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ABSTRACT 

In recent times, computer scientists and technology companies have quickly begun to 

realize that machine learning and creating computer software that is capable of 

reasoning for itself (at least in theory). What was once only considered science fiction 

lore is now becoming a reality in front of our very eyes. With this type of 

computational capability at our disposal, we are left with the question of how best to 

use it and where to start in creating models that can help us best utilize it. 

      TensorFlow is an open source software library used in machine learning 

developed and released by Google. It was created by the company in order to help 

them meet their expanding needs to train systems that can build and detect neural 

networks for pattern recognition that could be used in their services. It was first 

released by the Google Brain Team in November 2015 and, at the time of the 

preparation of this research, the project is still being heavily developed by 

programmers and researchers both inside of Google and around the world. Thus, it is 

very possible that some future releases of the software package could remove and/or 

replace some current capabilities. The point of this thesis is to examine how machine 

learning programs written with TensorFlow that do not scale well (such as large-scale 

neural networks) can be made more scalable by using concurrency and distribution of 

computation among threads. 

     To do this, we will be using lock elision using conditional variables and locking 

mechanisms (such as semaphores) to allow for smooth distribution of resources to be 

used by the architecture. We present the trial runs and results of the added 

implementations and where the results fell short of optimistic expectation. Although 
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TensorFlow is still a work in progress, we will also address where this framework 

was insufficient in addressing the needs of programmers attempting to write scalable 

code and whether this type of implementation is sustainable. 
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Chapter 1 

 

INTRODUCTION 

 

1.1  Rationale And Significance of Machine Learning 

In the past several years, the hype over Machine Learning and the development of 

artificially intelligent software applications has quickly permeated markets throughout 

the world. A major impetus in developing this type of technology has been the consumer 

always wanting more from the computer with which they are working. Touch, speech, 

and face recognition are just three of the basic capabilities that users want their machines 

to have.  

     In order to try to meet this demand, companies have begun heavy research and 

development into machine learning platforms and the creation of artificial intelligence 

initiatives. These initiatives have even become part of mainstream pop culture. For 

example, the unveiling of IBM Watson at a Jeopardy match back in 2011 is almost 

always the first thing that comes to people’s minds when they hear the words “artificial 

intelligence”. In addition, if you were to go to the social media profile of a company, one 

would always find links relating to how their company is helping the cause of furthering 

artificial intelligence. For some companies, this can simply be clickbait for visitors of the 

site, for others, it could be the expression of years of research and development. 

       In keeping with their reputation as one of the (if not the) biggest technology 

companies in the world, Google has been at the helm of this trend for many years. 
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Starting in 2011, they began developing their own private machine learning library called 

DistBelief. DistBelief was based on deep learning neural networks for creating smarter 

additions to their applications. The people in charge of this project were a group of 

computer scientists and researchers at Google called the Google Brain team. Google 

Brain is the all-encompassing name for Google’s artificial intelligence project. This 

diverse group of Google researchers found that they could produce much better 

applications if they allowed the projects to be self-learning. Thus, Google ran with this 

and the artificial intelligence project that they build to help implement “smarter” versions 

of their diverse range of services. 

     TensorFlow has three main implementation libraries: one for Python, one for Java, 

and one for C. The Python library is the most extensive TensorFlow package currently 

available, which makes sense due to Python being the quickest and most portable 

language for machine learning research. TensorFlow already has some built-in threading 

capabilities that allow large-scale machine learning algorithms to be run. However, the 

libraries are not well developed and can be buggy at times. Thus, the reason for our 

research experiment is now clear. 

 

1.2. Rationale and Significance of Concurrency 

The reason why concurrency is so big is simple: we need to use all computational 

resources we have in making our programs run more quickly. In order to do this, we need 

to have multiple instances running at the same time (or around the same time) to utilize 

our growing computational power. For instance, if we have a 4-core CPU, we would 

want to utilize all the cores to get the most out of the computer’s abilities and effectively 
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run our programs. This same thought process is given to the rationale of having multiple 

instances of a program running at the same time. 

