditive functions.

Definition 2.1. A function f : Rn → R is called subadditive on Rn if f(x1 + x2) ≤

f(x1) + f(x2) for all x1, x2 ∈ Rn such that x1 + x2 ∈ Rn.

The strong motivation for considering this class is that the value function itself is

a subadditive function on B. Therefore, there is always a dual function to the dual

problem (1.14) that is subadditive: the value function.
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Proposition 2.1. The value function (1.8) is subadditive on B.

Proof. Consider b1, b2 ∈ B. Let z(b1) = c>x1 and z(b2) = c>x2 for some x1 ∈ S(b1)

and x2 ∈ S(b2). We have (b1 + b2) ∈ S(b1 + b2), therefore z(b1 + b2) ≤ c>b1 + c>b2 =

z(b1) + z(b2).

Johnson showed that for a feasible MILP, we have

inf c>x

Ax = b̂

x ∈ Zr+ × Rn−r+

=

supF (b̂)

F (Aj) ≤ cj ∀j ∈ I

F̄ (Aj) ≤ cj ∀j ∈ C

F (0) = 0, F subadditive.

(2.4)

where Aj is the jth column of A and the function F̄ is defined as

F̄ (b) = lim sup
δ→0+

F (δb)

δ
∀b ∈ Rm. (2.5)

The second problem is known as the subadditive dual problem.

Definition 2.2. The directional derivative of a function f : Rn → R in the direction p

at point x0 is given by

f ′(x0, p) = lim
h→0

f(x0 + hp)− f(x0)

h
.

In the case the limit exists, the function is called directionally differentiable at x0 in the

direction p.

The directional derivative gives the rate of change of the function, moving through

x0 in a given direction p and provides a useful characterization when the function is not

continuously differentiable at x0. The function F̄ is the upper d-directional derivative of

F at zero, first introduced by Gomory and Johnson (1972a,b). Intuitively, F̄ provides

an upper bound to F near zero and ensures that a function that is feasible to (2.4) has

35



2.1. OVERVIEW

Figure 2.2: The upper d-directional derivative of (1.20).

gradients that do not exceed the gradients of the value function near zero. This was

formally shown in a subsequent paper by Johnson (1974).

Proposition 2.2. If F is a subadditive function with F (0) = 0, then for any b ∈ Rm

with F̄ (b) ≤ ∞ and any λ ≥ 0, we have F (λb) ≤ λF̄ (b).

Example 2.1. Consider the MILP value function (1.20). This function and its upper

d-directional derivative z̄ are plotted in Figure 2.2, where z̄ is defined as

z̄(b) =

 3b if b ≥ 0

−b if b < 0

The function z̄ is an upper bounding function to z near zero. One may note that this

function is identical to the value function of the LP (1.1), which consists of only the

continuous variables of the MILP. We show that this is not a coincidence and provide

further details on it in Section 2.2.

Subadditve dual functions are extremely important to the theory of duality for MILPs.

Subadditive dual functions not only provide lower bounds for the MILP instance with the
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right-hand side b̂, but also they allow to carry over several properties of the LP duality to

the MILP case such as strong and weak duality and complementary slackness. We state

these results next.

Theorem 2.1. (weak duality by Jeroslow (1978, 1979)) If F is a feasible solution to the

subadditive dual problem (2.4) and x̂ is a feasible solution to (MILP) with its right-hand

side fixed at b̂ ∈ B, then F (b̂) ≤ c>x̂.

Proof. Consider an arbitrary b̂ ∈ B and x̂ such that x̂ ∈ S(b̂). From the subadditivity of

F we have

F (b̂) = F (Ax̂) ≤ F (
∑
j∈I

Aj x̂j) + F (
∑
j∈C

Aj x̂j). (2.6)

Since F (0) = 0 and xj ∈ Z+ for all j ∈ I and F is subadditive, we have

F (
∑
j∈I

Aj x̂j) ≤
∑
j∈I

F (Aj)x̂j . (2.7)

Similarly, since F̄ (0) = 0, and F (Ajxj) ≤ F̄ (Aj)xj for xj ∈ R+, j ∈ C, and F is

subadditive we have

F (
∑
j∈C

Aj x̂j) ≤
∑
j∈C

F̄ (Aj)x̂j . (2.8)

Together, we have

F (b) ≤
∑
j∈I

F (Aj)x̂j +
∑
j∈C

F̄ (Aj)x̂j ≤ cx̂, (2.9)

where the last inequality holds since we have F (Aj) ≤ cj , j ∈ I and F̄ (Aj) ≤ cj , j ∈ C

by feasibility of F for the subadditive dual problem and xj ≥ 0 by its feasibility for the

primal MILP.

The proof of the strong duality and complementary slackness require some extra

machinery which we will not provide here for the sake of space and refer to the original

texts in (Jeroslow, 1978, 1979; Johnson, 1974). The next result addresses the necessary

and sufficient conditions on the infeasibility and unboundedness of the primal and dual

problems. These results are analogous to those in LP duality.
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Proposition 2.3. The following statements hold for the primal problem (MILP) and its

subadditve dual problem (2.4).

i (MILP) is unbounded if and only if b ∈ B and z(0) ≤ 0.

ii The dual problem is infeasible if and only if z(0) < 0.

iii If the primal problem (respectively, the dual) is unbounded, then the dual problem

(respectively, the primal) is infeasible.

iv If the primal problem (respectively, the dual) is infeasible, then the dual problem (re-

spectively, the primal) is infeasible or unbounded.

Next, we state the strong duality theorem for MILPs, which is due to Jeroslow (1978,

1979).

Theorem 2.2. (strong duality) If either the primal problem (MILP) or the dual problem

(2.4) has an optimal value, then there exists an optimal feasible solution x∗ to the primal

problem and an optimal dual function F ∗ to the dual problem for which c>x∗ = F ∗(b).

Finally, we arrive at the complementary slackness result. Complementary slackness

is a significant result as it provides a certificate of optimality for the primal-dual pair

(MILP) and (2.4).

Theorem 2.3. (Jeroslow, 1978, 1979; Bachem and Schrader, 1980) Let x∗ be a feasible

solution to (MILP) with its right-hand side fixed at a given b̂ and F ∗ be an optimal

solution the subadditive dual problem (2.4). Then, x∗ and F ∗ are optimal if and only if

x∗j (cj − F ∗(Aj)) = 0, ∀j ∈ I

x∗j (cj − F̄ ∗(Aj)) = 0, ∀j ∈ C.
(2.10)

Although the stated results provide the theoretical fundamentals and answer several

important questions about duality of integer optimization problems, we still need to find

methods to compute and encode dual functions for MILPs. We review some methods to

construct feasible, and in some cases optimal, dual functions in section 2.5.
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The Chvátal Representation Blair and Jeroslow (1982) first showed that the value

function of a PILP is a Gomory function that can be derived by taking the maximum

of finitely many subadditive functions. In a subsequent work, they extended their earlier

results in (Blair and Jeroslow, 1984) and identified a subclass of Gomory functions called

Chvátal functions to which the general MILP value function belongs.

Definition 2.3. The Gomory functions are the smallest class Gm of functions such that

i For any α ∈ Qm, f(b) = αb is in Gm.

ii If f1, f2 ∈ Gm and α, β ∈ Qm
+ , then αf1 + βf2 ∈ Gm.

iii If f ∈ Gm, then dfe ∈ Gm.

iv If f1, f2 ∈ Gm, then max{f1, f2} ∈ Gm.

The Chávatal functions are the smallest class satisfying i–iii.

The following two results show the connection between Gomory and Chvátal functions

and that both of the classes have the subadditivity property.

Proposition 2.4. (Blair and Jeroslow, 1982) If g is a Gomory function, then there is a

finite number of Chvátal functions f1, . . . , fN such that

g = max{f1, . . . , fN}. (2.11)

Proposition 2.5. (Blair and Jeroslow, 1982) Any Chvátal or Gomory function is sub-

additive.

The main results that address the connection between the PILP and MILP value

functions and Gomory and Chvátal functions are Theorems 2.4 and 2.6. First, we state

the lemmas needed for the main results. The first lemma below shows that the convex

hull of S can be represented by subadditive functions and this representation is finite for

the case of a PILP.
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Lemma 2.1. (Blair, 1978; Bachem and Schrader, 1980; Wolsey, 1981b) For any b ∈ B

we have

conv(S(b)) = {x ∈ Rn+ |
∑
j∈I

F (Aj)xj +
∑
j∈C

F̄ (Aj)xj ≥ F (b), F subadditive, F (0) = 0}.

(2.12)

In the case of a PILP, there exist finitely many subadditive functions Fi, i = 1, . . . , k such

that

conv(S(b)) = {x ∈ Rn+ |
∑
j∈N

Fi(A
j)xj ≥ Fi(b), i = 1, . . . , k}. (2.13)

Knowing that subadditive functions can represent the convex hull of solutions to

PILPs and that Chvátal functions are subadditive, Schrijver (1980) showed that for

PILPs, Chvátal functions can in fact be used to represent the convex hull of solutions.

We state this lemma first and use it to arrive at Theorem 2.4, which shows that every

value function of a PILP can be represented as a Gomory function.

Lemma 2.2. (Schrijver, 1980) The subadditive functions in (2.13) can be taken to be

Chvátal function.

This lemma is used to represent the value function of a PILP as a Gomory function.

Theorem 2.4. (Blair and Jeroslow, 1982) There always exists a Gomory function g such

that g(b) = z(b) for all b ∈ B, where z is the value function of a PILP with z(0) = 0.

It is worth noting that for any Gomory function g, there is always a PILP such that

g coincides with the value function of the PILP. We state this formally next.

Theorem 2.5. (Blair and Jeroslow, 1986) Consider (MILP) with C = ∅. Then, for any

Gomory function g there are A and c such that g(b) is the optimal objective value to the

problem for all vectors b ∈ B.

Subsequently, Blair and Jeroslow (1984) extended their results from the PILP to the

MILP case by showing that every MILP value function is a minimum of finitely many

Gomory functions.
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Theorem 2.6. For a MILP, there is a finite number of Gomory functions g1, . . . , gN

such that for all b such that z(b) <∞, we have

z = min{g1, . . . , gN}. (2.14)

Although the efforts made to characterize the value function of a MILP resulted in

very significant contributions, the results remained mainly theoretical. However, a closed

form representation was not achieved until a decade later in a subsequent work of Blair

(1995). The so-called Jeroslow Formula represents the MILP value function as collection

of Gomory functions with linear correction terms. We investigate this representation

extensively and study its relationship with the representation we propose in Section 2.4.

2.2 A Discrete Representation

The value function (1.8) can be written as

z(b) = inf
(xI ,xC)∈S(b)

c>I xI + c>CxC ∀b ∈ B. (MVF)

Recall that for any D ⊆ N and a vector v indexed on N , we established the denotation vD

to represent the sub-vector consisting of the corresponding components of v. Therefore,

here we have xC and xI respectively corresponding to continuous and integer variables.

To understand the MILP value function, it is important to first understand the struc-

ture of the value function of the LP arising from (MILP) by fixing the values of the integer

variables. We call this problem the continuous restriction (CR) w.r.t a given x̂I ∈ SI .

Its value function is given by

z̄(b; x̂I) = c>I x̂I + inf c>CxC

s.t. ACxC = b−AI x̂I

xC ∈ Rn−r+ .

(CR)

In addition to the notations we introduced for (2.1), for a given x̂I ∈ SI , we let S(b, x̂I) =
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{xC ∈ Rn−r+ : ACxC = b − AI x̂I}. As before, we let z̄(b; x̂I) = ∞ if S(b, x̂I) = ∅ for

a given b ∈ B and z̄(b; x̂I) = −∞ if the function value is unbounded. As we will show

formally in Proposition 2.9, it is evident that for any x̂I ∈ SI , z̄(·; x̂I) bounds the value

function from above, which is the reason for the notation.

Example 2.2. Consider the MILP value function defined by

z(b) = inf 3x1 +
7

2
x2 + 3x3 + 6x4 + 7x5

s.t. 6x1 + 5x2 − 4x3 + 2x4 − 7x5 = b

x1, x2, x3 ∈ Z+, x4, x5 ∈ R+.

(2.15)

Figure 2.3 shows this non-convex, non-concave piecewise polyhedral function.

Figure 2.3: MILP Value Function of (2.15).

Although the MILP with which the value function in Example 2.2 is associated has

only a single constraint, the structure of the function is already quite complex. Never-

theless, the function does have an obvious regularity to it. We investigate this in the

remainder of the section.

Earlier in Section 1.2, we introduced this value function in the general form and

reviewed its convexity and differentiability properties. When x̂I = 0 in (CR), the resulting
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function is in fact the value function of a general LP, since AC is itself an arbitrary matrix.

In the remainder of the section, we consider this important special case and define

zC(b) = inf c>CxC

s.t. ACxC = b

xC ∈ Rn−r+ .

(LVF)

We let K be the polyhedral cone that is the positive linear span of AC , i.e., K =

{λ1A
r+1 . . . + λn−rA

n : λ1, . . . , λn−r ≥ 0}. As we discuss later, this cone is the set

of right-hand sides for which zC is finite and plays an important role in the structure of

both the LP and MILP value functions. The following example illustrates a continuous

restriction.

Example 2.3. Consider the MILP

inf 2x1 + 6x2 + 7x3 + 5x4

s.t. x1 + 2x2 − 7x3 + x4 = b

x1 ∈ Z+, x2, x3, x4 ∈ R+.

(2.16)

The value functions of the continuous restriction w.r.t. x1 = 0 and x1 = 1 are plotted in

Figure 2.4.

Note that in the example just given, z̄(·; 1) is simply a translation of zC . As we will

explore in more detail later, this is true in general, so that for x̂I ∈ SI , we have

z̄(b; x̂I) = c>I x̂I + zC(b−AI x̂I) ∀b ∈ B.

Thus, the following results can easily be generalized to the continuous restriction functions

w.r.t. points other than the origin.

We shall now more formally analyze the structure of zC . We first present a repre-

sentation due to Blair and Jeroslow (1977), who characterized the LP value function in

terms of its epigraph. Let L = epi(zC).
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Figure 2.4: The value function of the continuous restriction of (2.16) and a translation.

Proposition 2.6. (Blair and Jeroslow, 1977) The value function of zC is a convex

polyhedral function and its epigraph L is the convex cone

cone{(Ar+1, cr+1), (Ar+2, cr+2), . . . , (An, cn), (0, 1)}.

The above description of the LP value function in terms of a cone is not computa-

tionally convenient for reasons that will become clear. We can derive a more direct char-

acterization of the LP value function by considering the structure of the dual of (LVF)

for a fixed right-hand side b̂ ∈ Rm. In particular, this dual problem is

sup
ν∈SD

b̂>ν, (2.17)

where SD = {ν ∈ Rm : A>Cν ≤ cC}. Note that our earlier assumption that z(0) = 0

implies SD 6= ∅. From strong duality, we have that zC(b̂) = supν∈SD
b̂>ν when SD 6= ∅.

If the LP with right-hand side b̂ has a finite optimum, then

zC(b̂) = sup
ν∈SD

b̂>ν = sup
i∈K

b̂>νi, (2.18)
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where{νi}i∈K is the set of extreme points of SD indexed by setK. When SD is unbounded,

let its set of extreme directions {dj}j∈L be indexed by set L. In the case that the solution

to the problem is unbounded, for some j ∈ L, we have b̂>dj > 0 and zC(b̂) = +∞. We

can therefore obtain a representation of the cone L as

{(b, z) ∈ Rm+1 : b>νi ≤ z, b>dj ≤ 0, i ∈ K, j ∈ L}.

Let E be the set of index sets of the nonsingular square sub-matrices of AC corre-

sponding to dual feasible bases. That is, E ∈ E if and only if ∃i ∈ K such that A>Eν
i = cE .

Abusing notation slightly, we denote this (unique) νi by νE in order to be consistent with

the literature. The cone L has an extreme point if and only if there exist m+ 1 linearly

independent vectors in the set {(νi, −1) : i ∈ K} ∪ {(dj , 0) : j ∈ L}. It is easy to show

that in this case, the origin is the single extreme point of L and all dual extreme points

are optimal at the origin, i.e., ν>E0 = c>EA
−1
E 0 = zC(0) = 0 for all E ∈ E . Conversely,

when L has an extreme point, it must be the single point at which all the inequalities in

the description of L are binding.

We stated that zC is continuous and convex in Proposition 1.2. From the same result

we also have that if zC is differentiable at b̂ ∈ K, then the gradient of zC at b̂ is the unique

ν ∈ SD such that zC(b̂) = b̂>ν. The next result shows the relationship between points of

nondifferentiability of this value function and the primal and dual optimal solutions at

such points.

Consider a right-hand side b ∈ B for which the optimal solution to the corresponding

LP is non-degenerate. Let the (unique) optimal basis and optimal dual solution be AE

and νE , respectively, for some E ∈ E . As a result of the unchanged reduced costs, under a

small enough perturbation in b, AE and νE remain the optimal basis and dual solution to

the new problem. Hence, the function is affine in a neighborhood of b and differentiability

of the LP value function at b follows. On the other hand, whenever the value function

is non-differentiable, the problem has multiple optimal dual solutions and every optimal

basic solution to the primal problem is degenerate. These observations result in the
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following characterization of the differentiability of the LP value function.

Proposition 2.7. (Bazaraa et al., 1990) If b̂ ∈ int(K) is a point of non-differentiability

of zC , then there exist ν1, ν2, . . . , νs ∈ SD with s > 1 such that zC(b̂) = b̂>ν1 = b̂>ν2 =

. . . = b̂>νs and every optimal basic solution to the associated LP with right-hand side b̂

is degenerate.

Example 2.4. In (2.16), we have

zC(b) = sup{νb : −1 ≤ ν ≤ 3, ν ∈ R} =

 3b if b ≥ 0

−b if b < 0

Then, E = {{1}, {2}, {3}} with A{1} = 2, A{2} = −7, and A{3} = 1. The corresponding

basic feasible solutions to the dual problem are 3, −1, and 5 respectively. If the value

function is differentiable at b̂ ∈ R, then its gradient at b̂ is either -1 or 3. These extreme

points describe the facets of the convex cone L = cone{(2, 6), (−7, 7), (1, 5), (0, 1)} =

{(b, z) ∈ R2 : z ≥ 3b, z ≥ −b}. Note that we can conclude that fixing x1 to 0 in (2.16)

does not affect its value function. Finally, note that K = R, i.e., zC(b) < ∞ for all

b ∈ R.

We have so far examined the LP value function arising from restricting the integer

variables to a fixed value and discussed that such a value function inherits the structure

of a general LP value function. The LP value function, though it arises from a continuous

optimization problem, has a discrete representation in terms of the extreme points and

extreme directions of its dual. In the next section, we study the effect of the addition of

integer variables.

Our goal in the rest of this section is to derive a discrete representation of a gen-

eral MILP value function building from the results of the previous section. We observe

that the MILP value function is the minimum of a countable number of translations of

zC and thus retains the same local structure as that of the continuous restriction (CR).

By characterizing the set of points at which these translations occur, we arrive at The-

orem 2.7, our discrete characterization. From the MILP value function (2.15) and its
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Figure 2.5: Value Function (2.19).

continuous restriction w.r.t x̂ = 0, plotted respectively in Figures 2.3 and 2.4, we can

observe that when integer variables are added to the continuous restriction, many desir-

able properties of the LP value function, such as convexity and continuity, may be lost.

The value function in this particular example remains continuous, but as a result of the

added integer variables, the function becomes piecewise linear and additional points of

non-differentiability are introduced. In general, however, even continuity may be lost in

some cases. Let us consider another example.

Example 2.5. Consider

z(b) = inf x1 −
3

4
x2 +

3

4
x3 +

5

2
x4

s.t.
5

4
x1 − x2 +

1

2
x3 +

1

3
x4 = b

x1, x2 ∈ Z+, x3, x4 ∈ R+.

(2.19)

Figure 2.5 shows this value function. As in (2.15), the value function is piecewise linear;

however, in this case, it is also discontinuous. More specifically, it is a lower semi-

continuous function1 . The next result formalizes these properties.

Proposition 2.8. (Nemhauser and Wolsey, 1988; Bank et al., 1983) The MILP value

function (MVF) is lower semi-continuous, subadditive, and piecewise polyhedral over B.

1 A function f : Rn → R ∪ ±∞ is called lower semi-continuous at a point of its domain x̂ if
lim infx→x̂ f(x) ≥ f(x̂).
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Characterizing a piecewise polyhedral function amounts to determining its points of

discontinuity and non-differentiability. In the case of the MILP value function, these

points are determined by properties of the continuous restriction that has already been

introduced and a second problem, called the integer restriction, obtained by fixing the

continuous variables to zero. This problem is defined as follows.

zI(b) = inf c>I xI

s.t. AIxI = b

xI ∈ Zr+.

(IR)

The role of the integer restriction in characterizing the value function will become clear

shortly, but we first need to introduce some additional concepts. Recalling that the

continuous restriction for any x̂I ∈ SI can be expressed as z̄(b; x̂I) = c>I x̂I +zC(b−AI x̂I),

we obtain the following representation of (MVF) in terms of the continuous restriction:

z(b) = inf
xI∈SI

c>I xI + zC(b−AIxI) = inf
xI∈SI

z̄(b;xI) = inf
b̂∈BI

z(b̂) + zC(b− b̂) ∀b ∈ B. (2.20)

This shows that the MILP value function can be represented as a countable collection

of value functions of continuous restriction functions arising from translations of the LP

value function zC . Describing the value function consists essentially of characterizing

the minimal set of points at which such translations must be located to yield the entire

function. The points at which translations may potentially be located can be thought

of as corresponding to vectors xI ∈ SI , as in the first two equation in (2.20), though

more than one member of SI may specify the same location. Equivalently, we can also

consider describing the function simply by specifying its value at points in BI , as in the

third equation above, which makes the correspondence one-to-one. Despite being finite

under the assumption that BI is finite, this characterization is nevertheless still quite

impractical, as both SI and BI may be very large. As one might guess, it is not necessary

to consider all members of BI in order to obtain a complete representation. Later in this

section, we characterize the subset of BI necessary to guarantee a complete description.
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This characterization provides a key insight that leads eventually to our algorithm for

construction.

Before moving on, we provide some examples that illustrate how the structure of zC

influences the structure of (MVF). First, we examine the significance of the domain of

zC in the structure and the continuity of the MILP value function with the following

example.

Example 2.6. Consider again the value function (2.19). Its continuous restriction w.r.t

x̂I = 0 is

zC(b) = inf
3

4
x1 +

5

2
x2

s.t.
1

2
x1 +

1

3
x2 = b

x1, x2 ∈ R+.

Equivalently,

zC(b) = sup{νb : ν ≤ 3

2
, ν ∈ R}. (2.21)

Here, the positive linear span of {1
2 ,

1
3} is K = R+. We also have zC(b) = 3

2b for all b ∈ K.

The gradient of zC(b) at any b ∈ R+\{0} is 3
2 , which is the extreme point of the feasible

region of (2.21). Note that for b ∈ R−, zC(b) = +∞ because the continuous restriction

w.r.t the origin is infeasible whenever b ∈ R− and its corresponding dual problem is

therefore unbounded. However, in the modification of this problem in (2.19), we have

B = R, while K remains R+. This is because the additional integer variables result in

translations of K into R−. These translations result in the discontinuity of the value

function observed in (2.19).

The next result shows that the continuous restriction with respect to any fixed x̂I ∈ SI

bounds the value function from above, as it is a restriction of the value function by

definition.

Proposition 2.9. For any x̂I ∈ SI , z̄(·; x̂I) bounds z from above.
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Proof. For x̂I ∈ SI we have

z̄(b; x̂I) = c>I x̂I + zC(b−Ax̂I) ≥ inf
xI∈SI

c>I xI + zC(b−AIxI) = z(b).

The second result shows that the continuous restriction with respect to the origin coincides

with the value function z over the intersection of K and some open ball centered at the

origin. We denote an open ball with radius ε > 0 centered at a point d by Nε(d).

Proposition 2.10. There exists ε > 0 such that z(b) = zC(b) for all b ∈ Nε(0) ∩ K.

Proof. At the origin, we have z(0) = 0 with a corresponding optimal solution to the MILP

being (x∗I , x
∗
C) = (0, 0). For a given b̂ ∈ R, as long as there exists an optimal solution

x̂I to the MILP with right-hand side b such that x̂I = 0, we must have z(b̂) = zC(b̂).

Therefore, assume to the contrary. Then for every ε > 0, ∃b̃ ∈ Nε(0) ∩ K, b̃ 6= 0 such

that zC(b̃) > z(b̃). Consider an arbitrary ε > 0 and an arbitrary b̃ ∈ Nε(0) ∩ K, b̃ 6= 0

such that zC(b̃) > z(b̃). Then if x̃ is a corresponding optimal solution to the MILP with

right-hand side b̃, we must have x̂I 6= 0. Let E and Ê denote the set of column indices

of sub-matrices of AC corresponding to optimal bases of the continuous restrictions at 0

and x̂I , respectively (note that both must exist).

