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Abstract

The theory of signal detection and estimation concerns the recovery of useful information

from signals corrupted by random perturbations. This dissertation discusses the application

of signal detection and estimation principles to two problems of significant practical inter-

est: MIMO (multiple-input multiple output) radar, and time synchronization over packet

switched networks. Under the first topic, we study the extension of several conventional

radar analysis techniques to recently developed MIMO radars. Under the second topic, we

develop new estimation techniques to improve the performance of widely used packet-based

time synchronization algorithms.

The ambiguity function is a popular mathematical tool for designing and optimizing the

performance of radar detectors. Motivated by Neyman-Pearson testing principles, an alter-

native definition of the ambiguity function is proposed under the first topic. This definition

directly associates with each pair of true and assumed target parameters the probability that

the radar will declare a target present. We demonstrate that the new definition is better

suited for the analysis of MIMO radars that perform non-coherent processing, while being

equivalent to the original ambiguity function when applied to conventional radars. Based on

the nature of antenna placements, transmit waveforms and the observed clutter and noise,

several types of MIMO radar detectors have been individually studied in literature. A second

investigation into MIMO radar presents a general method to model and analyze the detec-

tion performance of such systems. We develop closed-form expressions for a Neyman-Pearson

optimum detector that is valid for a wide class of radars. Further, general closed-form expres-

sions for the detector SNR, another tool used to quantify radar performance, are derived.

Theoretical and numerical results demonstrating the value of the proposed techniques to

1



optimize and predict the performance of arbitrary radar configurations are presented.

There has been renewed recent interest in the application of packet-based time synchro-

nization algorithms such as the IEEE 1588 Precision Time Protocol (PTP), to meet chal-

lenges posed by next-generation mobile telecommunication networks. In packet based time

synchronization protocols, clock phase offsets are determined via two-way message exchanges

between a master and a slave. Since the end-to-end delays in packet networks are inherently

stochastic in nature, the recovery of phase offsets from message exchanges must be treated

as a statistical estimation problem. While many simple intuitively motivated estimators for

this problem exist in the literature, in the second part of this dissertation we use estimation

theoretic principles to develop new estimators that offer significant performance benefits. To

this end, we first describe new lower bounds on the error variance of phase offset estimation

schemes. These bounds are obtained by re-deriving two Bayesian estimation bounds, namely

the Ziv-Zakai and Weiss-Weinstien bounds, for use under a non-Bayesian formulation. Next,

we describe new minimax estimators for the problem of phase offset estimation, that are opti-

mum in terms of minimizing the maximum mean squared error over all possible values of the

unknown parameters. Minimax estimators that utilize information from past timestamps to

improve accuracy are also introduced. These minimax estimators provide fundamental limits

on the performance of phase offset estimation schemes. Finally, a restricted class of estimators

referred to as L-estimators are considered, that are linear functions of order statistics. The

problem of designing optimum L-estimators is studied under several hitherto unconsidered

criteria of optimality. We address the case where the queuing delay distributions are fully

known, as well as the case where network model uncertainty exists. Optimum L-estimators

that utilize information from past observation windows to improve performance are also

described. Simulation results indicate that significant performance gains over conventional

2



estimators can be obtained via the proposed optimum processing techniques.
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Chapter 1

Introduction

1.1 MIMO Radar

A radar is a system that transmits electromagnetic signals, and analyzes the reflections

returned from objects in its surroundings (referred to as targets) to deduce information such

as the position, velocity and size of these objects. Until recently, most deployed radar systems

could be classified as either phased arrays or multistatic radars. Phased arrays utilize several

closely spaced transmitters and receivers, jointly designed to focus on a narrow region of space

at any given time. This is achieved by transmitting scaled versions of a single waveform from

different transmitters, and coherently processing the received signals. Multistatic radars

consist of multiple independently operating phased array radars, whose decisions are fused,

often suboptimally, to improve performance over that of any individual subsystem.

The term MIMO radar refers to a new, holistic approach to radar design, wherein multi-

ple transmitters and receivers are jointly designed and operated. MIMO radars have received

significant research interest in recent years, owing to advances in integrated circuit technol-
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ogy and signal processing techniques that have improved the practical viability of the MIMO

radar concept. By allowing greater design flexibility in the choice of transmit waveforms, the

placement of transmit and receive antennas, as well the design of receiver processing algo-

rithms, MIMO radars can exhibit significantly improved performance characteristics relative

to conventional radars. MIMO radar configurations considered in literature can be broadly

classified into two categories. In MIMO radars with closely spaced antennas [1, 2, 3], also

known as colocated MIMO radar, arbitrarily correlated waveforms can be used to increase

the degrees of freedom available for beamforming relative to phased arrays. In MIMO radars

with widely separated antennas, significantly improved localization accuracy is possible un-

der coherent processing [4, 5, 6], while under non-coherent processing [6, 7, 8, 9, 10] spatial

diversity gains can be obtained when different transmit/receive paths illuminate different as-

pects of a target’s radar cross section (RCS). In the first part of this dissertation, we seek to

extend several conventional radar analysis and waveform design techniques to MIMO radars.

1.2 Packet-based Time Synchronization

In the modern technological era, there are a myriad of electronic devices that are critically

dependent on the availability of a common time reference across many different physical

locations. To this end, these devices typically perform timekeeping locally using clock hard-

ware that exploits the periodicity of certain physical phenomena, such as the mechanical

resonance of vibrating crystals (in low-cost quartz crystal oscillators), or electromagnetic

transitions within cesium or rubidium atoms (in expensive atomic clocks). However, all such

timekeeping techniques are subject to random errors that accumulate over large time scales,

and the cost, size and complexity of timekeeping hardware are all typically proportional

5



to clock stability. As a result, there are often scenarios where it is impractical to locally

maintain clock hardware required to achieve a desired level of stability, due to space or bud-

get constraints. Network time synchronization algorithms address this problem by regularly

correcting the output of low-cost, low-stability clocks (termed slaves) using measurements

obtained from high-cost, high-stability clocks (termed masters) via an interconnecting net-

work. These algorithms are widely used in areas such as industrial measurement and control,

wireless sensor networks, telecommunications, smart grids, and internet-enabled applications

such as voice and video telephony and financial communications.

Many network time synchronization protocols have been developed in the literature,

addressing different types of networks. For instance, the Network Time Protocol [11] and the

IEEE 1588 Precision Time Protocol (PTP) [12] are widely used in IP networks. For wireless

sensor networks, protocols such as Reference Broadcast Synchronization [13], Post facto [14],

Tiny-Sync and Mini-sync [15] have been developed. In the context of ad-hoc communication

networks, Romer’s time synchronization protocol [16] has been discussed. Though these

protocols differ from each other in many aspects, a fundamental mechanism common to most

synchronization protocols is the two-way message exchange; which refers to the exchange of

messages between a pair of nodes to achieve clock synchronization.

During a two-way message exchange, a slave node exchanges a series of packets with

a master node over an interconnecting network, and collects timestamps corresponding to

the departure and arrival times of these packets. The slave then attempts to utilize these

timestamps to correct it own clock, however this is hindered by the random queuing delays

experienced by packets as they traverse the interconnecting network. The second part of

this dissertation develops new approaches to combat the degrading effects of these random

queuing delays on synchronization accuracy.
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While the techniques we develop can be applied to any protocol that uses two-way mes-

sage exchanges, we mainly discuss the applications of our results in the context of PTP applied

to telecommunication networks. Packet-based time synchronization techniques based on the

IEEE 1588 Precision Time Protocol (PTP) are being increasingly considered as a means of

providing microsecond-level synchronization between cell towers in 4G LTE (Long Term Evo-

lution) mobile networks [17, 18, 19, 20, 21]. Such a high degree of synchronization accuracy

is a necessity in 4G networks since it helps ensure seamless handovers between cell towers,

helps reduce inter-cell interference, and also enables the use of MIMO techniques to im-

prove capacity [22]. As compared to GPS (global positioning system) based synchronization,

packet-based synchronization is often more cost-effective since it utilizes the existing mo-

bile backhaul network infrastructure that is used to interconnect cell towers. However, since

backhaul networks are typically leased from commercial internet service providers (ISPs),

mobile network operators must share their use with other commercial and residential users.

Background traffic generated by these users often results in large random network delays

that hinder packet-based synchronization. Overcoming this problem is key to the adoption

of packet-based synchronization schemes in mobile backhaul networks, especially given that

the synchronization accuracy requirements are only expected to grow more stringent in the

future. In the second part of this dissertation, we attempt to address this challenge by devel-

oping new techniques to combat variable network delays, and demonstrate their performance

in mobile backhaul networks.
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1.3 Outline of the Dissertation

As mentioned in the previous sections, this dissertation focuses on two topics: MIMO radar,

and network time synchronization. The dissertation consists of five chapters. Chapters 2 and

3 are related to the first topic of MIMO radar, while Chapters 4, 5 and 6 are related to the

second topic of network time synchronization. A brief outline of each chapter is presented

below.

In Chapter 2, we propose a new definition of the ambiguity function, an important tool

used to analyze and optimize the performance of radar detectors. Motivated by Neyman-

Pearson testing principles, we propose an alternative definition of the ambiguity function

that directly associates with each pair of true and assumed target parameters the probability

that the radar will declare a target present. We show that the original ambiguity function

definition of Woodward and Davies for single antenna systems (and its extensions to mul-

tichannel systems that use coherent processing) are essentially equivalent to the proposed

definition. Further, for radars that perform non-coherent processing, we show the extensions

to Woodward’s ambiguity function proposed in the literature are not equivalent to our pro-

posed definition, and therefore may not accurately reflect detection performance. Simulations

results demonstrate the differences between these different ambiguity function definitions for

non-coherent radars. This research was published in in [23].

In Chapter 3, we study the general case where the transmit and receiver antennas have

arbitrary separations, while also assuming that the transmit waveforms are arbitrarily cor-

related with one another. In this general scenario, we derive closed form expressions for

the optimal Neyman-Pearson detector assuming white as well as colored clutter-plus-noise.

We further obtain general expressions for the detector signal-to-noise ratio (SNR), a popular

8



measure of detection performance. It is shown that for radars with widely separated an-

tennas, orthogonal waveforms maximize detector SNR at high received SNRs. A new scalar

measure to characterize the nature of the waveform correlation matrix and the channel covari-

ance matrix, termed the normalized eigenvariance, is also introduced. Simulation results are

presented demonstrating the nature of the optimal transmit waveforms for various antenna

separations. This research was published in [24].

In Chapter 4, we describe new lower bounds on error variance of phase offset estimation

schemes used in PTP based synchronization. To this end, we re-derive two Bayesian estima-

tion bounds, namely the Ziv-Zakai and Weiss-Weinstien bounds, for use under a non-Bayesian

formulation. This enables us to apply these bounds to the problem of phase offset estima-

tion. Simulation results compare the performance of existing estimation schemes against these

lower bounds under a variety of different network scenarios. This research was published in

[25].

In Chapter 5, we describe new minimax estimators for the problem of phase offset esti-

mation in PTP based synchronization. These estimators are optimum in terms of minimizing

the maximum mean squared error over all possible values of the unknown parameters. Min-

imax estimators that utilize information from past timestamps to improve accuracy are also

introduced. These minimax estimators also provide fundamental limits on the performance

of phase offset estimation schemes. Simulation results indicate that significant performance

gains over conventional estimators can be obtained via such optimum processing techniques.

This research was published in [26].

In Chapter 6, we consider a restricted class of estimators referred to as L-estimators,

which are linear functions of order statistics. The problem of designing optimum L-estimators

is studied under several hitherto unconsidered criteria of optimality. Our results address the

9



case where the queuing delay distributions are fully known, as well as the case where network

model uncertainty exists. Optimum L-estimators that utilize information from past obser-

vation windows to improve performance are also described. The derived L-estimators have

a much lower computational complexity than minimax estimators, and also require lesser

statistical knowledge of the queuing delays. Simulation results indicate that L-estimators ex-

hibit a mean squared estimation error very close to minimax estimators under many network

scenarios. This research was published in [27].
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Chapter 2

Ambiguity Functions for

Non-Coherent MIMO Radars

2.1 Problem Motivation

The ambiguity function (AF) is often used to study the effect of system design choices such

sensor geometry, waveform shape and receiver processing techniques on radar detection per-

formance. It was first proposed by Woodward and Davies [28] in the context of single antenna

radars, as a consequence of the nature of the optimal Neyman-Pearson detector. The optimal

decision rule for such systems involved comparing a test statistic of the form

T = |r|2 = |αχW(∆τ,∆ν) + w|2 (2.1)

to a threshold, where r denotes the receiver’s matched filter output, and α, w respectively

represent (zero-mean) Gaussian random variables corresponding to the target’s scattering
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coefficient and receiver noise. χW(∆τ,∆ν) represents Woodward’s AF, defined as

χW(∆τ,∆ν) =

∫ Ts

0
s(t)s∗(t+ ∆τ)exp {−j2π∆νt} dt

where ∆τ and ∆ν respectively denote the difference between the true and assumed values

of the target’s delay and Doppler frequency, and s(t) is the transmitted waveform. Radar

designers optimize χW(∆τ,∆ν) to achieve a ‘thumbtack’ shape; the rationale for such op-

timization criteria is that maximizing |χW(0, 0)| maximizes the response of the detector to

matched targets, while minimizing |χW(∆τ,∆ν)| when (∆τ,∆ν) 6= (0, 0) minimizes the re-

sponse of the detector to mismatched targets.

In most modern radar systems, multiple channels (established via multiplexing in the

time, frequency, or spatial domains) exist for the propagation of signals between the transmit-

ter(s) and the receiver(s). Consider a hypothetical two-channel radar that transmits distinct

waveforms in each channel, and obtains the matched filter outputs

ri = αiχ
(i)
W(∆τ,∆ν) + wi for i = 1, 2

where the noise terms w1 and w2 are i.i.d. zero-mean Gaussian random variables. In such a

system, if the channel gains α1 and α2 are also zero mean Gaussian random variables, then

their mutual correlation determines the nature of the optimal joint detector. For instance,

when α1 and α2 are fully correlated (hence admitting the representation αi = ciα for i = 1, 2

, where ci is a deterministic scalar), the optimum test statistic has the form

T =

∣∣∣∣∣
2∑
i=1

biri

∣∣∣∣∣
2

=

∣∣∣∣∣α
2∑
i=1

biciχ
(i)
W(∆τ,∆ν) +

2∑
i=1

biwi

∣∣∣∣∣
2

(2.2)

where {bi}Ki=1 are deterministic weights. Such processing of the matched filter outputs is said

to be coherent, and occurs in any radar where all channel gains can be jointly characterized
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using a single Gaussian random variable, such as phased arrays or MIMO radars with closely

spaced antennas [29]. Comparing (2.1) and (2.2), the equivalent of Woodward’s AF for this

system can be defined as

χ̂W (τ, ν) =
K∑
i=1

biciχ
(i)
W(∆τ,∆ν) , (2.3)

i.e., the overall AF is a weighted sum of the individual Woodward’s AFs for each channel.

When α1 and α2 are uncorrelated, then the test statistic has the form

T =

2∑
i=1

bi|ri|2 =

2∑
i=1

bi

∣∣∣αiχ(i)
W(∆τ,∆ν) + wi

∣∣∣2 (2.4)

Such processing is said to be non-coherent, and results whenever more than one Gaussian

random variable is required to fully describe all channel gains. This scenario occurs in any

radar that exploits diversity techniques to improve performance, including wideband radars,

multi-pulse systems where the target RCS varies rapidly, and MIMO radar with widely

separated antennas. Observe that in (2.4), the channel gains cannot be factored out from

the individual Woodward’s AFs as in (2.2), therefore it is no longer possible to define an AF

analogous to (2.3) for the overall system.

Many recent research papers, especially in the context of multi-antenna radar, have

attempted to describe an AF for systems that use non-coherent processing. For instance,

in [30], the ambiguity function is defined as weighted sum of individual bistatic ambiguity

functions. On the other hand, in [31], the AF is defined as the expected value of the test

statistic. While both these definitions bear intuitive appeal, it is unclear whether they truly

reflect the final performance goals of the system, which is to maximize the probability of

detection of matched targets while minimizing the probability of detection of mismatched

targets.
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2.2 Proposed Ambiguity Function Definition

Consider a general radar model, in which the received signals are random processes whose

statistics embed information about target parameters such as position and velocity. Assume,

for simplicity, that exactly one target is present in the field of view (FOV) of the radar (our

discussion can also be extended to multi-target scenarios). Let θT denote as a vector compris-

ing the true values of all target parameters, and let θA represent the target parameter values

assumed at the receiver. During detection, we typically consider the following hypothesis

testing problem in each detection bin:

H0 : Target present at θA

H1 : Target absent

(2.5)

The optimal Neyman-Pearson decision rule for this problem will have the form

T
H0
≷
H1

η , (2.6)

where T represents the test statistic, with the detection threshold η chosen so that the

observed false alarm rate Pr {T > η | H1} equals the the required false alarm rate ε.

When framing the hypothesis testing problem in (2.5), we ignore the possibility that

the target may be present in a bin other the bin under test. Otherwise, we would have to

consider the following hypothesis testing problem:

H0 : Target is present at θA (i.e. θT = θA)

H1 :

 Either target absent, or target not

present at θA (i.e. θT 6= θA)

 (2.7)

Note that the null hypothesis in (2.7) is composite. It can be shown that no uniformly most
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powerful (UMP) test exists for this problem, therefore the preferred approach is to only

consider the simple hypothesis testing problem in (2.5). Such an approximate hypothesis

testing model will be valid as long as we ensure that the presence of mismatched targets

under the null hypothesis does not significantly impact the performance of the detector.

The test statistic T is computed by processing the received signals (whose statistics

depend on θT when a target is present in the FOV of the radar) using the assumed target

parameter vector θA. Therefore we may write

T =



TPr(θT,θA)

 when target is present

in the radar’s FOV,


TAb(θA)

 when target is absent

from the radar’s FOV.


The probability of detection of mismatched targets is

PF(θT,θA) = Pr {TPr(θT,θA) > η} (2.8)

whenever θT 6= θA, while the probability of detection of matched targets is

PD(θA) = Pr {TPr(θT,θA) > η | θT = θA} (2.9)

In order to minimize the impact of mismatched targets on the performance of the detector, we

must minimize PF(θT,θA). Further, we would like to maximize the probability of detection

PD(θA) of matched targets. To state these optimization goals simultaneously we propose the

following AF definition

χ(θT,θA) = Pr {TPr(θT,θA) > η} =


PD(θA) if θT = θA

PF(θT,θA) if θT 6= θA
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Clearly, we must aim to minimize χ(θT,θA) whenever θT 6= θA, and maximize it when

θT = θA; this is similar to how Woodward’s AF is optimized.

2.3 Ambiguity Function for Gaussian Signals

In this section, we further study the proposed AF under a Gaussian signal detection scenario.

For ease of explanation, we consider a multi-antenna narrowband radar with M transmitters

and N receivers, and assume a zero-velocity target. The form of optimal test statistic for this

system will depend on nature of correlations between transmit waveforms, as well as sensor

placements. Hence, we first derive the optimal detector under a general model that allows

arbitrarily correlated waveforms and arbitrary radar geometries. We later consider specific

coherent and non-coherent processing scenarios.

Let
√
Essm(t) (0 ≤ t ≤ Ts) be the complex baseband signal transmitted by the mth

transmitter, where Es is the total transmitted energy and
∑M

m=1

∫ Ts
0 |sm(t)|2 dt = 1. The

signal arriving at the nth receiver can be modelled as

rn(t) =
√
Er

M∑
m=1

αn,mun,m(t,θT) + wn(t) (2.10)

where αn,m represents the channel gain between the mth transmitter and the nth receiver, Er

is the received energy along the first transmit-receive path (α1,1 = 1), and wn(t) represents

additive Gaussian receiver noise, with time-correlation

E
[
wn(t)w∗n′(t

′)
]

=
σ2
n

Ts
δ(n− n′)δ(t− t′)

Further, θT contains the target’s coordinates, and un,m(t,θT) represents the signal obtained

by applying path delay effects to sm(t), given that it arrives at the nth receiver after being

reflected by a target located at θT.
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Let H = [αn,m]N×M and let α = vec{HT }, where vec{.} represents the vectorization

operation. We assume a Gaussian vector channel, i.e. α ∼ CN (0,Σα), where Σα is a known

positive semidefinite matrix.

To compute the test statistic for the detection bin corresponding to target coordinates

θA, we must first compute the matched filter outputs

rn,m =

∫ Ts

0
rn(t)u∗n,m(t,θA)dt =

√
Er

M∑
m′=1

αn,m′ξn,m,m′(θT,θA) + wn,m (2.11)

for n = 1, · · · , N and m = 1, · · · ,M , where

ξn,m,m′(θT,θA) =

∫ Ts

0
un,m′(t,θT)u∗n,m(t,θA)dt (2.12)

and

wn,m =

∫ Ts

0
wn(t)u∗n,m(t,θA)dt

Define R = [rn,m]N×M and W = [wn,m]N×M ; and let r = vec{R} and w = vec{W}. Further,

define as the waveform correlation matrix

ξ(θT,θA) =


ξ1(θT,θA) · · · 0

...
. . .

...

0 · · · ξN (θT,θA)

 (2.13)

where

ξn(θT,θA) =


ξn,1,1(θT,θA) · · · ξn,1,M (θT,θA)

...
. . .

...

ξn,M,1(θT,θA) · · · ξn,M,M (θT,θA)

 .
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Then our model reduces to

r =
√
Erξ(θT,θA)α+ w

with w ∼ CN (0, σ2
wξ(θA,θA)). In each bin, we can now frame the following hypothesis

testing problem:

H0 : r =
√
Erξ(θA,θA)α+ w (Target present at θA)

H1 : r = w (Target absent)

Clearly, under both hypotheses, r is a zero mean Gaussian random vector, with covariance

matrix

E
[
rr†
]

=


ξ(θA,θA)

[
ErΣαξ(θA,θA) + σ2

wI
]

= Σ1 H0

σ2
wξ(θA,θA) = Σ0 H1

where ()† represents the Hermitian transpose operation. Assuming Σ0 and Σ1 are positive

definite, the test statistic can be written as the log-likelihood ratio

T = r†D(θA)r

where

D(θA) = Σ0
−1 −Σ1

−1 = (ρΣαξ(θA,θA) + I)−1Σα (2.14)

and ρ = Er/σ
2
w denotes the received signal to noise ratio. Using low-rank matrix decom-

positions, it can be shown that the final expression on the right hand side of (2.14) will be

valid even if Σ0 and Σ1 are rank deficient. We now consider two specific scenarios under this

general Gaussian signal model.
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2.3.1 Coherent Processing

Consider a scenario where a radar’s sensors are closely spaced and the signals are narrowband

in nature. Here the received signal can be modelled as [32]

rn(t) =
√
Er

M∑
m=1

sm(t− τ(θT))α0e
j2πfc[τ(θT)−τm,n(θT)]︸ ︷︷ ︸

αn,m

+wn(t)

where α0 represents the nominal channel gain (a zero-mean Gaussian random variable with

E
[
|α0|2

]
= 1), τ(θT) represents the nominal path delay, and τm,n(θT) is a corrective factor

used to make τ(θT)− τm,n(θT) equal to the delay along the (m,n)th transmit-receive path

(typically |τm,n(θT)| � |τ(θT)|). Comparing against (2.10), (2.11) and (2.12), for this system

we have

un,m(t,θT) = sm(t− τ(θT)) ,

ξn,m,m′(θT,θA) =

∫ Ts

0
sm(t− τ(θT))s∗m(t− τ(θA))dt

Further, the narrowband assumption allows us to write

ξn,m,m′(θT,θA) ≈
∫ Ts

0
sm(t)s∗m(t+ τ(θT)− τ(θA))dt

=

∫ Ts

0
sm(t)s∗m(t+ ∆τ)dt , ξn,m,m′(∆τ)

where ∆τ = τ(θT)− τ(θA). Hence we can reexpress ξ(θT,θA) in (2.13) as ξ(∆τ), where

ξ(∆τ) =


ξ1(∆τ) · · · 0

...
. . .

...

0 · · · ξN (∆τ)


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and

ξn(∆τ) =


ξn,1,1(∆τ) · · · ξn,1,M (∆τ)

...
. . .

...

ξn,M,1(∆τ) · · · ξn,M,M (∆τ)

 .

We note that the channel gains αn,m are all multiples of the Gaussian random variable

α0, hence the channel covariance matrix Σα will be unit rank, and as a result D(θT) (in

(2.14)) will also be unit rank. Thus we can write D(θT) = bb†, where b is a vector, and

thereby reduce the test statistic to the form T =
∣∣b†r∣∣2. Such processing is termed coherent

because the elements of the vector r are weighted and summed prior to the magnitude square

operation. The proposed AF for this system is given as χ̃(θT,θA) = Pr {TPr(θT,θA) > η},

where

TPr(θT,θA) =
∣∣∣b† [√Erξ(θT,θA)α+ w

]∣∣∣2 (2.15)

To show that this AF is equivalent to Woodward’s AF, we note that b†
[√
Erξ(θT,θA)α+ w

]
is a zero-mean circular symmetric complex Gaussian random variable. If x1 and x2 are two

random variables independently distributed as CN (0, 1), then

E
[
|x1|2

]
> E

[
|x2|2

]
⇐⇒ Pr

{
|x1|2 > η

}
> Pr

{
|x2|2 > η

}
∀ η ∈ R

This property implies that under coherent processing, optimizing the proposed AF is equiva-

lent to optimizing the expected value of the test statistic. Let Σα = dd†, where d is a vector.

20



Thus we may equivalently define the AF as

χ̃(θT,θA) = E [TPr(θT,θA)] = E

[∣∣∣b† [√Erξ(θT,θA)α+ w
]∣∣∣2]

= Erb
†ξ(θT,θA)Σαξ(θT,θA)b + b†E

[
w†w

]
b

= Er

∣∣∣b†ξ(∆τ)d
∣∣∣2 + b†ξ(0)b (2.16)

The second term on the right hand side of (2.16) is constant, and hence may be ignored. This

leads us to the following equivalent AF definition

χ̂(θT,θA) = b†ξ(∆τ)d , (2.17)

which corresponds exactly to extensions of Woodward’s AF to multi-antenna systems with

closely spaced antennas [32].