    Concurrency is simply the idea that we can have multiple instances of the same 

program running and still achieve cohesion between them. The hard part is obviously 

enforcing the cohesion of the processes and ensuring that their results fit together and 

each thread does not harm another. However, very sophisticated working methods on 

doing this were thought out before machine learning was even practical. Thus, we can use 

these ideas that have already been in place for so long in improving our machine learning 

and artificial intelligence capabilities. 

     Nonetheless, concurrency research is still a very popular field of study and ways to 

improve our current methods have still emerged in recent years. Therefore, we can still 

try to improve on those older models and see how they can be fit to new fields of study. 

From this, we can also adapt further methodologies to handle the problems that we 

encounter. The basis for all of this, however, remains in the foundational theory of 

concurrency and all the good that it has done computing for the past few decades. 
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Chapter 2 

 

BACKGROUND 

 

2.1 Why Do We Need TensorFlow? 

2.1.1. A Brief Introduction 

As explained in Chapter 1, TensorFlow is an open source AI framework owned and 

operated by Google. As one of the current big thing in the AI community, it continually 

receives improvements by developers from all around the world who are all dedicated in 

helping advance this software package and AI in general. The main TensorFlow codebase 

is hosted in a Github repository at https://www.github.com/tensorflow/tensorflow. As of 

February 2017, there have been over 16,200 commits (changes) and around 790 

contributors to the codebase, with the profiles of the people ranging from college students 

to experienced industry research scientists. 

     This is indeed a positive thing about TensorFlow as a machine learning tool: due to it 

constantly being open to change, improvement of the codebase is perpetual. However, 

just as with any open source software comes the risk of a change massively corrupting 

the codebase and causing problems. This is why the developers at Google tasked with 

leading the effort are also in charge of tracking changes and making sure that rollbacks in 

the code occur if they are needed. To help them in this monstrous task, they use the 
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GitHub issues feature to read any bugs or change requests that programmers or users of 

the software have submitted. 

 

Figure 1: Sample Python code utilizing TensorFlow 

     Google has also dedicated many resources (including an official site) to explain to 

interested users how TensorFlow works. There is an official site for TensorFlow 

(www.tensorflow.org) that explains how to get and install it in addition to Udacity 

courses on how to use this extensive framework. Figure 1 above shows some sample 

Python code (as Python is the main implementation library for TensorFlow, after all) that 

uses a TensorFlow “session” to add print “hello” and add two numbers together. More 

about this will be discussed in the next section. 

 

2.1.2. How TensorFlow Works 

As Figure 1 shows, TensorFlow is a software library that can be imported when you need 

it. However, you must first install the library onto your computer using the relevant 

installation instructions found on the official site (www.tensorflow.org). It is available for 
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download on Linux, Mac OS X, Windows, and, since very recently, the Android mobile 

OS. Now let us explain the way the basic code shown in Figure 1 above works. 

     The code above shows the Python console open with TensorFlow imported. Next, to 

use this imported library, we must create an object, here named tf, which will be able to 

run the built-in commands that TensorFlow has. The most common way to start off any 

TensorFlow program is to create a session, called “sess” in the code above. A session is a 

class that runs TensorFlow operations and manages the context of those currently running 

operations. It also manages resources and tracks the flow of the operations are being 

executed. For example, when we set the variables in Figure 1 above to be constants, we 

need the session object to run the + operation in order to add them. Thus, the session is 

undoubtedly the most interesting object in the TensorFlow library and will be very 

important to the implementation of our research experiment. 

       Moving on from the very simple code shown in the above figure, TensorFlow is at its 

most simplified form a library that uses data flow graphs to perform the numerical 

computations given to it. These graphs have nodes (or vertices) that represent 

mathematical operations, while the edges represent the tensors, which are actually 

multidimensional data arrays, that flow between these operations. This view is important 

because it emphasizes the reusability of code due to the fact that the tensors can simply 

go to new operations (nodes in the graph) by traversing said graph. 