Case i. E = Ê. We have

zC(b̂) > z(b̂)⇒ c>EA
−1
E b̂ > c>I x̂I + c>

Ê
A−1

Ê
b̂− c>

Ê
A−1

Ê
AI x̂I

⇒ 0 > c>I x̂I − c>ÊA
−1

Ê
AI x̂I .

However, the last inequality implies that at the origin, (x̂I , A
−1

Ê
AI x̂I) provides an im-

proved solution so that z(0) < 0, which is a contradiction.

Case ii. AE 6= AÊ . We have zC(b̂) = c>EA
−1
E b̂ > c>

Ê
A−1

Ê
b̂, which is a contradiction of the

fact that zC is the value function of the continuous restriction at 0.

Example 2.7. Figure 2.6a shows that the epigraph of the value function of (2.15) co-

incides with the cone epi(zC) = cone{(2, 6), (−7, 7), (0, 1)} on N2.125(0). Similarly, Fig-
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ure 2.6b demonstrates that the epigraph of the discontinuous value function (2.19) coin-

cides with epi(zC) = cone
{

(1
2 ,

3
4), (1

3 ,
5
2), (0, 1)

}
on N0.25(0) ∩ K = [0, 0.25) ⊆ R+.

(a) (b)

Figure 2.6: The MILP value function and the epigraph of the (CR) value function at the
origin.

The characterization of the value function we proposed in (2.20) is finite as long as

the set SI is finite. However, there are cases where the set

BI = {b ∈ B : SI(b) 6= ∅}

is finite, while SI remains infinite. Clearly in such cases, there is a finite representation of

the value function that (2.20) does not provide. We can address this issue by representing

the value function in terms of the set BI rather than the set SI , but even then, the

representation is not minimal, as it is clear that not all members of BI are necessary to

the description. We next study the properties of the minimal subset of BI that can fully

characterize the value function of a MILP.

From the previous examples, we can observe that when the MILP has only a single

constraint and the value function is thus piecewise linear, the points necessary to describ-

ing the function are the lower break points. To generalize the notion of lower break points

to higher dimension, we need some additional machinery.

In Figure 2.6, the lower break points are also local minima of the MILP value function
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and one may be tempted to conjecture that knowledge of the local minima is enough to

characterize the value function. Unfortunately, it is easy to find cases for which the value

function has no local minima and yet still has the nonconvex structure characteristic of

a general MILP value function. Consider the following example.

Example 2.8. Consider

z(b) = inf − 2x1 + 6x2 − 7x3

s.t. x1 − 2x2 + 7x3 = b

x1 ∈ Z+, x2, x3 ∈ R+.

(2.22)

As illustrated in Figure 2.7, the extreme point of the epigraph of the continuous restriction

of the problem does not correspond to a local minimum. In fact the value function does

not have any local minima.

Figure 2.7: MILP value function (2.22) with no local minimum.

In the previous examples, the epigraph of zC was also always a pointed cone. As a

result, the MILP value function had lower break points that corresponded to the extreme

points of epi(z̄(·;xI)) for certain xI ∈ SI . However, the cone epi(zC) may not have an

extreme point in general. When it fails to have one, in the single-dimensional case, the

MILP value function will be linear and will have no break points. Consider the following

example.
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Example 2.9. Consider

z(b) = inf 2x1 + 6x2 − 7x3

s.t. x1 − 6x2 + 7x3 = b

x1 ∈ Z+, x2, x3 ∈ R+.

(2.23)

In this example, the value function (2.23) coincides with the value function of the con-

tinuous restriction w.r.t the origin. This function is plotted in Figure 2.8.

Figure 2.8: Linear and convex MILP and CR value functions to (2.23).

In this last example, the epigraph of the value function contains a line that passes

through the origin. This property can be generalized to any dimension. If epi(zC) is

not a pointed cone, then for any given x̂I ∈ SI , the boundary of the epigraph of z̄(·; x̂I)

contains a line that passes through (AI x̂I , z̄(AI x̂I ; x̂I)). The boundary of the resulting

MILP value function therefore contains parallel lines that result from translations of z̄.

Clearly, to characterize such a value function, one would need to have, for each such

line, a point b̂ such that (b̂, z(b̂)) is on the line and the value function of the continuous

restriction, zC . The case for which epi(zC) is not a pointed cone is an edge case and its

consideration would complicate the presentation substantially. For the remainder of this

section, we therefore assume the more common case in which epi(zC) is a pointed cone.

To generalize the set of lower break points to higher dimensions, we introduce the

notion of points of strict local convexity of the MILP value function. We denote the set
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of these points by BSLC .

Definition 2.4. A point b̂ ∈ BI is a point of strict local convexity of the function f :

Rm → R ∪ {±∞} if for some ε > 0 and g ∈ Rm such that |g| > 0, we have

f(b) > f(b̂) + g>(b− b̂) for all b ∈ Nε(b̂), b 6= b̂.

This definition requires the existence of a hyperplane that is tangent to the function

f at the point b̂ ∈ BI , while lying strictly below f in some neighborhood of b̂. For the

continuous restriction with respect to x̂I ∈ SI , this can happen only at the extreme point

of the epigraph of the function, if such a point exists. Note that at such a point, we must

have z̄(b̂; x̂I) = c>I x̂I . Furthermore, if x̂I ∈ arg infxI∈SI
z̄(b̂;xI), then we will also have

z̄(b̂; x̂I) = zI(b̂).

Proposition 2.11. For a given x̂I ∈ SI , b̂ ∈ AI x̂I +K is a point of strict local convexity

of z̄(·; x̂I) if and only if (b̂, z̄(b̂; x̂I)) is the extreme point of epi(z̄(·; x̂I)).

Proof. Let x̂I ∈ SI and b̂ ∈ AI x̂I + K be given as in the statement of the theorem. We

use the following property in the proof. Let the function Ht be defined by

Ht(b) =


c>I x̂I + (b−AI x̂I)>ηt for b ∈ K,

+∞ otherwise,

where ηt ∈ {νi}i∈K ∪ {dj}j∈L. Then, we have

z̄(b; x̂I) = sup
t∈K∪L

Ht(b)

Moreover,

∂z̄(b̂; x̂I) = conv({∇H1, . . . ,∇Hp}p∈P ) = conv({η1, . . . , ηp}p∈P ) 6= ∅,

54



2.2. A DISCRETE REPRESENTATION

where P ⊆ K ∪ L and |P | > 1 and finally, we have that

z̄(b̂; x̂I) = H1(b̂) = · · · = Hp(b̂) for p ∈ P. (2.24)

(⇒) Let ε and g be the radius of the ball and a corresponding subgradient showing

the strict local convexity of z̄(·; x̂I) at b̂. If z̄(·; x̂I) is differentiable at b̂, then ∃ν ∈ Rm

such that ∂z̄(·; x̂I) = {ν}, and therefore g = ν. Then we trivially have that b̂ cannot

be a point of strict local convexity of z̄(·; x̂I), as there always exists ε′ with 0 < ε′ < ε

such that on Nε′(b̂), we have z̄(b; x̂I) = z̄(b̂; x̂I) + ν>(b− b̂). Therefore, z̄(·; x̂I) cannot be

differentiable at b̂.

Since z̄(·; x̂I) is not differentiable at b̂, there are H1, . . . ,Hp, p ∈ P , as defined above.

In the case that p > m, from the discussion on the LP value function, b̂ has to be the

extreme point of epi(z̄(·; x̂I)). Next, we show that b̂ cannot be the extreme point of

epi(z̄(·; x̂I)) if p ≤ m.

When 1 < p ≤ m, equation (2.24) must still hold. Let

R = {(b, z̄(b; x̂I)) ∈ (AI x̂I +K)× R : z̄(b; x̂I) = H1(b) = · · · = Hp(b) for p ∈ P}

Then there exists b̃ ∈ Nε(b̂) such that (b̃, z(b̃)) ∈ R and b̃ 6= b̂. We have

z̄(b̃; x̂I)− z̄(b̂; x̂I) = (b̃− b̂)>ηt, t ∈ P.

Then we can conclude that for g ∈ ∂z̄(b̂; x̂I) = conv({η1, . . . , ηp}), the function z̄(b̂; x̂I) +

g>(b̃ − b̂) also coincides with z̄(b̃; x̂I) as follows. Choose 0 ≤ λt ≤ 1, t ∈ P such that

g =
∑

t∈P λ
tηt,

∑
t∈P λ

t = 1. From the equations

λt(z̄(b̃; x̂I)− z̄(b̂; x̂I)) = λt(b̃− b̂)>ηt, t ∈ P

55



2.2. A DISCRETE REPRESENTATION

we have a contradiction to b̂ being the point of strict local convexity of z̄(·; x̂I), since

z̄(b̃; x̂I)− z̄(b̂; x̂I) =

p∑
t=1

λt(b̃− b̂)>ηt = g>(b̃− b̂).

(⇐) Since (b̂, z(b̂)) is the extreme point of epi(z̄(·; x̂I)), then ∂z̄(b̂; x̂I) = conv({η1, . . . , ηp}),

where p ∈ P and we must have that |P | > m. Choose g ∈ int(conv({η1, . . . , ηp})). For

an arbitrary b̃ ∈ AI x̂I + K, b̃ 6= b̂ there exists η̃ ∈ {η1, . . . , ηp} such that z̄(b̃; x̂I) =

(b̃ − AI x̂I)>η̃. Then, from the monotonicity of the subgradient of a convex function we

have (η̃> − g>)(b̃− b̂) > 0. Therefore,

z̄(b̃; x̂I) = z̄(b̂; x̂I) + η̃>(b̃− b̂) > z̄(b̂; x̂I) + g>(b− b̂) ∀b̃ ∈ AI x̂I +K, b̃ 6= b̂. (2.25)

That is, b̂ is a point of strict local convexity of z̄(·; x̂I).

Example 2.10. Consider the MILP in Example 2.8. The blue shaded region in Figure 2.9

is epi(z̄(·; 1)). The point (1,−2) is the extreme point of the cone epi(z̄(b; 1)) and b̂ = 1 is

a point of strict local convexity of the value function.

Figure 2.9: The value function of the MILP in (2.22)

Next, we discuss the points of strict local convexity of the MILP value function.

Proposition 2.12. If b̂ is a point of strict local convexity, then there exists x̂I ∈ SI such

that

56



2.2. A DISCRETE REPRESENTATION

– b̂ = AI x̂I ;

– (b̂, z̄(b̂; x̂I)) is the extreme point of epi(z̄(·; x̂I)); and

– z̄(b̂; x̂I) = c>I x̂I = zI(b̂) = z(b̂).

Proof. Let b̂ be a point of strict local convexity. If there exists x̂I ∈ SI(b̂) such that

x̂I ∈ arg infxI∈SI
z̄(b̂;xI), then we have that c>I xI = z(b̂). The remainder of the statement

is trivial in this case. Consider the case where such xI does not exist. That is, for any

(xI , xC) ∈ S(b̂) such that c>I xI + c>CxC = z(b̂), we have y > 0. Let one such point

be (x̂I , x̂C). Consider ε > 0 used to show b̂ is a point of strict local convexity. If

z̄(·; x̂I) coincides with z on Nε(b̂), then from from Proposition 2.11 it follows that b̂

cannot be a point of strict local convexity. On the other hand, if z is constructed by

multiple translations of z̄ over Nε(b̂), since it attains the minimum of these functions,

there cannot be a supporting hyperplane to z at b̂, therefore b̂ cannot be a point of strict

local convexity.

We note that the reverse direction of Proposition 2.12 does not hold. In particular,

it is possible that for some x̂I ∈ SI we have z(AI x̂I) = c>I x̂I , but that AI x̂I is not a

point of strict local convexity. For instance, in example 2.2, for x̂I = (1, 0, 1) we have

that AI x̂I = 2 and that z̄(2; x̂I) = z(2) = 6. Nevertheless, 2 is not a point of strict local

convexity.

Points of strict local convexity may lie on the boundary of BI . The next example

illustrate a case where this happens.

Example 2.11. Consider the MILP value function

z(b) = inf − x1 + 3x2

s.t. x1 − 3x2 = b

x1 ∈ Z+, x2 ∈ R+.

(2.26)

shown in Figure 2.10. If we artificially impose the additional restriction that b ∈ [0, 2] for

57



2.2. A DISCRETE REPRESENTATION

Figure 2.10: MILP Value Function of (2.26) with BI = [0, 2].

the purposes of illustration, it is clear that there is no point of strict local convexity in

the interior of BI , although epi(zC) is a pointed cone.

Let us further examine the phenomena illustrated by the previous example. For a

given x̂I ∈ SI , let b̂ = AI x̂I . We know that the single extreme point of epi(z̄(·; x̂I)) is

(b̂, z̄(b̂; x̂I)) and that there must therefore bem+1 (2 in this example) facets of epi(z̄(·; x̂I))

whose intersection is this single extreme point. Now, if b̂ is not a point of strict local

convexity, then on any Nε(b̂) with ε > 0, at most m facets of epi(z̄(·; x̂I)) coincide with

the facets of the epigraph of the value function. This means that there exists a direction

in which z is affine in the neighborhood of (b̂, z̄(b̂; x̂I)); that is, b̂ cannot be a point of

strict local convexity of z. Given that the set BI is assumed to be bounded, along this

direction, the value function contains a point (b̃, z(b̃)) such that b̃ ∈ bd(conv(BI)) ∩ BI .

Let b̄d(BI) = bd(conv(BI)) ∩ BI . Since epi(zC) is pointed, then b̃ has to be a point

of strict local convexity of z. This latter point is the one needed to describe the value

function—the epigraph of the associated continuous restriction associated with b̃ contains

that w.r.t. x̂I , which means that Ax̂I is not contained in the minimal set of points at

which we need to know the value function.

We are now almost ready to formally state our main result. So far, we have discussed

certain properties of the points of strict local convexity and showed that such points can

belong to the interior or boundary of BI . Our goal is to show that the set BSLC is precisely
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the minimal subset of BI needed to characterize the full value function. Therefore, let us

now formally define Bmin to be a minimal subset of BI such that

z(b) = inf
b̂∈Bmin

z(b̂) + zC(b− b̂) ∀b ∈ B. (2.27)

Then we have the following result.

Proposition 2.13. Bmin = BSLC .

Proof. First, we show that if b̂ ∈ B\BSLC , then it is not in the set Bmin. If b̂ ∈ B\BI ,

then from (2.20) it follows that b̂ is not necessary to describe the value function, then

b̂ /∈ Bmin. Consider b̂ ∈ BI\BSLC . Let x̂I ∈ SI(b̂) such that c>I x̂I = z(b̂). Since epi(zC)

is assumed to be pointed, we have z(b̂) = min{z̄(b̂;x1), z̄(b̂;x2),

. . . , z̄(b̂;xk)}, where k > 1 and x1, . . . , xk ∈ SI . Then, for some l = 1, . . . , k and xl 6= x̂I

we have min{z̄(b̂; x̂I), z̄(b̂;xl)} = z̄(b̂;xl) and it follows that b̂ /∈ Bmin. Therefore, if

b̂ ∈ Bmin, then b̂ ∈ BSLC .

We next show that if b̂ ∈ BSLC , then b̂ ∈ Bmin. Let us denote by S′(b̂) the set of

points xI ∈ SI such that (AIxI , c
>
I xI) coincides with the value function at b̂. If b̂ /∈ Bmin,

then all the points in S′(b̂) can be eliminated from the description of the value function

in (2.20). That is, we have

z(b̂) = inf
xI∈SI\S′(b̂)

z̄(b̂;xI).

Therefore, for any pair (x, y) ∈ S(b̂) that is an optimal solution to the MILP with right-

hand side fixed at b̂, we have y > 0. This, however, contradicts with Proposition 2.12

and we have that b̂ cannot be a point of strict local convexity of z.

Because it will be convenient to think of the value function as being described by a

subset of SI , we now express our main result in those terms. From Proposition 2.13,

it follows that there is a subset of Smin of SI that can be used to represent the value

function, as shown in the following theorem. Note, however, that while Bmin is unique,

Smin is not.

59



2.3. STABILITY REGIONS

Theorem 2.7. (Discrete Representation) Let Smin be any minimal subset of SI such

that for any b ∈ Bmin, ∃x ∈ Smin such that AIx = b and c>I x = z(b).Then for b ∈ B, we

have

z(b) = inf
xI∈SI

z̄(b;xI) = inf
xI∈Smin

z̄(b;xI). (2.28)

Proof. The proof follows from Proposition 2.13, noting that a point x̂I ∈ SI such that

c>I xI > z(AIxI) cannot be necessary to describe the value function.

Example 2.12. We apply the theorem to (2.15). In this example, over b ∈ [−9, 9], we

have thatBmin = {−8,−4, 0, 5, 6, 10} and Smin = {[0; 0; 2], [0; 0; 1], [0; 0; 0], [0; 1; 0], [1; 0; 0],

[0; 2; 0]}. Clearly, the knowledge of the latter set is enough to represent the value func-

tion.

Theorem 2.7 provides a minimal subset of SI required to describe the value function.

We will discuss in Section 2.5 that constructing a minimal such subset exactly may be

difficult. Alternatively, we propose an algorithm to approximate Smin. This has proven

empirically to be a very close approximation. Before further addressing the practical

matter of how to generate the representation, we discuss a few more theoretical properties

of the value function that arise from our result so far in the next two sections. The reader

interested in the computational aspects of constructing the value function can safely skip

to Section 2.5 for the proposed algorithm, as that algorithm does not depend on the

results in the following two sections.

2.3 Stability Regions

In this section, we demonstrate that certain structural properties of the value function,

such as regions of convexity and points of non-differentiability and discontinuity, can

also be characterized in the context of our representation. We show that there is a

one-to-one correspondence between regions over which the value function is convex and

continuous—the so-called local stability sets— and the set Bmin. We also provide results

on the relationships between this set and the sets of non-differentiability and discontinuity
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of the value function.

We start this section by introducing some notations for the sets of right-hand sides

with particular properties.

Definition 2.5.

– BLS(b̂) = {b ∈ B : z(b) = z(b̂) + zC(b− b̂)} is the local stability set w.r.t b̂ ∈ B;

– BES(b̂) = bd(BLS(b̂)) is the local boundary set w.r.t b̂ ∈ B;

– BES = ∪b∈Bmin
BES(b) is the boundary set ;

– BND = {b ∈ B : z is not differentiable at b} is the non-differentiability set ; and

– BDC = {b ∈ B : z is discontinuous at b} is the discontinuity set.

Example 2.13. To illustrate the above definitions, consider the value function in Exam-

ple 2.2. Let b̂ = 3. Over the interval [−9, 9] we have that the function z(3) + zC(b − 3)

coincides with z at b ∈ BLS(b̂) = [2.125, 3]. Then, BES(b̂) = {2.125, 3}. The minimal set

is Bmin = {−8,−4, 0, 5, 6}. The boundary set consists of the union of the local boundary

sets w.r.t. minimal points; i.e.,

BES ={{−9,−7.75} ∪ {−7.75,−3.75} ∪ {−3.75, 2.125} ∪ {2, 125, 5.125} ∪ {5.125, 8}}

={−9,−7.75,−3.75, 2.125, 5.125, 8}.

The non-differentiablity set is

BND = {−9,−8,−7.75,−4,−3.75, 0, 2.125, 5, 5.125, 6, 8, 9}.

Finally, BDC = ∅.

The main result of this section is Theorem 2.8. The goal is to show that the value

function is convex and continuous over the local stability sets associated with the mem-

bers of Bmin. Furthermore, in this theorem we demonstrate the relationship between
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the set Bmin, the boundary set, BES , and the sets of point of non-differentiability and

discontinuity of the value function. We next state the theorem.

Theorem 2.8.

i. Let b̂ ∈ B.

– There exists x∗I ∈ Smin such that for any b̃ ∈ int(BLS(b̂)), there exists xC ∈

Rn−r+ such that (x∗I , xC) is an optimal solution to the MILP with right-hand

side b̃.

– z is continuous and convex over int(BLS(b̂)).

ii. b̂ ∈ BES if and only if for any ε > 0, @x∗I ∈ SI such that z(b) = c>I x
∗
I +zC(b−AIx∗I)

for all b ∈ Nε(b̂).

iii. Let b̂ ∈ Bmin. Then, int(BLS(b̂)) is the maximal set of right-hand sides containing

b̂ over which the value function is convex and continuous.

iv. For the general MILP value function, we have Bmin ⊆ BND and BES ⊆ BND.

Furthermore, if the MILP value function is discontinuous, we have Bmin ⊆ BDC ⊆

BES ⊆ BND.

Proof. We build to the proof of the theorem, which constitute the remainder of this

section, by proving lemmas 2.1–2.10, The first and second parts of the theorem follow

from lemma 2.1 and lemma 2.4. The third part of the theorem is shown in lemma 2.5.

The last part follows from lemmas 2.7–2.10.

In the first lemma, we show properties of the function on differentiable regions within

local stability sets.

Lemma 2.3. Let b̂ ∈ B. Then there exists x∗I ∈ SI such that for any b̃ ∈ int(BLS(b̂)),

there exists xC ∈ Rn−r+ such that (x∗I , xC) is an optimal solution to the MILP with right-

hand side b̃. Furthermore, z is continuous and convex over int(BLS(b̂))
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Proof. From Theorem 2.7, for any b̂ ∈ B there exists x∗ ∈ Smin such that int(BLS(b̂)) =

int({b ∈ B : z(b) = c>I x
∗
I + zC(b − AIx∗I)}). Therefore, for any b̃ ∈ int(BLS(b̂)), z(b̃) =

c>I x
∗
I + c>Cx

∗
C where x∗C = argmin{c>CxC : ACxC = b̃− AIx∗I , xC ∈ Rn−r+ }. The convexity

and continuity of z on int(BLS(b̂)) follows trivially.

Theorem 2.1. If z is differentiable over N ⊆ B, then there exist x∗I ∈ SI and E ∈ E

such that z(b) = c>I x
∗
I + ν>E (b−AIx∗I) for all b ∈ N .

Proof. Let an arbitrary b̂ ∈ N be given. By Theorem 2.7, we know that there exists

x̂I
∗ ∈ Smin such that z(b̂) = z̄(b̂; x̂I) and AIx

∗
I ∈ Bmin. Then, we have z(b̂) = c>I x

∗
I +

ν>E (b̂−AIx∗I) with E ∈ E and there exists (x∗I , xE , xN ), an optimal solution to the given

MILP with right-hand side b̂, where xE and xN correspond to the basic and non-basic

variables in the corresponding solution to the continuous restriction w.r.t. x∗I . It follows

that the vector (x∗I , xE +A−1
E (b− b̂), xN ) is a feasible solution for any b ∈ N .

Now, let another arbitrary point b̃ ∈ N be given. We show that (x∗I , xE + A−1
E (b̃ −

b̂), xN ) must be an optimal solution for right-hand side b̃. Since b̂ ∈ N , b̃ ∈ N and z

is differentiable over N , then νE is the unique optimal dual solution to the continuous

restriction by Proposition 2.7 and we have

z(b̃) = c>I x
∗
I + c>E(xE +A−1

E (b̃− b̂)) + c>NxN

= z(b̂) + ν>E (b̃− b̂) = c>I x
∗
I + ν>E (b̂−AIx∗I) + ν>E (b̃− b̂)

= c>I x
∗
I + ν>E (b̃−AIx∗I) = z̄(b̃;x∗I).

Since b̃ and b̂ were arbitrary points in N , the result holds for all such pairs and this ends

the proof.

It follows from the previous result that if the value function is differentiable over

N ⊆ B, then its gradient at every right-hand side inN is a unique optimal dual solution to

the continuous restriction problem w.r.t. some x∗I ∈ SI . This generalizes Proposition 2.7

on the gradient of the function at a differentiable point of the LP value function to the

mixed integer case. As an example, in (2.19) the gradient of z at any differentiable point
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is ν = 3
2 .

Next, we show the second part of Theorem 2.8 in the following result.

Lemma 2.4. b̂ ∈ BES if and only if for any ε > 0, @x∗I ∈ SI such that z(b) = c>I x
∗
I +

zC(b−AIx∗I) for all b ∈ Nε(b̂).

Proof. (⇒) Let ε > 0 be given and assume ∃x∗I ∈ SI such that z(b) = c>I x
∗
I +zC(b−AIx∗I)

for all b ∈ Nε(b̂). Now, let b̃ ∈ Bmin be such that b̂ ∈ BES(b̃). Then for all b ∈ Nε(b̂), we

have z(b) = z̄(b;x∗I) = z(b̃) + zC(b− b̃). That is, b̂ ∈ int(BLS(b̃)).

(⇐) Let b̃ ∈ Bmin be such that b ∈ int(BLS(b̃)). Then from Lemma 2.3, there exists

x∗I ∈ SI optimal for all b ∈ BLS(b̃).

Next, we arrive at showing the third part of Theorem 2.8.

Lemma 2.5. Let b̂ ∈ Bmin. Then, int(BLS(b̂)) is the maximal set of right-hand sides

containing b̂ over which the value function is convex and continuous.

