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Abstract 

The phenomena of photon-phonon interactions can be found in all forms of matters 

including gases, plasma, liquids and solids. The applications based on such interactions, 

including Raman scattering, Bragg Scattering, polariton resonance, phonon-assisted 

Antistoke photoluminescence, etc. has been intensively investigated. In this dissertation, 

we present our study of three novel applications in the field of THz generation, hot phonons 

in transistors, and optical refrigeration.  

In Chapter 1, we studied the backward propagating Terahertz (THz) generation using 

optical rectification in periodically poled LiNbO3 and LiTaO3 samples with ultrafast laser 

pulse excitation. With the LiNbO3 sample, we have generated the highest frequency at 4.8 

THz at the poling period of 7.1 µm, corresponding to an output wavelength of 62.5 µm. 

We have observed an enhancement factor as large as 61 in the output power comparing to 

that generated from bulk LiNbO3, which was attributed to the phonon polariton resonance-

enhanced nonlinear optical coefficients. For the LiTaO3 samples, we have reached the 

highest output power of nearly 100 µW. Based on our study, the effective second-order 

nonlinear coefficient of LiTaO3 are enhance by factors of from 3.7 to 23, leading to the 

enhancement of THz output powers. The enhancement is rooted in a polariton resonance 

at the frequency of 127 cm-1, which can be induced by the nonlinear mixing of two 

transverse-optical phonons due to strong anharmonicity of LiTaO3. We also designed a 

second wafer with significantly shorter poling periods, and indeed we have observed the 

entire resonant peak.  
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In Chapter 2, we studied the hot phonon behavior of GaN high electron mobility 

transistors (HEMT). We mainly investigated our effort on two methods utilizing Raman 

scattering to measure the phonon temperature, i.e. the hot phonon population of GaN 

HEMT device under operation. The ultimate goal was to employ these methods on the 

study of isotope disorder introduced GaN device and verify whether its phonon behavior 

is optimized than that in normal devices. The first method extracts phonon temperatures 

from the ratio of Antistokes and Stokes Raman signal intensities, which requires complex 

experimental procedures and tendency to wrong temperature deductions. The second 

method is based on the fitting of phonon temperature to the shift of Stokes Raman peak 

model, which leads to simple and fast measurement while sophisticated analysis with 

strong dependence to sample material properties. Comparing two methods, we believe the 

second one is advantageous due to our limited experimental condition, and it can be 

improved with proper calibration of the model.  

In Chapter 3, we stuied the upconverstion of photoluminescence (PL) from both a free-

standing bulk GaN sample and a GaN nanowire sample. When the excitation energy is in 

the tail of bandgap edge, the PL upconverstion can be attributed to phonon-assisted 

Antistokes photoluminescence (ASPL). We explored the potential of laser cooling based 

on such a phenomena with the analysis of PL intensity trending with pump power, 

excitation wavelength, and temperature. Such analysis proves the fact that the ASPL we 

measured is originated in single photon process assisted by phonons.   
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Chapter 0  Introduction to Photon-phonon Interactions 

In the macroscopic world, light-matter interactions are treated in the continuous way, 

which are described in geometric optics and wave optics in theory. The success of these 

theories depends on the fact that the wavelength/frequency of light doesn’t change during 

the interactions, since the intensity of light is not strong enough to excite interactions to 

have exchange of energies with matters. While in the microscopic world, light and matters 

interact with each other not in a continuous way, but in a quantized manner, i.e. the 

exchanging of energies and/or momentums in sequences of small portions, which cannot 

be further scaled down. In occasions that we need to solve problem using the quantized 

fashion, physicist tends to invent “particles” representing the smallest portions of 

energies/momentums, hence the terms like photons, phonons, polaritons, exitons, etc. ,  are 

invented. Photons represent the smallest portions of optical/electromagnetic energies or 

momentums at their corresponding wavelengths, whereas phonons represent the smallest 

portions of lattice vibration energies or momentums at their corresponding frequencies. 

The relations between their energies /momentums  and their wavelengths /frequencies 

 can be written as 

 

There are many kinds of photon-phonon interactions. Physicists have been investigating 

on these interactions intensively, and many useful applications have been developed 

accordingly. For example, in ferroelectrics like LiNbO3 and LiTaO3, we can utilize their 

phonon polaritons, which are quasi-particles representing coupling between 

electromagnetic waves and ions, with their frequencies lying in Terahertz (THz) region to 
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form resonance with THz waves and enhance their generation output [0.1-0.4].  Another 

good example is the molecule detection in food and drugs employing techniques of Raman 

shifts, which are interactions of laser beams and optical phonons. Raman Scattering can 

also be used to measure temperatures in microelectronic devices [0.5~0.9]. Recently, 

scientists also discovered that Phonon Assisted Anti-stokes Photoluminescence can be used 

for cooling down materials/devices [0.10-0.12]. Such application would be extremely 

applicable if it can be developed to feasibility in semiconductor. The aforementioned 

photon-phonon interactions all involved optical phonons, which are only excited while 

intensive light incident is present, typically a laser. These interactions also involves change 

of photon energies, since the energies of optical phonons are large enough to be non-

negligible comparing to ones of photons. Other applications inspired by photon-phonon 

interactions include jet noise studies and fiber loss studies by utilizing theories of Rayleigh 

Scattering, which are interactions between light and small energy random acoustic phonons 

in air, liquid or solids, usually accompany with density variations in certain media; and 

elastic behavior measurement by formulas of Brillouin Scattering, which are optical 

responses on small energy acoustic phonons with patterned behaviors; and acoustic optical 

modulators like Q-Switches in high frequency ultrafast lasers by principles of Bragg 

Scattering, which are collisions between photons and large energy acoustic phonons. In the 

process when photons are interacting with acoustic phonons, their energies can be treated 

as unchanged, since the energies of acoustic phonons are much smaller than ones of 

photons. 

There are still many other kinds of photon-phonon interactions and their corresponding 

applications cannot be explained in detail in this introduction. Specifically, I would like to 
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cover three applications induced by photon-phonon interactions in the following of this 

dissertation: 

1. THz Generation Enhancement by Phonon Polariton Resonance 

2. Device Thermal Management by Raman Scattering 

3. Optical Refrigeration by Phonon Assisted Photoluminescence 
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Chapter 1  THz Generation Enhanced by Phonon Polariton 

Resonance 

I. Introduction to THz Technology 

THz waves are electromagnetic radiations with their frequencies lying in between the 

microwave and infrared regions of the spectrum, typically in the frequency range of 0.1 

THz to 10 THz [1.1], corresponding to the wavelength range of approximately 3,000 μm 

to 30 μm, see Figure 1. Historically, they have also been recognized in terms such like “far-

infrared radiations” or “sub-millimeter waves”. The most mature fields of studies of THz 

waves can be attributed to either the THz spectrum of black body radiations from other 

galaxies, or analytical theories based on the derivations of Maxwell Equations. However, 

the technical difficulties of making efficient and compact THz sources and detectors have 

always been baffling scientists and engineers, resulting in the fact that this part of radiations 

are left as the “last piece of puzzle” of the whole electromagnetic spectrum. Hence, for the 

lack of suitable technologies, the academics have attributed THz band the name of “THz 

Gap”. 

 

Figure 1.1 The electromagnetic spectrum indicating the THz Gap 
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Thanks to the development and innovation in photonics, electronics and nanotechnology, 

the THz Gap has been rapidly vanishing over the past two decades, enabling THz research 

to be performed in numbers of areas. The current THz technologies have shown promising 

applications in areas such as biological and medical sciences, non-destructive evaluation, 

homeland security, information and communications technology (ICT), quality control of 

food and agricultural products, global environmental monitoring, and ultrafast computing, 

among many others [1.2]. 

Today, scientists and engineers have developed many kinds of THz sources. The 

mechanisms involved in THz generation involves many technologies from electronics to 

optics, such like optical rectification, difference frequency generation (DFG), quantum 

cascade lasers (QCLs), photoconducting antennas, build-in field semiconductors, photo 

demper effect, and plasma among others. According to requirements in potential 

applications, these sources can be roughly categorized into two by their wave characters: 

broadband and narrowband. In current academics, broadband THz waves are mostly 

generated by photoconductive antennas [1.3] using semiconductors like InAs, GaAs, and 

InP, or DFG using nonlinear optical crystals like LiNbO3 [1.4], LiTaO3, and potassium 

titanyl phosphate (KTP), whereas narrowband THz waves are provided by laser sources 

employing quantum cascading technology, based on GaAs/AlGaAs heterostructures, or by 

backward optical rectification using electro-optical crystals. The difficulties of broadband 

THz sources mainly lie in their lack of output efficiency for satisfying amount of applicable 

power. While for QCLs, the requirement of cryogenic cooling limits their feasibility in 

economic power supply and compactness [1.5, 1.6]. Thus, both categories of THz sources 

still require further research and development. 
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In this chapter of the dissertation, I will briefly discuss the studying narrowband THz 

sources enabled by optical rectification in LiNbO3 and LiTaO3. The high power THz 

generated through strong absorption are explained by the mechanism of phonon polariton 

resonance. 

 

II. Phonon Polariton Resonance for THz Generation 

Enhancement 

 

Figure 1.2 Energy-band structure and wavefunctions of optical phonons of LiTaO3. Cited from Ref. [1.7]. 
 

Polaritons are quasi-particles defined on the strong coupling of electromagnetic waves 

with an electronic or magnetic dipole-carrying exitation. Since there are many types of 

dipoles exist in solid-state materials, polartions are named after the dipole compositions, 

such like “exiton polaritons”, “phonon polaritons”, “intersubband polaritons”, and “surface 

plasmon polaritons”. In the special case of phonon polaritons, the coupling is formed 

between electromagnetic waves and optical phonons, by which the lattice of insulators 
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composited with positive and negative ions is quantized represented. Typically, the 

frequencies of these optical phonons lie in the THz band, thus strong resonance with THz 

waves can be formed leading to the creation of polaritons. As shown in Figure 1.2 [1.7, 

1.8], the energy bands of optical phonons in LiTaO3 is plotted against displacement of Li+ 

ions, with phonon wavefuctions indicating their energies residing in the THz range 

accordingly. Such resonance will extremely enhance the effective nonlinear optical 

coefficient (NOC) of electro-optical materials like LiNbO3 and LiTaO3, providing great 

possibilities of developing improved generation of THz waves in the spectrum where 

ample amount of NOC is fulfilled by the resonance, while its effects on index would not 

severely diminish the THz output by strong absorption and weak transmittance.  

The effect of polariton resonance on NOC can be represented as the following formula 

using the Lorentz oscillator model 

        ⑴ 

Here,  is the effective NOC;  is the electronic part of NOC;  is the relative 

oscillator strength of the jth polariton resonance, comparing to the electronic NOC;  is 

the jth resonance frequency of the polariton;  is the THz frequency; and  is the 

linewidth of the jth polariton resonance results from damping effects. As shown in Figure 
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1.3 [0.1], two polariton resonances at 16 μm and 40 μm of LN have resulted in enormous 

NOC enhancement.  
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Figure 1.3 The effect of polariton resonance on effective NOC. Cited from Ref. [1.24]. 
 

Considering trade-offs between gain and loss, samples of ferroelectric crystals can be 

designed for the generation of certain THz wavelengths, which will be discussed in the 

following subsection. 

 

III. THz Generation in LiNbO3 and LiTaO3 through Optical 

Rectification 

 
 
 
 
 
 
 
 
 
 

Figure 1.4 Periodic-poled grating of LN or LT for optical rectification 

Λ 
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Optical rectification is the reverse process of electro-optic (EO) sampling [1.9], which 

can be described as jiggling of electric dipoles formed by positive and negative ion pairs. 