      This type of outlook on numerical computation is very helpful in visualizing a hot 

new trend in machine learning: recursive neural networks (RNNs). These deep learning 

structures are used in research applications ranging from spelling corrections to mining of 

data for search engines. The way they work is by recursively applying the same set of 
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weighting values to the structure and producing some sort of structured prediction to the 

output value of some variable-sized inputs. This prediction output is typically produced 

by traversing through that structure using some sort of topological order. Naturally, these 

RNNs are typically represented by a tree structure, a decision tree to be more precise. 

Thus, it can be clearly seen that TensorFlow’s representation of how to perform machine 

learning operations on inputs is analogous to the typical visualization of RNNs. This 

could also explain why many of TensorFlow’s common use cases, such as image 

recognition and handwriting recognition, heavily utilize RNNs in computing accuracy 

scores for the training sets. 

     An understandable question that can come to one’s mind right about now is why are 

we using TensorFlow. Why this particular library when our experiment may not translate 

well, or at all, into other libraries/domains? The best answer to this question is that 

TensorFlow is most likely the best that we can do. As the brainchild of one of the best 

research teams in the world, TensorFlow is undoubtedly one of the most powerful 

machine learning tools currently at our disposal. Will there soon be something much 

better to emerge that could replace it? Possibly, but we must make do with the knowledge 

and resources that we have at our disposal at this moment and improve them as much as 

we can. That is why we need to use TensorFlow in our research. 

 

2.2 Why Do We Need Transactional Concurrency (Or Concurrency at All)? 

2.2.1. A Look at What Concurrency Can Do 

Modern computation has complex computational problems that need to be solved in a 

“reasonable” amount of time. The definition of reasonable in this context varies, but as 
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any algorithms course will tell you, we need this time complexity to be some function of 

the input size. However, with datasets and computational inputs so much larger today 

than they were before, we cannot simply rely on a single machine to perform even the 

simplest task on an uncountable input. Thus, computer scientists have come up with the 

concepts of threading and concurrency. 

                    

Figure 2: The concept of multithreading and CPU cores 

 

     The concept of threading is nothing new in computer science. For decades, computer 

scientists have known how multithreading and efficiently creating multiple instances of 

running applications could be a powerful tool in improving the runtime and execution 

flow of many algorithms. Figure 2 shows an abstraction of a computer, represented as the 

orange square, with 4 CPUs within it, which in this case could be thought of as cores of 

one big, “multi-core” CPU, and multiple threads given to each CPU. These threads 

represent running applications that each have their own context, their own low-level 

resources (or at least the illusion of them), and their own stack frames for execution. 
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Together, these parts of the multicore-threading model makes up the basis for the idea of 

serialization and concurrency of tasks. 

     However, we need to manage these threads and prevent them from conflicting when 

attempting to affect a shared resource item. The question now is how to do this. Could we 

allow limit the threads to a sequential order? No, because that would be an inefficient use 

of the CPU power that we have in being able to be run at the same time. Could we 

perform smooth context switches based on some interrupt? Maybe, but that could be 

expensive. Thus, we need some sort of way to make the wide array of concurrently 

running tasks and threads seem to run in an organized timeline. The answer to this is 

multithreading through conditional checks (through structures called conditional 

variables) and the use of locking structures to restrict resource access when they are being 

used. 

     The key to making sure that multithreading works well is to use it in the correct 

places. Typically, when running multiple threads of a program, we lock and unlock the 

data structures that we would like to amend when we are starting to use (i.e., amend or 

read) them and when we have finished with them (have finished reading and writing), 

respectively. We want to be sure that we are as close to certain of the value of a given 

variable at any point in time. In addition, we do not want to have values be corrupted by 

not being written completely. Thus, we would like a read/write locking structure to 

separate the two operations and allow permissions based on which one is being 

performed. For instance, if there is currently a write operation being performed, then we 

need a writer’s lock to be acquired and to stop other threads from obtaining either a 

reader or writer lock. 