Proof. Assume the contrary that BLS(b̂) with b̂ ∈ Bmin is not the maximal set. Then,

there exists b̃ in the boundary set w.r.t b̂, BES(b̂), and ε > 0 such that the value function

is continuous and convex at Nε(b̃). From Theorem 2.7 and Lemma 2.4 we have

z(b) = min
xiI∈Smin

{c>I xiI + (b−AIxiI)>νi}, b ∈ Nε(b̃), (2.29)

where νi is the optimal dual solution to zC(b̃ − AIxiI) and the set xiI ∈ Smin contains

two or more distinct members. Then, z is concave over Nε(b̃) unless all the polyhedral

functions in (2.29) are the same. But then Nε(b̃) is a subset of BLS(b̂).

So far, in Theorem 2.8 we have demonstrated that over the local stability set w.r.t

a minimal point, the integer part of the solution to the MILP remains constant and the

value function of the MILP is a translation of the continuous restriction value function.

This can be viewed as a generalization of the value function of a PILP with inequality

constraints, where the value function is constant over local stability sets (zC(b) = 0 for
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b ∈ Rm). These regions are characterized by Schultz et al. (1998). In this case, the

minimal points generalize the notion of minimal tenders discussed in Trapp et al. (2013).

Before showing the fourth and last part of Theorem 2.8, we need another lemma on

the necessary conditions for the continuity of the value function.

Lemma 2.6. If zC(b) <∞ for all b ∈ B, then z is continuous over B.

Proof. If zC(b̂) <∞ for some b̂ ∈ B, then the continuous restriction w.r.t. the origin and

its dual are both feasible and have optimal solution values equal to zC(b̂). Therefore, z̄ is

finite and continuous on B. It can be proved by induction that the minimum of countably

many continuous functions defined on B is continuous on B. The continuity of z follows

by the representation in (2.20).

We now proceed to show the last part of the theorem. Lemmas 2.7–2.10 address the

relationships between the discontinuity set of the value function with the minimal set of

right-hand sides, the boundary set, and the set of non-differentiability points. Combining

the following lemmas, the proof of the theorem is complete.

Lemma 2.7. Bmin ⊆ BND.

Proof. Assume the value function is differentiable at some b̂ ∈ Bmin. Let ∇z(b̂) = g.

Then, there exists some ε > 0, such that z(b) = z(b̂) + g>(b − b̂) for all b ∈ Nε(b̂). But

then, from the definition of a point of strict local convexity, b̂ cannot be in BSLC and

therefore, b̂ /∈ Bmin.

Earlier we showed that the discontinuities of the MILP value function may only hap-

pen when it no longer attains its minimum over some translated z̄ and a switch to another

translation is required. This is used next to show the relationship between the disconti-

nuity and boundary sets.

Lemma 2.8. BDC ⊆ BES.

Proof. Assume to the contrary that there exists b̃ ∈ BDC but b̃ ∈ int(BLS(b̂)) for some

b̂ ∈ Bmin. Then from Theorem 2.8, there exists ε > 0 such that z(b) = z(b̂)+zC(b− b̂) for

all b ∈ Nε(b̃). Therefore, z can only be continuous on Nε(b̃), which is a contradiction.
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Lemma 2.9. If the value function is discontinuous, then Bmin ⊆ BDC .

Proof. Since BDC 6= ∅, from Lemma 2.6 we have K 6= Rm. Then, for any b̂ ∈ B we have

b̂ ∈ BES(b); that is, any right-hand side lies on the boundary of its local stability set.

Consider b̂ ∈ Bmin. If z is continuous at b̂ then there exists ε > 0 and b̃ ∈ Bmin such

that b̃ 6= b̂ and for any b1 ∈ Nε(b̂)\BES(b̂) we have z(b1) = z(b̃) + zC(b1 − b̃). Consider

b2 ∈ Nε(b̂) ∩BES(b̂). If z(b̃) + zC(b2 − b̃) < z(b2), then z cannot be the value function at

b2. On the other hand, if z(b̃) + zC(b2 − b̃) lies above or on z(b2), it can be easily shown

that there cannot exist a supporting hyperplane of z at b̂ that lies strictly below z on an

arbitrarily small neighborhood of b̂. Then b̂ cannot be in Bmin.

The next result shows that if b̂ belongs to the boundary set w.r.t a minimal point,

then z is non-differentiable at b̂.

Lemma 2.10. BES ⊆ BND.

Proof. Assume there exist some b̃ ∈ BES(b̂), b̂ ∈ Bmin such that z is differentiable at b̃.

Then there exists ε > 0 and E ∈ E such that for all b ∈ Nε(b̃) we have

z(b) = z(b̃) + ν>E (b− b̃)

= z(b̂) + ν>E (b̃− b̂) + ν>E (b− b̃)

= z(b̂) + ν>E (b− b̂) = z(b̂) + zC(b− b̂).

(2.30)

But this contradicts the third part of Theorem 2.8.

We finish this section by applying Theorem 2.8 to the continuous value function in

Example 2.2 and the discontinuous value function in Example 2.5.

Example 2.14. Consider the value function (2.15). Figure 2.11 shows the optimal in-

teger parts x1
I , . . . , x

4
I of solutions to the corresponding MILP over the local stability

sets BLS(−4), BLS(0), BLS(5) and BLS(6), respectively. One can observe that both the

minimal set and the boundary set of the value function are subsets of its set of non-

differentiability points.
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Figure 2.11: Local stability sets and corresponding integer part of solution in (2.15).

Similarly, in Example 2.5, x1
I = [1 2]>, x2

I = [2 3]>, x3
I = [3 4]>, x4

I = [0 0]>, x5
I =

[1 1]>, x6
I = [2 2]>, x7

I = [3 3]> are respectively the integer parts of the solutions for right-

hand sides in the local stability sets BLS(−0.75), BLS(−0.5), . . . , BLS(0.5), BLS(0.75). In

this case, the value function is discontinuous on the points that belong to the minimal

set and we have Bmin ∪BES = BES = BDC = BND.

Remark 2.1. If z is continuous over B, then SD 6= ∅. This follows from the fact that if

SD = ∅, then z(0) = zC(0) = −∞ which contradicts z(0) = 0. Therefore, we have that

zC(b) > −∞ for all b ∈ Rm. However, we may still have zC(b) = ∞ for some b ∈ Rm.

The following is an example.

Example 2.15. The value function defined by (Ex.12) below is continuous on R, although

K = R+.

z(b) = inf x1 − x2

s.t. − x1 + x2 = b

x1 ∈ Z+, x2 ∈ R+.

(Ex.12)

2.4 Simplified Jeroslow Formula

Blair (1995) identified a closed form representation of the MILP value function called the
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Jeroslow Formula. In this formula, the value function is obtained by taking the minimum

of |E| functions, each consisting of a PILP value function and a linear term. In this

section, we study the connection between our representation of the MILP value function

and the representation in the Jeroslow Formula and provide a simpler representation of

it.

Let us denote by b·c the component-wise floor function. For E ∈ E , we define

bbcE = AE
⌊
A−1
E b
⌋
∀b ∈ B, TE = {b ∈ B : A−1

E b ∈ Zm}, and T =
⋂
E∈E

TE .

For a given b̂ ∈ K, let E ∈ E such that x̂IE = A−1
E b̂ is the corresponding solution to

the continuous restriction w.r.t. the origin. When b̂ ∈ TE , see that b̂ = AE x̂IE is an

integer linear combination of vectors in feasible basis AE . Hence, the same is true for any

member of T .

Now consider the continuous restriction w.r.t to a given x̂I ∈ SI . Then we have more

generally that the corresponding solution to the continuous restriction w.r.t. x̂I at a given

b̂ ∈ K +AI x̂I is

x̃E = A−1
E (b̂−AI x̂I),

where E ∈ E . In this case, when b̂ ∈ T , we can no longer guarantee that x̃E ∈ Zm. By an

appropriate scaling, however, we can ensure this property, and this is one of the key steps

in deriving the Jeroslow formula. Since all matrices are assumed to be rational, there

exists M ∈ Z+ such that MA−1
E Aj ∈ Zm for all E ∈ E and all j ∈ I, with Aj denotes the

jth column of A. Then, since A−1
E b is integral for any b ∈ T and E ∈ E , we have that the

value function of the following PILP is equal to the value function of the original MILP

for all b ∈ T .

Proposition 2.14. (Blair, 1995) There exists M ∈ Z+ such that z(b) = zM (b) for all

b ∈ T , where
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zM (b) = inf c>I xI +
1

M
c>CxC

s.t. AIxI +
1

M
ACxC = b

(xI , xC) ∈ Zr+ × Zn−r+ .

(2.31)

Proof. Let M ∈ Z+ such that MA−1
E Aj is a vector of integers for all E ∈ E and j ∈ I.

Scaling AC and cC by 1
M guarantees that Aj ∈ T for all j ∈ I. Therefore, MA−1

E (b −

AIxI) ∈ Zm for all xI ∈ Zr and E ∈ E . It follows that the solution value to z and zM is

equal for any b ∈ T .

We illustrate the scaling procedure in the following example.

Example 2.16. Consider Example 2.2. In (2.15) we have AjI ∈ {6, 5,−4} for j = 1, . . . , 3

and E = {{1}, {2}} with A{1} = 2 and A{2} = −7. We choose M = 14 so that MA−1
E AjI ∈

Z for all E ∈ E . The corresponding scaled PILP problem is

zM (b) = inf 3x1 +
7

2
x2 + 3x3 +

3

7
x4 +

1

2
x5

s.t. 6x1 + 5x2 − 4x3 +
1

7
x4 −

1

2
x5 = b

x1, x2, x3, x4, x5 ∈ Z+.

(2.32)

Figure 2.12a demonstrates the value function (2.32) for b ∈ [−9, 9]. From the figure we

can see that z and zM coincide on intervals of length 1
7 where A{1} = 2 is optimal, while

the two functions coincide at intervals of length 1
2 where A{2} = −7 is optimal.

Let us have a closer look at the interval [2, 2.6] illustrated in Figure 2.12b. The set of

feasible right-hand sides for the scaled PILP (2.32) in this interval is {2, 2 1
14 , 2

2
14 , 2

3
14 , . . . , 2

8
14}.

Among these points, the value function coincides with (2.32) at 2 and 2.5. We have

z(b) = zC(b) = ν{1}b = 3b, for b ∈ [2, 2.125]

and

z(b) = z̄(b; [0, 1, 0]>) =
7

2
+ ν{2}(b− 5) =

7

2
− (b− 5), for b ∈ [2.125, 2.6].

69



2.4. SIMPLIFIED JEROSLOW FORMULA

Since T{1} = {b : MA−1
{1}b = 7b ∈ Z}, we have T{1} ∩ [2, 2.6] = {b : b = i

7 , i = 14, . . . , 18}.

Similarly, T{2} ∩ [2, 2.6] = {b : b = i
2 , i = 4, 5}.

(a)

(b)

Figure 2.12: The scaled PILP value function (2.32).

Over the intervals for which AE∗ is the optimal dual basis for the corresponding

continuous restriction, z and zM coincide at TE∗ = {b ∈ B : b = bbcE∗ = kMA−1
E∗ , k ∈

Z+}. For instance, z(2) = zM (2) with 2 ∈ T{1}, but z(21
7) 6= zM (21

7) with 21
7 ∈ T{1}.

This is due to the fact that A{1} is the optimal dual basis at z(2) = zC(2) but not at
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z̄(21
7 ; [0, 1, 0]>) = z(21

7).

Remark 2.2. Note that the z and zM may coincide at some right-hand side that is not in

the set T , e.g., b = 2.5 ∈ T{2}\T{1}.

Blair and Jeroslow (1984) identified a class of functions called Gomory functions and

showed that for any PILP, there exists a Gomory function whose value coincides with

that of the value function of the PILP wherever it is finite. To extend this result to the

MILP case, Blair (1995) proposed “rounding” any b ∈ B to some bbcE with E ∈ E and

evaluating the latter using a PILP. Note that (2.31) has to be modified to be used for

this purpose, since it is not necessarily feasible for all bbcE , E ∈ E ; i.e., it is possible to

have x̃E = M(A−1
E −A

−1
E AI x̂I) < 0 for x̂I ∈ Zr+. To achieve feasibility for all bbcE , Blair

(1995) proposed the following modification of (2.31) and used it in the Jeroslow formula.

zJF (t) = inf c>I xI +
1

M
c>CxC + z(− 1

M

∑
j∈C

Aj)y

s.t. AIxI +
1

M
ACxC + (− 1

M

∑
j∈C

Aj)y = t

xC ∈ Zn−r+ , xI ∈ Zr+, y ∈ Z+.

(2.33)

Finally, he used linear terms of the form of ν>E (b−bbcE) to compensate for the “rounding”

of b to bbcE with E ∈ E . Together, he showed that for any MILP, there is a Gomory

function G corresponding to the value function of the PILP (2.33) with

z(b) = inf
E∈E
{G(bbcE) + ν>E (b− bbcE)}. (2.34)

The representation of the value function in (2.34) is known as the Jeroslow Formula.

Although it is a bit difficult to tease out, given the technical nature of the Jeroslow

Formula, there is an underlying connection between it and our representation. In par-

ticular, the set T has a role similar to the role of Bmin in our representation—it is a

discrete subset of the domain of the value function of the original MILP over which the

original value function agrees with the value function of a related PILP. This is the same

property our set Bmin has and it is what allows the value function to have a discrete
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representation. Furthermore, the correction terms in the Jeroslow Formula play a role

similar to the value function of the continuous restriction in our representation.

The advantage our representation has over the Jeroslow Formula is that Bmin is

potentially a much smaller set and the value M in the Jeroslow formula would be difficult

to calculate a priori. Furthermore, even if M could be obtained in some cases, evaluating

the value function for a given b ∈ B using the Jeroslow formula ostensibly requires the

evaluation of a Gomory function for every bbcE for all E ∈ E , including those feasible

basis AE that are not optimal at b. The number of evaluations required is equal to the

size of
⋃
E∈E TE . These drawbacks relegate the Jeroslow formula to purely theoretical

purposes. On the surface, there does not seem to be any way to utilize it in practice.

Nevertheless, it is possible to simplify the Jeroslow Formula, replacing T by Bmin and

eliminating the need to calculate M in the process. This leads to a more practicable

variant of the original formula. First, we show formally that Bmin is a subset of T .

Proposition 2.15. Bmin ⊆ T .

Proof. Let (x̂I , x̂C) be an optimal solution to (MVF) at b̂ ∈ Bmin. From Proposition 2.12,

we have that x̂C = 0 in any optimal solution of the value function at b̂. Then for all E ∈ E

we have ⌊
b̂
⌋
E

=
1

M
AE
⌊
MA−1

E AI x̂I +MA−1
E AC x̂C

⌋
= AI x̂I = b̂.

Then,
⌊
b̂
⌋
E

= b̂ for all E ∈ E and b̂ ∈ T .

Theorem 2.2. If b̂ ∈ Bmin, then z(b̂) = zI(b̂) = zM (b̂) = zJF (b̂) = G(b̂) where G is the

PILP value function in (2.34).

Proof. The first equality follows from Proposition 2.12. The second equality holds since

xC = 0 in any optimal solution to (MVF) at a right-hand side in Bmin. zM (b) is equal

to zJF (b) since for b = bbcE for all b when b ∈ Bmin and y can be fixed to zero in (2.33).

The last equality holds for any bbcE , E ∈ E .
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Theorem 2.9. (Simplified Jeroslow formula)

z(b) = inf
b̂∈Bmin,E∈E

{zI(b̂)− ν>E (b− b̂)}. (2.35)

Proof. We have

z(b) = inf
E∈E
{G(bbcE) + ν>E (b− bbcE)}

= inf
b̂∈TE ,E∈E

{G(b̂) + ν>E (b− b̂)}

= inf
b̂∈Bmin

{zI(b̂) + sup
E∈E

ν>E (b− b̂)}

= inf
b̂∈Bmin,E∈E

{zI(b̂)− ν>E (b− b̂)}.

The first equation is the Jeroslow Formula. The second one is because bbcE ∈ TE for any

E ∈ E and b ∈ B. From Theorem 2.7, z(b) = inf{z̄(b;xI) : AIxI ∈ Bmin}, then the third

equality holds. The last equation follows trivially.

The above result provides a variation of the Jeroslow formula where there is no need

to find the value of M , or to evaluate the PILP problem zJF for members of
⋃
E∈E TE .

Instead, we need to evaluate the simpler PILP problem zI for the set BI ⊆ T ⊆
⋃
E∈E TE .

The difference in the size of BI and
⋃
E∈E TE can be significant. We provide an illustrative

example next.

Example 2.17. The value function of (2.32) for right-hand sides in T{1}∪T{2} is plotted

in Figure 2.13 with filled blue circles. At a point b̂ ∈ T{1} ∪ T{2}, we have zM (b̂) = G(b̂)

where G is the Gomory function corresponding to the PILP (2.32). The Jeroslow formula

for the MILP value function over [−9, 9] requires finding all such points. Alternatively,

we can have a smaller representation by constructing the value function of the integer

restriction of (2.15). i.e., zI(b̂) = inf{3x1+ 7
2x2+3x3 : 6x1+5x2−4x3 = b̂, x1, x2, x3 ∈ Z+}.

This value function is plotted in Figure 2.14. However, the alternative formulation (2.35)

requires finding G(b̂) = zI(b̂) for b̂ ∈ Bmin = {−8,−4, 0, 4, 5, 10}.
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Figure 2.13: The value function of (2.32) for b ∈ T{1} ∪ T{2} ∪ [−9, 9].

2.5 Algorithm for Construction

In this section, we discuss the use of our representation in computational practice. To

sum up what we have seen so far, we have shown that there exists a discrete set Smin

(not necessarily unique) over which the value of z can be determined by solving instances

of the integer restriction. Theorem 2.7 tells us that, in principle, if we knew z(AIxI) for

all xI ∈ Smin, then z(b) could be computed at any b ∈ B by solving |Smin| LPs.

Our discrete representation of the value function in Theorem 2.7 is the same as

z(b) = inf
xI∈Smin

c>I xI + zC(b−AIxI). (2.36)

If |Smin| is relatively small, this yields a practical method. The most straightforward way

to utilize our representation would then be to generate the set Smin a priori and to apply

the above formula to evaluate z(b) for b 6∈ Bmin.

In general, however, obtaining an exact description of the set Smin seems to be difficult.

One solution to this problem would be to instead generate the value function of the

integer restriction first by the procedure of Kong et al. (2006), which is finite under our

assumptions. We illustrate this hypothetical procedure in the following example.

Example 2.18. Consider constructing the value function defined by (2.15) for b ∈ [−7, 7].

The value function of the integer restriction zI is plotted in Figure 2.14. Clearly, com-
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plete knowledge of zI is unnecessary to describe the MILP value function, as this re-

quires evaluation for each point in SI , whereas we have already shown that evalua-

tion of points in Smin is enough. In this example, over b ∈ [−7, 7], we have that

Smin = {0; 0; 1], [0; 0; 0], [0; 1; 0], [1; 0; 0]}. Therefore, four evaluations is enough, yet at

least 15 are required for constructing the value function of the PILP.

Figure 2.14: The value function of the integer restriction of (2.15) for b ∈ [−9, 9].

Hence, this approach does not seem to be the solution. Instead, we anticipate over-

coming this difficulty in two different ways, depending on the context in which the value

function is needed. First, working with a subset of Smin still yields an upper approxima-

tion of z, which might be useful in particular applications where an approximate solution

will suffice. Second, we anticipate that in most cases, it would be possible to dynamically

generate the set Smin, adding points only as necessary for improving the approximation

in the part of the domain required for solution of a particular instance. This approach

would be similar to that of using dynamic cut generation to solve fixed MILPs.

We demonstrate the potential of both such techniques here by describing a method for

iteratively improving a given discrete approximation of the value function by dynamically

generating improving members of SI after the fashion of a cutting plane algorithm for

MILP. At iteration k, we begin with an approximation arising from Sk ⊆ SI using the
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formula

z̄(b) = inf{c>I xI + zC(b−AIxI) : xI ∈ SkI , z(AIxI) = c>I xI} (2.37)

and we generate the set Sk+1 by determining the point at which the current approximation

is maximally different from the true value function. This is akin to generation of the most

violated valid inequality in the case of MILP. An important feature of the algorithm is

that it produces a performance guarantee after each step, which bounds the maximum

gap between the approximation and the true function value. In what follows, we denote

the current upper bounding function by z̄.

In addition to the initial assumption z(0) = 0, we also assume the set BI is non-

empty and bounded (while B can remain unbounded) to guarantee finite termination.

Note, however, that it is possible to apply the algorithm even if this is not the case. It

is a simple matter, for example, to generate the value function within a given box, even

if BI is an unbounded set. We note that we do not require the assumption K = Rm,

although this is not a restrictive assumption in practice anyway, since AC can always be

modified to satisfy this assumption (Kall and Mayer, 2010).

Algorithm

Initialize: Let z̄(b) =∞ for all b ∈ B, Γ0 =∞, x0
I = 0, S0 = {x0

I}, and k = 0.

while Γk > 0 do:

– Let z̄(b) = min{z̄, z̄(b;xkI )} for all b ∈ B.

– k ← k + 1.

– Solve

Γk = max z̄(b)− c>I xI

s.t. AIxI = b

xI ∈ Zr+.

(2.38)

to obtain xkI .

– Set Sk ← Sk−1 ∪ {xk}
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end while

return z(b) = z̄(b) for all b ∈ B.

The key to this method is effective solution of (2.38). We show how to formulate this

problem as a mixed integer nonlinear program below. For practical computation, (2.38)

can be rewritten conceptually as

Γk = max θ

s.t. θ ≤ z̄(b)− c>I xI

AIxI = b

xI ∈ Zr+.

(2.39)

The upper approximating function z̄(b) is a non-convex and non-concave piecewise poly-

hedral function that is obtained by taking the minimum of a finite number of convex

piecewise polyhedral functions z̄. In particular, in iteration k > 1 of the algorithm we

have z̄(b) = mini=1,...,k−1 z̄(b;x
i
I). Therefore, the first constraint in (2.38) can be refor-

mulated as k − 1 constraints, the right-hand side of each of which is a convex piecewise

polyhedral function.

θ + c>I xI ≤ c>I xiI + zC(b−AIxiI) i = 1, . . . , k − 1. (2.40)

Next, we can write zC as

zC(b−AIxiI) = sup{(b−AIxiI)>νi : A>Cν
i ≤ cC , νi ∈ Rm} (2.41)

and reformulate each of k − 1 constraints in (2.40) as

θ + c>I xI ≤ c>I xiI + (b−AIxiI)>νi

A>Cν
i ≤ cC

νi ∈ Rm

(2.42)
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for i ∈ {1, . . . , k − 1}. Together, then, in each iteration we solve

Γk = max θ

s.t. θ + c>I xI ≤ c>I xiI + (AIxI −AIxiI)>νi i = 1, . . . , k − 1

A>Cν
i ≤ cC i = 1, . . . , k − 1

νi ∈ Rm i = 1, . . . , k − 1

xI ∈ Zr+.

(2.43)

Due to the first constraint, the resulting problem is a non-linear optimization problem.

Nevertheless, solvers do exist, e.g. Couenne (Belotti, 2009) that are capable of solving

these problems. Assuming that there is a finite method to solve (2.43), we next show

that the proposed algorithm terminates finitely and returns the correct value function.

Theorem 2.10. (Algorithm for Construction) Under the assumptions that BI is

non-empty and bounded and (2.43) can be solved finitely, the algorithm terminates with

the correct value function in finitely many steps.

Proof. For any xI ∈ SI , c>I xI ≥ z(b) for all b ∈ B. From Proposition 2.12, we have that

for xI ∈ Smin ⊆ SI , c
>
I xI = z(AIxI). Therefore, for the solution of (2.43) at iteration k

we have xkI ∈ SI and c>I x
k
I = z(AIx

k
I ). Since BI is assumed to be bounded, then there

is a finite number of such points that can be generated in the algorithm. That is, z̄ can

only be updated a finite number of times.

To see that at termination, z̄ is the value function, first note that Proposition 2.9

implies that the initialization and the updates of the approximating function result in

valid upper bounding functions. If in iteration k, the approximation z̄(b) is strictly above

the value function at some b ∈ B, then Γk > 0 and there is some xI ∈ SI for which cIxI

lies on the value function and below the approximation. The subproblem is guaranteed to

find such a point, therefore, in each intermediate iteration we improve the approximation.

When no such a point is found, the approximation is exact everywhere and we terminate

with Γk = 0.

To illustrate, we apply the algorithm to two value functions: the first one is the func-
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tion (2.15). The second value function is from two-stage stochastic integer optimization

literature and refers to the value function of the second-stage problem of the stochastic

server location problem (SSLP) in (Ntaimo and Sen, 2005).

Example 2.19. Consider (2.15) where x1, x2, x3 ∈ {1, . . . , 5}. Figure 2.15 plots Γk

normalized by Γ1, the initial gap reported with z̄ = zC , versus the iteration number for

problem (2.43) . When the algorithm is executed, over b ∈ [−7, 7], the updates only occur

for x̂I such that AI x̂I ∈ {−4, 5, 6}. This is because the remainder of the right-hand sides

AI x̂I in [−7, 7] correspond to (AI x̂I , c
>
I x̂I) (green circles in Figure 2.14) that lie either on

or above zC (and therefore below the following updated approximating functions).

