
Lehigh University
Lehigh Preserve

Theses and Dissertations

2017

Analyzing the Impact of Concurrency on Scaling
Machine Learning Programs Using TensorFlow
Sheyn Denizov
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Denizov, Sheyn, "Analyzing the Impact of Concurrency on Scaling Machine Learning Programs Using TensorFlow" (2017). Theses and
Dissertations. 2570.
http://preserve.lehigh.edu/etd/2570

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228655764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2570&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2570&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2570&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=preserve.lehigh.edu%2Fetd%2F2570&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2570?utm_source=preserve.lehigh.edu%2Fetd%2F2570&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

Analyzing the Impact of Concurrency on Scaling Machine Learning Programs Using

TensorFlow

by

Sheyn Denizov

A Thesis

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Computer Science

Lehigh University

May 2017

 ii

© Copyright by Sheyn Denizov 2017

All Rights Reserved

 iii

 Approved and recommended for acceptance as a thesis in partial fulfillment of the

requirements for the degree of Master of Science.

Date

Thesis Advisor

__

Chairperson of Department

 iv

ACKNOWLEDGEMENTS

I would like to thank Professor Michael Spear for his contribution to the project idea, his

guidance, support, and patience through the entire process. He was invaluable in helping

this thesis be completed in time and in the right way. I would like to thank the Lehigh

University Computer Science department for their guidance and wisdom in helping me

finish my Master’s degree and this project in only one year.

 I would also like to thank my parents for their support and patience while I did all of

the work in the completion of this thesis and my Master of Science in general. Lastly, I

would like to dedicate this thesis to my grandfather, with whom I was very close and who

showed me the strength to do the things important to me and to never give up.

 v

TABLE OF CONTENTS

Abstract 1

1 Introduction 3

 1.1 Rationale and Significance of Machine Learning 3

 1.2 Rationale and Significance of Concurrency . 4

2 Background 6

 2.1 Why Do We Need TensorFlow? . 6

 2.1.1 A Brief Introduciton . 6

 2.1.2 How TensorFlow Works . 7

 2.2 Why Do We Need Transactional Concurrency (Or Concurrency at All)? 9

 2.2.1 A Look at What Concurrency Can Do . 9

 2.2.2 Atomicity: The Transactional Concurrency Model 12

3 The Methodology 15

 3.1 The Basic Algorithm . 15

 3.2 Fitting the Idea with TensorFlow . 18

 vi

4 The Results 20

 4.1 The Good and the Bad . 20

 4.2 Did Our Model Succeed? . 23

5 Conclusions 25

6 Future Work and Challenges 27

 6.1 Future Work . 27

 6.2 Pitfalls and Challenges . 28

Bibliography 30

Appendix A 31

Biography 32

 1

ABSTRACT

In recent times, computer scientists and technology companies have quickly begun to

realize that machine learning and creating computer software that is capable of

reasoning for itself (at least in theory). What was once only considered science fiction

lore is now becoming a reality in front of our very eyes. With this type of

computational capability at our disposal, we are left with the question of how best to

use it and where to start in creating models that can help us best utilize it.

 TensorFlow is an open source software library used in machine learning

developed and released by Google. It was created by the company in order to help

them meet their expanding needs to train systems that can build and detect neural

networks for pattern recognition that could be used in their services. It was first

released by the Google Brain Team in November 2015 and, at the time of the

preparation of this research, the project is still being heavily developed by

programmers and researchers both inside of Google and around the world. Thus, it is

very possible that some future releases of the software package could remove and/or

replace some current capabilities. The point of this thesis is to examine how machine

learning programs written with TensorFlow that do not scale well (such as large-scale

neural networks) can be made more scalable by using concurrency and distribution of

computation among threads.

 To do this, we will be using lock elision using conditional variables and locking

mechanisms (such as semaphores) to allow for smooth distribution of resources to be

used by the architecture. We present the trial runs and results of the added

implementations and where the results fell short of optimistic expectation. Although

 2

TensorFlow is still a work in progress, we will also address where this framework

was insufficient in addressing the needs of programmers attempting to write scalable

code and whether this type of implementation is sustainable.

 3

Chapter 1

INTRODUCTION

1.1 Rationale And Significance of Machine Learning

In the past several years, the hype over Machine Learning and the development of

artificially intelligent software applications has quickly permeated markets throughout

the world. A major impetus in developing this type of technology has been the consumer

always wanting more from the computer with which they are working. Touch, speech,

and face recognition are just three of the basic capabilities that users want their machines

to have.