 12 

 

2.2.2 Atomicity: The Transactional Concurrency Model 

We described how the normal lock/unlock model works and how different conditions can 

prompt the acquisition of locks by different threads. For the most part, we can handle 

synchronizing the threads at a low level with little trouble, separating the two different 

operations, read and write, and harmoniously following the permission rules described 

above. However, how do we handle these locking structures when the operations and 

locks need to be acquired right away to prevent bad conflicts? A good solution would be 

to eliminate the low-level details by making everything done under locking “atomic”. In 

this sense, “atomic” means all-or-nothing, where an operation is performed fully or it is 

not performed at all. This is called transactional memory concurrency. 

     Transactional memory is a concept borrowed from databases and database theory, and 

rightly so as the write operation needing the lock is like that of a transaction being 

performed on a database. To elaborate, a database transaction, that is, a change on some 

variable like the money in a bank account for a customer, needs to either completely be 

written to the database or not at all. If there were to happen something that corrupts or 

stops the transaction from being performed completely, then we will get rid of the part of 

the transaction that was written and remove it altogether. In addition, a customer looking 

at their bank account in the middle of it being written to will not see the transaction as it 

is being written. They will see an old version of their statement and will only see the 

changes when the complete write transaction has been performed. Thus, this all-or-

nothing idea is what we would like to emulate in obtaining locks on shared resources. 
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Figure 3: A model of the Transactional concurrency model 

 

    Figure 3 shows the transactional concurrency model. Two transactions, T1 and T2, are 

concurrently attempting to access the same shared resource. T1 has acquired a write lock 

to write to shared resource Y and later on in time, T2 would like to acquire a read lock for 

Y. However, T1 has not finished completely writing to Y and so T2 would be reading 

some corrupted value if it were able to open Y. Thus, a write lock takes precedence over 

read locks and a lock conflict occurs. During this time when T1 is still writing to Y, T2 

waits for its opportunity to obtain the lock. In this case, it waits for the very first 

opportunity, which is when T1 commits its changes and signals that it has released its 

locks. When T1 finally does this, the signal is sent out and T2 can finally acquire a read 

lock on Y. Thus, as we can see in the figure above, a transaction must indeed be 

completed and committed completely before another thread can obtain any kind of lock 

(though multiple read locks can obviously be obtained when no one is writing). 

Otherwise, the transaction would abort and any attempted transaction operations would 

be rolled back (deleted). This model is therefore also good because it can relax deadlock 

due to the resolution of lock conflict being waiting for the first available opportunity to 

obtain a freed lock. 

 



 14 

     Transactional concurrency is an abstraction to the traditional model of locking and has 

some very good features. First, of course, is the atomicity of everything that happens. 

This factor definitely helps in our quest of almost always knowing the value of a variable 

or some shared resource when many threads are writing to it. In addition, because writing 

is a much costlier operation than reading, it will prevent us from having many corrupted 

writes and therefore save computational time and power, thus making the overall scheme 

more efficient. Furthermore, we save a good amount of hassle in having to worry about 

dynamically allocating locks to different threads as they emerge and managing how 

deeply their operations will affect their shared resource. This removal of burden can then 

allow the programmer to focus on making his learning model work and not on how to 

handle more threads producing surprising results at some points in time. 
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CHAPTER 3 

 

THE METHODOLOGY 

 

3.1 The Basic Algorithm 

In order to implement this transactional memory idea into something as large as 

TensorFlow, we need to first understand how the basic idea will work. When setting 

down the idea, we need to be wary of how normal locking can be both beneficial and 

problematic. For instance, the main sources of lock contention can come from many 

threads attempting to do the same thing and simply overwriting each other. However, due 

to the speed of modern processors, we can be sure that basic TensorFlow applications 

will not be so heavily apparent. Nevertheless, there is a counterpoint to using 

transactional memory in designing this algorithm. 