2.3.2 Non-Coherent Processing

For a multi-antenna radar with widely separated sensors, it can be shown [33] that Σα will

be full rank, and hence that D(θA) will also be full rank. When a target is present in the

FOV of the radar, the test statistic will thus assume the form

TPr(θT,θA) =
∣∣∣∣∣∣[D(θA)]1/2

[√
Erξ(θT,θA)α+ w

]∣∣∣∣∣∣2 , (2.18)

On the other hand, when the target is absent, we will have TAb(θA) = w†D(θA)w. Let

η(θA) be the detection threshold chosen to achieve the required false alarm rate. Then our

proposed AF is given as

χ(θT,θA) = Pr {TPr(θT,θA) > η(θA)} (2.19)
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Since α and w are zero mean Gaussian random vectors, TPr(θT,θA) is distributed as a

quadratic form in Gaussian random variables [34]. In general, if T1 and T2 are Gaus-

sian quadratic forms, then E [T1] > E [T2] does not necessarily imply that Pr {T1 > η} >

Pr {T2 > η}. For example, if T1 = 1.9|x1|2 + 0.2|x2|2 and T2 = |x1|2 + |x2|2, where x1, x2 are

independently distributed as CN (0, 1), then E[T1] = 2.1 > 2 = E[T2], while Pr {T1 > 1} =

0.66 < 0.74 = Pr {T2 > 1}. Therefore no reduction of the form of (2.16) is possible under

non-coherent processing.

2.4 Simulation Results

For our simulations, we considered a radar with 6 transmitters and 6 receivers that were placed

randomly on the circumference of a circle of radius 2000 m whose centre coincided with the

origin of our coordinate system. A certain class of waveforms referred to as orthogonal phase

coded transmit waveforms were used for sm(t). The target’s true position θT was fixed at

the origin. The channel covariance matrix Σα was assumed to be an identity matrix. The

required false alarm rate was set to η = 10−4, and the SNR was set to 6 dB. The resulting

probability of detection was PD = 0.38. Figs. 2.1a and 2.1b show the ambiguity plots

obtained using the proposed AF and the AF definition of [31] respectively. In these plots we

observed multiple instances where for two assumed parameter values θ
(1)
A and θ

(2)
A , we had

E
[
TPr(θT,θ

(1)
A )
]
< E

[
TPr(θT,θ

(2)
A )
]
, while χ(θT,θ

(1)
A ) > χ(θT,θ

(2)
A ). This illustrates that

optimizing the proposed AF may lead to waveforms that are significantly different from those

obtained using the the AF of [31].
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(a) Proposed ambiguity function

(b) Ambiguity function definition of [31]

Figure 2.1: Plots of ambiguity functions
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Chapter 3

Waveform Correlation Matrix

Design for MIMO radar

3.0.1 Problem Motivation

The performance of any MIMO radar is mainly dependent on the following factors:

(a) The placement of transmit and receive antennas,

(b) The choice of the transmit waveforms,

(c) The nature of clutter-plus noise at the receivers, and

(d) The receiver processing algorithms.

In MIMO radar literature, typically only a few fixed choices for factors (a)-(c) are studied.

In this chapter, we study the problem of target detection under arbitrary values for factors

(a)-(c), while assuming optimum processing for factor (d).
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When the transmit and receiver antennas may have arbitrary separations, the result-

ing channel gains along different transmit-receive paths will also have arbitrary correlations

with one another. Our study assumes statistical knowledge of the channel gains, which is a

more relaxed assumption than in studies where complete channel knowledge is assumed. In

practice, this statistical knowledge (the covariance matrix of Gaussian channel gains and the

clutter-plus-noise covariance matrix) has to be obtained via estimation techniques and used in

conjugation with detection techniques such as the Generalized Likelihood Ratio test (GLRT).

Our study essentially provides upper bounds on detection performance in this scenario.

For a MIMO radar with M transmitter and N receivers, a single M ×M zero-lag wave-

form correlation matrix is sufficient to specify the detector when the transmit and receive

antennas are closely spaced. In the general case, we show that for arbitrary antenna sep-

arations, the detector depends on the correlations between the received signals, i.e. the

transmitted signals shifted by delays corresponding to a specific target location. Hence, N

received waveform correlation matrices (each of size M ×M with appropriate delays) are

required to fully specify the detector for a specific target location.

With regard to the additive clutter-plus-noise occurring at the receiver, we assume a

general scenario in this work, wherein the clutter might potentially be correlated along time

and across different receive antennas, while the thermal receiver noise is temporally white

and uncorrelated across receivers. The special case where the clutter-plus-noise as a whole is

spatial and temporal white is also studied in detail, since it enables significantly simplifications

in our analysis.

Thus, assuming that the channel covariance matrix and the waveform correlation matrix

are arbitrary (but known) positive semidefinite matrices, we derive closed form expressions

for the optimum Neyman-Pearson detector using low-rank matrix decomposition techniques.
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While the detector expression in the case of spatially and temporally correlated clutter-

plus-noise requires the computation of certain matrix decompositions, we show that this

requirement can be eliminated in the case of spatially and temporally correlated white clutter-

plus-noise. This is one of the main results of this work.

In this chapter, we further derive an expression for the detector SNR of a MIMO radar

as a function of the channel covariance matrix, waveform correlation matrix and the input

SNR. We show that this general expression reduces to known expressions for detector SNR

for specific radar configurations as given in [10]. Further, we use this expression to study the

nature of the waveform correlation matrices that maximize the detector SNR under various

configurations at different input SNRs. Since it is difficult to find in closed form the waveform

correlation matrix that maximizes the detector SNR for an arbitrary input SNR and channel

covariance matrix, we use a stochastic optimization technique (the genetic algorithm) to find

good sub-optimal solutions. The change in the nature of the optimized waveform correlation

matrices at different input SNRs is also studied.

In order evaluate the performance of the detector, we use the Swerling-I extended target

model discussed in [10] to generate channel covariance matrices as a function of target and

antenna locations. In this model, the target is assumed to have a rectangular cross section

composed of an infinite number of isotropic point scatterers. When the transmit/receive an-

tennas have large separations relative to the target distance, an identity channel covariance

matrix results under this model (which implies that all transmit-receive paths are uncorre-

lated), while small spacings result in an unit-rank channel covariance matrix (implying that

all the transmit-receive paths are fully correlated). We also introduce a new scalar measure,

termed the normalized eigenvariance, that can be used to express how close the channel co-

variance matrix corresponding to an arbitrary placement of antennas is to either of these two
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extremes.

A short word on notation. Throughout this chapter, for a matrix A, we use AT , A∗, A†

and A1/2 to represent its transpose, conjugate, conjugate transpose and Hermitian square

root respectively. Also, vec{A} is used to denote the vector obtained by stacking the columns

of A below one another, while diag {a} denotes a diagonal matrix whose diagonal elements

are taken from the vector a. Further, ◦ and ⊗ are used refer to the Hadamard and Kronecker

product operators respectively. Finally, δ(.) will be used to refer to the Dirac delta function.

3.0.2 System Model

We begin by considering a general MIMO radar model for any antenna placement. Let the

radar contain M transmit and N receive antennas that are isotropic in nature1. Denote the

locations of the of the mth transmitter and nth receiver on a 2-D plane2 as pt,m = (xtm, ytm)

and pr,n = (xrn, yrn) respectively. Further, denote the waveform transmitted by the mth

transmitter in complex baseband notation as
√
Essm(t) (0 ≤ t ≤ Ts), where Es is the total

transmitted energy and
∑M

m=1

∫ Ts
0 |sm(t)|2 dt = 1. Note that this implies a total transmit

power constraint, but individual transmit powers need not be equal. Suppose that we are

interested in testing for the presence of a target at a location p on the same 2-D plane. Let

H1 and H0 denote hypotheses corresponding to the absence or presence of a target at this

location, respectively. Define τm,n = (dtm+drn)/c, where dtm = ‖pt,m−p‖, drn = ‖pr,n−p‖

and c denotes the speed of light. We model the signal arriving at the nth receiver (in complex

1Our analysis can be easily extended to accommodate arbitrary per-antenna beampatterns.
2For simplicity, we assume the target, transmitters and receivers all lie in the same 2-D plane. Extensions

to 3-D models are straightforward.
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baseband notation) as

rn(t) =


wn(t) H1√
Es

M∑
m=1

αm,nsm(t− τm,n) + wn(t) H0

where αm,n models the combined attenuation due to path loss and reflection via the target for

the signal transmitted by the mth transmitter, and wn(t) is a zero-mean stationary Gaussian

random process that models the sum of clutter and thermal noise at the nth receiver. For

simplicity, Doppler shift due to target motion is not introduced in this model; it is assumed

to be separately estimated and accounted for.

A first step prior to detection is to reduce the continuous time received signals to a finite

number of observation variables, via matched filtering. We thus obtain

rm,n =

∫ τm,n+Ts

τm,n

rn(t)s∗m(t− τm,n)dt =

∫ Ts

0
rn(t+ τm,n)s∗m(t)dt

=


wm,n H1

√
Es
∑M

m̃=1 αm̃,nξm,n,m̃ + wm,n H0

where

ξm,n,m̃ =

∫ Ts

0
sm̃(t− τm̃,n + τm,n)s∗m(t)dt (3.1)

and

wm,n =

∫ Ts

0
wn(t+ τm,n)s∗m(t)dt . (3.2)
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In order to stack these matched filter outputs, we define the vectors

r = [ r1,1 r2,1 · · · rM,1 r1,2 · · · rM,N ]T

α = [ α1,1 α2,1 · · · αM,1 α1,2 · · · αM,N ]T

w = [ w1,1 w2,1 · · · wM,1 w1,2 · · · wM,N ]T

and the matrices

ξ =


ξ1 · · · 0

...
. . .

...

0 · · · ξN

 , ξn =


ξ1,n,1 · · · ξ1,n,M

...
. . .

...

ξM,n,1 · · · ξM,n,M

 .

Here ξm,n,m̃ can be interpreted as the cross-correlation between sm̃(t − τm̃,n) (the delayed

version of the m̃th transmitter’s signal which arrives at the nth receiver), and the replica

signal s∗m(t), computed at an appropriate delay τm,n. We hence refer to ξ as the waveform

correlation matrix. Note that due to our initial assumption of normalized total waveform

energy, we have Tr {ξn} = 1 for all n. Further, in order to aid in our mathematical analysis,

we assume that ξ is Hermitian symmetric, i.e. ξm,n,m̃ = ξm̃,n,m for all m,n, m̃. One way to

ensure this property is by imposing the following constraint on the waveforms

sm(t) = 0 for t ∈ (−∆τmax, 0) ∪ (Ts, Ts + ∆τmax),

where ∆τmax = max
m,n,m′

|τm,n − τm′,n|. This constraint basically means that a gap of ∆τmax

should be present between consecutive transmissions of the transmit waveforms.

Using the above notation, the matched filter outputs can be jointly represented as

r =


w H1

√
Esξα+ w H0

(3.3)
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Observe that w and α are both zero-mean Gaussian random vectors due to our initial as-

sumptions. Thus r is also distributed as a zero-mean Gaussian random vector under both

hypotheses, with covariance matrix

E
[
rr†
]

=


σ2
wΣw = Σ0 H1

ErξΣαξ
† + σ2

wΣw = Σ1 H0

(3.4)

where

σ2
w = E

[
w†w

]
, (3.5)

Σw = E
[
ww†

]
/E
[
w†w

]
, (3.6)

Er = EsE
[
α†α

]
, (3.7)

Σα = E
[
αα†

]
/E
[
α†α

]
. (3.8)

Here σ2
w and Er respectively represent the total post-matched filtering energy in the noise

plus clutter and transmit waveform components of the received signals. Further, the matrices

Σα and Σw represent the channel covariance matrix and the clutter plus noise covariance

matrix respectively (with the matrix traces normalized to unity, i.e. Tr {Σα} = Tr {Σw} = 1).

Thus, while Er captures information about the nominal path loss, the diagonal elements of

Σα capture information about the specific path loss (relative to nominal path loss) along

each transmit-receive path. The off-diagonal elements of Σα capture information about the

correlation between different path gains. A similar interpretation applies to σ2
w and Σw. We

use such normalization in order to enable a study of detector performance with respect to

the receive SNR, which we define as ρ = Er/σ
2
w.

The nature of the optimum detector will depend on Σw and Σα, which in turn depend

on variables such as
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(a) The positions of transmitters and receivers.

(b) The size and shape of the target.

(c) The duration and shape of the transmitted waveforms.

(d) The auto- and cross-correlation properties of clutter plus noise observed at different

receivers.

We now briefly discuss the nature of this dependence.

3.0.3 Nature of Channel Covariance Matrix Σα

The channel covariance matrix Σα is a function of the positions of the transmit and receive

antennas, as well as the nature of the target. To characterize this dependence for our sim-

ulations, we use the Swerling-I target model, and assume (as in [10]) that the target has a

rectangular cross-section of area ∆x×∆y, that is composed of an infinite number of random,

isotropic and independent scatterers. A schematic representation of such a MIMO radar

system is shown in Fig. 3.1. Let g(x, y) denote the complex gain of the scatterer located at

coordinates (x0 + x, y0 + y). We assume that g(x, y) is zero mean and that

E
[
g(x, y)g∗(x′, y′)

]
=

1

∆x∆y
δ(x− x′)δ(y − y′)

where E [.] denotes expectation operation. Let fc and λc represent the frequency and wave-

length of the carrier signal that is modulated by the transmit waveforms. Further, let ζt,m and

ζr,n denote the nominal path loss between the mth transmitter and the target, and between

the target and the nth receiver respectively. Denote τm,n(β, γ) as the propagation delay along

the path between mth transmitter and nth receiver via the scatterer located at coordinates
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Figure 3.1: Schematic representation of the target, transmitters and receivers

(x0 + β, y0 + γ). We assume that the transmitted signals is narrowband, in the sense that∫ Ts

0
sm
(
t− τm,n(β, γ)

)
sm′
(
t− τm′,n

)
dt ≈

∫ Ts

0
sm
(
t− τm,n

)
sm′
(
t− τm′,n

)
dt

where τk,l , τk,l(0, 0). Under these assumptions, we can show (following the derivation steps

of [10]) that independent of the exact distribution of g(x, y), the channel gains αm,n will be

zero mean complex Gaussian random variables, with mutual covariances given as

E
[
αm,nα

∗
m′,n′

]
= ζt,mζr,nζt,m′ζr,n′exp

{
j2πfc[τm,n − τm′,n′ ]

}
× sinc(ψx(m,n,m′, n′))sinc(ψy(m,n,m

′, n′)) (3.9)

where

ψx(m,n,m′, n′) =
∆x

λ

[
xtm − x0

dtm
− xtm′ − x0

dtm′
+
xrn − x0

drn
− xrn′ − x0

drn′

]
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and with ψy(m,n,m
′, n′) similarly defined using receive antenna coordinates. Now, define

ζt =

[
ζt,1 · · · ζt,M

]T
, ζr =

[
ζr,1 · · · ζr,N

]T
,

and let ζ = ζr ⊗ ζt. Further define

ψx(n1, n2) =


ψx(1, n1, 1, n2) · · · ψx(1, n1,M, n2)

...
. . .

...

ψx(M,n1, 1, n2) · · · ψx(M,n1,M, n2)

 ,

ψx =


ψx(1, 1) · · · ψx(1, N)

...
. . .

...

ψx(N, 1) · · · ψx(N,N)


and similarly define ψy(n1, n2) and ψy. Then we have

E
[
αα†

]
= ((ζ ◦ b)(ζ ◦ b)†) ◦ sinc(ψx) ◦ sinc(ψy) (3.10)

where

b = exp

{
j2πfc

[
τ1,1 τ2,1 · · · τM,1 · · · τM,N

]T}
,

with the sinc(·) and exp {·} functions applied elementwise on the matrix arguments. Further,

E
[
α†α

]
= Tr

{
E
[
αα†

]}
= Tr

{
(ζ ◦ b)(ζ ◦ b)†

}
= ‖ζ ◦ b‖2 = ‖ζ‖2 (3.11)

Using equations (3.10) and (3.11), the channel covariance matrix can be expressed as

Σα = E
[
αα†

]
/E
[
α†α

]
=

1

‖ζ‖2
((ζ ◦ b)(ζ ◦ b)†) ◦ sinc(ψx) ◦ sinc(ψy)

It has been shown (see [10] for more detailed derivations) that when the separations
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between all the transmit antennas are small relative to the target distance, i.e. dtm ≈ dt and

‖pt,m − pt,m′‖ � dt for all values of (m,m′), then

∆x

λ

[
xtm − x0

dtm
− xtm′ − x0

dtm′

]
≈ 0 ,

∆y

λ

[
ytm − y0

dtm
− ytm′ − y0

dtm′

]
≈ 0 .

Other the other hand, when the separations between all the transmit antennas are comparable

to the target distance, then

∆x

λ

[
xtm − x0

dtm
− xtm′ − x0

dtm′

]
� 1 ,

∆y

λ

[
ytm − y0

dtm
− ytm′ − y0

dtm′

]
� 1 .

Similar comments can be made on the terms in ψx(m,n,m′, n′) and ψy(m,n,m
′, n′) that

depend on receive antenna coordinates.

3.0.4 Nature of Clutter-plus-Noise Covariance Matrix Σw

Let wn(t) = w̃n(t) + ŵn(t), where w̃n(t) represents receiver thermal noise while ŵn(t) rep-

resents clutter. In typical practical scenarios, w̃n(t) is temporally and spatially (i.e. across

different antennas) uncorrelated, while ŵn(t) can be temporally and spatially correlated. Fur-

ther, w̃n(t) and ŵn(t) can be assumed independent of each other. Let E
[
w̃n1(t)w̃∗n2

(t− τ)
]

=

σ̃2
n1
δ(τ)δ[n1 − n2] and define cm1,n1,m2,n2 = E

[
ŵn1(t1 + τm1,n1)ŵ∗n2

(t2 + τm2,n2)
]
. Then one

can write

E
[
wn1(t1 + τm1,n1)w∗n2

(t2 + τm2,n2)
]

= σ̃2
n1
δ(t1 + τm1,n1 − t2 − τm2,n2)δ[n1 − n2] + cn1,n2
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From eq. (3.2), we have (under the assumption of stationary noise and clutter)

E
[
wm1,n1w

∗
m2,n2

]
=

∫ Ts

0

∫ Ts

0
s∗m1

(t1)sm2(t2)E
[
wn1(t1 + τm1,n1)w∗n2

(t2 + τm2,n2)
]

dt1dt2

= σ̃2
n1
δ[n1 − n2]ξm1,n1,m2 + cm1,n1,m2,n2

and hence

E
[
ww†

]
= GξG + C

where G = diag
{

[ σ̃1 · · · σ̃N ]T
}
⊗ IMN , and

C =


c1,1 · · · c1,N

...
. . .

...

cN,1 · · · cN,N

 , where cn1,n2 =


c1,n1,1,n2 · · · c1,n1,M,n2

...
. . .

...

cM,n1,1,n2 · · · cM,n1,M,n2

 .

3.0.5 Neyman-Pearson Optimum Detection under General MIMO Radar

Model

In this section, we first derive the Neyman-Pearson detector for the general MIMO radar

hypothesis testing problem of (3.4) (restated here for convenience),

E
[
rr†
]

=


GξG + C = Σ0 H1

ErξΣαξ + GξG + C = Σ1 H0

(3.12)

To this end, we state and prove the following theorem.

Theorem 1. Let rank {Σ0} = P , hence admitting the decomposition Σ0 = VV†, where V

is a matrix of size MN × P , and let r̃ = (V†V)−1V†r. Further, for any vector x, define

‖x‖A = x†Ax as the vector norm under matrix A. Then the Neyman-Pearson optimum

test statistic for the detection problem of (3.12) can be given as T = ‖r‖D, where D =
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V[(V†V)−2 − (V†Σ1V)−1]V†.

Proof. See Appendix 3.1.1.

We now consider the special case where the clutter-plus-noise is spatially and temporally

white i.e. C = 0.

Theorem 2. For the hypothesis testing problem of (3.12), the Neyman-Pearson optimum

test statistic when C = 0 is given as T = ||r||D, where D = (IMN + ρP−2Σαξ)−1P−2ΣαP−2

and P = σ−1
w G.

Proof. See Appendix 3.1.2.

An interesting property of the detector of Theorem 2 is that it while the decompositions

Σ0 = VV† and ErG
−2ΣαG−2 = UU† are used in the intermediate steps of the theorem,

they are completely eliminated from the final expression for the test statistic. Also, the

G−1 term in the expression for D is simple to compute since G is a diagonal matrix. Thus,

Theorem 2 provides us for a simple general expression for the Neyman-Pearson optimum

detector for a wide variety of radars, allowing us to study their performance under a general

framework.

Under the conditions of either Theorem 1 or Theorem 2 described above, the test statistic

T is a quadratic form in Gaussian random variables (since r̃ and r are both Gaussian random

vectors). Further, the form of the test is

T
H0
>
<
H1

δ (3.13)

where δ represents the detection threshold. Recently, a closed-form expression for the CDF

of such random variables has been presented [35]. We use the same method to compute the
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CDF of T for our simulations. The inverse CDF of T , which is required to compute the

threshold δ, can be evaluated by using any numerical search routine (such as binary search)

over the CDF of T .

3.0.6 Detector SNR

Ideally, a radar’s transmit waveforms should be optimized to maximize the probability of

detection, given constraints on the transmit power, the received SNR, the channel and noise

covariance matrices, and the maximum probability of false alarm. However, this is a difficult

problem because of the non-linear relationships between the probability of detection and the

design constraints. Hence, in order to facilitate analysis in this direction, simpler heuristic

performance measures are often used. We now study one such measure, known as the de-

tector SNR (or the deflection coefficient), which was used in [10] to compare the detection

performance of different radar configurations. For a Neyman-Pearson statistic T , the detector

SNR is computed as

β =

∣∣E(T |H0)− E(T |H1)
∣∣2

1
2 [Var(T |H0) + Var(T |H1)]

. (3.14)

The detector SNR essentially measures the separation between the probability distributions

of the test statistic under the two hypotheses. Such a performance measure is useful since it

allows the detection performance to be expressed through a single scalar value, and does not

require a false alarm rate to be specified. In this section, we shall derive a simplified expression

for this measure under our MIMO radar model, with two simplifying assumptions:

(a) The noise plus clutter is spatially and temporally uncorrelated (C = 0).

(b) The noise plus clutter random processes at all receivers have equal power, i.e. σ̃2
i = σ̃2

for all i = 1, · · · , N .

37



Lemma 1. For a MIMO radar with C = 0 and σ̃2
i = σ̃2 for all i = 1, · · · , N , the detector’s

SNR is given as

β =
2
(
Tr
{
U− 2I + U−1

})2
Tr
{

(U− I)2 + (U−1 − I)2
} (3.15)

where U = ρNΣαξ + IMN and Tr {.} denotes the trace operation.

Proof. See Appendix 3.1.3.

To demonstrate the generality as well as the correctness of our result, in Appendix 3.1.4

we show that the expression in (3.15) reduces exactly to specific expressions for detector SNR

derived in [10] under three special detection scenarios.

The expression for detector SNR obtained from the above lemma can be used to find the

waveform correlation matrix that maximizes detection performance for a given MIMO radar

configuration. Specifically, we can find the matrix ξ that maximizes β given ρ and Σα. To

this end, we first study the case of high received SNR under widely separated transmit and

receive antennas.

Lemma 2. Assume a MIMO radar with widely separated transmitters and receiver (Σα =

1
MN IMN ). If

ρ� max(
√
M3N,M2)

then the detector SNR

β =
2
(
Tr
{
U− 2I + U−1

})2
Tr
{

(U− I)2 + (U−1 − I)2
}

(where U = ρNΣαξ + IMN ) will be maximum when ξ = M−1IMN .

Proof. See Appendix 3.1.5.
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The solution ξ = M−1IMN can be interpreted to mean that the delayed versions of the

transmitted signals arriving at each receiver must be mutually orthogonal. Note also that

the resultant maximum value of β will be βMax = 2MN .

Further, if we assume τm,n ≈ τm̃,n for all m, m̃, n, and hence that ξn ≈ ξ̂ for all n

(see Appendix for more details), where ξ̂ represents the zero-lag correlation matrix of the

transmit waveforms, then we have ξ = IN ⊗ ξ̂. Hence the solution ξ = M−1IMN will imply

ξ̂ = M−1IM , i.e. the transmit waveforms must be orthogonal (at zero lag).

3.0.7 Simulation Results

In this Section, we shall optimize the waveform correlation matrix ξ to maximize the detector

SNR under specific practical scenarios. For simplicity, we make assumptions (a) and (b) listed

in the Appendix. Then our problem of interest is

max
ξ̂

β =
2
(
Tr
{
U− 2I + U−1

})2
Tr
{

(U− I)2 + (U−1 − I)2
} (3.16)

s.t. U = ρ̃Σαξ + IMN , ξ = IN ⊗ ξ̂, ξ̂ � 0

We consider the above optimization problem under the following four scenarios (refer to the

appendix for details about how the form of Σα is obtained):

(a) Large transmit and receive antenna separations (Σα = 1
MN IMN )

(b) Small transmit and receive antenna separations (Σα = 1
MN 1MN )

(c) Large transmit antenna separations, small receive antenna separations (Σα = 1
MN 1N ⊗

IM )

(d) Intermediate transmit and receive antenna separations (Σα = a randomly generated

positive semidefinite matrix)
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Note here that 1L refer to a matrix of size L× L that contains all ones. While we obtained

a closed form solution for case (a) under the high ρ regime in Section 3.0.5, is not easy to

obtain general closed form solutions under scenarios (a) - (d) for arbitrary ρ values. Hence,

in this section we present results obtained using a stochastic optimization technique (the

genetic algorithm) to optimize ξ̂ under scenarios (a) - (d), under a range of values of ρ.

