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/EH . These experiments were performed with Chih Hsiu Lin. 

 

 

Chapter 3: Vibrations of Sessile Drops of Soft Hydrogels . . . . . . . . . .64 

 

Figure 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 

(a) Schematic of a thin gel slab (1 mm thick) sandwiched between two parallel glass 

plates undergoing shear vibration. (b) The resonant peaks of the shear vibration of gel 

as obtained from the power spectra of their random vibration (RMS fluctuation 0.03 

mm). Powers are in logarithmic scale. (c) An example of a spherical gel drop of shear 

modulus 55 Pa; this is a snapshot of a video that was captured while the sphere sank 

slowly through mineral oil in a quartz cell.   
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(a) Schematic of the experimental setup for studying the height fluctuation of the gel 

drops placed on a hydrophobic substrate after subjecting it to a random white noise. (b) 

The power spectra for a 38L gel sphere (55 Pa) at different noise strengths, each has 

its resonant mode corresponding to l=2 at 51 Hz, their RMS fluctuation being marked 

in legend. (c) Two randomly selected snapshots of vibration of a 47L (55 Pa) gel 

sphere from a high speed movie of it undergoing random fluctuation. This corresponds 

to a spheroidal mode of l=2. 
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(a)  Two randomly selected snapshots of the lateral vibration of a 35L (45 Pa) gel 

sphere from a high speed movie of it undergoing random fluctuation.  (b) Similarity of 

the power spectra for a 53 L gel sphere (45 Pa) as obtained from height and lateral 

fluctuations at a noise strength of 0.014 m2/s3. 

 

Figure 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 

Power spectra of the height fluctuations of a 38 L drop of pure water, 60% glycerine 

in water, 80% glycerine in water and polyacrylamide gel (shear modulus 55 Pa) [The 

power spectrum for the gel sphere plotted here is same as that shown in blue in Figure 

3.2b]. The noise strength at which the stage was vibrated is 0.014 m2/s3. 
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(a) Experimentally observed resonant frequencies for the spheroidal mode (l=2) of 

vibration of gel drops of different shear moduli plotted as a function of their volume. 

The inset shows the plots of  versus m  for the three gels. (b) All the resonance 

frequencies are plotted as a function of the volume of the gel spheres in a log-log scale 

(c) The values of   are plotted as a function of frequency hP2   multiplied 

by a scale factor:  21 h . The linear fit has a slope ~ 1.92 ± 0.04 with a regression 

coefficient of 0.96. This shows how the values of the resonant frequencies of equivalent 

water drops fall on the same line. 
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(a - b) Examples of the height fluctuations of a 38L gel sphere of two different moduli 

(55 Pa and 290 Pa) following a Gaussian probability distribution. Noise strength is 0.1 

m2/s3. 
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Snapshots and schematics of the experiment. (Top) Side views of two transparent cells 

filled with a polyacrylamide gel with shear modulus 1160 Pa (a) and 13 Pa (b). Two 

identical steel beads (5 mm diameter) have been placed on the free air-gel interface. 

The vertical downshifts are respectively  = 0.03 and  = 320. (Bottom) Schematic 

representation of the deformation fields in the respective experiments. 
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Experimental evidence of reversibility of the gels. (a) A 10 mm diameter steel sphere 

immersed in 140 Pa gel, when slightly disturbed from its elastobuoyant position via an 

electromagnet, undergoes under-damped oscillations about its equilibrium depth eq. 

(b) Depth of an elastobuoyant bead (2.8 mm diameter) in a 13 Pa gel plotted as a 

function of the strength of an external vertical magnetic force. The depth at zero-Force 

indicates the equilibrium-elastobuoyant position of the sphere. The data (red, blue and 

green) shown here are from three different experiments where the closed symbols 

indicate the loading cycles and the open symbols indicate the unloading cycles. (c) 

Depth of submersion  of a 5 mm diameter steel sphere in a soft gel ( 13 Pa) varying 

as a function of its temperature. The experiments in the cooling cycle were performed 

first following which the gel was heated systematically to obtain the data for the heating 

cycle. 
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Figure 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 

Dimensionless depth of spheres ( =) plotted as a function of its dimensionless radius 

a/, for various shear moduli of the gels from  = 13 Pa to 2930 Pa. The grey lines 

indicate power law curves ( / ~ (a/)) with  = 2 and  = 1.5 for the two asymptotic 

limits for the normalized data. (Upper Inset). Depths () versus radii (a) for all the 

spheres. The plot area is divided into two domains; the boundary indicating  = 2a. The 

data points above the boundary indicates that the spheres were entirely below the gel’s 

surface. (Lower Inset). Best fit ( / = k (a/)) for the softest gel (13 Pa) highlighted 

(see text). 
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Sketches corresponding to the steps of the calculation of the elastic energy. (a) 

Reference state (no deformation); (b) A point-load is applied at the free surface. The 

displacement at the application point is . (c) A sphere of radius a indents the free 

surface over the distance . (d) Mapping from the reference state (solid lines, with the 

bead at the surface) to the deformed state. A point of the gel in the rest state is located 

with coordinates (r; z). r~ is the distance from the initial contact point of the bead. In the 

deformed state, the point that was at (r; z) is located at R(r; z); Z(r; z). 
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Sketch of the (dimensionless) energy density profiles W0 (e.g. dotted line) and W (e.g. 

solid line) as a function of the distance r~ to the initial contact point. The dashed 

horizontal double arrows highlight two domains, corresponding to (i) r~ >> a where the 

(dimensionless) elastic energy densities W and W0 are similar, and (ii) r~ << a where 

they are different. 
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Strain energy density function given by the incompressible Gent material model 
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slopes 1 and 2, i.e. values of the local exponent 1 equal to 1 and 2. 
*

10I  is the value of 

the first invariant beyond which the local exponent is larger than 3/2. 
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(a) Snapshots of the experiment of loading a needle (diameter, D and grafted with ~ 5 

nm layer of polydimethylsiloxane chains) inside the gel with a thin layer of silicone oil 

(AR20, Sigma Aldrich) on its surface. The oil above the gel reduces friction by 

lubricating the contact between the needle and the gel during indentation. The red dye 

demarcates the interface between the gel and silicone oil. After unloading the needle 

from the gel, the dyed interface retracted to its original position showing that there was 

no fracture in the gel. (b) For these experiments of loading a sharp needle (inset) inside 

the gel ( = 478 Pa), the non-dimensional force 
2DP  varies almost as the square of 

the non-dimensional displacement  /D. An uncertainty analysis yields the value of the 

power of  /D as 1.99   0.03. (c) When the same needle was indented in the gel while 

undergoing vertical vibrations, a fine fracture was induced by the indentation. The 

needle underwent square wave oscillations (amplitude of vibration ~ 0.64mm) along its 

axial direction that were generated by a waveform generator (Agilent, model 33120A), 

connected to a mechanical oscillator (Pasco Scientific, Model No: SF-9324) via an 

amplifier (Sherwood, Model No: RX-4105). 
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The fall of a small ceramic ball (3.2mm diameter) through a soft polyacrylamide 

hydrogel is captured with a high speed (500 frames per second) camera. The folding of 

the surface of the gel around the sphere (a), the pinch-off instability (b) and the 

formation of a thin line (c-d) connecting the ball and the surface of the gel are evident 

in these videographs. The surface of the gel relaxes slowly (d) with no sign of any 

fracture in the gel. The white scale bar here represents 1mm. (e-f) The schematic 
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illustrates the wrapping of the sphere by and the folding of the surface of the gel as the 

sphere penetrates the gel. Here, h0 is the initial height of a single ball immersed in the 

gel.  
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Static Stokes experiment showing the depths of submersion of Silicon Nitride Ceramic 

balls of diameters 2.4mm, 3.2mm, 4mm, 4.8mm and 6.35mm respectively in a 3.1% 

PAM hydrogel. The white scale bar represents 5mm. 
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(a) The experimental data from the static immersion experiments are analyzed here by 

plotting the depth of submersion (h) against mg/4R. Here, m denotes the effective mass 

of the spheres after correcting for buoyancy inside the gel, g is the gravitational 

acceleration and R is the radius of the sphere. The closed symbols represent the data 

obtained by performing the elastic Stokes experiment in the lower modulus (8 Pa)  gel 

whereas the open symbols represent the previously reported data28 obtained with a 

higher modulus (40 Pa) gel. (b) The data for the lower modulus (8 Pa) gel are re-scaled 

by dividing h  with the capillary or Laplace length ( gLc   / ) and plotting it against 

gR/Here, is the difference between the density of the spheres and water,  is 

the shear modulus of the gel (~8 Pa) and (~73mN/m) is its surface tension.28 The data 

for the higher modulus (40 Pa) gel follows a linear relationship when h is rescaled with 

the radius and plotted with respect to gR/Capillarity does not play a significant 

role in the higher modulus gel and hence the data does not exactly follow the behavior 

that is shown by the spheres in the lower modulus gel (8 Pa). 
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The video micrographs (upper panel) illustrate the long range attraction between two 

ceramic spheres (4.8 mm diameter) submerged inside a soft PAM hydrogel. The 

micrographs of the lower panel capture the events following the immersion of a glued 

dimer of similar balls inside the gel. The dimers orient (0s to 12s) as they descend inside 

the gel and approach each other. Finally (30s), they form a close packed structure. The 

white scale bar represents 5mm. 
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Figure 5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 

(a) The video micrographs show the attraction of two steel spheres of diameter 4mm in 

a chemically cross-linked gel. This experiment was performed after depositing ink on 

the surface of the gel with a fine needle. When a sphere is released into the gel, line 

formed from the folding of the surface of the gel above the ball is clearly highlighted 

by the intense color of the ink. Some ink is also observed around the line, which reveals 

that the gel in the intervening space is squeezed out as the spheres attract each other. 

The black scale bar represents 5mm. The sequence of events in the videographs is 

shown schematically in (b-c). Here, x denotes the distance between the balls, h is the 

height of submersion of the balls before contact and h∞ is the height after contact. 
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(a) This graph reveals the long range nature of the attraction of two solid spheres inside 

the hydrogel.   Here, D is the diameter of the sphere, h∞ is the depth of the two spheres 

after they come in full contact, h0 is the initial depth of the first submerged sphere and 

h is the average depth of the two spheres (see also the schematic of figure 5.1) that 

varies with the distance (x) of separation. The black curve was obtained from fitting the 

experimental data using Origin software, which has the following expression, 

)104.0ln(096.0203.0  xh , where 
  hhhh /)(  and Dhxx 0/  (b) The squared 

distance of separation varies linearly with time with correlation coefficients better than 

98% . The symbols are same as in figure (a).  
0x  and  x  are the scaled distances of 

separation at times t=0 and  t, respectively.  
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The video micrographs in (a) capture the motion of a steel ball (4 mm diameter) on a 

thickness graded gel, the surface of which is inclined by 14° from the horizontal plane. 

The gradient is constant and steepest at the central portion of the cell where both the 

horizontal (x) and the vertical (h) displacements of the ball increase linearly with time 

(c). The white scale bar represents 10mm. The micrographs in (b) capture the motion 

of a ceramic sphere (diameter 4.8mm) on a thickness graded gel that had ink marks. As 

the ball rolls down the gradient, the ink is pulled from the surface, rolls over the ball 
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and finally returns to the surface. The black scale bar represents 5mm. The schematic 

of the ball rolling down the graded gel is shown in (d). 
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These video-micrographs capture the events leading to the formation of a semi-circular 

ring caused by the attraction between the copper spheres (diameter ~2.4mm) and a pre-

existing ceramic sphere (4.8mm diameter) inside the gel. The copper spheres were 

added sequentially in the gel. The white scale bar represents 5mm. 
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The micrographs in the upper panel show the growth of clusters on sequential addition 

of copper spheres (diameter 2mm) into the gel containing a ceramic sphere (diameter 

3.2mm). The growing cluster eventually engulfs the ceramic sphere. When another 

ceramic sphere is added, it is attracted by the cluster as well. The copper spheres on 

their own exhibit a structure comprising of parallel columns.  When the clusters are 

large enough (lower panel), they even attract and move towards each other. When the 

clusters coalesce, further re-organization of the spheres occurs that lead to a close 

packed state. In the online video, the abrupt stages of the re-organization of the spheres 

can be seen. These are reminiscent of elastic instabilities and/or plastic events. The 

black scale bar represents 5mm. 
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(a) Deformed surface profiles of water, and two representative gels are shown. In each 

case, a 2.4mm diameter PDMS grafted glass sphere was used to deform the surface. 

The white curves show the fitted Bessel function [ )/()(
*

00 cLLKL   ] to match the 

deformed surface profiles. For clarity the fitted curves have been shifted from the 

deformed surface profiles along the direction of the red arrows.  (b) The plot shows 
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how the elastocapillary decay length decreases with the shear modulus (of the gel. 

The red open diamonds denote the experimental data and the solid black line is fitted 

according to )exp(* BLL cc  with a value of B as 2.6x10-3 m2/N. (c) This plot shows 

that the elasto-capillary decay length decreases with the elasto-capillary number (

 0 ) for gels of shear modules  555 Pa.  The datum for a gel of even a higher 

modulus (845Pa) deviates from the plot. 
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(a) Figure illustrating fine balances of the elastic, wetting and gravitational forces 

giving rise to different types of stabilities of glass spheres (3.2 mm diameter) released 

on the surface of a polyacrylamide hydrogel of modulus 10 Pa.  An untreated 

(hydrophilic) glass sphere (right) immediately plunges into the gel and becomes 

neutrally buoyant afterwards. A hydrophobic glass (left) floats on the surface of the 

same gel. (b) This is an extension of the experiment in A, that shows when another 

hydrophobic particle is released in between the two, (c) it gets strongly attracted toward 

the hydrophilic particle, but moves on the gel’s surface to minimize its distance of 

separation from the latter. 
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(a) A plan view of the interaction of two 3.2 mm hydrophobic glass spheres on the 

surface of a 10 Pa gel.  A wire mesh lined with the base of the glass cell shows the field 

of deformation of the surface of the gel around the particles. (b) Attraction of the two 4 

mm diameter hydrophobic glass spheres on the surface of a 10Pa gel in air (c) Attraction 

of the two 2.4 mm diameter hydrophobic glass spheres on the surface of a 10Pa gel in 

air (d) Attraction of the two 2.4 mm diameter hydrophobic glass spheres on the surface 

of a 10Pa gel in contact with heptane.   
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(a) Schematic showing elastocapillary attraction of two spheres of identical sizes at a 

distance L. h denotes the depth of submersion of the ball with respect to the initial 

undeformed level of the gel. The change of  h as the spheres approach each other is 

denoted by h (see text and figure 6.4b) h0 is the vertical distance of the three phase 
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contact line from the undeformed free surface of the gel when the spheres are far apart. 

(b) The change in the depth of separation h scaled with h0 is plotted as a function of 

the non-dimensional distance of separation (L/Lc
*). Data from all the experiments 

cluster around the mean curve  )/(5.1/ *

0 co LLKhh  . The open circles [diameters: 

2.4mm (red), 3.2mm (black) and 4mm (green)] denote the 10 Pa gel-Air data. The open 

squares [diameters: 3.2mm (purple) and 4mm (pink)] denote the 19 Pa gel-Air data. 

The blue open diamonds (diameter 2.4mm) denote the 10 Pa gel-Heptane data. 
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This plot shows that the squared distance of separation between two interacting 

particles decreases linearly with time. The blue open circles correspond to the 2.4mm 

diameter spheres at the gel- heptane interface. (Inset) The pink open squares correspond 

to the 2.4mm diameter spheres at the gel- air interface. The shear modulus of the gel in 

each case is 10 Pa. 
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A 3.2mm diameter hydrophobic glass sphere is attracted towards a 4mm size 

hydrophobic glass sphere. As the two spheres contact each other, the pair re-orients 

inside the tube adjoining the two (tubulation). Finally, the pair penetrates inside the gel 

and becomes stagnant to a point where it becomes elasto-buoyant.  

 

Figure 6.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 

A plan view of elastocapillary surface force mediated self-assembly of 2.4mm silanized 

glass spheres at the interface of a gel (10Pa) and n-heptane. As the spheres are randomly 

dispersed on the surface of the gel through heptane, they form random clusters, which 

then move towards each other forming one large cluster. A wire mesh lined with the 

base of the glass cell shows the field of deformation of the gel surface. 
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(A) Schematic of the method used to measure the shear modulus of a gel. The method 

involves the creation of a random magnetic field that interacts with the steel disk and 

vibrates the upper glass plate randomly with respect to the lower plate thus creating a 
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random shear deformation of the gel. (B)The resonance peak of the shear vibration of 

the gel was obtained from the power spectra of its random vibration with which the 

shear moduli were calculated using mHA /2    . (C) The shear moduli ( ) of 

different gels plotted as a function of the percentage of polyacrylamide (x) in them 

follows an empirical relationship )/178exp(2500 98.2x . 
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(a) Two cylinders placed parallel to each other on a soft gel (=18 Pa) move towards 

each other and eventually coalesce.  (b) If the distance between the cylinders is large 

enough, we also see elastically arrested configurations as well. (c) A similar self-

organized pattern to (a) arises for this initial configuration after sufficient time. The 

time stamps in the second and third images in the panel in c) are relative to the panel’s 

first image. 
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(a) A schematic illustrating the numerical model.  (b) The deformed profile of the 

surface of a gel for a single cylinder.  The red open circles show the experimental points 

and the black line are obtained from simulation. Both fit an exponential function 

)/exp()0()(0 co Lxx   , with Lc = 7.23 (simulation) and 2.25 mm (experiment).  (c) 

The settling depth of the cylinders )()0(0 o   scaled with their initial depth )0(h  is 

plotted as a function of the non-dimensional distance of separation 
cL/ where Lc is the 

effective decay length of elastic deformations. The open symbols represent the data 

obtained from three different experiments. The black line shows the results of the 

numerical simulations of the equations of motion (7.4-7.6) with parameter values R = 

3, K = 2000, ρ = 0.35 with τ = 14.59. (Inset: Schematic of two cylinders approaching 

each other on the surface of a gel with appropriate notation used in the text) (d) The 

dynamics of attraction of two cylinders showing an exponential collapse (see text for 
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details). The open symbols represent the experimental data. The red line is obtained 

from simulations. The black line corresponds to a linear fit of the experimental data. 
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the experimental scenario shown in Figure 7.1, wherein the cylinders aggregate in pairs 

before slowing down and coalescing together. 
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the main plot. 
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force per unit width of the glass plate F/L increases super- linearly with 
0

  with an 

exponent close to 1.3. Here data are shown for three representative film (1.8, 6.2, 

14.4m). (c) LF /  is plotted against 2/3

0

4143 )()(  EHg  (equation 8.9a) for seven 

different elastic films (1.8 m to 14.4 m) (d) LF /  is plotted against 34

0

3132 )()(  EHg  

(equation 8.9b) for the same films as above. 
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parallel alignment. The wire mesh lined with the base of the petri dish shows the 

deformation field of the film. (c) This graph summarizes the non-dimensional descents 
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The red curve shows the theoretically predicted (Equation 8.7) energy of attraction in 

an ideal situation without adhesion hysteresis. The experimental data for the attraction 

of two cylinders on three different films (5.7, 10.4 and 12.6 m) show a good collapse 

but being much lower in magnitude than that predicted from theory. The theoretical 

black curve accounts for the role of adhesion hysteresis (Equation 8.12). 
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indicated in the legend. 

 

 

*** 
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Abstract 
 

 

 Soft elastic solids play an important role in a wide range of applications such as 

in tissue scaffolds to grow artificial organs, in wearable contact lenses, as adhesives, in 

soft robotics and even as prototypical models to understand the mechanics of growth 

and morphology of organs. For a soft elastic material like hydrogel with its shear 

modulus in the range of tens of pascals, its surface tension also contributes to the 

mechanics of its deformation in addition to its elasticity. As opposed to a hard solid that 

is very difficult to deform, for the case of these soft solids, even a weak force like 

gravity can bring about significant deformation. Many of these aspects of the 

deformation and behavior of these ultrasoft materials are still not very well understood. 

Thus, the objectives of this dissertation were to understand the role of elastocapillarity 

(i.e, joint roles of solid surface tension and elasticity) and elastobuoyancy (i.e, joint 

roles of gravity and elasticity) that manifest in such solids.  

 In this dissertation, we studied the role elastocapillarity in adhesion-induced 

instability in thin elastic films bonded to rigid substrates and also in surface oscillation 

modes of soft gel spheres set to vibration; the elastobuoyancy effect; elasticity mediated 

interaction of particles in soft solids as well as on thin films supported over a pool of 

liquid. We also presented some new results on how soft spherical gels undergo 

restricted spreading on rigid substrates with varying surface energies.   

 In the first section, we studied how a thin confined layer of a soft elastic film 

loses adhesion from a rigid substrate by forming interfacial instabilities when a tensile 

stress is applied to it. We performed experiments to quantify the characteristic 

lengthscale of the patterns formed and found that they were significantly larger than the 
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wavelengths of purely elastic instabilities. A linear stability analysis of the elastic field 

equations by taking into account the role of surface tension showed that the 

amplification of the wavelength is due to the role of elastocapillarity where the surface 

tension, elasticity, and film thickness contribute jointly in a non-trivial way. In addition, 

we found experimentally as well as theoretically that the stress required to adhesively 

fracture these films is much larger than Griffith’s fracture stress for stiffer elastic films, 

which is also due to the effect of elastocapillarity. We also studied the surface 

fluctuation of sessile hydrogel spheres subjected to mechanically-induced Gaussian 

white noise to understand the role of elastocapillarity in their oscillation modes. An 

important finding of this study is that they give a direct evidence that the surface tension 

of these elastic hydrogels is almost like that of water, which is the integral solvent in 

the swollen network of the polymeric gel.   

 In the subsequent section, we introduced the new phenomenon of 

Elastobuoyancy. When a rigid sphere is placed on the surface of an ultrasoft hydrogel, 

it plunges into the soft substrate to an equilibrium depth where the elastic strain energy 

of the surrounding medium balances its weight. We refer to this state of the sphere as 

‘Elastobuoyant’. By performing systematic experiments where we varied the sphere 

size and the elasticity of the substrate, we obtained scaling laws of the depth as a 

function of the radii, elastic modulus and the spheres buoyant weight, which were also 

supported by asymptotic analyses of the same.  

 Following the section on elastobuoyancy, we reported a new set of principles to 

design self-assembly of particles by using the combined roles of surface tension, 

elasticity, and gravity in soft substrates. We used three different systems to study this 

elastic interaction macroscopically: (i) elastobuoyant assembly of particles suspended 

inside a soft elastic gel, (ii) elastocapillary assembly of particles floating on the surface 
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of soft gels analogous to capillary attraction of objects on the surface of liquids, and 

(iii) assembly of particles on the surface of thin elastic membranes supported over a 

viscous liquid.  

 In the second last chapter in this thesis, we presented some results on how soft 

elastic gel spheres spread on rigid substrates with different surface energies. Our 

observations indicate that their contact angles are slightly greater than those of 

equivalent liquid drops on similar substrates. The contact angles of these gel spheres 

increase as a function of elasticity and decrease when surface energy increases. We 

derived an expression for the excess elastic tension in the gel spheres at the crack tip by 

using an approach that is similar to estimating the viscous dissipation at the contact line 

during spreading of liquids. By using a general constitutive law where the elastic energy 

is not limited to the square of the strains, the singularity at the crack tip is artificially 

removed thereby forcing the gel to assume a liquid-like behavior. Our experimental 

results agreed reasonably well with the model.   