The proposed algorithm can be applied to MILPs with inequality constraints by

adding appropriate non-negativity restrictions to the dual variables ν in (2.43). We

see an example next.

Example 2.20. Consider the second-stage problem of SSLP with 2 potential server

locations and 3 potential clients. The first-stage variables and stochastic parameters are

captured in the right-hand sided b1, . . . , b5. The resulting formulation is

z(b) = min 22y12 + 15y21 + 11y22 + 4y31 + 22y32 + 100R

s.t. 15y21 + 4y31 −R ≤ b1

22y12 + 11y22 + 22y32 −R ≤ b2

y11 + y12 = b3

y21 + y22 = b4

y31 + y32 = b5

yij ∈ B, i ∈ {1, 2, 3}, j ∈ {1, 2}, R ∈ R+.

(2.44)

The normalized gap Γk

Γ1 versus the iteration number k is plotted in Figure 2.15. For this

example, non-positivity constraints on the dual variables corresponding to the first two

constraints are added to (2.43).

As one can observe in Figure 2.15, the quality of approximations improves significantly
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Figure 2.15: Normalized approximation gap vs. iteration number.

as the algorithm progresses. The upper-approximating functions z̄ obtained from the in-

termediate iterations of the algorithm can be utilized within other solution methods that

rely on bounding a MILP from above. Clearly, such piecewise approximating functions

z̄ are structurally simpler than the original MILP value function. Furthermore, like the

SSLP, a common class of two-stage stochastic optimization problems considers stochas-

ticity in the right-hand side. With a description of the value function of the second-stage

problem, finding the solution to different second-stage problems reduces to evaluations of

the value function at different right-hand sides. The proposed algorithm therefore can be

incorporated in methods to solve stochastic optimization problems with a large number

of scenarios.

2.6 Approximation Methods

The dual functions to the value function of a MILP introduced in Section 2.1 essentially

provide lower bounding functions for the value function, however, the dual problem in-

troduced in (1.14) is rather general and we are yet to find methods to construct dual

functions in practice. We then turn our attention to constructing functions that bound

the MILP value function from above.

We first review certain methods to construct dual functions. The overview we are
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about to provide is not meant to be comprehensive, instead, we focus on the dual func-

tions that can be constructed by known relaxations and solution algorithms for integer

optimization problems. These dual functions are important computationally, as they can

be generated as a given MILP instance is solved with the algorithm. There are other

approaches to construct dual functions by finite procedures to obtain explicit and closed

form dual functions. Examples of this approach are the methods developed by Laatsch

et al. (1964) and Klabjan (2007) for PILPs, both of which result in subadditive dual

functions. For a detailed overview of these methods we refer to (Güzelsoy, 2009). Here,

we focus on dual functions that can be derived from commonly used algorithms to solve

MILPS, namely, the cutting plane, branch-and-bound, branch-and-cut, and Lagrangian

relaxation algorithms. We use the dual functions from the branch-and-bound method

extensively in the next chapter to solve two-stage mixed integer optimization problems.

Cutting plane. The idea behind cutting plane algorithms is to find the optimal solution

of a given instance of MILP by iteratively refining the approximation of the convex hull

of S, which we denote by convS. In each iteration of the algorithm, a relaxation of the

original MILP is solved to obtain a point t ∈ Rn. Then, valid inequalities are generated to

separate conv(S) from the point t. In this step, either a valid inequality πx ≥ π0,Π 6= 0

for all x ∈ conv(S) is constructed or no valid inequality is constructed in the case that

the point t belongs to the convex hull of S, in which case it is the optimal solution of

the original MILP. The generated hyperplane πx ≥ π0 are called cutting planes or cuts.

Frequently, the algorithm starts with the linear relaxation of the original MILP and in

the iteration k of the algorithm, the following problem is solved

inf c>x

s.t. Ax = b̃

Πx ≥ Π0

x ∈ Rn+,

(2.45)
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where Π = [π1, . . . , πk]> ∈ Rk×n and Π0 = [π1
0, . . . , π

k
0 ]> ∈ Rk are respectively the

matrix of coefficients and the vector of the right-hand sides of the k cuts generated in the

algorithm so far. From the weak duality theorem for LPs, we can derive lower bound for

the objective value of the original MILP from the solution to the dual of the LP (2.45)

sup b̃>η + Π>0 w

s.t. A>η + Π>w ≤ c

η ∈ Rm, w ∈ Rk+,

(2.46)

where η and w respectively denote the dual variables corresponding to the original con-

straints and added cuts. The objective function of (2.46) is also a dual function to the

value function of the LP (2.45). However, it does not directly yield to a dual function for

the original MILP instance, because the valid inequalities in (2.45) can be only valid for

conv(S). As b̃ is modified, the previously generated valid inequalities may no longer be

valid for the new polyhedral. The question that follows is that whether the valid inequal-

ity can be formulated parametrically in b̃ such that it remains valid for the convex hull of

the modified polyhedral with modified b̃. Johnson (1973) and Jeroslow (1978) show that

in fact, any valid inequality for conv(S) is equivalent or dominated by a valid inequality

in the form of ∑
j∈I

F (Aj)xj +
∑
j∈C

F̄ (Aj)xj ≥ F (b), (2.47)

where F is a subadditive function and F̄ is the upper d-directional derivative defined

earlier in (2.4). The following result states this formally.

Theorem 2.11. If F is a subadditive function with F (0) = 0 and with the upper d-

directional derivatives existing, we have

∑
j∈I

F (Aj)xj +
∑
j∈C

F̄ (Aj)xj ≥ F (b). (2.48)

Conversely, if πx ≥ π0 is a valid inequality for conv(S), then there is a subadditive
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function Fπ such that

Fπ(Aj) ≤ πj ∀j ∈ I

F̄π(Aj) ≤ πj ∀j ∈ C

Fπ(b̃) ≥ π0.

(2.49)

In theory, therefore, if the subadditive representation of each is known, the ith cut in

the form of πx ≥ π0 can be written parametrically as a function of the right-hand side

b ∈ Rm in the form of

∑
j∈I

Fi(σi(A
j))xj +

∑
j∈C

F̄i(σ̄i(A
j))xj ≥ Fi(σi(b)), (2.50)

to ensure the validity of the cut as the right-hand side varies, where σ and σ̄ are functions

mapping Rm to Rm+i−1 and are defined by

σ1(b) = σ̄(b) = b,

σi(b) = [b F1(σ1(b)) . . . Fi−1(σi−1(b))] for i ≥ 2,

σ̄i(b) = [b F̄1(σ̄1(b)) . . . F̄i−1(σ̄i−1(b))] for i ≥ 2.

(2.51)

Let (ηk, wk) be an optimal solution to (2.46) in iteration k of the algorithm. Then the

following is a feasible function to the subadditive dual problem (2.4).

z(b) = ηkb+

k∑
i=1

wki Fi(σi(b)). (2.52)

In practice, obtaining a closed-form subadditive representation of each cut is not

computationally feasible. For certain family of cuts, however, a closed-form subadditve

representation is obtained. In the case of Gomory fractional cuts, for example, Wolsey

(1981a) derived the subadditve representation when these cuts are applied to an LP

relaxation of a PILP. This representation takes the form of

Fi(b) =
⌈ m∑
k=1

λi−1
k bk +

i−1∑
k=1

λi−1
m+kFk(b)

⌉
, (2.53)
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where λi−1 = (λi−1
1 , . . . , λi−1

m+i−1) ≥ 0. Then, (2.53) can be used in (2.52) to find a dual

function. Llewellyn and Ryan (1993) later extended this idea and developed a primal-dual

algorithm with subadditive dual functions from Gomory fractional cuts to solve PILPs. In

the case where the valid inequalities for a knapsack problem are cover cuts, Schrage and

Wolsey (1985) derived an explicit formulation of the cut as a function of the right-hand

side b.

Branch-and-bound. The principle of the branch-and-bound method is to construct

disjunctions of the feasible region of the LP relaxation of a given MILP instance and

keeping them in a tree structure. During the execution of the algorithm a global upper

bound (initialized with +∞) and a list of candidate problems corresponding to the leaf

nodes of the tree (initialized with an empty set) are kept. The algorithm starts with

solving the LP relaxation of the MILP in the root node of a tree. This problem is added

to the candidate list. In every iteration, a problem is selected from the candidate list and

solved to optimality. If the solution to this problem satisfies the integrality restrictions

of the original MILP, its solution is feasible to the original MILP and its objective value

is used to potentially decrease the upper bound. In the case that some variables xj , j ∈ I

take fractional values kj in a nodal problem, one such variable is selected and branching

is carried out by adding constraints in the form of xj ≤ bkjc and xj ≤ bkjc + 1 to the

description of the feasible region of the nodal problem to create two new subproblems.

Candidate nodes are frequently checked to see if they can be pruned, in which case their

corresponding problems are deleted from the candidate list. A node is pruned if its

objective value is greater than the upper bound. This procedure is commonly performed

after solving a new candidate. The algorithm terminates when there is no candidate left

in the list. The upper bound and its corresponding solution are respectively the optimal

objective value and solution of the original MILP.

Consider evaluation of (MILP) by a branch-and-bound algorithm. The problem solved

84



2.6. APPROXIMATION METHODS

at an arbitrary node t of the tree takes the form

zt(b) = min{c>x | x ∈ St(b)}, (P t)

where

St(b) = {x ∈ Rn+ | Ax = b, lt ≤ x ≤ ut}, (2.54)

and lt, ut ∈ Zn+ are the branching bounds applied to the variables (the upper bounds may

be +∞). When the right-hand side is fixed to b̂ ∈ Rm, LP dual of (P t) is

max {b̂>ηt + lt
>ηt − u>t ηt | (ηt, ηt, ηt) ∈ D}, (Dt)

where ηt represents the dual variables associated with the matrix A from the original

formulation and ηt, ηt are the dual variable associated with the lower and upper bound

constraints, respectively. The feasible set of the dual is

D = {(ηt, ηt, ηt) ∈ Rm × Rn × Rn | A>ηt + ηt − ηt ≤ c, ηt ≥ 0, ηt ≥ 0}. (2.55)

The dual problem only depends on b̂ through its objective function, so the set D is

independent of b. By LP duality, we then have that for any (ηt, ηt, ηt) ∈ D and b ∈ Rm2 ,

b>ηt + lt
>ηt − u>t ηt ≤ c>x. (2.56)

From the left-hand side of (2.56), we have a dual function for the value function of the LP

solved at node t. Wolsey (1981a) was the first to observe this and extend it to construct

dual functions for the value function of the original MILP, z.

Theorem 2.12. (Wolsey, 1981a) Let b̂ ∈ Rm be such that z(b̂) < ∞ and suppose T

indexes the set of leaf nodes of a branch-and-bound tree resulting from evaluation of z(b̂).

Then there exists a function z(b) dual to z defined by

z(b) = min
t∈T

(b>ηt + αt) ∀b ∈ Rm, (2.57)
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where ηt ∈ Rm and αt ∈ R are feasible solutions to the dual of the LP relaxation associated

with node t and for which z(b̂) = z(b̂).

Proof. Consider evaluating z(b̂) by a branch-and-bound procedure and let t ∈ T be

the index of a given node in the final branch-and-bound tree. The bound yielded by the

associated subproblem is obtained by evaluation of the value function of its LP relaxation,

which is of the form of (P t). We consider two cases.

1. If zt(b̂) <∞, then letting (η̂t, η̂t, η̂
t
) be the optimal solution to (Dt), we have that

zt(b) = b>η̂t + lt
>η̂t − u>t η̂

t
= b>η̂t + αt (2.58)

is dual to zt.

2. If zt(b̂) =∞, we let (η̂t, η̂t, η̂
t
) be any member of D such that

b>η̂t + lt
>η̂t − u>t η̂

t
> z(b̂). (2.59)

Such a member of D must exist since zt(b̂) = ∞. Then by the same argument as

we gave previously,

b>η̂t + lt
>η̂t − u>t η̂

t
= b>η̂t + αt (2.60)

is dual to zt.

Finally, by taking the minimum over the set of dual functions for the individual nodes,

we obtain the function

z(b) = min
t∈T

zt(b) ≤ z(b), (2.61)

which is dual to z and has the form posited in the statement of the theorem.

It remains to show that z is strong. To see this, note that there must exist a node

t∗ ∈ T such that zt
∗
(b̂) = z(b̂). Furthermore, we must have that zt(b̂) ≥ z(b̂) ∀t ∈ T ,

since for each t ∈ T , we have either that (P t) is feasible (in which case zt(b̂) ≥ z(b̂) by the

optimality of the branch-and-bound tree) or (P t) is infeasible (in which case zt(b̂) ≥ z(b̂)

by construction).
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One subtle point we should address further has to do with the infeasible nodes. In

the proof above, we simply appealed to the existence of a dual solution that could be

used to construct an appropriate dual function. In practice, we need to be able to obtain

such dual solution in a practical way. Consider again a node t ∈ T for which zt(b̂) =∞.

One method of obtaining an appropriate dual solution is to let (σt, σt, σt) be an extreme

ray of D that proves the infeasibility of (P t) (produced by the simplex algorithm used to

solve the LP) and let (η̃t, η̃t, η̃
t
) be the member of D generated just prior to discovery of

the dual ray. By adding an appropriately chosen scalar multiple of the ray to this dual

solution, we obtain a second dual solution with the desired property. More formally, let

λ ∈ R+ be a given scalar and consider

(η̂t, η̂t, η̂
t
) = (η̃t, η̃t, η̃

t
) + λ(σt, σt, σ) (2.62)

By choosing λ large enough, we obtain a solution appropriate for use in (2.60). In practice,

we may also avoid this issue by putting an explicit bound on the dual objective function

value, since once the objective value of the current dual solution exceeds the global upper

bound, the solution method can be terminated. In this case, the dual solution generated

in the last iteration would itself be a solution that has the required property.

Due to the constant term added to the (Dt) from branching, the function z associated

with a given branch-and-bound tree is not a subadditve function but is concave and

piecewise polyhedral. This can impose challenges to encode and use it. In Chapter 3,

we apply such a dual function to two-stage mixed integer optimization problems and

reformulate it such that it can be used in general MILP solvers.

Branch-and-cut. The branch-and-cut procedure improves on branch-and-bound by

allowing the nodal problems of the tree to be solved with the cutting plane method. In

this case, the additional cuts change the description of the nodal problem (P t). The

resulting subproblems are in the form of (P t) with the feasible region is defined as
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St(b) = {x ∈ Rn+ | Ax = b, lt ≤ x ≤ ut,Πtx ≥ Π0,t}, (2.63)

where lt, ut ∈ Zn+ are the branching bounds applied to the variables and the matrices

Π ∈ Rk(t)×n and Πt
0 ∈ Rk(t) determine the cuts added to the subrproblem of node t.

Following the steps taken for the branch-and-bound procedure, we write the dual of the

subproblem

max{b̂>ηt + lt
>ηt − u>t ηt + Π>0,tw

t | (ηt, ηt, ηt) ∈ D}, (2.64)

where ηt represents the dual variables associated with the matrix A from the original

formulation and ηt, ηt are the dual variable associated with the lower and upper bound

constraints, respectively. The feasible set of the dual is

D = {(ηt, ηt, ηt, wt) ∈ Rm ×Rn ×Rn ×Rk(t) | A>ηt + ηt − ηt + Π>t w
t ≤ c, ηt, ηt, wt ≥ 0},

(2.65)

where wt ∈ Rk(t) is the dual variable associated with the constraints Πtx ≥ Π0,t. As

discussed in the cutting plane method, the added cuts may not be valid for the feasible

region of the MILP with a modified right-hand side. In the case that a subadditive

representation of each of the k(t) inequalities in Πtx ≥ Π0,t is known and can be written

as (2.47), following the steps of the dual function derived for the branch-and-bound

method, we can construct a dual function for the value function of the original MILP.

This is shown in the next theorem.

Theorem 2.13. (Güzelsoy, 2009) Let b̂ ∈ Rm be such that z(b̂) < ∞ and suppose T

indexes the set of leaf nodes of a tree resulting from evaluation of z(b̂) by the branch-and-

cut procedure. Then there exists a function z(b) dual to z defined by

z(b) = min
t∈T
{b>ηt + αt +

k(t)∑
i=1

wtiF
t
i (σ

t
i(b))} ∀b ∈ Rm, (2.66)

and we have z(b̂) = z(b̂).

The resulting dual function is not subadditive. Güzelsoy (2009) considers the case
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where the MILP has explicit upper and lower bounds on all variables and constructs a

subadditive dual function in the form of (2.66) by including the bounds as part of the

right-hand side.

We now turn our attention to finding functions that approximate the value function

from above. Like our discussion on dual functions, we are interested in upper approxi-

mating functions that are strong with respect to a given right-hand side b̂ ∈ B. We found

an upper approximating function for the MILP value function in Proposition 2.9. The

function z̄, defined in (CR), is not guaranteed to be strong at any right-hand side, i.e., it

can lie strictly above the value function. From our discrete representation in Theorem 2.7

and the third part of Theorem 2.8, it follows that if the integer part of the solution x̂I

belongs to the set Smin, then the continuous restriction z̄(·, x̂I) is strong over the maximal

stability set int(BLS(AI x̂I)) (see Figure 2.9 for an example).

The continuous restriction function z̄ is obtained from a specific restriction of the

MILP value function by partitioning variables into two sets, the sets of integer and contin-

uous variables. Other upper bounding functions, however, can be obtained from different

partitioning schemes. The following result generalizes Proposition 2.9.

Proposition 2.16. (Güzelsoy, 2009) Let H ⊆ N and ti ∈ R+, i ∈ H be given and define

the function G : Rm → R ∪ {±} such that

G(b) =
∑
i∈H

citi + zN\H(b−
∑
i∈H

Aiti) ∀b ∈ Rm, (2.67)

where

zN\H(d) = min
∑

i∈N\H

cixi

s.t.
∑

i∈N\H

Aixi = d

xi ∈ Z+, i ∈ I, xi ∈ R+, i ∈ C.

(2.68)

Then, G(b) ≥ z(b) for all d ∈ Rm, if ti ∈ Z+ for i ∈ I ∩H and ti ∈ R+ for i ∈ C ∩H.

Clearly, the above result reduces to Proposition 2.9 if we let H = I.
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Another way to obtain an upper bounding function for the value function is to extend

an existing local description of the value function to obtain an upper bounding function

for the value function over its entire domain. To describe this method, we first define an

extension of a function.

Definition 2.6. Given a function g : Λ → R with Λ ⊂ Rm, we call any function G an

extension of g from Λ to Rm if

– G(b) = g(b) ∀b ∈ Λ and

– for each b ∈ Rm \ Λ, there exists a collection C(b) = {ρ1, . . . , ρR} defined in Λ with

the property
∑

ρ∈C(b) ρ = b and G(b) =
∑

ρ∈C(b) g(ρ).

Let q ∈ Qm
+ be defined as the vector of the maximum coefficients of the rows of A.

That is,

qi = max{aij : j ∈ N}. ∀i = 1, . . . ,m (2.69)

The following proposition states the conditions to obtain an upper bounding function for

the value function through constructing extensions functions.

Proposition 2.17. (Güzelsoy, 2009) Let q be defined as in (2.69) and g be a function

from [0, q] to R such that g(b) ≥ z(b) for b ∈ [0, q], where z is the value function (MVF).

Then, if G is an extension of g from [0, q] to Rm+ , then G(b) ≥ z(b) for all b ∈ Rm+ .

The specifics of the extension function in Proposition 2.17 depends on the set C(b).

Obviously, the functions that approximate the value function closely are desirable but they

may be expensive to construct. Güzelsoy (2009) showed that, in fact, it is possible to

construct the MILP value function using the described extension procedure. Specifically,

the value function can be constructed when it is used as the seed function over [0, q] and

the function G(b) = minC(b)∈C
∑

ρ∈C(b) z(ρ) is used elsewhere, where C denotes the set

of all finite collections {ρ1, . . . , ρR} such that
∑R

i=1 ρi = b. This method is called the

maximal subadditive extension. We refer the reader to (Güzelsoy, 2009) for more details.
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Chapter 3

Algorithms for Two-stage

Stochastic Optimization

In Chapter 1, we introduced the stochastic mixed integer linear problem

min
x∈S1

Ψ(x) = min
x∈S1

c>x+ Ξ(x), (3.1)

where S1 = {x ∈ Zr1+ × Rn1−r1
+ | Ax = b̃} and for a given first-stage decision x̂, Ξ(x̂)

represents the average cost of implementing second-stage (recourse) decisions taken to

correct the outcome of implementing x̂. The function Ξ is defined by

Ξ(x) = Eω∈Ω[z(hω − Tωx)], (3.2)

for x ∈ S1, where Tω ∈ Qm2×n1 and hω ∈ Qm2 represent the realized values of the

stochastic inputs to the second stage for scenario ω ∈ Ω. The function z is the second-

stage value function, which encodes the cost of the recourse decision for a given first-stage

solution x and realization ω defined for any b ∈ Rm2 , we have

z(b) = inf{q>y | y ∈ S2(b)}, (RV)
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where S2(b) = {y ∈ Zr2+ × Rn2−r2
+ |Wy = b}. We dedicated the last chapter to study the

function z. We let B2 denote the set of right-hand sides in the second-stage problem, i.e.,

B2 = ∪ω∈Ω{hω − Tωx | x ∈ S1}. We assume the following:

A1 Ξ(x) = Eω∈Ω [z(hω − Tωx)] is finite for all x ∈ S1.

A2 S1 is compact.

A3 The random variable ω is drawn from a discrete distribution with finite support.

Assumptions A1–A3 are not restrictive and are common in the literature. In Assump-

tion A1, Ξ[x] < +∞ requires the feasibility of the recourse problem for any right-hand

side hω − Tωx, ω ∈ Ω with a given x ∈ S1. This is known as the relative recourse

property and can be guaranteed by adding artificial variables to the recourse problem.

By Ξ[x] > −∞, we require the dual polyhedron of the linear relaxation of the recourse

problem to be nonempty. We make Assumption A2 to guarantee the finite termination

of the Generalized Benders’ algorithm we introduce in Section 4.3 (this is not required to

use the algorithm in practice).

Assumption A3 assures the expectation in (SP) can be expressed as the sum of a finite

number of terms, which allows for reformulation of (SP) as the deterministic equivalent

problem (DE) we introduced earlier

min c>x+
∑
ω∈Ω

pωq
>yω

s.t. Ax = b

Tωx+Wyω = hω ∀ω ∈ Ω

x ∈ Zr1+ × Rn1−r1
+ , y ∈ Zr2+ × Rn2−r2

+ .

(DE)

For a fixed x, (SP) can be separated into |Ω| independent subproblems, so applying

a decomposition method directly to this reformulation is one possible solution approach.

On the surface, such a decomposition by scenario makes sense, but one argument against

this tactic is that with a large number of scenarios, there may be substantial overlap in

the areas of the value function that are relevant in each scenario. One the other hand,
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the Benders’ method relies on obtaining approximating functions for the value function

that can be used across all scenarios. In this chapter, we apply this method to the

general two-stage mixed integer linear optimization problems. Next, we provide a brief

overview of the structure and solution methods of the continuous variation of (SP), where

r1 = r2 = 0, the continuous two-stage stochastic optimization problem.

3.1 The Continuous Case

We studied the value function of a linear optimization problem in the Chapter 2. Natu-

rally, in a continuous two-stage stochastic optimization problem, the second-stage value

function (RV) adopts the same properties. The following results formalize this.

Proposition 3.1. (Ruszczynski and Shapiro, 2003) The second-stage value function zLP :

Rn → R ∪±∞ is lower semi-continuous at every point of its domain iff its epigraph is a

closed subset of {Rn × R}.

Theorem 3.1. (Birge and Louveaux, 1997; Kall and Mayer, 2010) For a continuous

two-stage stochastic program in the form of (SP) such that z(hω − Tωx) > −∞ for all

x ∈ S1 and ω ∈ Ω, z is

– a piecewise polyhedral convex function in (hω, Tω) for all ω ∈ Ω,

– a piecewise polyhedral convex function in x for all x ∈ S1.

– a piecewise polyhedral concave function in q,

Proof. The first and second properties follow from the convexity of the value function

of a LP in its right-hand side. To show the third property, for a given x̂ ∈ S1 let

qλ = λq1 + (1 − λ)q2, y
∗
λ optimal for zLP (qλ), y∗1 optimal for zLP (q1) and y∗2 optimal for

zLP (q2). We have:

λzLP (q1) + (1− λ)zLP (q2) = λq>1 y
∗
1 + (1− λ)q>2 y

∗
2

≤ λq>1 y∗λ + (1− λ)q>2 y
∗
λ = q>λ y

∗
λ = zLP (qλ),

(3.3)
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where the inequality follows from the feasibility of y∗1, y
∗
2, y
∗
λ for the corresponding problem.