Since ξ̂ is a M×M matrix, it is difficult to visualize trends in the nature of the optimized

values of ξ̂ as ρ is varied. Hence, we formulated a novel measure, which we term the normalized

eigenvariance, that allows us to characterize the nature of ξ̂ with a single scalar value. The

normalized eigenvariance σ2
en(A) for any positive semidefinite matrix A of size L×L is defined

as

σ2
en(A) =

[
L

L− 1

] ∑L
i=1(µi − µ̄)2(∑L

i=1 µi

)2

=

[
L

L− 1

][
Tr
{
A2
}

(Tr {A})2 −
1

L

]

where {µi}Li=1 represent the L eigenvalues of A (this may include zero or repeated eigenvalues)

and µ̄ =
∑L

i=1 µi/L is the mean of its eigenvalues. σ2
en(A) basically represents the variance of

the eigenvalues of A, divided by the maximum variance possible for any positive semidefinite

matrix that has the same trace as A. Thus, σ2
en(A) measures the normalized spread of the

eigenvalues of A. It is easy to show that σ2
en(A) has a maximum value of 1 (that occurs when

A is unit rank and hence has only one non-zero eigenvalue), and a minimum value of 0 (that

occurs when A is a constant times an identity matrix and hence has all equal eigenvalues).

When A is rank deficient, or full rank but with unequal eigenvalues, then σ2
en(A) lies between

0 and 1. When used in the context of the zero-lag transmit waveform correlation matrix ξ̂, this

measure tells us how close the transmit waveforms corresponding to a given value of ξ̂ are to
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orthogonal waveforms (where σ2
en(ξ̂) = 0) or fully correlated waveforms (where σ2

en(ξ̂) = 1).

Similarly, σ2
en(Σα) tells how close the channel gains corresponding a given channel covariance

matrix Σα are to being either independent σ2
en(Σα) = 0, or fully correlated σ2

en(Σα) = 1.

In our simulations, we assumed M = 4 transmit and N = 4 receive antennas, and

for each choice of Σα, we varied ρ̃ = ρ/M between −10 dB and 20 dB. The normalized

eigenvariance, detector SNR and probability of detection PD (at a false alarm rate of PFA =

10−6) corresponding to the optimal waveform correlation matrix were then plotted as a

function of input SNR.

The results for case (a), i.e. large transmit and receive antenna separations, are shown

in Fig. 3.2. It can be seen that the stochastic optimization routine results in fully correlated

waveforms (σ2
en(ξ̂) = 1) below ρ̃ = 2 dB and orthogonal waveforms above ρ̃ = 12 dB. Between

these two thresholds, there is a transition region where partially correlated waveforms are

chosen (as evidenced by the normalized eigenvariance curve). The PD curves also exhibit

a similar behaviour, thus showing the detector SNR is indeed a good measure of detection

performance, while having the advantage of being easy to compute relative to PD.

Next, the results for case (b) (closely spaced antennas) and case (c) (widely spaced

transmitters and closely spaced receivers) are plotted in Figs. 3.3 and 3.4 respectively. For

these two scenarios, the stochastic optimization routine results in fully correlated waveforms

throughout the chosen input SNR range. For case (d), we randomly selected Σα as a positive

semidefinite matrix with σ2
en(Σα) = 0.5, corresponding to a scenario in between cases (a)

and (b). Here, the stochastic optimization routine results in (Fig. 3.5) partially correlated

waveforms above ρ̃ = 4 dB, and fully correlated waveforms are optimal below ρ̃ = 4 dB.
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Figure 3.2: Normalized eigenvariance, detector SNR and PD (at PFA = 10−6) using the ξ̂
matrix obtained after optimization at different SNRs for Σα = 1

MN IMN

3.1 Appendix

3.1.1 Proof of Theorem 1

Proof. We begin by showing that while Σ0 and Σ1 may be rank deficient, they satisfy

rank(Σ0) = rank(Σ1). To this end, we use the kernel operator, defined for any n× n matrix

A as

ker (A) = {x ∈ Cn : Ax = 0}

We note that since G � 0, and Σα � 0, we have ker (GξG) = ker (ξ) and ker (ξΣαξ) ⊆

ker (ξ). Further, given matrices A,B � 0, we can write

ker (A + B) = ker (A) ∩ ker (B)
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Figure 3.3: Normalized eigenvariance, detector SNR and PD (at PFA = 10−6) using the ξ̂
matrix obtained after optimization at different SNRs for Σα = 1

MN 1MN

(since if A � 0, then x†Ax ≥ 0 for all x, and Ax = 0 is true if and only if x†Ax = 0). Hence

we have

ker (Σ1) = ker (ErξΣαξ) ∩ ker (GξG) ∩ ker (C)

= ker (ξ) ∩ ker (C)

= ker (GξG + C) = ker (Σ0)

and hence by the rank-nullity theorem, we have rank(Σ0) = rank(Σ1). Then, since ker (Σ0) ⊆

ker (ξ) ⊆ ker (ξΣαξ) and Σ0 = VV†, the decomposition ErξΣαξ = VXV†, where X is a
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Figure 3.4: Normalized eigenvariance, detector SNR and PD (at PFA = 10−6) using the ξ̂
matrix obtained after optimization at different SNRs for Σα = 1

MN 1N ⊗ IM

positive semidefinite matrix, should exist. Solving for X, we obtain

X = Er(V
†V)−1V†ξΣαξV(V†V)−1

= (V†V)−1V†(Σ1 −Σ0)V(V†V)−1 = Z− IP

where Z = (V†V)−1V†Σ1V(V†V)−1. This in turn allows us to re-express the observation

vector as r = Vr̃, where r̃ is a P × 1 zero-mean Gaussian random vector, with

E
[
r̃r̃†
]

=


IP H1

IP + X H0

Note that the value of r̃ corresponding to any value of r can be obtained as r̃ = (V†V)−1V†r.

Let f(r̃|H1) and f(r̃|H0) represent the probability density functions of r̃ under the two

hypotheses. Since r is a deterministic function of r̃, the Neyman-Pearson optimum test
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Figure 3.5: Normalized eigenvariance, detector SNR and PD (at PFA = 10−6) using the ξ̂ ma-
trix obtained after optimization at different SNRs for a randomly chosen channel covariance
matrix with σ2

en(Σα) = 0.5 .

statistic is given as

T = log
f(r̃|H0)

f(r̃|H1)

= log
exp

{
−r̃†[IP + X]−1r̃

}
exp

{
−r̃†I−1

P r̃
} + log

|πIP |
|π(IP + X)|

= r̃†[IP − (IP + X)−1 ]̃r (ignoring constant term)

= r̃†[IP − Z−1 ]̃r

= r†V(V†V)−2V†r− r†V[V†Σ1V]−1V†r = r†Dr

where D = V[(V†V)−2 − (V†Σ1V)−1]V†.

Note that the decomposition Σ0 = VV† is unique upto a P ×P unitary transformation

matrix W (satisfying W† = W−1), hence if Ṽ = VW then ṼṼ
†

= VWW†V† = Σ0.
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However, the final test statistic does not change under this transformation, since

Ṽ[(Ṽ
†
Ṽ)−2 − (Ṽ

†
Σ1Ṽ)−1]Ṽ

†

= VW[(W−1V†VWW−1V†VW)−2

− (W−1V†Σ1VW)−1]W−1V†

= VW[W−1(V†V)−2W −W−1(V†Σ1V)−1W]W−1V†

= V[(V†V)−2 − (V†Σ1V)−1]V† = D

3.1.2 Proof of Theorem 2

Proof. Define the vector r̃ and the matrices X and V as in Theorem 1. Since ξ is a block

diagonal matrix, and G is a diagonal matrix whose entries are constant within each block of

ξ, we can write GξG = ξG2 = G2ξ. Therefore, when C = 0, we have

Σ0 = GξG = VV† ⇒ ξ = VV†G−2 = G−2VV†

and hence

X = Er(V
†V)−1V†VV†G−2ΣαG−2VV†V(V†V)−1

= ErV
†G−2ΣαG−2V

Further, let rank {Σα} = Q, and let ErG
−2ΣαG−2 = UU†, where U is a full rank matrix of

size MN ×Q. Then, using the identity I− (I + AB)−1) = A(I + BA)−1B, we can write

IP − (IP + X)−1 = IP − (IP + V†UU†V)−1

= V†U(IQ + U†VV†U)−1U†V
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Finally, applying the identity B(I + AB)−1 = (I + BA)−1B, we obtain

T = r̃†V†U(IQ + U†VV†U)−1U†Vr̃

= r†U(IQ + U†VV†U)−1U†r

= r†(IMN + UU†VV†)−1UU†r = r†Dr

where D = (IMN +ErG
−2Σαξ)−1G−2ΣαG−2. Substituting G = σwP and ρ = Er/σ

2
w, and

ignoring multiplicative constants, we obtain the result of the theorem.

3.1.3 Proof of Lemma 1

Proof. Under the given assumptions, we have

G = σ̃IMN , Σ0 = GξG + C = σ̃2ξ ,

Σ1 = ErξΣαξ + GξG + C = ErξΣαξ + σ̃2ξ

and

σ2
w = E

[
w†w

]
= Tr {Σ0}

= σ̃2Tr {ξ} = σ̃2
N∑
i=1

Tr {ξi} = Nσ̃2,

resulting in P = σ−1
w G = N−1/2IMN . Further, using Theorem 2, we obtain

D = (IMN + ρP−2Σαξ)−1P−2ΣαP−2

= (IMN + ρNΣαξ)−1Σα

(ignoring multiplicative constants in D). The mean of the test statistic is

E [T ] = E
[
r†Dr

]
= E

[
Tr
{

r†Dr
}]

= Tr
{

DE
[
rr†
]}

(3.17)
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and we hence have

E [T |H0]− E [T |H1] = Tr {D(Σ1 −Σ0)} = ErTr {DξΣαξ}

Towards obtaining the variance of T , we assume the decomposition D = A†A, where A is a

R×MN matrix (R = rank {D}). Setting z = Ar, we can write

E
[
T 2
]

= E

[∣∣∣z†z∣∣∣2] =

MN∑
i=1

MN∑
k=1

E [ziz
∗
i zkz

∗
k]

=
MN∑
i=1

MN∑
k=1

(
E
[
|zi|2

]
E
[
|zk|2

]
+ |E [zizk] |2 + |E [ziz

∗
k] |2

)
(3.18)

= E2[T ] + Tr
{

E
[
zzT

] (
E
[
zzT

])†}
Tr

{
E
[
zz†
] (

E
[
zz†
])†}

where (3.18) results from the fact that if x1, x2, x3 and x4 are Gaussian distributed complex

random variables, then

E [x1x2x3x4] = E [x1x2] E [x3x4] +E [x1x3] E [x2x4] + E [x1x4] E [x2x3]

It can be shown that E
[
zzT

]
= 0 under both H1 and H0, hence allowing us to express the

variance of T as

var(T ) = E
[
T 2
]
− E2 [T ] = Tr

{
E
[
zz†
] (

E
[
zz†
])†}

= Tr
{

AE
[
rr†
]
A†AE

[
rr†
]

A†
}

= Tr
{

(DE
[
rr†
]
)2
}

Hence, we obtain

β =
2 (Tr {D(Σ1 −Σ0)})2

Tr {(DΣ1)2}+ Tr {(DΣ0)2}

=
2 (ErTr {DξΣαξ})2

Tr {(ErDξΣαξ + σ̃2Dξ)2}+ Tr {(σ̃2Dξ)2}
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Now, let Ω = Σαξ and U = ρNΣαξ + IMN . Then we have D = U−1Σα, and

β =

2
(
ErTr

{
U−1Ω2

})2
Tr
{

(ErU
−1Ω2 + σ̃2U−1Ω)2

}
+ Tr

{
(σ̃2U−1Ω)2

} (3.19)

Also, we can write

Ω =
1

Nρ
(U− I)

⇒ U−1Ω =
1

Nρ
(I−U−1) (3.20)

⇒ U−1Ω2 =
1

Nρ
(Ω−U−1Ω)

=
1

N2ρ2
(U− 2I + U−1) (3.21)

Substituting (3.20) and (3.21) in (3.19) and refactoring, we obtain (3.15), thus proving Lemma

1.

3.1.4 Simplification of Detector SNR expression

In this Appendix, we simplify the general expression for the detector SNR in (3.22),

β =
2
(
Tr
{
U− 2I + U−1

})2
Tr
{

(U− I)2 + (U−1 − I)2
} (3.22)

where (U = ρNΣαξ + IMN ) under a few special cases commonly studied in MIMO radar

literature. We show that the resulting expressions correspond exactly with the expressions

derived in [10]. To this end, we first obtain simplified expressions for the channel covariance

matrix Σα under four types of antenna placements (refer to notation introduced in Section

3.0.3):

Case (i) Large transmit and receive antenna separations:
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In this case, all the channel gains will be uncorrelated, Σα = ‖ζ‖−2((ζ ◦ b)(ζ ◦

b)†) ◦ IMN . Here the rank of Σα can be at most MN .

Case (ii) Small transmit and receive antenna separations:

Here we will have ψx = ψy = 0MN , and hence Σα = ‖ζ‖−2((ζ ◦ b)(ζ ◦ b)†).

Thus, Σα will always be unit rank in this case.

Case (iii) Large transmit antenna separations, small receive antenna separations:

In this case we have Σα = ‖ζ‖−2((ζ◦b)(ζ◦b)†)◦(1N⊗IM ). where 1N represents

a N ×N matrix all of whose elements are ones. Note that the rank of Σα in this

case is at most M .

Case (iv) Small transmit antenna separations, large receive antenna separations:

In this case we similarly have Σα = ‖ζ‖−2((ζ ◦b)(ζ ◦b)†) ◦ (IN ⊗1M ), The rank

of Σα in this case is at most N .

For ease of demonstration, we make the following assumptions

(a) The vectors b and ζ (that are of length MN) have all elements equal to 1, resulting in

‖ζ‖−2((ζ ◦ b)(ζ ◦ b)†) = 1
MN 1MN . This enables us to write Σα = 1

MN 1MN in Case (i),

Σα = 1
MN IN ⊗ 1M in Case (ii), Σα = 1

MN 1N ⊗ IM in Case (iii) and Σα = 1
MN IMN in

Case (iv).

(b) We assume that the target is at a sufficient distance from the transmitters and receivers

to allow us to write τm,n ≈ τm̃,n for all m, m̃, n. Under this assumption we can write

ξn ≈ ξ̂ for all n (and hence ξ = IN ⊗ ξ̂), where ξ̂ represents the zero-lag correlation
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matrix of the transmit waveforms, i.e. ξ̂ = [ξ̂m,m̃]M×M with

ξ̂m,m̃ =

∫ Ts

0
sm̃(t)s∗m(t)dt

Further, to simplify the notation, we use AMN and AN for the matrix A of size MN ×MN

and N × N , respectively, and not use any subscript when the size can be inferred from the

context.

We now obtain simplifications for the detector SNR β under three common scenarios.

Note that in [10], the received SNR is defined as ρ̃ = ρ/M . In order to enable comparisons,

we shall use definition of received SNR in the derivations below.

Large transmit and receive antenna separations, and orthogonal waveforms

In this case,

Σα =
1

MN
IMN , ξ̂ =

1

M
IM ξ = IN ⊗ ξ̂ =

1

M
IMN (3.23)

In view of (3.23), we have

U = ρNΣαξ + IMN =

(
ρ̃

M
+ 1

)
IMN ,

U− IMN =
ρ̃

M
IMN , U−1 − IMN = − ρ̃

M

IMN

(1 + ρ̃/M)
(3.24)

Substituting (3.24) in (3.22) and simplifying, we obtain for the numerator and denominator

of (3.22), denoted by NUM and DEN , respectively, as follows.

NUM =
2ρ̃4N2

M2(1 + ρ̃/M)2
(3.25)

DEN =
2ρ̃2N(1 + ρ̃2/2M2 + ρ̃/M)

M(1 + ρ̃/M)2
(3.26)
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Substituting (3.25) and (3.26) in (3.22), we obtain

β =
Nρ̃2

M(1 + ρ̃2/2M2 + ρ̃/M)
(3.27)

which is same as the result given in [10].

Small transmit and receive antenna separations, and fully correlated waveforms

In this case

Σα =
1

MN
1MN ξ̂ =

1

M
1M (3.28)

Therefore,

Σαξ =
1

MN
1MN (IN ⊗

1

M
1M ) =

1

MN
1MN

and U = ρ̃1MN + IMN . Applying the matrix inversion lemma to U, we can show that

U−1 = IMN −
1

(MN + 1/ρ̃)
1MN (3.29)

Substituting (3.29) in (3.22) and simplifying, we obtain

NUM =
2ρ̃2M4N4

(MN + 1/ρ̃)2
(3.30)

DEN =
(2M2N2 + ρ̃2M4N4 + 2ρ̃M3N3)

(MN + 1/ρ̃)2
(3.31)

and hence

β =
NUM

DEN
=

ρ̃2M2N2

1 + ρ̃2M2N2/2 + ρ̃MN
(3.32)

which is same as the result given in [10].

52



Large transmit antenna separations, small receive antenna separations, and or-

thogonal waveforms

In this case

Σα =
1

MN
1N ⊗ IM , ξ̂ =

1

M
IM , ξ =

1

M
IMN (3.33)

We then have

U = ρ̃(1N ⊗ IM )
1

M
IMN + IMN =

ρ̃

M
A + IMN (3.34)

where A = 1N ⊗ IM . To find U−1, we use the following approach3. We let(
ρ̃

M
A + IMN

)
(IMN − γA) = IMN (3.35)

and find γ which satisfies (3.35). Simplifying (3.35), we obtain

ρ̃

M
A− ρ̃

M
NγA− γA = 0 (3.36)

where we have used A2 = N(1N ⊗ IM ) = NA. From (3.36), we get

γ =
ρ̃

(M + ρ̃N)
(3.37)

We thus have

U− IMN =
ρ̃

M
A, U−1 − IMN = −γA (3.38)

Combining (3.38) with (3.22) and using A2 = NA, we obtain the following (after some

manipulations) for the numerator and denominator of (3.22)

NUM = 2
ρ̃4N4

(M + ρ̃N)2
(3.39)

DEN = ρ̃2N2 (2M2 + ρ̃2N2 + 2ρ̃MN)

M(M + ρ̃N)2
(3.40)

3This method has been suggested by KVS Hari of Indian Institute of Science, Bangalore.
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From (3.39) and (3.40), we get

β =
ρ̃2N2

M(1 + ρ̃2N2/2M2 + ρ̃N/M)
(3.41)

which is same as the result given in [10].

3.1.5 Proof of Lemma 2

Proof. Let {λi}MN
i=1 denote the eigenvalues of ξ. Given Σα = 1

MN IMN , we have U = ρM−1ξ+

IMN , therefore the eigenvalues of U will be {ρ̃λi + 1)}MN
i=1 , where ρ̃ = ρM−1. Since Σα and

ξ are Hermitian symmetric, U is also Hermitian symmetric, and we can hence write

Tr
{

Uk
}

=
MN∑
i=1

(ρ̃λi + 1)k ∀ k ∈ Z

Further, ξ � 0 implies that λi ≥ 0 for all i. Hence, for any k > 0, we have

(ρ̃λi + 1)−k < 1 ⇒
MN∑
i=1

(ρ̃λi + 1)−k < MN (3.42)

Further,

MN∑
i=1

λi = Tr {ξ} =
N∑
n=1

Tr {ξn} = N (3.43)

Let β = NUM/DEN, where

NUM = 2

[
MN∑
i=1

(ρ̃λi + 1)− 2MN +

MN∑
i=1

(ρ̃λi + 1)−1

]2

= 2

[
ρ̃N −MN +

MN∑
i=1

(ρ̃λi + 1)−1

]2

= 2N2 [ρ̃− c1]2
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and

DEN =
MN∑
i=1

(ρ̃λi + 1)−2 − 2
MN∑
i=1

(ρ̃λi + 1)−1 + 2MN

− 2

MN∑
i=1

(ρ̃λi + 1) +

MN∑
i=1

(ρ̃λi + 1)2

=
MN∑
i=1

(ρ̃λi + 1)−2 − 2
MN∑
i=1

(ρ̃λi + 1)−1 +MN

+ ρ̃2
MN∑
i=1

λ2
i

= c2 + ρ̃2
MN∑
i=1

λ2
i

where c1 and c2 are variables that are dependent on {λi}MN
i=1 , but are limited to the intervals

c1 ∈ (0,M) and c2 ∈ (−MN, 2MN). Thus, when ρ̃ � max(
√
MN,M) (which implies

ρ = Mρ̃� max(
√
M3N,M2)), then ρ̃� c1 and ρ̃2 � c2, and we can write

β ≈ 2ρ̃2N2

ρ̃2
∑MN

i=1 λ
2
i

Hence, maximizing β in this scenario is equivalent to minimizing
∑MN

i=1 λ
2
i under the con-

straint of normalized power, i.e.,
∑MN

i=1 λi = N . It can be shown using the method of

Lagrangian multipliers that the minimum will occur only when λi = N/MN = 1/M ∀i. This

implies ξ = M−1IMN , hence proving Lemma 2.
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Chapter 4

Estimation performance lower

bounds for phase synchronization in

IEEE 1588

4.1 Introduction

Packet-based time synchronization techniques based on the IEEE 1588 Precision Time Pro-

tocol (PTP) are being increasingly considered as a means of providing microsecond-level

synchronization between cell towers in 4G LTE (Long Term Evolution) mobile networks

[17, 18, 19, 20, 21]. Such a high degree of synchronization accuracy is a necessity in 4G

networks since it helps ensure seamless handovers between cell towers, helps reduce inter-cell

interference, and also enables the use of MIMO techniques to improve capacity [22]. As

compared to GPS (global positioning system) based synchronization, packet-based synchro-

nization is often more cost-effective since it utilizes the existing mobile backhaul network
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infrastructure that is used to interconnect cell towers. However, since backhaul networks

are typically leased from commercial internet service providers (ISPs), mobile network op-

erators must share its use with other commercial and residential users. Background traffic

generated by these users often results in random network delays that can hinder packet-based

synchronization. Overcoming this problem is key to the adoption of packet-based synchro-

nization schemes in mobile backhaul networks, especially given that the microsecond-level

synchronization requirements are only expected to grow more stringent in the future.

The output of a typical computer clock can be modeled mathematically using a function

c(t) of the true current time t. A perfect clock will output c(t) = t, while in practice c(t)

is a random process with error e(t) = |c(t) − t| that tends to grow over large time scales.

Over short time scales, it is possible to model clock behavior using the linear approximation

c(t) = φt+δ, where φ−1 is the frequency offset, and δ is the phase offset. Typically, network

time synchronization algorithms treat frequency and phase synchronization as two indepen-

dent problems. In Chapters 4–6, we study to problem of improving the accuracy of phase

synchronization schemes, while assuming that near-perfect frequency synchronization is al-

ready available. An obvious practical scenario where such an assumption can be made occurs

when synchronous ethernet is used in conjunction with the precision time protocol (PTP).

Here the PLL obtains frequency information from the physical layer signals of synchronous

ethernet, while PTP messages are used for phase synchronization.

In PTP synchronization, messages traveling between the master and the slave encounter

several intermediate switches and routers, accumulating random queuing delays at each such

node. The resulting randomness in the overall network traversal times is referred to as packet

delay variation (PDV). Further, the problem of estimating the phase offset of the slave clock

while combating the randomness in the observations that occurs due to PDV is known as
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phase offset estimation (POE). In this regard, the requirement arising from 4G backhaul

networks is that neighboring cell towers need to be synchronized with absolute phase offset

under 1.25 µs, in order to ensure efficient operation in the time division duplexing (TDD)

mode.

In Chapters 4–6, we study the performance of POE schemes from a non-Bayesian per-

spective. Specifically, we treat the slave clock’s phase offset as a unknown deterministic pa-

rameter that has to be estimated from the arrival/departure timestamps of synchronization

packets. These timestamps are modeled as random variables whose probability distributions

are influenced by the unknown phase offset as well as the minimum fixed delays in the net-

work. Given the nature of the observations, POE falls under a class of estimation problems

known as location parameter problems, wherein unknown parameters influence the observa-

tions by translating the probability density function (p.d.f.) of the observations, without

affecting its shape. Location parameter problems occur in a wide range of practical appli-

cations, some examples include regression analysis [36] and the estimation of user position

from pseudoranges in global positioning system (GPS) receivers [37].

The IEEE 1588 PTP standard [12] and related literature prescribe the use of simple

POE schemes such as the sample mean, minimum and maximum filtering schemes. Several

recent papers [17, 21, 22] have studied methods to improve the performance of these schemes.

However, it is not well understood as to how close these POE schemes come to achieving the

best possible performance. To address this issue, new lower bounds on the error variance of

estimators for non-Bayesian location parameter problems are presented in this chapter. The

bounds are obtained from two existing Bayesian performance bounds, namely the Weiss-

Weinstien [38, 39] and the Ziv-Zakai [40] bounds. We also demonstrate how these lower

bounds can be further simplified by exploiting the structure of the POE problem. Numerical
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results are also presented that evaluate these lower bounds under a few representative network

scenarios.

4.2 System Model

Consider a slave clock whose phase offset relative to its master clock is represented by δ. Dur-

ing two-way message exchange in PTP, the following series of packet exchanges are performed

between the master and slave in order to determine δ:

1. The master initiates the message exchange by sending a SYNC packet to the slave at

time t1. The value of t1 is later communicated to the slave via a FOLLOW UP message.

2. The slave records the time of reception of the SYNC message as t2 = t+ d1 + δ, where

d1 is the end-to-end (ETE) network delay between the master and the slave.

3. The slave sends a DELAY REQ message to the master, recording the time of trans-

mission as t3.

4. The master records the time of arrival of the DELAY REQ packet as t4 = t3 − δ + d2,

where d2 is the ETE delay between the slave and the master. The value of t4 is sent to

the slave using a DELAY RESP packet.