The dipoles are excited by ultrafast laser beams with pulse width in the range of several 

hundreds of femtoseconds (fs), resulting in the dipole oscillation in THz frequencies, and 

hence the generation of THz pulses. In nonlinear optics, it can be thought as the difference 

frequency mixing of two frequencies in the ultrafast laser spectrum, with their difference 

lying in the THz band. Since the large discrepancy between indices of optical waves and 

THz waves in nonlinear crystals, the traditional phase-matching cannot be realized in a 

collinear configuration. In ferroelectric materials like LiNbO3 (LN) and LiTaO3 (LT), their 

dipoles can be aligned in upward and downward sequences through electric periodic poling 

(PP), see Figure 1.4 [1.10]. Thus, their largest second order nonlinear optical coefficient 

(NOC) (for example, the largest NOC of LN lies in the zz direction in the value of d33=27 

pm/V) can be applied to parametric generation of THz waves through quasi-phase-

matching (QPM). The QPM mechanism takes advantage of the inverse of poling period, 

and use it to compensate the mismatch between optical and THz wavevectors. The QPM 

relation can be represented in the following formula [1.10, 1.11, 1.12] 

         ⑵. 

Here,  are the wavevectors of two optical waves coming from the 

femtosecond laser pulse, with their corresponding wavelengths and indices. 

 is the wavevector of the THz wave. The plus/minus sign 

indicates forward/backward configuration of THz generation, i.e. the propagation direction 
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of THz radiation is the same/opposite of that of the excitation laser. After some 

simplification, the relationship between THz output wavelengths  and poling periods 

 can be written as [1.10, 1.11, 1.12] 

          ⑶. 

Here,  is the group index of the pump ultrafast laser beam, while  is the phase 

index of THz waves in their corresponding wavelengths. The minus/plus sign indicates 

forward/backward THz generation configuration. The backward configuration has obvious 

advantages over the forward configuration, including narrow linewidth of generated THz 

pulse, reaching the optimal interaction region for the optical rectification process, and 

minimizing the absorption of the THz pulses generated by the nonlinear crystals. As we 

can see, there is a wavelength choosing mechanism behind this formula. By designing 

specific poling periods through information of indices and pumping wavelengths, the 

output wavelength can be accurately pre-selected.  

The advantages of our scheme of THz generation is threefold: first, comparing to the 

forward configuration of optical rectification which mainly generates broadband THz 

pulses, the backward configuration can be used to generated narrowband THz waves. Due 

to the extremely large difference of optical and THz wave numbers, the forward 

configuration allows more possible combinations of quasi-phase-matching relations, 

results in a broad spectrum of THz output. While in the backward configuration, only one 

quasi-phase-matching relation is allowed so that a narrowband output can be realized. 

Second, due to the large absorption induced by polariton resonance, the forward 

configuration of THz generation experiences extreme power loss. While for the backward 

configuration, THz waves are able to propagate outside of the material immediately after 
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each cycle of generation. Third, comparing to THz quantum cascade lasers (QCLs) which 

also produces narrowband THz but need to operate at cryogenic temperature, our scheme 

can operate at room temperature, thus eliminating the cost and space occupation of 

expensive and large cooling facilities. 

 

Figure 1.5 Relationship between THz output wavelengths and poling periods 
 

IV. Sample information and Experimental Design 

To test the effects of polariton resonance on THz output enhancement, we designed 2 

pieces of LN and 2 pieces of LT wafers with theoretical output wavelengths close to certain 

polariton frequencies. The first piece is a periodic-poled LN (PPLN) wafer containing 6 

PP gratings with periods of 6.10 μm, 6.30 μm, 7.10 μm, 7.30 μm, 8.40 μm, 8.60 μm, 

corresponding to prospective output wavelengths form 63 μm to 76 μm, as shown in Figure 

5. This sample is intended for testing the 40 μm resonance of LN polariton [0.3]. The 
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second piece of PPLN wafer contains 5 PP gratings with periods of 10.0 μm, 10.5 μm, 11.0 

μm, 11.5 μm, 12.0 μm, corresponding to the theoretical THz output wavelengths of 79 μm 

to 94 μm. This sample will be used as a comparison to the PPLT results. The first piece of 

PPLT wafer contains 8 PP gratings from 10.0 μm to 12.0 μm, with corresponding 

theoretical output wavelengths from 94 μm to 111.3 μm. Since the effective NOC of LT 

has not been studied yet, we assumed that its polariton frequencies would not be far from 

the ones of LN [0.4]. The second piece of PPLT wafer contains 12 PP gratings with periods 

from7.0 μm to 9.2 μm, corresponding to the theoretical output wavelengths from 78 μm to 

84 μm. This wafer will be used to verify our assumption of LT polariton resonance 

wavelength. A Ti:Sapphire laser amplifier is chosen as the pumping source with an output 

wavelength of 786 nm, a pulse width of roughly 200 fs, and a repetition frequency of 250 

kHz. The backward radiating THz waves would be collected and focused by parabolic 

mirrors into a bolometer for power measurement. A schematic description of the 

experimental setup is shown in Figure 1.6.  

 

Figure 1.6 Experimental Setup of THz generation 
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V. THz generation investigations of PPLN 

Figure 1.7 shows the spectra for the backward-propagating THz waves generated from the PPLN 

gratings, measured by rotating a mechanical grating being optimized for the THz frequencies. The 

grating has a period of 126.7 μm with first-order blazing angle being 26.7. For the poling periods 

of 8.60 μm, 8.40 μm,  

 

Table 1.1. Summary of Physical Quantities Measured or Deduced following Investigation of Backward THz 
Generation from PPLN Wafers. 
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Figure 1.7 Spectrum of THz output power generated by multi-grating PPLN and uniformly poled LiNbO3 (bulk) chips 
 

Grating Number 1 2 3 4 5 6 

Poling Period (μm) 6.10 6.30 7.10 7.30 8.40 8.60 

Calculated THz Wavelength (μm) 63.18 64.03 67.68 68.66 74.43 75.54 

Measured Peak Wavelength (μm) N/A N/A 62.5 64.0 70.5 71.5 

Effective Interaction Length (μm) N/A N/A 13.82 13.89 14.16 14.16 

Output Power (nW) 72.63 55.28 110.4 121.0 160.6 201.8 
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7.30 μm , and 7.10 μm, clear peaks of THz signals can be identified at the center wavelengths of 

71.5 μm, 70.5 μm, 64.0 μm , and 62.5 μm , respectively. The backward-generated THz 

wavelengths obey the QPM condition described by Eq. (3) with a plus sign. By fitting the available 

indices of refraction [1.13], we have obtained an empirical expression 

. It can be shown from Table 1-1 that these 

four QPM wavelengths are consistent with those calculated by Eq. (3). The slight deviations of the 

measured values from the calculated ones are most likely caused by the fabrication errors of poling 

period and the accuracies of THz phase indices calculated using the expression above. These 

wavelengths are much shorter than those generated by us previously [1.14]. Indeed, in our previous 

result [1.14], the shortest wavelength was measured to be 126 μm at the poling period of 16.9 μm. 

In our present work, the shortest wavelength is measured to be about 60 µm at the poling period of 

7.1 µm. For the poling periods of 6.10 μm and 6.30 μm,  

 

Figure 1.8 Square of effective NLO coefficient normalized by square of electronic NLO coefficient (blue); absorption 
coefficient is plotted versus wavelength (red). 
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however, only small modulations have been observed compared with the spectrum measured on a 

uniformly-poled LiNbO3 crystal. There are three factors limiting the strength of the peak on the 

short-wavelength side. First, our pump laser has a limited bandwidth of 11.4 nm, which limits the 

shortest THz wavelength to be about 54 μm. Second, the polariton resonance centered at 40 μm 

plays the fundamental limit for the backward THz signals due to strong absorption. We have plotted 

the absorption coefficient of LiNbO3 in the region centered at 40 μm, see Figure 8. One can clearly 

see from Figure 8 that the absorption coefficient reaches its maximum value at approximately 40 

μm. Specifically, the absorption coefficient at 62.5 μm is as large as 0.0724 μm-1 = (13.81 μm)-1. 

This implies that at the poling period of 7.10 μm only less than four LiNbO3 domains with the 

corresponding length of 14.2 μm can effectively contribute to the output power generated by the 

backward parametric process. When the output wavelength is just reduced from 62.5 μm to 58.8 

μm, only a single pair of the domains effectively contributes to the output power. Third, the index 

of refraction and extinction coefficient of the LiNbO3 crystal become very large when the output 

wavelength approaches 40 μm. Indeed, even at 58.8 μm, they are 8.03 and 0.75, respectively. As a 

result, the transmittance is reduced to 39.1% at such a wavelength. All these three factors have 

defined the effective cutoff wavelength of 62.5 μm measured by us for the PPLN crystal. 
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Figure 1.9 THz output power (blue dots) and effective interaction length (red curve) are plotted versus wavelength 
based on Ref.[1.11]. 

 

Despite the fact that the output power is limited by both absorption and reflection, the polariton 

resonance centered at 40 μm has enhanced the backward parametric process. According to Figure 

1.7, we have achieved large enhancements of the output powers in the vicinity of the spectral peaks, 

generated by the gratings with the periods of 8.60 μm, 8.40 μm, and 7.30 μm relative to those 

generated by a uniformly poled LiNbO3 chip (labeled as bulk in Figure 1.7). Among these three 

gratings, an enhancement of as large as 61.1 at the peak wavelength at the period of 8.40 μm is 

achieved. To the best of our knowledge, this is the largest enhancement reported on a PPLN crystal. 

Using the data available [1.13], we have plotted the square of the effective NLO coefficient 

normalized by the square of the electronic NLO coefficient using Eq. (1); see Figure 1.8. One can 

see from Figure 1.8 that, as the output wavelength approaches 40 μm, the square of effective NLO 

coefficient reaches a maximum value of roughly 1800 times of its electronic counterpart, i.e., three 

orders of magnitude. For the shortest center wavelength that we generated, i.e. 62.5 μm, the 
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corresponding ratio between effective and electronic counterparts of NLO coefficient is about 54. 

Such dramatic enhancements on NLO coefficients can be exploited for improving the output 

powers of high-frequency THz waves.  

As shown in Figure 1.9, we have measured the THz output powers generated by the six gratings. 

We have plotted them together with the effective absorption lengths (i.e. the inverse of absorption 

coefficient, hence the length of the PPLN domains which effectively contributes to the output 

power) at each output wavelength. At all output wavelengths, huge absorption coefficient resulting 

to enormously short effective lengths limits the output power of the THz waves. One can see from 

Figure 1.9 that the highest output power generated by us is 202 nW from the grating with the poling 

period of 8.60 μm. This output power is a factor of 15.3 larger than that generated by the uniformly-

poled LiNbO3 crystal. Besides this grating, all other gratings exhibit significantly-enhanced THz 

output powers relative to that from the uniformly-poled LiNbO3 crystal. At the poling period of 8.4 

μm, 57.4% of the total power (i.e. 100 nW) was generated within the wavelength range of 60-80 

μm. Even at the poling period of 7.10 μm, the output power reaches 110 nW. As mentioned by us 

above, at such a poling period only four domains effectively contribute to the THz output power. 

This implies that the output power generated by a single domain with its length being 3.55 μm is 

6.90 nW. These high output powers generated within extremely short interaction lengths are 

confirmations of the enhancement factors mentioned above. 

 

VI. THz Generation Investigation of PPLT 

Having investigated THz generation in LiNbO3, we move to the study of THz generation 

in LiTaO3 using the same mechanism of backward optical rectification. The advantage of 

utilizing LiTaO3 over LiNbO3 lies in the fact that LiTaO3 has a significantly reduced rate 
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of optically-induced index change damage due to photorefractive effect [1.15]. According 

to Ref. [1.15], the optically induced index-change damage increases at rates of 2.8×10-3 

cm2/µW and 4.9×10-4 cm2/µW in LiNbO3 and LiTaO3, respectively. The second advantage 

is that the poling electric field required for LiTaO3 is one order of magnitude lower than 

that for LiNbO3 [1.14]. In fact, the coercive fields are 1.7 kV/mm and 21 kV/mm for 

stoichiometric LiTaO3 and congruent LiNbO3, respectively [1.16]. The third advantage for 

LiTaO3 is the absence of TPA in the vicinity of 800 nm, since its indirect bandgap is 4.1 

eV, corresponding to the wavelength of 302 nm [1.16]. However, LiTaO3 suffers from 

significantly larger absorption in the THz region, compared with LiNbO3 [1.17]. According 

to Ref. [1.17], the absorption coefficients are determined to be 120 cm−1 and 45 cm−1 at 1.6 

THz for the extraordinary waves in LiTaO3 and LiNbO3, respectively. This is due to the 

fact one of the polariton resonance frequencies for LiTaO3 is 6 THz, which is significantly 

higher than 3.9 THz or LiNbO3. Moreover, the second-order nonlinear coefficient for 

LiTaO3 is a factor of 2.8 lower than that for LiNbO3 [1.16]. At 800 nm, the indices of 

refraction for the extraordinary waves are about 2.16 and 2.18 for LiTaO3 and LiNbO3, 

respectively [1.16], which are close to each other. Considering the larger absorption and 

reduced nonlinear coefficient for LiTaO3, it is natural for us to believe that LiTaO3 is much 

inferior to LiNbO3 for THz generation based on optical rectification.  