Finally, the piecewise linearity is a result of the representation of the value function of an

LP in (2.18).

From Proposition (1.2) we have that zLP is convex and subdifferentiable at any right-

hand side and at any given right-hand side, its subdifferential is given by the set of

optimal dual solutions to the corresponding LP instance. We observed in Chapter 1

that we can derive dual functions for the LP value function by constructing the sub-

gradient inequalities for fixed right-hand sides. The Benders’ method, however, requires

lower approximating functions for the expected recourse function Ξ. The following result

shows that the subgradients of the expected recourse function can be derived from the

combination of the subgradients of the second-stage value function.

Proposition 3.2. (Ruszczynski and Shapiro, 2003) Suppose the expected recourse Ξ(x)

is finite for at least one point x̂ ∈ S1. Then Ξ(x) is polyhedral and for any x ∈ S1 and

∂ Ξ(x) =
∑
ω∈Ω

pω∂zLP (hω − Tωx).

The first step in specifying the Benders’ algorithm is to formulate the master problem,

which we introduced in Section 1.3. Recall that we re-wrote (DE) in (1.39) as

min{c>x+ θ | θ ≥
∑
ω∈Ω

pωz(hω − Tωx), x ∈ S1}.

To form the master problem, we replaced the value function with such an approximation

to obtain

min{c>x+ θ | θ ≥
∑
ω∈Ω

pω max
f∈Fω

f(hω − Tωx)}, (3.4)

where Fω represents the set of all dual functions associated with scenario ω that have

been generated so far.

Let us provide further details on derivation of dual functions. At iteration k of the

algorithm, solving each scenario subproblem yields to optimal dual solutions νkω for each
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ω ∈ Ω. The feasible region of the dual problem of each subproblem is identical for all the

subproblems and is defined by

DLP = {ν ∈ Rm |W T ν ≤ q}. (3.5)

From the finiteness of the expected recourse function for all x ∈ S1 we have that there

exist νkω, the optimal extreme point of the dual problem for the subproblem, such that

zLP (hω − Tωxk) = (hω − Tωxk)>νkω. (3.6)

From the convexity of zLP we have

zLP (hω − Tωx) ≥ zLP (hω − Tωxk)− T>ω νkω(x− xk) = (hω − Tωx)>νkω. (3.7)

Finally, from Proposition 3.2 we have

Ξ(x) ≥
∑
ω∈Ω

pω(hω − Tωx)>νkω. (3.8)

From the right-hand side of (3.8) we have valid dual functions for the second-stage value

function and we can set fkω = (hω − Tωx)>νkω in (1.42). The resulting inequality is

known as an optimality cut, as it provides a lower bound on the optimal solution of the

subproblem. As the algorithm progresses, the collection of the optimality cuts gathered

from solving subproblems in the previous iterations provide a stronger approximation of

the value function for that scenario. The algorithm terminates where the approximation

coincide with the value function for all subproblems at a proposed solution of the master

problem.

The classical Benders’ method as described does not incorporate any upper bounds

on the approximation of the expected recourse, rather it is based on lower bound con-

struction through aggregating polyhedral lower bounding functions that provide the exact

solution to their respective scenario subproblems. In the case that solving the scenario
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subproblems to optimality or obtaining the exact subgradients is computationally expen-

sive, methods for approximating the bounds are desirable. One variation of the basic

Benders’ method is the the Benders’ method with sequential bounding approximations

first proposed by Madansky (1959). The idea of the method is to approximate lower

and upper bounds on the expected recourse Q(x). The method starts by partitioning Ω

and calculating the expected value of the recourse conditioned to each partition. Then a

lower bound on each partition is obtained that is later combined with the ones of other

partitions to obtain a lower bound for the expected recourse. The lower bounds from par-

titions can be obtained for instance from Jensen inequalities. Similarly, an upper bound

on the expected recourse can be constructed by evaluating the expected recourse for a

feasible first-stage decision. The stopping criteria is a measure of the difference between

these bounds. If the error not satisfactory, the method proceeds by refining the partitions

to get tighter bounds. Several methods for constructing upper and lower bounds on the

expected recourse are proposed by Edmundson (1957) and Madansky (1959).

Another well-known approximation based method to solve the continuous two-stage

optimization problem is the Sample Average Approximation (SAA). This method does

not depend on the convexity of the second-stage value function or the independence of

the samples drawn from from Ω. Like the previous method, SAA constructs lower and

upper approximations on the expected recourse. The approximations constructed are

unbiased estimators of the expected recourse driven from its Monte Carlo simulation by

drawing N independent samples from Ω. We denote these samples with ω1, ω2, . . . , ωN .

The expected recourse function is then approximated by

ΞN (hωi − Tωix) =
1

N

N∑
i=1

Ξ(hωi − Tωix). (3.9)

Combining with the first-stage problem, the resulting N problems are

Ψi
N (x) = min{c>x+ ΞN (hωi − Tωix) | x ∈ S1}. (SAA)
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Mak et al. (1999) showed that if ωi, i = 1, . . . , N are i.i.d. random variables, then

1

N

N∑
i=1

Ψi
N (x) ≤ f∗

and

1

N

N∑
i=1

Ψi
N (x) ≤ 1

N

N∑
i=1

Ψi
N+1(x),

where Ψ∗ denotes the solution to the original two-stage problem. This result builds the

lower bounding piece of the method. It also promises improving it as we continue to add

to the number of the drawn samples. To construct upper bounds, having any candidate

solution x̂, we can compute the unbiased estimator of Ξ(x̂) from

c>x+
1

N

N∑
i=1

zLP (hωi − Tωix)),

which entails solving N recourse subproblem. Like the sequential bounding procedure,

the candidate x̂ can come the solution of the lower bounding problems in (SAA).

Here, we provided an overview of some of the most well-known methods to solve the

continuous two-stage stochastic problems. There are several other exact or approximation-

based solution methods. We refer to (Birge and Louveaux, 1997; Kall and Mayer, 2010)

for a comprehensive review of these algorithms.

3.2 Solution Methods

To date, the majority of the work done on solution of two-stage stochastic linear opti-

mization problems has been on the case of a (mixed) binary or pure integer second-stage

problem. Table 3.1 provides a summary of the methods proposed to date and the as-

sumptions required for the employment of each method. The first two sets of columns

specify the assumptions made on integrality of variables, while the third set of columns

describes the stochasticity in the input. Below, we briefly review the algorithms in this

table, as well as other related work.
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It is natural that various special cases involving binary variables have received the

most attention, given the rich theory that has been developed specifically addressing

this case. In the early work of Carøe and Tind (1997), the authors suggested the use

of disjunctive programming and lift-and-project cuts when the recourse is mixed binary.

They first decomposed the feasible set of (DE) into |Ω| subsets, which they sequentially

convexified to generate the convex hull of each subset. Sherali and Fraticelli (2002)

modified Benders’ method by generating valid inequalities in the subproblems. Assuming

the first-stage variables are binary, each such valid inequality can be generated using the

reformulation linearization technique (RLT) or lift-and-project. To ensure the generated

valid inequality is globally valid, it can be re-expressed as a function of the first-stage

variables. Using the dual solution of the optimal subproblem, optimality cuts for the

master problem can be generated. In the same vein, Sen and Higle (2005) developed

valid inequalities in both stages. The valid inequalities to augment the linear relaxation

of the second-stage problem were generated so as to be valid for the union of disjunctive

sets obtained by a disjunction arising from a fractional second-stage variable. Ntaimo

(2010) provided a variation of the latter for problems with fixed T and h. Sherali and

Zhu (2006) extended the framework of Sherali and Fraticelli (2002) to accommodate

binary variables in the first stage by using decomposition and global branch-and-bound

methods. Sherali and Smith (2009) used the RLT to devise a specialization of Benders’

algorithm for two-stage stochastic risk management problems with a pure binary first-

stage problem.

For the case of a pure integer second-stage problem, Gade et al. (2012) recently

used Benders’ decomposition and generated valid inequalities in both stages. The pro-

posed method solves the second-stage subproblems as LPs and iteratively adds Gomory

valid inequalities to the description of the subproblems. The generated valid inequalities

are parametrized as a function of the first-stage variables. Taking a different approach,

Schultz et al. (1998) characterized regions of the right-hand side over which the second-

stage value function is constant. This allows for a countable partition on the set S1 using

which, one can determine the corresponding level-sets of the objective function. The
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candidate points from these level-sets are enumerated and evaluated using the Gröbner

basis of the recourse PILP. Building on results on level sets of a pure integer value func-

tion, Ahmed et al. (2004) proposed the value function reformulation of (SP). Through a

variable transformation, a global branch-and-bound algorithm was applied to the prob-

lem and was shown to be finite. This work assumed general first-stage variables and a

fixed matrix T . Restricting the stochasticity to the right-hand-side vector h, Kong et al.

(2006) proposed a procedure for finite construction of the value function when S1 is finite.

Furthermore, combining the results of Schultz et al. (1998) on level sets and the value

function reformulation of Ahmed et al. (2004), the authors provided a characterization

of certain candidate points, the so-called minimal tenders, in partitioning the right-hand

side region. Trapp et al. (2013) proposed an alternative global branch-and-bound method

that optimizes over a certain integral monoid. Finiteness of all algorithms in this category

rely on pure integrality in the second-stage problem.

The first work to consider general recourse problems (those with both continuous and

integer variables) was due to Laporte and Louveaux (1993). They proposed a modifica-

tion of Benders’ method that requires the solution of second-stage subproblems, as in the

classical method, but the optimality cut used was a specialized linear cut that is valid only

for problems with binary first-stage variables. Carøe and Tind (1998) pioneered the use

of integer programming duality theory to develop optimality cuts for the Benders’ frame-

work, but their algorithm was designed for problems with pure integer recourse. They

demonstrated how dual functions generated from a cutting-plane method with Gomory

cuts can be used to generate optimality cuts. In the disjunctive decomposition branch-

and-bound method of Sen and Sherali (2006), the second-stage problems were general

and were solved with a branch-and-bound algorithm. The dual function obtained from

each tree was modified to derive a valid inequality for the first-stage problem. Finally,

a convexification technique similar to the one of Sen and Higle (2005) was used to lin-

earize these inequalities. The disjunctive convexification technique used requires binary

first-stage variables. Computational improvements to cut generation in the latter work

were reported in Yuan and Sen (2009). Carøe and Schultz (1998) accommodated general
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First Stage Second Stage Stochasticity

R Z B R Z B W T h q
Laporte and Louveaux (1993) ∗ ∗ ∗ ∗ ∗ ∗ ∗
Carøe and Tind (1997) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Carøe and Tind (1998) ∗ ∗ ∗ ∗ ∗ ∗ ∗
Carøe and Schultz (1998) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Schultz et al. (1998) ∗ ∗ ∗ ∗
Sherali and Fraticelli (2002) ∗ ∗ ∗ ∗ ∗ ∗ ∗
Ahmed et al. (2004) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Sen and Higle (2005) ∗ ∗ ∗ ∗ ∗
Sen and Sherali (2006) ∗ ∗ ∗ ∗ ∗ ∗
Sherali and Zhu (2006) ∗ ∗ ∗ ∗ ∗ ∗ ∗
Kong et al. (2006) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Sherali and Smith (2009) ∗ ∗ ∗ ∗ ∗ ∗ ∗
Yuan and Sen (2009) ∗ ∗ ∗ ∗ ∗ ∗
Ntaimo (2010) ∗ ∗ ∗ ∗ ∗
Gade et al. (2012) ∗ ∗ ∗ ∗ ∗ ∗ ∗
Trapp et al. (2013) ∗ ∗ ∗ ∗ ∗
Generalized Benders’ algorithm ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 3.1: Assumptions made in related algorithms

variables in both stages through a fundamentally different approach called dual decompo-

sition, which relaxed the so-called non-anticipativity constraint in a Lagrangian fashion.

Carøe and Tind (1998) suggested the use of dual functions as optimality cuts in a fashion

similar to what we describe herein. Sen and Sherali (2006) solved the subproblems from

each scenario as a generic MILP and obtained dual functions from the branch-and-bound

tree, as we do, but then convexified them, which again restricts the form of the first-stage

problem.

3.3 The Branch-and-Bound Representation

In Section 2.2, we proposed a characterization of the value function that we now show

leads to a deterministic reformulation of (SP) that is distinct from (DE). Recall that

the structure of the second-stage value function arises from the structure of two related

functions:

zC(d) = min
yC∈R

n2−r2
+

{q>CyC |WCyC = d}, (3.10)
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which we called the continuous restriction, and

zI(d) = min
yI∈Z

r2
+

{q>I yI |WIyI = d}, (3.11)

which we called the integer restriction. The second-stage value function (RV) can be

rewritten as a combination of these two related value functions in the following way

z(b) = min
yI∈Z

r2
+

{zI(WIyI) + zC(b−WIyI)} = min
yI∈Z

r2
+

{q>I yI + zC(b−WIyI)}, (3.12)

We further showed that there exists a set Smin that is (1) finite under mild assumptions,

(2) can be constructed algorithmically, and (3) is necessary and sufficient to describe z

and we have the following representation of the second-stage value function

z(b) = min
yI∈Smin

{q>I yI + zC(b−WIyI)} ∀b ∈ Rm2 . (3.13)

This result guarantees that points in Smin are solutions to the pure integer restriction, so

one consequence is that, roughly speaking, we only need to consider solutions of this pure

integer linear optimization problem when constructing the value function of a general

MILP. Furthermore, we only need to consider a small subset of those solutions to get the

full value function. The notion of strict local convexity that we utilize generalizes the

notion of minimal tenders from (Trapp et al., 2013). Each such point is the minimizer

over an associated region for which the value function is convex. Over such regions, the

integer part of the optimal solution remains constant and the value function of the MILP

is simply a translation of the value function of the continuous restriction to that point.

These regions are a generalization of the regions described by Schultz et al. (1998) over

which the value function remains constant in the pure integer case. Figure ??, which

appears later in this chapter, shows these regions for the second-stage problem from

Example 1.6.
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A Value-function Reformulation

In Section 2.5, we described an algorithm for generating a superset of Smin that can be

implemented in practice. This result gives us a way of generating a complete description of

z that can be embedded in (SP) to obtain the aforementioned deterministic reformulation.

Note that in this context, we are only really interested in parts of the domain that can

actually arise from first-stage solutions in some scenario, e.g., we only need to know the

value function over the set B2, defined in the beginning of this chapter, which is bounded

by our assumptions. We do not depend on the finiteness of Smin, but on that of the set

J = Smin ∩ projZr2 (∪b∈B2S2(b)) . (3.14)

To derive the reformulation, we first rewrite (SP) as

min
x∈S1

c>x+
∑
ω∈Ω

pω

(
min
yI∈J

{
q>I yI + zC(hω − Tωx−WIyI)

})
. (3.15)

using Theorem 2.7. From assumption A1, we have that the dual polyhedron of the linear

relaxation of the recourse problem is always nonempty. In principle, one can generate the

set of extreme points of a bounded polyhedron via a vertex enumeration method, such as

the method of Avis and Fukuda (1992). The same method can be used to obtain extreme

rays by bounding the polyhedron artificially. Let {νi}i∈K be the set of extreme points of

this polyhedron indexed by set K and {σj}j∈L be its set of extreme directions indexed by

set L. Then, we can rewrite (3.15) as a deterministic MILP. We let the set J be indexed
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by set J .

min c>x+
∑
ω∈Ω

pωγ(x, ω)

s.t. γ(x, ω) ≥ q>I y
j
I + ζ(x, ω)−M j,ω(1− uj,ω) ∀j ∈ J, ω ∈ Ω (3.16)

ζ(x, ω) ≥ (hω − Tωx−WIy
j
I)
>νi ∀i ∈ K, j ∈ J, ω ∈ Ω (3.17)

0 ≤ (hω − Tωx−WIy
j
I)
>σi ∀i ∈ L, j ∈ J, ω ∈ Ω (3.18)∑

j∈J
uj,ω = 1 ∀ω ∈ Ω (3.19)

x ∈ S1 (3.20)

uj,ω ∈ B. ∀j ∈ J, ω ∈ Ω (3.21)

where M j,ω ≥ maxx∈S1{|(hω − Tωx −WIy
j
I)
>νi|} for all ω ∈ Ω, i ∈ K and j ∈ J . Here,

γ(x, ω) represents the cost of the recourse for a given scenario and first-stage solution. In

the first constraint, this variable is used to represent the value function of the second-stage

problem as described in (3.13), by minimizing over the set J . This constraint, together

with (3.19), guarantees that equality holds for at least one of the constraints associated

with yI ∈ J and holds for that which z achieves the minimum. The variable ζ(x, ω) is

the cost of the continuous restriction problem with respect to the fixed integer vector

yI , i.e., ζ(x, ω) = zC(hω − Tωx −WIyI). (3.17) and (3.18) represent zC in terms of the

extreme points and rays of the associated dual problem.

Generating the formulation (3.16) requires generation of J , K, and L a priori. Al-

though these operations would clearly be expensive, they are nevertheless finite under our

assumptions. Therefore, this reformulation yields a finite algorithm that can be seen as an

alternative to solution of the deterministic equivalent. Although a complete description

of the value function is embedded within (3.16), its size is independent of the size of the

formulation of the second-stage problem and depends only on the number of scenarios

and the cardinalities of J , K and L. This reformulation could be smaller than (DE)

in cases where z has a simple structure and the cardinalities of K and L are relatively

103



3.3. THE BRANCH-AND-BOUND REPRESENTATION

small. In practice, however, these sets can be large and solving (3.16) directly would be

cumbersome in many cases. An obvious idea for overcoming this complexity, which is

the basis for our method, would be to generate parts of the formulation dynamically. We

describe how to do that in the next section.

Warm Starting the Approximations

As a first step toward a complete specification of the generalization of Benders’ method,

we now describe the details of the most critical component, a procedure for dynamically

constructing lower approximations of the value function from information generated by

solution of instances of the second-stage problem. We describe in Section 3.4 how the

procedure can be embedded within Benders’ framework and tightly coupled with the

procedure for solving the master problem. In Section 2.6, we discussed that dual functions

are lower approximating functions we need and they can be most practically generated

as a by-product of particular solution algorithms. We discussed a number of different

primal solution frameworks that can result in strong dual functions. The two primary

such frameworks are the cutting-plane method and the branch-and-bound method. We

discussed that the cuts that can be used in the cutting-plane method should have a

parametric representation as a function of their right-hand sided. This limits the families

of cuts that can be used. Furthermore, the cutting-plane method is well-known to suffer

from numerical instability. Dual functions arising from branch and bound (and also

potentially from branch and cut) appear to be more practical. We derived branch-and-

bound dual functions in (2.57) and demonstrated that the dual function obtained from

solving an instance of the second-stage problem is strong for that instance. Strong dual

functions are important in the context of stochastic optimization not only because they

provide proofs of optimality, but also they provide a natural way of performing sensitivity

analyses, since such a function provides provable bounds on the optimal solution value

for modified instances. Moreover, they provide methods of warm-starting the solution

process, since the function produced when evaluating z(b̂) for some b̂ ∈ Rm2 is likely

similar or even identical to that produced when evaluating z in a close neighborhood of

104



3.3. THE BRANCH-AND-BOUND REPRESENTATION

b̂.

Let us once more consider the branch-and-bound dual function (2.57).

The interpretation of the function z above is conceptually straightforward. The solu-

tion to the LP relaxation (P t) of node t in the branch-and-bound tree yields the standard

LP dual function, which bounds the optimal value of that subproblem. The overall lower

bound yielded by the tree is the smallest bound yielded by any of the leaf nodes. This

is the usual lower bound yielded by a branch-and-bound-based MILP solver during the

solution process. By interpreting the optimal solution to the dual of the LP relaxation

in each node as a function, we obtain z.

Theorem 2.12 provides a recipe for producing a tree that corresponds to a strong dual

function for a given b ∈ Rm2 . This is already enough to allow us to state a convergent

generalization of Benders’ method in which we produce a different such function each

time we solve the second-stage problem. In essence, this would mean constructing a new

dual function for each scenario in each iteration of the algorithm. This approach would

work in principle, but in practice, there may be substantial overlap between the dual

functions produced and the resulting master problem may be much bigger than necessary.

Furthermore, starting each subproblem solve from scratch will result in many repeated

computations. We can improve on this basic framework by incorporating warm-starting

techniques.

The goal of warm starting procedures in integer linear optimization to accelerate

solution of new problem instances by utilizing information obtained from solution of a

base instance. The process is initialized by collecting the optimal bases of the current

tree’s terminating nodes, as described in the proof of Theorem 2.12. These previous

optimal bases are used to warm-start solution of the LP relaxations in each leaf node,

producing a set of candidate terminating nodes that require further branching (due to the

introduction of fractional value for some of the integer variables). After the initial phase,

branching is continued as usual until a tree that is optimal with respect to the new right-

hand side is found. We now illustrate the concept of warm-starting the solution process

by showing how we would solve a sequence of subproblems within Benders’ method,
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warm starting the solution of each subproblem from the tree generated by solution of the

previous subproblem.

Example 3.1. Although we have not formally stated our generalization of Benders’

method yet, it should be clear that the method consists of the iterative solution of a

sequence of subproblems with different right-hand sides. The goal of each step in this

process is to improve the approximation of the value function in an area where it is cur-

rently not strong in response to the proposed first-stage solution, generated with respect

to that current approximation.

Consider now the second-stage problem from Example 1.6. In Figure 3.1– 3.4, we

show the steps in solving this second-stage problem for four right-hand sides, 5.5, 11.5, 4

and 10, arising from execution of Benders’ method. Consider first the value function

of the LP relaxation of the original problem. Over the interval (0, 12), this function is

g0 = 0.8b (see Figure 3.1) and is strong at right-hand sides 0, 5 and 10. For these right-

hand sides, the solution to the LP relaxation is integer-valued and the branch-and-bound

tree would consist of a single node.

The function g0 lies strictly below the value function at b = 5.5, which indicates that

for this right-hand side, one of the integer variables (y2) takes on a fractional value. We

therefore branch on y2 to produce two affine functions, g1 and g2. The resulting dual

function, min{g1, g2}, is a piecewise concave dual function and is strong at b = 5.5.

In evaluating z at 11.5 in Figure 3.2, we begin with the optimal tree from the previous

iteration. Re-optimizing the LPs at nodes 1 and node 2 with the new right-hand side,

we obtain a new dual solution for node 2, while the function of node 1 is already optimal

for b = 11.5 and the primal solution at node 1 is still integer feasible. Node 2 produces a

primal solution in which y2 is fractional and we thus have to branch on y2 again. Note that

this situation cannot arise in branch-and-bound for a single fixed instance, since the value

of the variable that was just branched on must be integer in the resulting subproblems.

After branching, we obtain two new affine functions.

For b = 4, we similarly re-optimize the LP relaxations at nodes 1, 3 and 4, branch

in response to the fractional solution that is now produced in node 1 and produce affine
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Figure 3.1: Strong dual functions from warm-starting branch-and-bound - RHS = 5.5

functions g5 and g6. The function arising from node 5 coincides with the value function

on the interval (0, 14
3 ). In Figure 3.4 we can observe that the same tree is optimal for

b = 10 and the optimal solution is obtained by re-optimizing the leaf nodes.

An important observation from Example 3.1 is that in warm-starting the computation

using a given tree, the function arising from the procedure of Theorem 2.12 may change,

although no further branching has been performed (this happened in the last iteration of

the above example). This results from the re-optimization of the LP relaxation in each leaf

node, which could yield a different solution to the continuous restriction. With respect to

this new solution, it could be the case that variables whose values were previously integer

become fractional (this can happen for integer variables whose values are not completely

fixed by branching yet), requiring further branching. However, if we were to discard

previously generated dual solutions in this case, important information would be lost, as

we will see, and the function in one iteration might no longer be strong for right-hand
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Figure 3.2: Strong dual functions from warm-starting branch-and-bound - RHS = 11.5
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Figure 3.3: Strong dual functions from warm-starting branch-and-bound - RHS = 4

109



3.3. THE BRANCH-AND-BOUND REPRESENTATION

Figure 3.4: Strong dual functions from warm-starting branch-and-bound - RHS = 10
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sides from previous iterations. What is needed is a continuously refined dual function

that remains strong for all previously arising right-hand side values and is made strong

for a new right-hand side in a given iteration.

To maintain a single dual function that is strong for all previously occurring right-hand

sides within a single tree, we must maintain a collection of all the linear functions that

provide lower bounds for any given node, including all functions generated in previous

iterations in either that node or any of its ancestors. Taking the maximum of all linear

functions in this collection yields a convex lower approximation of the value function

of the subproblem associated with that node (which is comprised of the original MILP

plus some branching constraints). This function can be interpreted as a convex lower

approximation of the value function of the LP relaxation of the given node (which is

itself the best convex lower approximation of the value function of that subproblem). We

can interpret the process of collecting these linear functions associated with each node as

a process of building a convex approximation of its value function.