Thus, four timestamps (t1, t2, t3 and t4) are available to the slave at the end of each two-way

packet exchange. In order to estimate δ, it is clearly sufficient to only retain the pair of

timestamp differences

y1 = t2 − t1 = d1 + δ , y2 = t4 − t3 = d2 − δ (4.1)
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In order to model the ETE delays d1 and d2, we note that packets traveling between the master

and the slave hop across several intermediate nodes (switches or routers), that are typically

part of a larger network that is shared among multiple users. Hence each intermediate node

concurrently services background traffic generated by other network users, in addition to

synchronization traffic. Assume for simplicity that a single common network path is taken

by all packets traveling between the master and the slave. Then each ETE delay will be the

sum of a fixed minimum delay component and a variable non-negative component. Here the

minimum fixed delay component corresponds to constant propagation and processing delays,

while the variable non-negative component corresponds to random queuing delays that occur

due to contention for service with background traffic. Hence, we model the ETE delays as

d1 = dmin
1 + w1, d2 = dmin

2 + w2

where dmin
1 and dmin

2 represent the fixed minimum delay component, while w1 and w2 represent

the variable part. Some key assumptions we make are as follows:

(a) The forward and reverse queuing delays w1 and w2 are assumed to be non-negative

random variables with a finite maximum value. The finite maximum value assumption is

reasonable since synchronization packet are typically assigned higher priority than packets

of background traffic, hence the worst case queuing delay is bounded for a finite number

of switches between the master and the slave (provided that packets of synchronization

traffic are spaced sufficiently apart).

(b) The forward and reverse fixed delays are assumed to be equal, i.e. dmin
1 = dmin

2 = d. This

is necessary since in general δ, dmin
1 and dmin

2 cannot be unambiguously (i.e. uniquely)

determined from y1 and y2, as illustrated by the following example.
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Example Consider two cases : (δ, dmin
1 , dmin

2 ) = (1, 10, 20) and (δ, dmin
1 , dmin

2 ) = (2, 9, 21).

In both cases, we have (dmin
1 + δ, dmin

2 − δ) = (11, 19). Thus, for a given distribution of

variable delays w1 and w2, the observations y1 = dmin
1 + δ + w1 and y2 = dmin

1 − δ + w2

will be identically distributed in both cases!

To avoid this situation, it is necessary to assume that the relationship between dmin
1 and

dmin
2 is known. For simplicity, we only consider the case of equal fixed delays in our

system model, while noting that our results can be easily extended to also address the

cases where the ratio or difference between dmin
1 and dmin

2 is known.

(c) Both d and δ are treated as deterministic unknown parameters that can assume any value

on the real line R. No prior distributions over either d or δ are assumed.

If δ and d remain constant over a sufficiently long duration of time, multiple two-way

exchanges can be performed to obtain more data for POE. If P two-way exchanges are

performed, then the slave obtains the 2P timestamp differences

y
(i)
1 = d+ δ + w

(i)
1 , y

(i)
2 = d− δ + w

(i)
2 (4.2)

for i = 1, · · · , P . For convenience, we now rewrite the observation model using vector nota-

tion. Define y =

[
yT

1 yT
2

]T

and w =

[
wT

1 wT
2

]T

, where

yi =

[
y

(1)
i · · · y

(P )
i

]T

, (4.3)

wi =

[
w

(1)
i · · · w

(P )
i

]T

(4.4)

Further, let θ = [ δ d ]T. Then our observation model can be compactly written as

y = Aθ + w (4.5)
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where

A =

 1P×1 1P×1

−1P×1 1P×1

 (4.6)

and 1P×1 is a P ×1 vector of ones. The conditional p.d.f. of the observation vector y is given

as

f(y|θ) = fW(y −Aθ) (4.7)

where fW(w) is the joint pdf of all the forward and reverse queuing delays. Given the above

model, the problem of POE is to estimate δ from the observation vector y.

In order to fully characterize the statistical nature of the queuing delays, in general it is

necessary to specify the entire joint pdf fW(w). An important special case occurs when all

the queuing delays w
(1)
1 , · · · , w(P )

1 , w
(1)
2 , · · · , w(P )

2 are mutually independent, and

w
(i)
1

iid∼ f1

(
w

(i)
1

)
, w

(i)
2

iid∼ f2

(
w

(i)
2

)
(4.8)

for all i = 1, · · · , P , allowing us to write

fW(w) =
P∏
i=1

f1

(
w

(i)
1

) P∏
i=1

f2

(
w

(i)
2

)
(4.9)

Such independent, identically distributed forward and reverse queuing delays occur when the

stochastic behavior of the network is the same for every SYNC and DELAY REQ packet

within any observation window of P two-way exchanges. Let the background traffic char-

acteristics include packet size distributions, arrival time distributions, load factors and flow

patterns. Then (4.8) requires that the queue occupancy distributions of intermediate switches

and the background traffic characteristics remain static over the observation window. It also

requires that consecutive SYNC and DELAY REQ packets be sufficiently separated in time
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to ensure that dependence is not introduced between neighboring queuing delays.

4.3 Estimator Performance Bounds for Location Parameter

Problems

In statistical literature, an estimation problem is said to be a location parameter problem if

the value of the parameter of interest determines the location or shift of the distribution of

the observations. In this section, we consider a generalization of location parameter problems

to vector parameter scenarios, and derive lower bounds on the performance of estimators for

such problems. The application of these bounds to the POE problem shall be described in

the next section.

Definition 1. Consider an estimation problem where an observation vector x = [x1 x2 · · · xN ]T ∈

RN is influenced by a parameter vector θ ∈ RM , via the conditional p.d.f. f(x|θ). If there

exists an N ×M matrix G and a function f0(·) such that

f(x|θ) = f0(x−Gθ) (4.10)

then we shall refer to such an estimation problem as a location parameter problem.

Given a location parameter problem, assume we are interested in estimating a scalar of

the form cTθ, and let g(x) denote any estimator for this problem. Assuming a quadratic loss

function, the performance of g(x) can be characterized using either the conditional risk

R(θ, g) =

∫
x
[g(x)− cTθ]2f(x|θ)dx (4.11)
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or the maximum risk

M(g) = sup
θ∈Θ

R(θ, g) (4.12)

or the Bayes risk

B(g, p) =

∫
θ∈Θ

R(θ, g)p(θ)dθ, (4.13)

where p(θ) represents a prior distribution defined over the parameter space Θ.

In estimation problems where no prior distribution is known for θ, as is the case in our

POE problem model, the conditional risk R(θ, g) is the preferred measure used to charac-

terize performance. Classical non-Bayesian estimation theory provides several techniques to

lower bound R(θ, g), such as the Cramer-Rao bound [41] and other related bounds [42][43].

Unfortunately, these bounds require the region of support of the conditional p.d.f. in (4.10)

to be constant with respect to θ. This condition is clearly violated in our problem of interest.

Since typical non-Bayesian estimation bounds are inadmissible in our problem, we consid-

ered Bayesian bounds such as the Weiss-Weinstien bound (WWB) [38][39] and the Ziv-Zakai

bound (ZZB) [40][44]. These bounds do not impose any regularity conditions on the obser-

vations, however they only provide lower bounds on the Bayes risk B(g, p), which requires

a prior distribution p(θ) to be defined. In this section, we describe novel techniques that

repurpose these Bayesian estimation bounds to obtain lower bounds on M(g) for location

parameter problems. Our techniques are encapsulated in the following two theorems whose

proofs are provided in appendices 4.8.1 and 4.8.2.

Theorem 3. (Obtained from the Weiss-Weinstien Bound) Given the location parameter

problem of Definition 1, let {si}Ki=1 and {hi}Ki=1 be arbitrarily chosen scalars and M × 1
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vectors respectively. Define

ξ(h1,h2, s1, s2)

=

∫
x

[
f0(x + Gh1)

f0(x)

]s1 [f0(x + Gh2)

f0(x)

]s2
f0(x)dx (4.14)

Further, let u be a K × 1 vector whose ith element is given as

ui = (cThi) · ξ(hi,0M×1, 1− si, 0) (4.15)

where 0M×1 is a M × 1 vector of zeros, and let V be a K ×K matrix whose (i, j) element is

Vij = ξ(−hi,−hj , si, sj)− ξ(−hi,hj , si, 1− sj)

− ξ(hi,−hj , 1− si, sj) + ξ(hi,hj , 1− si, 1− sj) (4.16)

If V is positive definite, then any estimator g(x) of cTθ will satisfy

M(g) ≥ uTV−1u (4.17)

We note here that since the choice of K, {si}Ki=1 and {hi}Ki=1 in Theorem 3 are arbitrary,

with each choice resulting in possibly different values for the bound, Theorem 3 actually

provides a family of lower bounds rather than a single lower bound. The tightest lower

bound from this family is obtained by maximizing M(g) over the choice of K, {si}Ki=1 and

{hi}Ki=1. This is a difficult optimization problem to solve analytically. In this chapter, we

evaluate the bounds using the approach of [38], where it is suggested that the tightest bound

can be characterized closely by setting si = 1/2 for all i, and choosing a small number K

of test points {hi}Ki=1 from the set of values of h for which f0(x + Gh) is non-zero. The

improvement in tightness obtained by increasing K falls sharply with respect to K.

Theorem 4. (Obtained from the Ziv-Zakai Bound) Given the location parameter problem
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of Definition 1, assume that f0(x) has bounded support (i.e there exists a µ > 0 such that

xi ≥ µ for all i = 1, · · · , N necessarily implies that f0(x) = 0). Define

L(x,h) = log

[
f0(x−Gh)

f0(x)

]
(4.18)

and the valley filling function

V {f(h)} = max
ξ>0

f(h+ ξ). (4.19)

Then the inequality

M(g) ≥
∫ ∞

0
V
{

max
h:cTh=h

Pr {L(x,h) > 0}
}
h dh (4.20)

holds for any estimator g(x) of the scalar cTθ.

While Theorems 3 and 4 only provide lower bounds on the maximum risk M(g), it

is possible to extend the applicability of these bounds to the conditional risk R(θ, g) if we

consider a restricted class of estimators that are shift invariant. Given the location parameter

problem of Definition 1, we say that an estimator g(x) is shift invariant if for the same matrix

G used in (4.10),

g(x + Gh) = g(x) + cTh ∀ h ∈ RM×1 (4.21)

This condition implies that a shift in the observation vector causes a corresponding shift

in the estimate, with these shifts sharing a linear relationship with one another. A useful

property of shift invariant estimators is that they have constant conditional risk in location

parameter problems. To demonstrate this property, we note that if θ1 and θ2 are any two

values of the parameter vector with h = θ1 − θ2, then for any shift invariant estimator we
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have

R(θ1, g) =

∫
RN

[g(x)− cTθ1]2f(x|θ1)dx (4.22)

=

∫
RN

[g(x)− cT(θ2 + h)]2f0(x−G(θ2 + h))dx (4.23)

=

∫
RN

[g(x−Gh)− cTθ2]2f((x−Gh)|θ2)dx (4.24)

=

∫
RN

[g(x)− cTθ2]2f(x|θ2)dx = R(θ2, g) (4.25)

Hence, for shift invariant estimators, we have M(g) = R(θ, g), since the conditional risk

R(θ, g) is constant with respect to θ. Thus, the lower bounds on M(g) in Theorems 3 and

4 are also lower bounds on R(θ, g) for such estimators.

4.4 Application of Estimator Bounds to the Phase Offset Es-

timation Problem

Recall from Section 4.2 that our problem is to estimate δ = cT
0 θ, where θ = [δ d]T and c0 =

[1 0]T, from the observation vector y = Aθ+w. Since f(y|θ) satisfies f(y|θ) = fW(y−Aθ),

the POE problem can be classified as a location parameter problem. Hence, by setting G = A

and f0(·) = fW(·) in the result of Theorems 3 and 4, bounds can be obtained for the general

POE problem where only the joint pdf fW(w) is known. We now further simplify the results

of Theorems 3 and 4 under the special case of i.i.d. forward and reverse queuing delays (as

defined by eqns. (4.8) and (4.9) of Section 4.2).
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4.4.1 Simplification of Theorem 1

Theorem 3 states that every estimator δ̂(y) of δ will satisfy (4.17), provided V � 0. Towards

obtaining simplified expressions for the elements of u and V, let {si}Ki=1 and {hi}Ki=1 be

arbitrary scalars and M × 1 vectors respectively. Further, let hi = cT
0 hi, a1 = [1 1]T and

a2 = [−1 1]T. Assuming i.i.d. forward and reverse queing delays, it is easy to show (using

the change of variables w = y −Aθ) that ξ(h1,h2, s1, s2) simplifies to the form

ξ(h1,h2, s1, s2)

=

∫
w

[
fW(w + Ah1)

fW(w)

]s1 [fW(w + Ah2)

fW(w)

]s2
fW(w)dw (4.26)

=
2∏

k=1

[
Ek

{[
fk
(
w + aT

k h1

)
fk (w)

]s1 [
fk
(
w + aT

k h2

)
fk (w)

]s2}]P
(4.27)

where Ek{·} (for k = 1, 2) represents an expectation taken with respect to the density fk (w)

(as defined in (4.8)). The final expressions for the elements of u and V (corresponding to

eqns. (4.15) and (4.16)) are

ui = hi · ξ(hi,02×1, 1− si, 0) (4.28)

where 02×1 = [0 0]T, and

Vij = ξ(−hi,−hj , si, sj)− ξ(−hi,hj , si, 1− sj)

− ξ(hi,−hj , 1− si, sj) + ξ(hi,hj , 1− si, 1− sj) . (4.29)

As stated in Section 4.3, the values K, {si}Ki=1 and {hi}Ki=1 that lead to the tightest lower

bound on error variance still need to be selected. For the POE problem, we observed that

si = 1/2 for all i led to the tightest bounds. Further, depending on the nature of f1(w)

and f2(w), between K = 50 and K = 500 test points sampled uniformly from the set
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{[h1 h2]T : (h1 +h2) ∈ [0,M1] and (h1−h2) ∈ [0,M2]}, were sufficient to generate maximally

tight bounds (recall that [0,M1] and [0,M2] represent the support sets of f1(w) and f2(w)

respectively).

4.4.2 Simplification of Theorem 2

Applying Theorem 2 to the POE problem, we obtain

M(δ̂) ≥
∫ ∞

0
V
{

max
h2

Pr
{
L(w, [h1 h2]T) > 0

}}
h1 dh1 (4.30)

=

∫ ∞
0

max
ξ>0, h2

Pr
{
L(w, [(h1 + ξ) h2]T) > 0

}
h1 dh1 (4.31)

where w is a random vector with p.d.f. fW(w), as defined in (4.9). Further, assuming i.i.d.

forward and reverse queuing delays, the expression for L(w,h) can be simplified as follows

L(w,h) =
P∑
i=1

log

f1

(
w

(i)
1 − h1 − h2

)
f1(w

(i)
1 )


+

P∑
i=1

log

f2

(
w

(i)
2 − h1 + h2

)
f2(w

(i)
2 )

 (4.32)

4.5 Simulation Results

We now compare the performance of existing POE schemes against the WWB and ZZB

derived in Section 4.4. We shall characterize performance by plotting the estimation error

variance against the observation window size P . We note that typically the time evolution

of the phase error is used to characterize the performance of POE schemes [17][22]. Here

the time required for the phase error to converge to a small neighborhood of zero is a metric

of key interest. In the context of such performance evaluations, the WWB and ZZB tell us

the minimum window size required to achieve a desired level of convergence with respect to
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the variance of the phase error. Since the maximum window size in such problems is limited

by the duration of time over which the phase offset and fixed delays can be assumed to be

approximately constant, our bounds can help network designers evaluate if the convergence

of the error variance to a desired level is feasible at all for a given network scenario. Further,

given information about the background traffic conditions, our bounds can help network

designers determine the maximum number of switches that can be allowed between the master

and slave nodes for a desired level of POE performance.

The existing POE schemes we consider are the sample minimum, maximum, mean and

median filtering schemes. Given the observation vector y =

[
yT

1 yT
2

]T

, these schemes use

an estimator of the form

δ̂ =
1

2
[ g(y1)− g(y2) ] (4.33)

where g(.) may be either the sample minimum, maximum, mean or median functions. It

is easy to show that all of these conventional estimators are shift invariant, and hence have

a constant conditional risk that is independent of θ. Thus, in order to characterize the

performance of these schemes, it is sufficient to determine the estimator error variance at

θ = [δ d]T = [0 0]T.

In order to evaluate the performance of these schemes, we assume a Gigabit ethernet

network consisting of a cascade of N switches between a master and a slave node. Each

switch is assumed to be a store-and-forward switch that implements strict priority queuing.

We consider three types of background traffic flows in this network:

(a) Cross Traffic Flows: In cross traffic flows [45], fresh background traffic is injected at

each switch along the master-slave path, and this traffic exits the master-slave path at

the subsequent switch (see 4-switch example in Fig. 4.1a). The arrival times and sizes
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of background traffic packets injected at each switch were assumed to be statistically

independent of traffic at other switches.

(b) Inline Traffic Flows: In inline traffic flows [22], background traffic is injected only at the

first switch along the master-slave path, and this traffic travels along the same path as

synchronization traffic through the entire cascade of N switches (see 4-switch example in

Fig. 4.1b).

(c) Mixed Traffic Flows: Here a mixture of cross and inline traffic flows are present in the

network.

As discussed in Section I, mobile network operators typically lease the backhaul network from

commercial ISPs, and the use of this backhaul network is shared among several users. In

the context of such backhaul networks, traffic generated by other users of the network can

be typically modeled as cross traffic flows, while inline traffic flows can be used to model

non-synchonization traffic between the master and the slave nodes.

With regard to the packet size distributions of background traffic, we use Traffic Models

1 (TM1) and 2 (TM2)from the ITU-T recommendation G.8261 [45] for cross traffic flows,

as described in Table 4.1. We also consider a third traffic model, where packet sizes are

uniformly distributed between 64 and 1500 bytes [22] for inline traffic scenarios. Further, we

consider both symmetric and asymmetric assumptions for the background traffic occurring

along the forward path versus the reverse path.

We consider the following specific scenarios:

(i) Cross Traffic Flows, Symmetric Traffic, TM1.

(ii) Cross Traffic Flows, Symmetric Traffic, TM2.
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Traf. Model Packet Sizes (Bytes) % of Load

TM1 {64, 576, 1518} {80%, 5%, 15%}
TM2 {64, 576, 1518} {30%, 10%, 60%}

Table 4.1: Models for composition of background traffic packets

(iii) Inline Traffic Flows, Symmetric Traffic, TM2.

(iv) Mixed Traffic Flows, Symmetric Traffic, TM1 for cross traffic, uniform packet size dis-

tribution for inline traffic.

(v) Cross Traffic Flows, Asymmetric Traffic, TM1 for forward path and TM2 for reverse

path.

For the load factor, i.e. the percentage of the link capacity consumed by background traffic,

we consider values between 20 - 80% of the link capacity. We assume that the interarrival

times between packets in all background traffic flows follow exponential distributions, and

set the rate parameter of each exponential distribution to obtain the desired load factor.

Empirical pdfs of the queuing delays (Figs. 4.2a - 4.2f) were obtained using the OPNET

network simulator [46] for cross traffic flows, and a custom MATLAB-based network simulator

for inline and mixed traffic flows . Our simulations assumed that all switches were store-

and-forward switches that implemented strict priority queuing. Without loss of generality,

we assume that fixed minimum delay components of the ETE delays equal zero, hence the

support of fw (w) always begins at zero in the plots. These empirical densities are used to

obtain lower bounds using the simplified expressions derived in Section 4.4. The WWB-

based performance bound of Theorem 1 was evaluated numerically using Riemann sums,

while the ZZB-based performance bound of Theorem 2 was evaluated using Monte-Carlo

simulation techniques. The resulting bounds on the standard deviation of estimation error
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(a) Cross Traffic Flows

(b) Inline Traffic Flows

Figure 4.1: Example of a four switch network with cross and inline traffic flows. Red lines
indicate Gigabit ethernet links, dotted blue lines indicate the direction of background traffic
flows, while the dotted green line represents the direction of synchronization traffic flow.

73



are compared with the error standard derivation of various conventional estimation schemes

at different sample sizes in Figs. 4.4 - 4.10, with legend provided in Fig. 4.3).

In order to compare the results against the LTE synchronization requirement of 1.25 µs

of synchronization accuracy, the estimation error standard deviation required so that the

absolute estimation error lies under 1.25 µs with a 5-sigma level of certainty is also plotted

over the curves. Here the 5-sigma level of certainty implies that on average, about 6 out of

every 10 million estimates will have absolute estimation error that exceeds 1.25 µs.

Based on the simulations results, we made the following observations:

1. Estimator Standard Deviation vs Theoretical Limits: Typically, for a fixed value of P ,

the standard deviation of estimator error is 10-80% higher for the best conventional

estimation scheme over the tightest estimator bound, either the ZZB or the WWB.

2. Number of samples required vs Theoretical Limits: The tightest estimator bound achieves

the LTE synchronization requirement using 10-60% fewer samples than the best per-

forming conventional estimator.

3. Effect of increase in load factor : The number of samples required both by the bounds

as well as different conventional estimation schemes to achieve the LTE synchronization

requirement tends to grow significantly (by roughly 4 to 80 times) between the 20% and

80% load cases. This can be attributed to the fact that at lower loads, a fair fraction of

samples with zero queuing delays occur, while such samples disappear at higher loads.

Our numerical results lead us to the following conclusions. Each conventional estimation

scheme is particularly suited for a certain kind of queuing delay distribution, achieving near-

optimum performance under a suitable scenario. Suppose we measure the closeness of an

estimator to the lower bounds as the percentage increase in the number of samples required
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(a) 10 Switches, TM1

(b) 10 Switches, TM2

(c) 20 Switches, TM1

(d) 20 Switches, TM2

(e) 10 Switches, Inline Traffic

(f) 10 Switches, Mixed Traffic

Figure 4.2: Plots of f0(x) under varying network conditions.75



Figure 4.3: Legend common to Figs. 4.4 - 4.10.

(a) 20% Load (b) 80% Load

Figure 4.4: Plots of the standard deviation of estimator error with 10 switches and cross
traffic flows distributed according to TM1, under varying load factors.

(a) 20% Load (b) 80% Load

Figure 4.5: Plots of the standard deviation of estimator error with 10 switches and cross
traffic flows distributed according to TM2, under varying load factors.

(a) 20% Load (b) 80% Load

Figure 4.6: Plots of the standard deviation of estimator error with 20 switches and cross
traffic flows distributed according to TM1, under varying load factors.

76



(a) 20% Load (b) 80% Load

Figure 4.7: Plots of the standard deviation of estimator error with 20 switches and cross
traffic flows distributed according to TM2, under varying load factors.

(a) 20% Load (b) 80% Load

Figure 4.8: Plots of the standard deviation of estimator error with 10 switches and inline
traffic flows, under varying load factors.

(a) 20% Load (Inline), 20% Load (Cross,
TM2)

(b) 20% Load (Inline), 40% Load (Cross,
TM2)

Figure 4.9: Plots of the standard deviation of estimator error with 10 switches and mixed
traffic flows, under varying load factors.
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(a) 20% Load (TM1), 20% Load (TM2) (b) 80% Load (TM1), 80% Load (TM2)

Figure 4.10: Plots of the standard deviation of estimator error with 10 switches and asym-
metric cross traffic flows (TM1 for forward path and TM2 for reverse path), under varying
load factors.

by the estimator to achieve the LTE synchronization threshold, as compared to the tightest

lower bound. Then we observe that sample minimum filtering comes very close to achieving

the lower bound in Figs. 4.4a and 4.5a. Here the combination of a low load factor and a small

number of switches results in a significant concentration of probability mass near zero delay

in the queuing delay pdf. On the other hand, sample mean filtering comes close to achieving

the lower bound in Figs. 4.6b, 4.7b and 4.10b. These are specific high load scenarios that

are well suited to sample-mean filtering. We similarly believe that there also exist network

scenarios, other than those considered in this chapter, where the sample maximum and

median schemes will come close to achieving the lower bounds. However, under many other

low and high load scenarios, such as in Figs. 4.4b, 4.5b, 4.6a, 4.8a, 4.8b, 4.9a, 4.9b and 4.10a,

no conventional estimation scheme comes close to the lower bounds. In these scenarios, our

bounds indicate that significant performance gains could be achieved by considering other

more suitable estimators.
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4.6 Summary

In this chapter, we describe new lower bounds on the maximum risk of estimators for the

POE problem. These new bounds, first described for a general vector parameter estimation

problem, are subsequently simplified for the POE problem. Simulations compare the per-

formance of several POE schemes against these bounds under different network conditions.

Results indicate that while conventional estimators come close to achieving the bounds in

some scenarios, there are also many scenarios where it may be possible to achieve significant

performance gains via the use of better POE schemes. Our future work will aim to address

whether or not these bounds are achievable.
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4.8 Appendix

4.8.1 Proof of Theorem 3

We begin the proof with the straightforward inequality

M(g) = max
θ

E
{

[g(x)− cTθ]2 | θ
}

(4.34)

≥
∫
θ∈Θ

E
{

[g(x)− cTθ]2| θ
}
p(θ)dθ = B(g, p) (4.35)
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i.e. the maximum risk exceeds the Bayes risk for any choice of prior distribution p(θ). Define

L̃(θ1,θ2) =
f(x|θ1)p(θ1)

f(x|θ2)p(θ2)
(4.36)

The original WWB [38] states that

B(g, p) ≥ ũTṼ
−1

ũ (4.37)

provided that Ṽ is positive definite. In (4.37), ũ is a K × 1 vector whose ith element is

ũi = (cThi) · E
[
L̃1−si(θ − hi,θ)

]
(4.38)

while Ṽ is a K ×K matrix whose (i, j) element is

Ṽij = E
{

[L̃si(θ + hi,θ)− L̃1−si(θ − hi,θ)]

· [L̃sj (θ + hj ,θ)− L̃1−sj (θ − hj ,θ)]
}
, (4.39)

with expectations computed over both x and θ. Note that the definitions of ũ and Ṽ are

obtained from [38], and are distinct from the definitions of u and V in the statement of

Theorem 3. In [38], the vectors {hi}Ki=1 in the definitions of ũ and Ṽ are referred to as test

points . From (4.35) and (4.37), we see that the inequality M(g) ≥ ũTṼ
−1

ũ holds for any

prior distribution p(θ). In order to maximize the tightness of this lower bound, we should pick

the p(θ) that maximizes ũTṼ
−1

ũ. However, the optimum choice of p(θ) is difficult to obtain

analytically. Instead, here we consider a sequence of prior distributions p(θ) that result in

monotonically increasing values for M(g), and determine the limiting value for M(g). To

this end, consider a prior distribution p(θ) that is uniformly distributed over its support set

80



Θ, i.e.

p(θ) =


1/S if θ ∈ Θ

0 otherwise

(4.40)

where S =
∫
Θ dθ. Define

ξ(h1,h2, s1, s2)

=

∫
RN

[
f0(x + Gh1)

f0(x)

]s1 [f0(x + Gh2)

f0(x)

]s2
f0(x)dx (4.41)

Then the ith element of ũ can be simplified as

ũi = (cThi) ·
∫

Θ

∫
RN

[
f(x|θ − hi)p(θ − hi)

f(x|θ)p(θ)

]1−si

· f(x|θ)p(θ)dxdθ (4.42)

= (cThi) ·
∫
{θ:θ,(θ−hi)∈Θ}

∫
RN[f0(x−Gθ + Ghi)

f0(x−Gθ)

]1−si
f0(x−Gθ)p(θ)dxdθ (4.43)

(Setting x̃ = x−Gθ)

= (cThi) ·
∫
{θ:θ,(θ−hi)∈Θ}

∫
RN

[
f0(x̃ + Ghi)

f0(x̃)

]1−si

· f0(x̃)p(θ)dx̃dθ (4.44)

= Di · (cThi) · ξ(hi,0M×1, 1− si, 0) = Diui (4.45)

where

Di =

∫
{θ:θ,(θ−hi)∈Θ}

p(θ)dθ =
1

S

∫
{θ:θ,(θ−hi)∈Θ}

dθ
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and ui is as defined in the statement of the theorem. Now consider a support set of the form

Θ = {θ = (θ1, · · · , θM ) : θi ∈ [−B,B] ∀i}

For any bounded set of test points {hi}Ki=1, we have

lim
B→∞

Di = lim
B→∞

1

S

∫
{θ:θ,(θ−hi)∈Θ}

dθ = 1

Hence, under this limiting prior distribution, we obtain ũi = ui. Note that this argument

does not require the existence of an uniform prior distribution over an infinite support set,

it merely implies that the difference between ũi and ui can be made arbitrarily small by

choosing larger and larger values for (uj − lj).