 In order to try to meet this demand, companies have begun heavy research and

development into machine learning platforms and the creation of artificial intelligence

initiatives. These initiatives have even become part of mainstream pop culture. For

example, the unveiling of IBM Watson at a Jeopardy match back in 2011 is almost

always the first thing that comes to people’s minds when they hear the words “artificial

intelligence”. In addition, if you were to go to the social media profile of a company, one

would always find links relating to how their company is helping the cause of furthering

artificial intelligence. For some companies, this can simply be clickbait for visitors of the

site, for others, it could be the expression of years of research and development.

 In keeping with their reputation as one of the (if not the) biggest technology

companies in the world, Google has been at the helm of this trend for many years.

 4

Starting in 2011, they began developing their own private machine learning library called

DistBelief. DistBelief was based on deep learning neural networks for creating smarter

additions to their applications. The people in charge of this project were a group of

computer scientists and researchers at Google called the Google Brain team. Google

Brain is the all-encompassing name for Google’s artificial intelligence project. This

diverse group of Google researchers found that they could produce much better

applications if they allowed the projects to be self-learning. Thus, Google ran with this

and the artificial intelligence project that they build to help implement “smarter” versions

of their diverse range of services.

 TensorFlow has three main implementation libraries: one for Python, one for Java,

and one for C. The Python library is the most extensive TensorFlow package currently

available, which makes sense due to Python being the quickest and most portable

language for machine learning research. TensorFlow already has some built-in threading

capabilities that allow large-scale machine learning algorithms to be run. However, the

libraries are not well developed and can be buggy at times. Thus, the reason for our

research experiment is now clear.

1.2. Rationale and Significance of Concurrency

The reason why concurrency is so big is simple: we need to use all computational

resources we have in making our programs run more quickly. In order to do this, we need

to have multiple instances running at the same time (or around the same time) to utilize

our growing computational power. For instance, if we have a 4-core CPU, we would

want to utilize all the cores to get the most out of the computer’s abilities and effectively

 5

run our programs. This same thought process is given to the rationale of having multiple

instances of a program running at the same time.

 Concurrency is simply the idea that we can have multiple instances of the same

program running and still achieve cohesion between them. The hard part is obviously

enforcing the cohesion of the processes and ensuring that their results fit together and

each thread does not harm another. However, very sophisticated working methods on

doing this were thought out before machine learning was even practical. Thus, we can use

these ideas that have already been in place for so long in improving our machine learning

and artificial intelligence capabilities.

 Nonetheless, concurrency research is still a very popular field of study and ways to

improve our current methods have still emerged in recent years. Therefore, we can still

try to improve on those older models and see how they can be fit to new fields of study.

From this, we can also adapt further methodologies to handle the problems that we

encounter. The basis for all of this, however, remains in the foundational theory of

concurrency and all the good that it has done computing for the past few decades.

 6

Chapter 2

BACKGROUND

2.1 Why Do We Need TensorFlow?

2.1.1. A Brief Introduction

As explained in Chapter 1, TensorFlow is an open source AI framework owned and

operated by Google. As one of the current big thing in the AI community, it continually

receives improvements by developers from all around the world who are all dedicated in

helping advance this software package and AI in general. The main TensorFlow codebase

is hosted in a Github repository at https://www.github.com/tensorflow/tensorflow. As of

February 2017, there have been over 16,200 commits (changes) and around 790

contributors to the codebase, with the profiles of the people ranging from college students

to experienced industry research scientists.

 This is indeed a positive thing about TensorFlow as a machine learning tool: due to it

constantly being open to change, improvement of the codebase is perpetual. However,

just as with any open source software comes the risk of a change massively corrupting

the codebase and causing problems. This is why the developers at Google tasked with

leading the effort are also in charge of tracking changes and making sure that rollbacks in

the code occur if they are needed. To help them in this monstrous task, they use the

 7

GitHub issues feature to read any bugs or change requests that programmers or users of

the software have submitted.

Figure 1: Sample Python code utilizing TensorFlow

 Google has also dedicated many resources (including an official site) to explain to

interested users how TensorFlow works. There is an official site for TensorFlow

(www.tensorflow.org) that explains how to get and install it in addition to Udacity

courses on how to use this extensive framework. Figure 1 above shows some sample

Python code (as Python is the main implementation library for TensorFlow, after all) that

uses a TensorFlow “session” to add print “hello” and add two numbers together. More

about this will be discussed in the next section.