When branching occurs, the collection of linear functions of a given node must be

inherited by both children. Branching can be interpreted as a process of identifying a

region in which a convex lower approximation is not strong enough and then branching

in order to divide the region into multiple subregions, each of which has its own convex

bounding function. Through this process, we progressively improve the strength of the

overall function. It should be clear that when doing the partitioning, we need to begin

with the description of the original convex function in both of the child nodes and proceed

from there. Naturally, in practice, many of the functions generated at higher levels of the

tree will eventually be redundant and can be discarded.

To formalize this, let us consider the strongest bound that could be obtained by con-

sidering a given branch-and-bound tree if we are allowed to re-optimize the LP relaxations

in each of the leaf nodes when evaluating the function with respect to a new right-hand

side. Allowing the optimal solution to the LP relaxation to be changed without changing

the tree yields a dual function stronger than the one described in Theorem 2.12 that is

obtained by taking the minimum over the full value functions of the LP relaxations of
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each of the nodes in the tree. We define this strengthened function as

z∗(b) = min
t∈T

zt(b). (3.22)

Going a step further, we note that if some of the branching bounds have served to fix the

values of certain integer variables, we can explicitly indicate that these variables can be

treated as constants to yield another equivalent definition.

z∗(b) = min
t∈T

q>Ity
t
It + zN\It(b−WIty

t
It), (3.23)

where It is the set of indices of fixed variables, ytIt are the values of the corresponding

variables in node t, and zN\It is the value function of the linear program including only

the unfixed variables.

With this strengthening, we obtain a function from a single tree that is the minimum

over a collection of convex functions, just as the value function itself is. In fact, when the

branching process is carried to its logical extreme, the above strengthened procedure will

eventually yield the full value function. The fact that we can obtain the full value function

from a single tree can be observed from the strong connection between the function (3.23)

and the representation of the full value function in (3.13). If our branching decisions

eventually lead to the fixing of variables in such a way that each member of Smin is

represented among the fixed portions of solutions in some set of leaf node, this would be

enough to ensure that the tree would in fact represent the entire value function. This can

be stated formally as the following result.

Theorem 3.2. Under the assumption that {b ∈ Rm2 | zI(b) < ∞} is finite, there exists

a branch-and-bound tree with respect to which z∗ = z.

Proof. To construct such a tree, we need to impose branching decisions that guarantee

that Smin ⊆ {yIt | t ∈ T, |It| = r2}. Such a set of branching decisions can be easily

constructed.

Returning to the second-stage problem in Example 1.6, we can see graphically that the
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members of the set Smin from (3.13) that lie in the interval (−10, 10) is

{(0, 0, 5), (0, 0, 4), (0, 0, 3), (0, 0, 2), (0, 0, 1), (0, 0, 0), (0, 1, 0), (0, 2, 0)}. (3.24)

Therefore, over the domain (−10, 10), we have

z(b) = min {15 + zC(b+ 10), 12 + zC(b+ 8), 9 + zC(b+ 6), 6 + zC(b+ 4),

3 + zC(b+ 2), zC(b), 4 + zC(b− 5), 8 + vC(b− 10)}.
(3.25)

To obtain this function from a given tree, we must ensure that each member of the above

set produced by solutions of the LP relaxation of some leaf node in the tree over the

entire interval for which the piece coincides with the value function. Figure 3.5 illustrates

this principle by showing how to obtain the value function of the second-stage problem

in Example 1.6 from a single branch-and-bound tree over the given interval. This is a

minimal such tree—each leaf node corresponds to one affine piece of the value function.

That is, the leaf nodes correspond exactly to the members of Smin from (3.13). In general,

the described procedure may result in a larger tree that contains extra affine functions

in its nodes—these can be safely discarded. Figure 3.6 also shows the stability sets

corresponding to each node.
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Figure 3.5: Branch-and-bound tree and value function correspondence for Example 1.6

114



3.4. THE GENERALIZED BENDERS’ ALGORITHM

Figure 3.6: The MILP value function corresponding to the tree in Figure 3.5

3.4 The Generalized Benders’ Algorithm

We now come to the formal statement of our generalization of Benders’ method. At a high

level, the approach consists of solving the value function reformulation (3.16), generating

relevant parts of the formulation dynamically, as in a traditional cutting plane method.

Viewed in terms of the dual functions introduced in the previous section, the dynamic

generation consists of further refinements of the branch-and-bound tree in which we solve

instances of the second-stage and which we use to derive our current value function

approximation.

The version of Benders’ method we are proposing here differs from a classical imple-

mentation, such as the one first suggested by Carøe and Tind (1998) in this context, in

that a straightforward interpretation of Benders’ method would lead to generation of a

new strong dual function in each iteration for each scenario, while we are simply refining

the previously constructed dual function using the method described in the previous sec-

tion. From a theoretical standpoint, these interpretations amount to the same thing. In

terms of implementational details, however, the difference is quite significant. To be con-

sistent with the traditional interpretation, we initially describe the method as generating

a different dual function in each iteration before being more specific about the details of
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our implementation.

The first step in specifying the algorithm is to formulate the master problem. The

master problem takes the form of the one of the classical Benders’ method (1.42). Recall

that earlier we established that fkω represents a strong dual function produced for each

scenario with respect to a proposed first-stage solution xk ∈ S1, the solution to the master

problem in the previous iteration. In what follows, we denote the set of dual functions

f iω generated for the scenario ω in iterations i = 1, . . . , k by Fkω .

Generic Version of Benders’ Algorithm

Step 0. Initialize

a) Initialize the dual function lists F0
ω := ∅ for all ω ∈ Ω .

b) Let x1 := argmin{c>x : x ∈ S1}, θ1 := −∞ and k := 1.

Step 1. Update the lower approximation function

a) For each ω ∈ Ω, solve the subproblem (RV) for the right-hand side hω − Tωxk and

construct the function fkω dual to z and strong at hω − Tωxk.

b) Check whether the current approximation is exact for xk. Stop if θk =
∑

ω∈Ω pωz(hω−

Tωx
k). x∗ := xk is an optimal solution.

Step 2. Solve the master problem

a) Update the dual functions list: Fkω := Fk−1
ω ∪ {fkω}.

b) Solve (1.42) to obtain optimal solution (xk+1, θk+1) to an optimal solution of it.

c) Set k := k + 1. Go to Step 1.

As described in the previous section, our implementation of this generic algorithm

utilizes a single global dual function that is a slight variant of (3.23), rather than in-

dividual dual functions for each scenario. For efficiency, we do not explicitly derive a

116



3.4. THE GENERALIZED BENDERS’ ALGORITHM

complete description of the value function of each LP relaxation, but generate pieces of it

dynamically as part of the overall algorithm. This dual function consists of the minimum

of a collection of piecewise polyhedral convex functions (one for each leaf node in the

branch-and-bound tree). This makes the master problem a nonlinear optimization prob-

lem involving this single piecewise polyhedral function for which we do not have explicit

descriptions of the polyhedral regions over which it is affine. Nevertheless, it is possible to

reformulate (1.42) as a standard MILP similar to (3.16) by introducing auxiliary variables

and constraints.

Let T be the set of leaf nodes of the current tree. Recall that corresponding to each

leaf node, we have a set of affine dual functions that have been obtained in the leaf node

and its ancestors as we refined the tree in solving previous subproblems. Let I(t) denote

the set of indices of these affine functions at a leaf node t ∈ T . The dual function obtained

from the current tree is

z(b) = min
t∈T

max
i∈I(t)

b>ηi + αi. (DF)

As explained earlier, η and α can be obtained from (2.58) and (2.60). We can then write

(1.42) as the following MILP

Γk = min c>x+
∑
ω∈Ω

pωz ω

s.t. z ω ≤ qt,ω ∀t ∈ T, ω ∈ Ω

z ω ≥ qt,ω −Mω(1− ut,ω) ∀t ∈ T, ω ∈ Ω

qt,ω ≥ (hω − Tωx)>ηi + αi ∀i ∈ I(t), t ∈ T, ω ∈ Ω∑
t∈T

ut,ω = 1 ∀ω ∈ Ω

ut,ω ∈ B, ∀t ∈ T, ω ∈ Ω

x ∈ X.

(MP)

In (MP), qt,ω represents the piecewise convex function obtained at a leaf node of the

tree. That is, the fourth constraint ensures that qt,ω = maxi∈I(t) b
>ηi + αi. z ω is the

approximation of recourse for scenario ω. The second constraint guarantees that z ω
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Node 0

Node 2
g2 = max{−1.5b+ 23, 0.8b}

Node 1
g∗1 = max{b− 1, 0.8b}

y2 ≤ 1 y2 ≥ 2

Node 0

Node 2

Node 4
g4 = max{−1.5b+ 34.5, 0.8b}

Node 3
g∗3 = max{b− 2, 0.8b,−1.5b+ 23}

y2 ≤ 2 y2 ≥ 3

Node 1
g1 = max{b− 1, 0.8b}

y2 ≤ 1 y2 ≥ 2

Figure 3.7: Strengthened dual functions from warm-starting (a)

is less than all the convex approximations obtained at the leaf nodes, while the third

and fifth constraints guarantee that one of them holds at equality and z ω achieves the

minimum of the leaf nodes. In the third constraint, Mω is an appropriately large positive

number. For instance, Mω ≥ maxt∈T | qt,ω|. Before formally proving correctness and

finiteness, we illustrate the algorithm with an example where we show the details of this

approach.

Example 3.2. We consider a modified version of Example 1.6 for which S1 = {x1, x2 ∈

B | x1 + x2 ≤ 1}. The sequence of subproblems solved here is the same as the sequence

from Example 3.1, but we now show in Figures 3.7 and 3.8 the full details of the single

tree approach, including retention of all linear pieces to ensure a dual that is strong for

all evaluated right-hand sides.

The starting point (x1
1, x

1
2) = (0, 1) in Step 0 is obtained through solving

Γ1 = min{−3x1 − 3.8x2 | x1 + x2 ≤ 1, x1, x2 ∈ B}.
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Node 0

Node 2

Node 4
g4 = max{−1.5b+ 34.5, 0.8b}

Node 3
g3 = max{−1.5b+ 23, 0.8b, b− 2}

y2 ≤ 2 y2 ≥ 3

Node 1

Node 6
g6 = max{−1.5b+ 11.5, 0.8b, b− 1}

Node 5
g∗5 = max{b, 0.8b}

y2 ≤ 0 y2 ≥ 1

y2 ≤ 1 y2 ≥ 2

Node 0

Node 2

Node 4
g4 = max{−1.5b+ 34.5, 0.8b}

Node 3
g∗3 = max{−1.5b+ 23, 0.8b, b− 2}

y2 ≤ 2 y2 ≥ 3

Node 1

Node 6
g6 = max{−1.5b+ 11.5, 0.8b, b− 1}

Node 5
g5 = max{b, 0.8b}

y2 ≤ 0 y2 ≥ 1

y2 ≤ 1 y2 ≥ 2

Figure 3.8: Strengthened dual functions from warm-starting (b)
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Let θ1 = −∞ and k = 1.

Iteration 1. In Step 1, we solve the second-stage problem for 6− 0.5 and 12− 0.5 with

branch and bound to obtain the dual function

z1(b) = min{max{b− 1, 0.8b},max{b− 2, 0.8b,−1.5b+ 23},max{−1.5b+ 34.5, 0.8b}}.

Note that we retain the linear piece from solving the root node in each of the children,

which yields a stronger dual function overall, though this piece is not required for strength

at either of the two right-hand sides in the first iteration. The updated master problem

is

Γ2 = min−3x1 − 3.8x2 + 0.5z1(6− 2x1 − 0.5x2) + 0.5z1(12− 2x1 − 0.5x2)

s.t. x1 + x2 ≤ 1, x1, x2 ∈ B.
(3.26)

This would normally be formulated as in (MP) and solved as a generic MILP in practice,

but for clarity and compactness, we avoid this step here. The solution is Γ2 = 2.6 with

θ1 = 5.6 and (x2
1, x

2
2) = (1, 0). Let k = 2.

Iteration 2. We solve the subproblem with the right-hand sides 4 (corresponding to

the first scenario) and 10 (corresponding to the second scenario) to obtain our second

dual function

z2(b) = min{max{b, 0.8b},

max{−1.5b+ 11.5, 0.8b, b− 1},

max{−1.5b+ 23, 0.8b, b− 2},

max{−1.5b+ 34.5, 0.8b}}

(3.27)

Since 5.6 < 0.5(4 + 8), we continue. In Step 2, we solve the updated master problem

Γ3 = min−3x1 − 3.8x2 + 0.5z2(6− 2x1 − 0.5x2) + 0.5z2(12− 2x1 − 0.5x2)

s.t. x1 + x2 ≤ 1, x1, x2 ∈ B
(3.28)
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to obtain Γ3 = 3 with θ3 = 6 and (x3
1, x

3
2) = (1, 0). We let k = 3.

Iteration 3. The solution x3 is identical to x2. Since θ3 = 0.5(z2(4) + z2(10)), we stop.

(x∗1, x
∗
2) = (1, 0) is an optimal solution.

Having now demonstrated the algorithm, we proceed to formally state the following result.

Theorem 3.3. Consider the generalization of Benders’ algorithm in which

– dual functions of the form (DF) are generated within a single branch-and-bound tree

and

– a master problem of the form (MP) is utilized.

This algorithm terminates with the correct global minimum in finitely many steps.

Proof. We first show that if the termination check is satisfied, the algorithm terminates

with a correct optimal solution. Assume the algorithm terminates in iteration k with the

dual function obtained from tree T k−1 and let x∗ be the optimal solution to the problem.

Then, we have

c>xk +
∑
ω∈Ω

pω min
t∈Tk−1

max
i∈I(t)

{(hω − Tωxk)>ηi + αi}

= c>xk +
∑
ω∈Ω

pωz(hω − Tωxk)

≤ c>x∗ + min
t∈Tk−1

max
i∈I(t)

{(hω − Tωx∗)>ηi + αi}

≤ c>x∗ +
∑
ω∈Ω

pωz(hω − Tωx∗)

≤ c>xk +
∑
ω∈Ω

pωz(hω − Tωxk).

where the first line is from the termination condition, the second line follows from the

optimality of xk for the master problem in iteration k, the third line follows since (DF)

is a dual function for the value function of the recourse and the last line holds since x∗ is

the optimal solution to the problem.
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To show the finiteness of the algorithm, note that if any first-stage solution of the

master problem repeats in a future iteration, the termination criterion is satisfied and we

have an optimal solution. This holds because the dual function obtained from an optimal

tree is strong with respect to all previous right-hand sides. Therefore, if the same first-

stage solution repeats, the dual function will already be strong in all scenarios and the

termination check will then be satisfied. Furthermore, observe that in each iteration, we

must either generate at least one new linear dual function within the branch-and-bound

tree at some node or branch on some node. From Assumption A2, the set J defined

in (3.14) is finite. There are a finite number of branching operations that can be done

before achieving a complete description of this set. Assumption A1 also implies that there

is a finite number of extreme points and rays of the dual polyhedron D of the recourse

problem. Together, we have a finite number of operations that can occur during this

process and a finite number of dual functions that can arise. In a finite number of steps,

we therefore generate the full formulation (3.16), at which point the tree must contain a

full description of the value function over B2 and the process must terminate.
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Chapter 4

Computational Results

Studying how the optimal solution value of an optimization problem changes in response

to perturbations in the problem data is important both in theory and practice. In practice,

we are often interested in identifying solutions that are optimal under changes in problem

data. This analysis is important because we rarely solve optimization problems that model

a truly deterministic system—the problem data usually involves uncertainty. In theory,

analyzing the optimal solution is important in several cases. For example, where solving

a family of the problems whose structures are closely related where the optimal solution

to one problem may also be optimal or provide a bound for another problem. In this

case, identifying the ranges of problem data that result in the same optimal solution is

desirable. Post-optimality analysis addresses these questions through sensitivity analysis

and warm-start procedures. Sensitivity analysis procedures check whether the optimal

solution to a given instance of an optimization problem remains valid under change in the

problem data. They also identify the ranges of the problem data that result in the same

optimal solution. Warm-starting procedures, on the other hand, are used to accelerate the

solution of a new problem instance by using the information collected from the solution

process of a given base instance.

In the case of LPs, verifying the optimality of a solution for a modified problem can be

done by checking the optimality conditions, whose information is available, for example,

from the optimal simplex tableaux used to solve the original LP. In the case that the
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solution is not optimal for the new problem, this simplex tableaux can be modified to

carry out further simplex iterations.

In the case of MILPs however, checking the optimality conditions is more challenging.

Given that the most common algorithms such as branch-and-bound and branch-and-cut

are based on constructing an exponential number of disjunction on the feasible region

of some relaxation of a MILP, checking the optimality of the solution obtained from the

execution of these algorithms is computationally intensive. Furthermore, the amount of

information to be saved to perform warm-starting procedures can be massive. Despite

such challenges, warm-starting techniques for MILPs exist and are used in practice. In

particular, like the case of the LP, where a simplex tableau can be reused to derive

the optimal solution for a new LP instance, in the case of MILPs we can also reuse a

branch-and-bound tree to find the solution to a new MILP instance (Wolsey, 1981a).

Two-stage stochastic optimization problems are perfect candidates for utilizing post-

optimality analysis techniques, as decomposing these problems yields subproblems that

differ only in problem data. In the case of continuous two-stage optimization problems,

these techniques have been used in finding solution methods for these problems. Examples

of such studies are (Morton, 1996; Ruszczyński and Świtanowski, 1997; Zhao, 2001).

For two-stage mixed integer optimization problems, however, incorporation of warm-

starting techniques within algorithms for two-stage mixed integer optimization problems

is not yet explored. In this chapter, we provide details on implementing the Generalized

Benders’ algorithm of Chapter 3 with warm-starting capabilities for the two-stage mixed

integer optimization problem, introduce different warm-starting techniques to be utilized

within the algorithm and report the results of our experiments. We start the chapter by

a brief overview on results on sensitivity analysis and warm-starting for MILPs. In our

review, we pay a particular attention to the implementation of these results within the

branch-and-bound algorithm as the primary method we use in the Generalized Benders’

algorithm to solve the scenario subproblems. For further applications of post-optimality

procedures in other algorithms for MILPs, we refer to the works of Roodman (1972, 1974);

Piper and Zoltners (1976); Shapiro (1977); Loukakis and Muhlemann (1984).
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4.1 MILP Sensitivity Analysis and Warm Starting

In this section we review the results on sensitivity analysis and warm-starting for MILPs.

The forthcoming results are mainly due to Marsten and Morin (1977); Geoffrion and

Nauss (1977); Nauss (1979); Wolsey (1981a). Güzelsoy (2009) provides a survey on the

post-optimality methods existing for MILPs. Here we provide the key results. We discuss

how to perform sensitivity analysis and warm-starting when some of the problem data

is modified. Because they are the most closely related to solving two-stage optimization

problems with the Generalized Benders’ method, we are particularly interested in those

results where the modifications are made to the right-hand side. We consider the pri-

mal problem (MILP) under modifications mainly in the right-hand side and objective

coefficients.

Sensitivity analysis. Consider the primal problem (MILP). This problem can be

defined by the quadruple (A, b, c, r). We are interested in examining the optimality of a

modified instance (Ã, b̃, c̃, r̃). Assume both problems are feasible and the original problem

is solved to optimality. Let x∗ be the optimal solution to the original problem. The

following result shows the conditions under which x∗ remains optimal for the general case

where new problem is obtained by modifications in the right-hand side, coefficient matrix

and objective coefficients.

Proposition 4.1. (Geoffrion and Nauss, 1977; Wolsey, 1981a; Güzelsoy, 2009)

(i) If the original problem is a relaxation of the new problem and x∗ is feasible for the

new problem, then x∗ remains optimal.

(ii) When a new activity (c̃n+1, Ãn+1) is introduced, (x∗, 0) remains feasible.

(iii) When a new constraint ãm+1 with right-hand side b̃m+1 is introduced, if x∗ is feasible

then it remains optimal for the new problem.

(iv) Let c̃ satisfy c̃j ≥ cj for all j such that x∗j = 0, and c̃j = cj for x∗j > 0. Then x∗

remains optimal for the new problem.
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Furthermore, if F ∗ is a subadditive dual function, we have

(v) If a new activity (c̃n+1, Ãn+1) is introduced and F ∗(An+1) ≤ c̃n+1, then (x∗, 0) is

the optimal solution to the new problem.

(vi) Let F̃ : Rm+1 → Rm be defined by F̃ (b, bm+1) = F ∗(b). Then F̃ is dual feasible for

the new problem.

(vii) If the right-hand side is changed to b̃, then F ∗ remains dual feasible for the new

problem. Therefore, c>x̃∗ ≤ F ∗(b̃). If F ∗ also remains optimal, then the new

optimal solution is in {y | F ∗(Ay) = c>y}, since from z(b̃) = c>x̃∗ we have c>x̃∗ =

F ∗(b̃) = F ∗(Ax̃∗).

The above observation is interesting in theory, but in practice, we are most interested

in obtaining the optimality conditions of a modified MILP instance when the original in-

stance is solved with a primal algorithm, particularly when primal algorithm is one of the

well-known MILP algorithms, such as the cutting-plane or branch-and-bound methods.

We discussed earlier that in the case where the original instance is solved by a cutting-

plane method, a subadditive dual can be derived as a by-product of the cutting-plane

method when the subadditive representation of each cut added to the description of the

problem is known. We showed this parametric representation for a generic cut in (2.50).

We also discussed that such a representation is known for certain classes of cuts, such

as Gomory cuts whose subadditive representation was given by Wolsey (1981a). For this

case, sufficient conditions for optimality of a modified instance are given by Klein and

Holm (1979) for PILPs. We provide two key results next.

Consider the relaxed problem (MILP) obtained at iteration i of the cutting-plane

algorithm with Gomory cuts. Let Bi be the set of indices of variables in the optimal

basis in iteration i and Fi and σi be the functions defined in (2.50) obtained at iteration

i.

Proposition 4.2. If x̃ = (ABi)−1σi(b̃) is non-negative and integer, then x̃ is an optimal

solution to the modified problem.
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The above result is strengthened if we further have the integrality of (ABi)−1.

Theorem 4.1. If x̃ = (ABi)−1σi(b̃) is non-negative and (ABi)−1 is integer, then then x̃

is an optimal solution to the modified problem.

Güzelsoy (2009) proposes a different set of optimality conditions using upper and lower

bounding approximations for the value function. This result is based on the observation

that lower approximating functions for the value function can be found simply by taking

the maximum of the dual function obtained so far, as follows

z(b) = max
i
F i(b). (4.1)

To obtain an upper bounding function, we can write

z̄(b) =

 mini{c>Bi(ABi)−1σi(b)} if (ABi)−1σi(b) ≥ 0 and integer for some i

∞ otherwise

(4.2) is an upper bounding function because it guarantees the feasibility of the basis

in some iteration 1, . . . , i. The following result states the optimality condition for the

modified instance.

Proposition 4.3. For a modified right-hand side b̃ ∈ Rm, if z̄(b̃) = z(b̃), then the lower

bounding function z is strong at b̃.

Güzelsoy (2009) further extends this result to the case where the primal instance is

solved with branch-and-bound or branch-and-cut algorithm by modifying the upper and

lower bounding functions. We next provide more details on these functions.

Consider the branch-and-bound dual function (2.57) that we introduced in Section 2.6

and used in the Generalized Benders’ algorithm. The function (2.57) is constructed

by collecting the dual information of the LP relaxations of the terminating nodes. We

explained that because at any stage during the execution of the branch-and-bound method

we have a valid partition of the feasible region of the LP relaxation, by collecting the

dual information of the leaf nodes of the tree in any intermediate iteration we can obtain
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a dual function. Such a dual function, however, may not be strong. Nevertheless, such

dual functions potentially approximate different parts of the value function and their dual

functions can be combined to strengthen (2.57). This observation was further generalized

by considering the dual functions obtained from subtrees of the branch-and-bound tree

resulting from evaluating the value function at a given point. Let H be the set of all

connected subtrees rooted at the root node such that both left and right children of an

intermediate node is also in the subtree and suppose Ih indexes the set of leaf nodes of

h ∈ H. Then the following function strengthens (2.57).

z = max
h∈H

min
t∈Ih

(b>ηt + αt) ∀b ∈ Rm. (4.2)

Schrage and Wolsey (1985) provide a recursive algorithm to evaluate the above formula-

tion. Let t be a node of the branch-and-bound tree. If t is not a leaf node, let L(t) and

R(t) respectively be its left and right child. Let κt be the objective function of the dual

to the problem associated with t parameterized in the right-hand side. That is

κt(b) = b>ηt + αt. (4.3)

Proposition 4.4. (Schrage and Wolsey, 1985) For each node t belonging to the branch-

and-bound tree, let the function ζ :Rm → R be defined as

ζt(b) =

 κt(b) if t is a leaf node

max{κt(b),min{κL(t)(b), κR(t)(b)}} otherwise.

Then, F (b) = ζ0(b), where F is defined in (4.2).

A dual function in the form of (4.2) can be derived similarly for the branch-and-cut

algorithm when the subadditive representations of the cuts used are available. In this

case, for each node t of the tree we have the following modification of (4.3)

κt(b) = b>ηt + αt +

k(t)∑
i=1

wtiF
t
i (σ

t
i(b)) ∀b ∈ Rm, (4.4)
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where k(t), F ti and σti are defined as in (2.66).