Using a similar argument, it can also be shown that Ṽij = Vij under the same limiting

distribution, where Vij is as defined in the statement of the theorem. Thus, we obtain

M(g) ≥ uTV−1u, proving eqn. (4.17) in the statement of the theorem. This concludes the

proof.

4.8.2 Proof of Theorem 4

As in the proof of Theorem 3, we begin with the straightforward inequalityM(g) ≥ B(g, p).

Further, it is easy to show using the original (unmodified) ZZB ([44], eq. (32)) that

B(g, p) ≥ 1

2

∫ ∞
0
V

{
max

h:cTh=h

∫
ϕ∈Θ

[p(ϕ) + p(ϕ+ h)]

·Pmin(ϕ,ϕ+ h)dϕ

}
h dh (4.46)

where

V {f(h)} = max
ξ>0

f(h+ ξ) (4.47)
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is the valley filling function, as defined in [44]. Here Pmin(ϕ,ϕ + h) corresponds to the

probability of error of the optimum decision rule for the Bayesian hypothesis testing problem

H1 : θ = ϕ x ∼ f(x|θ = ϕ)

H0 : θ = ϕ+ h x ∼ f(x|θ = ϕ+ h)

(4.48)

where Pr(H1) = p(ϕ) and Pr(H0) = p(ϕ+ h).

Thus, we see that the inequality

M(g) ≥ 1

2

∫ ∞
0
V

{
max

h:cTh=h

∫
ϕ∈Θ

[p(ϕ) + p(ϕ+ h)]

·Pmin(ϕ,ϕ+ h)dϕ

}
h dh (4.49)

holds for any prior distribution p(θ). In order to maximize the tightness of this lower bound,

we should pick the p(θ) that maximizes the right side of the above equation. However, the

optimum choice of p(θ) is difficult to obtain analytically. Hence, as in the proof of Theorem

3, we consider a sequence of prior distributions p(θ) that result in monotonically increasing

values for M(g), and determine the limiting value for M(g). To this end, consider again a

prior distribution that is uniformly distributed over its support set Θ, i.e.

p(θ) =


1/S if θ ∈ Θ

0 otherwise

(4.50)

where S =
∫
Θ dθ. Further, consider two cases:

(i) If either ϕ /∈ Θ or ϕ+ h /∈ Θ :

Here a decision rule that always decides in favor of either H0 (if ϕ /∈ Θ and ϕ +

h ∈ Θ) or H1 (if ϕ + h /∈ Θ) will have a zero error probability, hence we will have

Pmin(ϕ,ϕ+ h) = 0.
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(ii) If both ϕ ∈ Θ and ϕ+ h ∈ Θ :

Here the optimum decision rule is given by the likelihood ratio test, whose probability

of error is given as

Pmin(ϕ,ϕ+ h) = Pr
{
L̂(ϕ,ϕ+ h) > l | H1

}
(4.51)

where

L̂(ϕ,ϕ+ h) = log

[
f(x|θ = ϕ+ h)

f(x|θ = ϕ)

]
(4.52)

= log

[
f0(x−Gϕ−Gh)

f0(x−Gϕ)

]
(4.53)

and l = log [p(ϕ)/p(ϕ+ h)] = log(1) = 0. Define

I(p) =


1 if p > 0

0 otherwise

(4.54)

Then Pmin(ϕ,ϕ+ h) can be simplified as

Pmin(ϕ,ϕ+ h)

= Pr
{
L̂(ϕ,ϕ+ h) > 0 | H1

}
(4.55)

=

∫
RN

I

(
log

[
f0(x−Gϕ−Gh)

f0(x−Gϕ)

])
(4.56)

· f0(x−Gϕ)dx (4.57)

=

∫
RN

I

(
log

[
f0(x−Gh)

f0(x)

])
f0(x)dx (4.58)

= Pr{L(x,h) > 0} = Pmin(h) (4.59)

where L(x,h) and Pmin(h) are as defined earlier in this proof.

Substituting the values computed for Pmin(ϕ,ϕ+ h) under these two cases into (4.49) and
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simplifying, we obtain

M(g) ≥ 1

2

∫ ∞
0
V

{
max

h:cTh=h
Pmin(h) · D(h)

}
h dh (4.60)

where

D(h) =

∫
{ϕ:ϕ,(ϕ+h)∈Θ}

[p(ϕ) + p(ϕ+ h)]dϕ (4.61)

Now consider a support set Θ for p(θ), of the form

Θ = {θ = (θ1, · · · , θM ) : θi ∈ [−B,B] ∀i} (4.62)

We note since we assume the p.d.f. f0(·) has finite support, Pmin(h) becomes zero when the

elements of h grow very large. Thus, the maximum values of the elements of h that must be

considered in the right hand side of (4.60) are all finite (for a more rigorous argument, one

can show that there exists a positive scalar h0 such that Pmin(h) = 0 for any h satisfying

cTh = h when h > h0). For any bounded value of h, it is easy to see that under the limiting

prior distribution where B →∞, we obtain

lim
B→∞

D(h) = lim
B→∞

2

S

∫
{ϕ:ϕ,(ϕ+h)∈Θ}

dϕ = 2 (4.63)

Hence, in this limiting case, we obtain D(h) = 2, and (4.60) reduces to

M(g) ≥
∫ ∞

0
V
{

max
h:cTh=h

Pmin(h)

}
h dh (4.64)

This concludes the proof.
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Chapter 5

Minimax Estimators for Phase

offset estimation in IEEE 1588

5.1 Introduction

In the IEEE 1588 precision time protocol (PTP), a master and a slave node exchange a series

of packets to achieve phase synchronization. Packets traveling between the master and the

slave encounter several intermediate network nodes such as switches or routers, accumulating

random queuing delays at each node. The problem of finding the slave’s phase offset from the

timestamps of the exchanged packets, while combating the random queuing delays, is referred

to as phase offset estimation (POE). The PTP standard and related literature prescribe the

use of simple estimators such as the sample mean, minimum and maximum filters for POE.

Several recent papers [17]–[50] have studied methods to improve the performance of these

filters, especially in the presence of large queuing delays due to high network loads. However,

it is not well understood as to how close these POE schemes come to achieving the best
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possible estimation performance, measured in terms of the mean squared estimation error.

In this chapter, we derive optimum estimators for the problem of POE, which, to our

knowledge, have not been described previously in literature. To this end, in Section 5.2 we

begin by modeling POE as a non-Bayesian estimation problem. Specifically, we treat the

phase offset as an unknown deterministic parameter to be estimated from timestamps that

are also affected by the fixed delays along the forward and reverse network paths. We then

consider three observation models, with varying degrees of information available about the

fixed delays. Under the known fixed delays model (K-model), we assume complete knowledge

of both the fixed delays, while under the standard model (S-model), we assume that only the

delay asymmetry is known. Further, under the multiblock model (M-model), we assume known

delay asymmetry, as well as the availability of additional past observations which contain the

same fixed delays but different phase offsets. Under all three observation models, we show that

POE falls under a general class of estimation problems known as vector location parameter

problems. In statistical estimation theory, the Pitman estimator [51][52] is well known to

be minimax optimum for location parameter problems, in the sense that it minimizes the

maximum mean squared error (maximum MSE ) over all values of the unknown parameters.

While the original Pitman estimator was derived only for scalar location parameter problems,

in Section 5.3 we rederive it in the more general context of vector location parameter problems.

Other properties of the Pitman estimator, related to the estimation of linear combinations

of parameters, are also rederived in this new context.

Our motivation in considering multiple observation models is to provide insight into the

dependence between estimation performance and the amount of prior information available

about the fixed delays. Specifically, we show that the minimax MSE (MSE of the minimax

optimum estimator) under the M-model is guaranteed to be less than the minimax MSE
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under S-model, and greater than the minimax MSE under the K-model, independent of the

amount of past information available under the M-model. Hence, while the K-model is not as

practical as the S-model and M-model, it helps us establish a useful limit on the performance

gains that can be achieved under the M-model relative to the S-model.

In Section 5.4, we simplify the general minimax estimator for the problem of POE

under each observation model. In Section 5.5, using the properties of the minimax estimator

derived in Section 5.3, we show that under typical network assumptions, the MSE of the

minimax estimator grows at least linearly with the number of intermediate nodes between

the master and the slave. Our simulations in section 5.6 compare the performance of the new

minimax estimates against conventional estimators under several network conditions. Results

indicate that there are several network scenarios where conventional estimation schemes fall

significantly short of achieving the maximum possible synchronization accuracy. Further,

in asymmetric network traffic scenarios, we show that significant performance gains become

available if we exploit information about fixed delays from past observations.

The results in this chapter extend on our the result presented in Chapter 4, where lower

bounds on the maximum MSE of POE schemes under the second observation model were

derived. In this chapter, we address more observational models, provide the tightest lower

bounds on the maximum MSE of POE schemes under each model, and also specify the

estimators that achieve these lower bounds.

5.2 System Model

Consider a scenario where the slave clock has a phase offset δ and zero frequency offset with

respect to its master. To help the slave determine δ, the IEEE 1588 PTP protocol allows a
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two-way message exchange between the master and slave. The steps involved in a two-way

message exchange are as follows:

1. The message exchange is initiated by the master, when it sends a SYNC packet to the

slave at a time t1. A FOLLOW UP message is used to communicate the value of t1 to

the slave.

2. The time of reception of the SYNC packet is recorded as t2 = t1 + d1 + δ, where d1

denotes the end-to-end (ETE) network delay between the master and the slave.

3. The slave responds to the master with a DELAY REQ packet, and records its time of

transmission as t3.

4. The time of arrival of the DELAY RESP packet is recorded by the master as t4 =

t3− δ+d2, where d2 denotes the ETE network delay between the slave and the master.

The value of t4 is sent to the slave via a DELAY REQ packet.

In order to estimate δ, it is clearly sufficient for the slave to only retain the pair of timestamp

differences

y1 = t2 − t1 = d1 + δ (5.1)

y2 = t4 − t3 = d2 − δ (5.2)

Here d1 and d2 denote the end-to-end (ETE) network delays in the master-slave and slave-

master directions, respectively. Assume for simplicity that a common network path is taken

by all packets traveling between the master and the slave and vice-versa. Then each ETE

delay receives contributions from three factors:

(a) Constant propagation delays along network links between the master and the slave (or
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vice-versa).

(b) Constant processing delays at intermediate nodes (such as switches or routers) along each

network path.

(c) Random queuing delays at intermediate nodes along each network path.

Hence each ETE delay can be modeled as

d1 = dmin
1 + w1, d2 = dmin

2 + w2 (5.3)

Here dmin
1 and dmin

2 denote fixed delays corresponding to the sum of the constant propagation

and processing delays, while w1 and w2 model the random queuing delays.

Assuming the values of δ, dmin
1 and dmin

2 remain constant over the duration of P two-way

message exchanges, we can collect multiple observation pairs (y1, y2) to help estimate δ. We

denote these observations as

y∗i,1 = dmin
1 + δ + wi,1 , y∗i,2 = dmin

2 − δ + wi,2 (5.4)

for i = 1, · · · , P . The accuracy with which we can estimate δ from the observations in (5.4)

depends on the amount of knowledge we have about dmin
1 and dmin

2 . We now consider three

observation models, differentiated based on the amount of prior information available about

dmin
1 and dmin

2 :

1. Known fixed delay model (K-model): Here we assume that dmin
1 and dmin

2 are fully known

at the slave. Hence, setting yi,k = y∗i,k − dmin
k , we obtain the compensated observations

yi,1 = δ + wi,1 , yi,2 = −δ + wi,2 (5.5)

for i = 1, · · · , P . These observations can be collected to obtain the vector observation
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model

y = δe + w (5.6)

where

y =

[
yT

1 yT
2

]T

, yk = [y1,k · · · yP,k]T (5.7)

w =

[
wT

1 wT
2

]T

, wk = [w1,k · · · wP,k]T (5.8)

e = [1P (−1P )]T (5.9)

and 1N is a N × 1 vector with all elements equal to 1.

2. Standard model (S-model): Here we assume that only the difference between dmin
1 and

dmin
2 , referred to as the delay asymmetry, is known to the slave. By compensating the

observations as

yi,1 = y∗i,1, yi,2 = y∗i,2 − dmin
2 + dmin

1 (5.10)

we obtain

yi,1 = d+ δ + wi,1 , yi,2 = d− δ + wi,2 (5.11)

for i = 1, · · · , P , where d = dmin
1 . These observations can be denoted vectorially as

y = d12P + δe + w = Aθ + w (5.12)
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where y and w are as defined in (5.7) and (5.8), and

θ = [θ1 θ2]T = [d+ δ d− δ]T, (5.13)

A =

 1P 0P

0P 1P

 , (5.14)

with 1Q, 0Q representing Q× 1 vectors of ones and zeros, respectively.

Note that this model also covers the case of symmetric path delays, where dmin
1 =

dmin
2 , and hence the delay asymmetry is zero. We further note that other cases where

the relationship between the fixed delays is known, such as the case where the ratio

dmin
1 /dmin

2 is known, can also be handled using a model similar to (5.12). For brevity,

only the case of known delay asymmetry is considered here.

3. Multiblock model (M-model): Here we assume, as in the standard model, that the delay

asymmetry is known to the slave. Suppose we refer to a set of P observation pairs

as a block. In this model, we further assume that in addition to the current block,

we have observation pairs from B previous blocks available to us. The phase offset δ

is modeled as being constant for all observation pairs within each block, but varying

between different blocks. The fixed delay d is modeled as constant across all B + 1

blocks. This model is representative of scenarios where changes in the fixed delay occur

over longer time scales than changes in phase offset. We denote observation pairs in

past blocks using the notation

yi,j,1 = d+ δj + wi,j,1 , yi,j,2 = d− δj + wi,j,2 (5.15)
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and observation pairs in the current block as

yi,1 = d+ δ + wi,1 , yi,2 = d− δ + wi,2 (5.16)

for i = 1, · · · , P and j = 1, · · · , B. We thus obtain the vector observation model

y = Gθ + w (5.17)

where

y =

[
yT

1 yT
2

]T

, (5.18)

yk = [y1,k · · · yP,k y1,1,k y1,2,k · · · yB,P,k]T (5.19)

w =

[
wT

1 wT
2

]T

, (5.20)

wk = [w1,k · · · wP,k w1,1,k w1,2,k · · · wB,P,k]T (5.21)

θ = [d δ δ1 · · · δB]T, (5.22)

G = [12BP Z⊗ 1P ] , Z = [IB (−IB)]T (5.23)

and IB, ⊗ denote the identity matrix of size B and the Kronecker product operator,

respectively.

It is easy to see that the K-model can be difficult to use in practice, since it requires

that the fixed delays dmin
1 and dmin

2 both be known to the slave. One way to determine dmin
1

and dmin
2 would be via an initial calibration step, where a perfect time source is temporarily

attached to the slave, and network transit times are measured in the absence of background

traffic. In typical situations where such an expensive calibration step is not feasible, but

it is known that the master-slave and slave-master path have identical fixed delays, the

more practical S-model can be used. Further, whenever it is known that the fixed delays
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remain constant over longer time intervals than the phase offsets, the M-model can be used

instead of the S-model, since it contains additional observations that could be used to improve

estimation performance. We still consider the K-model in this chapter since we later shows

that it provides useful bounds on the estimation performance achievable under the M-model.

Given either of the observation models, the problem of POE is to estimate δ from the

observation vector y. Here we further make the following assumptions:

(i) All the queuing delays are strictly positive random variables that are mutually inde-

pendent.

(ii) All forward queuing delays share a common pdf f1(w). Similarly the reverse queuing

delays share a common pdf f2(w).

(iii) The maximum possible value for a forward or reverse queuing delay is finite.

(iv) All the unknown fixed delays and phase offsets are deterministic parameters, i.e. no

probability distributions for these parameters are known a priori.

Note that in practice, it is often reasonable to assume that background traffic patterns remain

constant over several minutes. Hence, the assumption that all queing delays share a common

pdf is fairly realistic.

5.3 Minimax Estimators for Location Parameter Problems

We now consider a general class of estimation problems, where the effect of the unknown

parameters is to shift the location of the pdf of the observations without modifying the un-

derlying shape of the pdf. The POE problems under all three observation models considered

in Section 5.2 belong to this general class of problems. The general results derived here shall
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be applied to the POE models in Section 5.4. The proof of all the lemmas and theorems

stated in this section are provided in the appendix.

We first define the general class of problems we are interested in studying.

Definition 2 (Vector Location Parameter Problem). Suppose we want to estimate a linear

combination cTθ of the unknown parameters contained in θ ∈ RM (where c ∈ RM is a

constant vector), based on observations x ∈ RN . If the observations have a pdf of the form

f(x|θ) = f0(x−Gθ) (5.24)

for some N × M matrix G and function f0(·), then we shall refer to such an estimation

problem as a vector location parameter problem.

All the definitions and theorems in the remainder of this section apply specifically to this

vector location parameter problem. The results we derive further require that the function

f0(x) be non-zero over a bounded, positive range of values of its arguments, as defined below.

Definition 3 (Finite Support). We say that f0(x) in (5.24) has finite support if there exists

a finite L > 0 such that f0(x) = 0 whenever all the elements of the vector x lie outside the

interval [0, L].

It is typical in statistical literature to characterize the performance of an estimator via

the mean squared error (MSE) metric. There are three ways to define the MSE metric:

1. The conditional MSE

R(g(x),θ) =

∫
RN

[g(x)− cTθ]2f(x|θ)dx (5.25)
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2. The maximum MSE

M(g(x)) = sup
θ∈RM

R(g(x),θ) (5.26)

3. The average MSE

B(g(x), p(θ)) =

∫
RM

R(g(x),θ)p(θ)dθ (5.27)

where p(θ) is a prior distribution defined over θ ∈ RM .

In this section, we consider the problem of finding estimators that are optimum in terms of

minimizing the maximum MSE, and refer to such estimators as minimax estimators. The

definitions of the conditional and average MSEs shall be used in the proofs of the optimality

of the minimax estimator.

We now consider a class of estimators known as shift invariant estimators, defined as

follows.

Definition 4 (Shift Invariant Estimator). We say that an estimator g(x) of cTθ is shift

invariant if for the same matrix G used in (5.24),

g(x + Gh) = g(x) + cTh (5.28)

for all h ∈ RM .

While the conditional, maximum and average MSEs can be different for a estimator, for

a shift invariant estimator they are always equal, as stated in the following lemma.

Lemma 3. Any shift invariant estimator g(x) of cTθ has a conditional MSE that is constant

with respect to θ, and satisfies

R(g(x),θ) =M(g(x)) = B(g(x), p(θ)) (5.29)
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for any choice of prior distribution p(θ).

We now give the expression for the minimax estimator and prove its optimality using

Definition 4 and Lemma 3. We note that the following result is an extension of the Pitman

estimator [51] to vector location parameter problems.

Theorem 5 (Minimax estimator). If f0(x) has finite support, then the estimator

g∗(x) =

∫
RM [cTθ̂]f(x|θ̂) dθ̂∫

RM f(x|θ̂) dθ̂
(5.30)

satisfies the following properties:

(i) g∗(x) is shift invariant.

(ii) g∗(x) is a minimax estimate of cTθ.

(iii) Among all estimators of cTθ that are shift invariant, g∗(x) achieves the minimum

conditional MSE R(g(x),θ).

(iv) g∗(x) is unbiased, i.e. E
{[
g∗(x)− cTθ

]
| θ
}

= 0.

An interesting property of the minimax estimator is that for a given set of observations,

the minimax estimate of a linear combination of parameters is identical to the same linear

combination of the minimax estimates of each of the parameters. Formally, this can be stated

as follows.

Lemma 4. Let θ = [θ1 · · · θM ]T , and let g∗i (x) represent the minimax estimate of θi. If

c = [c1 · · · cM ]T, then the minimax estimate g∗(x) of cTθ satisfies

g∗(x) =

M∑
i=1

cig
∗
i (x)
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This property will allow us to simplify the form of the minimax estimator under the

S-model in Section 5.4.

Another interesting property of the minimax estimator emerges when we consider multi-

ple minimax estimates, each based on a different observation vector. Here we can show that

the sum of the MSEs of the individual minimax estimates will always be less than the MSE

of the minimax estimate based on sum of all the observation vectors. We note that this result

is an extension of a similar result presented in [52] for scalar location parameter problems.

Theorem 6. Let x1, · · · ,xK be N -dimensional random vectors with pdfs of the form

f(xk|θk) = fk(xk −Gkθk) (5.31)

where fk(·) has finite support for k = 1, · · · ,K. Assume that x1, · · · ,xK are all mutually

independent conditioned on the unknown parameters, i.e. the joint pdf f(xk1 ,xk2 |θk1 ,θk2)

satisfies

f(xk1 ,xk2 |θk1 ,θk2) = f(xk1 |θk1)f(xk2 |θk2) (5.32)

for all values of k1 and k2. Let h∗k(xk) denote the minimax estimate of cTθk. Further, let

x =
∑K

k=1 xk, θ =
∑K

k=1 θk, and let g∗(x) denote the minimax estimate of cTθ from x. Then

g∗(x) satisfies

M(g∗(x)) ≥
K∑
k=1

M(h∗k(xk)) (5.33)

This property will be useful in proving certain properties of the minimax estimator for

POE in Section 5.5.
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5.4 Simplification of Minimax Estimator for the POE problem

We now use the results in Section 5.3 to obtain minimax optimum estimators under the three

POE observation models discussed in Section 5.2, and simplify the resulting expressions.

1) Known fixed delay model : As stated in (5.6), the pdf of the observation vector y has the

form

f(y|δ) = fW(y − δe) (5.34)

where

fW(w) =

P∏
i=1

f1(wi,1)f2(wi,2) (5.35)

Hence, according to Definition 2, this is a vector location parameter problem. Thus, using

Theorem 5, we obtain the minimax estimator of δ as

δ̂(y) =

∫
R δfW(y − δe)dδ∫
R fW(y − δe)dδ

(5.36)

2) Standard Model : As stated in (5.12), here the pdf of the observation vector y has the form

f(y|θ) = fW(y −Aθ) (5.37)

= fW,1(y1 − θ11P )fW,2(y2 − θ21P ) (5.38)

where

fW(w) =

P∏
i=1

f1(wi,1)f2(wi,2) , (5.39)

fW,k(wk) =
P∏
i=1

fk(wi,k) for k = 1, 2 (5.40)

Hence, according to Definition 2, this is a vector location parameter problem. Our goal
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is to estimate δ = cTθ (where c = [0.5 − 0.5]T) from the observation vector y = Aθ+ w.

Hence, using Theorem 5, we obtain the minimax estimate

δ̂(y) =

∫
R2 [cTθ]f(y|θ) dθ∫

R2 f(y|θ) dθ
(5.41)

Using Lemma 4, we can further simplify the estimator as

δ̂(y) =
1

2

[∫
R θ1fW,1(y1 − θ11P ) dθ1∫
R fW,1(y1 − θ11P ) dθ1

−
∫
R θ2fW,2(y2 − θ21P ) dθ2∫
R fW,2(y2 − θ21P ) dθ2

]
(5.42)

3) Multiblock Model : As stated in (5.17), here the pdf of the observation vector y has the

form

f(y|θ) = fW(y −Gθ) (5.43)

where

fW(w) =
B∏
i=1

P∏
j=1

2∏
k=1

fk(wi,j,k) (5.44)

Hence, according to Definition 2, this is also a vector location parameter problem. Our

goal is to estimate δ = ĉTθ from y, where ĉ = [0 1 0 · · · 0︸ ︷︷ ︸
B−1 zeros

]T. Using Theorem 5, we

obtain the minimax estimate

δ̂(y) =

∫
R δΓ(δ,y)dδ∫
R Γ(δ,y)dδ

(5.45)
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where

Γ(δ,y) =

∫
R

[
P∏
i=1

2∏
k=1

fk(yi,k − d+ (−1)kδ)

]

· Ω(d,y) d(d) (5.46)

Ωj(d,y) =
B∏
j=1

[∫
R

P∏
i=1

2∏
k=1

fk(yi,j,k − d+ (−1)kδj)dδj

]
(5.47)

In scenarios where analytical expressions for the queuing delay pdfs f1 (w) and f2 (w)

are known, it might be possible to further simplify the integrals in (5.36), (5.42) and (5.45)-

(5.47). In the more general case of arbitrary pdfs f1 (w) and f2 (w), these integrals can be

computed by approximating them with Riemann summations. In such cases, the computa-

tional complexity associated with the minimax estimators will depend on the number of bins

used in the Riemann summations. Typically, this computational complexity is significantly

higher than that of conventional estimators such as the sample minimum, mean, median or

maximum estimators.