2.1.2. How TensorFlow Works

As Figure 1 shows, TensorFlow is a software library that can be imported when you need

it. However, you must first install the library onto your computer using the relevant

installation instructions found on the official site (www.tensorflow.org). It is available for

 8

download on Linux, Mac OS X, Windows, and, since very recently, the Android mobile

OS. Now let us explain the way the basic code shown in Figure 1 above works.

 The code above shows the Python console open with TensorFlow imported. Next, to

use this imported library, we must create an object, here named tf, which will be able to

run the built-in commands that TensorFlow has. The most common way to start off any

TensorFlow program is to create a session, called “sess” in the code above. A session is a

class that runs TensorFlow operations and manages the context of those currently running

operations. It also manages resources and tracks the flow of the operations are being

executed. For example, when we set the variables in Figure 1 above to be constants, we

need the session object to run the + operation in order to add them. Thus, the session is

undoubtedly the most interesting object in the TensorFlow library and will be very

important to the implementation of our research experiment.

 Moving on from the very simple code shown in the above figure, TensorFlow is at its

most simplified form a library that uses data flow graphs to perform the numerical

computations given to it. These graphs have nodes (or vertices) that represent

mathematical operations, while the edges represent the tensors, which are actually

multidimensional data arrays, that flow between these operations. This view is important

because it emphasizes the reusability of code due to the fact that the tensors can simply

go to new operations (nodes in the graph) by traversing said graph.

 This type of outlook on numerical computation is very helpful in visualizing a hot

new trend in machine learning: recursive neural networks (RNNs). These deep learning

structures are used in research applications ranging from spelling corrections to mining of

data for search engines. The way they work is by recursively applying the same set of

 9

weighting values to the structure and producing some sort of structured prediction to the

output value of some variable-sized inputs. This prediction output is typically produced

by traversing through that structure using some sort of topological order. Naturally, these

RNNs are typically represented by a tree structure, a decision tree to be more precise.

Thus, it can be clearly seen that TensorFlow’s representation of how to perform machine

learning operations on inputs is analogous to the typical visualization of RNNs. This

could also explain why many of TensorFlow’s common use cases, such as image

recognition and handwriting recognition, heavily utilize RNNs in computing accuracy

scores for the training sets.

 An understandable question that can come to one’s mind right about now is why are

we using TensorFlow. Why this particular library when our experiment may not translate

well, or at all, into other libraries/domains? The best answer to this question is that

TensorFlow is most likely the best that we can do. As the brainchild of one of the best

research teams in the world, TensorFlow is undoubtedly one of the most powerful

machine learning tools currently at our disposal. Will there soon be something much

better to emerge that could replace it? Possibly, but we must make do with the knowledge

and resources that we have at our disposal at this moment and improve them as much as

we can. That is why we need to use TensorFlow in our research.

2.2 Why Do We Need Transactional Concurrency (Or Concurrency at All)?

2.2.1. A Look at What Concurrency Can Do

Modern computation has complex computational problems that need to be solved in a

“reasonable” amount of time. The definition of reasonable in this context varies, but as

 10

any algorithms course will tell you, we need this time complexity to be some function of

the input size. However, with datasets and computational inputs so much larger today

than they were before, we cannot simply rely on a single machine to perform even the

simplest task on an uncountable input. Thus, computer scientists have come up with the

concepts of threading and concurrency.

Figure 2: The concept of multithreading and CPU cores

 The concept of threading is nothing new in computer science. For decades, computer

scientists have known how multithreading and efficiently creating multiple instances of

running applications could be a powerful tool in improving the runtime and execution

flow of many algorithms. Figure 2 shows an abstraction of a computer, represented as the

orange square, with 4 CPUs within it, which in this case could be thought of as cores of

one big, “multi-core” CPU, and multiple threads given to each CPU. These threads

represent running applications that each have their own context, their own low-level

resources (or at least the illusion of them), and their own stack frames for execution.

 11

Together, these parts of the multicore-threading model makes up the basis for the idea of

serialization and concurrency of tasks.

 However, we need to manage these threads and prevent them from conflicting when

attempting to affect a shared resource item. The question now is how to do this. Could we

allow limit the threads to a sequential order? No, because that would be an inefficient use

of the CPU power that we have in being able to be run at the same time. Could we

perform smooth context switches based on some interrupt? Maybe, but that could be

expensive. Thus, we need some sort of way to make the wide array of concurrently

running tasks and threads seem to run in an organized timeline. The answer to this is

multithreading through conditional checks (through structures called conditional

variables) and the use of locking structures to restrict resource access when they are being

used.