It remains to obtain an upper bounding function to combine with the related lower

bounding function (4.2) to have a result analogous to Proposition 4.3.

Proposition 4.5. (Güzelsoy, 2009) For a given b̂ ∈ Rm, let t be a node of the optimal

tree used to evaluate z(b̂). Also, let TU (b̃) be the set of nodes of the tree whose basis yields

a basic feasible solution xt ∈ St(b)∩{x ∈ Zr+×Rn−r+ } with St(b) defined in (2.54). Then,

z̄t(b) =

 mint∈TU (b̃) c>xt if TU (b) 6= ∅

∞ otherwise.

is an upper bounding function for z.

4.2 Warm Starting in SYMPHONY

We use SYMPHONY as the MILP solver to implement the generalized Benders’ algo-

rithm. SYMPHONY is a customizable open-source software framework to solve MILPs.

This MILP solver is a part of the computational infrastructure for operations research

(COIN-OR) project and is completely integrated with other projects within the COIN-

OR framework. The solver has interfaces with both C and C++ and can be built on the

Windows operating systems as well as Unix-like environments (see (Ralphs and Güzelsoy,

2005)).

SYMPHONY allows for modifying the default behavior of the solver by writing call-

back functions and changing various parameters. The user callback functions can be used

to change the branching rules, node selection and diving strategies, cutting plane gener-

ation and management of the cut pool. These functions are implemented in both C and

C++. We use the C interface in our implementation. SYMPHONY has a modular imple-

mentation. The functions implemented within the solver are grouped into the following

modules

– The master module. This module is the i/o handler. It contains functions for read-

ing and storing the problem data, computing bounds and storing the information
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of the best solution.

– The tree manager module. This module maintains the search tree, tracks the upper

bound, generates the children of the active node to add to the candidate list.

– The node processing module. Processing of candidates, as well as feasibility checks

and the selection of branching objects are carried out in this module.

– The cut generator module. This module interacts with the node processing module

by taking the solution of the candidate node LP and returning a collection of cuts

violated by the solution.

– The cut pool management module. This module maintains a list of “effective”

inequalities and returns those that are violated by a solution to the LP. These cuts

are returned to the node processing module to be added to the candidate node LP.

SYMPHONY is capable of performing warm-starting and sensitivity analysis on MILPs.

The primary algorithm that SYMPHONY uses is branch-and-cut. When the user enables

that warm-starting description should be kept via specifying the appropriate parameter,

the solver collects and stores information from the final tree used to solve the problem,

as well as other auxiliary information needed to restart the computation of a poten-

tially modified instance. The information collected from the tree contains information

about each solution to the relaxation associated with each node in the tree, including the

list of active variables and constraints and the branching decisions that have led to the

nodal problem, as well as information needed to perform sensitivity analysis on the nodal

LP including the optimal basis and dual information. The auxiliary information stored

includes information about upper and lower bounds on the tree and the best feasible

solution found so far. After the warm-start description is stored from the initial solve,

the user can modify the parameters used to solve the initial problem and make a call to

sym warm solve() to solve the modified instance.

In the case of parameter modification, the master module stores the necessary in-

formation from the final solve of the original instance. The tree manager module then
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1 #include ”symphony . h”
2

3 int main ( int argc , char ∗∗ argv )
4 {
5 sym environment ∗env = sym open environment ( ) ;
6 sym parse command line ( env , argc , argv ) ;
7 sym load problem ( env ) ;
8

9 sym set int param ( env , ” keep warm start ” , t rue ) ;
10 sym set int param ( env , ” n o d e s e l e c t i o n s t r a t e g y ” ,

DEPTH FIRST SEARCH) ;
11 sym set int param ( env , ” f i n d f i r s t f e a s i b l e ” , TRUE) ;
12

13 sym solve ( env ) ;
14

15 sym set int param ( env , ” n o d e s e l e c t i o n s t r a t e g y ” ,
BEST FIRST SEARCH) ;

16

17 sym warm solve ( env ) ;
18 sym close environment ( env ) ;
19 return (0 ) ;
20 }

Figure 4.1: Use of SYMPHONY warm-start with parameter modification

traverses the tree and marks the leaf nodes as candidates and prepares them for further

processing. A candidate node is selected according to the new node selection rule and

the algorithm continues as usual. Figure 4.1 shows the code of a basic example of storing

the warm-start description and using it to solve a modified instance in the C API.

In Figure 4.1, line 5–6 are respectively responsible for opening a new SYMPHONY

environment and parsing the user setting and reading the name of the problem. Line 7

reads the problem data and sets it as the root subproblem. Line 9 tells SYMPHONY to

store the warm-start information from the final solve to be used after modifications to

the parameters. Line 10 and 11 respectively require SYMPHONY to use the depth-first-

search strategy to solve the problem until a feasible solution is found. After the problem is

solved, in line 15, best-first-search is used as the search strategy and the modified problem

is resolved by making a call to sym warm solve(). In addition to what is discussed here,

SYMPHONY offers a variety of options for customizing model parameters and solution
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methods. For a comprehensive reference for the solver we refer the reader to the solver

manual which is due to Ralphs et al. (2013).

In the context of stochastic optimization, we are often interested in solving scenario

subproblems which have the same structure, but differ in problem data. The SYM-

PHONY warm-start can also be used to solve such modified instances. Currently, changes

in the vectors of right-hand side and objective function coefficients are permitted when

warm-starting a solve call. When a call to warm-solve is invoked after changes to the

these data, SYMPHONY must make appropriate modification to the leaf nodes of the

tree whose information is stored in a warm-start description structure. In the case in

which branch-and-cut is the solution algorithm, for example, the solver needs to ensure

that all the cuts that are added to the description of the nodal problem remain valid for

the modified nodal instance. After the modifications, each leaf node should be marked as

a candidate to be reprocessed. The algorithm proceeds as usual from the resulting tree.

The information from the leaf nodes obtained from the old tree can be used to expedite

solving the new problems. For instance, the optimal basis obtained in the leaf node in

the initial solve can be used as a starting basis for the new nodal instance. We show an

example of the code for warm-starting a problem with modifications in the right-hand

side of the first constraint in the original problem in Figure 4.2.

4.3 The Generalized Benders’ Algorithm

In this section we provide details on the implementation of the Generalized Benders’

algorithm. We overview the main modules and the options for solving the master and

subproblems. We explain different methods to construct the master problem to control its

size and describe different warm-starting strategies. Finally, we apply the algorithm with

the above options to the Stochastic Server Location (SSLP) problems from the Stochas-

tic Integer Programming Library (SIPLIB) and report the result of the computational

experiments. We begin by reviewing the implementation.
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1 int main ( int argc , char ∗∗ argv )
2 {
3 sym environment ∗env = sym open environment ( ) ;
4 sym parse command line ( env , argc , argv ) ;
5 sym load problem ( env ) ;
6

7 sym set int param ( env , ” keep warm start ” , t rue ) ;
8 sym solve ( env ) ;
9

10 /∗ Change the upper bound o f the f i r s t c o n s t r a i n t to 1 .2 ∗/
11 sym set row upper ( env , 0 , 1 . 2 ) ;
12

13 sym warm solve ( env ) ;
14 sym close environment ( env ) ;
15 return (0 ) ;
16 }

Figure 4.2: Use of SYMPHONY warm-start with problem data modification

Implementation Details

The Generalized Benders’ algorithm is implemented in C and uses the SYMPHONY

callable library to solve the master and subproblems. The implementation consists of the

following modules

– Main Module

– Master Solution Module

– Recourse Solution Module

– Read Duals Module.

We highlight the important details of each module next.

Main module. This module contains calls to the main components of the Generalized

Benders in 3.4. It starts with reading the master, subproblem and stochastic file, which

contains the right-hand sides associated with each scenario and the probability of each

scenario. It then proceeds with solving a relaxation of the input master problem, fixing

the right-hand sides of the subproblems accordingly. The main loop iterates between
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1 g e t i n p u t a r g s ( ) ;
2 s o l v e o r i g i n a l m a s t e r p r o b l e m ( ) ;
3 i n i t i a l i z e s u b p r o b l e m s r h s ( ) ;
4 i n i t i a l i z e b o u n d s ( ) ;
5 do{
6 so l v e mas t e r ( ) ;
7 update LB ( ) ;
8

9 for each s c e n a r i o do{
10 setup subproblem ( ) ;
11 so lve subproblem ( ) ;
12 updat e exac t expec t ed r e cou r s e ( ) ;
13 c o n s t r u c t d u a l f u n c t i o n s ( ) ;
14 s t o r e d u a l f u n c t i o n s ( ) ;
15 }
16

17 update UB ( ) ;
18 } while ( ! check terminate ( ) )

Figure 4.3: Sketch of the main module

the solve-master module and solve-recourse module. Throughout the execution, we use

a single environment for all the master problems, therefore, the approximations obtained

from solving the subproblems can be stored in the description of the master problem and

get updated as new approximations become available. The updates in the upper and

lower bounds of the problem is performed in this module using the output of the solve-

master and solve-recourse modules respectively. The main steps are illustrated figure 4.3.

Master Solution Module. This module receives the description of the master prob-

lem, updates it with the new approximations obtained from solving the subproblems and

calls SYMPHONY to solve it. After the original master problem is read from the input (a

modified .cor file), the problem is reformulated by adding the expected recourse variables

zω in MP for all scenarios ω ∈ Ω. In each iteration of the algorithm, it adds the variables

qt,ω in MP for all the scenarios and the leaf node of the tree used to solve the scenario

subproblem denoted by t. It then populates the master problem with the approximation

and makes a call to the MILP solver.
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Recourse Solution Module. This module takes the solution to the master problem

and uses it to update the right-hand sides of the recourse problems with the stochastic

input .sto file. Then, it makes calls to SYMPHONY with user options and the selected

warm-start option. The necessary SYMPHONY options to solve the recourse problems

are

sensitivity_analysis 1

generate_cgl_cuts 0,

where the first option is needed for SYMPHONY to store the dual information which are

used for sensitivity analysis, and the second option if to disable cut generation, which we

discussed in section 3.4 is required for the algorithm. Finally, pointers to the description

of the recourse subproblems are preserved or discarded depending on the warm-start

option.We will discuss the later option later in this chapter.

Read Duals Module. To retrieve the dual information of the leaf nodes of the branch-

and-bound tree used to solve the scenario subproblems, the sym get dual pruned func-

tion is added to the callable library of SYMPHONY. The dual information is retrieved by

a recursive call to a subroutine that gathers the related data from the description of the

tree. This description is kept in the warm start desc structure stored in the problem’s

environment, env->warm start.

Alternative Warm Starting Strategies

The most straightforward method of constructing dual functions from branch-and-bound

trees is to start a new tree every time a scenario is solved and refine this tree until

optimality is achieved. From each scenario subproblem tree, a dual function is obtained

that can be used to strengthen the approximation of the value function for that or any

other scenario subproblem. In the case that |Ω| separate approximations are kept, this

strategy is analogous to the multi-cut Benders’ method. Since each time a new tree is

constructed from scratch, the call to solve the recourse problem is simply
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1 /∗ Store the warm s t a r t i n g d e s c r i p t i o n s in an array o f s i z e
2 number o f s c e n a r i o s ∗/
3 warm start desc ∗∗ wsArray = ( warm start desc ∗∗)
4 malloc ( s izeof ( warm start desc ∗) ∗ num scen ) ;
5

6 /∗ Keep the warm s t a r t d e s c r i p t i o n in the f i r s t i t e r a t i o n and
use i t in the f o l l o w i n g i t e r a t i o n s ∗/

7 sym set int param ( recourse environment , ” keep warm start ” , TRUE)
;

8

9 i f ( i t e ra t i on number == 1) {
10 sym solve ( recourse env i ronment ) ;
11 } else {
12 sym set warm start ( recourse environment , wsArray [ scen ] ) ;
13 sym warm solve ( recourse env i ronment ) ;
14 }
15

16 wsArray [ scen ] = sym get warm start ( recourse environment , TRUE) ;

Figure 4.4: Warm-starting the solution to each scenario

sym_solve(recourse_environment).

The second strategy that we examine is to warm solve the solution to each scenario

by keeping a single tree for each scenario. Each of the |Ω| trees is created in the first

call to the solve-recourse module. The description of the trees are then kept in memory

and is retrieved in the next solve to that problem. The previous tree is refined further to

obtain an optimal tree for the new scenario. The following figure provides more details.

As a third alternative, the description of the first scenario in the first iteration can

be used as the initial tree to solve all the scenario subproblems that arise during the

execution of the algorithm by refining the tree. The block of code used for this option is

shown in Figure 4.5. A pointer to a single warm starting description, warm start desc**

ws, is allocated in the beginning of the algorithm and is kept during the execution of it.

With any of the choices above, the implementation accommodates combining the

approximation of two or more scenarios by taking the maximum of the approximations

and using a single approximation for the combined scenarios. Whether using few or many

approximations is beneficial depends on the specifics of the problem. Keeping one or a few
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1 i f ( i t e ra t i on number == 1 && scen == 0) {
2 sym solve ( recourse env i ronment ) ;
3 } else {
4 sym set warm start ( recourse environment , ∗ws) ;
5 sym warm solve ( recourse env i ronment ) ;
6 }
7 ∗ws = sym get warm start ( recourse environment , TRUE) ;

Figure 4.5: Warm-starting a single tree

number of approximations is desirable if the subproblems require exploring roughly the

same area of the domain of the value function of the second-stage. In this case, multiple

approximations are combined to construct a stronger approximations of the value function

over a local region of the right-hand sides. In the case that the stochasticity is coming

from the scenarios or the first stage solutions result in examining the second-stage value

function sparsely, keeping separate approximations may result in a more effective overall

approximation.

4.4 Computational Experiments

In this section, we illustrate the application of the Generalized Benders’ algorithm on

the several examples from the literature and the Stochastic Integer Programming Library

(SIPLIB). All the experiments we report are run on a Linux (Debian 6.0.9) operating

system running 16 AMD processors on a 800 MHz speed and 31 GB RAM, compiled with

g++. The mixed integer optimization solver used is SYMPHONY version 5.6 customized

for our specific application and configured with the sensitivity analysis option.

Examples from the literature

The first problem we solve is originally developed by (Schultz et al., 1998) and subse-

quently used in (Ahmed et al., 2004) and (Gade et al., 2012). This problem consists of

a pure binary first-stage problem and a mixed binary recourse with an auxiliary variable

that is added to the recourse problem in order to ensure relative completeness.
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Example 4.1.

f(b) = inf − 1.5x1 − 4x2 + E[z(x, ω)]

s.t. x1, x2 ∈ B1,

(4.5)

where

z(b) = inf − 16y1 − 19y2 − 23y3 − 28y4 + 100R

s.t. 2y1 + 3y2 + 4y3 + 5y4 −R ≤ h(x)− x1

6y1 + y2 + 3y3 + 2y4 −R ≤ h(x)− x2

yi ∈ B, i = 1, . . . , 4, R ∈ Z+.

(4.6)

Here, we have two scenarios Ω ∈ {ω1, ω2}, each with probability of 0.5. The distribution

of the right-hand side is (h1(ω1), h2(ω1)) = (5, 2) and (h1(ω2), h2(ω2)) = (10, 3).

We apply the generalized Bender’s method to this problem. The algorithms starts

with solving inf{−1.5x1 − 4x2 | x1, x2 ∈ B1} and finds x∗1 = x∗2 = 1 and lets βi = x∗i = 1

for i = 1, 2. In the first iteration, the right hand sides of the constraints of (4.6) is

then (4, 1) and (9, 2) for the first and second scenarios, respectively. From solving the

recourse problem in the first scenario, the expected recourse is 0.5(−19 − 38) = −23.5.

The upper bound on the problem is −29. The master problem after adding the dual

functions obtained form solving the two subproblem can be formulated as follows.

inf − 1.5x1 − 4x2 + 0.5(z1 + z2)

s.t. z1 = 14x2 − 33

z2 ≤ 7.67x2 − 34.33

z2 ≥ 7.67x2 − 34.33−Mu1,2

z2 ≤ 100x2 − 128

z2 ≥ 100x2 − 128−Mu2,2

u1,2 + u2,2 = 1

x1, x2, u1,2, u2,2 ∈ B1.

(4.7)

Solving (4.7) results in a lower bound of −82 with x∗1 = 1, x∗2 = 0. The new right-hand
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sides are (4, 2) and (9, 3). The upper bound on the problem is then updated to −34.5.

Solving the master problem, we obtain the lower bound of −37.5 with x∗1 = x∗2 = 0. The

new dual function added to the master problem is

max{min{100x1 − 28, 100x2 + 77, 14x2 + 35, 19}, 7.67x2 − 47}. (4.8)

After solving the two new subproblems with right-hand sides of (5, 2) and (10, 3), the new

upper bound on the problem is −37.5 and the algorithm is terminated. The following

table summarizes these results. In this table, the first column is the iteration number and

the second column shows the optimal solution obtained from solving the corresponding

master problem. The third and fourth column are the solutions to the first and second

subproblems, respectively. The last two columns are respectively the global upper and

lower bound of the problem in the corresponding iteration.

k x∗ Scen.1 obj. Scen.2 obj. Global UB Global LB

1 (1,1) -19 -28 -29 -82

2 (1,0) -19 -47 -34.5 -37.5

3 (0,0) -28 -47 -37.5 –

Table 4.1: Iterations of the Generalized Benders’ algorithm applied to Example 4.6

We next report the computational result of applying the algorithm on larger instances

from (Gade et al., 2012).

Example 4.2. Consider the problem solved in Example 4.1 with the following modifica-

tion. Let yi ∈ {0, 1, . . . , 5}, i = 1, . . . , 4, (h1(ω1), h2(ω1)) = (10, 4) and (h1(ω2), h2(ω2)) =

(13, 8). Table 4.2 shows the results of applying the algorithm to this problem.

k x∗ Scen.1 obj. Scen.2 obj. Global UB Global LB

1 (1, 1) -57 -76 -76.5 -76.625

2 (0, 1) -57 -80 -72.5 -72.5

Table 4.2: Iterations of the Generalized Benders’ algorithm applied to Example 4.2
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To construct larger instances, we generate more scenarios by allowing the right hand

sides of the two constraints to be in the set {5, 5 + ∆, 5 + 2∆, . . . , 15} × {5, 5 + ∆, 5 +

2∆, . . . , 15} to generate 4, 9, 36, 121 scenarios with ∆ ∈ {1, 2, 5, 10}. We further extend

the set by changing 15 to 20 to generate 225 scenarios with ∆ = 1. The size of the

resulting problems is reported in Table 4.3.

No. Scen. 4 9 36 121 225

No. Vars 24 47 182 607 1127

No. Const 8 18 72 242 450

Table 4.3: Size of the deterministic equivalent of the test instances in Example 4.2

Table 4.4 shows the computational report of applying the algorithm to the resulted

five problems. The second column in the table shows the optimal value of the problem

obtained with the algorithm. The third column shows the number of iterations taken

by the algorithm, column four shows the node and size of the master problem in the

final iteration in the form of (number of variables, number of constraints). Columns five

and six respectively show the user time spent to solve the master problems and the final

solution time in seconds. These results are obtained by setting the warm-start option

to the full-tree construction. For these examples, there was no significant difference in

computational time observed with different warm-starting options.

Obj No. Nodes/Size Time in Total

Iterations Final Master Master (s) Time (s)

4-Scen -63.50 3 1 (27, 47) 0.10 0.16

9-Scen -65.67 3 1 (71, 127) 0.3 0.32

36-Scen -66.83 3 17 (301, 552) 1.0 1.92

121-Scen -67.17 4 55 (1022,1891) 11.36 15.91

225-Scen -79.66 4 5 (1883, 3465) 16.00 27.40

Table 4.4: Performance of the algorithm applied to problems in Example 4.2.
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The Stochastic Server Location Instances

We introduce the Stochastic Server Location Problem (SSLP) from the SIPLIB library

next. These problems are developed by Ntaimo and Sen (2005). The objective of the

problem is to maximize the revenue gained from serving clients with stochastic demands

less the cost of locating servers. We denote by I and J the index set for the clients

and servers respectively. We further let Z denote a given set of zones and |I| = n and

|J | = m. The data to the problem are

cj : cost of locating a server at location j

qij : revenue from client i being served by server j

dij : client i resource demand from server j

u: server capacity

ν: an upper bound on the total number of servers that can be located

wz: minimum number of servers to be located in zone z ∈ Z.

Jz: the subset of servers locations that belong to zone z

hi(ω) =


1, if client i is present in scenario ω ∈ Ω

0, otherwise.

pω: the probability of scenario ω. The problem is formulated as a two-stage integer

problem in the form of

min
∑
j∈J

cjxj + Eωf(x, ω)

s.t.
∑
j∈J

xj ≤ ν

∑
j∈Jz

xj ≥ wz, ∀z ∈ Z

x ∈ Bm,

(4.9)
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where the recourse problem is defined as

min−
∑
i∈I

∑
j∈J

qijyij +
∑
j∈J

qj0yj0

s.t.
∑
i∈I

dijyij − yj0 ≤ uxj , ∀j ∈ J

∑
j∈Jz

yij = hi(ω), ∀i ∈ I

yij ∈ B, ∀i ∈ I, j ∈ J

yj0 ≥ 0 ∀j ∈ J ,

(4.10)

where xj for j ∈ J are the first-stage variables that are equal to 1 if a server is located

at site j, 0 otherwise. yωij are the second-stage variables, equal to 1 if client i is served

at location j under scenario ω, 0 otherwise. The first and second constraints in (4.9)

respectively enforce the limit on the number of servers that can be located and the

lower bound on the number of severs that are necessary within each zone. The recourse

problem’s objective is to maximize the revenue earned from serving the clients for a given

server location and scenario. The first constraint in the recourse problem (4.10) enforces

an upper bound equal to the capacity of a sever to the supply of a server j if that server

is open and zero if the server is not open. The variable yj0 is added to ensure the relative

complete recourse property for the problem. Finally, the last constraint guarantees that

a client is only severed by one server.

We next report the result of applying the Generalized Benders’ algorithm to the

instances of the SSLP problem available in SIPLIB. We denote these instances by sslp-m-

n(|Ω|) where m and n are respectively the number of potential servers and clients and |Ω|

is the number of scenarios. Table 4.5 shows the properties of the deterministic equivalent

of the problems. In this table, the DEP column described the deterministic equivalent

problem and the 2nd Stage column describes the recourse problem. The number of binary

variables, integer variables and constraints of the problem are respectively shown by bin,

cons and int. In the last two columns we report the solution time for the deterministic

equivalent problem and the relative MIP gap at termination obtained from solving the
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problem with SYMPHONY solver with the default settings. The experiments are run

within a time limit of one hour.

DEP 2nd Stage
Instance cons bin int cons bin int Time (s) % Gap

sslp-5-25(25) 751 3130 125 30 130 5 2.23 0.0
sslp-5-25(50) 1501 6255 250 30 130 5 4.89 0.0
sslp-5-25(100) 3001 12505 500 30 130 5 14.37 0.0
sslp-10-50(50) 3001 25010 500 60 510 10 3600+ 78.57
sslp-10-50(100) 6001 50010 1000 60 510 10 3600+ 77.21
sslp-15-45(5) 301 3390 75 60 690 15 3600+ 33.44
sslp-15-45(10) 601 6765 150 60 690 15 3600+ 39.63
sslp-15-45(15) 901 10140 225 60 690 15 3600+ 24.90

Table 4.5: The deterministic equivalent of SSLP instances

Table 4.6 shows the result of solving the SSLP instances with the Generalized Ben-

ders’ algorithm under four settings. The first setting is the default setting where the

subproblems are solved to optimality and optimal dual functions are collected after each

solve and added to the master problem. This setting reflects the default behavior of the

algorithm. Under the second setting, a limit on the number of nodes of the branch-and-

bound tree used to solve the recourse subproblems is enforced. In our experiments, we

set an initial limit of 10 nodes in the solution of the subproblems. The idea behind this

setting is that by limiting the number of nodes in the solution tree, the number of dual

functions collected from the tree becomes fewer which in turn, limits the size of the mas-

ter problem. Since in any stage of solving the tree, we can obtain valid dual functions,

the algorithm remains valid. However, since the collected dual problem is not necessarily

optimal for the corresponding subproblem, the exact expected recourse value with the

fixed first-stage solution may not be obtained. When solving the subproblem with the

node limit, if the solver returns a feasible solution without finding an optimal solution,

the feasible solution still provides an upper bound for the subproblem and therefore can

be used to construct an upper bound for the expected recourse. This upper bound can

be used to check whether the global upper bound of the problem can be updated, as we

did in the default setting of the algorithm.

In the case where the solution of the subproblem with node limit is terminated with-
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out finding any feasible solution, the subproblem is solved by enabling the parameter

find first feasible. The returned feasible solution then can be used to update the upper

bound. Regardless of whether a feasible solution is found or not, it is possible that after

updating the master problem with the new dual functions, the solution to the master

problem does not get updated. In that case, the limit on the maximum number of nodes

in the solution tree to the subproblem is increased (by 10 nodes in our experiments) and

the subproblems are resolved with the new node limit only in the subsequent iteration.