Due to the nature of the POE observation models, some comments regarding the minimax

MSE (the MSE of the minimax optimum estimator) can be made directly, without requiring

numerical evaluations. Firstly, the minimax MSE under the K-model is guaranteed to be

lower than that under the S-model or M-model, since the nuisance parameter d is absent

from the K-model. Further, the minimax MSE under the M-model is guaranteed to be lower

than that under the S-model, since the M-model has additional information from past blocks

available to it. This past information can be used to reduce the uncertainty associated with

the nuisance parameter d, and hence improve the estimate of δ.
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5.5 Minimax MSE under IID single-node queuing delays

The performance of the minimax estimators described in Section 5.4 depends on the nature of

the network queuing delays, which in turn depends on the number of nodes present between

the master and the slave. Theorem 6 can be used to obtain a simple relationship between

the minimax MSE and the number of intermediate nodes, under certain network conditions.

We state this relationship in the form of the following corollary to Theorem 6, with the proof

provided in the appendix.

Corollary 1. Consider a network consisting of a master and a slave separated by N nodes.

Let ρ(N) represent the minimax MSE associated with POE under the S-model in this scenario,

for a fixed number of two-way message exchanges. Let the single-node queuing delay refer

to the queuing delay experienced by packets at any single node1. Assume that the single-

node queuing delays across all nodes in the forward direction are independent and identically

distributed (i.i.d.). Assume that the same is true in the reverse direction as well. Then ρ(N)

satisfies

ρ(KL) ≥ Kρ(L) (5.48)

where K and L are any two positive integers.

For L = 1, the relation in (5.48) reduces to ρ(K) ≥ Kρ(1), which essentially implies

that in networks with i.i.d. single-node queuing delays at all intermediate network nodes, the

minimax MSE grows at least linearly with the number of nodes. This interpretation can be

especially useful for network designers, since it provides a computationally simple upper limit

on the number of nodes that can be allowed between the master and the slave for a given

1Measurements of the single node queuing delay in the forward or reverse direction would corresponding
to the proper entries of the vector w in (5.12) for the case where only N=1 node is involved.
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synchronization accuracy requirement. A typical example where independent, identically

distributed single-node queuing delay distributions can be assumed is a network in which

only cross traffic flows (defined in Section 5.6) are present. Note that a relationship similar

to (5.48) can also be derived under the K-model and the M-model. For brevity, only the

S-model is considered in this section.

5.6 Simulation Results

We now compare the performance of conventional POE schemes against the newly derived

minimax estimators. To this end, we consider a few network scenarios motivated by the ITU-

T recommendation G.8261 [45]. The metric we use to quantify estimator performance is the

maximum MSE. For brevity, we refer to the maximum MSE as simply the MSE throughout

this section.

We consider four commonly used conventional POE schemes, namely the sample min-

imum, maximum, mean and median filtering schemes. Given the observation vector y of

either the K-model or the S-model, these schemes use an estimator of the form

δ̂ =
ξ(y1)− ξ(y2)

2
(5.49)

where ξ(x) denotes either the minimum, maximum, mean or median of the elements of

the vector x. Under the M-model, these estimators behave exactly as under the S-model,

discarding information from past blocks since they have no means of utilizing it. It is easy

to show that these estimators are shift invariant under all three observation models. They
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also have an identical value for the MSE across all three models, given as

M(δ̂) = E

δ̂2
∣∣∣ θ =

 0

0


 = σ2 + µ2 (5.50)

where

σ2 = var

δ̂2
∣∣∣ θ =

 0

0


 (5.51)

=
1

4

[
varξ(w1) + varξ(w2)

]
(5.52)

represents the estimator variance, while

µ =
1

2

[
E [ξ(w1)]− E [ξ(w2)]

]
(5.53)

represents the estimator bias. Note that

E[g(wi)] =

∫
ξ(wi)fWi(wi)dwi , (5.54)

varξ(wi) =

∫
wi

{ξ(wi)− E[ξ(wi)]}2 fWi(wi)dwi , (5.55)

fWi(wi) =
P∏
j=1

fi(wi,j) (5.56)

It is easy to see from (5.53) that when the forward and reverse queuing delay distributions

f1(w) and f2(w) are not identical, µ can be non-zero, and hence have a significant contribution

in the MSE expression in (5.50). This can be avoided by subtracting out the bias, to obtain

the unbiased estimate

δ̃ = δ̂ − µ (5.57)

Hence, in our results, we measure the performance of conventional estimators as their MSE
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Traf. Model Packet Sizes (Bytes) % of Load

TM1 {64, 576, 1518} {80%, 5%, 15%}
TM2 {64, 576, 1518} {30%, 10%, 60%}

Table 5.1: Models for composition of background traffic packets

after their bias has been compensated.

In order to obtain the queuing delay distributions, we consider a Gigabit ethernet network

consisting of a cascade of 20 switches between the master and slave nodes. Each switch is

assumed to be a store-and-forward switch, which implements strict priority queuing. We

consider two types of background traffic flows in this network:

1. Cross traffic flows: In such traffic flows [45][53], fresh background traffic packets are

injected at each node along the master-slave path, and these packets exit the master-

slave path at the subsequent node (see 4-switch example in Fig. 5.1a). The arrival

times and sizes of the packets injected at each switch are assumed to be statistically

independent of that of packets injected at other switches.

2. Mixed traffic flows: Here a mixture of cross traffic flows and inline traffic flows are

present in the network. Inline traffic flows [22] are characterized by packets that are

injected only at the first switch along the master slave path, and that travel along the

same path as synchronization traffic through the entire cascade of switches (see 4-switch

example in Fig. 5.1b).

With regard to the distribution of packet sizes in background traffic, we consider Traffic

Models 1 (TM1) and 2 (TM2) from the ITU-T recommendation G.8261 [45] for cross traffic

flows, as specified in Table 5.1. For inline traffic flows, we consider a third traffic model

where packet sizes are uniformly distributed between 64 and 1500 bytes [7]. We assume
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(a) Cross traffic flows

(b) Inline traffic flows

Figure 5.1: Examples of four switch networks with cross and inline traffic flows. Red lines
indicate network links, blue lines indicate the direction of background traffic flows, and green
line represents the direction of synchronization traffic flows.
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that the interarrival times between packets in all background traffic flows follow exponential

distributions. We refer to the percentage of the link capacity consumed by background traffic

as the load. In order to achieve a particular load, we accordingly set the rate parameter of

each exponential distribution. The queuing delay distributions under a number of network

scenarios are plotted in Fig. 5.3. These distributions were obtained empirically using low-

level queue simulations. Without loss of generality, we assume that fixed delay components

of the ETE delays equal zero, hence the support of the queuing delay distributions always

begins at zero in the plots.

The MSE of various estimators under different observation models and network condi-

tions are plotted versus the number of observation pairs/samples P in Figs. 5.4 - 5.7. In order

to compute the minimax estimates, the integrals in (5.36), (5.42) and (5.45) were replaced

with Riemann sums. The spacing between adjacent Riemann summation bins was set to

0.001 µs, to ensure that the additional error introduced due to the Riemann sum approxima-

tion is small relative to the MSE being computed. Further, to facilitate comparisons against

the LTE synchronization requirement of 1.25 µs of synchronization accuracy, the estimation

error standard deviation required so that the absolute estimation error lies under 1.25 µs with

a 5-sigma level of certainty is also plotted over the curves. Here the 5-sigma level of certainty

implies that on average, only about 6 out of 106 estimates will have absolute estimation error

that exceeds 1.25 µs. Some key observations we can make from the results are:

1. Performance under symmetric cross traffic (Fig. 5.4): Here, the gap between the K-model

and S-model minimax estimators is negligible under all four loads (20%, 40%, 60%, 80%)

considered. Hence, under these network scenarios, there is little performance to be gained

from the additional knowledge about fixed delays that the K-model provides over the S-

model. Further, while the sample minimum estimator performs near-optimally at 20%
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load, at higher loads none of the conventional estimation schemes come close to achieving

minimax optimal performance. In fact, at 80% load, the minimax estimators achieve the

LTE synchronization requirement using only about 200 samples, while about 800 samples

are required by the best conventional estimator.

2. Performance under symmetric mixed traffic (Fig. 5.5): Here, there is a fair gap between

the K-model and S-model minimax estimators under the lower load scenario of Fig. 5.5a,

which disappears under the higher load scenario of Fig. 5.5b. Further, the S-model mini-

max estimator requires about 50% fewer samples than the best conventional estimator, to

achieve the LTE synchronization requirement under the low load scenario. Interestingly,

the sample mean filter performs near-optimally under the high load scenario. This indi-

cates that the performance gap between the best conventional estimator and the minimax

estimator may need to be studied on a per-case basis, and predicting general trends might

be difficult.

3. Performance under asymmetric traffic (Figs. 5.6 and 5.7): Here there is a significant

gap between the K-model and S-model minimax estimators, with the K-model minimax

estimator requiring about 90% and 22% fewer samples than the S-model estimator in Fig.

5.6 and Fig. 5.7, respectively, in order to meet the LTE synchronization requirement

threshold. This is expected in cases where the queuing delay distribution in one network

direction has significantly lower spread than in the other direction. In such cases, the MSE

of conventional estimators, given by (5.52), is dominated by either the first or second term

in (5.52) if one these variances is much larger than the other. On the other hand, the

K-model estimator can utilize knowledge of the fixed delays to base its estimate on only

the observations corresponding to the direction with lower variance, thereby eliminating
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large contributions to its MSE caused by the queuing delay distribution that has higher

variance.

Further, since the M-model estimator can use information from B past blocks to estimate

the fixed delay, we expect it to achieve the performance of the K-model estimator in

the limiting case where B → ∞. In our simulations, we observe that M-model minimax

estimator closely approaches the K-model minimax estimator in performance for fairly

small values of B (between 5 and 20).

5.7 Summary

We derived minimax optimum estimators for a general class of location parameter problems,

and applied them to the problem of phase offset estimation under multiple observation mod-

els. In cases where the pdf of the queuing delays are known, minimax estimators can be used

to obtain the best possible estimation performance. The MSE curves of the minimax estima-

tors can also serve as a design tool for practical synchronization deployments, by providing

fundamental limits on POE performance for a given set of network conditions. Our simula-

tion results indicate that conventional estimators can perform close to optimum in certain

low-load scenarios with symmetric queuing delay distributions. However, optimum estima-

tors appear to provide significant performance benefits in scenarios where the queuing delay

distributions are asymmetric, a case that occurs frequently in practice. The results in this

chapter could help guide the development of new POE schemes that address synchronization

challenges arising in current and future generations of mobile networks.
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5.8 Appendix

Proof of Lemma 3. For any shift invariant estimator g(x), we can show that if θ1 and θ2 are

any two values of the parameter vector with h = θ1 − θ2, then

R(g(x),θ1)

=

∫
RN

[g(x)− cT(θ2 + h)]2f0(x−G(θ2 + h))dx (5.58)

=

∫
RN

[g(x−Gh)− cTθ2]2f((x−Gh)|θ2)dx (5.59)

=

∫
RN

[g(x)− cTθ2]2f(x|θ2)dx (5.60)

(using a change of variables)

= R(g(x),θ2) (5.61)

Hence g(x) has constant conditional MSE w.r.t. θ. Further, using the definitions of the

maximum and average MSEs, we obtain R(g(x),θ) =M(g(x)) = B(g(x), p(θ)).

Proof of Theorem 5. (i) It is simple to show that g∗(x) is shift invariant, since

g∗(x + Gh) =

∫
RM [cTθ̂]f0(x + Gh−Gθ̂) dθ̂∫

RM f0(x + Gh−Gθ̂) dθ̂
(5.62)

=

∫
RM [cTθ̂]f(x|θ̂ − h) dθ̂∫

RM f(x|θ̂ − h) dθ̂
(5.63)

=

∫
RM [cTθ̂]f(x|θ̂) dθ̂∫

RM f(x|θ̂) dθ̂
+ cTh (5.64)

= g∗(x) + cTh (5.65)
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(ii) For any choice of prior distribution p(θ), any estimator g(x) of cTθ satisfies

M(g(x)) ≥ sup
p(θ)
B(g(x), p(θ)) (5.66)

≥ sup
p(θ)

inf
g̃(x)
B(g̃(x), p(θ)) = B0 (5.67)

Further, it can be proved (by contradiction) that M(g(x)) = B0 holds if and only if

g(x) is minimax. Now consider the estimator g∗(x) of (5.30). From (5.67), we already

haveM(g∗(x)) ≥ B0. We shall now show that B0 ≥M(g∗(x)) also holds, hence proving

that B0 =M(g∗(x)), and thus that g∗(x) is minimax.

Consider a sequence of prior distributions pi(θ), each uniformly distributed over a sup-

port set Θi for i = 1, 2, · · · , where

Θi = {θ : (−i) · 1M ≤ θ ≤ i · 1M} (5.68)

Here the inequality (−i) · 1M ≤ θ ≤ i · 1M implies that all the elements of the vector θ

lie in the interval [−i, i]. Given a prior distribution pi(θ), the estimator that minimizes

B(g(x), p(θ)) is the minimum mean square error (MMSE) estimator,

gi(x) =

∫
θ∈Θi

[cTθ]fi(θ|x) dθ (5.69)

where fi(θ|x) represents the posterior pdf

fi(θ|x) =
f(x|θ)pi(θ)∫

θ̃∈Θi
f(x|θ̃)pi(θ̃) dθ̃

=
f(x|θ)∫

θ̃∈Θi
f(x|θ̃) dθ̃

(5.70)

Hence we can write

B0 = sup
p(θ)

inf
g̃(x)
B(g̃(x), p(θ))

≥ inf
g̃
B(g̃(x), pi(θ)) = B(gi(x), pi(θ)) (5.71)
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Further, since f0(x) has finite support, we have

lim
i→∞

gi(x) = lim
i→∞

∫
θ∈Θi

[cTθ]f(x|θ) dθ∫
θ∈Θi

f(x|θ) dθ

=

∫
θ∈Θ(x)[c

Tθ]f0(x−Gθ) dθ∫
θ∈Θ(x) f0(x−Gθ) dθ

= g∗(x)

where

Θ(x) = {θ : (x−Gθ) > 0 and (x−Gθ) < L · 1N} (5.72)

and hence

lim
i→∞
B(gi(x), pi(θ))

= lim
i→∞
B(g∗(x), pi(θ)) (5.73)

= lim
i→∞
M(g∗(x)) (Since g∗(x) is shift invariant) (5.74)

=M(g∗(x)) (5.75)

From (5.71) and (5.75), we obtain B0 ≥M(g∗(x)), hence completing the proof.

(iii) Since g∗(x) is shift invariant, from Lemma 3 we have R(g(x),θ) =M(g(x)). Further,

since all shift invariant estimators have constant conditional MSE, and g∗(x) minimizes

M(g(x)), it also minimizes R(g(x),θ) for every value of θ.

(iv) We shall prove that g∗(x) is unbiased by contradiction. Assume g∗(x) is biased. Since

g∗(x) is shift invariant, its bias should be constant with respect to θ. Let

β = E
{[
g∗(x)− cTθ

]
| θ
}

= E {g∗(x) | θ = 0M} (5.76)
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denote this constant bias. Now consider a new estimator of cTθ, given as

ĝ(x) = g∗(x)− β (5.77)

It is easy to show that ĝ(x) is also shift invariant. Further,

M (ĝ(x)) = E
{[
ĝ(x)− cTθ

]2 | θ} (5.78)

= E
{[
g∗(x)− cTθ

]2 | θ} (5.79)

− 2βE
{[
g∗(x)− cTθ

]
| θ
}

+ β2 (5.80)

=M (g∗(x))− β2 < M (g∗(x)) (5.81)

However, this is impossible since g∗(x) has already been shown to minimize the maxi-

mum MSE. Thus, the assumption that g∗(x) is biased is incorrect.

Proof of Lemma 4. Using theorem 5, we obtain

g∗i (x) =

∫
RM θ̂if(x|θ̂) dθ̂∫
RM f(x|θ̂) dθ̂

(5.82)

and

g∗(x) =

∫
RM [cTθ̂]f(x|θ̂) dθ̂∫

RM f(x|θ̂) dθ̂
(5.83)

=

∑M
i=1 ci

∫
RM θif(x|θ̂) dθ̂∫

RM f(x|θ̂) dθ̂
=

M∑
i=1

cig
∗
i (x) (5.84)

hence proving the theorem.
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Proof of Theorem 6. Consider the problem of estimating cTθ given all the observations x1, · · · ,xK .

It is easy to show that this problem is a vector location parameter problem as defined in Sec-

tion 5.3. Hence, a minimax optimum estimator for this problem can be obtained via Theorem

5. Denote this minimax estimator as h∗(x1, · · · ,xK). Further, note that h∗(x1, · · · ,xK) and

g∗(x) are both estimators of cTθ, but h∗(x1, · · · ,xK) has more information available to it,

since
∑K

k=1 xk = x. Hence, we must have

M(g∗(x)) ≥M(h∗(x1, · · · ,xK)) (5.85)

Further, using Lemma 4, it can be shown that

h∗(x1, · · · ,xK) =

K∑
k=1

h∗k(xk) (5.86)

Since minimax estimators are shift invariant, we can write

M(h∗(x1, · · · ,xK)) (5.87)

= sup
θ∈RN

E
{[
h∗(x1, · · · ,xK)− cTθ

]2 ∣∣∣ θ} (5.88)

= E
{

[h∗(x1, · · · ,xK)]2
∣∣∣ θ = 0M

}
(5.89)
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This can be further simplified as

M(h∗(x1, · · · ,xK)) (5.90)

= E


[
K∑
k=1

h∗k(xk)

]2 ∣∣∣ θ1 = 0M , · · · ,θK = 0M

 (5.91)

=

K∑
k=1

E
{

[h∗k(xk)]
2
∣∣∣ θk = 0M

}
+

K∑
k1=1

K∑
k2=1
k2 6=k1

[

E
{
h∗k1(xk1)h∗k2(xk2)

∣∣∣ θk1 = 0M ,θk2 = 0M

}]
(5.92)

We note that h∗1(x1), · · · , h∗K(xK) are all mutually independent conditioned on the unknown

parameters, due to our initial assumption that x1, · · · ,xK are mutually independent as per

(5.32). Hence, we obtain

M(h∗(x1, · · · ,xK)) (5.93)

=
K∑
k=1

E
{

[h∗k(xk)]
2
∣∣∣ θk = 0M

}
+

K∑
k1=1

K∑
k2=1
k2 6=k1

E
{
h∗k1(xk1)

∣∣∣ θk1 = 0M

}

· E
{
h∗k2(xk2)

∣∣∣ θk2 = 0M

}
(5.94)

Since h∗k(xk) is a minimax estimator, it is unbiased and shift invariant according to Theorem

5, and hence

E
{
h∗k(xk)

∣∣∣ θ = 0M

}
= 0 , (5.95)

E
{

[h∗k1(xk1)]2
∣∣∣ θk1 = 0M

}
=M(h∗k(xk)) (5.96)
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From (5.94), (5.95) and (5.96) we obtain

M(h∗(x1, · · · ,xK)) =
K∑
k=1

M(h∗k(xk)) (5.97)

Finally, from (5.85) and (5.97), we obtain

M(g∗(x)) ≥
K∑
k=1

M(h∗k(xk)) (5.98)

hence concluding the proof.

Proof of Corollary 1. We shall prove this corollary by applying Theorem 6 to POE under

the S-model. To this end, assume N = KL, where K and L are both integers. For the

N -node network, assuming P pairs of timestamp differences are collected per the S-model,

the observation vector can be written similar to (5.12), as

y = d12P + δe + w (5.99)

where d and δ represent the unknown fixed delay and phase offset, while w represents the

2P × 1 vector of queuing delays.

Now suppose that the cascade of N = KL nodes is split into K smaller cascades, each

consisting of L nodes. Each cascade of L nodes is placed between a new master-slave pair,

resulting in K new networks (see example in Fig. 5.2). Let the phase offset of the slave in

the kth network be δ(k), and let the fixed delay in the kth network be d(k). Assume that the
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(a) Original network

(b) Networks obtained after splitting

Figure 5.2: Example of a network containing N = 6 intermediate nodes, that has been split
into K = 2 networks, each containing L = 3 intermediate nodes.

phase offsets and fixed delays satisfy the relation

K∑
k=1

δ(k) = δ ,
K∑
k=1

d(k) = d (5.100)

Assuming that P observation pairs are collected per the S-model, the observation vector for

each L-node network can be written, similar to (5.12), as

y(k) = d(k)12P+δ(k)e + w(k) (5.101)

for k = 1, · · · ,K. Here w(k) represents the 2P×1 vector of queuing delays in the kth network.

Since the single-node queuing delays across all nodes are identically distributed, the minimax

MSE associated with estimating δ(k) from y(k) will be identical, and equal ρ(L) in all the

L-node networks. Note that due to the shift invariance of the minimax estimator and the

result in Lemma 3, the minimax MSE will remain unchanged regardless of the assumption

in (5.100), since the minimax MSE does not depend on the value of δ(k) or d(k).
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In order to apply Theorem 6, we note that the queuing delay vector under the KL node

network can be written as sum of the queuing delay vectors under each L-node network, i.e.

w =
∑K

k=1 w(k). Further, due to the assumption that the single-node queuing delays are

mutually independent, we have

f(y(k1),y(k2)|δ(k1), d(k1), δ(k2), d(k2)) = f(y(k1)|δ(k1), d(k1))f(y(k2)|δ(k2), d(k2)).

Due to the assumption in (5.100), we also have

y = d12P + δe + w (5.102)

=

[
K∑
k=1

d(k)

]
12P +

[
K∑
k=1

δ(k)

]
e +

[
K∑
k=1

w(k)

]
(5.103)

=

K∑
k=1

[
d(k)12P + δ(k)e + w(k)

]
=

K∑
k=1

y(k) (5.104)

Noting the similarity in the relationships between y, y(k) and the vectors x, xk in Theorem

6, we can apply Theorem 6 to obtain the relation

ρ(KL) ≥ Kρ(L) (5.105)

which concludes the proof.
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(a) TM1, 20 − 40% Load (b) TM1, 60 − 80% Load

(c) Mixed Traffic, with TM2 for cross traffic and
uniform packet size distribution for inline traffic.

Figure 5.3: Plots of queuing delay distributions under different network conditions
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(a) TM1, 20% Load (b) TM1, 40% Load

(c) TM1, 60% Load (d) TM1, 80% Load

Figure 5.4: Performance comparison of different estimators under symmetric cross traffic.

(a) 20% Load (Inline), 20% Load (Cross, TM2) (b) 40% Load (Inline), 20% Load (Cross, TM2)

Figure 5.5: Performance comparison of different estimators under symmetric mixed traffic.
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Figure 5.6: Performance comparison of different estimators under asymmetric cross traffic.
Forward path: 80% Load (TM1), Reverse path: 20% Load (TM1).

Figure 5.7: Performance comparison of different estimators under asymmetric mixed traffic.
Traffic models used are TM2 for cross traffic and uniform packet size distribution for inline
traffic. The forward path has 40% inline load and 20% cross load, while the reverse path has
20% inline load and 20% cross load.
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Chapter 6

Optimum Design of L-Estimators

for Phase offset estimation in IEEE

1588

6.1 Introduction

Many recent papers have studied techniques to improve the resilience of network time synchro-

nization protocols against random queuing delays [22][54][55][50][56][47][17][21]. In Chapter

5 (also see [26]), we described new POE schemes that are optimum in terms of minimizing

the worst-case mean squared error (MSE), and are hence termed minimax estimators. While

these minimax estimators achieve optimum performance, they require complete knowledge of

the probability density function (pdf) of the queuing delay to be designed, and have a high

computational complexity. In this chapter, we describe new estimators with many practi-

cal advantages relative to these minimax estimators; they have a much lower computational
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complexity, require lesser statistical knowledge of the queuing delays, and exhibit a mean

squared estimation error very close to minimax estimators.

As discussed in Chapter 5, from a statistical perspective the problem of POE can be

classified as a location parameter problem, wherein the effect of the unknown parameters is to

shift the pdf of the observations, without changing the shape of the pdf. Further, the minimax

estimators of [26] can be classified as M-estimators [57], defined as a class of estimators that

can be obtained as the zeros of an estimating function [58]. Another class of estimators

that are popular in the context of location parameter problems are L-estimators [59][60],

which are estimators that are obtained as linear combinations of the order statistics of a set

of observations. Here the order statistics of a set of observations refer simply to the same

observations rearranged in nondecreasing order. Given that L-estimators are computed by

sorting followed by a linear combination operation, they have a much lower complexity than

the minimax estimators of [26], and a complexity not significantly greater than the sample

minimum, mean, median or maximum filtering schemes. In fact, the latter four filtering

schemes can all be described as L-estimator with fixed linear combination weights. In this

chapter, we propose a number of novel L-estimator structures for POE, and solve the problem

of optimizing the weights under different optimality criteria.

We note that L-estimators with optimized weights have been previously studied in the

context of POE. In particular, [61] and [62] showed that in the case of exponentially dis-

tributed queuing delays, both the maximum likelihood estimator (MLE) and the minimum

variance unbiased estimator (MVUE) of phase offset are obtained as L-estimators. Further,

in [62], the best linear unbiased estimator using order statistics (BLUE-OS) was also derived.

In this chapter, we extend on the BLUE-OS estimator of [62] by constructing optimum L-

estimators under many different POE observation models and optimality criteria that have

123



not been considered previously in literature.

In order to study the problem of POE, we model the end-to-end (ETE) delays along

the forward and reverse network paths between the master and slave as the sum of a fixed

minimum delay and a random queuing delay. We then consider two models for observations

available to the slave. Under the known fixed delays model (K-model), we assume that the

fixed delays in both the forward and reverse directions are known to the slave. Under the

standard model (S-model), we assume that the fixed delays are unknown, but identical in the

forward and reverse directions. Our key new contributions in this chapter are as follows:

1. L-estimators under known queuing delay distributions: Given perfect statistical knowl-

edge of the queuing delays, we derive optimum L-estimators under the K-model as well

as the S-model. Results are derived for the general case where the order statistics of

the forward and reverse queuing delays are correlated, and further simplified for the

special case where they are uncorrelated.