 In the last chapter, we summarized the doctoral research and presented 

suggestions for future investigations. There are several appendices in this thesis that 

have interesting observations from partially completed projects that need additional 

research and analysis in the future.   
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Chapter 1 

Introduction 

 

 
 

1.1 Motivation for the Current Research 

Pierre-Gilles de Gennes (Nobel Laureate in Physics, 1991), the founding father of Soft 

Matter, said towards the end of his 1994 Dirac Memorial Lecture titled ‘Soft 

Interfaces’1 –  

 “Long lectures like these tend to be over-optimistic, giving the impression that 

most physical questions are under control. The reality is different: soft interfaces are 

far from a happy end...”  

 Soft Matter is a broad class of Condensed Matter Physics that includes the 

studies of materials such as liquids, polymers, biological membranes, liquid crystals, 

gels, colloids, foams and granular materials. Our inspiration for the research presented 

in this thesis is oriented towards exploring one subset of this field, i.e, of soft elastic 

materials. Such soft solids are widely used in various applications such as in tissue 

implants during surgeries, in protective armor for warfare, as adhesives, in drug 

delivery, as scaffolds to grow artificial organs, and now as stretchable electronics too. 

These materials deform easily due to their low elastic modulus and their mechanics are 

governed by laws that are different from those applicable to their stiffer counterparts. 

Due to their lower elasticity, their surface stresses become important under certain 

geometric length scales and the coordination between the surface (-capillary) and the 
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elastic properties, i.e., elastocapillarity, unfolds new physical phenomena in these 

solids.  

 In this dissertation, we studied elastocapillary phenomena in adhesion-induced 

instability in thin elastic films bonded to rigid substrates and surface oscillation modes 

of soft gel spheres set to vibration; the elastobuoyancy effect; elasticity mediated 

interaction of particles in soft solids as well as on thin films supported over a pool of 

liquid as well as how soft gels wet rigid substrates. Before going into each of these 

studies in detail, we discuss below the motivation behind studying the various physical 

aspects of these soft solids. 

 Based on our studies of how particles deform and move on soft solids may 

inspire one to design a new class of soft fluidic devices, in a spirit similar to microfluidic 

devices that are widely used nowadays. The advantage of having a device made with a 

softer gel like material would be to use its deformation properties to induce strain 

energy gradient to allow transport of particles. For the use of these solids in soft robotics 

and automation, it is important to know how the material behavior changes due to 

additional effects such as its surface tension or whether these undergo viscoelastic 

dissipation due to repetitive cycles of deformation and relaxation. Typically, our studies 

may inspire Engineers to design softer channels made of stretchable elastic gels for pipe 

flows where instead of introducing an external valve for flow restrictions, they could 

insert magnetic particles in an annular ring zone that could be closed or opened by 

applying only a magnetic field. Our results on the elastocapillary effect on enhancement 

of the critical stress required to fracture an interface between a soft film and a rigid 

substrate could help in the design of a more robust bonded interface just by using a 

softer adhesive. Additionally, as will be discussed later in the summary, we also 

propose designing a new kind of particle focusing mechanism, the elasto-thermal trap, 
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whereby using the temperature induced softening or rigidifying a polymeric elastic 

substrate, one can move around or focus a particle in a controlled fashion. Before 

moving into greater detail of the potential applications, we will begin by introducing 

briefly some background about the research in this dissertation. Owing to the great 

variety of topics that have been covered here, we will briefly discuss the common 

themes that underline the general direction and numerous results that culminated from 

this thesis, in the form of a review.  

 

1.2 Capillarity and Elasticity: Role of Elastocapillarity  

 Capillarity refers to the role of surface tension, , in the case of liquids that is 

equal to its surface free energy. For solids, however, one has to be careful since these 

two quantities may not be the same due to an additional contribution generated by the 

surface strain. Shuttleworth2 pointed out that the surface stress of solids is given by: 

 dd ~ , where  is the surface free energy and  dd  is the stress generated 

by the strain applied,  . Nevertheless, for amorphous materials like hydrogels or 

elastomers like polydimethylsiloxane (PDMS), it has been found that the surface stress 

of the solid is more or less equal to its surface free energy3, and is often interchangeably 

referred to as the solid surface tension. The elasticity of solid materials is characterized 

by their shear modulus,  . One can then define a material length scale by combining 

the capillarity and elasticity as  that is referred to as the elastocapillary length. If 

this length-scale is larger than the typical geometric length scale (  ) of the solid 

material in concern, 1 , the surface tension effects become prominent. 

However, if it is much lower, such that 1 , the surface tension does not play a 
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significant role. For example, if we consider a metal like steel, its shear modulus, ~ 

80 GPa, and its surface tension,  ~ 1 N/m, thus the elastocapillary length ~ 110-11 m, 

which is in the sub-atomic range. On the other hand, for a hydrogel such as crosslinked 

polyacrylamide gel with ~ 50 Pa and ~ 72 mN/m, the elastocapillary length ~ 1.4 

mm. We chose to work with these soft gels, such that by designing an experiment in 

which the geometric scale is much lower than the elastocapillary length, we could test 

the cooperative roles of capillarity and elasticity in action and use it to study various 

phenomena that will be introduced shortly.  

 The idea of elastocapillarity4,5 is not absolutely new. On one hand, this effect 

may appear due to the capillarity of a liquid in contact with a soft solid, capable of 

deforming it. On the other hand, the solid itself may be soft enough such that its surface 

tension effects are strongly coupled to its elastic deformation. The former idea was first 

proposed by Lester6 and Rusanov7 in the context of a liquid drop wetting a solid surface. 

In the classical Young’s equation8, the contact angle  , of a liquid drop on the substrate 

is determined from the balance of the horizontal components of surface tensions about 

the triple contact line, i.e, slsl  cos , where, l is the surface tension of the 

liquid, s is the surface tension of the solid and sl is the interfacial tension between 

the liquid and the solid substrate. However, for a soft solid, they6,7 pointed out that the 

normal tension component at the triple contact line,  sinl , which is usually ignored, 

may pull upon the underlying substrate thus deforming it9 (Figure 1.1 a). 

Elastocapillarity also manifests directly in the form of the radius (a) of the contact  
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Figure 1.1: (a) Liquid droplet deposited on a soft substrate: the solid is deformed in the 

vicinity of the contact line (adapted from ref.10). (b) Elastic sphere in contact with a 

solid surface, without any normal load: in the presence of surface forces (adhesion), the 

contact is not punctual but presents a disc shape of diameter a (adapted from ref.11). 

Reprinted (along with caption) with permission from ref.4 

 

deformation of rubber spheres with an effective radius R as   /~/ 23 Ra
11 (Figure 1.1 

b). This subject of deformation at the triple contact line has been of considerable interest 

to many who experimentally demonstrated that the surface at the triple line is 

uplifted12,13 and Style et. al14 showed that with a gradient of the substrate thickness, 

liquid droplets can be manipulated by durotaxis on this substrate (Figure 1.2 c). From 

common experience, we know that wet hair stick together as opposed to dry hair. Cohen 

and Mahadevan15 pointed out the joint role of interfacial effects and elasticity where the 

capillary action of the liquid films in between the thin strands bring them together16–19 

(Figure 1.2 b). Due to this, one has to be careful while making micro-contact printing 

stamps20 to avoid the coalescence of the fine elastic pillars21. In fact, a liquid drop in 

contact with two soft walls close enough to each other may lead to the spontaneous 

touchdown of the walls22 that may pose a concern while designing microfluidic 

devices23. Thin elastomeric channels in these devices undergo bulging due to the 

stresses developed by the liquid on its walls24. The elastocapillary phenomenon is also 

well utilized to fold thin elastic sheets into various shapes in the form of capillary 

origami25 (Figure 1.2 a) as well as in gravito-elastocapillary pipettes26. Mora et. al27 

showed that thin slender gel rods undergo Rayleigh-Plateau instability when surface 
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tension and elasticity effects compete to undulate the free surface under volume 

conservation, whereas they remain undeformed when they are too stiff (Figure 1.2 d). 

Surface tension effects also cause sharp features to blunt down28,29.   

 

 
Figure 1.2: Examples of Elastocapillary phenomena. (a) Capillary origami induced by 

thin elastic sheets self-folding into organized shapes around a liquid drop that is 

gradually evaporating. Reprinted with permission25. (b) Coalescence of wet hair due to 

negative pressure inside the capillary films in between the strands. Reprinted with 

permission16. (c) Durotaxis of liquid drops on a surface that has a periodic gradient in 

thickness. Liquid drops collect at the region where substrate thickness is maximum. 

Reprinted with permission14. (d) Rayleigh-Plateau instability in slender rods of agar 

gel. Reprinted with permission27. 

 

While all the above studies demonstrate the role of elastocapillarity in various 

scenarios, we have found that it plays an important role in selecting the modes of 

patterns formed at the adhesive interface of a thin soft elastic film while debonding 

(b)

(d) 2 mm
(c)
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from a rigid substrate30,31. It also manifests in the modes of vibration of a soft hydrogel 

sphere32. These are introduced in more details in the following parts. 

 

1.2.1 Elastocapillarity in Adhesion induced Instability and Interfacial 

Fracture 

 Understanding how a thin confined elastic film fractures at its adhesive interface 

is central to its use in many practical applications. Usually, when a rigid substrate 

adhered to a thin rubber film is subjected to a tensile stress, the interface forms 

undulating instabilities partially detaching from the substrate. From the pioneering 

work33–35 by our group ca 2000 in this field along with the studies performed by another 

group at University of Ulm36, followed by many others, we have learnt that the entire 

surface or the line of contact of such an adhesively stressed elastic film roughens with 

a characteristic length scale,  that is simply proportional to the thickness of the film, 

H (Figure 1.3). Based on a scaling analysis that takes into account the various energies 

contributing to the interfacial roughening of the film by considering a sinusoidal mode 

of surface deflection (Figure 1.4), we find that the wavelength of instability would be 

of the following form37,   41
1~ HH   . Inspecting this relation closely, one 

identifies the dimensionless parameter ( H ) that is a ratio of the elastocapillary 

length and the film thickness. 



11 

 
Figure 1.3: (a) Various kinds of instability patterns observed in thin and stiff elastic 

films in different geometries (b) Wavelength of instability from a large variety of 

experiments (shown in the left panel) involving films of different shear modulus, 

0.225.0  MPa and contactors of different rigidity all fall on a single master line. 

The symbol ( ) indicates peeling instability (Ref.33, Fig. 3), ( ) indicates instabilities 

in a blister (Ref.38, Fig. 1) and ( , ) indicate cavitation instability (Ref.37, Fig. 4a). 

Reprinted with permission35. 

 

 

The previous studies were mainly concerned with the regime where elastic forces 

dominate ( 1H ). For the case when surface tension forces are comparable or 

greater than elastic forces ( 1H ), we would expect that ~ H (H)1/4. Therefore, 

we performed experiments30 to study the role of elastocapillarity in adhesion instability 

employing thin hydrogel films (~ 40 Pa and ~ 72 mN/m) sandwiched between two 

glass plates, and found that the wavelength of instability had a much stronger 

dependence on the thickness (~ 7H ), which contrasts the behavior in the case of 

purely elastic films (~ 3.8H). A detailed theoretical analysis obtains the same scaling 

with a slight difference in the prefactors, which is discussed comprehensively in 

Chapter 2 in this thesis. Therefore, we establish the role of elastocapillarity in pattern 

formation during interfacial instability in thin confined films adhesively bonded to rigid 

substrates. 
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Figure 1.4: (a) A schematic of surface undulation when a rigid block is being pulled 

normal to the interface (b). When a glass plate is peeled from a thin ultra-low modulus 

hydrogel film, worm-like instability develops (c, left). However, when the plate is 

completely peeled from the gel and re-positioned on the same hydrogel film, bubble 

like instability is formed (c). (d) A profilometric image of the gel’s surface soon after 

the plate was removed showing sinusoidal undulation. Reprinted with permission35.  

 

 

Another important aspect to consider in these studies of debonding thin elastic films is 

the critical stress (c
 at which the fracture takes place. In general, the thickness 

provides the relevant length scale underlying the well-known Griffith-Kendall 

criterion39 of debonding of a rigid stud from a confined film. However, during the 

course of our study, we found that this stress is modified non-trivially by 

elastocapillarity for soft or very thin films. By performing experiments30,35 of adhesive 

fracture of these films and measuring the critical stress, we confirmed the scaling 

derived from theoretical analyses of the same. This is also discussed in more detail 

towards the later part in Chapter 2.  
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1.2.2 Elastocapillarity in Oscillation modes of Spherical Hydrogels 

   Our next objective was to study what role elastocapillarity plays in the vibration 

modes of soft spherical hydrogels. For the case of liquid drops, there is a long history 

of studying the vibration modes of their surfaces. Rayleigh40 predicted that the spherical 

harmonics of the capillary oscillations of an incompressible liquid drop with mass m, 

in the scaling form follows, ml  ~ or, 21~ V , where V is its volume. For the 

case of solid spheres, previous experiments and intuitive scaling suggest that the 

frequency of vibration follows, mER~ or, 31~ V . For soft hydrogels, we 

expect that elastocapillarity may play a role where the contributions of capillarity and 

elasticity may be coupled in a non-trivial way.  

 In order to test the role of elastocapillarity, our first goal was to see if the 

spheroidal modes of vibration could be detected for soft gel drops of different elastic 

moduli and how the resonance frequency varies with the volume of the sphere32. 

Secondly, we wanted to find out if the observed frequency could be expressed in terms 

of the surface tension and the shear modulus of the gel in a simple semi-empirical form. 

In order to achieve this objective, we developed a new method to produce soft gels ( 

~ 55 Pa to 290 Pa) of different radii, which are as spherical as possible. We then placed 

these gels on a hydrophobic substrate on which the gels subtend well-defined contact 

angles > 90°. The gels were vibrated vertically using a mechanically induced Gaussian 

random noise, the power spectra of which helped us identify the resonance frequencies 

(Figure 1.5).  In chapter 3, we first describe the experimental method of preparing such 

spherical gels and the method used to identify their spheroidal modes. The principal 

resonant frequencies of the spheroidal modes of the gel drops were closest to the lowest  
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Figure 1.5: (a) Snapshots of a spherical hydrogel drop in contact with a hydrophobic 

substrate that is undergoing random vertical vibrations. The primary mode of 

oscillations where the gel stretches vertically and contracts is shown here taken with a 

high-speed camera (top: side view, bottom: plan view). Scale bars denote 1mm. (b) A 

comparison of the power spectrum obtained by analyzing the height fluctuations from 

the side view and the plan view. 32 

 

Rayleigh mode of vibration of a drop of pure water. Further, we observed that the 

resonance frequency varies inversely as the volume with an exponent close to 0.5 

suggesting that they primarily correspond to the capillary (or a pseudo-capillary) mode 

of drop vibration. Followed by the experimental section, we present an analysis of how 

these modes can be collapsed about a single line with an appropriate scaling. As an 

offshoot from this study, we also discovered that the contact angles of the gel spheres 

with the solid substrate increase with the modulus of the gel. We believe that this 

method has the potential to measure directly the surface tension of soft elastic gels. The 

results from the studies on elastocapillarity in vibration modes of spherical hydrogels 

studies are presented in Chapter 3. 

 

1.3 Elasticity and Gravity: Elastobuoyancy in Soft Elastic Solids 

 In a way similar to how capillarity and elasticity play their cooperative roles in 

the phenomena described above, the effect of gravity can also couple with elasticity in 
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these soft gels leading to interesting scenarios. As discovered by Mora et. al41, when a 

thick layer of a soft solid attached to a rigid horizontal substrate such that its lower face 

is free, is subjected to its own weight, it undergoes nonlinear surface buckling forming 

exotic patterns. We studied a different scenario that is described as follows. When a 

rigid sphere is placed on the surface of an ultrasoft gel, it engulfs inside the compliant 

substrate and the stretched surfaces close above it30,42. The equilibrium depth of the 

sphere, inside the gel, is determined by the balance of its weight and the elastic strain 

energy in the surrounding medium. We refer this state of the sphere as ‘Elastobuoyant’. 

We experimentally measured the elastobuoyant depths of steel spheres systematically 

by varying their sizes and in gels of different elastic moduli. By measuring the depth of 

submersion, δ, from the top surface of the gel to the bottom of the steel sphere -- we 

found that it scales with the size of the sphere (radius, R) in the large deformation limit 

as δ ∼ R3/2. The depths scale as δ ∼ R2 in the limit where the spheres only slightly 

deform the surface of the gels (Figure 1.6).  

 

 

Figure 1.6: Elastobuoyancy Phenomenon42 (a) A rigid steel sphere (radius, R ~ 2.5 

mm) engulfs into a soft polyacrylamide gel (shear modulus,  ~ 13 Pa) and its 

equilibrium ‘elastobuoyant’ depth inside the gel is denoted by . The depth scales with 

the radius as R3/2 in this regime. (b)  The same sphere deforms a stiffer gel ( ~ 

1160 Pa) only slightly. In this regime, the depth scales with the radius as R2.  
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Elastobuoyancy being a fundamentally new observation, in addition to the observed 

experimental scaling, we developed an asymptotic analytical model to explain the same 

in the limit of gels undergoing large deformations.  

 Large deformations in soft elastic materials are ubiquitous—e.g. in polymeric 

gels, adhesives or biological tissues—yet systematic studies and methods to understand 

the mechanics of such huge strains are distinctly lacking. Small deformations of most 

elastic materials follow the well-known Hooke’s law, in which the stress-strain 

relationship is linear.  However, for the case of soft gels, the strain is no more linear 

with the applied stress. Although various semi-empirical constitutive laws exist to 

account for such large deformation behavior, a generalized approach to explain their 

behavior is lacking. Here, we investigate this complex problem using the 

elastobuoyancy experiment. We expect that our findings will be useful in cases where 

large deformations of a material are involved, such as in delicate surgeries in soft 

tissues. The details of this study are described in Chapter 4.  

 

1.4 Self-Assembly induced by cooperative roles of Elasticity, Capillarity, 

and Gravity 

 ‘Self-Assembly’ is a general term that is attributed to a wide range of phenomena 

starting from the organization of monolayers made up of various organic molecules to 

that of cells conglomerating to perform a specified function. In a spirit similar to 

Whitesides and Grzybowski43, “Here, we limit the term to processes that involve pre-

existing components (separate or distinct parts of a disordered structure) that are 

reversible.” Different from the conventional approaches, we designed a completely new 

way to self-organize such individual components in elastic mediums by using 
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elastocapillary and elastobuoyancy field forces. We studied this effect in three different 

systems: (i) elastocapillary assembly of particles on the surface of soft gels analogous 

to capillary attraction of objects floating on the surface of liquids, (ii) elastobuoyant 

assembly of particles inside a soft elastic gel, and (iii) assembly of particles on the 

surface of thin elastic membranes, rigidly bound at the walls of a container, and 

supported over a viscous liquid. In the following subsections, we introduce each of 

these three self-assembly principles and the main results of these studies.  

 

1.4.1 Elastobuoyant Assembly of Particles inside a Soft Elastic Medium 

 From Section 1.2, we learned that when a rigid heavy particle is placed on the 

surface of a soft elastic medium, it submerges itself to a depth,  where its weight is 

balanced by the elastic strain energy of the surrounding gel. By virtue of a large 

elastocapillary length, the surface of the gel wraps around the particle and closes to 

create a line singularity joining the particle and the free surface of the gel44. A 

substantial amount of tensile strain is thus developed in the gel network parallel to the 

free surface that penetrates to a significant depth inside the gel. The field of this tensile 

strain is rather long range owing to a large gravito-elastic correlation length. Now, when 

a second particle is released into the same gel, within a separation distance of about  

or less, the strain energy field induced due to the inclusion of the objects, is strong 

enough to pull two submerged particles into contact (Figure 1.7). The particles move 

towards each other following an inverse distance law. When more monomers or dimers 

of the particles are released inside the gel, they orient rather freely inside the capsules 

they are in, and attract each other to form close-packed clusters. Eventually, these 

clusters themselves interact and coalesce. This is a new kind of self-assembly in which 
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the gravity, the capillarity, and the elasticity work together to create a long-range 

interaction. These studies are discussed in Chapter 5.  

 

 
Figure 1.7: Self-Assembly of ceramic beads inside a soft gel. The video micrographs 

(upper panel) illustrate the long-range attraction between two ceramic spheres (4.8 mm 

diameter) submerged inside a soft PAM hydrogel (~ 8 Pa). The micrographs of the 

lower panel capture the events following the immersion of a glued dimer of similar 

balls inside the gel. The dimers orient (0s to 12s) as they descend inside the gel and 

approach each other. Finally (30s), they form a close-packed structure.44 

 

1.4.2 Elastocapillary Assembly of Particles on a Soft Elastic Medium 

 It is well-known that a small particle can float at an air-liquid interface due to 

the capillary force acting along its contact line45. The combination of the gravitational 

and the surface energies can lead to an attractive or a repulsive interaction between 

particles depending upon their specific gravity relative to the liquid46. This observation 

dubbed the Cheerios effect47 is the basis for capillarity-driven self-assembly. What we 

studied here is an elastic analog48 of the Cheerios effect, i.e., introducing an additional 

driving force, elasticity, along with surface tension and gravity.  

 We used a physically cross-linked polyacrylamide gel (shear modulus ~ 40 – 

100 Pa) and deposited mm-sized hydrophobic glass particles on its surface. A small 

amount of elasticity of the medium balances the weight of the particles. The excess 

0 s 4 s

12 s 30 s 0 s

10 s
5 mm
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energy of the surface of the deformed gel causes them to attract (Figure 1.8) as is the 

case with the generic capillary interactions of particles on a liquid surface. The variation 

of the gravitational potential energies of the particles resulting from their descents in 

the gel coupled with the superposition principle of Nicolson45 allowed us to get a fair 

estimation of the distance dependent attractive energy of the particles. 

 

 
Figure 1.8: Two cylinders (aluminum, ¾’’ long, 3/16 ’’diameter, density 2.8 g/cc ) 

placed parallel to each other on a soft gel (=18 Pa) move towards each other and 

eventually coalesce. Elastocapillary attraction of rigid cylinders on the surface of a soft 

gel.48 

 

This energy follows a modified Bessel function of the second kind (zeroth order) with 

a characteristic elastocapillary decay length that decreases with the increase in the 

elasticity of the medium. An interesting finding of this study is that the particles on the 

gel move towards each other as if the system possesses a negative diffusivity that is 

inversely proportional to friction. In particular, this study points out that the range and 

the strength of the capillary interaction can be tuned in by appropriate choices of the 

elasticity of the support and the interfacial tension of the surrounding medium. This 

study illustrates how the capillary interaction of particles is modified by the elasticity 

of the medium, which is expected to have important implications in the surface force 

driven self-assembly of particles. The details of this work have been presented in 

Chapters 6 and 7.  
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1.4.3 Particle Assembly on a thin Elastic Film supported over a viscous 

Liquid 

 In chapter 8, we discuss the third system that we used to study interaction of 

particles was a thin elastic film supported over a pool of liquid.49 We used aluminum 

cylinders for these studies that were grafted with polydimethylsiloxane chains to reduce 

its friction with the elastic films. When two such cylinders are placed on the film, the 

excess energy of the surface due to the curvature of the stretched film induces attraction 

of the particles until they finally meet.  Even with reduced friction of the cylinders, we 

observed some hysteresis mainly due to the difference of the energies of the localized 

bond-forming at its front edge versus bond-breaking at its tail edge. This contribution 

of the adhesion hysteresis can be reduced considerably by introducing a thin hydrogel 

layer over the elastic film that enhances the range of attraction of the cylinders (as well 

as rigid spheres) in a dramatic way. We also observed the formation of morphological 

instabilities in the gel-film system that projected corrugated paths and led to directed 

motion of small spheres to form large aggregates along their defects.  