 The key to making sure that multithreading works well is to use it in the correct

places. Typically, when running multiple threads of a program, we lock and unlock the

data structures that we would like to amend when we are starting to use (i.e., amend or

read) them and when we have finished with them (have finished reading and writing),

respectively. We want to be sure that we are as close to certain of the value of a given

variable at any point in time. In addition, we do not want to have values be corrupted by

not being written completely. Thus, we would like a read/write locking structure to

separate the two operations and allow permissions based on which one is being

performed. For instance, if there is currently a write operation being performed, then we

need a writer’s lock to be acquired and to stop other threads from obtaining either a

reader or writer lock.

 12

2.2.2 Atomicity: The Transactional Concurrency Model

We described how the normal lock/unlock model works and how different conditions can

prompt the acquisition of locks by different threads. For the most part, we can handle

synchronizing the threads at a low level with little trouble, separating the two different

operations, read and write, and harmoniously following the permission rules described

above. However, how do we handle these locking structures when the operations and

locks need to be acquired right away to prevent bad conflicts? A good solution would be

to eliminate the low-level details by making everything done under locking “atomic”. In

this sense, “atomic” means all-or-nothing, where an operation is performed fully or it is

not performed at all. This is called transactional memory concurrency.

 Transactional memory is a concept borrowed from databases and database theory, and

rightly so as the write operation needing the lock is like that of a transaction being

performed on a database. To elaborate, a database transaction, that is, a change on some

variable like the money in a bank account for a customer, needs to either completely be

written to the database or not at all. If there were to happen something that corrupts or

stops the transaction from being performed completely, then we will get rid of the part of

the transaction that was written and remove it altogether. In addition, a customer looking

at their bank account in the middle of it being written to will not see the transaction as it

is being written. They will see an old version of their statement and will only see the

changes when the complete write transaction has been performed. Thus, this all-or-

nothing idea is what we would like to emulate in obtaining locks on shared resources.

 13

Figure 3: A model of the Transactional concurrency model

 Figure 3 shows the transactional concurrency model. Two transactions, T1 and T2, are

concurrently attempting to access the same shared resource. T1 has acquired a write lock

to write to shared resource Y and later on in time, T2 would like to acquire a read lock for

Y. However, T1 has not finished completely writing to Y and so T2 would be reading

some corrupted value if it were able to open Y. Thus, a write lock takes precedence over

read locks and a lock conflict occurs. During this time when T1 is still writing to Y, T2

waits for its opportunity to obtain the lock. In this case, it waits for the very first

opportunity, which is when T1 commits its changes and signals that it has released its

locks. When T1 finally does this, the signal is sent out and T2 can finally acquire a read

lock on Y. Thus, as we can see in the figure above, a transaction must indeed be

completed and committed completely before another thread can obtain any kind of lock

(though multiple read locks can obviously be obtained when no one is writing).

Otherwise, the transaction would abort and any attempted transaction operations would

be rolled back (deleted). This model is therefore also good because it can relax deadlock

due to the resolution of lock conflict being waiting for the first available opportunity to

obtain a freed lock.

 14

 Transactional concurrency is an abstraction to the traditional model of locking and has

some very good features. First, of course, is the atomicity of everything that happens.

This factor definitely helps in our quest of almost always knowing the value of a variable

or some shared resource when many threads are writing to it. In addition, because writing

is a much costlier operation than reading, it will prevent us from having many corrupted

writes and therefore save computational time and power, thus making the overall scheme

more efficient. Furthermore, we save a good amount of hassle in having to worry about

dynamically allocating locks to different threads as they emerge and managing how

deeply their operations will affect their shared resource. This removal of burden can then

allow the programmer to focus on making his learning model work and not on how to

handle more threads producing surprising results at some points in time.

 15

CHAPTER 3

THE METHODOLOGY

3.1 The Basic Algorithm

In order to implement this transactional memory idea into something as large as

TensorFlow, we need to first understand how the basic idea will work. When setting

down the idea, we need to be wary of how normal locking can be both beneficial and

problematic. For instance, the main sources of lock contention can come from many

threads attempting to do the same thing and simply overwriting each other. However, due

to the speed of modern processors, we can be sure that basic TensorFlow applications

will not be so heavily apparent. Nevertheless, there is a counterpoint to using

transactional memory in designing this algorithm.