2. L-estimators under network model uncertainty : We consider a scenario where perfect

statistical knowledge of the queuing delays is not available. To model this problem, we

assume that we are given a finite set of distributions from which the queuing delays may

arise. We then derive optimum L-estimators that minimize the worst-case estimation

error within the given set of distributions, for both the K-model and S-model.

3. L-estimators that exploit information from past observation windows: We first define

an observation window as a set of observations across which the slave’s phase offset can

be assumed to be constant. While our previous results assume that all the observations

belong to a single observation window, here we also describe and optimize L-estimator

structures that can utilize past observation windows to improve estimation performance.
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In order to study the efficiency of the proposed L-estimators, we compare their performance

against the minimax optimum estimators of [53] under network scenarios motivated by the

ITU-T recommendation G.8261 [45]. Results indicate that their MSE closely approximates

that of minimax estimators under the tested network conditions.

6.2 System Model

Consider a synchronization problem where the slave has a phase offset δ relative to its master.

To help determine δ, a two-way message exchange (Fig. 6.1) is performed between the master

and slave, which involves the following steps:

Figure 6.1: Two-way Synchronization between a master and slave

1. The master initiates the exchange by sending a SYNC message to the slave at time t1.

A FOLLOW UP message later communicates the value of t1 to the slave.

2. The slave records the time of reception of the SYNC message as t2 = t1 +d1 + δ, where

d1 denotes the ETE network delay between the master and the slave.
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3. The slave responds with a DELAY REQ message, and records its time of transmission

as t3.

4. The master records the time of arrival of the DELAY REQ message as t4 = t3− δ+d2,

where d2 denotes the ETE network delay between the slave and the master. The value

of t4 is sent to the slave via a DELAY RESP message.

While four timestamps (t1, t2, t3, t4) are available after each two-way exchange, in order to

estimate δ it is clearly sufficient for the slave to only retain the pair of timestamp differences

y1 = t2 − t1 = d1 + δ (6.1)

y2 = t4 − t3 = d2 − δ (6.2)

In a typical network, the ETE delays d1 and d2 receive contributions from three factors:

(a) Constant propagation delays along network links between the master and the slave (or

vice-versa).

(b) Constant processing delays at intermediate nodes (such as switches or routers) along each

network path.

(c) Random queuing delays at intermediate nodes along each network path.

Hence, each ETE delay can be modeled as

d1 = dmin
1 + w1, d2 = dmin

2 + w2 (6.3)

Here dmin
1 and dmin

2 denote fixed delays corresponding to the sum of the constant propagation

and processing delays, while w1 and w2 model the random queuing delays.

Assuming the values of δ, dmin
1 and dmin

2 remain constant over the duration of P two-way

message exchanges, we can collect multiple observation pairs (y1, y2) to help estimate δ. We
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denote these observations as

y∗i,1 = dmin
1 + δ + wi,1 , y∗i,2 = dmin

2 − δ + wi,2 (6.4)

for i = 1, · · · , P . We refer to the problem of estimating δ from multiple observations of the

timestamp differences (y1, y2) as the problem of phase offset estimation (POE). Further, we

shall refer to a set of P observations of (y1, y2) that share the same values of dmin
1 , dmin

2 and

δ as an observation window. To study the problem of POE, we consider two models for the

observations:

1. Known fixed delay model (K-model): Under this model we assume that dmin
1 and dmin

2

are fully known at the slave. Hence, setting yi,j = y∗i,j − dmin
j , we can obtain the simpler

observation model

yi,1 = δ + wi,1 , yi,2 = −δ + wi,2 (6.5)

for i = 1, · · · , P . These observations can be collected and described by the vector

observation model

y1 = δ1P + w1

y2 = −δ1P + w2

(6.6)

where

yj = [y1,j · · · yP,j ]T (6.7)

wj = [w1,j · · · wP,j ]T (6.8)

for j = 1, 2 and 1P is a P × 1 vector with all elements equal to 1.

2. Standard model (S-model): Here we assume that only the difference between dmin
1 and
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dmin
2 , referred to as the delay asymmetry, is known to the slave. One example where

this occurs is when the forward and reverse network paths are identical, and hence it

is known that dmin
1 − dmin

2 = 0. By compensating the observations as

yi,1 = y∗i,1, yi,2 = y∗i,2 − dmin
2 + dmin

1 (6.9)

we obtain

yi,1 = d+ δ + wi,1 , yi,2 = d− δ + wi,2 (6.10)

for i = 1, · · · , P , where dmin
1 = d. These observations can be denoted vectorially as

y1 = d1P + δ1P + w1

y2 = d1P − δ1P + w2

(6.11)

where (6.7) and (6.8) were employed.

Let δ̂ denote any estimator of δ based on the observation vector y. Following the approach

adopted in Chapters 4 and 5, here we assume that both δ and d are deterministic under both

observation models, i.e. no prior probability distributions are defined over either δ over d.

Given such an assumption, a typical statistical approach is to define estimator optimality in

the robust sense [57][59], where the performance metric is defined as

M(δ̂) = max
δ,d

MSE(δ̂ | δ, d) (6.12)

where MSE(δ̂ | δ, d) denotes the mean squared error (MSE),

MSE(δ̂ | δ, d) = E
[
(δ̂ − δ)2 | δ, d

]
, (6.13)

= Bias(δ̂ | δ, d)2 + var(δ̂ | δ, d)2 (6.14)
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where

Bias(δ̂ | δ, d) = E
[
δ̂ − δ | δ, d

]
, (6.15)

var(δ̂ | δ, d) = E

[(
δ̂ − E[δ̂]

)2
| δ, d

]
(6.16)

respectively represent the estimator bias and variance. The expectations in (6.13), (6.15) and

(6.16) are taken with respect to the conditional pdf f(y|δ) (under the K-model) or f(y|δ, d)

(under the S-model). In this chapter, we shall focus on the optimization of L-estimators to

minimize M(δ̂). It is easy to show for L-estimators that unless Bias(δ̂ | δ, d) is a constant

independent of both δ and d, we will have M(δ̂) =∞. Hence, in our analysis, we shall only

consider estimators whose bias is constant with respect to both δ and d. Such estimators

will also have a MSE and variance that is constant with respect to both δ and d, hence the

conditioning of the quantities in (6.13) - (6.16) on δ and d can be dropped.

6.3 Optimum L-Estimators when statistics of queuing delays

are known

Given a vector x = [x1 · · ·xN ]T, the ith order statistic of this vector is defined as the ith

largest element of the vector. We shall refer to the vector containing all the order statistics

of x, ordered from smallest to largest, as the order statistic vector of x, and denote it as �x�.

Now consider a POE scheme which is a linear combination of order statistics,

δ̂ = cT
1 �y1�− cT

2 �y2�+ η (6.17)
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where c1, c2 are weight vectors and η is a scalar constant. It is easy to see that δ̂ corresponds

to conventional estimators for the following values of c1 and c2 (with η = 0 ):

Sample minimum estimator: c1 = c2 = [0.5 0T
P−1]T (6.18)

Sample mean estimator: c1 = c2 = P−11P (6.19)

Sample median estimator:

c1 = c2 =


[0T

P
2
−1

1 0T
P
2
−1

]T for P odd

[0T
P
2
−1

1 1 0T
P
2
−1

]T for P even

(6.20)

Sample maximum estimator: c1 = c2 = [0T
P−1 0.5]T (6.21)

We now consider the problem of designing c1, c2 and η to minimize the mean squared

error under the constraint of constant bias. Define

µj = E [�wj�] , Sj = cov {�wj�} (6.22)

S12 = cov {�w1�, �w2�} (6.23)

for j = 1, 2, and let

c =

c1

c2

 , S =

 S1 −S12

−ST
12 S2

 . (6.24)

We shall show that the optimum values of c1, c2 and η are functions of these mean vectors

and covariance matrices. To this end, we first state the following general identity. The proof

of the theorem and all its corollaries are provided in the Appendix.

Theorem 7 (Quadratic programming problem). The value of the vector z that solves
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the constrained quadratic optimization problem

min
z

zTHz

subject to Gz = s ,

(6.25)

is given as

z∗ = H−1GT(GH−1GT)−1s (6.26)

provided that H is positive definite, and the system of linear equalities Gz = s has a non-

empty set of solutions.

Theorem 7 can be used to optimize the estimator of (6.17) under both the K-model and

S-model, as stated in the following corollaries.

Corollary 2 (Optimum L-estimator under K-model). Under the K-model, the values

of c1, c2 and η that minimize the MSE of an estimator of δ of the form

δ̂ = cT
1 �y1�− cT

2 �y2�+ η (6.27)

given the constraint of constant bias arec∗1

c∗2

 =
S−112P

1T
2PS−112P

, (6.28)

η∗ = µT
2 c∗2 − µT

1 c∗1 . (6.29)

The resultant optimum estimator δ̂∗ has an MSE

MSE(δ̂∗) = (1T
2PS−112P )−1 (6.30)
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Further, if �w1� and �w2� are uncorrelated, then the optimum weights can be simplified as

c∗j =
S−1
j 1P

1T
PS−1

1 1P + 1T
PS−1

2 1P
(6.31)

for j = 1, 2 and

MSE(δ̂∗) = (1T
PS−1

1 1P + 1T
PS−1

2 1P )−1. (6.32)

is the associated optimum MSE.

Corollary 3 (Optimum L-estimator under S-model). Under the S-model, the values of

c1, c2 and η that minimize the MSE of an estimator of δ of the form

δ̂ = cT
1 �y1�− cT

2 �y2�+ η (6.33)

given the constraint of constant bias arec∗1

c∗2

 = S−1AT(AS−1AT)−1γ , (6.34)

η∗ = (c∗1)Tµ2 − (c∗2)Tµ1 , (6.35)

where

A =

1T
P 1T

P

1T
P −1T

P

 , γ =

1

0

 . (6.36)

The resultant optimum estimator δ̂∗ has an MSE

MSE(δ̂∗) = γT(AS−1AT)−1γ (6.37)
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Further, if �w1� and �w2� are uncorrelated, then

c∗j =
1

2

S−1
j 1P

1T
PS−1

j 1P
(6.38)

for j = 1, 2 and

MSE(δ̂∗) = (1T
PS−1

1 1P )−1 + (1T
PS−1

2 1P )−1. (6.39)

is the associated the optimum MSE.

For a fixed pair of forward and reverse queuing delay distributions, it is easy to see that

the optimum MSE under the S-model in (6.37) necessarily exceeds that under the K-model

in (6.30), since

γT(AS−1AT)−1γ

= [(1T
2PS−112P )− (eT

2PS−112P )2(eT
2PS−1e2P )−1]−1 (6.40)

≥ (1T
2PS−112P )−1 (6.41)

where e2P = [1T
P (−1T

P )]T. An intuitive explanation for this result is that compared to the

K-model, the presence of the additional nuisance parameter d in the S-model increases the

uncertainty associated with estimating δ.

6.4 Minimax Optimum L-Estimators under network model

uncertainty

In Section 6.3, we derived optimum L-estimators given perfect knowledge of the mean vectors

µ1, µ2 and covariance matrices S1, S2 and S12. Now we consider a the case where these

vectors and matrices are not known perfectly due to network model uncertainty. To this
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end, we assume that there are K possible network scenarios, with (µ1,k,µ2,k,S1,k,S2,k,S12,k)

denoting the mean vectors and covariance matrices under the kth network scenario. Denote

the bias, variance, and MSE of any estimator δ̂ of δ under the kth network scenario as

Biask(δ̂) = Ek

[
δ̂ − δ

]
, (6.42)

vark(δ̂) = Ek

[(
δ̂ − E[δ̂]

)2
]
, (6.43)

MSEk(δ̂) = Ek

[
(δ̂ − δ)2

]
. (6.44)

Here Ek [·] represents an expectation computed by utilizing the mean vectors and covariance

matrices corresponding to the kth network scenario. While there are K different MSE values

associated with any estimator δ̂, we require a single scalar performance metric to characterize

and subsequently optimize estimation performance. To address this issue, we consider a new

metric we term the weighted maximum MSE, defined as

WMaxMSE(δ̂) = max
k∈{1,··· ,K}

βkMSEk(δ̂) (6.45)

where βk are constant positive weights for k = 1, · · · ,K. We shall consider the design

of L-estimators to minimize WMaxMSE(δ̂) in this section. Note that β1, · · · , βK in (6.45)

represent design parameters, the values of which depend upon the design philosophy adopted

by the system designer. For example, when βk = 1 for all k, WMaxMSE(δ̂) corresponds to

the maximum MSE or worst-case MSE

MaxMSE(δ̂) = max
k∈{1,··· ,K}

MSEk(δ̂) (6.46)

The optimum estimator under such a choice of weights focuses on the worst-case performance,

which has intuitive appeal. However, when the set of K network scenarios considered are

highly disparate in terms of achievable performance, it may be more prudent to choose the
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weights as βk = (MMSEk)
−1, where MMSEk denotes the minimum achievable MSE under

the kth network scenario. This corresponds to a metric we term the maximum efficiency or

worst-case efficiency, defined as

MaxEFF(δ̂) = max
k∈{1,··· ,K}

MSEk(δ̂)

MMSEk
(6.47)

We now consider the problem of optimizing L-estimators to minimize WMaxMSE(δ̂)

given arbitrary positive values for the weights β1, · · · , βK . To this end, we note that (6.45)

can be equivalently written as

WMaxMSE(δ̂) = max
λ∈Λ

K∑
k=1

λkβkMSEk(δ̂) (6.48)

where λ = [λ1 · · · λK ]T, and

Λ =




λ1

...

λK

 ∈ RK
∣∣∣ ( K∑

k=1

λk = 1

)
∧ (λk ≥ 0 ∀ k)


(6.49)

The problem of designing L-estimators to minimize (6.48) can be addressed using a well

known result from minimax optimization theory, restated here convenience1.

Theorem 8 (Property of minimax optimization problems). Let C and D be convex

sets in Rm and Rn respectively. Let f(u,v) be a continuous function that is concave with

respect to u ∈ C, and convex with respect to v ∈ D. If either C or D is bounded, then we have

inf
v∈D

sup
u∈C

f(u,v) = sup
u∈C

inf
v∈D

f(u,v) (6.50)

1See corollaries 37.3.1 and 37.3.2 of [63] for a proof of this result.
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and the function

f∗(u) = inf
v∈D

f(u,v) (6.51)

is concave with respect to u ∈ C.

Theorem 8 can be used to derive L-estimators under both the K-model and S-model, as

stated in the following corollaries.

Corollary 4. (WMaxMSE-optimum L-estimator under K-model) Under the K-model,

the values of c1, c2 and η that minimize WMaxMSE(δ̂) for an estimator δ̂ of δ of the form

δ̂ = cT
1 �y1�− cT

2 �y2�+ η (6.52)

given the constraint of constant bias arec∗1

c∗2

 =
1

1T
2P (M∗)−112P

(M∗)−112P , (6.53)

η∗ = −
K∑
k=1

λ∗kβk
(
(c∗1)Tµ1,k − (c∗2)Tµ2,k

)
, (6.54)

where

M∗ =

K∑
k=1

λ∗kβk(Sk + µ̂kµ̂
T
k ) , (6.55)

Sk =

 S1,k −S12,k

−ST
12,k S2,k

 , (6.56)

µ̂k =

 µ1,k −
∑K

k′=1 λ
∗
k′βk′µ1,k′∑K

k′=1 λ
∗
k′βk′

−µ2,k +
∑K

k′=1 λ
∗
k′βk′µ2,k′∑K

k′=1 λ
∗
k′βk′

 . (6.57)
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Here λ∗ = (λ∗1, · · · , λ∗K) is the solution to the convex minimization problem

min
λ∈Λ

1T
2PM−112P (6.58)

where

M =
K∑
k=1

λkβk(Sk + µ̂kµ̂
T
k ) (6.59)

and the set Λ is as defined in (6.49). The resultant optimum estimator δ̂∗ has

WMaxMSE(δ̂∗) = [1T
2P (M∗)−112P ]−1 , (6.60)

MSEk(δ̂
∗) =

1T
2P (M∗)−1(Sk + µ̂kµ̂

T
k )(M∗)−112P

[1T
2P (M∗)−112P ]2

(6.61)

for k = 1, · · · ,K.

Corollary 5. (WMaxMSE-optimum L-estimator under S-model) Under the S-model,

the values of c1, c2 and η that minimize WMaxMSE(δ̂) for an estimator δ̂ of δ of the form

δ̂ = cT
1 �y1�− cT

2 �y2�+ η (6.62)

given the constraint of constant bias arec∗1

c∗2

 = (M∗)−1GT(G(M∗)−1GT)−1s , (6.63)

η∗ = −
K∑
k=1

λ∗kβk
(
(c∗1)Tµ1,k − (c∗2)Tµ2,k

)
, (6.64)

where

G =

1T
P 1T

P

1T
P −1T

P

 , s =

1

0

 , (6.65)

and M∗ is as defined in (6.55). Here (λ∗1, · · · , λ∗K) is the solution to the concave maximization
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problem

max
λ∈Λ

sT(GM−1GT)−1s (6.66)

where M is as defined in (6.59), and the set Λ is as defined in (6.49). The resultant optimum

estimator δ̂∗ has

WMaxMSEk(δ̂
∗) = sT(G(M∗)−1GT)−1s (6.67)

MSEk(δ̂
∗) = sT(G(M∗)−1GT)−1G(M∗)−1

· (Sk + µ̂kµ̂
T
k )(M∗)−1GT(G(M∗)−1GT)−1s (6.68)

for k = 1, · · · ,K.

Note that the optimization problems that need to be solved to determine (λ∗1, · · · , λ∗K)

in (6.58) and (6.66) do not permit closed form solutions, but are respectively convex and

concave. Hence, gradient descent techniques can be used to rapidly find globally optimum

solutions to these problems. In the results section of this chapter, we utilized the fmincon()

routine in MATLAB to solve these optimization problems. Also note that while we only

consider a finite number of network scenarios in Corollaries 4 and 5, they can be applied to

a continuous family of network scenarios by sampling to obtain a finite number of network

scenarios.

6.5 L-estimators that use past observation windows to im-

prove performance

Recall that the K-model and S-model assume that only a single observation window is avail-

able, where an observation window is defined as a set of P consecutive observation pairs over
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which the fixed delays and phase offsets are constant. In certain scenarios, past observa-

tion windows that contain phase offsets distinct from that of the current observation window

can be used to improve estimation performance. To demonstrate this claim, we define two

new observation models that assume the availability of information from past observation

windows, and derive optimum L-estimators under these models.

1. Extended K-model : Here we consider an extension to the K-model where in addition to

the current observation window, we also have B past observation windows available. We

assume that past observation windows contain different phase offsets, but have the same

queuing delay distribution as the current observation window. Denote observations from

the current window as

y1 = δ1P + w1 (6.69)

y2 = −δ1P + w2 (6.70)

and observations from the past window as

y
(i)
1 = δi1P + w

(i)
1 (6.71)

y
(i)
2 = −δi1P + w

(i)
2 (6.72)

for i = 1, · · · , B. Here δi represents the phase offset in the ith past observation window.

2. Extended S-model : Here we consider a similar extension to the S-model where B ad-

ditional past observation windows are available. We assume that past observation

windows contain different phase offsets, but have the same fixed delay and queuing

delay distribution as the current observation window. We denote observations from the
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current window as

y1 = d1P + δ1P + w1 (6.73)

y2 = d1P − δ1P + w2 (6.74)

and observations from the past window as

y
(i)
1 = d1P + δi1P + w

(i)
1 (6.75)

y
(i)
2 = d1P − δi1P + w

(i)
2 (6.76)

for i = 1, · · · , B. Here δi represents the phase offset in the ith past observation window.

Now consider the problem of designing L-estimators to minimize the MSE under a single

network scenario, similar to the problems we studied in Section 6.3. Under such an opti-

mality criterion, it is easy to see that the optimum L-estimator under the extended K-model

would simply discard information from past observation windows, since they contain no in-

formation relevant to the estimation of the phase offset δ of the current observation window.

However, under the extended S-model, past observation windows contain information about

the nuisance parameter d, the knowledge of which could help form a better estimate of δ.

Based on this reasoning, we consider the design of L-estimators to minimize the MSE under

extended S-model, and obtain the result stated in the following corollary (proof provided in

the appendix).

Corollary 6 (Optimum L-estimator for extended S-model). Given the extended S-

model, assume for simplicity that the queuing delays in different windows are mutually inde-
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pendent and identically distributed. Then the MSE of an estimator of δ of the form

δ̂ = cT
1 �y1�− cT

2 �y2�+
B∑
i=1

[
c̃T

1,i�y
(i)
1 �− c̃T

2,i�y
(i)
2 �
]

+ η (6.77)

is minimized under the constraint of constant bias when (c1, c2, η) = (c∗1, c
∗
2, η
∗), and (c̃1,i, c̃2,i) =

(c̃∗1, c̃
∗
2) for all i = 1, · · · , B, where[

(c∗1)T (c∗2)T (c̃∗1)T (c̃∗2)T

]T

= S̃
−1

GT(GS̃
−1

GT)−1s , (6.78)

η∗ = (c∗2 +Bc̃∗2)Tµ2 − (c∗1 +Bc̃∗1)Tµ1 , (6.79)

and

S̃ =

S 0

0 BS

 , S =

 S1 −S12

−ST
12 S2

 (6.80)

G =


1P 1P 0P 0P

0P 0P 1P 1P

1P −1P B1P −B1P

 , s =


1

0

0

 . (6.81)

The resultant optimum estimator

δ̂∗ = (c∗1)T�y1�− (c∗2)T�y2�

+ (c̃∗1)T

[
B∑
i=1

�y(i)
1 �

]
−

[
(c̃∗2)T

B∑
i=1

�y(i)
2 �

]
+ η∗ (6.82)

has an MSE

MSE(δ̂∗) = sT(GS̃
−1

GT)−1s (6.83)

Next we consider the problem of designing L-estimators to minimize the weighted max-
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imum MSE when K possible network scenarios can occur, as we studied in Section 6.4.

Assume that the queuing delays in each observation window are independent of that of other

observation windows, and that the queuing delays in all windows arise from a common distri-

bution (though we do not have prior knowledge about which of the K possible distribution

have occurred). Here, under the extended K-model, past windows contain information that

could be used to better deduce which of the K network scenarios have occurred, and hence

help improve the estimation of δ. Under the extended S-model, past windows contain in-

formation about the nuisance parameter d, as well as information of which network scenario

has occurred. Based on this reasoning, we consider the design of L-estimator to minimize

the weighted maximum MSE under the extended K-model and the extended S-model, and

obtain the result stated in the following corollary.

Corollary 7. (WMaxMSE-optimum L-estimator under extended K- and S- mod-

els) Under the either the extended K-model or extended S-model, assume for simplicity that

the queuing delays in different windows are mutually independent and identically distributed.

Then an estimator of δ of the form

δ̂ = cT
1 �y1�− cT

2 �y2�+

B∑
i=1

[
c̃T

1,i�y
(i)
1 �− c̃T

2,i�y
(i)
2 �
]

+ η (6.84)

minimizes WMaxMSE(δ̂) under the constraint of constant bias when (c1, c2, η) = (c∗1, c
∗
2, η
∗),
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and (c̃1,i, c̃2,i) = (c̃∗1, c̃
∗
2) for all i = 1, · · · , B, where[

(c∗1)T (c∗2)T (c̃∗1)T (c̃∗2)T

]T

= (M∗)−1GT(G(M∗)−1GT)−1s, (6.85)

η∗ = −

(
K∑
k=1

λ∗kβk

)−1{ K∑
k=1

λ∗kβk

[
µT

1,k

(
c1 +

B∑
i=1

c̃1,i

)
− µT

2,k

(
c2 +

B∑
i=1

c̃2,i

)]}
, (6.86)

M∗ =

K∑
k=1

λ∗kβk


Sk 0

0 BSk

+

 µ̂k
Bµ̂k


 µ̂k
Bµ̂k


T
 , (6.87)

Sk =

 S1,k −2S12,k

−2ST
12,k S2,k

 , µ̂k =

µ̂1,k

µ̂2,k

 , (6.88)

µ̂1,k = µ1,k −
∑K

k′=1 λk′βk′µ1,k′∑K
k′=1 λk′βk′

, (6.89)

µ̂2,k = µ2,k −
∑K

k′=1 λk′βk′µ2,k′∑K
k′=1 λk′βk′

, (6.90)

and λ∗ = (λ∗1, · · · , λ∗K) is the solution to the convex maximization problem

max
λ∈Λ

sT(GM−1GT)−1s (6.91)
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Here we have

G =



1T
P 1T

P 0T
P 0T

P

0T
P 0T

P 1T
P 1T

P

 For ext. K-model


1T
P 1T

P 0T
P 0T

P

0T
P 0T

P 1T
P 1T

P

1T
P −1T

P B1T
P −B1T

P

 For ext. S-model

(6.92)

s =


[
1 0

]T

For ext. K-model[
1 0 0

]T

For ext. S-model

(6.93)

6.6 Simulation Results

We now compare the performance of the newly proposed L-estimators versus various existing

POE techniques. In order to generate queuing delay distributions, we considered a few

network scenarios motivated by the ITU-T recommendation G.8261 [45]. Specifically, we

consider a Gigabit ethernet network consisting a cascade of 10 switches between the master

and slave nodes. Each switch is assumed to be a store-and-forward switch, which implements

strict priority queuing. We assumed cross traffic flows of background traffic to be present in

this network. In such traffic flows [53][45], fresh background traffic packets are injected at

each node along the master-slave path, and these packets exit the master-slave path at the

subsequent node (see 4-switch example in Fig. 6.2). The arrival times and sizes of the packets

injected at each switch were assumed to be statistically independent of that of packets injected

at other switches. With regard to the distribution of packet sizes in background traffic, we

consider Traffic Models 1 (TM1) and 2 (TM2) from the ITU-T recommendation G.8261 [45]

144



Figure 6.2: Example of a four switch network with cross and traffic flows. Red lines indicate
network links, blue lines indicate the direction of background traffic flows, and green line
represents the direction of synchronization traffic flows.

Traf. Model Packet Sizes (Bytes) % of Load

TM1 {64, 576, 1518} {80%, 5%, 15%}
TM2 {64, 576, 1518} {30%, 10%, 60%}

Table 6.1: Models for composition of background traffic packets

for cross traffic flows, as specified in Table 6.1.