 

 
Figure 1.9: Schematic of two aluminum cylinders afloat on a thin PDMS elastic film 

supported over 50% aqueous glycerol. Below are experimental snapshots of the 

attraction of the cylinders due to the strain energy gradient in the elastic film (thickness 

of film = 9.2 m). Scale bar represents 5mm.49 
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We estimated the free energy of this system comprising a single cylinder by using a 

minimal model including the stretching energy of the film and the gravitation energies 

due to the weight of the cylinder and the displacement of the liquid underneath the film. 

The profile is obtained from the minimization of the total free energy that yields an 

exponentially decaying deformation of the surface with a decay length, gT  1  

, where T is the tension in the film,  is the density of the liquid and g is the acceleration 

due to gravity. For two cylinders, the intermediate profile is hyperbolic and the excess 

energy stored in the curved surface is released when they come together into contact. 

With the formal analysis, we found that the energetics of the attraction can be expressed 

as the variation of their gravitational potential energies as they descend into the liquid 

while being still supported on the film (Figure 1.9). 

 

1.5 Wetting of Soft Hydrogels on Rigid Substrates 

 When a soft hydrogel sphere is placed on a hydrophilic rigid substrate, it spreads 

by forming a “foot”-like regime closer to the substrate, however, due to its opposing 

elastic forces, its spherical global shape is maintained away from the contact region. 

Conversely, for a similar hydrophilic substrate, an equivalent liquid drop will spread 

completely forming a thin film. In order to understand the phenomenon of soft wetting, 

we performed experiments using hydrogel spheres of different elastic moduli on hard 

substrates with varying surface energies. Here, we measured the contact angle of these 

soft spheres and found that they systematically increase as the elasticity of the gels 

increases. Furthermore, by modifying the wetting properties of the rigid substrates, we 

found that the contact angles of the gel spheres decreased as the work of adhesion 

increased. Additionally, we learned that the dimension of the “foot” follows a scaling 
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law derived from the balance of the adhesion and elastic strain energies in that region. 

In Chapter 9, we report a macroscopic picture of how soft spheres deform due to the 

adhesion forces thereby undergoing large deformation. We summarize by comparing 

our results of the wetting of soft hydrogel spheres with previous attempts to bridge the 

adhesive contact regime for rubbers with Young’s contact regime for pure liquids using 

a global picture. 

 

1.6 Dissertation Synopsis 

 As discussed above, this dissertation researches the role of elastocapillarity in 

soft solids as well as how gravity forces and elasticity are coupled in some situations 

involving these solids. We discuss the role of elastocapillarity in adhesion-induced 

instability in Chapter 2. This is followed by our work on the elastocapillary modes of 

vibration of soft hydrogel spheres that is presented in Chapter 3. Chapter 4 includes the 

work on elastobuoyancy phenomenon. Chapters 5-8 discuss the elasticity mediated in 

various systems such as inside and on the surface of soft hydrogels and on thin elastic 

films supported on a pool of liquid. Chapter 9 talks about the wetting of soft hydrogel 

spheres on rigid substrates. The thesis concludes with Chapter 10 that summarizes some 

essential themes and findings of our current research including suggestions for future 

work. There are several appendices in this dissertation that discuss some new 

observations, results and partially completed projects that were also done during this 

thesis and will be subjects of future investigations.   
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Chapter 2 
 

Direct Measurement of the Surface Tension of a 

Soft Elastic Hydrogel: Exploration of Elasto-

Capillary Instability in Adhesiona 

 

 

 

2.1. Introduction 

The joint roles of the surface tension and the elastic forces have long been recognized 

in soft matter physics. Starting with the original proposal of Lester1 that a soft solid can 

be deformed by the normal component of the surface tension of a liquid drop, the 

subject has continued to blossom2-8 till date with the identification of  a scale of the 

surface deformation in terms of the surface  tension () divided by the elasticity (). 

This so called elasto-capillary length () also appears in various other surface 

phenomena such as the wrapping of a liquid drop by a thin elastic film9, coalescence of 

thin wet fibers10,11, buckling of thin rods inside a liquid drop12, cavitation in soft 

hydrogel13,14, bulging15 of a thin elastic channel due to capillary pressure, flattening16 

of a soft solid by surface tension, and Rayleigh instability17 in a soft gel to name a few. 

Elasto-capillary effect has also been found to be important in the nucleation of creases18 

in soft solid and it manifests directly in the form of the radius (a) of the contact 

                                                 

 

 
a Adapted and Reprinted with permission from [Chakrabarti, A. and Chaudhury, M.K. Langmuir 

2013, 29, 6926-6935]. Copyright © 2013 American Chemical Society. 



 29 

deformation19 of two spheres with an effective radius R as   /~/ 23 Ra ,  which can 

be used as a sensitive probe to study surfactant adsorption20 related capillary effects as 

well.  

The objective of this paper is to show that elasto-capillary instability can play 

an important role in the formation of self-generated cracks in soft confined films. 

Usually, when a rigid substrate adhered to a thin rubber film is subjected to a tensile 

stress, the interface ceases to be flat21-27. As was discovered independently at the Lehigh 

University21 and at the University of Ulm22, the entire surface or the line of contact of 

such an adhesively stressed film roughens with a characteristic length scale that is 

simply proportional to the thickness of the film (H). This happens when the elasto-

capillary number (H/)of the film is much larger than unity. On the other hand, if 

 / is comparable to the film thickness, a material length scale emerges that 

moderates the interfacial roughness.  A simple scaling analysis26 suggests (see 

Appendix A) that the wavelength of the instability would be of the following form: ~ 

H (1H)1/4, according to which there are three distinct regimes of elastic instability. 

For a high modulus film (  / << H ), the wavelength is proportional to thickness, i.e. 

~ H . When  / is slightly smaller than H, the instability wavelength depends on 

both the geometric and the material scales (  / ) almost additively:  4/~ H . 

On the other hand, when  / >> H, the elasto-capillary and the geometric scales are 

strongly coupled as ~ ( )1/4 . Gonuguntla et al28 studied this regime using ultra-

thin films of elastomeric PDMS, in which the patterns were frozen by UV ozone 

treatment and analyzed after the contactor was removed. They showed that the 

wavelength of instability deviates from the conventional  H relationship.  While 
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this was the first attempt to document the elasto-capillarity in adhesion induced pattern 

formation, there are certain concerns with the way these experiments were performed 

and interpreted. To begin with, since an UV-ozone treatment could modify the 

properties of the film to a substantial depth in a gradient fashion, it is not clear a priori 

whether the modulus of the ultra-thin film would be same as that of the untreated bulk 

elastomer. In addition, the surface tension of the ultra-thin elastomeric PDMS was 

assumed to be same as that in its liquid state, which cannot be guaranteed, either in the 

native state and, especially, when its surface is post-hardened.  Most importantly, 

however, as the measurements were performed ex-situ  after preserving the pattern and 

then removing the contactor,  it is not at all clear whether the long wave features of the 

instability were the reminiscence of the surface tension induced flattening16, in which 

the short wave features decay, or it was indeed due to the adhesion induced instability 

28. Whilst these criticisms do not take away the novelty and the elegance of these 

experiments28, there is, nevertheless, a need to conduct definitive experiments and to 

carry out the related analysis on such types of instabilities in a system where the patterns 

can be observed in situ and where the solid surface tension and the elasticity of the 

deformable adhesive can be measured independently.    

The purpose of this paper is to report such measurements performed with a 

physically cross-linked polyacrylamide hydrogel29-31, the elastic modulus of which 

could easily be controlled and set to a rather low value. A further inspiration for such a 

study stems from the fact that these types of ultra-soft gels are increasingly used in 

various biomedical, cosmetic and adhesive technologies32.  As the deformability is a 

major issue in these studies, the soft gels have become the testing grounds for various 

types of mechanical and rheological characterizations33 over the years. In spite of 

considerable progress, however, characterizations of the ultra-soft gels can be quite 
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challenging in certain settings, especially when the elastic forces become comparable 

to capillarity. The interplay of these factors, nevertheless, makes these gels interesting 

candidates of study in an evolving branch of rheology where surface tension, elasticity 

and viscosity play their respective roles.  

In order to observe the putative elasto-capillary instability and interpret it on a 

sound physical ground, we had to accomplish three different but related objectives. The 

main objective was to design an experiment with which the instability could be induced 

and measured in situ over a considerable range of film thickness. This objective was 

accomplished with a gel confined in a wedge shaped geometry, the thickness of which 

varied from about 0 micron to about 180 micron in a linear fashion.  This idea of using 

a thickness gradient is philosophically similar to that of Stafford et al34 in studying the 

effect of thickness of the top layer in wrinkling instability. 

A linear stability analysis was performed to understand the long wavelength 

feature of the elasto-capillary instability, the execution of which, however, required 

values of the surface tension and the elasticity of the physically cross-linked hydrogel. 

Its surface tension was estimated from the spherical harmonic of the free surface of a 

hemispherical gel cap, whereas its elasticity was estimated from the natural shear 

resonance mode of a hydrogel slab after submitting each to a random mechanical 

vibration.  In connection with measuring the elasticity of the gel, we also report a novel 

observation, in which a steel ball remains suspended in the gel by balancing its weight 

with the accumulated shear strain induced elastic force of the surrounding medium. 

This is the static or a self-braking version of the classical Stokes experiment that 

allowed estimation of the shear modulus of the gel both at small as well as at large 

deformations in the absence of dynamics.  Once the surface tension and the elasticity 
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of the gel were measured, an elasto-capillary length could be estimated and compared 

with that obtained from the adhesion induced instability patterns.  

The paper is organized as follows. After describing the experimental protocols, 

we discuss the methods to measure the elasticity and the surface tension of an ultra-soft 

hydrogel. These measurements established an elasto-capillary length of the hydrogel, 

which was then used to interpret the spatial wavelength of the adhesion induced 

interfacial instability. The paper is then concluded with a discussion on how elasto-

capillarity could be an important factor in deciding the failure modes of the interface of 

an elastic film sandwiched between two rigid substrates.  

  

2.2. Experimental Sections 

2.2.1. Materials 

The chemicals used for the preparation of the hydrogel were N-

(hydroxymethyl)-acrylamide (48% solution in water, Sigma Aldrich®), potassium 

persulphate (99.99% trace metals basis, Sigma Aldrich®) and N,N,N',N'-

Tetramethylethylenediamine (TEMED, ≥99.5%, purified by re-distillation, Sigma 

Aldrich®). Deionized water (DI water) was obtained from Thermo Scientific® 

Barnstead E-pure* unit. Glass slides of two different sizes (75 mm x 50 mm x 1 mm) 

and (75 mm x 25 mm x 1 mm) were obtained from Fisher Scientific (Fisherbrand® 

Microscopic slides). The glass cover slips were purchased from Corning (Corning 

Cover Glass, No. 1, 24 mm x 60 mm). Freshly opened Fisherbrand® Borosilicate Glass 

vials (27 mm diameter x 70 mm high) were already quite clean; but they were further 

washed thoroughly with DI (deionized ) water and blow dried with ultra-high purity 

Nitrogen gas. The gel solutions were prepared in these vials. Steel balls (Bearing-
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Quality E52100 Alloy Steel, Hardened Ball) of diameters ranging from 1 mm to 10 mm 

were purchased from McMaster-Carr®. These balls were sonicated in Acetone (General 

use HPLC-UV grade, Pharmco Aaper®) in a Fisher Scientific Ultrasonic Cleaner 

(Model no. FS5) for 10 minutes after which they were blow dried with pure Nitrogen 

gas.  In some of the experiments, glass slides were reacted with a silane 

[dodecyltrichlorosilane (HC-12, Gelest Inc), hexadecyltrichlorosilane (HC-16, Gelest 

Inc.)  or   1H,1H,2H,2H-perfluorodecyltrichlorosilane (FC-10, Alfa Aesar)], the details 

of which were reported previously35.  For some of the experiments, glass slides were 

modified with a thin (5 nm) film of polydimethylsiloxane (PDMS, Gelest DMS-T22) 

using a method reported in the literature36. 

 

2.2.2. Preparation of Gel 

The physically cross-linked gel was prepared using a slight variation of the 

methods29-31 reported in the literature in order to ensure that polymerization reaction 

could be carried out at room temperature in less than an hour.  In a cleaned glass vial, 

N-(hydroxymethyl)-acrylamide and DI water were added to prepare a 3.5% (w/w) of 

the monomer in the solution, which was followed by degassing it with the bubbling of 

ultrapure nitrogen gas for 30 minutes while stirring it constantly with a magnetic stirrer. 

The polymerization reaction was initiated by first adding Potassium Persulphate (0.25 

wt% basis) and then TEMED (0.3 wt% basis) to the above solution accompanied by 

constant stirring. The final solution was pipetted out of the vial and introduced in the 

respective setups soon after the TEMED was mixed. In all experiments, gelation 

reaction was carried out at room temperature for two hours, even though the reaction 

was complete within half an hour, which was ascertained from the fact that the modulus 

of the gel remains unchanged beyond this time.   
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2.2.3. Measurements of Elastic Moduli of the Gel 

The shear modulus () was determined from the resonant shear mode of 

vibration of a gel slab confined between two parallel glass slides. One of the glass slides 

(75 mm x 25 mm x 1 mm) was coated with a monolayer of HC-16, which was then was 

placed above an untreated clean glass slide (75 mm x 50 mm x 1 mm) by maintaining 

a uniform gap of 1 mm between the two slides by means of two 1 mm thick spacers. 

The spacers themselves were prepared from the microscope glass slides, the edges of 

which were lined with thin strips of Teflon tapes for easy removal from the gel once 

the gelation was complete.  This assembly was set up inside a polystyrene petri dish 

(VWR®, 150mm diameter, 15mm high) with stacks of deionized (DI) water soaked 

filter papers placed on the sides of the above assembly in order to create a humid 

environment (relative humidity of 99.9% at 23°C). The gel solution was inserted into 

the uniform gap between the slides by means of a sterile transfer pipette (7.7 mL, #202-

1S, Thermo Scientific®, Samco*). One hydrophobic (above) and another hydrophilic 

(below) glass slides allowed the liquid to fill the gap by capillarity, but prevented its 

spreading beyond the edges of the Teflon coated spacers. This setup was left 

undisturbed for the next two hours while the gel slab (57 mm x 25 mm x 1 mm) cured, 

following which the spacers were removed. The lower plate of the assembly was fixed 

carefully onto the aluminum stage connected to a mechanical oscillator (Pasco 

Scientific, Model No: SF-9324) that was subjected to either a lateral or a vertical 

vibration using a Gaussian white noise (strength of 0.005 to 0.12 m2/s3). The noise was 

generated by a waveform generator (Agilent, model 33120A) and passed through an 

amplifier (Sherwood, Model No: RX-4105) before reaching the oscillator. The entire 

experimental setup was placed on a vibration isolation table (Micro-g, TMC). The shear 
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and/or the vertical displacements of the upper glass slide were recorded with a high 

speed camera (Redlake Motion-Pro, Model no: 2000) operating at 1000 frames/s. The 

motion of the upper plate was later tracked using a MIDAS software (Midas2.0, Xcitex 

Inc., USA). The displacement fluctuations were fast Fourier transformed (FFT) using 

OriginLab® software to identify the resonant mode of vibration. The details of the basic 

methods can be found in previous publications36,37. 

 

2.2.4. Static Stokes' Experiment 

In these experiments, the cleaned steel balls were gently dropped inside the glass 

vial containing the cured hydrogel. After submerging itself partially or fully inside the 

gel, the ball stood still inside the gel at a depth (h) , which was captured by a Video 

Microscope (Infinity®) equipped with  a CCD camera (jAi® ,Model no. CV-S3200) with 

the help of WinTV application (Hauppauge®, USA) on the computer. Care was taken 

to ensure that the steel balls were at the centers of the vials to minimize wall effects. 

The images were analyzed using ImageJ® for calculating the depth of the steel ball into 

the gel. The calibration factor of the variable focal length microscope was determined 

from the known diameter of a steel ball in every run. Even though there was a minor 

distortion of the shape of the ball in the horizontal direction when viewed through the 

cylindrical glass vials, there was no such distortion in the vertical direction. All 

calibrations and measurements were carried out in vertical direction only.   

 

2.2.5. Direct Estimation of the Surface Tension of the Gel Using Vibration  

The surface tension was estimated from the vibration modes of the free surface 

of the hemispherical caps of the hydrogel prepared on hydrophobic glass slides. Glass 

slides were cut into small pieces (10 mm x 8 mm) using a diamond scriber which were 
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then silanized by reacting them with the vapor of dodecyltrichlorosilane (HC-12). The 

pieces of these hydrophobic glass slides were fixed at the bases of small petri dishes 

(35 mm diameter x 10 mm high, Fisherbrand®) using a double sided Scotch® tape. After 

deposition of 2 to 40 μL size drops of the gel solution on these glass pieces (one drop 

per dish), the lids of the petri-dishes were closed.  The filter papers placed on the sides 

of the petri-dishes were soaked with an aqueous solution of acrylamide monomer and 

TEMED with the same composition as the gel in order to suppress the evaporation of 

these ingredients from the gel drop itself.    

The contact angle of the gel cap was ~90° on the silanized glass slide. The petri 

dishes were left undisturbed for 2 hours while the gel caps cured. After securely fixing 

the test substrate (the petridish with the samples inside it) on the aluminum stage of the 

mechanical oscillator, it was vibrated vertically with a Gaussian white noise (strength 

of 0.04 m2/s3). The height fluctuations of the gel caps were recorded with the high speed 

camera at 2000 frames/s which were subsequently analyzed with MIDAS 2.0. The 

fluctuations of the gel lenses were fast Fourier transformed (FFT) using OriginLab® 

software to identify the resonant mode of vibration. 

 

2.2.6. Adhesion Instability Experiment 

  A hydrophobic glass slide (75 mm x 25 mm x 1 mm) was inclined above an 

untreated clean glass slide (75 mm x 50 mm x 1 mm) with the help of a spacer (Corning 

Cover glass) so that a linear thickness gradient was established (figure 4a) between the 

two. The spacer was 180 μm thick which gave rise to the gradient gel thickness ranging 

from 0 to 180 μm over a length of ~ 6.7 cm. This setup was assembled inside a 

polystyrene petri dish (VWR®, 150mm diameter x 15mm height) where stacks of DI 

water soaked filter paper were kept on either side of the assembly. As soon as the 
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mixing of the gel solution was complete, it was pipetted out with a sterile transfer 

pipette and introduced into the wedge formed between the two glass slides. The petri 

dish was immediately covered by its lid in order to maintain a water vapor rich 

environment inside.  

After allowing the gel to crosslink for two hours, a razor blade was gently 

inserted in between the upper plate and the spacer till the instability patterns develop 

all throughout the contact of the gel and the upper plate. These experiments were carried 

out with the top glass plate coated with either a fluorocarbon silane (FC-10) or a thin 

(~ 5 nm) polydimethyl siloxane (PDMS) for its easy removal from the gelled film.  The 

patterns were observed using a microscope (Infinity®) equipped with a CCD camera 

(MTI, CCD-72) and recorded to a computer, which were analyzed later using ImageJ® 

software. Thin longitudinal strips from the images, obtained at various thickness of the 

gel film, were taken and the numbers of darker bands cutting across this strip were 

counted.  Wavelength of the instability (λ)  at different thickness (H)  was obtained by 

dividing the length of the strip by the number of these bands. We confirmed that this 

method of measuring  is perfectly consistent with that obtained from the traditional 

method of Fast Fourier Transforming (FFT) an image provided that the pattern is 

isotropic and is comparable to the spacing between fingers when a fingering instability 

is induced by peeling a flexible cantilever from such a hydrogel film (see below). The 

method used here was quite convenient to analyze the slightly anisotropic spatial 

patterns resulting from the thickness gradient.  
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2.3. Results  

2.3.1. Estimation of the Shear Modulus of the Gel 

 

 

Figure 2.1: (a) The resonance mode of a thin slab of the physically cross-linked 

hydrogel was obtained by subjecting it to a random excitation parallel to the upper plate 

while the lower plate was held fixed on the stage of the oscillator. Several power spectra 

were added and averaged in order to reduce the background noise and improve the peak 

shape. (b) The probability distribution function of the displacement fluctuation is 

Gaussian (K=0.12 m2/s3) thus emphasizing the linear response of the system. The root 

mean square (RMS) displacement is 0.4 mm.  

  

The shear elastic modulus of the gel was estimated in two different ways. The 

first method involved the transverse vibration of a thin slab of the gel of thickness H 

confined between two flat plates (figure 2.1a) with a random external noise. The fact 

that the gel is elastic is evident from the observation that it can support the weight of 

the upper plate (a glass slide) for an indefinite period of time. From the resonance peak 

(=18.8 Hz) of the gel that behaves like a shear spring, its shear modulus ( was 

estimated using the equation:  mHA/2   , where m is the mass (4.62 g) of the 

top vibrating  plate, and A is the area of contact between the gel slab and the glass plate. 

The shear modulus of the gel was found to vary between 42 Pa to 45 Pa. The probability 
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distribution of the shear displacement fluctuation is Gaussian (figure 2.1b), thus 

suggesting that the response of the gel is linear, which is reinforced by the fact that the 

resonance frequency of the gel is independent of the noise strength (figure 2.1a). 

 

2.3.2. Self-braking Stokes Experiment 

 

Figure 2.2: (a) A static version of the Stokes experiment, in which a steel ball (R = 5 

mm) was released on the surface of a physically cross-linked hydrogel. The ball 

penetrates deep in the gel and becomes neutrally buoyant, at which stage the elastic 

shear force on the ball is balanced by the weight of the ball. In (a) the surface of the gel 

is in contact with the sphere, which can be released (b) by lowering its surface tension, 

e.g. by applying couple of drops of an aqueous surfactant solution (1.6 wt% of Brij 35).b 

(c) Experiments carried out with balls of different sizes show that the height of 

submersion increases with the radius of the ball. Although slight differences in the 

overall behavior is observed with gels prepared on the first day or after 24 hrs, each set 

of data could be fitted with an equation 2~ Rh .  