      If we are attempting to speed up our TensorFlow session in which we have an image 

recognition tensor working on an input of many images, we will obviously use many 

threads. However, if these threads are constantly getting blocked by one another before 

they can even finish their operations, then the slowdown can pile up. Next, let us suppose 

we use locks, simple mutually exclusive locks. If we were to do this, we can see that our 

code has the potential to be much organized and synchronized. We would first allow a 

process to gain a lock, perform the critical section, and then unlock so another thread can 

go. However, it can soon become a hassle to manage all of these locking/unlocking steps 

and keeping track of which thread currently is reading or writing. Thus, there needs to be 

an addition to this that makes it easier. 
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     Now we turn to our transactional concurrency idea from before. Unlike normal 

locking, we now use something called speculative locking. This is also known as lock 

elision. Lock elision is a type of mutually exclusive locking model that allows multiple 

threads to acquire the same lock, but prevents conflict by tracking what pieces of 

hardware are being modified (such as the cache lines of a program). This is something 

introduced in the Transactional Synchronization Extensions (TSX) architecture first 

introduced by Intel. This model will work well on supported machines as it allows 

hardware, and not just software, to come into the mix. The improvement of this design on 

most new hardware architectures is that it allows us to write code that does not have to 

worry about the individual lock working or not. 

       The basic algorithm for the lock elision that we used is shown below: 

  Program starts 

  Thread locks resource 

  Create an elided lock wrapper around the resource 

  If the transaction started 

   If the lock is free 

    Execute the lock 

    Break 

   Else  

    Abort the transaction because lock is busy 

    Delete partial writes 

  Perform the critical section 

                         Go back to the initial setting of the lock and check for further transactions 
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  Check for further lock requests 

  If the transaction is over 

   If the lock is free 

    Commit the transaction 

   Else 

    Unlock the lock and rollback any changes 

  Perform last operations that do not need locking 

  Program ends 

 

The algorithm above makes use of a lock already existing on the resource and producing 

a speculative environment in which the currently waiting transaction can wait until a 

transaction is implemented. In truth, the algorithm is a wrapper class for the current lock 

or set of locks being held. The wrapper can then be reused so that whenever a lock 

request is triggered it can be called upon to check for whether that request can be readily 

satisfied. The biggest thing of note here is the abortion of the transaction if it has not been 

written entirely. Because machine learning algorithms such as those in TensorFlow 

require iteration and multiple concurrent writes over a very small period of time, we need 

a quick way to ensure that write locks are acquired at the right time and nothing 

surprising has happened to our shared resource. The use of lock elision will definitely 

help with that as it gives us more security in knowing that incoherent, unfinished writes 

have a smaller chance of being performed. 

 

 



 18 

3.2 Fitting the Idea with TensorFlow 

TensorFlow is a good candidate for using this type of concurrency structure. Since many 

workloads that can be created are not expressly built with scalability in mind, we can 

utilize the reusability of the concurrency algorithm to show whether we can scale these 

computational methods. Thus, we chose to run it on some workloads that were large 

enough to produce interesting results. These included image recognition deep learning 

tensors, handwriting recognition tensor sessions, and deep learning text analysis tensors. 

Naturally, there was also the need to create many threads that could work on these 

sessions concurrently to test the design. However, it is quite apparent that transactional 

concurrency using lock elision alone is not quite enough here. 

      In order to allow for architectures that do not necessarily have the full TSX extension 

in place, we need to ensure that the performance does not suffer as a result. Thus, we 

need to fall back on using conditional variables and semaphores to track the state of locks 

when they are done and report back when a waiting transaction can take place. In truth, 

we create a linked list of semaphores that can contain the state information of the 

currently processing transaction. For instance, if some thread A is currently writing to 

some shared resource, we implement semaphore SA to be incremented or toggled as the 

transaction proceeds. Once the thread is done, semaphore SA is put back in the linked list 

and marked as done. As we need more threads to run in a certain TensorFlow session, we 

will simply add more semaphores to the linked list and continue on in the same fashion. 