In this section, we demonstrate that PPSLT is capable of generating narrowband THz 

pulses with the output powers of approaching 100 μW based on backward optical 

rectification using ultrafast laser pulses. Since LiTaO3 has a bandgap of 4.1 eV (i.e., 302 

nm), TPA in the vicinity of 800 nm is completely eliminated unlike ZnTe. Moreover, its 

photorefractive damage effect is much weaker than LiNbO3. Even though LiTaO3 has its 
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nonlinear coefficient d33 of being a factor of 2.8 lower than that for LiNbO3, the output 

powers generated by these two nonlinear media are within the same order of the magnitude. 

Following our analysis, we have attributed the enhancements of the THz output power from 

PPSLT to the enhancements in the second-order nonlinear coefficients. They originate 

from the polariton resonance due to the presence of transverse-optical (TO) phonons at the 

frequency of 127 cm−1. Such TO phonons could be induced by nonlinear mixing of two 

TO phonons at the frequencies of 201 cm−1 and 74 cm−1. By significantly reducing the 

poling periods, we have observed the complete resonant peaks at 127 cm−1 (78.7 µm). 

The beam diameter of the pump was measured to be 78.8 μm. The highest average power 

of the pump source used in our experiment is 1.36 W. We measured the spectra of the 

backward-propagating THz waves generated by the PPSLT gratings in the first wafer, see 

Figure 1.10. The spectra were directly recorded by a homemade THz grating spectrometer 

[1.14], which has the frequency error of ±0.5 GHz. The center wavelengths for the 

backward THz signals were measured to be in the range of 94.0–111.3 μm (3.191 − 2.695 

THz) for the eight PPSLT gratings, and the corresponding experimental results are 

summarized in Table 1.2. For comparison, the spectra of the backward-propagating THz 

waves generated by PPLN gratings under the same pump conditions are shown in Figure 

1.11. The center output wavelengths from the five PPLN gratings were measured to be in 

the range of 79.3–94.3 μm, see Table 1.2. 
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Table 1.2. Measurements of Backward THz Waves on First PPSLT Wafer* and PPLN Wafer PPSLT PPLN 

 PPSLT PPLN 

Λ 

(µm) 

10.0 10.4 10.8 11.0 11.2 11.4 11.8 12.0 10.0 10.5 11.0 11.5 12.0 

PTHz 

(µW) 

3.54 3.46 6.71 3.52 3.99 3.99 3.83 4.39 4.56 6.74 5.69 5.49 4.42 

λpeak 

(µm) 

94.0 98.1 102.

9 

103.

4 

104.

6 

105.

5 

108.

8 

111.

3 

79.3 84.6 87.1 90.1 94.3 

νpeak 

(THz)  

3.19

1 

3.05

8 

2.91

5 

2.90

1 

2.86

8 

2.84

4 

2.75

7 

2.69

5 

3.78

3 

3.54

6 

3.44

4 

3.33

0 

3.18

1 

Δν 

(GHz

) 

394.

4 

325.

2 

327.

8 

286.

8 

241.

4 

238.

0 

313.

9 

334.

0 

853.

2 

507.

9 

379.

4 

383.

7 

536.

2 

Leff 

(µm) 

71.7 86.6 85.1 98.5 117.

8 

120.

6 

91.8 85.8 39.3 64.9 88.4 88.4 63.1 

 
*Λ, PTHz, λpeak, νpeak, Δν, and Leff are poling period, average THz output power, THz output peak wavelength, THz output peak frequency, frequency 
linewidth of the THz output, and effective interaction length of the nonlinear crystal, respectively. 
 

Based on the published data of phase indices of refraction [1.13, 1.18], the dispersion 

relations of phase indices of refraction in corresponding THz region of extraordinary beams 

can be calculated by using the following Sellmeier equations, for LiTaO3 and LiNbO3, 

respectively:  

        ⑷ 

           ⑸ 
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Figure 1.10 Spectra of backward THz radiation measured on 8 PPSLT gratings fabricated on the first PPSTL wafer. 
The spectrum is equally spaced shifting for clarity. For each spectrum, average over each set of measurements was 

made. 
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Figure 1.11 Spectra of backward THz radiation measured on 5 PPLN gratings fabricated on one LiNbO3 wafer. The 
spectrum is equally-spaced shifting for clarity. 
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Figure 1.12 Experimental results of peak wavelengths of backward THz radiation from PPSLT gratings of the first wafer 
(dots) and PPLN gratings (squares), corresponding theoretical dependence (solid curve for PPSLT and dashed curve for 
PPLN) based on Eqs. (3) and (4), and (3) and (5), respectively. 

 

By substituting indices of refraction given by Eqs. (4) and (5) above into Eq. (3), 

respectively, the peak wavelengths of the backward THz radiation from PPSLT and PPLN 

can be calculated. 

The corresponding values are consistent with the values determined from the experiment, 

see Fig. 1.12. One can see from Fig. 1.12 that our experimental data of the peak wavelength 

of the backward THz radiation are in good agreements with the theoretical values for both 

PPSLT and PPLN. On the other hand, the linewidth of each backward THz quasi-phase 

matched peak can be determined by the following expression:  

                     ⑹ 
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where ntg is the THz group velocity, c is the speed of light, and Leff is the effective 

interaction length of the nonlinear crystal. If we neglect the differences between the phase 

and group indices of refraction for the THz radiation, the effective interaction length of 

each PPSLT and PPLN grating can be readily deduced from the measured spectra of THz 

radiation, see Figs. 1.10 and 1.11,  
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Figure 1.13 Experimental results of backward THz output powers from PPSLT gratings (dots) and 
PPLN gratings (squares), corresponding theoretical dependence (solid curve for PPSLT and dashed 
curve for PPLN, respectively) based on Eq. (8). 

 

and Table 1.2. Based on above estimation, the effective interaction lengths of PPSLT and 

PPLN gratings are between 39.3 and 120.6 μm. Such short effective interaction lengths are 

resulted from the large absorption coefficients of LiTaO3 and LiNbO3 at corresponding 

wavelength. Moreover, with the same or equivalent poling period, the effective interaction 

length of PPSLT grating is obviously longer than that of PPLN grating. Under the pump 

intensity of 13.9 kW⁄cm2, the highest output powers of THz radiation were measured to be 
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in the range from 3.46 to 4.39 μW for the eight PPSLT gratings, see Table 1.2. In 

comparison, the highest output powers are in the range from 4.42 to 6.74 μW for the five 

PPLN gratings, respectively, see Table 1.2. Regardless of the effect of the interaction 

length on the nonlinear optical process and the absorption of the THz waves in nonlinear 

crystals, the amplitude of the backward THz electric field, ETHz, can be described by the 

simplified model [1.11, 1.12]:  

              ⑺ 

where E0 and τ are the amplitude and effective pulse width of the pump pulses, respectively. 

The corresponding intensity of the backward THz wave can be calculated by using the 

following expression:  

                       ⑻ 

where η0 is vacuum impedance. According to Eqs. (5) and (6), we can estimate the 

backward THz output power as a function of the poling period of the nonlinear crystals, as 

shown in Fig. 1.13 One can see that the backward THz output power measured in our 

experiment for the PPSLT gratings are consistent with the theoretical curve whereas the 

THz output power for the PPLN gratings are much lower than the theoretical results. 

Although the second-order nonlinear susceptibility (only the element, d33, used for the THz 

generation) of LiNbO3 is about 2.8 times higher than that of LiTaO3 [1.14], the THz output 

power from PPLN gratings are comparable to that of PPSLT gratings, especially for the 

gratings with longer poling periods. We believe that TPA of pump photons in LiNbO3 may 

play important role in the reduction of backward THz output power from PPLN gratings. 
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Among all eight PPSLT gratings, the highest backward THz output power was measured 

to be 4.39 μW from grating with the poling period of 12.0 μm, see Table 1.2, which 

corresponds to the pulse energy of 17.6 pJ. According to Eq. (1.4), the phase index of 

refraction for THz frequency at 2.695 THz is about 7.07. Therefore, the Fresnel loss of 

THz wave at the PPSLT-air interface is 56.6%. Moreover, the collection efficiency which 

is determined by the aperture of parabolic mirror in our experimental setup is 10.6%. After 

taking into consideration all the factors above, we can estimate the highest average power 

of the backward THz radiation which is generated inside the PPSLT grating with a poling 

period of 12.0 μm to be 95.7 μW, which corresponds to the pulse energy of 0.38 nJ. Such 

an output power corresponds to the photon conversion efficiency of ∼1%. Based on our 

previous measurement [1.14], the photon conversion efficiency in backward optical 

rectification process can be readily to increase to ∼30%.  

Although the lengths of the PPSLT and PPLN crystals are not the same, our comparison 

made on two crystals still makes sense. This is due to the fact that for the THz waves 

generated by these crystals only the THz powers generated within the lengths of 39.3–

120.6 μm measured from the entrance facets for the laser radiation can be coupled out, see 

Table 1.2. Basically, due to high absorption coefficients, the crystal lengths have become 

irrelevant. 
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Figure 1.14 Effective nonlinear coefficient for PPSLT, normalized by that for PPLN and deduced 
from experimental results (dots) and from optical domain (dashed line) versus frequency. The plot 
illustrates the increase of the effective nonlinear coefficient for PPSLT with increasing frequency. 

 

As discussed above, compared with the output powers from the PPLN wafers, the output 

powers generated by the PPSLT wafers are lower by 20%. However, this contradicts what 

we have predicted based on the major differences between the two nonlinear media in terms 

of absorption coefficients in the THz region and nonlinear coefficients used for THz 

generation. According to Ref. [1.15], the effective nonlinear coefficients of the PPLN 

gratings can be approximated by a constant within 94.0–111.3 μm. It is worth noting that 

in Table 1.2 the center output wavelength for the poling period of 10.0 μm for the first 

PPSLT wafer is measured to be 94.0 μm, which is close to 94.3 μm for the PPLN grating 

at the poling period of 12.0 μm. Since the THz output power is proportional to the square 

of the THz electric field, we are able to determine the effective nonlinear coefficients of 

the PPSLT grating normalized by that of the PPLN grating at 94.3 μm using Eq. (1.7), see 

Fig. 1.14. As mentioned above, in the optical frequency range, the electronic counterpart 
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of nonlinear coefficient dominates while the ionic one is negligible. It turns out that the 

effective nonlinear coefficient for PPSLT is a factor of 2.8 lower than that for PPLN, see 

the dashed line in Fig. 1.14. On the contrary, in the THz range the ratios of the nonlinear 

coefficients between PPSLT and PPLN are calculated to be factors of 0.85–1.31. Therefore, 

the nonlinear coefficients for PPSLT are enhanced by factors in the range of 2.4–3.7, 

compared with that for PPLN. This implies that the THz output powers are enhanced 

factors of 5.1–13.5, since the THz output power is proportional to the square of the effective 

nonlinear coefficient, see Eq. (7) above.  