 

The shear modulus obtained from the vibration experiment discussed as above 

is adequate for the purpose of analyzing the pattern formation data. The above method 

of measuring elasticity, however, involves substantial amount of sample preparation 

                                                 

 

 
b Below is a corrigendum for the stated observation in [Chakrabarti, A. and Chaudhury, M.K. Direct 

measurement of the surface tension of a soft elastic hydrogel: Exploration of elastocapillary instability 

in adhesion. Langmuir 2013, 29(23), pp.6926-6935]. When the surfactant drops are added, they merely 

fill the hollow created due to the stretching of the gel interface by the engulfment of the sphere. The 

surfaces do not close due to lowering of surface tension of the surfactant-gel interface.  
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time; furthermore, the experiments and analysis are somewhat time consuming. For 

repeated and routine analysis of the elasticity of the gel, we developed a simple 

technique in analogy to the classical Stokes experiment, in which a small steel ball is 

released over the surface of the gel. As shown in figure 2.2a, the ball submerges itself 

in the gel by a substantial depth following which the denser steel ball appears to become 

neutrally buoyant.  When the vial is inverted, the ball easily comes out of the gel, which, 

upon reinsertion, returns to its original position.  A larger ball sinks more deeply in the 

gel than a smaller one because of its greater weight. We also found that the depth to 

which the ball sinks in the gel is inversely proportional to the degree of gelation, i.e. 

modulus (Appendix B), the details of which will be published separately. When the 

experiment is conducted first with the larger ball and then with the smaller one, the 

latter would reach exactly the same position had the experiment been performed in the 

reverse order. When an external magnetic field is applied at the bottom of the glass vial, 

the ball sinks down further only to return to its original position upon the removal of 

the field. These observations suggested to us that these gels are quite elastic (we thank 

A. J. Crosby who shared with us some of his observations related to the elastic nature 

of similar soft hydrogels). When a sufficiently strong magnetic field is applied to the 

ball, fracture occurs inside the gel, which can then no longer support the weight of the 

steel ball; the latter simply passes through the gel with a uniform velocity. These results 

suggest that the gel is most generally not fractured, at least underneath the ball (figure 

2.2a,b), when it stands suspended inside the gel without exhibiting any motion. Since 

the height of submersion (h) decreases with the increase of the shear modulus () of the 

gel and increases with the radius (R) of the sphere, we expect that the shear force due 

to the accumulated strain would be  RhC  in analogy to the Stokes drag in a viscous 
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medium, in which the shear modulus and the height are exchanged with the viscosity 

and the velocity of the classical Stokes equation, respectively. Using the similarity of 

the structure of the elastic field (Navier) equation and the Navier-Stokes equation, one 

can estimate the value of C in the small deformation and linear elastic limit to be 4 so 

that the upward force experienced by the spherical ball is Rh4 (Appendix C).  By 

balancing this force with that of downward gravity, we obtain an expression for the 

immersed height as: )3/(2 gRh  , where is the excess density of the steel 

ball  surrounded by the hydrogel and g is the gravitational acceleration. Here, we ignore 

the effect of the wall of the glass vial, which would be important when its inner diameter 

is comparable to the size of the ball. Figure 2.2c shows that the depth of submersion (h) 

indeed increases with the radius (R) of the sphere in a quadratic fashion. With the data 

obtained from different measurements, the shear modulus of the gel is estimated to be 

358   Pa at a confidence limit of 95% and by forcing the fitted line to pass through the 

origin. In order to get a better agreement between this value that (42-45 Pa) estimated 

from the resonance frequency of the gel (figure 2.1), the value of C has to close to 

6We believe that this discrepancy is due to the fact that we used a simplified linear 

equation of elasticity in the small deformation limit. It would be more appropriate to 

employ an adequate constitutive relation between stress and strain for such a poro-

elastic gel and the coupled effects of the normal stresses in order to account for any 

putative non-linear effects. Fortunately, at this stage, the discrepancy is not huge and 

can be taken care of with an empirical correction factor. The value of this simple method 

is that it allows rapid estimation of the shear modulus of the gel by precluding any 

dynamics, which can be easily adapted to measure not only the elasticity of a soft gel 
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but also the liquid to solid transition of the gel as gelation is carried out with different 

amounts of acrylamide.  

 

2.3.3. Surface Tension of the Gel  

The need to obtain a direct estimation of the surface tension of the gel is that the 

material points of its surface can stretch16 during surface undulation and thus its surface 

tension may not necessarily be the same as that of liquid water. Direct measurement of 

the surface tension of a solid is, however, a well-known nuisance in surface physics as 

it is not usually possible to de-couple the surface from the bulk effects. Nevertheless, if 

the solid is very soft such as the case here and if the perturbation is small, it is possible 

to estimate its surface tension from the resonance vibration frequency of its free surface. 

A hemispherical cap of a liquid drop exhibits spherical harmonics with its fundamental 

frequency scaling with the volume (V) as V-0.5 provided that the mode is carried out by 

capillarity39-45.  For an elasticity driven mode46, the frequency scales as   V-0.33.   

Being inspired by such a clear and measurable distinction between the two types 

of modes, we subjected the hemispherical caps of the physically cross-linked gels to a 

random vertical vibration45 and identified the resonance frequency from the power 

spectrum of its surface fluctuation.  

These power spectra (figure 2.3) show that there is a fundamental vibration 

mode that varies with the volume of the drop as  55.0~ V , which is  similar to that of 

water in magnitude as well as in character 42-45, i.e. 5.0~ V  . The form 55.0~ V  is 

clearly distinct from the eigen frequencies of the elastic modes46 for which one expects 

33.0~ V . Since the contact angles of the hydrogel caps on the hydrophobic glass 
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Figure 2.3: (a) The fundamental deformation mode of a 20 L hemispherical cap of 

the hydrogel as obtained from some random frames of the gel vibrating under a random 

noise. These two frames show the downward (left) and upward (right) deflecting 

deflections of the surface of the hemispherical gel (b) Power spectra of hemispherical 

caps of the hydrogel show the resonance modes that depend on the volume of the drop. 

Several power spectra were added and averaged in order to reduce the background noise 

and improve the peak shape. (c) The resonance frequency () of the drop (red circles) 

varies with the volume of the gel following a V-0.55 relationship, which is very close to 

that of water (lower solid line).  

 

supports were 90o, we employ an equation given by Lyubimov et al.44 according to 

which the fundamental resonance frequency () of a hemispherical drop is:  
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Using the numerically evaluated value of  )4268.4(~ , the fundamental resonance 

frequency of a hemispherical cap of water of surface tension ~73 mN/m can be 

estimated from equation 2.1, which have been rigorously verified in previous 
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experimental studies43,45. Figure 2.3c shows that the experimental resonance 

frequencies of the gel are quite close to the values predicted from equation 2.1 for 

equivalent drops of water. These results encourage us to consider that the surface 

tension of the gel is very similar to that of pure water, i.e.  (gel) ~ 73 mN/m.  

With the above estimates of the elastic modulus and the surface tension of the 

hydrogel, its elasto-capillary length  / is estimated to be 1.8 mm. Thus, as long as 

the thickness of the hydrogel film is comparable to or smaller than 1.8 mm, we expect 

to witness a pronounced elasto-capillarity effect in the interfacial instability. The 

pattern formation experiments performed with a graded hydrogel bear out this 

expectation as discussed below.  

 

2.3.4. Elasto-capillary Instability 

The adhesion instability experiment could be performed conveniently with a thickness 

gradient gel that was polymerized inside a wedge shaped geometry (Figure 4a). The 

lower slide of the wedge was an untreated glass slide, whereas the upper slide  

(flexural rigidity of  D = 8 Nm) was silanized so that it could be easily peeled off the 

gel from its thicker side by inserting a razor blade underneath the slide resting on the 

spacer. With a very low wedge angle (0.15o) coupled with a material scale (D/ of 

deformation (0.6 m) being much larger than any geometric scale of the system, we 

expect that the entire hydrogel film would be hydrostatically stressed47 when the 

upper plate is peeled. This expectation is consistent with the experimental observation 

that the instability pattern develops spontaneously all throughout the interfacial 

contact (figures 2.4b and 2.5a), with its characteristic wavelength decreasing in 

proportion to the thickness of the gel.   
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Figure 2.4: (a) A soft hydrogel is confined in the wedge formed by two glass slides. 

The lower slide is as-received, whereas the upper slide was made hydrophobic by 

reacting it with a fluorocarbon silane. (b) When the upper plate is slightly lifted from 

the thicker side of the gel, it detaches partially from the silanized glass thus forming the 

instability pattern. The white scale bar represents 2 mm. The thickness values are 

representative of the gel thickness at the center of the micrographs (c) The wavelength 

(red open circles) of the instability decreases with the thickness of the gel, with its value 

being much larger than the relationship expected of a purely elastic instability (the solid 

line, =3.7H ). 

 

While the gel cured in a wedge geometry simplifies the measurements 

performed over a significant range of thickness, we emphasize that a gel of uniform 

thickness also yields similar wavelength of instability as does the gradient gel. For 

example, while a gel film with an uniform thickness of  0.15 mm yields an instability 

pattern of   = )06.0(29.1   mm, the section of the gradient gel of similar thickness 

yields a value  as  )16.0(39.1  mm.  This discrepancy is well within the error band of 

the measurement.  
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Figure 2.5: (a) This experiment is similar to that of figure 2.4, except that the upper 

glass plate was treated with a thin (5 nm) film of polydimethylsiloxane.  The white scale 

bar represents 2 mm. The thickness values are representative of the gel thickness at the 

center of the micrographs (b) This panel shows the formation of fingering instability, 

observed at 142m thickness, during the peeling of a soft PDMS cantilever (flexural 

rigidity 2x10-4 Nm) from a hydrogel film of varying thickness. The spacing of the 

fingers is also comparable to the spacing of the bubbles from a film of comparable 

thickness.  

 

Even though the wavelengths of the instabilities observed with both the FC 

(fluorocarbon) and the PDMS (polydimethylsiloxane) coated glass slides are 

comparable, certain differences in their morphologies are evident in figures 2.4b and 

2.5a. For example, while bubbles are observed with the PDMS coated slide peeling 

from the thicker part of the gel, interconnected stripes are observed with the FC coated 

slide. On neither of the two surfaces, the wavelength of the instability follows the 

standard =3.7H relationship as was observed previously21,24-26 with the higher 

modulus (~ 1 MPa) elastomers. The line joining the data seems to intersect the ordinate 

axis at a finite value ( 07.027.0  mm), which may tempt one to consider that this 

intercept is directly related to  / . However, for such an interpretation to be valid, 

the shear modulus of the soft gel has to be about 240 Pa considering that the surface 

tension of the gel is similar to that of water. This value is considerably greater than that 

(ca 40 Pa) obtained from direct measurements of shear modulus as discussed above. 

Thus other explanations are sought, in which the effects of the finite compressibility of 

the film and the elasto-capillarity are explicitly considered.  
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2.4. Discussions 

2.4.1. Interpretation of the Elasto-capillary Instability 

In what follows, we carry out a linear stability analysis of the interface using a 

relationship between the vertical displacement w(x) of an incompressible elastic layer 

and the surface normal stress  (x). This relationship between stress and displacement 

was originally developed by Kerr48 and later used by Ru49 to study pattern formation in 

thin elastic films. Ru49 showed that such an analysis yields the same result as that of a 

more formal approach used by Shenoy and Sharma23 in their studies of the adhesion 

induced elastic instability. Here we adopt the method of Ru49, which is easy to use and 

amenable to the study of the effect of Poisson’s ratio in a straightforward manner. While 

we follow here the lead of  Ru49, there is a technical difference between the method 

used here and that used by him as well by others21-23. In the previous analyses, it was 

assumed that a long range attractive force (such as a van der Waals force) triggers the 

instability as the contactor is brought in close vicinity to the soft film much like what 

was pointed out earlier by Attard and Parker50. In our experiment, the gel is already in 

contact with the substrate and the instability is caused by an external force in the post 

bonded state. As the long range van der Waals and other interactive forces act in the 

cohesive zones of detached regions, it is convenient to include the effect of these forces 

in the work of adhesion (Wa). The observed instability is due to the lowering of the 

potential energy of the system by an external load at the expense of the transverse and 

longitudinal shear deformations as well as surface undulation. 
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For a frictionless interface between the gel and the upper substrate, and with a 

perfect bonding between the film and the lower substrate, Kerr’s equation48,49 takes the 

following form:  
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Where w=w(x) is the normal displacement, E= 2(1+) is the Young’s modulus,   is 

the Poisson’s ratio,  =(x) is the normal stress, and  Dn represents nth derivative with 

respect to x.  All the coefficients (Ai, Bi) are functions of the Poisson ratio () as follows: 




1

1
1A ,

22
)1(12

)43(








A , 

23
)1(90

)43(








A ,

24
)1(1260

)43(








A , 










1

)21)(1(
1B , 

)1(3

)43)(1(
2








B ,

)1(15

)43)(1(
3








B , 

)1(315

)43)(1(2
4








B                                            (2.4) 

Equation 2.3 can be easily solved for a periodic undulation of the surface ( kxww o sin

)  and the corresponding surface stress as kxMwoo sin , where M is the stiffness 

of the film that is determined upon the substitution of perturbed forms of w and   in 

equation 2.3 (see also figure 2.6a). While a closed form relationship49 can be given for 

M in terms of E, H and k, numerical analysis shows that MH/E follows a power law 

relationship with kH in the long wave limit (i.e. )1kH . For an incompressible film 

we have an expression for M as follows: 
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The sum of the surface (US) and the elastic (UE) energies of the film can now be written 

down for a 2d deformation as follows: 
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where L1 and L2 are the lateral dimensions of the film as shown in figure 2.6a. Using 

the periodic perturbations of the surface ( kxwo sin ) and stress ( kxMwoo sin ) states, 

the energy per unit area can be expressed as: 
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In order to carry out the energy analysis of the deformed film, we consider that a 

constant load is applied on the upper surface so that the system undergoes a net change 

in the potential energy per unit area as -woThere is also a decrease of the adhesion 

energy and a corresponding increase of the elastic and surface energies. Total change 

of energy per unit area can thus be expressed as  
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Where,   is the fraction of the surface that is detached.  At equilibrium, 0/  owU ; 

we thus obtain an expression for U  in terms of the applied stress as:  
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The tendency of the system is to be maximally compliant via interfacial instability, so 

that the confined film can undergo maximum amount of vertical deflection under a 

given applied stress.   U achieves its minimum value when Mk 2  is minimal with 

respect to , which leads to an expression for the wavelength of the instability as: 
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27.0)/(2.4 HH   for an incompressible film (=0.5). This result is consistent with 

the prediction of our previous scaling analysis ( 4/3~ H ) and is almost identical to the 

result [ 4/1)3/(2 HH   ] obtained by Gonuguntla et al28 in which instability occurs 

due to attractive forces during the pre-bonding process. This relationship can also be 

written as 27.0/2.4 ECaH  where  /HECa   is the elasto-capillary number that 

contrasts the expression 5.0/CaH   applicable for the classical Saffman-Taylor 

instability51,52 where Ca is the classical capillary number.  The above relationship 

clearly departs from the conventional  H7.3  relationship observed 24-27 previously 

with less compliant films. While we show below that the experimental results of pattern 

formation are due to elasto-capillarity, it is tempting to inspect how far this result can 

be explained by considering a small but finite dilation of the film that favors a long 

wavelength instability on its own. Calculations with =0 show that the Poisson’s ratio 

has to be in the range of 0.3 so that an instability pattern develops with its wavelength 

somewhat comparable to experiments. However, the predicted relationship between 

wavelength and thickness, i.e. H7 , passes through the origin (0,0) that is markedly 

different from the experimental observations (figure 4c).  

A variation of the experiment summarized in figure 2.1 allows measurements 

of the frequencies of the vibration of a thin gel slab confined between two parallel plates 

in both the normalc ( )   and shear (
 ) modes. The ratio of these two modes are 

                                                 

 

 
c  We note that the value for the normal mode (

 ) reported here, i.e, 31.25 Hz is probably due to signal 

amplification during FFT analysis and not a true reflection of the normal mode.  An experimentally 

measured value for the Poisson’s ratio ( = 0.457) reported in62 [Takigawa, T.; Morino, Y.; Urayama, 

K.; Masuda, T. Poisson's ratio of polyacrylamide (PAAm) gels. Polymer Gels and Networks 1996, 4(1), 

1-5.] supports the analysis carried on further in the paper. 
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related to the Poisson’s ratio as   )1(2/
2

 
.  With the measured values of 



and 
 as 31.25 Hz and 18.31 Hz respectively for a sample of dimensions (57 mm x 25 

mm x 1 mm),  is estimated to be about 0.46, which asserts that it is futile to try to 

explain the experimentally observed long wavelength instability on the basis of a rather 

low (0.3) Poisson’s ratio. The issue of estimating the magnitude of the Poisson’s effect 

in a poro-elastic film by vibration is, however, somewhat complicated. When the gel 

attempts to dilate, its Poisson’s ratio should be close to that (~0.5) of water if no free 

water is available to invade the network. On the other hand, during the compression 

phase, as the network can deform by squeezing out some water, its apparent Poisson’s 

ratio can be smaller than 0.5.  

 

Figure 2.6: (a) Schematics of the geometry used to carry out the linear stability 

calculation. (b) Calculated values (lines) of the wavelengths are compared with 

experiments (filled symbols). The red circles represent the data obtained with the 

peeling of a fluorocarbon silane treated glass from the PAM hydrogel, whereas the pink 

circles represent the data obtained with a PDMS coated glass peeling from a PAM 

hydrogel. All the wavelengths are re-scaled by multiplying it with 27.0)/( H  using 

the value of  as 0.073 mN/m and  as 40 Pa. The calculations are performed with three 

different Poisson’s rations (0.5, 0.48 and 0.46) as indicated in the inset of the figure.    

 

A gel, however, is always in hydrostatic tension when an external load is applied during 

the pattern formation experiment. As no water is available to invade the gel, its 
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Poisson’s ratio should be very close to that (~0.5) of water with the provision that the 

expansion of any small air bubbles trapped in the gel could lower its Poisson’s ratio 

than that of water. Analysis of the pattern formation experiments, itself, would therefore 

be a better way of finding out what kind of Poisson’s ratio manifests in the gel when it 

is under hydrostatic tension. 

Now, considering that the hydrogel is incompressible, the values of the 

wavelength as obtained by minimizing Mk 2  are plotted in figure 2.6b as a function 

of H after rescaling the wavelength as 27.0)/(  H .  The data obtained with both the 

FC and PDMS coated glass slides cluster around this theoretical line corresponding to 

 = 0.5 with their intercepts on the ordinate axes being 044.0016.0   and 

032.0041.0   respectively at a confidence limit of 95%. The significant error bands 

associated with the estimates of these intercepts prevent us from making definitive 

comments about the Poisson’s dilation. Calculations also show that if the putative 

Poisson effect were present, it would have strongly influenced the wavelength of the 

interfacial patterns in the very thin film region. While the scaling   27.0)/(  H  ~ H  

would still be obeyed by the thicker films with a finite dilatation, the thinner films 

would exhibit such long wavelengths that the interface may not roughen at all below a 

critical thickness. The thickness of the film where this transition occurs is predicted to 

be inversely proportional to the Poisson’s ratio, i.e. while this transition occurs at about 

H = 10 m for  =0.48, it occurs at about H = 45 m for =0.46. Since the experimental 

instabilities are observed with H as low as 10 m, we feel that the experimental data 

should be compared with the theoretical analysis performed with the Poisson’s ratio 

being very close to 0.5.   
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We summarize by stating that we found convincing evidence of elasto-

capillarity in adhesion induced pattern formation between a solid contactor and an ultra-

soft gel film. The rescaled wavelength of instability varies fairly linearly with the film 

thickness, which is in good agreement with the theoretical analysis. Some differences 

in the morphological patterns of the instability are observed with the FC and the PDMS 

coated surfaces, which may arise due to some well-known differences53 in hysteresis, 

adhesion, and friction of these surfaces. In other words, the slip boundary condition that 

is intrinsic in equation 2.3 may be different for the FC and PDMS surfaces.  

 

2.4.2. Elasto-capillarity in Adhesive Fracture 

Understanding the nature of elasto-capillary instability is also important in 

estimating the adhesive fracture stress (of a flat ended rigid indenter from a thin 

confined film of thickness H. The subject has its origin in the classic work of Kendall54, 

who laid down the foundation for such an analysis by proposing that the adhesive 

fracture stress of a very thin film undergoing volume dilation is   5.0* /~ HWK ab , where 

Kb is the bulk modulus and Wa is the work of adhesion. Later it was argued in the 

literature25-27,55,56 that a thin film can bypass the above mode of interfacial separation in 

different ways, one being the elastic instability25-27. In such a case, Kendall’s equation 

assumes a form:   5.0* /~ HWa  where the bulk modulus Kb is replaced by the shear 

modulus . This would be the case for a large elastocapillary number, i.e. H >>.  

However, when H is comparable to or less than certainnon-trivial regimes may 

appear as follows.  
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In order to develop the premise for this discussion, we express k and M in terms 

of the wavelength of the instability   so as to obtain the scaled total energy ( AUU  ) 

of the system (eq. 9) as follows:    

AW
A

F
U a



22

~
    (2.10) 

Where, F is the applied force, which is kept constant during the fracture process. With 

an expression for  as 4/13 )/(~  H , the pull-off stress is given by the instability 

conditions:   0/  FAU   and 0/ 22  AU  , which lead to eq. 11. 
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We thus have a situation where the adhesive stress depends more strongly on the 

thickness of a film than the usual case [   5.0* /~ HWa ] of an elastic instability driven 

crack formation and the subsequent rupture of the contact. A non-trivial case may 

manifest with a very thin film, in which the surface tension no longer allows auto-

roughening of the surface of a dilatable film (i.e. < 0.5). The critical stress to fracture 

could then depend on the bulk modulus (Kb) as    5.0* /~ HKW ba , which is the classic 

equation proposed by Kendall54 over forty years ago. Many practical soft adhesives 

however are viscoelastic57 and thus additional improvisations would be needed. Further 

research needs to be carried out to verify these predictions with ultra-soft and/or ultra-

thin elastic adhesives sandwiched between rigid places, which may be important in the 

construction of an appropriate phase diagram for thin film adhesion.  These results may 

also be relevant in tribological settings involving soft materials for which there are 

suggestions58 and ample evidences59 of the roles played by the interfacial instabilities.  
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Figure 2.7: (a) The normal stress to debond a silanized circular rigid glass disc (12.8 

mm diameter) from hydrogel films of different thickness and modulus are plotted 

against   5.0
/ HEWa

. (b) The data of figure A cluster around a single line when the stress 

is multiplied by   25.0
/EH . These experiments were performed with Chih Hsiu Lin.  

 

 While the measured60 pull-off stress of a rigid stud from the hydrogel films of 

different shear moduli and thicknesses show that the data conform to the scaling 

relationship shown in equation 2.11 (Figure 2.7), the slope of the plot   25.0
/ EHc

 

versus   5.0
/ HEW a

  is substantially greater than unity. While we do not have a definite 

explanation for this result, we speculate on certain factors that might be considered in 

future for an amicable explanation of the discrepancy. One obvious consideration 

behind the high stress observed with a hydrogel gel is that there may be an underlying 

viscoelastic amplification of the Griffith’s stress that has not been taken into account. 

However, as the hydrogel films, in our experiments, are very thin, it may not allow 

sufficient dissipation of energy for the viscoelastic amplification to be effective. In fact, 

by varying the pull-off speed over a factor of thousand led to an increase of the pull-off 

stress by only a factor of 2 to 3 with the soft hydrogel film, which is insufficient to 

explain the observed discrepancy.  