The same procedure can be used with conditional variables, although with the added 

benefit of using a broadcast unlock to unlock all the waiting threads when they are no 

longer needed. 
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      Thus, we needed to implement our own small modified semaphore and conditional 

variable libraries to supplement the case when TSX was not in full use and complete lock 

elision could not be done properly. Nevertheless, the procedure of permissively allowing 

locks to be acquired without worrying about how and how many locks are obtained gives 

the programmer more freedom in writing the critical sections of their TensorFlow code. 

This can undoubtedly be good when we need to handle threads continually adding to 

some data structure and we simply cannot control these additions in a more feasible way. 
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CHAPTER 4 

 

THE RESULTS 

 

4.1 The Good and the Bad 

To run the experiments, a machine with 4 cores and 16 GBs of RAM was used. In 

addition, TSX was compatible and we could see some positive change when attempting 

lock elision. Under these conditions, the speed of a TensorFlow experiment, without 

using transactional memory, was about less than 30 seconds for an image recognition 

experiment with n=10000 steps. This is a modest speed, given that certain machines built 

for this type of experimentation could do much better. However, this factor does not take 

away from the results and their foundations. 

     First, we start with the good things about our results. When a handwriting recognition 

algorithm was first run without any multithreading, it produced an accuracy score of 

91.8% and took around 15 seconds to complete. When traditional threading (using simple 

mutex locks) with 5 threads was used, the accuracy score stayed about the same at around 

92.5% and the runtime went down to about 10 seconds. Finally, when running that same 

program with the transactional memory model of lock elision and waiting locks, the time 

went down to about 5 seconds and produced an accuracy score of about 94.1%. When 

analyzing the throughput, which is the amount of time we spend on some factor per unit 

time, it seems to be almost linearly increasing as more threads are added with lock elision 

and going down as more threads are added with normal mutex locking. The table below 

shows some experimental results from training and testing runs of the multithreading 
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code and runs without it on a sample TensorFlow program that uses one session and a 

single method to recognize an image from the organization of the pixels. 

Threads Time spent without our 

concurrency model 

Time spent with our 

concurrency model 

1 30.15 seconds 31.20 seconds 

2 34.57 seconds 30.50 seconds 

3 36.31 seconds 30.08 seconds 

4 37.25 seconds 29.55 seconds 

5 36.47 seconds 29.21 seconds 

6 37.54 seconds 29.07 seconds 

7 38.45 seconds 28.17 seconds 

8 38.51 seconds 27.54 seconds 

Figure 4: Results of simple image recognition program running with n = 10000 iterations 

     As you can see in the table above, our model actually gets better time savings as more 

threads are added. This is in contrast to the time spent using the normal concurrency 

model, where it increases asymptotically after 2 threads. Though this speedup may not 

seem particularly large, it shows that the model is working correctly, that is, allowing 

lock acquisition to occur much more rapidly and with decreasing time overhead. Thus, 

the throughput, as mentioned above, is also much better, allowing more computations to 

take place in a much smaller amount of time. Even though there are times where the 

transactional lock elision model could and has encountered problems, such as deadlock if 

the critical section code is too convoluted or computationally intensive, for up to 8 

threads it performs quite well on the image recognition example above, even at a high 
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number of iterations for training. Beyond this number of threads, as we are reaching the 

maximum number of threads of the machine we used, there can be some performance 

that makes the program run slower. This could be fixed with a more heavy-duty 

processor with more cores and is therefore not a problem in seeing that the model can 

scale if we had better hardware at our disposal. 

      A possible reason why this is the case is because mutex locking does not have a way 

to constantly check for resource availability. Because our lock elision has the added 

benefit of using semaphore structures to signal when a lock is free, it benefits from being 

able to not wait as long in the queue of processes waiting to run and also receiving 

priority. This is unlike normal locking mechanisms that employ the first-come, first-serve 

idea, or FIFO, to allowing locks to be granted upon a process. Hence, there appears to be 

some added benefit in using signaling and waiting data structures in our concurrency 

model, which is what we predicted when first deciding to use this methodology. 