According to Fig. 14, the nonlinear coefficient approaches a resonance peak as the THz 

frequency is increased. For simplicity, let us consider only one polariton resonance. The 

effective second-order nonlinear coefficient can be determined by the following expression 

[1.19]: 

             ⑼ 

where de is the electronic coefficient, Srel is the relative oscillator strength describing the 

contribution of the ionic movement to the effective second-order nonlinear coefficient, νTO 

and Γ are TO phonon frequency and linewidth of the polariton resonance. According to 

Ref. [1.20], there are four TO phonons for PPSLT at the frequencies of 74 cm−1, 140 cm−1, 

201 cm−1, and 206 cm−1, respectively in the low-frequency end. However, none of these 

four frequencies can be used to achieve an acceptable fit to the data shown in Fig. 1.15. 
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Figure 1.15 Square of nonlinear coefficient for PPSLT, enhanced relative to that of PPLN vs. 
frequency. The graph illustrates that the squares of the effective nonlinear coefficients for PPSLT 
can be up to one order of magnitude larger than those for PPLN, resulting in the comparable output 
powers for PPSLT and PPLN. 

 

In Ref. [1.7] it was stated that LiTaO3 exhibits strong anharmonicity, i.e., its potential 

energy has a severe non-parabolic shape as a function of Li+ displacement. In such a case, 

two TO frequencies can be mixed through the anharmonicity to generate a beat phonon 

frequency. As described in Ref. [1.8], a new resonance frequency at 31.7 cm−1 (i.e., 0.95 

THz) is observed, which was attributed to the tunneling resonance between two adjacent 

potential wells. It turns out that in our case, only a new frequency of 127 cm−1 can be used 

to obtain a reasonably good fit to the data points, see Fig. 1.14. As a result of the nonlinear 

least-square fit, we have obtained Srel ≈ 0.051 and Γ ≈ 34.69 cm−1, respectively. We believe 

that this new polariton resonance at 127 cm−1 is the origin of the enhancement of the 

backward THz powers generated by PPSLT. According to Eq. (7), the output power can 

further increase by three times at the peak of the resonance. This can be achieved by 
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designing the poling period to be 8.2 μm. As mentioned above, due to the strong 

anharmonicity, this new frequency can be induced by nonlinear mixing of the phonons at 

the frequencies of 201 cm−1 and 74 cm−1. 
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Figure 1.16 Dots: THz powers generated by all gratings of the second PPSLT wafer, red curve: square 
of effective nonlinear coefficient is plotted illustrating the strong resonance at 79 µm. They illustrate 
that we have reached the complete resonance for PPSLT. 
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Figure 1.17  Spectra from 5 of gratings; spectrum form bulk (uniformly poled) crystal is plotted as a 
reference. Each spectrum was obtained after a single measurement. One can see the “double-peak” 
feature in this spectrum. 
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Figure 1.18  Theoretical calculation (black) is used to support the “double-peak” feature of the 
experimental spectrum (red). One can see that we have qualitatively explained the origin of the 
“double-peak” feature. 

 

To support the proposed mechanism of nonlinear mixing of two transverse-optical 

phonons through strong anharmonicity of LiTaO3, we have investigated the THz 

generation from the second wafer having significantly shorter periods than those in the first 

wafer. We are hoping that we are able to observe the entire resonance at the frequency of 

127 cm−1 (78.7 μm). 

We measured the THz output power generated by 12 gratings, as shown in Fig. 1.16. The 

wavelength was determined based on the quasi-phase-matching condition for the backward 

THz generation. The highest THz power generated was about 960 nW at 79.14 μm, which 

was generated by the grating at the poling period of 8.2 μm. Compared with our previous 

work on LiNbO3 [1.21], such power was nearly 4 times larger than the 201.8 nW at 75.5 

μm, which was in a very close wavelength regime. Compared with the output powers at 

the shorter wavelengths, the enhancement factors reach 22.8. This result confirmed our 

prediction made on the first PPSLT wafer that the effective second-order nonlinear 
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coefficient is enhanced by the polariton resonance caused by the phonons having the 

frequency of 3.81 THz (78.7 μm) due to nonlinear mixing of two TO phonon frequencies 

of LiTaO3. As mentioned above, the two TO phonon frequencies at 6.0 THz and 1.19 THz 

undergo nonlinear mixing through anharmonicity. As a result, a beat phonon frequency is 

generated at 3.81 THz. Using Eq. (9), the square of the nonlinear coefficient is plotted in 

Fig. 1.16 (red), illustrating that the highest THz output power coincides with the peak of 

the nonlinear coefficient. We measured the spectra of the backward-propagating THz 

pulses generated by the 12 PPSLT gratings. Among them, five spectra from the gratings 

with the poling periods of 8.0, 8.2, 8.4, 8.6, and 8.8 μm, respectively, exhibited 

distinguished peaks, as shown in Fig. 1.17. The spectrum from bulk (uniformly poled) 

LiTaO3 crystal was plotted in Fig. 1.17 as the reference. One can see from Fig. 1.17 that 

periodic poling is essential for the observation of the two distinct peaks in the spectra. 

According to quasi-phase-matching condition for the backward THz generation, these 

gratings are expected to generate THz pulses at the center wavelengths of 77.67, 79.14, 

80.64, 82.16, and 83.69 μm, respectively. However, the “double-peak” feature appears in 

the spectrum for each THz pulse, the center wavelengths of these two peaks being 

measured as 77.3 and 90.5 μm. To understand the origin of such a unique feature, we start 

with the output power of the THz radiation [1.22] 

                   ⑽ 

where A is the area, T is the transmittance for the THz radiation generated by LiTaO3 crystal 

due to the reflection at the crystal/air interference, and ETHz is the electric field amplitude 

of THz radiation, which is given by [1.22] 
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              ⑾ 

where Ep is the electric field amplitude of the pump beam, α is the absorption coefficient, 

L is the effective interaction length, and Δk is the wave vector mismatch. The last term in 

square brackets represents the contribution of absorption and phase mismatching. To 

calculate εTHz, α, and T, the frequency dependent complex dielectric function can be 

represented by a 

Lorentz model [1.23]: 

                     ⑿ 

where  designates the bound electron contribution to the dielectric function. By 

evaluating the real and imaginary parts we have obtained the index of refraction, n, and the 

power absorption coefficient . Based on such a model, we have produced a 

reasonable fit to the observed spectrum, as shown in Fig. 1.18 in red. The black curve is 

the experimental spectrum from grating of 8.2 μm. As a result of the fitting, we have 

obtained S0 ≈ 1.2 and Γ ≈ 0.5 THz. Thus, we can attribute the origin of this “double-peak” 

feature to the combination among effective nonlinear coefficient, absorption, and 

transmittance in the polariton resonance regime. The broadening of the peaks in the 

experimental spectrum originates from the fabrication error of the grating. 
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Figure 1.19  Backward THz output power from PPSLT grating with poling period 11.2 µm as a 
function of pump beam diameter at entrance crystal. Squares are experimental data with a constant 
pumping power of 400 mW, and the solid curve’s purpose is to guide the eye.  
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Figure 1.20  Spectra of backward THz radiation from PPSLT grating (Λ=11.2 µm) at different pump 
beam size. Pumping power is kept at 400 mW and pump beam diameters vary from 78.8 to 388 µm. 
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Figure 1.21  (a) Peak frequency (squares) and (b) linewidth (dots) of backward THz radiation from 
PPSLT grating (Λ ≈ 11.2 µm) as a function of pump beam diameter. The dashed lines’ purpose is to 
guide the eye. 

 

To further investigate the optimal pump condition for the backward THz generation from 

PPSLT, we have investigated the dependence of the THz spectra and output powers on the 

beam size of the pump in our experiment. To avoid damage of the PPSLT crystal by the 

pump laser at the high intensity achieved at the small beam size and reduce thermal effects, 

we have kept the pumping power at 400 mW or lower throughout our measurements. 

Following our measurements, we have plotted the output power vs. the beam diameter for 

the grating period of 11.2 μm in Fig. 1.19. One can see from Fig. 1.19 that with decreasing 

the beam diameter from 388.0 to 110.8 μm, the THz output power is monotonously 

increased from 87 to 397 nW, i.e., by a factor of 4.6. However, as the diameter is further 

decreased from 110.8 μm, the output power is decreased from 397 to 370 nW, i.e., by 6.8%. 

Therefore, for the grating period of 11.2 μm, an optimal diameter of the pump beam is 
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110.8 μm. In comparison, under the same experimental conditions the PPLN grating having 

the poling period of 11.0 μm exhibits a similar behavior. Since the peak wavelengths 

generated by these two gratings are 104.6 and 87.1 μm, we have attributed the existence of 

the optimal diameters to the competition between the divergence of the THz output beam 

and quadratic dependence of the THz output power on the pump intensity. Indeed, as the 

diameter of the pump beam is decreased, the THz output power becomes more divergent. 

Therefore, the amount of the THz output power being coupled out of the crystal is 

decreased. This effect is completely opposite to the quadratic increase of the THz output 

power due to the increase of the intensity of the pump beam. 

We have measured and plotted the spectra of the THz radiation at different diameters of 

the pump beam in Fig. 1.20. When the diameter is increased from 78.8 to 388.0 μm, the 

peak wavelength is slightly decreased from 104.6 to 103.8 μm, i.e., the peak is just blue-

shifted from 2.869 to 2.890 THz, see Fig. 1.21(a). This corresponds to the amount of the 

blueshift to be 21 GHz, which is less than 1% of the center frequency. This blueshift 

originates from the weak thermal effect as the diameter is reduced. It is consistent with the 

blueshift observed by decreasing the pump power while fixing the beam diameter. On the 

other hand, the linewidth of the peak, determined at FWHM, is decreased from 242 to 191 

GHz, i.e., by the amount of 52 GHz or 21%, see Fig. 1.21(b), as the diameter of the pump 

beam is increased from 78.8 to 388.0 μm. The smaller the pump beam diameter, the larger 

the divergent angle for the THz output beam, and therefore, the shorter the effective 

interaction length for the optical rectification. According to Eq. (6), the linewidth is 

increased, and the diameter is broadened. 
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VII. Conclusion and Outlook 

In conclusion, we have demonstrated efficient generation of short-wavelength THz 

pulses from PPLN wafer containing multiple poling periods by using a femtosecond laser 

amplifier. The record-short center wavelength generated by us is 62.5 µm at the poling 

period of 7.10 µm. Higher output powers are feasible when approaching the polariton 

resonance at 40 µm and employing a novel configuration [1.24, 1.25].  

We have also achieved highly efficient generation of backward THz pulses in the 

frequency range of 2.695-3.191 THz from PPSLT using the same experimental setup at the 

PPLN work. Although the effective second-order nonlinear coefficient of LiTaO3 is a 

factor of 2.8 lower than that of LiNbO3 in the optical frequency range, the THz output 

powers from the PPSLT gratings are within the same order of magnitude as those from the 

PPLN gratings. The highest THz output power for PPSLT gratings approached 100 μW. 

The enhancements of the THz output powers from the PPSLT gratings can be attributed to 

the enhancements in the second-order nonlinear coefficients. Based on our analysis, we 

conclude that the nonlinear coefficients are enhanced by the polariton resonance at the 

frequency of around 127 cm−1. Such a phonon frequency can be generated by the nonlinear 

mixing of two TO phonons at the frequencies of 201 cm−1 and 74 cm−1 due to strong 

anharmonicity of LiTaO3. We have observed the complete resonant peak at the second 

wafer having significantly shorter poling periods. 

Moreover, we demonstrated the competition between the divergence of the THz output 

beam and quadratic dependence of the THz output power on the pump intensity, resulting 

in the optimal diameters of the pump beam. When the diameter of the pump beam is 
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increased from 78.8 to 388.0 μm, the linewidth of the THz peak is reduced by 52 GHz 

whereas the peak frequency is slightly blue-shifted by 21 GHz. 

 

Figure 1.22  Surface emitting configuration for THz generation. Figure cited from Ref. [1.24] 
 

There are still flaws in our current scheme that would limit the THz emission efficiency. 

Since the polariton resonance has effects on any order of indices, it would also induce 

severe absorption, short effective interaction length, and poor transmittance of THz waves 

near resonance frequency. To detour from this roadblock, a surface emitting configuration 

can be applied a novel generation method [1.24]. As shown in Figure 1.22, the THz waves 

would radiate perpendicular to the direction of pump beam propagation, thus avoiding 

being absorbed since the sickness of the media can be comparable to THz wavelengths. 