We assume that the interarrival times between packets in all background traffic flows

follow exponential distributions. We refer to the percentage of the link capacity consumed

by background traffic as the load. In order to achieve a particular load, we accordingly

set the rate parameter of each exponential distribution. For simplicity, we assumed in our

simulations that the queuing delays on the forward path are statistically independent of the

queuing delays on the reverse path.

In order to evaluate the performance of various L-estimators, the mean vectors and

covariance matrices of the order statistics of queuing delays were first obtained using low-

level queue simulations. Then the MSE of the L-estimators presented in Corollaries 2 - 7

were computed using these mean vectors and covariance matrices. In order to compute the
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MSE of the minimax optimum estimator of [26] under the K-model and S-model, the pdfs of

the queuing delays were obtained empirically from low-level queue simulations, and Riemann

sums were use to evaluate estimator performance. The standard deviation of the estimation

error (square root of the mean squared estimation error) for various estimators under TM1

and TM2 for various loads are plotted in Figs. 6.3 - 6.6. Note that Figs. 6.3 and 6.4

consider scenarios where the distribution of queuing delays in the forward and reverse paths

are symmetrical while, Figs. 6.5 and 6.6 consider scenarios where they are asymmetrical.

In order to facilitate comparisons against a typical synchronization requirement of 1.5 µs

of synchronization accuracy that arises in LTE networks [64], the estimation error standard

deviation required so that the absolute estimation error lies under 1.5 µs with a 5-sigma level

of certainty is also plotted over the curves. Here the 5-sigma level of certainty implies that on

average, only about 6 out of 106 estimates will have absolute estimation error that exceeds

1.25 µs. Some key observations we can make from the figures are as follows:

1. Performance gap between L-estimators and the minimax estimators of [26] : We observe

that the optimum L-estimators of Corollaries 1 and 2 have a MSE performance very

close to the minimax optimum estimators under all the network scenarios considered.

This indicates that the loss in POE performance when we are restricted to only using

L-estimators is quite negligible.

2. Performance relative to conventional estimators: While the sample minimum estimator

performs near optimally at low network loads, at high loads conventional estimators (sam-

ple minimum, mean, median and maximum) have a MSE that is significantly larger that

of the optimized L-estimators.

3. Performance differences between asymmetric and symmetric background traffic conditions:
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The performance gains obtained by using K-model model estimator of Corollary 1 versus

the S-model estimator of Corollary 2 are significantly larger under asymmetric network

conditions. This performance gap can be bridged by using the extended S-model estimators

of Corollary 6.

4. Performance difference between using MaxMSE and MaxEFF as an optimization metric:

We observe that when MaxMSE is used as an optimization metric for the estimators of

Corollaries 4, 5 or 7 , the MSE curves tend to be flat across the range of loads considered. In

contrast, when MaxEFF is used as the optimization metric, a little estimation performance

is ceded at high loads in order to gain significantly improved estimation performance at

low loads.

5. Performance improvements under extended K- and S- models: We observe that by utilizing

a sufficient number past observation windows, the MSE penalty associated with network

model uncertainty can be effectively eliminated under both traffic models considered. For

example, we observe that the MaxEFF-Optimum L-estimator under the extended S-model

(described in Corollary 7), achieves a MSE performance closely mirroring that of the MSE-

Optimum L-estimator under the S-model (described in Corollary 3).

From the perspective of complexity, it is easy to see that when Riemann sums are used

to evaluate the minimax estimator of [26], O(PNB) multiplications and O(NB) additions are

required per estimate, where NB denotes the number of Riemann sum bins utilized. On the

other hand, the L-estimators of Corollaries 1-6 have a much lower run-time computational

complexity. Specifically, it is well known that all the order statistics of P observations can be

obtained using O(P log(P )) comparisons via the Quicksort algorithm [65]. Computing the

weighted summation of P order statistics requires O(P ) multiplications and O(P ) additions.
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Further, it can be easily shown the estimators of Corollaries 6 and 7 admit a sliding filter

implementation which requires O(P log(P )) comparisons, O(P ) multiplications and O(P )

additions, independent of the number B of past observation blocks considered. This makes

L-estimators very attractive from a practical perspective.

6.7 Summary

In this chapter, we solve the problem of designing optimum L-estimators of phase offset under

various novel criteria of optimality. Two observation models were considered. L-estimators

that minimize the MSE for a known network scenario, L-estimators that minimize the worst-

cast MSE under network model uncertainly and L-estimator that utilizes past information

to improve estimation performance were derived. The proposed estimators have a low com-

putational complexity and offer many performance benefits relative to both conventional

estimators and the minimax estimators of [26]. Of all the results described in this chapter,

the authors believe that Corollary 7 offers the greatest practical utility, describing estimators

that appear to achieve near-optimum performance even when the exact network model is not

known.

6.8 Appendix

Proof of Theorem 7. This theorem can be obtained as a direct consequence of the Gauss-

Markov theorem [66]. For the convenience of the readers, we also provide a short proof herein.

It is easy to show that the function zTHz is convex in z since H is positive definite, and

that the set of values of z that satisfy Gz = s is a convex set. Hence, (6.25) has a unique

local minimum that is also the global minimum. This minimum can be easily obtained via
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(a) Forward path: 20% Load (TM2), Reverse
path: 20% Load (TM2)

(b) Forward path: 80% Load (TM2), Reverse
path: 80% Load (TM2)

(c) Legend

Figure 6.3: Performance of various estimators plotted versus the number of two way message
exchanges P , under symmetric traffic conditions.
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(a) Estimators of Corollaries 1, 2 and 5 (b) Estimators of Corollaries 3, 4 and 6

(c) Legend

Figure 6.4: Performance of various estimators given P = 30 two way message exchanges.
Background traffic on the forward and reverse links are assumed to be symmetrically dis-
tributed per TM2. K = 10 network scenarios are considered, obtained by stepping the
forward and reverse path loads uniformly between 20% and 80%.
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(a) Forward path: 20% Load (TM1), Reverse
path: 80% Load (TM2)

(b) Forward path: 80% Load (TM1), Reverse
path: 80% Load (TM2)

(c) Legend

Figure 6.5: Performance of various estimators plotted versus the number of two way message
exchanges P , under asymmetric traffic conditions.
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(a) Estimators of Corollaries 1, 2 and 5 (b) Estimators of Corollaries 3, 4 and 6

(c) Legend

Figure 6.6: Performance of various estimators given P = 10 two way message exchanges,
under an asymmetric traffic scenario. Background traffic on the forward link is assumed to
be distributed per TM1 and traffic on the reverse link is assumed to be distributed per TM2.
K = 10 network scenarios are considered, obtained by stepping the forward and reverse path
loads uniformly between 20% and 80%. Estimators annotated with a ‘*’ in the legend are
assumed to have exact knowledge of which queuing delay distribution has occurred, while the
other estimators only have knowledge of the set of 10 possible queuing delay distributions.
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the method of Lagrangian multipliers. To this end, we construct the Lagrangian

Ω = zTHz− λT(Gz− s) (6.94)

and differentiate it with respect to z and λ to obtain the equations

2Hz−GTλ = 0, (6.95)

Gz− s = 0 (6.96)

which can be solved to obtain

λ∗ = 2(GH−1GT)−1s, (6.97)

z∗ = H−1GT(GH−1GT)−1s (6.98)

hence proving the theorem.

Proof of Corollary 2. Under the K-model, we have

�y1� = δ1P + �w1� , �y2� = −δ1P + �w2� (6.99)

Hence, for the estimator of (6.27), we have

Bias(δ̂) = E
[
(cT

1 �y1�− cT
2 �y2�+ η) − δ

]
(6.100)

= δ[(c1 + c2)T1P − 1] + cT
1 µ1 − cT

2 µ2 + η . (6.101)

From (6.101), we see that in order for δ̂ to have constant bias, we require

(c1 + c2)T1P = 1 (6.102)
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Further, assuming δ̂ satisfies (6.102), its variance has the form

var(δ̂) = E
[
(cT

1 (�w1�− µ1)− cT
2 (�w2�− µ2))2

]
(6.103)

= cT
1 S1c1 + cT

2 S2c2 − 2cT
1 S12c2 (6.104)

and the MSE is

MSE(δ̂) = cT
1 S1c1 + cT

2 S2c2 − 2cT
1 S12c2 + (cT

1 µ1 − cT
2 µ2 + η)2 (6.105)

Under the constraint of constant bias, both the variance and MSE are hence constant with

respect to δ. Further, for any choice of c1 and c2, MSE(δ̂) can be minimized by making δ̂

unbiased by setting η = −(cT
1 µ1 − cT

2 µ2). The residual problem of choosing c1 and c2 to

minimize the MSE under the constraint of constant bias can be stated as

min
c1,c2

cT
1 S1c1 + cT

2 S2c2 − 2cT
1 S12c2

s.t. (c1 + c2)T1P = 1

(6.106)

or equivalently as

min
c

cTSc

s.t. 1T
2P c = 1

(6.107)

where S and c are defined in (6.24). Applying Theorem 7 to (6.107), we obtain the solution

specified in (6.28). Further, when �w1� and �w2� are uncorrelated, we have S12 = 0 and

S−1 =

S−1
1 0

0 S−1
2

 (6.108)

By substituting (6.108) in (6.28) and (6.30), the results in (6.31) and (6.32) are obtained.
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Proof of Corollary 3. Under the S-model, we have

�y1� = d1P + δ1P + �w1� , (6.109)

�y2� = d1P − δ1P + �w2� (6.110)

Hence, for the estimator of (6.33), we have

Bias(δ̂) = E
[
(cT

1 �y1�− cT
2 �y2�+ η) − δ

]
(6.111)

= d(c1 − c2)T1P + δ[(c1 + c2)T1P − 1] + cT
1 µ1 − cT

2 µ2 + η . (6.112)

From (6.112), we see that in order for δ̂ to have constant bias with respect to both d and δ,

we require

(c1 + c2)T1P = 1, (c1 − c2)T1P = 0 (6.113)

Further, assuming δ̂ satisfies (6.113), its variance has the form

var(δ̂) = E
[
(cT

1 (�w1�− µ1) + cT
2 (�w2�− µ2))2

]
(6.114)

= cT
1 S1c1 + cT

2 S2c2 − 2cT
1 S12c2 (6.115)

and its MSE is

MSE(δ̂) = cT
1 S1c1 + cT

2 S2c2 − 2cT
1 S12c2 + (cT

1 µ1 − cT
2 µ2 + η)2 (6.116)

Under the constraint of constant bias, both the variance and MSE are hence constant with

respect to both δ and d. Further, for any choice of c1 and c2, MSE(δ̂) can be minimized by

making δ̂ unbiased by setting η = −(cT
1 µ1−cT

2 µ2). The residual problem of choosing c1 and
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c2 to minimize the MSE under the constraint of constant bias can be stated as

min
c1,c2

cT
1 S1c1 + cT

2 S2c2 − 2cT
1 S12c2

s.t.


(c1 + c2)T1P = 1,

(c1 − c2)T1P = 0

(6.117)

or equivalently as

min
c

cTSc

s.t. Ac = γ

(6.118)

where

A =

1T
P 1T

P

1T
P −1T

P

 , γ =

1

0

 (6.119)

Applying Theorem 7 to (6.118), we obtain the solution specified in (6.34). Further, when

�w1� and �w2� are uncorrelated, we have S12 = 0 and

S−1 =

S−1
1 0

0 S−1
2

 (6.120)

By substituting (6.120) in (6.34) and (6.37), the results in (6.38) and (6.39) are obtained.

Proof of Corollary 4. Under the K-model, we have

Biask(δ̂) = δ[(c1 + c2)T1P − 1] + cT
1 µ1,k − cT

2 µ2,k + η (6.121)

It is easy to see that the constant bias condition can be ensured under all K network scenarios

by setting

(c1 + c2)T1P = 1 (6.122)
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Under this constraint, we have

MSEk(δ̂) = cT
1 S1,kc1 + cT

2 S2,kc2 − 2cT
1 S12c2 + (cT

1 µ1,k − cT
2 µ2,k + η)2 (6.123)

Thus, the problem of minimizing WMaxMSE(δ̂) under the constraint of constant bias can be

stated as

min
[c1c2]∈C, η∈R

max
λ∈Λ

K∑
k=1

λkβkMSEk(δ̂) (6.124)

where

C =


c1

c2

 ∈ R2P
∣∣∣ (c1 + c2)T1P = 1

 (6.125)

It is easy to see that the sets C ×R and Λ are both convex, and that Λ is bounded. Further,

it is easy to show that the cost function in (6.124) satisfies the concave-convex property

specified in Theorem 8. Hence, applying Theorem 8 to (6.124), we can restate it as

max
λ∈Λ

min
[c1c2]∈C

min
η∈R

K∑
k=1

λkβkMSEk(δ̂) (6.126)

For any fixed values of c1, c2 and λ, the value of η that solves the innermost minimization

problem in (6.126) can be obtained via differentiation as

η =
−
∑K

k=1 λkβk
(
cT

1 µ1,k − cT
2 µ2,k

)∑K
k=1 λkβk

(6.127)

Substituting this optimum value of η in (6.126), we are left with the optimization problem

max
λ∈Λ

min
c∈C

cTMc (6.128)
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where c = [cT
1 cT

2 ]T, and

M =
K∑
k=1

λkβk(Sk + µ̂kµ̂
T
k ), (6.129)

Sk =

 S1,k −S12,k

−ST
12,k S2,k

 , (6.130)

µ̂k =

 µ1,k −
∑K

k′=1 λk′βk′µ1,k′∑K
k′=1 λk′βk′

−µ2,k +
∑K

k′=1 λk′βk′µ2,k′∑K
k′=1 λk′βk′

 , (6.131)

Using Theorem 7, the solution to the inner minimization in (6.128) is obtained as

c∗ =
1

1T
2PM−112P

M−112P (6.132)

and (6.128) reduces to the concave maximization problem

max
λ∈Λ

(1T
2PM−112P )−1 (6.133)

which is equivalent to (6.58). Further, the results in (6.61) and (6.60) can be obtained by

substituting the optimum weights specified by (6.132) in (6.123).

Proof of Corollary 5. Under the S-model, we have

Biask(δ̂) = d[(c1 − c2)T1P ] + δ[(c1 + c2)T1P − 1] (6.134)

+ cT
1 µ1,k − cT

2 µ2,k + η (6.135)

It is easy to see that the constant bias condition can be ensured under all K network scenarios

by setting

(c1 + c2)T1P = 1 , (c1 − c2)T1P = 0 (6.136)
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Under this constraint, we have

MSEk(δ̂) = cT
1 S1,kc1 + cT

2 S2,kc2 − 2cT
1 S12c2 + (cT

1 µ1,k − cT
2 µ2,k + η)2 (6.137)

Thus, the problem of minimizing WMaxMSE(δ̂) under the constraint of constant bias can be

stated as

min
[c1c2]∈C, η∈R

max
λ∈Λ

K∑
k=1

λkβkMSEk(δ̂) (6.138)

where

C =

{[
cT

1 cT
2

]T

∈ R2P
∣∣∣((c1 + c2)T1P = 1) ∧ ((c1 − c2)T1P = 0)

}
(6.139)

It is easy to see that the sets C × R and Λ are both convex, and that Λ is bounded. Hence,

applying Theorem 8 to (6.138), we can restate it as

max
λ∈Λ

min
[c1c2]∈C

min
η∈R

MSEk(δ̂) (6.140)

For any fixed values of c1, c2 and λ, the value of η that solves the inner minimization problem

can be obtained via differentiation as

η =
−
∑K

k=1 λkβk
(
cT

1 µ1,k − cT
2 µ2,k

)∑K
k=1 λkβk

(6.141)

Substituting this optimum value of η in (6.140), we are left with the optimization problem

max
λ∈Λ

min
c

cTMc

s.t. Gc = s

(6.142)
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where c = [cT
1 cT

2 ]T, M is as defined in (6.129), and

G =

1T
P 1T

P

1T
P −1T

P

 , s =

1

0

 (6.143)

Using Theorem 7, the solution to the inner minimization in (6.142) is obtained as

c∗ = M−1GT(GM−1GT)−1s (6.144)

and (6.142) reduces to the concave maximization problem

max
λ∈Λ

sT(GM−1GT)−1s (6.145)

Further, the results in (6.68) and (6.67) can be obtained by substituting the optimum weights

specified by (6.144) in (6.137).

Proof of Corollary 6. Under the extended S-model, for the estimator of (6.77), we have

Bias(δ̂) = d

[
c1 − c2 +

B∑
i=1

(c̃1,i − c̃2,i)

]T

1P + δ
[
(c1 + c2)T1P − 1

]
+

B∑
i=1

δi(c̃1,i + c̃2,i)
T1P +

(
c1 +

B∑
i=1

c̃1,i

)T

µ1 −

(
c2 +

B∑
i=1

c̃2,i

)T

µ2 + η .

(6.146)

From (6.146), we see that in order for δ̂ to have constant bias, we require

(c1 + c2)T1P = 1 , (6.147)

(c̃1,i + c̃2,i)
T1P = 0 ∀i = 1, · · · , B (6.148)[

c1 − c2 +

B∑
i=1

(c̃1,i − c̃2,i)

]T

1P = 0 . (6.149)
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Assuming δ̂ satisfies (6.147)-(6.149), its variance has the form

var(δ̂) = cT
1 S1c1 + cT

2 S2c2 − 2cT
1 S12c2 +

B∑
i=1

[
cT

1,iS1c1,i + cT
2,iS2c2,i − 2cT

1,iS12c2,i

]
(6.150)

Thus, under the constraint of constant bias, the variance and consequently the MSE of δ̂

are constant with respect to δ and d. Further, for any choice of linear combination weights,

MSE(δ̂) can be minimized by making δ̂ unbiased, by setting

η =

(
c2 +

B∑
i=1

c̃2,i

)T

µ2 −

(
c1 +

B∑
i=1

c̃1,i

)T

µ1 (6.151)

Now consider the residual problem of choosing the weight vectors c1, c2, and c1,i, c2,i (for

i = 1, · · · , B) to minimize (6.150) under the constraints specified (6.147)-(6.149). It is easy to

show using the method of Lagrangian multipliers that the values of c1,i and c2,i that solve this

minimization problem are constant with respect to i. Hence, setting c̃1,i = c̃1 and c̃2,i = c̃2

for all i, we obtain the simpler problem

min
c

cTS̃c

s.t. Gc = s

(6.152)

where c = [cT
1 cT

2 c̃T
1 c̃T

2 ]T,

S̃ =

S 0

0 BS

 , S =

 S1 −S12

−ST
12 S2

 (6.153)

G =


1P 1P 0P 0P

0P 0P 1P 1P

1P −1P B1P −B1P

 s =


1

0

0

 . (6.154)
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From Theorem 7, the solution to this problem is given as

c∗ = S̃
−1

GT(GS̃
−1

GT)−1s (6.155)

which proves the corollary.

Proof of Corollary 7. We first prove the result under the extended K-model. Under this

model we have

Biask(δ̂) = δ
[
(c1 + c2)T1P − 1

]
+

B∑
i=1

δi(c̃1,i + c̃2,i)
T1P

+

(
c1 +

B∑
i=1

c̃1,i

)T

µ1,k −

(
c2 +

B∑
i=1

c̃2,i

)T

µ2,k + η . (6.156)

The constant bias condition property can be ensured under all K network scenarios by setting

(c1 + c2)T1P = 1 , (6.157)

(c̃1,i + c̃2,i)
T1P = 0 ∀i = 1, · · · , B (6.158)

Under this constraint, we have

MSEk(δ̂) = cT
1 S1,kc1 + cT

2 S2,kc2 − 2cT
1 S12,kc2 (6.159)

+
B∑
i=1

[
cT

1,iS1,kc1,i + cT
2,iS2,kc2,i − 2c̃T

1,iS12,kc̃2,i

]
+

[
µT

1,k

(
c1 +

B∑
i=1

c̃1,i

)
− µT

2,k

(
c2 +

B∑
i=1

c̃2,i

)
+ η

]2

(6.160)

Let ĉ = [cT
1 cT

2 c̃T
1,1 · · · c̃T

1,B c̃T
2,1 · · · c̃T

2,B]T. Then the problem of minimizing WMaxMSE(δ̂)

under the constraint of constant bias can be stated as

min
ĉ∈C, η∈R

max
λ∈Λ

K∑
k=1

λkβkMSEk(δ̂) (6.161)
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where C is the set of values of ĉ for which (6.157) - (6.158) are satisfied. It is easy to see that

Theorem 8 can be applied to (6.161), to obtain the equivalent problem

max
λ∈Λ

min
c∈C

min
η∈R

K∑
k=1

λkβkMSEk(δ̂) (6.162)

For any fixed values of ĉ and λ, the value of η that solves the inner minimization problem

can be obtained via differentiation as

η = −

(
K∑
k=1

λkβk

)−1{ K∑
k=1

λkβk

[
µT

1,k

(
c1 +

B∑
i=1

c̃1,i

)
− µT

2,k

(
c2 +

B∑
i=1

c̃2,i

)]}
(6.163)

Substituting this optimum value of η in (6.162), we are left with the optimization problem

max
λ∈Λ

min
ĉ∈C

K∑
k=1

λkβk

{
cT

1 S1,kc1 + cT
2 S2,kc2 − 2cT

1 S12,kc2

+
B∑
i=1

[
c̃T

1,iS1,kc̃1,i + c̃T
2,iS2,kc̃2,i − 2c̃T

1,iS12,kc̃2,i

]
+
[
µ̂T

1,k

(
c1 +

B∑
i=1

c̃1,i

)
− µ̂T

2,k

(
c2 +

B∑
i=1

c̃2,i

)]2
}

(6.164)

s.t.


(c1 + c2)T1P = 1 ,

(c̃1,i + c̃2,i)
T1P = 0 ∀i = 1, · · · , B[

c1 − c2 +
∑B

i=1(c̃1,i − c̃2,i)
]T

1P = 0 .

(6.165)

where

µ̂1,k = µ1,k −
∑K

k′=1 λk′βk′µ1,k′∑K
k′=1 λk′βk′

, (6.166)

µ̂2,k = µ2,k −
∑K

k′=1 λk′βk′µ2,k′∑K
k′=1 λk′βk′

, (6.167)

163



It is easy to show using the method of Lagrangian multipliers that for any value of λ, the

values of c1,i and c2,i that solve the inner minimization in (6.164) are constant with respect

to i. Hence, setting c̃1,i = c̃1 and c̃2,i = c̃2 for all i, we obtain the simpler problem

max
λ∈Λ

min
c

cTMc

s.t. Gc = s

(6.168)

where c = [cT
1 cT

2 c̃T
1 c̃T

2 ]T,

M =
K∑
k=1

λkβk


Sk 0

0 BSk

+

 µ̂k
Bµ̂k


 µ̂k
Bµ̂k


T
 , (6.169)

Sk =

 S1,k −2S12,k

−2S12,k S2,k

 , µ̂k =

µ̂1,k

µ̂2,k

 , (6.170)

G =

1T
P 1T

P 0T
P 0T

P

0T
P 0T

P 1T
P 1T

P

 , s =

1

0

 . (6.171)

Using Theorem 7, the solution to the inner minimization problem in (6.168) is obtained as

c = M−1GT(GM−1GT)−1s (6.172)

and (6.168) reduces to the concave maximization problem

max
λ∈Λ

sT(GM−1GT)−1s (6.173)

This proves the result for the extended K-model.

Under the extended S-model, we can use a similar proof, with different values for G and

s, since the constraints resulting from the constant bias condition are different relative to the
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extended K-model. In particular, under the extended S-model, we have

Biask(δ̂) = d

[
c1 − c2 +

B∑
i=1

(c̃1,i − c̃2,i)

]T

1P + δ
[
(c1 + c2)T1P − 1

]
+

B∑
i=1

δi(c̃1,i + c̃2,i)
T1P +

(
c1 +

B∑
i=1

c̃1,i

)T

µ1,k −

(
c2 +

B∑
i=1

c̃2,i

)T

µ2,k + η .

(6.174)

The constant bias condition property can be ensured under all K network scenarios by setting

(c1 + c2)T1P = 1 , (6.175)

(c̃1,i + c̃2,i)
T1P = 0 ∀i = 1, · · · , B (6.176)[

c1 − c2 +
B∑
i=1

(c̃1,i − c̃2,i)

]T

1P = 0 . (6.177)

The concludes the proof.
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Chapter 7

Conclusions

In this dissertation, we developed novel techniques to improve detection and estimation in

MIMO radars and network time synchronization schemes. Here we present some concluding

remarks about work presented in Chapters 2 through 6. In Chapter 2, we developed a new

definition of the ambiguity function for radars that perform non-coherent processing. We

showed that the conventional definition of the ambiguity function suffers drawbacks when

applied to non-coherent radars, and that our new definition was a better ambiguity measure.

The new definition is especially relevant to many MIMO radars that are currently being

studied. In Chapter 3, we developed detection and waveform design techniques under a

general MIMO radar model that encompasses many existing MIMO radar configurations.

The tools developed in this chapter can aid radar designers by removing restrictions on

design parameters such as antenna separations and waveform correlations that are imposed

by fixed MIMO radar configurations studied in literature.

In Chapter 4, we presented new lower bounds on the mean squared error of phase offset

estimation schemes in PTP. These lower bounds help provide new insights into cases where
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conventional estimation schemes perform well, and where significant scope for performance

improvements may exist. In Chapter 5, we derived novel minimax optimum estimators under

various observation models for the problem of phase offset estimation schemes in PTP. The

estimators, while exhibiting a high implementation complexity, are guaranteed to provide the

best possible performance under any network scenario. Hence, these estimators are better

suited for obtaining lower bounds on achievable estimation performance, than as practical es-

timation procedures. To address the issue of designing practical estimators that exhibit near-

optimum performance, in Chapter 6, we solve the problem of designing optimum L-estimators

of phase offset. These estimators, obtained as linear combinations of order statistics, have a

low implementation complexity and exhibit near-optimum performance under many network

scenarios. We further demonstrate that L-estimators can be designed to be robust across

a wide range of network scenarios. We believe that the L-estimators we developed show

sufficient merit for their use in practical PTP implementations.
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