 56 

 Fracture, however, is fundamentally a non-equilibrium process that may not be 

described by the instability modes obtained from an energy minimization process. Here, 

the role of viscosity may just be to delay the decay of the non-principal modes. A more 

realistic situation would, however, be to develop a criterion that would impart an 

appropriate weightage to a specific mode, from which a reliable estimate of the fracture 

stress can be obtained. 

 

2.5. Conclusions 

The conclusions of this work are as follows: 

1. Direct measurements of the surface tension and the elastic modulus led to the 

prediction of a rather large and macroscopically realizable elasto-capillary length 

in a soft elastic hydrogel. 

2. Experimental and theoretical analysis corroborate that the long wave instability 

observed in a soft elastic film is the consequence of a large elasto-capillary length 

with some non-trivial effects arising from the Poisson’s dilation.  

3. It is further proposed that a long wavelength instability can affect the mode of 

fracture as well as the adhesive strength of a soft adhesive confined between two 

rigid substrates in non-trivial ways.  

 

A.  Scaling Analysis of Elasto-Capillary Instability  

Here we show a scaling analysis25,26 to obtain an expression for the spatial wavelength 

of the elasto-capillary instability.  We begin by writing the sum of the elastic and surface 

energies (per unit area basis) in terms of the horizontal (u) and the vertical (w) 

displacements as follows:  
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                                (2.12) 

We wish to reduce equation 2.12 at the scaling level by choosing the characteristic 

length scales in the horizontal and vertical directions as the spatial wavelength (and 

the thickness of the film (H) respectively.  Now, taking the amplitude of the 

perturbation as wo, we have Huzu /~/   and /~/ owxw  . The maximum 

horizontal displacement scales along the x direction can be obtained from the equation 

of continuity )0//(  zwxu   or  Hwu o /~/ , which leads to u~wo/H. 

Equation 2.12 can now be written at the scaling level as 

  22

0

222 //1/~  wHHwU o  .  Minimization of U with respect to yields the 

desired relation:  ~ H (1+ /H)1/4.  
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Chapter 3 

Vibrations of Sessile Drops of Soft Hydrogelsa

 

 

 
3.1. Introduction. 

In recent years, estimation of the surface tension and the elasticity of soft gels has 

become the subject of considerable interests1,2. Starting with the pioneering study of 

Harden, Pleiner and Pincus (HPP)3, several studies have focused on identifying the 

capillary and the elastic modes of vibration of either a half space or a thin film of the 

gel in terms of the various wave vectors that its free surface displays4-7. There is also a 

long history of studying the vibration modes of the surface of spherical liquid drops8-

17. These studies start with the original prediction of Rayleigh8,9, which shows that the 

spherical harmonics of the capillary oscillations of an incompressible liquid drop 

surrounded by a rarified medium, are given as follows:  

  
3

21
R

llll



                                         (3.1) 

Where, 
l  is the resonant frequency, l (=2,3,4… ) is the eigen-mode of the oscillation, 

R is its undeformed radius;  and  are its surface tension and density respectively. For 

the case of a sessile drop, several authors have modified Rayleigh’s equation with 

appropriate slip and no-slip boundary conditions at the three phase contact line10-14. 

                                                           
a Adapted and Reprinted with permission from [Chakrabarti, A. and Chaudhury, M. K. Extreme 

Mechanics Letters 2014, 1, 47-53]. Copyright © 2014 Elsevier Ltd. 
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Nevertheless, the basic scaling relation 2/3~ Rl  has been found to be preserved in 

all the subsequent modifications of Rayleigh’s equation.  

One advantage of studying the spherical harmonics of a sessile liquid or gel drop is that 

the wave number of the surface vibration is uniquely determined by its perimeter. In 

that spirit, we recently studied2 the surface vibration of a soft (shear modulus, 40 Pa) 

hemispherical gel preformed on a flat substrate and found that the variation of its 

resonance mode as a function of its volume is very similar to that of pure hemispherical 

drop of water15. Based on these previous results, here we venture to investigate how 

these modes depend on the elasticity of the gel with a wide variation of its mass.  

The frequency of vibration of the soft gel sphere depends upon its inertia and the 

restoring force it experiences due to the change in the energy of adhesion resulting from 

the motion of contact line (dEadh), and that due to the change in surface (dEs) and  the 

elastic (dEe)  energies: 

esadh dEdEdEdE ~                                            (3.2) 

dEadh is negligible if the three phase contact line is sufficiently pinned, which happens 

to be the case with the experiments to be presented below.  Let the initial free surface 

area of the gel sphere in contact with the substrate (contact angle  be )(2

0 fRS  . 

For a small perturbation of the surface area S corresponding to a displacement of the 

center of mass of the drop as y, 2

1 ))(( ySdEs   . Variation of this energy 

with respect to y yields a restoring force yFs  )(~ 1
 and a corresponding spring 

constant: )(1 sk .  The restoring force due to elastic deformation is 

(dimensionally) expected to be of the Hertzian form:   2/3
~ yRFe  with 

)( Rgy  . With appropriate substitution, the elastic spring constant is: 



66 

)(2 Rke  . The total restoring force is obtained by adding the contributions due to 

surface and elastic deformations as their corresponding energies are additive. Thus, by 

assuming that the system is conservative, the frequency of vibration of density  and 

volume V is expected to follow the scaling relationship: 

                                
2/1

21 )()(
~ 







 

V

R






                                    (3.3) 

A more exact equation of the elasto-capillary vibration frequency of a hemispherical 

drop can be derived by solving the equation of (irrotational) motion of the drop in a 

spherical co-ordinate in conjunction with a stress jump boundary condition comprising 

of the capillary and elastic contributions. This treatment would allow us to obtain the 

various spherical harmonic modes. For the purpose of the current study, where we focus 

on the spheroidal (l=2) mode, this detailed analysis is not required, which, essentially, 

produces the same result as that captured in equation 3.3.  We, however, reserve this 

analysis for a detailed publication in future, where we would investigate the higher 

vibration modes (i.e. l >2). We point out here that an equation similar to equation 3.3 

has been observed by various authors1,3-6 for the case of a half space  in terms of a 

surface wavenumber k. For example, Choi4,5 et al derived an equation for the elasto-

capillary wave velocity in a gel as     5.0
/4   kV , which yields a similar scaling 

relation for frequency as shown in equation 3.3, when the surface wavenumber is 

replaced by 1/R . In our problem, as stated above, the wave number is pinned by the 

perimeter of the drop. There are two extreme limits to equation 3.3. With a elasto-

capillary number  /R <<1, only the capillary mode should prevail, in which case, the 

frequency of vibration would vary inversely as the square root of the volume of the 

drop. On the other hand with  /R >> 1, the frequency of vibration would vary 



67 

inversely as the cubic root of the volume. Both types of scaling have indeed been 

reported for the cases of pure liquid drops15 as well for solid spheres of high elastic 

modulus18.  In the intermediate range a pseudo-capillary mode with an effective surface 

tension RC     (C is a numerical constant) should be in effect; however the 

frequency of vibration would depend on volume with an exponent lying between of -

1/3 and -1/2.  

The scaling relation as captured in equation 3.3, however, is valid for a conservative 

system. In the case with a real gel, we also have to consider the effect of surface and 

bulk viscous effects. One obvious consequence of viscosity is that the surface and the 

elastic modes may not be in phase; i.e. they may not necessarily coalesce as suggested 

by the simple scaling relation (3.3).  

At this juncture, we should point out a couple of other reasons why a simple relation of 

the type shown in equation 3.3 may not be valid with a real gel. The surface tension 

term that appears in equation 3.3 could actually be the surface stress19 given as 

 dd / ,   being the surface strain. Surface rheology may have a frequency 

spectrum that is different from that of the bulk deformation. Thus, not only can the 

surface tension of a vibrating gel be different from the thermodynamic surface excess 

free energy, but there may also be other non-trivial reasons for a possible phase 

difference between surface and bulk modes of vibration. Furthermore, both the 

rheological spectra could also be non-linear in frequency that may not be captured with 

a simple Maxwell-like viscoelastic model.  

In view of the above mentioned complexities, our objectives of this study are quite 

modest. First, we intend to find out if the spheroidal modes of vibration could be 

detected for soft gel drops of different elastic moduli and how the resonance frequency 
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varies with the volume of the sphere. Secondly, we wish to find out if the observed 

frequency could be expressed in terms of the surface tension and the shear modulus of 

the gel in a simple semi-empirical form.  

In order to achieve this objective, we developed a new method to produce gels of 

different radii, which are as spherical as possible. We then placed these gels on a 

hydrophobic substrate on which the gels subtend well-defined contact angles > 90°.  

The gels were then vibrated vertically using a mechanically induced Gaussian random 

noise, the power spectra of which helped us identify the resonance frequency 

corresponding to the l=2 mode. In the subsequent sections, we first describe the 

experimental method of preparing such spherical gels and the method used to identify 

their spheroidal modes. Followed by the experimental section, we analyze how these 

modes depend on the volume and shear modulus (55 Pa to 290 Pa) of the gel and show 

how the data can be collapsed about a single line with an appropriate scaling.  

 

3.2. Materials and Methods 

3.2.1. Measurement of Elastic Moduli of Gels 

Before performing the vibration experiments with the spherical drops of the gel, we 

needed to estimate their shear moduli independently.  The shear moduli of the different 

gels were determined by vibrating a thin slab of a gel in the shear mode in a confined 

geometry, the details of which are explained in our previous publications2,20. Here, we 

briefly describe the main idea behind such a measurement. A schematic of the 

experimental setup is shown in Figure 3.1a (More details can be found in Ref. 20). A 

thin slab of gel was cured in between two clean glass plates (Fisherbrand, top: 25mm x 

75mm, 1mm; lower: 50mm x 75mm, 1mm) separated by uniform spacers. Once the gel 
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was cured, a steel disk was fixed to the upper glass plate of the sample. The lower plate 

of the sample was fixed atop a platform mounted on a vibration isolation table (Micro-

g, TMC). A strong magnet was fixed at the edge of an aluminum stage, which in turn 

was connected to a mechanical oscillator (Pasco Scientific, Model no. SF-9324). 

Random white noise was generated using a waveform generator (Agilent, model 

33120A) that was transferred to the mechanical oscillator and thus generating a random 

magnetic field. When the magnet was brought close enough to the gel sample, the thin 

gel slab vibrated randomly in a shear mode due to the random vibration of the steel disk 

attached to the upper plate. A high speed movie (Redlake Motion Pro, model no 2000, 

at 1000frames/s) capturing the random motion of the gel slab and its subsequent 

analysis in a motion tracking software (Midas 2.0, Xcitex Inc., USA) yielded the 

displacement fluctuations. The resonant peaks (Figure 3.1b) of the shear vibrations 

were identified from the power spectra of these fluctuations by averaging data taken 

from ten videos each had a duration of 4s. The shear modulus was estimated by using 

the formula AmH224   , where   is the resonant frequency, m is the mass of the 

glass plate and the steel disk, H is the thickness of the gel slab and A is the lateral cross-

sectional area of the gel slab.  
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Figure 3.1: (a) Schematic of a thin gel slab (1 mm thick) sandwiched between two 

parallel glass plates undergoing shear vibration. (b) The resonant peaks of the shear 

vibration of gel as obtained from the power spectra of their random vibration (RMS 

fluctuation 0.03 mm). Powers are in logarithmic scale. (c) An example of a spherical 

gel drop of shear modulus 55 Pa; this is a snapshot of a video that was captured while 

the sphere sank slowly through mineral oil in a quartz cell.   

 

3.2.2.  Preparation of Gel Spheres 

Highly spherical gel spheres (Figure 3.1c) were made by curing polyacrylamide gel 

solution drops of different volumes by suspending them in a liquid density gradient. 

Three different gels (55 Pa, 170 Pa and 290 Pa) were used for the study, the details for 

the preparation of which are described elsewhere2,20. The density gradient was formed 

in small beakers with a liquid heavier than the gel solution (PDM-7040, Gelest Inc., 

density 1.07 g/cc) at the bottom and a lighter liquid (n-octane, 97% pure, Acros 

organics, density 0.7 g/cc) on the top. After all the ingredients of the gel were mixed, 

different volumes of the gel solution were released gently over the top surface of the 

octane in the container housing the density gradient. The drops of gel solution become 

neutrally buoyant at the diffusing interface of the two liquids forming the density 

gradient. These suspended gel drops cure to form highly spherical gel drops (Figure 
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3.1c) that were subsequently washed in fresh n-heptane (Fisher Chemicals) repeatedly 

and dried moderately in air. The volume of gel spheres thus formed ranged from 2L 

to 100L as determined from their weights.  

 

3.2.3.  Vibration Studies of Gel Spheres 

A rectangular polystyrene cuvette was used to house each gel sphere for the vibration 

studies (Figure 3.2a). A small glass piece (8 mm x 8 mm, 1mm), was hydrophobized 

using the usual method of reacting with dodecyltrichlorosilane (Gelest Inc.) by vapor 

deposition technique and was fixed on one of the walls inside the polystyrene cuvette. 

As soon as the gel sphere was placed on the hydrophobic glass piece, the open end was 

sealed firmly with parafilm to avoid drying of the gel during the time the studies were 

carried out. Filter paper soaked with deionized water stacked inside the cuvette 

maintained its relative humidity to about 99.9%. The cuvette housing the sample was 

then fixed onto an aluminum stage that was set to vertical vibration with random white 

noise by the mechanical oscillator and waveform generator as described in section 2.1. 

The surface fluctuations of the gel drops (i.e. the height of the drop) were video 

recorded with a high speed camera at 1000 frames/s that were subsequently fast Fourier 

transformed using Origin software to yield their power spectra (Figure 3.2b). The 

resonant frequency for the spheroidal mode was identified from the power spectrum for 

each gel sphere. As we reported earlier15, the probability distribution function of the 

accelerations of the stage was Gaussian that was white up to a practical bandwidth of 5 

kHz. With these random accelerations (), the strength of the noise was estimated as,

ctK  )(2 , where (t) is the value (m/s2 ) of the noise pulse and c is its duration (40 

s). A constant noise strength (0.1 m2/s3) was used to perform all the vibration studies 
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although we noted that the primary peak position for each spheroidal vibration mode is 

independent of the noise strength (Figure 3.2b). Although an effective temperature can 

be obtained by multiplying K with the mass of the object and its characteristic relaxation 

time, we refrained from doing so in this work. Here we present directly the root mean 

square value of the surface fluctuation to distinguish the states of the system.  

The vibration modes of the gel sphere can also be obtained from their plan views.  In 

this method, a wire mesh (opening 0.0046”, wire dia 0.0026”, Mc Master Carr)21 was 

firmly attached to the base of the polystyrene cuvette. When viewed from above, the 

lateral contraction and stretching of the drop can be easily discerned from the change 

of the shape of the wire mesh. Fast Fourier transform of the fluctuation of the grid 

 

 
Figure 3.2: (a) Schematic of the experimental setup for studying the height fluctuation 

of the gel drops placed on a hydrophobic substrate after subjecting it to a random white 

noise. (b) The power spectra for a 38L gel sphere (55 Pa) at different noise strengths, 

each has its resonant mode corresponding to l=2 at 51 Hz, their RMS fluctuation being 

marked in legend. (c) Two randomly selected snapshots of vibration of a 47L (55 Pa) 

gel sphere from a high speed movie of it undergoing random fluctuation. This 

corresponds to a spheroidal mode of l=2. 

 

 

obtained from the diagonal distance of two selected points allowed identification of the 

resonant modes (Figure 3.3), which were, essentially, same as those obtained from the 
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height fluctuation of the drop.  In both cases, the l=3 and l=4 modes were undiscernible 

from the visible inspections of the random frames of the drop fluctuations, while the 

l=2 mode was very prominent. However, the presence of these higher modes was 

weakly evident in the FFT spectra of both the height and lateral fluctuations of the drop. 

For all the results presented below for detailed analysis, we use the vibration modes 

obtained from the height fluctuations of the drops.   

 

3.3.  Experimental Results and Discussion 

The power spectrum of the height fluctuation of a gel drop (= 55 Pa) is shown in figure 

3.4, where it is compared with those of a drop of water and two different mixtures of  

 

 

Figure 3.3:  (a) Two randomly selected snapshots of the lateral vibration of a 35L (45 

Pa) gel sphere from a high speed movie of it undergoing random fluctuation.  (b) 

Similarity of the power spectra for a 53 L gel sphere (45 Pa) as obtained from height 

and lateral fluctuations at a noise strength of 0.014 m2/s3.  

 

water and glycerol, both of which have comparable surface tension and density but 

largely different in  viscosity. From the experiments performed with the liquid drops, it 

is evident that the lowest mode (l=2) is relatively unaffected by viscosity, but the higher 
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modes are progressively damped with increasing viscosity. The frequency dependent 

damping of modes is known for a long time9,15,16,22.  

 For example, Behroozi22 proposed that this damping increases with the capillary 

driven eigen-frequency (
l ) in proportion to   2/123 /  l

 . The three modes (= 

51, 109 and 182 Hz) observed with the gel (Figure 3.2b) are close to those of water and 

the mixtures of water and glycerine that correspond to  l=2, 3 and 4 and respectively.  

It is quite clear that the higher modes of the gel are rather damped by viscous relaxation, 

while the lowest mode (l=2) is quite pronounced. The remarkable similarity of the 

power spectra of height fluctuation of the PAM gel and that of water-glycerol (20:80) 

mixture indicates that the viscosity of the gel is, perhaps, in the range of 47 Pa.S. In this 

study, we focus on the resonance frequency of the spheroidal mode (l=2) of each gel 

drop (Figure 3.5a) as a function of its volume and shear modulus. 

 

 

Figure 3.4: Power spectra of the height fluctuations of a 38 L drop of pure water, 60% 

glycerine in water, 80% glycerine in water and polyacrylamide gel (shear modulus 55 

Pa) [The power spectrum for the gel sphere plotted here is same as that shown in blue 

in Figure 3.2b]. The noise strength at which the stage was vibrated is 0.014 m2/s3. 
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For gels of modulus spanning by a factor of six, the resonance frequencies vary 

inversely with volume with an exponent close to 0.5 (figure 3.5), which are not too 

different from the previously published values of pure hemispherical water drops15. The 

frequencies for these gels of different moduli (Figure 3.5a) do not diverge significantly 

with the increase of the size of the gel sphere nor do they converge at small drop sizes. 

The log-log plots of these frequencies ( ) as a function of V obtained for gels of 

different shear moduli (55 Pa- 290 Pa) are nearly parallel to each other as shown in 

figure 3.5B.  

These observations contrast Equation 3.3, which suggests that the resolution of the 

frequencies should increase with the drop volume as modulus increases and they would 

approach each other at small volume as the elastocapillary number decreases. In order 

to appreciate the discrepancy, consider a 290 Pa gel sphere of radius 1 mm.  Here, the 

elasticity (R) term is four times larger than surface tension (with the discrepancy 

increasing with the size of the drop. Thus  must decrease with volume with an 

exponent of V close to 1/3, not 1/2 as observed experimentally.  We feel that the origin 

of this discrepancy is that equation 3.1 applies for hemispherical drops, which should 

not apply to large drops that flatten somewhat due to gravity. The exact solution of the 

problem starting from the elastic field equations is quite complex and require numerical 

methods. 

Here we provide a heuristic equation that preserves the form of equation 3.1 at small 

radius, deviate from it for larger drops. We start with a flat slab of gel of thickness h 

that is vibrated perpendicular to the free surface that generates surface waves of 

frequency , and wavenumber k. Our starting point is to define a spring constant of the 
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Figure 3.5: (a) Experimentally observed resonant frequencies for the spheroidal mode 

(l=2) of vibration of gel drops of different shear moduli plotted as a function of their 

volume. The inset shows the plots of  versus m  for the three gels. (b) All the 

resonance frequencies are plotted as a function of the volume of the gel spheres in a 

log-log scale (c) The values of   are plotted as a function of frequency hP2   

multiplied by a scale factor:  21 h . The linear fit has a slope ~ 1.92 ± 0.04 with a 

regression coefficient of 0.96. This shows how the values of the resonant frequencies 

of equivalent water drops fall on the same line. 

 

slab as h    so that its vibration frequency is expressed in terms of wavenumber k 

as:  

 






 
2

2 ~
hk

h




                                                 (3.4)  

We now convert equation 3.4 for the case of a sphere, somewhat like what Noblin et 

al12 did in converting an equation of vibration of a flat liquid film to that of a 
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hemispherical drop, by defining k to be the inverse of the perimeter (P) of the drop and 

thickness h to be equal to PV . We thus re-write equation 3.4 as:   





 hc

hP









1~

5.0

2

  or  hc1*~                  (3.5) 

Where c is a numerical constant to be evaluated experimentally.  It is easy to show that 

equation 3.5 reduces to the same form as equation 3.3 for the case of hemispherical 

drops, for which the perimeter is proportional to the radius, but it deviates from equation 

3.3 as the drop becomes flatter.   

It is found that that the contact angle of the gel drop increases with its modulus: ( 

=100° for 55 Pa, 115° for 170 Pa and 125° for 290 Pa). Furthermore, as stated above, 

the drops are not spherical for large drops. However, in order to apply equation 3.5 to 

our problem, we need only to know the volume of the drop (V) and its maximum arc 

length (P) in the rest state. The first one is estimated directly by measuring the weight 

of the deposited drop and the latter is estimated from the side profile of the drop using 

the ImageJ software.   

Experimentally measured frequencies of the three gels with different volumes collapse 

(Figure 3.5c) nicely about a single line when they are plotted against the fundamental 

capillary frequency scale ( 5.02 )/ hP (estimated using the surface tension of water, 72 

mN/m) shifted by  21 h , i.e.  

 21~ h                                           (3.6) 

Some additional remarks are in order here. Firstly, we note that the resonant mode 

corresponding to l=2 is rather insensitive to the strength of the noise (Figure 3.2b). This 

coupled with the observation that the random displacement of the surface is Gaussian 
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(Figure 3.6) suggest that these gels behave more or less linearly as was also observed 

previously with pure water drops15.     

 
Figure 3.6: (a-b) Examples of the height fluctuations of a 38L gel sphere of two 

different moduli (55 Pa and 290 Pa) following a Gaussian probability distribution. 

Noise strength is 0.1 m2/s3. 

 

A detailed analysis of the vibration modes of the gel along the line of HPP, but in polar 

spherical coordinate, is critical to make further inroads to the problem. The statistical 

mechanical aspect of the current problem is similar as well as different from that studied 

by HPP in that these authors consider the roles of thermal fluctuations in which the 

autocorrelation of random stress is related to temperature and viscosity via usual 

fluctuation dissipation relation. In our problem both the thermal and an externally 

imposed random mechanical noises are in effect, in which the autocorrelation of 

random stress would depend on both thermodynamic temperature as well as the strength 

of the mechanical noise manifesting in terms of an “effective temperature”. The 

Gaussian nature of the displacement fluctuations suggest that the viscous term enters in 

the problem linearly, which should simplify the analysis. The problem is challenging, 

but it also provides opportunities for new physics to be discovered as the externally 

imposed noise and internal friction are de-coupled, and thus the role of friction could 

be studied independently of noise, which is not the case with thermal systems. These 
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studies, when carried out in conjunction with the analysis of the vibration of a half space 

should also enhance the scope of these studies.  