Also, to improve the interaction length inside the media, waveguides of pump beams can 

be designed for a high optical density in the active region, resulting in better THz 

conversion efficiency.  
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Chapter 2  Device Thermal Management by Raman Scattering 
I. Introduction 

a. A Survey of High Electron Mobility Transistor (HEMT) Materials 

As the market for cellular, personal communications services, and broadband access are 

expanding and the realization of 4G LTE technologies, radio frequency and microwave 

power amplifiers are attracting numerous attentions in both academics and industry. 

Several types of power amplifier technologies are competing for market share, such like Si 

lateral-diffused metal-oxide-semiconductors and bipolar transistors, GaAs metal-

semiconductor field-effect transistors (MESFETs), GaAs (or GaAs/InGaP) heterostructure 

bipolar transistors, SiC MESFETs, and GaN HEMTs.  

Table 2.2 Properties of Competing Materials in Power Electronics (refromed from Ref. [2.1]). 

Material μ ε Eg (eV) BFOM Ratio JEM Ratio Tmax (◦C)

Si 1300 11.4 1.1 1.0 1.0 300 

GaAs 5000 13.1 1.4 9.6 3.5 300 

SiC 260 9.7 2.9 3.1 60 600 

GaN 1500 9.5 3.4 24.6 80 600 

 

The properties of GaN materials comparing to the competing ones is presented in Table 

2.1 [2-1]. The resulting competitive advantages of GaN devices and amplifiers for a 

commercial product are described in Table 2.2. From these two tables, we can see that in 

every single category, GaN devices excel over conventional technology. Most significantly, 

GaN materials properties of direct wide bandgap, high breakdown field, high operating 

voltage, and compatibility with SiC substrate would enable performance advantages in 

compactness, easy matching, elimination of step-down, power saving and cooling 
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reduction, high power operation, suitability for lighting, and lower cost. All these 

promising features open up several industrial, automotive, aircraft, and defense 

applications, as shown in Figure 2.1. 

 

Figure 2.1 Applications of GaN devices (from Ref. [2.1]) 

 

 

Figure 2.2 Basic GaN HEMT structure (from Ref. [2.1]) 

 

The structure of a basic GaN HEMT is shown in Figure 2.2. The epitaxial layers can be 

grown by molecular beam epitaxy (MBE) or metal-organic chemical vapor deposition 

(MOCVD). It has been shown that easy growth and fabrication can be realized for the 

production of GaN HEMT devices. 

In conclusion, while GaN device and circuit technology is likely poised to break out in 

the commercial arena, certain risks and barriers to entry in the market cannot be overlooked. 
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Besides the relative immaturity of GaN with respect to Silicon and GaAs technologies, in 

academics, the “hot-phonon” issue is the main factor for limiting its performance, which 

will be discussed in the following subsection. 

Table 2.3 Competing advantages of GaN devices (refromed from Ref. [2.1]) 

Need Enabling Feature Performance Advantage 

High Power/Unit Width Wide Bandgap, High 
Field 

Compact, Ease of Matching 

   

High Voltage Operation High Breakdown 
Field 

Eliminate/Reduce Step Down 

High Linearity HEMT Topology Optimum Band Allocation 

High Frequency High Electron 
Velocity 

Bandwidth, μ-Wave/mm-Wave 

High Efficiency High Operating 
Voltage 

Power Saving, Reduced Cooling 

Low Noise High Gain, High 
Velocity 

High dynamic range receivers 

High Temperature 
Operation 

Wide Bandgap Rugged, Reliable, Reduced 
Coating 

Thermal Management SiC Substrate High Power Devices with 
Reduced Cooling Needs 

   

Technology Leverage Direct Bandgap 
Enabler for Lighting 

Driving Force for Technology: 
Low cost 

 

b. “All about Hot Phonons” 

Due to very large direct bandgap (3.4 eV), GaN has longitudinal optical (LO) phonons 

with relatively large energies of roughly 91 meV [2.2]. Such high LO phonon energy 

results in a wide bandgap between the optical branch and the acoustic branch of GaN 

phonon bandstructure. This kind of phononic bandstructure leads to the lack of decay 



‐ 43 ‐ 
 

channels for LO phonons in GaN devices generated through Fröhlich Interaction. Thus, 

large numbers of non-equilibrium LO phonons, i.e. the so called “Hot Phonons”, would 

accumulate in regions of carrier transport in GaN HEMTs, strongly deteriorating the 

performance of such devices. Specifically, the emission time of LO phonon generated 

through Fröhlich Interaction is in the range from 10 to 50 fs [2.3, 2.4], while its decay time 

can be as large as 1 to 5 picoseconds (ps) [2.5~2.7], which is 2 orders of magnitudes larger. 

The tremendous difference between LO phonon emission and decay time creates the 

“phonon decay bottleneck”, resulting in an electron drift velocity saturation at 1.5×107 cm/s 

[2.8]. This bottleneck will eventually limits GaN devices’ high operating power and 

temperature. It is obvious that the study of hot phonons behaviors and methods of reducing 

hot phonons effect is urgently required for the development of GaN HEMTs. In the 

following subsection, I will discuss two methods of measuring hot phonon temperatures 

through the utilization of Raman Scattering. 

 

II. Theory of Measuring Phonon Temperature 

Since Raman Scattering results from the interaction of a laser beam and optical phonons, 

the properties of Stokes and Antistokes Raman spectra would certainly carry information 

of hot phonons generated by Frohlich interactions. Typically, there are two ways of 

temperature measurement derived from Raman Scattering properties 

a. Raman Ratio Method 

The first way of measuring hot phonon temperature is by the ratio of intensities between 

Antistokes and Stokes Raman Scattering. The relationship between Stokes (Antistokes) 



‐ 44 ‐ 
 

Raman photon number  ( ) and the phonon number  can be described as the 

following 

                ⑴ 

Here,  is the photon number of incident laser,  ( ) is the Raman Scattering cross-

section of the Stokes (Antistokes) process. The phonon number obeys the Bose-Einstein 

distribution, which can be expressed as the following 

.                           ⑵ 

Since the optical intensity is proportional to its corresponding photon number, the ratio of 

Antistokes and Stokes photon number is equal to the ratio of intensities between the two. 

This is a quantity that can be measured in experiment directly: 

                     ⑶ 

 It is obvious that if the two cross-section equals, the fraction can be further simplifies as 

the following 

.                        ⑷ 

From Eq. (4), we can see that once we have the ratio of Antistokes and Stokes Raman 

Intensities, the phonon temperature can be extracted from the exponential. It is shown that 

only if the initial state of Stokes process is the final state of Antistokes process, while the 

final state of Stokes process is the initial state of Antistokes process, [2.9] the two cross-

sections are equal, as shown in the following expressions and Figure 2.3: 

⑸ 
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⑹ 

 

 

 

 

 

 

 

  

 

This means that to realize the experimental conditions for measuring the phonon 

temperature, we need an accurate tunable laser to be the incident beam source. Also, since 

the Raman signal intensity is much weaker than the one of its incident laser (especially the 

Antistokes signal), it is very difficult to identify the signal from a spectrum since the two 

lines would be very close in wavelength. To increase the Raman signal strength, a laser 

ii

LOLO

as
s

as s 
Figure 2.3  Schematic relation of Stokes and Antistokes 
Raman processes when Raman cross-sections are equal. 
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wavelength close to the bandgap of GaN (3.4 eV, 365 nm) would be favored. Since the 

lack of notch filter in this spectrum region around 365 nm, a spectrometer of superior 

resolution is needed. Such a spectrometer would usually contain at least two gratings inside 

in order to distinguish the Raman signal from the laser one, and is usually very expensive.  

The advantage of this method of measuring phonon temperature is the simple relationship 

between experimental measuring quantity (Raman signal strength, can be extracted from 

integrated peak intensity from spectra) and temperature. Such simple relation is also 

material irrelevant. 

b. Raman Shift Method 

Having identifies the merits and flaws of Raman ratio method, we now turn to the theory 

of another method of measuring phonon temperature which requires a more accessible 

experimental condition. It is known that due to multiple mechanisms, the energies of E2 

and A1 (LO) phonons in GaN would experience red shift while temperature rises. If a 

mathematical dependence between temperature and phonon energy (Raman frequency, as 

measurable quantity) can be established, the temperature can be deduced from that directly. 

According to Ref. [2.10], there are three mechanisms that would cause the red shift of 

Raman frequency with increasing temperature in GaN. The total temperature dependence 

of the phonon frequency can be written as the following 

                           ⑺, 

Where  denotes the frequency shift due to the thermal expansion of lattice. In an 

isotropic approximation, the term  can be written by 

                               ⑻, 
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Where  and  are the temperature dependent coefficients of linear thermal expansion 

parallel and perpendicular to the c axis, respectively, and  is the Grüneisen parameter. 

 represents the frequency shift caused by the decay of optical phonon into phonons 

with lower energy. Taking into account cubic and quartic terms in the anharmonic 

Hamiltonian and considering only symmetric decays of the zone-center phonons into two 

phonons (third-order process) and three phonons (fourth-order process) with frequencies 

 and , respectively, the term  is given by 

               ⑼, 

Where  is the Bose-Einstein distribution function and A 

and B are coefficients. Due to the considerable lattice and thermal mismatch between the 

substrate and the GaN layers, the third term in Eq. (7), , is the strain-induced 

contribution to the phonon frequency shift. To estimate , we assume that during the 

post-growth cooling, the different thermal expansion coefficients of layer and substrate 

result in a temperature-dependent in-plane strain 

                     ⑽, 

Where  and  are the temperature-dependent in-plain linear expansion coefficients 

of the substrate (S) and the layer (L), respectively. 

 denotes the temperature-dependent lengths of 

the substrate and the layer without having any contact to each other, and  is the residual 

strain in the layer at growth temperature . With the phonon deformation potentials a and 
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b, and the elastic constants C13 and C33 of the layer, the frequency shift due to the layer 

mismatch  can be written by 

                          ⑾. 

With , , and  established in Eqs. (8, 9, 11), we can utilize Eq. (7) to 

fit the measured phonon frequencies and hence deduce the phonon temperature. Obviously, 

this method only requires the stronger Stokes Raman signal, and there is no need to tune 

the pump laser back and forth to meet the requirement of the same Raman cross-sections, 

as in the Raman ratio method. Also, a double- or triple-grating spectrometer is no longer 

necessary. A simple long-pass filter can be used to block the pump laser signal and reveal 

the Stokes Raman signal. The complexity of this method lies in the fact of its material 

dependence. Various parameters including thermal expansion coefficients, Grüneisen 

parameter, residual strain, and elastic constant would be required to ensure the accuracy of 

the fitting and extracting of temperature. Strictly speaking, a pre-measured calibration 

curve would be necessary for each single sample with its unique substrate information and 

growth condition.  

 

III. Sample Information and Experimental Setup 
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Figure 2.4  GaN HEMT device structure 1.  

               

         

 

As shown in Fig. 2.4, The HEMT structure investigated here was grown using molecular 

beam epitaxy (MBE). It consisted of 200-nm unintentionally doped GaN on 3-μm of semi-

insulating GaN, deposited on top of a 300-μm thick sapphire substrate. Then, the GaN layer 

was capped by a 4-nm thick AlN layer. High-density two-dimensional electron gas was 

formed within GaN layer next to the GaN/AlN interface. Source and drain Ohmic contacts 

were constructed by evaporation of gold film followed by annealing. The channel length 

was measured to by 30 μm in this experiment. At room temperature, the electron sheet 

concentration was measured to be 2.5×1013 cm-2, and electron mobility was 1200 cm2/Vs.  

 

Figure 2.5  GaN HEMT device structure 2.  
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The sample showing in Fig. 2.5 was a 2nd-generation one used in the DARPA 

collaboration project. Due to confidential reasons, the sample information and measured 

data cannot be shown in this dissertation. The Raman shift method was mainly performed 

on this project using a single grating spectrometer with a long-pass filter and positive 

results has been achieved. In the next section, we will use data measured from the first 

sample to illustrate the feasibility of Raman shift method.  