     Next, we discuss the results that did not seem so promising. When testing the 

experiment on an experiment on large programs (i.e., TensorFlow programs using many 

inputs and thus many operations), the accuracy actually dropped in some cases. For 

instance, a deep learning image recognition algorithm that performed a large number of 

image recognition operations had its accuracy go down from around 80.2% to 76.5%. As 

was expected, lock elision encounters some problems when a great number of writes need 

to happen in very short periods of time. On the bright side, there were not a large number 

of deadlock situations in these larger programs. This means that the method will just need 

to be optimized and by no means scrapped. 
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4.2 Did Our Model Succeed? 

The success of the research is dependent on two main things: whether the code could 

intermingle well with the design (proof of concept worked) and whether our initial 

thoughts are confirmed or disproven well enough. For the majority of test cases, the 

model worked and there appeared to be no real contention or deadlock to be had. The 

biggest cases where these problems would arise were, as implied above, when the RNN 

values were much too quick in their write transactions than the speed with which we 

could properly acquire locks and also when the program was much too big and extensive. 

These problems do serve the two functions above quite nicely. They show that the proof 

of concept did work in some cases and did not work so well in others. In addition, it 

proves our initial hypothesis that this model would work to some extent, but also 

disproves our notion that it would work for many more cases than it did. 

     Thus, it can be said that our model did succeed in its target aim of showing something 

new. It showed not only that transactional concurrency can work on certain aspects of 

this graph AI paradigm, but also that there are many more cases where it does not work 

and where we need to improve our current model of multithreading. The extent to which 

we can call this a success or is debatable. However, the experimentation was invaluable 

in showing how we could go about adapting the resources at our disposal to an ever-

changing product like TensorFlow. Accuracy scores, precision, and succinctness of 

learning methods are all vital metrics in machine learning and they require multithreading 

in order to work well. 

     Luckily, TensorFlow does have built-in multithreading for the user to use. However, 

the more low-level we go with our analysis of the concurrency model that TensorFlow 
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uses, the more we can understand about how these threads actually run on these extensive 

tensor projects in the first place. From there, we can find ways to optimize them and 

better our knowledge of how multithreading works. Therein lies the point of this research 

and from that perspective, the model we created has succeeded in proving its stated point. 
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CHAPTER 5 

 

 

CONCLUSIONS 

 

The research into whether we can use transactional memory to speed up and improve the 

accuracy of machine learning processes has given both optimistic and pessimistic results. 

The transactional memory model is undoubtedly more efficient than traditional mutex 

locking in the context of what we used to test it. The inclusion of lock elision was helpful 

in showing how less direct control of the locks using the traditional mutex could allow 

for some gains in the throughput for running multiple threads. With little cases of 

uncontested deadlock, we can be more certain that this model does indeed bode well for 

the context of machine learning algorithms. In addition, with improvements to the model, 

we could definitely improve the performance of those programs under more threads. 

That, however, is work to be done in the future. 

      Further research will have to be done as to how well lock elision works on certain 

data structures and topologies. For example, TensorFlow uses graphs as its main data 

structure for visualization of how to apply its recursive neural networks. This structure is 

not ideal for locking and unlocking paradigms, as traversals of the graph are not 

sequential and can be unpredictable. This unpredictability will mean that writing reliable 

multithreading code will be more difficult. Since the TensorFlow model of machine 

learning seems to be growing in popularity, it appears that we will have to accommodate 

our multithreading models to it rather than vice versa. 
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    Despite all of the work that remains, it can be conclusively said that concurrent 

machine learning is not an unsolvable problem. The results show that we can be 

optimistic about adapting our models to this field and our work can carry forward. It is 

therefore only a matter of time until this burgeoning field of study has gone beyond this 

model limitation and experiments such as this will be a trivial problem. 
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CHAPTER 6 