 If we are attempting to speed up our TensorFlow session in which we have an image

recognition tensor working on an input of many images, we will obviously use many

threads. However, if these threads are constantly getting blocked by one another before

they can even finish their operations, then the slowdown can pile up. Next, let us suppose

we use locks, simple mutually exclusive locks. If we were to do this, we can see that our

code has the potential to be much organized and synchronized. We would first allow a

process to gain a lock, perform the critical section, and then unlock so another thread can

go. However, it can soon become a hassle to manage all of these locking/unlocking steps

and keeping track of which thread currently is reading or writing. Thus, there needs to be

an addition to this that makes it easier.

 16

 Now we turn to our transactional concurrency idea from before. Unlike normal

locking, we now use something called speculative locking. This is also known as lock

elision. Lock elision is a type of mutually exclusive locking model that allows multiple

threads to acquire the same lock, but prevents conflict by tracking what pieces of

hardware are being modified (such as the cache lines of a program). This is something

introduced in the Transactional Synchronization Extensions (TSX) architecture first

introduced by Intel. This model will work well on supported machines as it allows

hardware, and not just software, to come into the mix. The improvement of this design on

most new hardware architectures is that it allows us to write code that does not have to

worry about the individual lock working or not.

 The basic algorithm for the lock elision that we used is shown below:

 Program starts

 Thread locks resource

 Create an elided lock wrapper around the resource

 If the transaction started

 If the lock is free

 Execute the lock

 Break

 Else

 Abort the transaction because lock is busy

 Delete partial writes

 Perform the critical section

 Go back to the initial setting of the lock and check for further transactions

 17

 Check for further lock requests

 If the transaction is over

 If the lock is free

 Commit the transaction

 Else

 Unlock the lock and rollback any changes

 Perform last operations that do not need locking

 Program ends

The algorithm above makes use of a lock already existing on the resource and producing

a speculative environment in which the currently waiting transaction can wait until a

transaction is implemented. In truth, the algorithm is a wrapper class for the current lock

or set of locks being held. The wrapper can then be reused so that whenever a lock

request is triggered it can be called upon to check for whether that request can be readily

satisfied. The biggest thing of note here is the abortion of the transaction if it has not been

written entirely. Because machine learning algorithms such as those in TensorFlow

require iteration and multiple concurrent writes over a very small period of time, we need

a quick way to ensure that write locks are acquired at the right time and nothing

surprising has happened to our shared resource. The use of lock elision will definitely

help with that as it gives us more security in knowing that incoherent, unfinished writes

have a smaller chance of being performed.

 18

3.2 Fitting the Idea with TensorFlow

TensorFlow is a good candidate for using this type of concurrency structure. Since many

workloads that can be created are not expressly built with scalability in mind, we can

utilize the reusability of the concurrency algorithm to show whether we can scale these

computational methods. Thus, we chose to run it on some workloads that were large

enough to produce interesting results. These included image recognition deep learning

tensors, handwriting recognition tensor sessions, and deep learning text analysis tensors.

Naturally, there was also the need to create many threads that could work on these

sessions concurrently to test the design. However, it is quite apparent that transactional

concurrency using lock elision alone is not quite enough here.

 In order to allow for architectures that do not necessarily have the full TSX extension

in place, we need to ensure that the performance does not suffer as a result. Thus, we

need to fall back on using conditional variables and semaphores to track the state of locks

when they are done and report back when a waiting transaction can take place. In truth,

we create a linked list of semaphores that can contain the state information of the

currently processing transaction. For instance, if some thread A is currently writing to

some shared resource, we implement semaphore SA to be incremented or toggled as the

transaction proceeds. Once the thread is done, semaphore SA is put back in the linked list

and marked as done. As we need more threads to run in a certain TensorFlow session, we

will simply add more semaphores to the linked list and continue on in the same fashion.

The same procedure can be used with conditional variables, although with the added

benefit of using a broadcast unlock to unlock all the waiting threads when they are no

longer needed.

 19

 Thus, we needed to implement our own small modified semaphore and conditional

variable libraries to supplement the case when TSX was not in full use and complete lock

elision could not be done properly. Nevertheless, the procedure of permissively allowing

locks to be acquired without worrying about how and how many locks are obtained gives

the programmer more freedom in writing the critical sections of their TensorFlow code.