 

3.4.  Summarizing Comments 

What we presented here is a report of a preliminary experimental study, in which the 

spheroidal (l=2) mode of vibration of a sessile soft gel drop is studied as a function of 

its volume and elasticity. The resonance mode varies with volume as is the case with a 

liquid drop governed by capillarity, but its effective surface tension is weakly dependent 

on the modulus as expected of a pseudo-capillary mode. The important finding of this 

work is that all the resonance frequencies could be collapsed about a line obtained from 

a plot of    vs  21 h  using   to be the surface tension of water (72 mN/m) 

and the measured elastic moduli of the gels. We have not taken into account the detailed 

viscoelastic properties of the gels, although the sharpness of the shear deformation 

peaks (figure 3.1) suggest that viscous damping in these gels is probably not very large 

for the lowest frequency mode.  The low viscous damping in these films were also 

evident in another measurement23 in which a silanized glass disc was pulled off a gel 

film (150 to 200 m thick) bonded to a rigid substrate at different velocities. Adhesive 

separation occurred at the disk/gel interface. For gels of moduli ranging from 40 to 330 

Pa, the adhesive pull-off stress varied only a factor of three within three decades pull-

off velocity (1 m/s to 1000 m/s). Since adhesion tests are very sensitive to viscous 

dissipation in a soft adhesive, the lack of significant dependence of adhesive fracture 

stress on speed suggests that these gels are behave mainly elastically at low frequencies. 

On the other hand, we also observe that the higher frequency modes are effectively 

damped. Therefore, detailed rheological measurements are necessary for making 
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further progress in the interpretation of the results obtained with the higher modes, 

which is a subject of our future study. In this regard, the beautiful technique developed 

by Pottier et. al 24,25, which allows measurement of surface rheological properties of a 

soft object from the thermal fluctuation spectrum will be ideally suited for further 

understanding the roles of elasto-capillarity and (possible) viscous damping of the 

eigen-modes of the spherical drops as reported here. Nevertheless, the simplicity of the 

equation  21~ h
 that successfully collapsed the frequencies of the gel 

spheres on one master curve motivates us to consider that this method of vibration using 

a stochastic noise can indeed be used to measure directly the surface tension of gels. 

We hope that this preliminary study will motivate further experimental and theoretical 

studies of the vibration of spherical gels. Presently, we have investigated only the 

spheroidal mode of vibration corresponding to l=2 for the gel spheres. We expect that 

more in-depth insights into the gel vibration problem can be gained by studying its 

higher modes, which are activated with increasing noise strengths. These detailed 

studies are reserved for future. 
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Chapter 4

Elasto-buoyant heavy spheres: a unique way to

study non-linear elasticitya

4.1 Introduction

Singularities are pervasive in various problems of linear continuum mechanics. In wet-

ting, stress diverges at a moving contact line;1,2 it diverges at the tip of a crack or even

at a sharp point indenting a plane.3 Understanding how such singularities can be tem-

pered has often given rise to new physics invariably prompting us, on many occasions,

to investigate a material phenomenon at a molecular dimension and then herald a way

to bridge the near field with the far field behavior in a rather non-trivial manner. Na-

ture, however, performs the difficult task herself and leaves her signature in a way that

is independent of the constitutive property of a material, yet it belongs to a class of

universality. What we report here is such a universality that is discovered in the large

deformation behavior of ultra-soft gels. Soft solids undergoing huge deformations ex-

hibit various fascinating and puzzling mechanical behaviors.4–15 Our experimental pro-

tocol to study extra-large elastic deformations is remarkably simple, in that a heavy

bead of stainless steel is gently deposited on the horizontal flat surface of a gel. The

compliant gel is deformed by the load exerted by the heavy bead. It reaches a stable

(elasto-buoyant) equilibrium position when the elastic force exerted by the surrounding

aReprinted with permission from [Chakrabarti, A.; Chaudhury, M.K.; Mora, S. and Pomeau, Y. Phys-
ical Review X 2016, 6(4), 041066.] Copyright c©2016 American Physical Society.

84



gel balances its weight,14 within few tenths of a second. This experiment can be viewed

as an elastic analog of the falling ball viscometry, in which the bead reaches a terminal

sedimentation velocity resulting from the balance of the bead’s weight and the viscous

drag force.16 In the limit of Hookean elasticity, an analogy with the Stokes equation (by

replacing shear viscosity with shear modulus and velocity with depth of submersion,

δ)17 suggests that δ ∼ a2, a being the sphere radius. While for the higher elastic moduli

gels (Fig.4.1-a), such a relationship is more or less valid, for the softer ones, when the

bead is totally engulfed by the gel and the deformations are very large (Fig.4.1-b), it is

observed that the depth scales with the bead’s radius raised to an exponent of 3/2. This

is a non-trivial result that cannot be explained by the usual neo-Hookean model, i.e, by

considering a quadratic elastic energy density with respect to finite strains. According

to this model, the displacement would be infinite! When the same problem is analyzed

using an original analysis presented in this paper, it is found, remarkably, that the expo-

nent of the radius of the bead is just at the juncture of what would be required for the

field variables to avoid divergence. What is quite remarkable about this analysis is that

no detailed non-linear behavior of elastic solids18–22 needs to be speculated. The scaling

laws are universal that being independent of the particular constitutive law of the elas-

tic material. Other examples of the absence of a crucial parameter in some important

physical relation is the case of Newton’s drag force at large Reynolds number: the drag

is proportional to the square of the velocity but is independent of the viscosity, even

though viscosity is crucial for dissipating energy. Similarly, in our system, the stress-

strain relation at large strains is crucial for determining the field of deformation but, if

the material is stiff enough at large strains, the details of this strong non-linear limit of

the elastic response disappear in the scaling law for delta as a function of the physical

parameters. This unique correspondence between a mathematical prediction and the

experimental results, thereby unfolding new physics of highly non-linear deformations,

is the subject of this paper.
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Figure 4.1: Snapshots and schematics of the experiment. (Top) Side views of two
transparent cells filled with a polyacrylamide gel with shear modulus 1160 Pa (a) and
13 Pa (b). Two identical steel beads (5 mm diameter) have been placed on the free
air-gel interface. The vertical downshifts are respectively δ = 0.03 δ0 and δ = 320 δ0.
(Bottom) Schematic representation of the deformation fields in the respective experi-
ments.

4.2 Experimental evidence of elasto-buoyancy

Cross-linked polyacrylamide gels were used in the experiments reported below. The

gel solutions were prepared according to the recipe published previously14,23 and cured

in home-built glass containers (70 mm x 50 mm x 40 mm). The inner walls of the

containers were grafted with a thin layer (∼5 nm) of polydimethyl siloxane chains

so that the gel solution contacted the walls at 90o to ensure that the surface of the

cured gel was flat. All the experiments were performed after two hours of gelation.

For the estimation of the shear modulus of the gel, a linear elastic model is used in

order to ensure consistency of quantification for all the gels. The shear modulus was

determined from the resonant mode of vibration of a gel slab confined between two

parallel glass slides.23 Steel spheres (density 7.8 g/cc, diameters 1 - 10 mm) were gently

placed one by one on the gel surface and its side-view image was captured by a camera.

Dissipative processes within the gel dampen any oscillations, and the spheres sank until

they became stagnant in the polyacrylamide gel, the whole process taking only fractions

of a second. The depth of submersion, δ, was measured from the upper surface of the
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gel till the base of sphere, that denoting the net downward displacement due to the

inclusion of the spherical particle by the surface (Fig.4.1). The cells are large enough

to avoid any finite boundary effects, from the side walls as well as the bottom. The

measurement of depth for each sphere was made in the central region of the container.

After each measurement, the sphere was gently removed from the gel using a magnet,

held slightly away from the free surface. We waited for a few minutes between each

measurement that ensured there was no memory of the position of the previous sphere

inside the gel.

If the bead is too small and the gel is stiff,7,24 the surface bends slightly under the

weight of the bead and δ � a (Fig.4.1-a). By increasing the bead radius or decreasing

the elastic modulus, the particle submerges itself to a considerable depth inside the gel.

The surface of the gel wraps around the particle and closes to create a line singularity

connecting the particle to the free surface of the gel (Fig.4.1-b). Strings of tiny air

bubbles appear in this thin channel, which soon coalesce and escape through it while

the channel further closes due to the auto-wetting forces of the gel’s surface. If the

surface of the gel is premarked with ink spots, it is easy to visualize that the surface

of the gel becomes appreciably stretched while the sphere sinks through the gel while

being still connected to the free surface via a thin channel. These basic experiments

were reported in a previous article,14 but without a detailed analysis. Here we report a

detailed set of experiments, in which the shear modulus of the gel was varied from 13

Pa to about 3000 Pa.

Prior to subjecting these experimental results to a comparison with a theoretical

analysis, we needed to verify how meaningful it is to consider only the effect of elas-

ticity by ignoring the surface tension of the gel in predicting the depth of submersion

of the bead and how reversible the deformation of the gel is within the experimental

timescale, i.e, a few seconds. First question is partly philosophical that rests upon the

distinction between surface free energy γ and surface tension. The latter differs from

the former by surface stress dγ/de, e being the surface strain. As the major constituent

87



of these amorphous gels is water, we expect that the surface stress is negligible. In fact,

several recent studies that measured surface tensions of various amorphous soft poly-

mers strongly suggest that their surface tensions are practically same as their surface

free energies.25 Thus, we needed to figure out only if the surface free energies of the

gels play any role. This could be more or less resolved by comparing them with the

equivalent spring constant of the sample. The latter can be obtained by slightly raising

the height of the bead by an electromagnet and releasing it so that the bead undergoes

an under-damped oscillation and reaches the neutral position. For three gels, in which

the beads were completely submerged, the equivalent spring constants were estimated

from the frequency of oscillation to be 0.2 N/m, 5.6 N/m and 13 N/m, which increase

systematically with their shear moduli (13 Pa, 140 Pa and 360 Pa). Fig.4.2-a shows a

typical profile of such an oscillation. Comparing these spring constants with the surface

tension (0.07 N/m) of water, we conclude that the contribution of surface tension can be

safely neglected for all the gels used in this study except, perhaps, for the lowest mod-

ulus gel for which the spring constant is three times that of the gel’s surface tension.

However, when a bead is completely submerged in the gel, any variation of the height

of the sphere does not alter the area and the excess energy of the free surface of the gel.

We thus believe that the surface tension spring does not play a significant role in deter-

mining the depth of submersion of the sphere as long as it is completely engulfed by the

gel. Further support to this viewpoint, i.e. the dominant role of elasticity over surface

tension was gathered from the experiments described below that also exemplified the

reversibility of the deformations.

With respect to the second question, it is important for us to emphasize what type

of reversibility of the gel is pertinent to the current studies, as a system loaded exter-

nally can deform with an appreciable dissipation of energy due to viscous or plastic

flow. Fracture can also occur in the material if the load is large enough, or contrarily, it

could get locked into a different state via internal rearrangement of bonds. The material

would, therefore, not return to its original state when the load is removed. We performed
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certain experiments, as discussed below, which ensured that none of the above types of

irreversibility is a concern within the timescale relevant for the elasto-buoyancy exper-

iments. The first experiment was performed by studying the variation of the depth of a

steel bead (2.8 mm diameter) inside a soft gel (µ = 13 Pa) by imposing an additional

vertical magnetic force to the sphere. The depth of the bead was noted as a function of

the increasing force in the loading cycle and similarly for the decreasing force in the

unloading cycle (Fig. 4.2-b). These experiments were performed over a timescale of a

few minutes. After repeating the experiments a few times, the sphere went back to its

initial elastobuoyant position, showing no significant hysteresis (See Appendix A for

a movie and more details). This kind of reversibility was also checked with a slightly

stiffer gel (µ = 101 Pa) and a larger bead (10 mm diameter) (Appendix B). The above

observations lead us to conclude that the deformation of the gel generated by a bead is

predominantly reversible and controlled by elastic forces. This is the case even when

the gel undergoes large deformations, and, as will be shown below, when it is loaded

with a sharp pointed needle.

The second experiment was performed by studying the sensitivity of the elasto-

buoyancy phenomenon to temperature as by increasing the system temperature, the

elastic modulus of a polyacrylamide gel increases and on cooling, such gels become

softer with a corresponding decrease of the modulus. The depth of submersion of a bead

inside the softest gel (µ ∼ 13 Pa) was studied by varying its stiffness in a temperature-

controlled oven by covering its surface with a thin layer of Paraffin oil to prevent the gel

from drying out. The temperature of the gel was monitored by placing a thermometer

inside an identical sample of gel in a similar sized container, placed inside the oven.

After the gel was heated to 70 oC, a 5 mm diameter steel sphere was released into it

through the layer of paraffin oil. The depth of the sphere was measured at this temper-

ature while it was in the oven. As the gel was gradually cooled, the sphere sank deeper

inside it. A waiting time of an hour before the measurement of the depth of the sphere

at each temperature allowed the gel to equilibrate reasonably well. After the gel was
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cooled to about 5 oC, it was heated again that decreased the depth of the embedded

steel sphere (Heating Cycle, Fig.4.2-c). The depth of submersion of the sphere plotted

as a function of the temperature for both the cooling and the heating cycles (Fig.4.2-c)

shows that there is a little hysteresis in this system, in that the difference in the depths

of the sphere for a given temperature is within 5%. Taken together, we conclude that

the gels are thermo-mechanically stable and the deformations of the gel generated by a

bead are predominantly reversible and controlled by elastic forces.
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Figure 4.2: Experimental evidence of reversibility of the gels. (a) A 10 mm diameter
steel sphere immersed in 140 Pa gel, when slightly disturbed from its elastobuoyant
position via an electromagnet, undergoes under-damped oscillations about its equilib-
rium depth δeq. (b) Depth of an elastobuoyant bead (2.8 mm diameter) in a 13 Pa gel
plotted as a function of the strength of an external vertical magnetic force. The depth
at zero-Force indicates the equilibrium-elastobuoyant position of the sphere. The data
(red, blue and green) shown here are from three different experiments where the closed
symbols indicate the loading cycles and the open symbols indicate the unloading cy-
cles. (c) Depth of submersion δ of a 5 mm diameter steel sphere in a soft gel (µ ∼ 13
Pa) varying as a function of its temperature. The experiments in the cooling cycle were
performed first following which the gel was heated systematically to obtain the data for
the heating cycle.

The penetration depth, δ, is plotted versus the radius a of the steel spheres in log-

scales in upper inset of Fig.4.3, for ten different gels (µ : 13 Pa - 2930 Pa) and different

radii. The upper white region of this inset shows the data points for beads that were

completely below the surface of the gel. The non-dimensionnalisation of the depths
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as well as the radii of each bead in each gel by the intrinsic lengthscale δ0 defined

as δ0 = µ
∆ρg

(Fig.4.3), where µ is the shear modulus of the gel, ∆ρ is the apparent

density of the buoyant spheres, and g is the gravitational acceleration, shows that all the

data cluster around a mean master curve with two distinctive asymptotic limits. The

value of ∆ρ varied between (ρsteel − ρgel) for the fully engulfed beads to (' ρsteel) for

the beads that were almost on the surface of the stiffer gels. Thus, for each sphere-

gel system, ∆ρ was precisely evaluated from experimental images on the basis of the

volume of bead engulfed by the gel, analogous to the Archimedes principle of buoyancy

for floatation on a liquid.26 The normalized data can be divided more or less into two

regimes: one with the non-dimensional radii a/δ0 < 1 and other one with a/δ0 > 1 with

an intermediate transition regime. A fit of the non-dimensional depths as a function

of the non-dimensional radii for the regime a/δ0 < 1 with the power law function

(δ/δ0) = k(a/δ0)α with adjustable parameters, α and k, yields α = 1.96 ± 0.06 and

k = 1.09± 0.1. The error bars are obtained from a 95% confidence limit analysis. We

conclude that for a/δ0 < 1, the depths as a function of the radii follows δ ∼ a2 within

the error limits. On careful examination of the experimental points corresponding to

large deformations, i.e. a > δ0, we find that the data corresponding to the two softest

gels (µ : 13 Pa and 25 Pa) are shifted from the rest of the data due to their multiplicative

factor (k) being significantly larger than the rest of the data for the other gels. This

indicates that the lengthscale δ0, which is defined with the elastic linear properties of

the sample, is therefore not sufficient to describe the whole data accurately, and non

linear effects have to be taken into account. We conclude that all the data in this regime

(a/δ0 > 1) cannot be investigated together. It is more appropriate to investigate the

data for each gel composition separately i.e, for a given non-linear material stress-strain

relationship. By fitting the data for the two softest gels (µ : 13 Pa and 25 Pa) where all

the beads are completely engulfed, with the power law function, we find that α13 Pa =

1.42± 0.05 (see lower inset of Fig.4.3), k13 Pa = 2.52± 0.3 and α25 Pa = 1.52± 0.09,

k25 Pa = 1.63±0.3. The exponents for the fits for the gels (a/δ0 ∼ 1) in the intermediate
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regime lie between α ∼ 1.5 and α ∼ 2. Thus, from the experimental observations, we

infer that in the limit of a significantly greater than δ0, the general trend is close to

δ ∼ ap, where p is in the range of 1.4-1.5, within the error limits. Thus, we conclude

that the power law observed (δ ∼ a2) in the gels of higher shear moduli is closer to

the regime already studied before what one would expect with an analogy with the

elastic Stokes equation in the Hookean limit. What is astounding is the observation of

an exponent close to 1.5 (δ ∼ a1.5) in the case of the gels where the beads are entirely

below the surface of the gel, i.e, δ > 2a. The small uncertainty of the exponent (less

than 6 %) clearly indicates a different regime, as compared to the higher modulus gels.

Note that an exponent close to 1.5 for a is also fully supported by the experimental

scaling law that we found from indentation tests of the gels, performed with sharp

needles as shown in section 4.4.

In order to interpret these novel observations in the ultra-soft gels, we develop a new

model to tackle such extra-large deformations in the following part of the paper.

4.3 Asymptotic analytic model for large elastic deformations

From the outset, a motivating picture of the problem can be gleaned from the compar-

ison of the potential energy of the bead in the gravitational field and the energy of the

elastic deformation of the gel. In the limit of small deformations, the elastic defor-

mation energy is given by the elastic modulus times the volume integral of the square

of the strain. The strain is displacement (δ) divided by range of this displacement (ra-

dius of bead, a). Therefore, the elastic energy is ∼ µa3 (δ/a)2 ∼ µδ2a, which is to

be compared with the gravitational potential energy ∆ρga3δ. This leads to the scaling:

δ ∼ a2. However, the experimentally observed scaling δ ∼ a3/2 implies that the elastic

energy in extremely large deformation must scale as δ3. The detailed analysis based

on a model, presented in this paper for the first time, shows that the above scaling is
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Figure 4.3: Dimensionless depth of spheres (δ/δ0) plotted as a function of its dimen-
sionless radius a/δ0, for various shear moduli of the gels from µ = 13 Pa to 2930 Pa.
The grey lines indicate power law curves (δ/δ0 ∼ (a/δ0)α) with α = 2 and α = 1.5
for the two asymptotic limits for the normalized data. (Upper Inset). Depths (δ) versus
radii (a) for all the spheres. The plot area is divided into two domains; the boundary
indicating δ = 2a. The data points above the boundary indicates that the spheres were
entirely below the gel’s surface. (Lower Inset). Best fit (δ/δ0 = k(a/δ0)α) for the
softest gel (13 Pa) highlighted (see text).

non-trivial. Moreover, the scaling result that follows is independent of the constitutive

laws of an elastic material.

4.3.1 Gravity energy of engulfed spheres

Consider deformations that preserve the volume, as is the case with the elastic gels

used in the experiments. Since the bead is supposed to be totally engulfed with δ � a,

the surface of the deformed gel is fairly flat and horizontal. A supplementary (virtual)

downshift δ′ produces an opposite rise of the same volume of gel. Therefore the gravita-

tional energy variation of the system consisting of the sphere plus the gel is 4
3
πa3∆ρgδ′.

We conclude that the gravitational energy shift is Egr ' 4
3
πa3∆ρgδ in the limit we are

considering.
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4.3.2 Outline of calculating the elastic energy in the limit δ � a

The axis of symmetry being the vertical axis, the two coordinates changed by the

deformation are the radius in the horizontal plane, r, and the vertical coordinate, z.

The deformation maps the undisturbed state with coordinates (r, z) to a disturbed state

(R(r, z), Z(r, z)), or, in radial coordinates from coordinates (r̃; θ) to (R(r̃, θ);Z(r̃, θ))

with r̃ radius and θ polar angle of the (r; z) plane (see Fig.4.4-d). The elastic energy
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Figure 4.4: Sketches corresponding to the steps of the calculation of the elastic energy.
(a) Reference state (no deformation); (b) A point-load is applied at the free surface.
The displacement at the application point is δ. (c) A sphere of radius a indents the free
surface over the distance δ. (d) Mapping from the reference state (solid lines, with the
bead at the surface) to the deformed state. A point of the gel in the rest state is located
with coordinates (r, z). r̃ is the distance from the initial contact point of the bead. In
the deformed state, the point that was at (r, z) is located at R(r, z), Z(r, z).

is a function of the strain tensor (also called right Cauchy-Green deformation tensor),

which gives the square of local change in distances due to deformation: C = F TF , F

being the deformation gradient tensor.27 In the absence of any preferred direction, the

elastic energy density W of an incompressible solid may depend only on two scalars

(invariant under global rotation) that can be made out of the strain tensor: the trace
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(I1) and the sum of the square of its components (I2). In cylindrical coordinates with

an azimuthal invariance, these invariants read I1 = R2
,r + R2

r2
+ R2

,z + Z2
,r + Z2

,z and

I2 = (R2
,r +Z2

,r)
2 +(R2

,z +Z2
,z)

2 +2(R,rR,z +Z,zZ,r)
2 + R4

r4
, where indices preceded by

a comma denote partial derivatives. For the neo-Hookean model, which is commonly

used to describe soft gels, the strain energy density is W = µ
2
I1. However, beyond a

certain deformation, the neo-Hookean model cannot be a fair representation of rubber-

like materials whose elasticity originates from unfolding of polymer chains: once these

chains reach their full extension, the energy cost for a supplementary unfolding diverges

so that a further deformation is accompanied by a diverging additional elastic energy,

in contrast with the ideal neo-Hookean law (see Fig. 4.6). In what follows, we do not

restrict ourselves to the neo-Hookean case.

The deformation field of the gel can be described with two characteristic lengths,

the downshift of the sphere δ, and the radius of the sphere a. Here, we are dealing with

the limit of large downshifts, that is δ far larger than a. Below we demonstrate that in

this asymptotic case, the elastic energy of the system does not depend on a in the limit

a� δ. As a first step we consider a normal point-load applied on the free elastic surface

at (r, z) = (0, 0) (Fig 4.4-(b)) and we find a scaling law for the elastic energy per unit

volume at a given distance r̃ from the loading point. The condition for the elastic energy

to be convergent is established. Then as a second step we consider a hard sphere with a

finite radius, producing a displacement δ at the contact point (r, z) = (0, 0) equal to the

displacement at (r, z) = (0, 0) induced by the previously considered point-like load.

We demonstrate that for δ � a, the elastic energy associated with the displacement

field generated by the sphere or the point-like load are equal: These are independent of

a and proportional to δ3.

4.3.3 Elastic energy for a point-like load

Since we are interested in the case a � δ, we first deal with the limit of a point-like
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force acting vertically on the free horizontal surface of an elastic solid, and we find

scaling laws for the strain by assuming first a particular form for the strain density

elastic energy.