 

 

FUTURE WORK AND CHALLENGES 

 

6.1 Future Work 

There is not currently much in the way of initiatives to bring concurrency to TensorFlow 

or machine learning. For many research scientists, the task of finding an efficient 

algorithm for deep learning and AI is in itself a wicked problem. As can be seen on 

TensorFlow’s GitHub page, much of the concurrency code is currently being modified by 

public programmers who are trying to fix these problems simply as a result of their 

interest in the library’s development. Thus, there is much still to be done in researching 

the effect of multithreading on the performance of machine learning algorithms. 

     Some good future experiments could be analyzing how we can tailor our current 

models to be expanded to this domain more efficiently. For example, the use of the 

transactional memory model in our research, even if it was slightly modified to fit the use 

case, is not exactly a innovative new view as to how to handle concurrency. Though it 

worked for proving results and being an interesting foray of somewhat conventional 

means being used in a different context, there can definitely be a more open-ended effort 

in trying to establish a refined concurrency model to tackle machine learning constructs 

like neural networks and highly recursive data structures. Strict transactional-based 

locking just does not seem like a good method in this sense and should be changed to fit 

this model more seamlessly. 
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      In addition, TensorFlow is still being developed and its implementations are not all 

optimized. Much work remains in improving this library and making machine learning a 

more understandable topic (i.e., neural networks remain a black box to both researchers 

and programmers alike). If we do not have a stable machine learning platform, we cannot 

hope to have a stable model for concurrency for it as well. Thus, there needs to be more 

study in how we can optimize the algorithms themselves as well. Nevertheless, if 

TensorFlow can develop and improve, there is no doubt that a new model of concurrency 

will come about to better serve this need as well. 

 

6.2 Pitfalls and Challenges 

We describe the challenges discovered by using the TensorFlow framework to run the 

concurrency code which we used. The first big challenge was the size of TensorFlow 

itself. As a big build when attempting to install it from scratch, it can overwhelm the disk 

space of a smaller sized hard drive. Thus, a more space efficient option would be to 

import only the parts of the codebase necessary to create the desired program. However, 

this can be time-consuming and resistant to optimization due to the size of the codebase 

and dependencies. The second big challenge is the computation power needed to run a 

simple session. As a Python library, it is no surprise that TensorFlow would be quite 

computationally expensive. However, the default setting for the GPU/CPU usages are 

almost unstable. They allow almost all readily available processor power to be assigned 

to the currently running task. Thus, it is almost required that the user change the setting 

so that the sessions do not completely block other running processes (especially when 

running multiple tasks). 
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       Related to the computational power needed, the speed of a heavy TensorFlow session 

can get slow, especially when using multiple RNNs. Even when using locking to prevent 

multiple requests from conflicting, the speed of computation can grow even slower if too 

much is done at once. For instance, an image recognition program set to run with a small 

load of parameters can take as much as 10 seconds more to finish execution when 

running multiple threads. This is likely due to the RNNs not being calibrated to a more 

conservative value by default. 

    Another common pitfall and problem with this design could be the use of transactional 

locking in the incorrect places. Because multiple sessions can run independently of one 

another and almost intertwine if certain sub-steps are needed in the training process, there 

is the problem of locks conflicting over a resource that’s not even shared. If this is the 

case, deadlock can come about due to simple negligence and not checking that everything 

needed for the transaction to fully perform was not locked down. Indeed, this one has 

happened more than once in the process of doing the research for this thesis. Nonetheless, 

the pitfalls and tribulations encountered were necessary in providing the results that were 

so needed for this research and were invaluable in learning more about how the model 

could be better used in this project. 
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APPENDIX A 

Source Code 

The source code for this project will be available on a GitHub repository at 

https://www.github.com/SheynD/TensorflowThesis. There you will find the codebase, 

instructions on how to access certain parts of the code and where they are, links to certain 

resources used, and how to run a sample prototype experiment. 
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