This can undoubtedly be good when we need to handle threads continually adding to

some data structure and we simply cannot control these additions in a more feasible way.

 20

CHAPTER 4

THE RESULTS

4.1 The Good and the Bad

To run the experiments, a machine with 4 cores and 16 GBs of RAM was used. In

addition, TSX was compatible and we could see some positive change when attempting

lock elision. Under these conditions, the speed of a TensorFlow experiment, without

using transactional memory, was about less than 30 seconds for an image recognition

experiment with n=10000 steps. This is a modest speed, given that certain machines built

for this type of experimentation could do much better. However, this factor does not take

away from the results and their foundations.

 First, we start with the good things about our results. When a handwriting recognition

algorithm was first run without any multithreading, it produced an accuracy score of

91.8% and took around 15 seconds to complete. When traditional threading (using simple

mutex locks) with 5 threads was used, the accuracy score stayed about the same at around

92.5% and the runtime went down to about 10 seconds. Finally, when running that same

program with the transactional memory model of lock elision and waiting locks, the time

went down to about 5 seconds and produced an accuracy score of about 94.1%. When

analyzing the throughput, which is the amount of time we spend on some factor per unit

time, it seems to be almost linearly increasing as more threads are added with lock elision

and going down as more threads are added with normal mutex locking. The table below

shows some experimental results from training and testing runs of the multithreading

 21

code and runs without it on a sample TensorFlow program that uses one session and a

single method to recognize an image from the organization of the pixels.

Threads Time spent without our

concurrency model

Time spent with our

concurrency model

1 30.15 seconds 31.20 seconds

2 34.57 seconds 30.50 seconds

3 36.31 seconds 30.08 seconds

4 37.25 seconds 29.55 seconds

5 36.47 seconds 29.21 seconds

6 37.54 seconds 29.07 seconds

7 38.45 seconds 28.17 seconds

8 38.51 seconds 27.54 seconds

Figure 4: Results of simple image recognition program running with n = 10000 iterations

 As you can see in the table above, our model actually gets better time savings as more

threads are added. This is in contrast to the time spent using the normal concurrency

model, where it increases asymptotically after 2 threads. Though this speedup may not

seem particularly large, it shows that the model is working correctly, that is, allowing

lock acquisition to occur much more rapidly and with decreasing time overhead. Thus,

the throughput, as mentioned above, is also much better, allowing more computations to

take place in a much smaller amount of time. Even though there are times where the

transactional lock elision model could and has encountered problems, such as deadlock if

the critical section code is too convoluted or computationally intensive, for up to 8

threads it performs quite well on the image recognition example above, even at a high

 22

number of iterations for training. Beyond this number of threads, as we are reaching the

maximum number of threads of the machine we used, there can be some performance

that makes the program run slower. This could be fixed with a more heavy-duty

processor with more cores and is therefore not a problem in seeing that the model can

scale if we had better hardware at our disposal.

 A possible reason why this is the case is because mutex locking does not have a way

to constantly check for resource availability. Because our lock elision has the added

benefit of using semaphore structures to signal when a lock is free, it benefits from being

able to not wait as long in the queue of processes waiting to run and also receiving

priority. This is unlike normal locking mechanisms that employ the first-come, first-serve

idea, or FIFO, to allowing locks to be granted upon a process. Hence, there appears to be

some added benefit in using signaling and waiting data structures in our concurrency

model, which is what we predicted when first deciding to use this methodology.

 Next, we discuss the results that did not seem so promising. When testing the

experiment on an experiment on large programs (i.e., TensorFlow programs using many

inputs and thus many operations), the accuracy actually dropped in some cases. For

instance, a deep learning image recognition algorithm that performed a large number of

image recognition operations had its accuracy go down from around 80.2% to 76.5%. As

was expected, lock elision encounters some problems when a great number of writes need

to happen in very short periods of time. On the bright side, there were not a large number

of deadlock situations in these larger programs. This means that the method will just need

to be optimized and by no means scrapped.

 23

4.2 Did Our Model Succeed?

The success of the research is dependent on two main things: whether the code could

intermingle well with the design (proof of concept worked) and whether our initial

thoughts are confirmed or disproven well enough. For the majority of test cases, the

model worked and there appeared to be no real contention or deadlock to be had. The

biggest cases where these problems would arise were, as implied above, when the RNN

values were much too quick in their write transactions than the speed with which we

could properly acquire locks and also when the program was much too big and extensive.