Incompressibility of the elastic medium is imposed by writing that the determinant

D of the first derivatives of R(x, y, z) is equal to one. For axisymmetric deformations,

D = R
r

(R,rZ,z −R,zZ,r). The total energy of the system {gel + sphere} reads :

E =
4

3
π∆ρa3gZ(0, 0) + 2π

∫ 0

−∞
dz
∫ ∞

0

dr (W − qD) r, (4.1)

where the Lagrange multiplier q(r, z) imposes the incompressibility conditionD = 1.28

For the point-like heavy sphere we first consider (see Fig. 4.4-(b)), the weight the

bead can be reduced to a point force located at (r, z) = (0, 0). Eq. 4.1 simplifies into:

E =
16π2

3
∆ρa3g

∫ 0

−∞
dz
∫ ∞

0

rZ(r)δ3(r)dr + 2π

∫ 0

−∞
dz
∫ ∞

0

dr (W − qD) r, (4.2)

where δ3(r, z) is the 3D Dirac distribution.

The Euler-Lagrange conditions of minimization of the energy (Eq. 4.2) read:5

(
∂ (W − qD) r

∂R,r

)
,r

+

(
∂ (W − qD) r

∂R,z

)
,z

=
∂ (W − qD) r

∂R
(4.3)

(
∂ (W − qD) r

∂Z,r

)
,r

+

(
∂ (W − qD) r

∂Z,z

)
,z

=
8πr∆ρga3

3
δ3(r) (4.4)

Let δ be the displacement of the gel at (r; z) = (0; 0). δ is the unique relevant length

for the displacement field. For points located at a distance to the load r̃ much smaller

than δ, δ is no more relevant at these short length-scales. Therefore no length-scales

are expected to occur in the scaling laws and one assumes a power law of r̃ for the

displacements for r̃ � δ: Z = δ+ r̃βf1(θ) and R = r̃γf2(θ). Since the gel is vertically

stretched and horizontally squeezed in the vicinity of the bead one assumes that γ > β.

96



This hypothesis will be checked afterwards (see Eq. 4.16 below).

The constraint of conservation of volume reads (for r̃ � δ):

D = 1⇒

∼r̃γ−1︷︸︸︷
R

r
(

∼r̃γ−1︷︸︸︷
R,r

∼r̃β−1︷︸︸︷
Z,z −

∼r̃γ−1︷︸︸︷
R,z

∼r̃β−1︷︸︸︷
Z,r ) = 1⇒ γ =

3− β
2

. (4.5)

The condition that γ > β with Eq. 4.5 yields β < 1.

We assume first that the strain energy density function W is proportional to Iα1
1 Iα2

2

(the exponents α1 and α2 are constant) in the range of strains undergone by the elastic

solid in the vicinity of the application point, i.e. for r̃ far smaller than δ. This choice for

W is crucial to obtain the scaling law, but it has no effect on the final results, as argued

in section 4.3.5: it does not limit the general nature of the theory.

The scaling laws for the first and the second invariants of the Cauchy deformation

tensor are:

I1 = Tr(C) =

∼r̃1−β︷︸︸︷
R2
,r +

∼r̃1−β︷︸︸︷
R2

r2
+

∼r̃1−β︷︸︸︷
R2
,z +

∼r̃2β−2︷︸︸︷
Z2
,r +

∼r̃2β−2︷︸︸︷
Z2
,z ∼ r̃2β−2, (4.6)

I2 = Tr(C2) = (R2
,r + Z2

,r)
2 + (R2

,z + Z2
,z)

2 + 2(R,rR,z + Z,zZ,r)
2

+
R4

r4
∼ r̃4β−4. (4.7)

These scaling laws for I1 and I2 are used to obtain the scaling laws for the various terms
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of the Cauchy-Poisson equations (Eqs. 4.3 and 4.4). We first deal with Eq. 4.3:

∂ (W − qD) r

∂R,r

= r
∂W

∂I1

∂I1

∂R,r

+ r
∂W

∂I2

∂I2

∂R,r

− qr ∂D
∂R,r

= 2r
∂W

∂I1

R,r︸ ︷︷ ︸
∼r̃

3−β
2 +2(α1+2α2−1)(β−1)

+ 4r
∂W

∂I2

(
R,r(R

2
,r + Z2

,r) +R,z(R,rR,z + Z,zZ,r
)

︸ ︷︷ ︸
∼r̃

3−β
2 +2(α1+2α2−1)(β−1)

−q RZ,z︸︷︷︸
∼r̃

β+1
2

.

(4.8)

In the same way one finds:

∂ (W − qD) r

∂R,z

∼ r̃
3−β
2

+2(α1+2α2−1)(β−1), (4.9)

∂ (W − qD) r

∂R
∼ r̃

β−1
2 . (4.10)

From Eq. 4.3 and Eqs. 4.8, 4.9 and 4.10 one obtains r̃
1−β
2

+2(α1+2α2−1)(β−1) ∼ qr̃
β−1
2 ,

and the scaling law for the Lagrange multiplier:

q ∼ r̃(β−1)(2α1+4α2−3). (4.11)

The last Cauchy-Poisson equation (Eq. 4.4) is now used to get an expression of β

as a function of α1 and α2. It writes:

1

r

(
r
∂ (W − qD)

∂Z,r

)
,r

+

(
∂ (W − qD)

∂Z,z

)
,z

=
8π∆ρga3

3
δ3(r). (4.12)

Denoting as σzr = ∂(W−qD)
∂Z,r

and σzz = ∂(W−qD)
∂Z,z

, the two quantities present on the left-

hand side of Eq.4.12, one finds that this left-hand side is the divergence (expressed in

cylindrical coordinates) of the z-components of the stress tensor σ.27
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We first calculate the scaling laws for σzr and σzz using Eqs. 4.5, 4.6, 4.11:

σzr =
∂ (W − qD)

∂Z,r
=

∂W

∂I1

∂I1

∂Z,r
+
∂W

∂I2

∂I2

∂Z,r
− q ∂D

∂Z,r
(4.13)

= 2
∂W

∂I1

Z,r︸ ︷︷ ︸
∼r̃(β−1)(2α1+4α2−1)

+q
R

r
R,z︸ ︷︷ ︸

∼r̃1−β

. (4.14)

The second term of the right-hand side of Eq. 4.14 scales as r̃(β−1)(2α1+4α2−3)r̃1−β . It is

negligible when r̃ tends to zero when compared to the first term of Eq. 4.14 provided

that the exponent of the second term is larger than the exponent of the first one, i.e.:

(β − 1)(2α1 + 4α2 − 3) + 1− β > (β − 1)(2α1 + 4α2 − 1), (4.15)

which is formally equivalent to β < 1. Since it is assumed from the beginning that β <

1, we conclude that σzr ∼ r̃(β−1)(2α1+4α2−1) and in the same way, σzz ∼ r̃(β−1)(2α1+4α2−1):

σzr and σzz follow the same power law when r̃ tends to zero. The right-hand side of

Eq. 4.12 being a delta-like charge density, we conclude from Gauss’s theorem that the

scaling law for σzr and σzz is also σzr ∼ σzz ∼ 1
r2

. Therefore, r̃(β−1)(2α1+4α2−1) ∼ r̃−2,

and:

β =
2α1 + 4α2 − 3

2α1 + 4α2 − 1
. (4.16)

β is an increasing function of (α1 + 2α2). It is negative for α1 + 2α2 < 3/2, and it

is always smaller than 1. The displacement at the application point is finite if the ex-

ponents are positive, i.e. if α1 + 2α2 > 3/2. Otherwise the material cannot withstand

a point-load. In the following we assume that α1 + 2α2 > 3/2, an ansatz that will be

legitimized later.

Since δ is the unique length-scale of the deformation, the coordinates in the de-

formed configuration can be written as: R = δf0

(
r
δ

)
and Z = δg0

(
r
δ

)
, where f0 and

g0 are two numerical functions depending only on the constitutive law of the elastic
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medium. The invariants I1 and I2, and thus the elastic energy density are dimensionless

functions depending only on r/δ. The elastic energy due to the deformation induced

by the point load is

Eel 0 =

∫∫∫
z>0

W0d3r, (4.17)

where W0 is the elastic energy density evaluated at (r̃, z) for the deformation field

resulting from the normal point force:

W0(r̃, z) = W
(
I1

(r
δ

)
, I2

(r
δ

))
. (4.18)

Note that W is assumed to scale as Iα1
1 Iα2

2 just for the strains encountered at r̃ � δ. We

therefore put a generic expression for the elastic energy density in eq. 4.18 in order to

take into account for the contributions of the strain in the whole material.

The convergence of the integral in Eq.4.17 is ensured since the work done by the

applied force is finite for α1 + 2α2 >
3
2
. On the contrary, the integral in Eq. 4.17

diverges for α1 + 2α2 <
3
2

.

The shear modulus µ being defined from W (I1, I2) as:27

µ = 2

(
∂W

∂I1

(0, 0) +
∂W

∂I2

(0, 0)

)
, (4.19)

one introduces W0, the dimensionless elastic energy density, as W0 = W0/µ. It de-

pends on the “shape” of the non-linearities of the strain energy density function, and is

independent of the shear modulus µ. Furthermore, asW0 is a function of r/δ only, Eq.

4.17 yields, for α1 + 2α2 >
3
2
:

Eel 0 = µδ3c0, (4.20)

where c0 is a dimensionless parameter which depends on the non-linear “shape” of the
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constitutive equation of the elastic material, but depends neither on δ nor on µ:

c0 =

∫∫∫
z>0

W0

(r
δ

)
d3
(r
δ

)
. (4.21)

We stress that Eq. 4.20 is valid only for α1 + 2α2 >
3
2

(so that c0 is defined).

4.3.4 Elastic energy for a finite sphere

In this section, it is demonstrated that the elastic energy associated to a normal point-

like force is equal to the elastic energy corresponding to a finite sphere of radius a,

provided that (i) the downshifts (δ) are identical in both cases, and (ii) the strain energy

density function follows the condition for the convergence of the integral in Eq.4.17, a

condition which is automatically fulfilled by any real elastic material. We will therefore

conclude that Eq. 4.20 gives the elastic energy of an engulfed sphere of any radius a,

provided that a� δ.

We consider a heavy bead of radius a, and denote δ its vertical downshift, which is

supposed to be far larger than a (Fig. 4.4-(c)).

• The unique relevant length-scale for r̃ � a being δ, the displacement field re-

duces in this range of r̃ to the displacement field for a point-load with the same

penetration depth δ: Z = δg0

(
r
δ

)
, where g0 has been defined in section 4.3.3.

• The power law for Z − δ with the exponent given by Eq. 4.16 applies in the

intermediate range a � r̃ � δ. Combining it with the previous expression of Z

(valid for r̃ � a) yields:

Z − δ ∼ δ

(
r̃

δ

)β
= δ

(a
δ

)β ( r̃
a

)β
. (4.22)

• Close to the bead (r̃ � δ) the unique relevant length-scale is a. Z − δ can be
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expressed as

Z − δ = Kg1

(r
a

)
, (4.23)

where g1 is a numerical function and the constant K (with the dimension of a

length) depends on a and also on the far field deformation, i.e. on δ. Comparing

Eq. 4.22 with the general expressions for Z in the range r̃ � δ, one obtains

K = δ
(
a
δ

)β .

A similar expression for R can be obtained with the exponent (3− β)/2, leading

to negligible contributions for the elastic energy.

For r̃ � δ, the first invariant I1 scales as Z2
,z and Z2

,r, and the second invariant I2 scales

asZ4
,z andZ4

,r. The (dimensionless) strain energy density functionW ∼ Iα1
1 Iα2

2 can thus

be written for r̃ � δ (using Eq. 4.23 with the expression of K) asW ∼
(
a
δ

)β−3
g2( r

a
).

In the range r̃ � a, W ' W0, W0 being the dimensionless elastic energy density of

the point-load problem (Fig. 4.5).

Moreover, in the range r̃ � δ, one finds from the scaling laws of section 4.3.3:

W0 ∼
(
r
δ

)β−3 ∼
(
r
a

) (
a
δ

)β−3.

One concludes that, for any r̃,W −W0 ∼
(
a
δ

)β−3
g3( r

a
), with g3 a numerical func-

tion (depending neither on δ nor on a) whose limit as its argument approaches∞ equals

0. Thus, we obtain:

∫∫∫
z>0

(W −W0) d3r =
(a
δ

)β−3

a3

∫∫∫
z>0

g3

(r
a

)
d3
(r
a

)
∼ δ3

(a
δ

)β
. (4.24)

Since one assumes again that α1 + 2α2 >
3
2
, β > 0 and the difference of the elastic

energy with the bead of radius a, Eel, to the elastic energy with the point-load, Eel 0, is

negligible with respect to δ3 (since (a/δ)β � 1). One concludes from Eq. 4.20 that the

elastic energy Eel is proportional to δ3.

Note that if α1 + 2α2 were smaller than 3/2 the near-field part of the elastic energy
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Figure 4.5: Sketch of the (dimensionless) energy density profilesW0 (e.g. dotted line)
andW (e.g. solid line) as a function of the distance r̃ to the initial contact point. The
dashed horizontal double arrows highlight two domains, corresponding to (i) r̃ � a
where the (dimensionless) elastic energy densitiesW andW0 are similar, and (ii) r̃ � δ
where they are different.

would not be negligible anymore compared to the far field contribution.

4.3.5 The strain energy density function

In sections 4.3.3 and 4.3.4 the strain energy density function has been assumed to scale

as Iα1
1 Iα2

2 for the strains encountered at r̃ � δ. It has been then demonstrated that

the elastic energy corresponding to the downshift of a sphere of finite radius a over the

distance δ is proportional to δ3 in the limit δ � a if α1 + 2α2 > 3/2. In this section,

we explain why this choice for the strain energy density function does not limit the

generality of the theory, and therefore why the theory can be applied for any real elastic

material.

It is worth considering the case of an elastic material for which the strain energy

density function increases softer than Iα1
1 Iα2

2 with α1 + 2α2 = 3/2. For r̃ � δ we

demonstrated that Z − δ = δ
(
a
δ

)β
g1

(
r
a

)
and then Z,z ∼

(
δ
a

)1−β , showing that the

strain is arbitrarily large in the limit δ � a , if β < 1, i.e. if α1 + 2α2 < 3/2.

However, due to the finite maximum stretch of the polymer chains constituting the

material, the maximum stretching of any real elastic rubber-like material is bounded.
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To this maximum stretching corresponds a divergence of the strain energy function.

This divergence results in a steeper and steeper increase of W with I1, I2, or both,

which is associated with increasing values of the exponents α1 and/or α2.27

In order to illustrate this last point, let us consider a particular strain energy density

function, for instance the Gent hyper-elastic model.21,29 The strain energy density func-

tion of this model has a singularity when the first invariant I1 reaches a limiting value.

It is plotted in Fig. 4.6: deviations from the initial neo-Hookean behaviour (α1 = 1 and

α2 = 0) yield an increasingly stiffer and stiffer strain energy density function. At any

value I10 of I1 one can define the local exponent α10 = I1
W

dW
dI1

so that at the vicinity

of I10 the strain energy density function isW ∼ Iα10
1 , locally. Beyond a certain finite

value I∗10 of I10 the exponent is larger that 3/2, ensuring that for any I1 larger than I∗10

the condition α1 + 2α2 > 3/2 is fulfilled. Note that values of I1 larger than I∗10 are

automatically reached, otherwise the strain would diverge around r̃ ∼ 0, leading to

arbitrarily high values of I1 (as explained above).

What is illustrated using the example of the Gent model is general, and can be

applied to any elastic constitutive law involving I1 and I2 of a real elastic material:

starting from low to moderate strains for which the neo-Hookean model is expected to

apply far from the bead, energy density functions stiffer than Iα1
1 Iα2

2 with α1 + 2α2 >
3
2

are necessarily encountered next to the bead for any real elastic material.

A material for which the failure limit is reached before the strain energy density is

stiffer than Iα1
1 Iα2

2 with α1 + 2α2 > 3/2 would not be able to sustain the heavy sphere,

and thus would be drilled by the sphere. These cases can be definitively excluded for

the experiments we are dealing with since no fracture, plasticity nor creep have been

observed during these experiments.

One concludes that for any elastic material, the elastic energy of the gel is given by

Eq. 4.20 within the limit δ � a.
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Figure 4.6: Strain energy density function given by the incompressible Gent material
model W = −1

2
µJm log

(
1− I1−3

Jm

)
21 with Jm = 97, plotted in log-log scales (black

solid line). Jm+3 is the limiting value of the first invariant I1. The strain energy density
function for the neo-Hookean material is plotted with dashed line. The two gray straight
lines indicate slopes 1 and 2, i.e. values of the local exponent α1 equal to 1 and 2. I∗10 is
the value of the first invariant beyond which the local exponent is larger than 3/2.

4.3.6 Equilibrium condition

For an engulfed bead of radius a deposited on the initially flat surface of an elastic solid

of shear modulus µ with a density contrast ∆ρ, the gravity energy Egr and the elastic

energy Eel have been derived separately for any arbitrary downshift δ (assuming δ � a)

respectively in sections 4.3.1 and 4.3.4: Egr ' 4
3
πa3∆ρgδ and Eel ' Eel 0 = c0µδ

3.

c0 is a dimensionless parameter depending neither on δ, µ and a. Upon a change of

the substrate (e.g. a change in the gel composition) the shear modulus µ will certainly

change. c0 will also change if W/µ changes. In the limit of the small deformations,

W/µ ∼ 1
2
I1 for any isotropic and incompressible elastic material. The possible change

in c0 therefore comes from the specific elastic behaviour of the substrate at finite defor-

mations.

The total energy, Eel + Egr, is minimum in the equilibrium state. The δ-derivatives

of Egr and Eel are therefore equal giving the scaling law valid for δ � a, for a given
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elastic material:
δ

δ0

=

√
4π

9c0

·
(
a

δ0

)3/2

, (4.25)

with δ0 = µ
∆ρg

. The crucial point is the non-dependence of c0 with respect to a. c0

depends only on the non-linear elastic properties of the elastic solid, and therefore, for

a given elastic material, the downshift of the bead, δ, is expected from theory to be

proportional to the radius of the bead to the power 3
2

times the square root of ∆ρg.

Note that the beads has been assumed to be spherical although this is not a crucial

point in this theory: if it is compact with all typical lengths of the same order a the

previous scaling arguments apply.

4.4 Discussion and conclusion

The theoretical analysis presented above provides an understanding of the experimen-

tally observed scaling law. It arises from a specific property of the system: the elastic

energy does not depend on the radius of the sphere.

The scaling behaviour found for the downshift of spheres with different radii and/or

different densities is general and the specific property of the elastic material has an effect

only on the coefficient c0 in this law (Eq. 4.25). These predictions are in quantitative

agreement with the observations: an experimental scaling law for the depth is a function

of the radius raised to an exponent close to 3/2, and the prefactor is not only related to

the linear elastic properties (µ), but also to the non-linear features of the elastic material.

These non-linear features being a priori distinct from one gel to another one, explains

why plotting δ/δ0 as function of a/δ0 for different gel compositions yields slightly

different curves for the extremely soft gels but more or less a master curve for the stiffer

gels. Thus, the prefactor in the scaling law depends not only on the shear modulus of

the solid, but also on the elastic behaviour at large deformations. This provides a way to

assess some characteristics such as strain stiffening properties of elastic materials under

large strains.
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The range of applications of the derived scaling goes far beyond the description of

the elasto-buoyancy phenomenon. For instance, we show here that these soft gels can

sustain much larger deformations than those induced by the elastobuoyant spheres when

a sharp-pointed needle is indented into the gel, through a layer of silicone oil to min-

imize friction, without fracturing the gel (Fig. 4.7-a). The fact that no fracture occurs

in the gel is evident with a dyed interface that returns to its original state following the

removal of the needle from inside the gel. In this case, the indentation force (P ) varies

as the square of the displacement (δ) (Fig. 4.7-b), a scaling that was reported previ-

ously with studies involving large deformations of soft solids15 but not with a sharply

pointed load. In this current study, we also paid special attention to removal of lateral

solid-like friction, which can contribute to the indentation load through complex cou-

pling between the normal stress difference and the shear strain in a non-linear solid.30

The scaling for the energy for the case of large deformations can be directly checked

from these observations: P ∼ ∂Eel/∂δ ∼ δ2, i.e, Eel ∼ δ3. This scaling for the force is

in unison with the exponent 3/2 for the penetration depth of an elastobuoyant sphere in

the limit of the large deformations. It is here observed within a wider range of strains,

an indication that the scaling law of elastobuoyant spheres in these gels is valid for

larger and heavier beads, and/or with even softer gels. Furthermore, this testifies that

our analysis is general and goes beyond the phenomenon of elastobuoyancy.

While on one hand such materials could be potentially used for various applica-

tions where one would need to make use of large deformations, on the other hand, one

could also ask the question, how one could induce fracture15,31 in such systems that are

otherwise capable of handling such huge strains without failure. The gels we use in

the experiments are stiff in a sense because they are made of polymers which cannot

stretch beyond a given limit; there arises the question of the initiation of fracture in

such systems. In the scenario where a sharp slender body has deformed the gel hugely,

such that the elastic energy is distributed over a large volume (∼ δ3) as explained by

the theory, there is not enough energy available locally to initiate fracture. This ap-
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plies regardless of the shape of the body provided that its characteristic lengths are far

smaller than the static penetration depth δ. Nevertheless, when the same sharp-pointed

object undergoes vertical vibrations while penetrating the gel, through the silicone oil

to minimize lateral friction that could potentially lead to irregular fracture, it induces a

sharp cut in an irreversible way (Fig. 4.7-c) much easily. This is so even when the lat-

eral friction induced interfacial jamming between the gel and the needle is eliminated.

We hypothesize that this sharp cut is facilitated by the local rheological stiffening of

the gel that is made possible by not allowing sufficient time for it to relax from a high

frequency-high modulus state to a relaxed one. Such vibration assisted puncturing of

soft materials were demonstrated with marked precision as early as almost fifty years

ago, even with a single cell;32 however the detailed mechanics of such kinds of fracture

are not well-known. Puncturing of such soft gels assisted with vibration thus provides

a good model system to study such an important phenomenon that has immense prac-

tical applications including precision surgery on soft tissues in humans. The analysis

presented in this paper provides the motivation required for developing such a model,

in which the local fields are manipulated by the frequency response of the gel, while an

overarching large deformation field surrounds the locality.