The node limit then is fixed back to the initial limit for the following iterations.

Table 4.6 summarizes the results of applying the Generalized Bender’s algorithm to

SSLP problems under the default setting with no node limit and the second setting where

an initial node limit of 10 is enforced when solving the recourse subproblems.

For each of the settings, the number of iterations of the algorithm at the time of

termination is reported in the first column. The second column shows the size of the

master problem at the time of the termination in the form of number of q(n,m) where q

is the number of nodes in the branch-and-bound tree used to solve the master problem, n

is the number of columns and m is the number of rows of the master problem in the final

iteration. The user time is reported in seconds in the Time column. Finally, the % Gap

column is the relative gap between the best upper and lower bounds on the problem

obtained at the time of termination.

Within the time limit of an hour, the algorithm solved the sslp-5-25 instances to

optimality under both settings. The solution time for these instances were significantly

more than the solution time spent in solving the deterministic equivalent. This increase

in the solution time can be explained by the increase in the size of the problems. In

the final master problem solved for the sslp-5-25 problem with 25 scenarios, the number

of constraints are about three times more than the one of the deterministic equivalent,

reported in Table 4.5. Given that our reformulation of the master problem does not

include the subproblems’ variables, the final master problem has fewer binary variables

than the deterministic equivalent. However, the final iterations of the Generalized Ben-

ders’ algorithm involve solving master problems of similar sizes to the master problem
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solved in the final iteration. This alone accounts for a solution time that is multiple

times larger than the time spent to solve the deterministic equivalent. The overhead of

pre-processing each master problem, solving the subproblems and collecting and storing

the dual functions are other additional steps affecting the increased time of the algorithm.

In an attempt to control the size of the master problem and reduce the time spent in

solving the recourse problems, we solve the same problems with enforcing a node limit to

the solution of subproblems. The results in Table 4.6 show that this setting reduces the

overall computational time and results in smaller master problem in the final iteration

for all three sslp-5-25 instances. The iteration number remains the same under both set-

tings, implying that the updated master problems in the iterations where the node limit

was reached for one or more subproblems resulted in updated right-hand sides for the

subproblems, therefore, no increase in the node limit was necessary in any iteration.

For the larger instances of sslp-10-15 and sslp-15-45, although the size of the master

problems is kept small during the execution of the algorithm, the solver spends more

time in solving the instances compared with the DEP. For these instances, the majority

of the solution time is spent in solving the master problems. The number of nodes in

the branch-and-bound tree at the time of termination for these instances explain the few

number of iterations completed within the time limit of an hour. For all of the SSLP

instances, the solution to the first master problem solved in the Generalized Bender’s

method, i.e., the lower bound to the problem, is a small number in the order of 10−6.

For the sslp-5-25 instances, the dual functions obtained in the first few iterations, when

incorporated in the master problem, result in an increase of the lower bound so that the

optimality gap is about 1%, which is then reduced to 0% in the subsequent iterations. For

other SSLP instances, however, the few iterations completed within the time limit do not

result in a significant increase in the lower bound. For example, in the first two iterations

of the algorithm when solving sslp-10-15(50) instance, the lower bound increases from

-877041.8 to -876975.8. As a result of this slow change in the lower bound, the optimality

gap remains large within the time limit of an hour.

For the sslp-15-45 instances, the algorithm completed more iterations with the limit
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on the number of the nodes. The additional iterations are a result of the ineffective con-

straints added to the master problem when the subproblems are not solved to optimality.

As a result of the additional iterations, the size of the master problems are increased

compared to the default setting with no limit on the nodes. While the relative optimality

gaps remain large in all the three instances, the dual functions collected in the additional

iteration performed in instances with 10 and 15 scenarios result in a smaller gap than

the ones of the default setting. In contrast, the additional iterations completed in the

instance with 5 scenarios not only resulted in a larger master problem obtained in more

iterations, but also did not result in a smaller optimality gap. In this case, the dual func-

tions collected from subproblems result in redundant constraints in the master problem

which lead to no change in the lower bound to the problem. Subsequently, the increase in

the node limit and the resolve of subproblems followed by changing the allowed number

of nodes to the initial value in the following iterations resulted in a weaker dual function

compared to the one obtained in fewer iterations of the algorithm completed when no

node limit was placed in solving recourse subproblems.

In the third and fourth settings, we experiment with the two warm starting strategies

we explained in Section 4.3. The summary of the performance of our algorithm under

these settings is reported in Table 4.7. For the smaller SSLP instances, both of these set-

tings resulted in larger computational times compared with the first two settings where no

warm-starting was used. The main factor that contributed to the larger master problems

in both settings is the larger number of leaf nodes in the warm-started branch-and-bound

trees used to solver the recourse problems. In particular, when the |Ω| branch-and-bound

trees are warm-started one for each scenario subproblems, for sslp-5-25 test instances the

size of the final master problem grows to almost twice the size of the final master problem

in the default setting. For the larger instances, the master problems are also larger than

the ones resulted from the default settings. While for the two instances of sslp-15-45 with

10 and 15 scenarios an additional iteration is completed, the reduction in the gap is far

from desirable and we have another case of the slow convergence of the algorithm. When

warm-starting the scenario subproblems are all conducted on a single tree, the sizes of the
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master problems solved are much larger than the previous three settings. Warm-starting

all subproblems with a single tree results in a very large tree whose leaf nodes may con-

tain strong duals only for a small subset of subproblems. Given that in each iteration

the dual functions are collected from all the leaf nodes, a large number of the dual pieces

encoded in the master problem are weak or redundant for a given scenario. However,

in order to keep the dual functions valid, importing the dual information of all the tree

nodes to the master problem is inevitable. Warm-starting a single tree, even though in

theory contains all the pieces of the recourse problem’s value function needed to solve

the two-stage problem, results in prohibitively large master problems solving which is a

challenge in practice.
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No Limit on Number of Nodes Node Limit on Recourse (10 nodes)
Instance Iteration Size Time (s) % Gap Iteration Size Time (s) %Gap

sslp-5-25(25) 18 48282 (1145, 2326) 472 0.0 18 47553 (1040, 2016) 323 0.0
sslp-5-25(50) 18 89184 (2270, 4215) 582 0.0 18 59868 (2150, 4121) 379 0.0
sslp-5-25(100) 18 23350 (4161, 8108) 732 0.0 18 48487 (4132, 8081) 710 0.0
sslp-10-50(50) 3 669527(409, 716) 3600 2748 3 638661 (369, 667) 3600 2748
sslp-10-50(100) 3 614089 (788, 1413) 3600 2851 3 610048 (706, 1299) 3600 2743
sslp-15-45(5) 8 42660 (235, 410) 3600 810 12 92910 (547, 813) 3600 1044
sslp-15-45(10) 3 622605 (208, 352) 3600 1182 4 530449 (247, 489) 3600 1089
sslp-15-45(15) 3 1386489 (286, 434) 3600 3499 4 1304527 (302, 482) 3600 2899

Table 4.6: Generalized Benders’ algorithm applied to SSLP instances
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Warm starting individual subproblems Warm starting subproblems on one tree
Instance Iteration Size Time (s) % Gap Iteration Size Time (s) %Gap

sslp-5-25(25) 17 1877 (3578, 6936) 710 0.0 12 31912 (31791, 43396) 3600 10.11
sslp-5-25(50) 18 1482 (4753, 9256) 749 0.0 7 41852 (25955, 34989) 3600 17.9
sslp-5-25(100) 18 16078 (9286,17450) 1130 0.0 12 27961 (32657, 53829) 3600 3.37
sslp-10-50(50) 3 223694(614, 1076) 3600 2746 2 654503 (946, 1197) 3600 2746
sslp-10-50(100) 3 112481 (829, 1420) 3600 2758 2 8289 (5989, 7040) 3600 2848
sslp-15-45(5) 8 1236 (934, 1981) 3600 1023 4 7849 (1228, 2328) 3600 2560
sslp-15-45(10) 4 230109 (420, 878) 3600 1089 2 428462 (1024, 1202) 3600 2591
sslp-15-45(15) 4 110789(1324, 3533) 3600 2927 2 839219 (1002, 1185) 3600 5349

Table 4.7: Generalized Benders’ algorithm with warm start applied to SSLP instances
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4.4. COMPUTATIONAL EXPERIMENTS

The SIZES Instances

We next use the SIZES test set from SIPLIB for our computational experiments. This

test set consists of three test instances originally developed by Jorjani et al. (1999). The

SIZES problem is a production substitution problem whose goal is to minimize the cost

of production of items with a finite number of sizes under demand uncertainty. In this

problem, a larger sized item can be used to meet the demand of a smaller sized item.

Let the indices i ∈ {1, 2, . . . , N} and t ∈ {1, 2, . . . , T} respectively correspond to the item

sizes and time periods. As before, we denote the a scenarios with ω ∈ Ω. The data to

the problem is

Ctω: production capacity in period t in scenario ω

djtω: demand for item size j in period t in scenario ω

αi: production cost for item i

β: set up cost

r: cutting cost, and the decision variables are

xijtω: the amount of item i produced in period t in scenario ω to meet the demand

of an item size j < i.

yitω: the amount of item i produced in period t in scenario ω

zitω: 1 if item i is produced in period t in scenario ω, 0 otherwise.

The stochastic integer optimization problem as proposed by Jorjani et al. (1999) is
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4.4. COMPUTATIONAL EXPERIMENTS

formulated as

min
∑
ω∈Ω

pω

T∑
t=1

N∑
i=1

[(αiyitω + βzitω) + r
∑
j<i

xijtω]

s.t. yitω ≤Mzitω ∀i, t, ω
N∑
i=1

yitω ≤ Ctω ∀t, ω

∑
t′≤t

[
∑
j≤i

xijt′ω − yitω] ≤ 0 ∀i, t, ω

N∑
i=1

xijtω ≥ djtω ∀j, t, ω

zitω ∈ B ∀i, t, ω

yitω ≥ 0 ∀i, t, ω

xijtω ≥ 0 ∀i, j, t, ω

x, y, z ∈ N

(4.11)

The first constraints of (4.11) ensures that a set up cost is enforced if a given item is

produced in a period. The second and third constraints enforce the capacity restrictions

and the balance of the inventory respectively. The fourth constraint ensures that the

demand for each item in each period is met. A more detailed description of the problem

is provided in (Jorjani et al., 1999). The SIZES instances are two-stage integer problems

generated by letting t = 1, 2 in (4.11). We first provide the description of the instances and

show the results of solving their deterministic equivalent in Table 4.8. The experiments

are run within a time limit of one hour. The column descriptions in this table are

similar to Table 4.5. The last column shows the MIP gap obtained at termination. For

the deterministic equivalent problem of the SIZES10 instance, the gap is 4.43% after one

hour. The solver terminates with the optimal solution with 0 gap for SIZES3 and SIZES4.

The result of our experiments with the generalized Benders’ algorithm on the SIZES

instances is summarized in Tables 4.9 and 4.10. For all of the instances, the maximum

time limit of one hour is reached. The number of iterations of the algorithm at the time
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4.4. COMPUTATIONAL EXPERIMENTS

of termination is reported in the first column. The second column follows the notation

described earlier for Table 4.6. Like before, the Time column shows the user time in

seconds and the % Gap column is the relative gap between the best upper and lower

bounds on the problem obtained at the time of termination.

Like the SSLP case, for SIZES instances solving the deterministic equivalent clearly

results in better solution time and a smaller relative optimality gap. In contrast to the

SSLP instances, imposing node limits on the size of the branch-and-bound tree used to

solve the recourse problems result in no lower bound improvement in the master problem,

which in turn increases the number of iteration of the algorithm while providing any

decrease in the duality gap. Both of the settings with warm starting options resulted in

a better bound for the SIZES4 instance than the setting with node limit. However, the

size of the final master problems with warm-starting options is larger than the default

setting and the setting with node limit. This is consistent with our results for the SSLP

problems.

Together, the Generalized Benders’ algorithm did not result in better solution times

than solving the deterministic equivalent problems for both of the test sets we examined.

Nevertheless, the implementation of the algorithm helped us better understand the extent

to which the value function of the recourse problem has to be explored to solve the two-

stage optimization problem. In addition, we have a better understanding of the dual

function collected from warm-started branch-and-bound trees when solving the recourse

problems. The lower performance of the algorithm is a result of the size of the master

problems that grow to be larger than the deterministic equivalent of the original two-stage

problem. Warm-starting recourse subproblems also resulted in larger optimal tree sizes

for scenario subproblems compared with the default setting of our algorithm, which in

turn increased the size of the master problems solved. Even though the master problems

encode the polyhedral pieces of the recourse value function that are necessary to obtain

strong bounds for the recourse subproblems, the large number of constraints and binary

variables used in the problem’s formulation make the problem challenging to solve in

each iteration of the algorithm. A major computational drawback of formulating master
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4.4. COMPUTATIONAL EXPERIMENTS

problems in the form of (3.16) is that the set of additional valid inequalities from the

leaf nodes of the optimal branch-and-bound tree of a subproblem have to be added or

dropped from the master problem all together in order to maintain the validity of the

piecewise polyhedral dual function of the recourse value function. Treating individual

valid inequalities independently, as in the case of a usual MILP, result in a problem

that is neither lower nor upper bounding to the original two-stage problem. Therefore,

even when the set of valid inequalities from a subproblem contain weak or redundant valid

inequalities, they cannot be dropped from the master problem. This is in contrast with the

usual cutting-plane algorithm applied to a MILP. In particular, when the deterministic

equivalent problem is solved with the branch-and-cut algorithm, the MILP solver can

treat each valid inequality independently and reduce the size of the problem by keeping

only stronger cuts. In the case of the master problem, however, the same polyhedral piece

of the value function can appear in the dual function of multiple scenario subproblems.

Nevertheless, such a valid inequality has to remain in the master problem, since without

it the piecewise polyhedral function is neither a lower not an upper bound to the recourse

value function.

DEP 2nd Stage
Instance cons cols bin cons cols bin Time (s) % Gap

SIZES3 124 300 40 31 107 10 41.4 0.0
SIZES5 186 450 60 31 107 10 2383 0.0
SIZES10 341 825 110 31 107 10 3600 4.43

Table 4.8: The deterministic equivalent of the SIZES instances

No Node Number Limit
Instance Iteration Size Time (s) % Gap

SIZES3 3 636782 (1560, 2987) 3600 0.12
SIZES5 3 149740 (2548, 4989) 3600 20.81
SIZES10 1 4845862 (1513, 2889) 3600 -

Node Number Limit on Recourse
SIZES3 4 20449 (1293, 2451) 3600 42.72
SIZES5 5 85910 (2349, 5744) 3600 23.13
SIZES10 2 133934 (1684, 3219) 3600 -

Table 4.9: Generalized Benders’ algorithm applied to SIZES instances
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Warm starting individual subproblems
Instance Iteration Size Time (s) % Gap

SIZES3 4 47764 (3273, 6264) 3600 0.80
SIZES5 3 122198 (3767, 7324 ) 3600 11.37
SIZES10 2 4254983 (3133, 6119) 3600 -

Warm starting subproblems on one tree
SIZES3 3 159689(2927, 5700) 3600 1.81
SIZES5 2 195582 (4216, 8382) 3600 -
SIZES10 2 656519 (6460, 12772) 3600 -

Table 4.10: Generalized Benders’ algorithm with warm start on SIZES instances
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Chapter 5

Conclusions and Future Research

In this dissertation, we study the structure of the general MILP value function and show

that it can be represented by a countable set of right-hand sides, propose a value function

based reformulation for the general two-stage stochastic mixed integer linear optimization

problem and develop a Benders’ decomposition algorithm to solve such problems. We

also show the performance of the algorithm when applied to several test instances.

The value function of a MILP is key to sensitivity analysis for integer optimization

as well as development of solution methods for various classes of optimization problems.

The backbone of our work is to derive a discrete characterization of the MILP value

function. We identify a countable set of right-hand sides which is sufficient to describe

the discrete structure of the value function and use this set to propose an algorithm for

the construction of MILP value function. This algorithm is finite when the set of right-

hand sides over which the value function of the associated pure integer problem is finite

is bounded.

We further study the connection between the MILP, PILP and LP value functions.

In particular, we show that the MILP value function from the combination of a PILP

value function and a single LP value function. We address the relationship between our

representation and the classic Jeroslow formula for the MILP value function. We study

the continuity and convexity properties of the value function, as well as the relationships

between several critical sets of the right-hand sides such as the set of discontinuity and
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non-differentiability points. As a result of our work, we now have a method to dynamically

generate necessary points to describe a MILP value function. A subset of such points

can be used to derive functions that bound the value function from above, while the full

collection of them is sufficient to have a complete characterization of the value function.

The dynamic generation of these points can be integrated with iterative methods to solve

stochastic integer and bilevel integer optimization problems.

We propose a reformulation of the general two-stage stochastic mixed integer linear

optimization problem based on a discrete representation of the value function and show

how that leads to a generalization of Benders’ algorithm. Our implementation of the

algorithm utilizes dual functions obtained as by-products of the branch-and-bound pro-

cedure for solving the second-stage problem. Such branch-and-bound dual functions, if

derived for each scenario in each iteration, yield a convergent version of Benders’ method.

Solving the subproblems from scratch and incorporating the large number of dual func-

tions that would arise into the master problem, however, seems unlikely to result in a

scalable algorithm. To address the challenge of this very difficult problem class, we pro-

pose to improve the basic method with the addition of a warm-starting strategy in which

all subproblems are solved within a single branch-and-bound tree and in which we use a

single continuously refined lower approximation of the value function within the master

problem. By taking a global view of the construction of dual functions, we are able to

derive stronger dual functions. As a corollary to our approach, we have further shown

that there exists a single branch-and-bound tree from which we can derive the full value

function of the second-stage problem, though it is unnecessary to do so in practice. We

provide details on the implementation of this algorithm. In particular, we implement

two warm-starting strategies for the recourse subproblems which results in constructing

different approximations of the second-stage value function. We provide computational

results on the performance of the algorithm and compare different strategies, including

limiting the size of the branch-and-bound tree used to solve the recourse problems in

addition to the warm-starting strategies.

The challenge that we have in practice with the generalized Benders’ method is the
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size of the master problem that grows very fast as a result of the strong dual functions

of the recourse value function encoded in it. In fact, in our computational experiments,

the master problems solved during the execution of the generalized Benders’ algorithm

grow to be larger than the corresponding deterministic equivalent problems. This is a

consequence of the structure of the dual functions we use in formulating the master prob-

lem. To maintain the validity of these functions as dual functions, the dual information

of all leaf nodes of the branch-and-bound tree should be kept each time a new scenario

subproblem is solved. Nevertheless, many of the collected dual polyhedral functions con-

tain the same dual information but cannot be dropped from the formulation since they

are a necessary part of a piecewise polyhedral function. Therefore, individual pieces of

the piece-wise polyhedral functions cannot be dropped. Dropping a dual function with

many repetitive pieces all together can also potentially make the remaining functions in

the master problem weak with respect to the right-hand side that led to the dropped dual

function in the first place. Given that many individual pieces belonging to different dual

functions have the same dual information (i.e., the gradient of the polyhedral function)

and only differ in the intercept, one extension of our work is finding formulations of the

master problem that takes advantage of this similarity by combining two or more piece-

wise polyhedral dual functions derived from distinct scenario subproblems such that the

combined function remains strong at all the right hand-sides leading to the original dual

functions. Doing this, the repeating pieces can be dropped to represent a unified function

which in turn results in fewer binary variables in the formulation of the master problem.

Another extension of our work is to only keep the strong polyhedral pieces of the

dual functions collected for a scenario subproblem and relax the remaining (potentially

many) polyhedral pieces by replacing them with a much simpler function that is still

lower bounding to the value function of the recourse problem. Such surrogate pieces can

potentially be derived from the structure of the value function of the linear relaxation

of the recourse problem or take more complicated forms. Then, the additional binary

variables added to the master problem for representing the weak pieces can also get

eliminated and replaced by far fewer binary variables needed to represent the simpler
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polyhedral functions. In contrast, another extension of our work is to start with the

value function of the linear relaxation of the recourse problem as the initial lower bounding

approximation and strengthen it by the dual functions of only part of the leaf nodes of the

branch-and-bound tree that correspond to strong dual polyhedral pieces. The challenge

in such an extension is to how to combine these new polyhedral pieces with the LP value

function such that the new function remains lower bounding to the MILP value function

of the recourse problem.

Our computational experiments also show that solving the deterministic equivalent

problems of the two-stage mixed integer test instances is faster than using the general-

ized Benders’ algorithm to solve them. This is in contrast with the case of continuous

two-stage optimization problems for which Benders’ decomposition has been a very suc-

cessful solution framework. This difference in performance is a direct consequence of the

structure of the MILP value function which is tremendously more complicated than the

one of an LP value function. In the continuous Benders’ method, each individual dual

function added to the master problem is simply a single valid inequality, just as in the

cutting plane method. Managing the size of the master problem therefore requires the

same cut pool management techniques used in the cutting plane or branch-and-cut algo-

rithms. In the generalized Benders’ algorithm, however, a collection of potentially many

valid inequalities build a dual function, therefore, adding and dropping individual valid

inequalities is not trivial. Managing cut pools in this case requires managing a collection

of valid inequalities all together. Detangling these valid inequalities, which represent a

piece-wise polyhedral function, to individual valid inequalities is not straightforward, as

a single polyhedral function has to be a lower bounding function to the recourse value

function which can be strong only at a very limited number of right-hand sides. How-

ever, reducing the number of intertwined valid inequalities in order to represent a simpler

piece-wise polyhedral function by relaxation methods we explained earlier may result in

faster solution times.
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Güzelsoy, M. (2009). Dual methods in mixed integer linear programming. PhD thesis,

Lehigh University.

Jeroslow, R. (1978). Cutting-plane theory: Algebraic methods. Discrete mathematics,

23(2):121–150.

Jeroslow, R. G. (1979). Minimal inequalities. Mathematical Programming, 17(1):1–15.

Johnson, E. L. (1973). Cyclic groups, cutting planes and shortest paths. Mathematical

programming, pages 185–211.

Johnson, E. L. (1974). On the group problem for mixed integer programming. In Ap-

proaches to Integer Programming, pages 137–179. Springer.

Jorjani, S., Scott, C. H., and Woodruff, D. L. (1999). Selection of an optimal subset of

sizes. International journal of production research, 37(16):3697–3710.

Kall, P. and Mayer, J. (2010). Stochastic linear programming: models, theory, and com-

putation. Springer Verlag.

Klabjan, D. (2007). Subadditive approaches in integer programming. European journal

of operational research, 183(2):525–545.

Klein, D. and Holm, S. (1979). Integer programming post-optimal analysis with cutting

planes. Management Science, 25(1):64–72.

Kong, N., Schaefer, A., and Hunsaker, B. (2006). Two-stage integer programs with

stochastic right-hand sides: a superadditive dual approach. Mathematical Program-

ming, 108(2):275–296.

161



BIBLIOGRAPHY

Laatsch, R. G. et al. (1964). Extensions of subadditive functions. Pacific J. Math,

14:209–215.

Laporte, G. and Louveaux, F. (1993). The integer l-shaped method for stochastic integer

programs with complete recourse. Operations research letters, 13(3):133–142.

Llewellyn, D. C. and Ryan, J. (1993). A primal dual integer programming algorithm.

Discrete Applied Mathematics, 45(3):261–275.

Loukakis, E. and Muhlemann, A. (1984). Parameterisation algorithms for the integer lin-

ear programs in binary variables. European Journal of Operational Research, 17(1):104–

115.

Madansky, A. (1959). Bounds on the expectation of a convex function of a multivariate

random variable. The Annals of Mathematical Statistics, pages 743–746.

Mak, W.-K., Morton, D. P., and Wood, R. K. (1999). Monte carlo bounding techniques

for determining solution quality in stochastic programs. Operations Research Letters,

24(1):47–56.

Marsten, R. E. and Morin, T. L. (1977). Parametric integer programming: The right-

hand-side case. Annals of Discrete Mathematics, 1:375–390.

Morton, D. P. (1996). An enhanced decomposition algorithm for multistage stochastic

hydroelectric scheduling. Annals of Operations Research, 64(1):211–235.

Nauss, R. M. (1979). Parametric integer programming, volume 67. University of Missouri

Press Columbia, Missouri.

Nemhauser, G. and Wolsey, L. (1988). Integer and combinatorial optimization, volume 18.

Wiley New York.

Ntaimo, L. (2010). Disjunctive decomposition for two-stage stochastic mixed-binary pro-

grams with random recourse. Operations research, 58(1):229–243.

162



BIBLIOGRAPHY

Ntaimo, L. and Sen, S. (2005). The million-variable march for stochastic combinatorial

optimization. Journal of Global Optimization, 32(3):385–400.

Piper, C. J. and Zoltners, A. A. (1976). Some easy postoptimality analysis for zero-one

programming. Management Science, 22(7):759–765.
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