These problems do serve the two functions above quite nicely. They show that the proof

of concept did work in some cases and did not work so well in others. In addition, it

proves our initial hypothesis that this model would work to some extent, but also

disproves our notion that it would work for many more cases than it did.

 Thus, it can be said that our model did succeed in its target aim of showing something

new. It showed not only that transactional concurrency can work on certain aspects of

this graph AI paradigm, but also that there are many more cases where it does not work

and where we need to improve our current model of multithreading. The extent to which

we can call this a success or is debatable. However, the experimentation was invaluable

in showing how we could go about adapting the resources at our disposal to an ever-

changing product like TensorFlow. Accuracy scores, precision, and succinctness of

learning methods are all vital metrics in machine learning and they require multithreading

in order to work well.

 Luckily, TensorFlow does have built-in multithreading for the user to use. However,

the more low-level we go with our analysis of the concurrency model that TensorFlow

 24

uses, the more we can understand about how these threads actually run on these extensive

tensor projects in the first place. From there, we can find ways to optimize them and

better our knowledge of how multithreading works. Therein lies the point of this research

and from that perspective, the model we created has succeeded in proving its stated point.

 25

CHAPTER 5

CONCLUSIONS

The research into whether we can use transactional memory to speed up and improve the

accuracy of machine learning processes has given both optimistic and pessimistic results.

The transactional memory model is undoubtedly more efficient than traditional mutex

locking in the context of what we used to test it. The inclusion of lock elision was helpful

in showing how less direct control of the locks using the traditional mutex could allow

for some gains in the throughput for running multiple threads. With little cases of

uncontested deadlock, we can be more certain that this model does indeed bode well for

the context of machine learning algorithms. In addition, with improvements to the model,

we could definitely improve the performance of those programs under more threads.

That, however, is work to be done in the future.

 Further research will have to be done as to how well lock elision works on certain

data structures and topologies. For example, TensorFlow uses graphs as its main data

structure for visualization of how to apply its recursive neural networks. This structure is

not ideal for locking and unlocking paradigms, as traversals of the graph are not

sequential and can be unpredictable. This unpredictability will mean that writing reliable

multithreading code will be more difficult. Since the TensorFlow model of machine

learning seems to be growing in popularity, it appears that we will have to accommodate

our multithreading models to it rather than vice versa.

 26

 Despite all of the work that remains, it can be conclusively said that concurrent

machine learning is not an unsolvable problem. The results show that we can be

optimistic about adapting our models to this field and our work can carry forward. It is

therefore only a matter of time until this burgeoning field of study has gone beyond this

model limitation and experiments such as this will be a trivial problem.

 27

CHAPTER 6

FUTURE WORK AND CHALLENGES

6.1 Future Work

There is not currently much in the way of initiatives to bring concurrency to TensorFlow

or machine learning. For many research scientists, the task of finding an efficient

algorithm for deep learning and AI is in itself a wicked problem. As can be seen on

TensorFlow’s GitHub page, much of the concurrency code is currently being modified by

public programmers who are trying to fix these problems simply as a result of their

interest in the library’s development. Thus, there is much still to be done in researching

the effect of multithreading on the performance of machine learning algorithms.

 Some good future experiments could be analyzing how we can tailor our current

models to be expanded to this domain more efficiently. For example, the use of the

transactional memory model in our research, even if it was slightly modified to fit the use

case, is not exactly a innovative new view as to how to handle concurrency. Though it

worked for proving results and being an interesting foray of somewhat conventional

means being used in a different context, there can definitely be a more open-ended effort

in trying to establish a refined concurrency model to tackle machine learning constructs

like neural networks and highly recursive data structures. Strict transactional-based

locking just does not seem like a good method in this sense and should be changed to fit

this model more seamlessly.

 28

 In addition, TensorFlow is still being developed and its implementations are not all

optimized. Much work remains in improving this library and making machine learning a

more understandable topic (i.e., neural networks remain a black box to both researchers

and programmers alike). If we do not have a stable machine learning platform, we cannot

hope to have a stable model for concurrency for it as well. Thus, there needs to be more

study in how we can optimize the algorithms themselves as well. Nevertheless, if

TensorFlow can develop and improve, there is no doubt that a new model of concurrency

will come about to better serve this need as well.