Raman signals backward-scattered by the AlN side of HEMT were recorded using a 

double grating cascaded monochromator at room temperature (295 K) with different bias 

voltages applied between source and drain in the range of 0-36 V. The Raman signals 

scattered by monochromator were then measured by a photomultiplier. A 373.9 nm 

picosecond laser, produced by frequency doubling in a 10-mm thick beta barium borate 

crystal of mode-locked picosecond Ti:sapphire laser output, was used to excite the sample. 

The width of each incident pulse was measured to be 3 ps. The power of the laser on sample 

was set to about 30 mW. The beam was focused down to the HEMT with a beam radius of 

150 μm.  

IV. Results and Analysis 

a. Results from the Raman Ratio Method 

As shown in Fig. 2.6 (a) and (b), the Stokes and the Antistokes Raman spectra of the 

GaN HEMT device were measured under various bias voltages. For Fig. 2.6 (a), the first-

order Stokes Raman peaks can be seen on the right side of the spectrum and the second-

order peaks can be seen on the left side. While for Fig. 2.6 (b), the first-order Antistokes 

Raman peaks can be seen on the right side and the second-order peaks can be seen on the 

left side. The two peaks resolved correspond to the Raman scattering by the LO phonons 



‐ 51 ‐ 
 

in the GaN channel layer, with their phonon energies being . Each of the 

four Raman scattering process is going through its own resonance at a specific electric field. 
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Figure 2.6  Spectra of first-order and second order Raman scatterings at different electric fields as 
indicated: (a) Stokes (b) Antistokes. Ei is the photon energy of excitation laser. (Figure is from 
Ref.[2.12]) 
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Figure 2.7  Phonon, lattice, and hot electron temperatures at different electric fields. (Figure is 
reproduced from Ref. [2.11, 2.12]) 

Using Eq. (4), we were able to determine the phonon temperatures at different electric 

fields from the first-order Raman scattering, see Fig. 2.7. The phonon temperatures 

increases almost at the same rate as the lattice temperature for the electric field in the range 

of 0-5.33 kV/cm. Above 5.33 kV/cm, however, the increase in the phonon temperature is 

much steeper than that in the lattice temperature. Such a phenomenon implies that in the 

range of 0-5.33 kV/cm, the increase in the electric field results in the increase of the lattice 

temperature, and hence the phonon temperature. While above 5.33 kV/cm, the increase in 

the electric field leads to the generation of extra LO phonons above those determined by 

the thermal equilibrium at the lattice temperature. These results were published in Ref. 

[2.11, 2.12] 

b. Results from the Raman Shift Method 
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Figure 2.8  (a) LO phonon frequency shift vs. Electric field, experimental data (black squares) and 
linear fit (red line). One data point (red) is masked for linear fit for large discrepancy. (b) LO phonon 
temperature, measured by frequency shift (blue squares) and intensity ratio (red circle). Dash line 
represents lattice temperature. 

 

The measured frequency shift of A1(LO)  of GaN is shown in Fig. 2.8 (a). As one can see, 

the phonon energy exhibits tendency of continuous red shift while bias voltage increases. 
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A linear fit for the data points (red line) is feasible for smoothing out the noise with a slope 

around 16 cm-1/12 kV/cm. Using such linear fit as averaged values of frequency shift, we 

can recover the LO phonon temperature in operation according to Eq. (7), shown in Fig. 1  

(blue squares). The values of ߱଴, ,ܣ and	ܤ  are 763 cm-1, -4.7 cm-1, and -0.01 cm-1, 

respectively, for our HEMT structure. The thermal expansion coefficients ߙ௖ and ߙ௔ and 

Grüneisen parameter γ were taken from Refs. [2.13] and [2.14]. The layer stress part of the 

model was neglected since the lack of growing conditions of the device.  

Clearly, the phonon temperature experienced large increase while bias voltage was 

tuned up, from room temperature to over 800 K. Meanwhile, the phonon temperature 

deduced by intensity ration method is also represented in Fig. 2.8 (b) (red circles). This 

measurement also exhibits phonon temperature increase with rising bias voltage with a 

larger temperature range, from approximately 200 K to 1200 K. The dash line with hollow 

triangles represents the changing of lattice temperature. One can observe that above 6 

kV/cm, both phonon temperatures are significantly higher than lattice temperature, 

indicating that hot phonons are generated in the device. This also shows the consistency of 

the two methods.  

Since our sample is measured at room temperature, it is obviously not credible that the 

data points of intensity ratio method from 0-2 kV/cm are below 295 K. Such divergence 

from reality is probably introduced from experimental errors. Since anti-Stokes Raman 

signals are much weaker than Stokes ones, it is difficult to obtain Anti-Stokes Raman 

spectrum with good quality, which leads to unrealistic temperature in the data. Also, for 

materials with high-energy phonons such as GaN, measurement of intensity of both Stokes 

and anti-Stokes modes requires long integration times, which increases the probability of 
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incident laser power instability affecting the authenticity of intensity ratio, and also makes 

application of this method unsuitable for fast temperature monitoring. In the range from 

2.67-6.67 kV/cm before two curves intersects, both temperatures obtained from two 

methods are feasible for illustrating LO phonons accumulation in the device. Above 6.67 

kV/cm, the temperature acquired from intensity ratio grows much faster than the one 

deduced from frequency shift. This discrepancy can also be attributed to the fact that anti-

Stokes signal intensity is lack of quality.  

It is necessary to point out that phonon temperature is a defined term to illustrate the 

phonon population in the device and hence not a real temperature. Thus, some discrepancy 

on the absolute values of the temperature can be accepted in our study. The trends of how 

phonon temperature varies according to the electric field reveals more physical meaning of 

the behavior of hot phonons in GaN. The eventual goal of this project is to develop a 

method to monitor the hot phonon behavior in GaN HEMT device operation, and verify 

the introduction of “isotope disorder” is effective in the reduction of hot phonons in GaN 

HEMT devices.  

 

V. Conclusions 

In conclusion, both methods could reveal the fact that phonon temperature increase with 

bias voltage, and hot phonons were generated in the process of device operation. However, 

intensity ratio method requires more experimental complications, including anti-Stokes 

signal quality, tuning incident laser frequency and long integration time, which may 

contribute to infidelity of temperature results. Frequency shift method could retrieve 
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accurate temperature from the device, providing that accurate wavelength resolution is 

accessible, and preferably temperature-phonon frequency calibration is performed.  

One possible way of suppressing the hot phonon effect from deteriorating device 

operation is to introduce isotope disorder into GaN, which will not fundamentally enhance 

LO phonon decaying into acoustic modes, but will spread LO phonons around Brillouin 

zone by increasing the density of LO phonon modes, thus providing more channels for 

cooling of electrons [2.15]. Theoretical and experimental work based on such a concept is 

under current investigation.  
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Chapter 3 Optical Refrigeration by Phonon Assisted 

Photoluminescence 

I. Introduction 

The term “optical refrigeration” is also known as “laser cooling”, and the latter is usually 

referring to the cooling and trapping atoms and ions in the form of dilute gases [3.1]. This 

area of research made feasible of the observation of Bose-Einstein condensation [3.2]. 

However, half a century before the achievement of Doppler cooling of atom gas and even 

the invention of laser, the concept of optical refrigeration of solids through the use of 

phonon-assisted Antistokes photoluminescence (ASPL) has been already proposed by 

Peter Pringsheim in 1929 [3.3], see Fig. 1. The physics of this process, unlike its Doppler 

cooling counterpart, is pretty straightforward, see Fig. 1 [3.4]. First, a light source of photon 

energy same as the bandgap of solid materials is used as a pump source. The electrons on 

the ground states of the solid materials will absorb the photon energy, and will be pumped 

to the exited states. These exited electrons will be all located at the bottom part of the exited 

states. However, according to the quasi-thermal equilibrium condition, the electrons 

distribution in the exited states should follow the Fermi-Dirac distribution, which means 

some of these electrons will be relocated to higher energy states. Such process is fulfilled 

through the scattering among electrons and the lattice. After the quasi-thermal equilibrium 

is reached, the average energy of electrons is going to be higher than the bandgap, i.e. the 

photon energy of the pump source. The energy difference is actually compensated by the 

lattice vibration energy, i.e. phonon energy through scattering. In the end, the exited 

electrons will decay to the ground states and emit photons. If all the electrons will lose their 
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energy through emitting photons, i.e. the luminescence quantum efficiency is 100%, the 

lattice thermal energy will be extracted from solid materials. Eventually, such solid 

materials are cooled down by removing phonons. 

 

Figure 3.1 Peter Pringsheim (left); A scheme of Antistokes Photoluminescence (right). Figure is 
reproduced from Ref. [3.4].  

 

The physical picture of optical refrigeration of solids described above leads to the following 

requirements. First, the Antistokes photoluminescence should be observed during the 

optical cooling process, i.e. the average fluorescence light frequency vf should be larger 

than the pump light frequency vp. Second, if net cooling can be achieved, the quantum 

efficiency of photoluminescence should be close to unity. A simple estimation would show 

that the quantum efficiency ηQE should be at lease larger than vp/vf. The typical quantum 

efficiency of solids in optical cooling experiments would be higher 97%. Third, assuming 

the quantum efficiency is 1, the cooling efficiency of fractional cooling energy for each 

electron, i.e. ηC is equal to (vf-vp)/vp. In thermal equilibrium, h(vf-vp)/hvp = kBT/hvp. 

Assuming hvp is around 1 eV, the cooling efficiency would be less than 5%. 

 Since it is not after the invention of laser in the 1960s, the early research of optical 

refrigeration is merely focused on the feasibility of the principle. It way initially believed 
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that the Antistokes cooling theory would contradict the second law of thermodynamics. 

The cycle of excitation and fluorescence was predicted to be a reversible process, and hence 

the optical refrigeration would be the same as the complete transform from heat to work 

[3.5, 3.6]. Such dispute was closed by Landau by assigning entropy to light radiation [3.7]. 

In his paper, the entropy of radiation field increase with its bandwidth and also the solid 

angle through which it propagates. Thus, if the pump beam has a minimum bandwidth and 

a defined propagating direction, it would have almost zero entropy. Such requirements 

would only be perfectly fulfilled by laser. On the other hand, the fluorescence light has a 

much broader bandwidth and is radiated in all directions. Thus, it would have larger 

entropy comparing to the pump laser. The second law of thermodynamics wouldn’t be 

violated with such process. 

The experimental efforts of development on optical refrigeration has begun after the 

invention of laser, but the requirement of extremely high fluorescence quantum efficiency 

put the observation of net cooling on hold for decades. Until 1995, the first experiment 

demonstration of laser cooling was realized by Epstein et al. with ytterbium-doped 

fluorozirconate glass, i.e. ZBLANP:Yb3+ [3.8]. Nowadays the rare-earth doped material 

technology of laser cooling has approached cryogenic temperatures, and, efficiency-wise, 

already has beaten the performance of typical thermoelectric coolers [3.9]. The potential 

applications of optical refrigeration include the cooling of satellite instrumentation and 

small sensors, where compactness, ruggedness, and the lack of vibrations is important. The 

advantages of optical refrigeration are free of moving parts and long operation time.  

The optical cooling technology based on rare-earth doped insulating crystal is well 

developed. However, it is not a practical system -- it is the active semiconductor device 
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that requires cooling in the end. To reach cooling by attaching the rare-earth doped crystal 

to the semiconductor devices, there are major issues including low thermal conductivity of 

rare-earth host materials and the inferior thermal contact between the crystals and the 

semiconductors. It would be desirable to have laser cooling implemented directly with 

semiconductor material for simpler integration of cooling and active devices. Moreover, 

the potential extreme cooling temperature can reach down to ~ 10 K with semiconductors 

[3.10, 3.11], which may not be achieved by rare-earth doped crystals since the severe 

depopulation of the top of the ground states of rare-earth ions at such low temperature. 

Semiconductors are free of such problem since the valence band is always populated with 

electrons. 