6.2 Pitfalls and Challenges

We describe the challenges discovered by using the TensorFlow framework to run the

concurrency code which we used. The first big challenge was the size of TensorFlow

itself. As a big build when attempting to install it from scratch, it can overwhelm the disk

space of a smaller sized hard drive. Thus, a more space efficient option would be to

import only the parts of the codebase necessary to create the desired program. However,

this can be time-consuming and resistant to optimization due to the size of the codebase

and dependencies. The second big challenge is the computation power needed to run a

simple session. As a Python library, it is no surprise that TensorFlow would be quite

computationally expensive. However, the default setting for the GPU/CPU usages are

almost unstable. They allow almost all readily available processor power to be assigned

to the currently running task. Thus, it is almost required that the user change the setting

so that the sessions do not completely block other running processes (especially when

running multiple tasks).

 29

 Related to the computational power needed, the speed of a heavy TensorFlow session

can get slow, especially when using multiple RNNs. Even when using locking to prevent

multiple requests from conflicting, the speed of computation can grow even slower if too

much is done at once. For instance, an image recognition program set to run with a small

load of parameters can take as much as 10 seconds more to finish execution when

running multiple threads. This is likely due to the RNNs not being calibrated to a more

conservative value by default.

 Another common pitfall and problem with this design could be the use of transactional

locking in the incorrect places. Because multiple sessions can run independently of one

another and almost intertwine if certain sub-steps are needed in the training process, there

is the problem of locks conflicting over a resource that’s not even shared. If this is the

case, deadlock can come about due to simple negligence and not checking that everything

needed for the transaction to fully perform was not locked down. Indeed, this one has

happened more than once in the process of doing the research for this thesis. Nonetheless,

the pitfalls and tribulations encountered were necessary in providing the results that were

so needed for this research and were invaluable in learning more about how the model

could be better used in this project.

 30

BIBLIOGRAPHY

Martín Abadi, Ashish Agarwal, et al. TensorFlow: Large-Scale Machine Learning on

 Heterogeneous Distributed Systems. USENIX Association, 2015.

Jeffrey Dean. Large-Scale Deep Learning for Building Intelligent Systems. In

Proceedings of the Ninth ACM International Conference on Web Search and

Data Mining. ACM, New York, NY, USA. DOI: 10.1145/2835776.2835844,

2016.

Victor Pankratius and Ali-Reza Adl-Tabatabai. A Study of Transactional Memory vs.

 Locks in Practice. In Proceedings of the Twenty-Third Annual ACM Symposium

 on Parallelism in Algorithms and Architectures, pages 43-52. ACM, New York,

 NY, USA. DOI: 10.1145/1989493.1989500, 2011.

Torvald Riegel, Patrick Marlier, et al. Optimizing Hybrid Transactional Memory: The

 Importance of Nonspeculative Operations. In Proceedings of the Twenty-Third

 Annual ACM Symposium on Parallelism in Algorithms and Architectures, pages

 53-64. ACM, New York, NY, USA. DOI: 10.1145/1989493.1989501

Chao Wang, Yujie Liu, and Michael Spear. Transaction-friendly Condition Variables. In

 Proceedings of the Twenty-Sixth ACM Symposium on Parallelism in Algorithms

 and Architectures, pages 198-207. ACM, New York, NY, USA. DOI:

 10.1145/2612669.2612681

 31

APPENDIX A

Source Code

The source code for this project will be available on a GitHub repository at

https://www.github.com/SheynD/TensorflowThesis. There you will find the codebase,

instructions on how to access certain parts of the code and where they are, links to certain

resources used, and how to run a sample prototype experiment.

 32

BIOGRAPHY

Sheyn Denizov was born on February 17, 1994 in the country of Bulgaria. He immigrated

to the United States in October 2000 with his mother and father. He then attended Pen

Argyl Area High School in Pen Argyl, PA and graduated in 2012. Although interested in

computers from an early age, he did not start programming until his senior year of high

school. He then went on to study Computer Science and Business at Lehigh University

and graduated with a B.S. with Honors in the program in May 2016. He also studied

Finance and earned a B.S. in that in May 2016 as well. Sheyn very much enjoys creating

web applications and low-level programming using C and C++ in order to see how things

really work. Apart from his great interest in technology, he enjoys soccer, hiking, and

holds a black belt in Tae Kwon Do.

	Lehigh University
	Lehigh Preserve
	2017

	Analyzing the Impact of Concurrency on Scaling Machine Learning Programs Using TensorFlow
	Sheyn Denizov
	Recommended Citation

	tmp.1498661647.pdf.cuxFN