The advantages of semiconductors for laser cooling are obvious, and thus the field of study 

has been investigated intensively both in theory and experiment [3.10 – 3.18]. There was 

considerable amount of effort spent on the material of GaAs, since its technology is the 

most mature one among the direct bandgap semiconductors. Also, an external radiative 

recombination efficiency over 96% has been observed in a GaAs/InGaP heterostructure 

[3.19]. As mentioned before, the radiative efficiency is a key factor of realizing laser 

cooling. In each cooling cycle of Antistokes photoluminescence emission, only about kBT 

of energy is being taken away, which is about 1% of the pump photon energy. Hence, non-

radiative recombination loss of merely 1% would be fatal for laser cooling. Till now, no 

net cooling has been achieved with GaAs despite all the attractive features aforementioned.  

Unexpectedly, the first observation of laser cooling using semiconductor was recently 

attained in CdS nanobelts [3.20]. In the paper, the author suggested that the strong exciton-

longitudinal optical (LO) phonon coupling through Fröhlich interaction played an essential 
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role in realizing optical cooling in semiconductors. Such interaction is the dominating 

mechanism for Antistokes photoluminescence in polar semiconductors, like GaAs and CdS 

[3.15]. Thus, comparing with III-V semiconductors such as GaAs, more polar II-V 

semiconductors, like CdS, are believed to generate more efficient ASPL since their 

Fröhlich interaction is stronger. Another argument of why CdS is in favor of GaAs on laser 

cooling is its larger bandgap (2.4 eV vs 1.5 eV). The prospects of laser cooling using other 

II-IV materials were also discussed [3.21]. The larger bandgap leads to the facts of large 

joint density of states, lower refractive index, and very low Auger recombination rate, 

which are all advantageous for laser cooling [3.16]. To compare on factors including 

bandgap and strength of Fröhlich interaction among potential semiconductor materials in 

Table 3.1.  

Table 3.1  Bandgap and Frohlich coupling constants of several semiconductors (see Ref. [3.22]). 

System Materials αF Eg (eV) 

IV Si 0 1.12 
III-V GaN 0.48 3.4 

 GaP 0.201 2.26 

 GaAs 0.068 1.424 
 InP 0.15 1.344 

II-VI CdSe 0.46 1.49 
 CdS 0.51 2.5 

 

The Fröhlich constant αF represents the strength of coupling between electron and LO 

phonon. As we can see from Table 3.1, the materials in the II-VI group overall have larger 

Fröhlich constants than the ones in the III-V group. Indeed, comparing GaAs and CdS, the 

former has a Fröhlich constant of only 0.068 and the latter has one of 0.51 [3.22]. However, 

one materials in the III-V group stands out in the category of αF is GaN. With an αF of 0.48, 
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almost the same as that of CdS, and also a significantly large bandgap of 3.4 eV, GaN 

would potentially be a favorable candidate for investigating laser cooling. Indeed, GaN 

contains many attractive properties, including large LO phonon energy (~90 meV), high 

joint density of states (less saturation), wide bandgap (weak Auger recombination), and 

small refractive index (less light trapping). Also, with the mature technology of GaN and 

its alloys (e.g. AlN, InN) developed in growth, fabrication, and light extraction along the 

populated application in both electronics (high speed and high power transistors [3.23]) 

and photonics (LEDs and laser diodes [3.24]), it is obvious the time to commence 

experimental works on the development of laser cooling using GaN material.  

In this chapter, we report our investigation of Antistokes photoluminescence of free-

standing GaN and GaN nanowire material. The strong light emission we measured gave us 

the confidence to believe that laser cooling may be achieved with GaN in the near future.  

 

 

II. Sample Description and Experimental Setups 

The sample we used in our experiments is a free-standing GaN wafer and a GaN nanowires 

sample. The free-standing GaN wafer was grown by metal organic chemical vapor 

deposition (MOCVD) with Si donor concentration of 2×1018 cm-3. The nanowire sample is 

made of catalyst-free GaN nanowires grown directly on a Si (111) substrate under nitrogen 

rich conditions by radio frequency plasma-assisted molecular beam epitaxy (MBE). The 

area density of the nanowires was estimated to be ~1×1010 cm-2. The samples were mounted 

on a cold finger of a-continuous-flow cryostat with its temperature being set from 4.2 K to 

475 K. The pump light source was a Ti:sapphire laser with a 3 ps pulse length, a repetition 
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frequency of 76 MHz and a wavelength tunable from 730 nm to 850 nm. The laser pulse 

was subsequently either frequency doubled or quadrupled by using either one or two BBO 

crystals, which allowed the excitation of GaN either across or above the bandgap. The focal 

spot of the pump beam on GaN samples is typically 0.02 mm2. For the free-standing GaN 

sample, the photoluminescence (PL) signal was collected by a double-grating spectrometer; 

while for the GaN nanowire sample, the PL signal was collected by a single-grating 

spectrometer, with appropriate filters to block the strong laser signal before the light enters 

it. The spectral analyzed light was detected by a photomultiplier tube.  

 

 

III. Results and Discussions 

We first measured the PL spectra using free-standing GaN sample with pump photon 

energy well above the bandgap of GaN, i.e. a 209 nm laser source generated with 2 BBO 

crystals for frequency quadrupling from a Ti:Sapphire laser. The average pump power was 

0.5 mW. The PL spectrum of GaN obtained at 6 K is shown in Fig. 3.2. The dominant peak 

located at 357.3 nm corresponds to the recombination of the excitons bound to neutral 

donors (D-X or I2) whereas a small peak around 368.13 nm is caused by recombination of 

electrons bound to the donors with free holes (D-h). The three peaks at 380.08 nm, 390.96 

nm, and 402.49 nm correspond to the recombination of the donor-acceptor pairs (DAP) 

and its 1LO-phonon and 2LO-phonon replicas, respectively. The strong intensities of LO-

phonon replica of DAP indicate the strong coupling between electrons (or holes) bound to 

donors (or acceptors) and LO phonons. When the sample temperature is increased, the peak 
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of DAP progressively evolves towards the exciton peek, as also shown in Fig. 3.2, and 

eventually, above 200 K all the sharp features in the spectrum disappear.  
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Figure 3.2  PL spectra excited by 209 nm laser with an average power of 0.5 mW under different 
temperatures. 

We then move closer to the investigation of optical refrigeration by exciting the sample 

with pump photon energy below the bandgap. The ASPL spectra of free-standing GaN are 

shown in Fig. 3.3. The red curve of Fig. 3.3 shows a typical ASPL spectrum measured at 

385.6 nm at room temperature. The dominate ASPL peak is 71 meV above the pump 

photon energy, well above kBT, while the LO phonon energy of GaN is 92 meV, only 

slightly larger than the difference mentioned above. Such phenomenon is in full agreement 

with results shown in Ref. [3.15]. From the analysis above, the ASPL process can be 

understood with the following 3 steps: first, the pump photon was absorbed with the 

assistant of LO-phonon; second, the exited electrons in conduction band went through 

thermal equilibrium, with the releasing of acoustic phonons carrying away about 21 meV 

of energy to the lattice; finally, the electrons recombined with the holes directly and 
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radiated photoluminescence, which does not involve phonons in this step. The 71 meV 

energy difference between ASPL main peak and pump photon energy also clarify the fact 

that what we observed was ASPL rather than AS Raman, since the latter always has a shift 

equal to the phonon energy.  
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Figure 3.3  Normalized PL spectra measured at 300 K at the excitation wavelength of 209 nm (blue 
curve) and 385.6 nm (red curve). 

 

We also took a comparison between the PL obtained while pumping well above the 

bandgap and ASPL acquired by pumping below the bandgap, as showed in blue and red 

curve in Fig. 3.3, respectively. The above bandgap PL peak is about 106 meV higher than 

the ASPL peak, indicating that the absorption when pump below the bandgap is relatively 

weak such that the states above bandgap was not filled up. In such case, the ASPL was 

originated from the states below the nominal bandgap, which is called the “Urbach tail” 

[3.26]. It was stated in Ref. [3.26] that there are still states available below the bandgap, 
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with the density of states decaying in exponential rate while stepping away from the 

bandgap. These Urbach tail states are advantageous for laser cooling since the electrons 

can temporarily reside on them after pumped by incident laser, while waiting for the 

assistance of LO phonons to “climb up” to the conduction band [3.15]. Thus, in the purpose 

of cooling, the semiconductor should be excited below the nominal bandgap into the 

Urbach tail. The origin of these tail states can be either extrinsic (defect/impurities) or 

intrinsic (phonon assisted absorption) nature. The extrinsic Urbach tail might be less 

suitable to be used for laser cooling, since such ASPL process is always accompanied with 

background absorption. Though this origin unknown background absorption is very weak, 

it would be seriously obstacle to cooling (As we stated in the introduction section, non-

radiative recombination of merely 1% would be fatal for cooling). It is also studied in Ref. 

[3.14] that the donor-acceptor transition below the bandgap can be used for laser cooling. 

The cooling threshold was found to be lower though, the cooling power was found to be 

very weak due to the saturation of the donor-acceptor transition. Meanwhile in concept, it 

is not that different from the usage of extrinsic Urbach tail.  

On the other hand, the intrinsic Urbach tail – the one results from phonon-assisted 

absorption appears to be a natural choice for the purpose of laser cooling. Such tail states 

almost ensured the production of strong Antistokes shift in PL, since the joint density of 

states in the conduction band (which is above the pump photon energy) is always larger 

than the density of states in the tail. In Ref. 10 the author investigated the potential of 

utilizing intrinsic Urbach tail for laser refrigeration and showed than although the phonon 

assisted absorption does get saturated, it usually happens at relatively high pump powers. 

The author also showed that another process of phonon-assisted electron-hole 
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recombination (the reverse process of phonon-assisted absorption) also occurs, which 

results in a Stokes shifted photoluminescence not in favor of the cooling purpose. However, 

by properly choosing the excitation wavelength, one can make sure that the Antistokes PL 

dominates, as was indeed observed in our experiments. The fact that phonon-assisted 

absorption resulted Urbach tail usually exists in high purity semiconductor material is 

specially favorable of laser cooling, since in high purity materials the rate of background 

absorption, which deteriorates the cooling purpose, can be ignored. 

Evidently, the potential of optical refrigeration becomes promising when the depth and 

strength of Urbach tail are enhanced. The depth of Urbach tail, i.e. how far the exponential 

states extends below the bandgap, is determined by the energy of LO phonons. The strength 

of phonon-assisted absorption, on the other hand, is proportional to the electron-phonon 

interaction strength, i.e. Fröhlich interaction, which is especially strong in polar 

semiconductors. With the analysis above, GaN can be an outstanding choice for the 

investigation of laser cooling, not only since its very large LO phonon energy stands out 

among its competitors (92 meV for GaN, 36 meV for GaAs, 37 meV for CdS), but also 

since its large Fröhlich constant (0.48 for GaN, 0.51 for CdS, 0.07 for GaAs).  
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Figure 3.4  Comparison of normalized ASPL signals of freestanding bulk GaN (black curve) and 
GaN (red curve) nanowire samples at room temperature.  

 

For the measurement of GaN nanowire sample, We chose the pump laser wavelength was 

set at 382.8 nm with power of 20 mW, because it is roughly 1 LO phonon energy below 

the ASPL emission peak wavelength from the free-standing GaN sample, also because this 

is the shortest wavelength for a 390 nm short-pass filter to sufficiently suppress the pump 

laser so that the ASPL signal won’t be covered by the tail of strong pump laser, with the 

limited resolution provided by the single grating monochromator. The red curve in Fig. 3.4 

showed that at room temperature, we could barely detect any photoluminescence signals, 

while two sharp peaks of Raman scattering by the GaN TO and LO phonons could be easily 

identified. The stronger peak at 375.3 nm is due to the Antistokes Raman Scattering of E2 

TO phonons with a phonon energy of 64.7 meV, while the small bump at 372.3 nm is due 

to the A1 LO phonons with a phonon energy of 91.3 meV. Such a phenomenon 

distinguished obviously from the one we measured on a bulk freestanding GaN sample, as 
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shown with black curve in Fig. 3.4, which presented a clear broad PL peak at 374.6 nm and 

no Raman narrow peaks. The weaker peak at 377.5 nm was due to the edge of the short-

pass filter. Since the intensity of ASPL from GaN nanowires sample was more than 100 

times smaller comparing to the one from bulk GaN sample, both of the curves were 

normalized for a clear illustration. This indicated that for the GaN nanowire sample with 

much smaller area density of active media than the bulk GaN, we might need a higher 

temperature or a pump photon energy closer to the GaN bandgap to boost up the radiative 

recombination rate, hence the intensity of the PL. Since there is no suitable short-pass filter 

for any shorter pump wavelength, we chose to increase temperature. The bandgap would 

also shift to lower energy with the increase of temperature [3.25], which brings the pump 

laser closer to the bandgap, and hence increase the absorption rate. Indeed, when the 

temperature increased, we could observe the enhancement of the ASPL signal, as shown 

in Fig. 3.5. We could see that at 350 K, both Raman signals from TO and LO phonons 

increased. And at 400 K, a significant contour of PL signal was present underneath the two 

Raman peaks. Especially at 475 K, the Raman peaks were completely insignificant, 

indicating that the major signal detected at such temperature is the ASPL. The main PL 

peak at 475 K locates at the wavelength of 373.5 nm, which is a 80.6 eV blue shift of the 

pump laser photon energy. Also, as temperature increased, the intensity of PL signal 

enhanced dramatically. Comparing the height of PL contour at 300 K and the one at 475 

K, the enhancement is more than one order of magnitude.  
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Figure 3.5  ASPL signal of GaN nanowire sample measured at the temperature of 300 K, 350 K, 400 
K, and 475 K. 

To confirm that the ASPL we measured in both free-standing GaN and GaN nanowire is 

indeed induced by phonon assisted absorption, we have measured the intensity of ASPL in 

the dependence of its pump power. Besides ASPL induced by phonon assisted absorption, 

luminescence upconversion in semiconductors can also be the result of two-photon 

absorption [3.28]. Since there are two photons involved in one upconversion cycle, the 

intensity of ASPL resulted from two photon absorption should be proportional to the square 

of pump power. On the other hand, since only one photon is needed in the cycle of phonon-

assisted absorption, the power dependence of phonon-assisted ASPL should be a linear 

relation. As we can see in Fig. 3.6 (a), at the excitation wavelength of 386.5 nm, up to the 

pump power of 40 mW, the integrated intensity of ASPL from free-standing GaN sample 
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is proportional to the pump power. In comparison, we also measured the dependence using 

a CW laser pumping the free-standing GaN sample at the wavelength of 532 nm, which is 

far below the bandgap of GaN. The ASPL generated with 532 nm excitation, as shown in 

Fig. 3.6 (b), has intensities proportional to the square of pump power. Note the fact that the 

intensity of PL excited by 385.6 nm wavelength is at least four orders of magnitude higher 

than that for the two-photon absorption induced PL.  
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Figure 3.6  Integrated PL intensity of freestanding GaN as a function of pump laser power measured 
at room temperature: (a) excited at 385.6 nm. (b) excited at 532 nm. The solid red and green lines are 
linear and quadratic fitting, respectively.  

To further support our analysis, for the GaN nanowire sample, we also measured the 

intensity of ASPL as a function at 475 K, with an excitation wavelength of 382.8 nm, see 

Fig. 3.7. It is obviously illustrated that up to the pump power of 50 mW, the intensity of 

ASPL increased linearly with the excitation power. Such a phenomenon also supports the 

fact that when GaN nanowires was exited at the phonon energy being roughly 1 LO phonon 

energy lower than the bandgap, the ASPL was induced by one photon absorption process. 
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The energy difference between pump photon and PL emission was made up by the energy 

of LO phonons. Unlike the bulk GaN sample, since the recombination rate of nanowires 

were much smaller, the linearly scaling up behavior of ASPL with pump power could only 

be observed at elevated temperatures. 
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Figure 3.7  Integrated ASPL intensity of GaN nanowire sample as a function of pump power 
measured at the temperature of 475 K. Square dots are experimental results, red curve is a linear fit.  

When we tune the excitation wavelength from 385 nm to 410 nm, we observed the nearly 

exponential decrease of ASPL intensity, as shown in Fig. 3.8 (a). Such fact was predicted 

in Ref. [3.15]. One can observe the transition from the phonon-assisted process to two-

photon absorption process in the behavior of ASPL. The exponential trend is still persistent 

when the pump photon energy is more than 1 LO phonon energy below the bandgap, 

suggesting the fact that the absorption phonon assistance process gradually evolve from 

involving one phonon to two phonons. The similar trend was discovered by other groups 

on the ASPL experiments of CdSe quantum dots [3.21] and GaAs quantum wells [3.17]. 
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However, when the pump wavelength is beyond 400 nm, the intensity of ASPL stop 

decreasing and almost stays as a constant. Such a trend indicate that the two photon 

absorption process is stronger than the weak phonon-assisted absorption involving three or 

more phonons. To verify the assumption that the ASPL gradually changes from phonon-

assisted to two photon absorption while the pump wavelength moving away from bandgap, 

we have measured the pump power dependence of ASPL intensity at several excitation 

wavelengths. Indeed, we can see in Fig. 3.8 (b) that while the pump wavelength shifts from 

382.1 nm to 409.1 nm, the dependence  
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Figure 3.8  (a) Integrated PL intensity as a function of excitation wavelength measured at the 
temperature of 300 K. Pump power is set as 20 mW, the solid line is guide for eye. (b) Integrated PL 
intensity as a function of pump power at four different excitation wavelengths measured at room 
temperature. The curves show the fitting of experimental data by the function of I ~ Pα, where I is 
the integrated PL intensity, P is the pump laser power, and α is the power index. 

of ASPL intensity on pump power gradually evolves from linear to quadratic. The two-

photon absorption process inclines to heat up the sample instead of cooling it down, so it 

would be better to reduce this effect. Thus, a CW laser excitation should be used in the 

cooling experiment rather than a pulsed one, just as the one with succeeded cooling on CdS 

[3.20].  
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Figure 3.9  Normalized integrated PL intensity as a function of temperature at different excitation 
wavelengths. The solid lines are guide for eye. The dashed line indicates the Bose-Einstein statistics, 
assuming that intensity of ASPL is proportional to the number of LO phonons.  

It is possible that the ASPL intensity increases with temperature rising would be the 

clearest indication of phonon-assisted process [3.21]. As it is shown in Fig. 3.9, the 

intensity of ASPL scales up dramatically with the ramping up of temperature from 150 K 

to 390 K. Similar behavior was also observed in our GaN nanowire sample measurements, 

as can be seen in Fig. 3.5. Since the intensity of ASPL is very sensitive to the selection of 

pump wavelength, see Fig. 3.8 (a), in this measurement the excitation wavelength is tuned 

to keep its photon energy always approximately 1 LO phonon energy lower than the 

emission peak of ASPL. The data below 150 K cannot be shown since the ASPL signal 

strength is significantly diminished and overwhelmed by the laser tail, given limitations of 

our experimental setup. The dependence of ASPL intensity on temperature obeys the trend 

of Bose-Einstein distribution, as shown by the dashed curve in Fig. 3.9, suggesting that the 

ASPL is induced by a one phonon assisted process. To compare with PL signals excited at 
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other wavelengths, we measured the dependence of PL signal strengths to pump power at 

both wavelength of 209 nm and 532 nm, i.e. well above and well below the bandgap energy, 

respectively. In both these cases, the electrons are excited directly well above the 

conduction band bottom by either one photon or two photon absorption, without the 

assistance of phonons. As shown in Fig. 3.9, the PL intensities excited by these two 

wavelengths are decreasing with the rising of temperature, which is most possibly the 

results of increased nonradiative recombination. The temperature behavior of ASPL in 

GaN freestanding sample and GaN nanowire sample both supports the fact that the 

upconversion observed in our experiments is assisted by LO phonons. 

IV. Conclusion 

In summary of the chapter, we have observed ASPL from both GaN freestanding sample 

and GaN nanowire sample. The mechanism of ASPL has been attributed to phonon-

assisted upconversion, which can be used to achieve optical refrigeration, with 

measurements evidence from the dependence on both pump power and temperature. Indeed, 

the observation of phonon-assisted ASPL is merely the first step of the investigating of 

cooling, we believe that our results give us confidence on the prospect for using GaN as 

the base material of semiconductor laser cooling.  

  



‐ 77 ‐ 
 

Chapter 4  Summary and Outlook 
In this chapter, we briefly summarize our work through the chapters and provide 

outlook directions for possible future research. 

In Chapter 1, we studies the backward THz generation through optical rectification 

using periodically poled LiNbO3 and LiTaO3 (PPLN and PPLT, respectively). The 

enhancement of THz output powers in both materials were attributed to the enhance 

second-order nonlinear coefficient due to transverse-optical (TO) phonon polariton 

resonance. With the PPLN sample, we have generated the shortest wavelength of 62.5 µm 

at the poling period of 7.1 µm, and also observed an output enhancement as large as 61 

times. The polariton resonance at 40 µm is the root of this enhancement. With the PPLT 

sample, we have generated the largest output power close to 100 µW. A polariton 

resonance at 78.7 µm was predicted through the least square fit of effective second-order 

nonlinear coefficients. Such a resonance can be generated by beating two TO phonons of 

LiTaO3, due to its strong anharmonicity in the phonon Hamiltonians. To verify our 

prediction, another wafer of PPLT of much shorter poling period was designed for test. We 

have observed the complete resonance. 

Possible future research directions of this topic can be conducted in the following: first, 

build a better theoretical model to consider all effects originated from the polariton 

resonance, such as nonlinear coefficient enhancement, absorption enlargement, index 

change and its effect on THz power extraction, etc. to find out the ultimate wavelength 

range for maximum output power. Second, a new scheme of surface emitting THz 

generation can be implemented, since it is the best way to maximum the nonlinear 

interaction length and minimize THz absorption.  
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In Chapter 2, we investigated on the hot phonon behavior in GaN HEMT device. A 

phonon temperature was defined to quantitize the phonon population, and two 

measurement method was proposed. The first method makes extraction of phonon 

temperature through the ratio of intensities between Anti-stokes and Stokes Raman signal. 

It requires more complexity in experimental efforts, which may lead to errors in 

temperature measurements. The second method obtain the temperature through fitting the 

Stokes Raman peak shift to a model. It is simple in experimental facilitations, however 

needs multiple parameter inputs depending on material properties. A proper calibration of 

the model is necessary for more accurate fitting of the temperature. The ultimate purpose 

of our project is to develop an accurate and effective method to experimentally measure 

the phonon population in both regular and isotope doped GaN HEMT samples and verify 

if the latter has reduce hot phonon numbers as predicted in theory. 

If future research would be conducted on this problem, one would suggest to develop 

a better theoretical model based on experimental data of the second order Raman signals, 

since they would contain information from all electron-phonon collisions in the entire 

momentum space. One would also suggest the usage of tunable CW laser of output photon 

energy near the bandgap of GaN for narrowband Raman signal output and a spectrometer 

with triple grating to eliminate the necessity of filters and to have more accurate 

measurement of Raman peak positions.  

In Chapter 3, we have studied the photoluminescence upconversion of both free-

standing bulk GaN and GaN nanowires on silicon substrate. We have proved 

experimentally that the PL upconversion we observed was generated through one-photon 
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phonon-assisted process, through the dependences of PL densities to excitation power, 

incident wavelength, and temperature. Such upconversion process can be exploited for 

optical refrigeration in semiconductors. 

Further research on this project shall be not only focus on growing high purity GaN 

material to maximize emission quantum efficiency and minimize non-radidative 

recombination, but also on more detailed theoretical study of how bandgap energy, phonon 

energy, and Fröhlich interaction strength affect phonon removal rate and hence cooling 

efficiency. 

In the end, we would like to point out that the research of this dissertation in not only 

on the purpose of each individual area, but also on the effort to explore more applicable 

techniques that can be developed into applications through the studies of photon-phonon 

interaction.   
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