In this paper, we have shown that the depth of a bead scaling as exponent 3/2 for

the radius is independent of the strain-stress relation provided that the increase in the

elastic energy density (W ) with the strain is stiff enough. The generality of the scaling

and the observations are supported by indentation experiments using a sharp pointed

needle that follows a similar trend for large deformations as that observed in the elas-

tobuoyancy phenomenon. Generic behaviors for elastic materials undergoing large and

complex deformations can therefore be identified, going beyond scaling arguments that

is blind to the crucial effect of strain stiffening. This work sheds new lights on the

mechanics of extremely large elastic deformations that are crucial in various emerging

techniques that even encompass an important procedure such as the computer-assisted

surgery involving human organs,33–35 which are indeed non-linear materials and un-
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Figure 4.7: (a) Snapshots of the experiment of loading a needle (diameter, D and
grafted with ∼ 5 nm layer of polydimethylsiloxane chains) inside the gel with a thin
layer of silicone oil (AR20, Sigma Aldrich) on its surface. The oil above the gel reduces
friction by lubricating the contact between the needle and the gel during indentation.
The red dye demarcates the interface between the gel and silicone oil. After unloading
the needle from the gel, the dyed interface retracted to its original position showing that
there was no fracture in the gel. (b) For these experiments of loading a sharp needle
(inset) inside the gel(µ = 478 Pa), the non-dimensional force P/µD2 varies almost as
the square of the non-dimensional displacement δ/D. An uncertainty analysis yields the
value of the power of δ/D as 1.99± 0.03. (c) When the same needle was indented in the
gel while undergoing vertical vibrations, a fine fracture was induced by the indentation.
The needle underwent square wave oscillations (amplitude of vibration ∼ 0.64mm)
along its axial direction that were generated by a waveform generator (Agilent, model
33120A), connected to a mechanical oscillator (Pasco Scientific, Model No: SF-9324)
via an amplifier (Sherwood, Model No: RX-4105).

dergo large deformations. In all these important fields, an ideal neo-Hookean model is

used that, according to our current work, is not a suitable choice for such studies. The

danger is that one may miss the divergences of the solution that is inherent in the ideal

neo-Hookean model because the full solution is not used. The work presented here pro-
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vides a redress to the possible pitfalls that one may embark upon in studying extreme

deformations of non-linear materials, thereby also offering possible benchmarks for nu-

merical simulations and even opportunities to formulate new simulations methods.

A Reversibility with an External Magnetic Field

In order to test the reversibility of the deformation in the gels, we experimentally stud-

ied the variation of the depth of a steel bead inside a soft gel by imposing an additional

vertical magnetic force to the sphere. The gel container was placed above a frame that

was in turn kept on a weighing balance. A magnet, attached to a micromanipulator, was

positioned inside the frame, under the container of gel. A layer of silicone oil above

the gel prevented evaporation of water from its surface. A steel bead (2.8 mm diame-

ter) was dropped inside the gel (µ = 13 Pa) and its elastobuoyant position was noted,

when the magnet was far away from the bottom of the container such that the magnetic

force was zero. After axially aligning the magnet with the bead, we slowly brought the

magnet closer to the bottom of the container such that the bead was attracted to it and

went deeper inside the gel. Subsequently, the magnet was brought further away that

allowed the bead to return to its original position. Note that the oil helps to lubricate the

contact between the gel surfaces folding over the sphere during these experiments. The

depth of the bead was noted as a function of the increasing force in the loading cycle

and similarly for the decreasing force in the unloading cycle (Fig. 2-b, Manuscript).

After repeating the experiments a few times, we found that the sphere went back to its

initial elastobuoyant position, showing no significant hysteresis, in that the difference

of the depths before and after the magnetic loading is within 2 %. Fig. A.1 below

pictorially depicts the phenomenon of reversibility due to an external magnetic field.

We performed the same experiments using a slightly stiffer gel (µ = 101 Pa) where we

studied the variation of the depth of a 10 mm diameter bead that too showed no signifi-
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cant hysteresis (Fig. A.2).

Before Magnetic field turned ON Magnetic field turned OFF

0.5 mm

Figure A.1: Experimental images of a steel bead (2.8 mm diameter) engulfed by a soft
polyacrylamide gel (µ ∼ 8 Pa). The first snapshot shows its initial equilibrium position.
Note that the gel surface has wrapped around the bead and closed till the uppermost part
in the gel. When the magnetic field of the electromagnet (placed underneath the con-
tainer) is slowly increased, the bead goes down and touches the bottom of the container.
When the field is slowly reduced to zero, it almost returns to its initial elastobuoyant
position.
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Figure A.2: Depth of an elastobuoyant steel bead (10 mm diameter) in a gel (µ =
101 Pa) plotted as a function of the strength of an external magnetic field. The depth
at zero-Force indicates the equilibrium-elastobuoyant position of the sphere. The data
(red, blue and green) shown here are from three different experiments where the closed
symbols indicate the loading cycles and the open symbols indicate the unloading cycles.
This experiment was performed over a timescale of a few minutes.
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B Movie: Reversibility in the softest gel

The movie (https://journals.aps.org/prx/abstract/10.1103/PhysRevX.6.041066) shows a

steel bead (2.8 mm diameter) engulfed by a soft gel (µ = 13 Pa) at its initial elastobuoy-

ant position. A layer of silicone oil at the top of the gel helped prevents evaporation of

water from its surface. When the steel bead was dropped in the gel through the layer of

oil, a small amount of oil was trapped just above the sphere. Note that the gel surface

doesn’t close completely due to the reduced interfacial tension at the oil-gel interface

as opposed to the elastobuoyancy experiments with gel-air interface (Fig. A.1). This,

however, does not alter the elastobuoyant position of the same bead in a similar gel as

the equilibrium height is determined from the balance between the elasticity and gravity

fields.

When the magnetic field underneath the container of gel is applied and increased

slowly, the bead is attracted to the magnet and slowly engulfs deeper into the gel. Af-

ter the bead touches the bottom of the container, the magnetic field strength is slowly

reduced to zero that allows the bead to return to its initial equilibrium position. The

experiment is repeated thrice here and no significant hysteresis is observed.
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Chapter 5 
 

Surface Folding Induced Attraction and Motion 

of Particles in a Soft Elastic Gel:  Cooperative 

Effects of Surface Tension, Elasticity and 

Gravitya

 

 

 

5.1. Introduction 

Interaction between particles mediated by the mechanical distortion of the surrounding 

medium has been the subject of considerable interests in physical1,2, metallurgical3 and 

biological4-6 literatures. When atoms and solid particles are inserted in the bulk of a 

solid matrix3,7, its elastic energy is increased that usually gives rise to a distance 

dependence repulsive force.  Such forces are thought to play important roles in the 

dispersion of defects in an elastic medium. While elastic interactions of particles prevail 

in anisotropic fluids such as nematic liquid crystals2, there are also examples4-6 with 

proteins and other integral components of a cell exhibiting attractive as well as repulsive 

interactions via membrane mediated elastic forces. Interaction mediated by capillary 

and gravity forces8-12 has also been the subject of considerable interests in the past and 

the present. In such cases, a large length scale emerges from the competition between 

gravity and capillarity that rules the range of interaction between particles dispersed on 

                                                           
a Reprinted with permission from [Chakrabarti, A. and Chaudhury, M.K. Langmuir 2013, 29, 

15543−15550]. Copyright © 2013 American Chemical Society. 
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a liquid surface when the Bond number of the system is comparable to or greater than 

unity.   Co-operative effects of surface tension and elasticity give rise to a plethora of 

other interesting phenomena13-28. However, to the best of our knowledge there has not 

been any report till this date regarding the co-operative roles of gravity, capillarity and 

elasticity in any type of attractive or repulsive interactions between particles. What we 

report here is a novel observation related to the long range interaction between rigid 

particles in a soft elastic gel, in which the surface of the gel folds to form singular line 

defects connecting the particles and the outer surface of the gel. These line singularities 

create a tensile strain field parallel to the surface that extends deep inside the gel and 

leads to some fascinating long range attractive interactions between the suspended 

particles. When a particle is suspended in such a gel that has a gradient of thickness, it 

is found to move from the thicker to the thinner part of the gel due to the gradient of 

elastic strain energy.  

 

5.2. Experimental Section 

5.2.1. Materials 

 

The spheres used for this study include two types of ceramic balls (fracture-

resistant silicon nitride with density 3.25g/cm3 and non-porous high alumina ceramic 

with density 3.9g/cm3), copper balls (Alloy 102, 99.95% pure copper, density 

8.94g/cm3) and steel balls (bearing-quality E52100 alloy steel, hardened ball, density 

7.8g/cm3) that were purchased from McMaster-Carr. The diameters of the spheres used 

in the study range from 2mm to 6.4mm. The spheres were sonicated in acetone (General 

use HPLC-UV grade, Pharmco Aaper) in a Fisher Scientific Ultrasonic Cleaner (Model 

no. FS5) for 10 minutes after which they were blow dried with ultra-pure nitrogen gas. 
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In some experiments, dimers were formed by joining two spheres with super glue 

(Scotch). The materials used in the preparation of the gel are N-(hydroxymethyl)-

acrylamide (48% solution in water, Sigma Aldrich), potassium persulphate (99.99% 

trace metals basis, Sigma Aldrich), and N,N,N′,N′- tetramethylethylenediamine 

(TEMED, ≥99.5%, purified by redistillation, Sigma Aldrich). For most of the 

experiments a quartz cell (45mm x 30mm, 45mm high, Rame Hart p/n 100-07-50) was 

used to study the interaction between the spheres. Borosilicate Glass vials (27 mm 

diameter × 70 mm high) were purchased from Fisherbrand for use in the static Stokes 

experiment. These were cleaned with deionized (DI) water and blow-dried with 

nitrogen gas before use. All experiments were performed after placing the test cells on 

a 3d manipulated stage that was situated atop a vibration isolation table (Micro-g, 

TMC). 

 

5.2.2. Preparation of Gel 

 

A 3.1% (by weight of acrylamide monomer) physically cross-linked hydrogel was used 

for the present study. We provide below the salient features of the method used to 

prepare the gel based on what was described in our recent publication28. In a clean glass 

jar, N-(hydroxymethyl)-acrylamide (3.1 wt% basis) was added to DI water obtained 

from a Thermo Scientific Barnstead E-pure unit. This solution was stirred for 30 

minutes with pure nitrogen gas bubble purging through it. This step was followed by 

the addition of 0.25% potassium persulphate and further stirring the solution for 20 

minutes. The gelation begins within few minutes after the addition and stirring of the 

last ingredient, 0.3% TEMED, to the mixture. The gel solution was poured into the 

quartz cell and the glass vials immediately after all the ingredients were mixed to 

prepare the gel. The quartz cell was covered with Parafilm and the vials were tightly 
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secured with their caps to avoid evaporation of water. The gelation was complete in 2 

hours at room temperature. While the gels prepared as above were used for most of the 

experiments, in a couple of experiments (see figures 5.5 and 5.7) small amount (0.01 

%) of N,N’- Methylene bisacrylamide (99%, Sigma Aldrich) was used as the 

crosslinking agent (see below) to increase its modulus slightly. 

 

5.2.3 Elastic Stokes Experiment 

This experiment was performed by gently placing either the ceramic, copper or steel 

spheres on the surface of the polyacrylamide (PAM) hydrogel cured in the vials, one at 

a time (Figure 5.2). The sphere immersed itself inside the gel and stood still at a depth 

of h, which was measured from the surface of the gel in the vial to the sphere's center. 

Care was taken to ensure that the spheres were at the centers of the vials in order to 

avoid putative wall effects. Even though some distortion of the shape of the spherical 

ball occurred when it was viewed through the sides of the cylindrical vial, no distortion 

of the image occurred in the vertical direction, which is what was needed for the 

measurement of h. The details of how the images were captured and processed are 

described in a later section. An experiment in which an alumina ceramic ball (3.2mm 

diameter) was released on the surface of the hydrogel prepared inside a rectangular 

quartz cell was captured by a high speed camera (Redlake Motion-Pro, Model no: 2000) 

at the rate of 500 frames per second. Snapshots from the high speed movie (Figure 5.1, 

A-D) gave an insight into the mechanism by which the gel surface wraps around the 

sphere, and relaxes with time.  
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5.2.4 Interaction of Spheres inside the Gel 

A copper (2 mm or 2.4 mm) or an alumina ceramic (3.2 mm or 4.8 mm) sphere was 

released gently on the surface of the gel with the help of a prong holder (McMaster-

Carr). The second sphere of same diameter as the first one was then released inside the 

gel in the same plane, perpendicular to the direction of the camera, within 

approximately 0.5- 1.0 cm away from the other sphere. The attraction and the descent 

of each pair of spheres in the gel were recorded with a CCD camera connected to a 

microscope for further analysis. In one experiment involving 4.8 mm alumina ceramic 

spheres, a dimer made of two glued balls (4.8 mm each) was released a distance of 

about 1 cm away from another dimer formed by the attractive contact of two other 

spheres in the same gel. The attraction of these dimers was also captured with a CCD 

camera. In the experiments illustrating the interactions of the clusters, the balls were 

released into the gel in such a way that two clusters grew by the self-assembly process 

not very far from each other. The interactions of the spheres, the growth of the clusters, 

their movements and attractions were all recorded with a CCD camera connected to a 

microscope as discussed below.  

 

5.2.5 Thickness Graded Gel 

A 3% chemically cross-linked PAM gel containing 0.01% (w/w basis) N,N’-Methylene 

bisacrylamide was used for the preparation of the thickness graded gel. The as-prepared 

gel solution was immediately poured into the Quartz cell that was then tightly secured 

with parafilm. In order to obtain a thickness gradient of the gel in the cell, it was inclined 

by elevating one end to a height of ~8mm. The gel was allowed to cure in the tilted cell 

for about 2 h after which the cell was brought back to its initial horizontal position. The 

gel surface was concave and flatter on both the edges due to the gel material sagging 
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down from the edges, however there was a large length (~20mm; total length of the cell 

being 45mm) over which the gradient of thickness was more or less constant. The cell 

was placed on a 3d manipulated stage. A steel or a ceramic sphere was released on the 

thicker part of the gel. The video of the motion of the sphere down the gradient was 

captured using a CCD camera equipped with a variable focal length microscope.  

 

5.2.6 Videography and Analysis 

 

The interactions of the spheres were captured using a Video Microscope (Infinity) that 

was equipped with a CCD camera (jAi, Model no. CV−S3200) and connected to a 

computer using the WinTV application (Hauppauge, USA). The images for the Static 

Stokes experiment were also captured with the same video micrographic setup. The 

recorded videos were decomposed into image sequence in VirtualDub and the images 

were analyzed to measure the depth of submersion and the distance of separation 

between the spheres using a tracking algorithm, SpotTracker, in ImageJ. The calibration 

factor of the variable focal length microscope was obtained from the known diameter 

of the spheres in all the images.  

 

5.3. Results and Discussion 

5.3.1 Penetration of a single particle through the gel’s surface 

A millimeter size spherical object made of either ceramic, copper, or any metal 

submerges itself to a considerable depth28 inside a soft hydrogel, the modulus of which 

is in the range of few Pascals. Even though the modulus of the gel is so low, its mesh 

size [(kBT/~ 100 nm] is still vanishingly small as compared to the size (~ mm) of 

the sedimenting object. The deformed network can exert sufficient elastic force to 
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balance the weight of the sphere thus making it neutrally buoyant after it descends by a 

decent distance inside the gel. While the elastic field is symmetric around each sphere 

in the classic problems of elastic inclusions, the stress and the strain fields here are 

asymmetric, e.g. the elastic stress beneath the sphere is higher than that above the 

sphere28. 

 

Figure 5.1: The fall of a small ceramic ball (3.2mm diameter) through a soft 

polyacrylamide hydrogel is captured with a high speed (500 frames per second) camera. 

The folding of the surface of the gel around the sphere (a), the pinch-off instability (b) 

and the formation of a thin line (c-d) connecting the ball and the surface of the gel are 

evident in these videographs. The surface of the gel relaxes slowly (d) with no sign of 

any fracture in the gel. The white scale bar here represents 1mm. (e-f) The schematic 

illustrates the wrapping of the sphere by and the folding of the surface of the gel as the 

sphere penetrates the gel. Here, h0 is the initial height of a single ball immersed in the 

gel.  

 

Figure 5.1 (A to D) depicts the case of a single ceramic ball released on the surface of 

a soft hydrogel, which sediments down to its equilibrium position within about 2 

seconds.  These high speed video micrographs do not provide any evidence of fracture 

in the gel. Instead the free surface of the gel wraps around the ball and folds into line 

contact above it. The contact region necks down so that a small bubble remains attached 

0.044 sd)0.034 sc)

0.032 sb)0.03 sa) e)

f)

h0
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to the zenith of the sphere, while strings of very tiny air bubbles appear in the thin 

channel above it. These tiny air bubbles soon coalesce and escape through the narrow 

channel, which further closes due to auto-wetting forces of the gel’s surface. This 

phenomenon has certain resemblance to the pinch-off instability29,30 of a dripping liquid 

drop. However, unlike the snap-off of the liquid drop29,30 by its weight, the spherical 

ball here does not detach from the thin channel that connects it to the free surface of the 

gel as the elastic force supports the weight of the ball28. A substantial stress 

concentration is expected to develop around the thin line joining the sphere and the free 

surface; thereby the region of the gel above the sphere remains in a state of tensile stress 

parallel to the surface (Figure 5.1F), the magnitude of which depends on the shear 

modulus, the radius of the sphere and how far the ball descends inside the gel. If the 

surface of the gel is pre-marked with ink spots, it is easy to visualize that the surface of 

the gel gets appreciably stretched while the sphere sinks through the gel.  It is also 

possible to release ink inside the gel in the form of thin vertical lines with the help of a 

fine needle, which bend towards the sphere in a dramatic way when the sphere is 

released inside the gel31. The role of self-adhesion of the free surface of the gel above 

the sphere is crucial in keeping the folded surface intact against the tensile elastic field.  

It is surprising that the soft gel beneath the ball does not fracture, which we feel is a 

manifestation of two effects: blunting32,33 of the crack brought about by the spherical 

geometry of the suspended object and the Lake-Thomas effect34, in which the tearing 

energy of a rubber increases with the compliance of a network up to a certain extent.  

Intentional fracture can, however, be induced by the imposition of a stronger external 

field aided by thermal fluctuation, which we reserve for a detailed future study. In the 

absence of any disruptive external field, the sphere can be entirely supported by the 

elastic force, in which the depth of penetration increases with the mass (m) of the ball.  
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Figure 5.2. Static Stokes experiment showing the depths of submersion of Silicon 

Nitride Ceramic balls of diameters 2.4mm, 3.2mm, 4mm, 4.8mm and 6.35mm 

respectively in a 3.1% PAM hydrogel. The white scale bar represents 5mm. 

 

 

 
 

Figure 5.3: (a) The experimental data from the static immersion experiments are 

analyzed here by plotting the depth of submersion (h) against mg/4R. Here, m denotes 

the effective mass of the spheres after correcting for buoyancy inside the gel, g is the 

gravitational acceleration and R is the radius of the sphere. The closed symbols 

represent the data obtained by performing the elastic Stokes experiment in the lower 

modulus (8 Pa)  gel whereas the open symbols represent the previously reported data28 

obtained with a higher modulus (40 Pa) gel. (b) The data for the lower modulus (8 Pa) 

gel are re-scaled by dividing h  with the capillary or Laplace length ( gLc   / ) and 

plotting it against gR/Here, is the difference between the density of the spheres 

and water,  is the shear modulus of the gel (~8 Pa) and (~73mN/m) is its surface 

tension.28 The data for the higher modulus (40 Pa) gel follows a linear relationship when 

h is rescaled with the radius and plotted with respect to gR/Capillarity does not 

play a significant role in the higher modulus gel and hence the data does not exactly 

follow the behavior that is shown by the spheres in the lower modulus gel (8 Pa). 

 

The relationship between the depth of penetration (h) and the weight (mg) of the ball in 

the gel of shear modulus  should be linear for small deformation, i.e. h = mg/4R or, 

h~R2 as was observed by us previously28 with a higher modulus hydrogel that too 
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underwent a large deformation although not as much as the current gel. This surprising 

observation suggested that a linear elastic modulus pleasingly scales out of the 

mechanics of the deformation of a system that is intrinsically neo-Hookean. However, 

this relation is non-linear for the lower modulus gel used in the current study.  Although 

a power law equation (h (m)=0.06(mg/4R)0.6, mg is in Newtons) describes the data 

well, the equation is dimensionally incomplete. Close observation revealed a clear 

difference in the deformation in these two gels as the balls were released upon them. 

While for the higher modulus gel, the ball penetrates to a considerable distance inside 

the gel, its surface wraps around the ball incompletely, whereas the lower modulus gel 

completely wraps the ball and folds above it. The low value of the shear modulus (8 

Pa), coupled with the work of cohesion (2) of the gel as 144 mN/m give rise to an 

elasto-adhesive length (2/) of about 20 mm, from which it is inferred that the surface 

tension driven auto-wetting can support a substantially long line connecting the sphere 

and the free surface of the gel. For the lower modulus gel, excellent linear collapse of 

all the data can be obtained if h divided by the Capillary length (/g)0.5 is plotted 

against gR/. This linear variation of h/(g)1/2 with gR/ suggests that h 

follows the geometric mean of two length scales: the elastocapillary length () and 

the elastic Stokes length gR2/. Thus, the surface tension seems to play some role in 

the depth of the submersion of the ball in the lower modulus gel, which is not surprising 

considering the large elastocapillary length of the system.  

 

5.3.2 Long Range Attraction between Spheres Suspended in the Gel 

Upon the release of a second ball at a moderate distance away from the first one, similar 

sequences of the above events lead to the development of tensile stress parallel to the 



127 

free surface that too penetrates to a considerable distance inside the gel. However, as 

the tensile stress in between the two spheres can relax (figures 5.5 B-C), a net attraction 

ensues between the spheres (figure 5.4). As they approach each other, both the spheres 

 

 

Figure 5.4: The video micrographs (upper panel) illustrate the long range attraction 

between two ceramic spheres (4.8 mm diameter) submerged inside a soft PAM 

hydrogel. The micrographs of the lower panel capture the events following the 

immersion of a glued dimer of similar balls inside the gel. The dimers orient (0s to 12s) 

as they descend inside the gel and approach each other. Finally (30s), they form a close 

packed structure. The white scale bar represents 5mm. 

 

sink down further in the gel till they reach a final equilibrium position. This observation 

clearly illustrates that the elastic energy corresponding to the strain parallel to the 

surface of the gel is being released with the concomitant decrease in the gravitational 

potential energy (with some increase of the elastic energy due to the deformation of the 

gel perpendicular to its surface). The process is by no means entirely passive as 

evidenced by the slow clockwise and the corresponding counter-clockwise rotations of 

the two spheres that suggests a relative motion between gel and the spheres, i.e. material 

is being squeezed out of the space between the spheres. 

The sequences involving the attraction and the squeeze out of the gel through the space 

between two spheres can be observed if ink sports are introduced on the surface of the 

gel before releasing the balls over it. When the balls descend through the gel, the line 

0s 4s

12s 30s 0s

10s
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arising from the folding of the gel’s surface above each sphere gets intensely colored 

as this is where the ink concentrates, which is surrounded by the region with lighter 

coloration by the ink. The diffusion of the ink in the gel is relatively slow, so that the 

 
Figure 5.5: (a) The video micrographs show the attraction of two steel spheres of 

diameter 4mm in a chemically cross-linked gel. This experiment was performed after 

depositing ink on the surface of the gel with a fine needle. When a sphere is released 

into the gel, line formed from the folding of the surface of the gel above the ball is 

clearly highlighted by the intense color of the ink. Some ink is also observed around 

the line, which reveals that the gel in the intervening space is squeezed out as the 

spheres attract each other. The black scale bar represents 5mm. The sequence of events 

in the videographs is shown schematically in (b-c). Here, x denotes the distance between 

the balls, h is the height of submersion of the balls before contact and h∞ is the height 

after contact.  

 

squeeze out of the gel can be clearly observed, in that the inked gel gradually fills up 

the space between the lines of contact as the unmarked gel escapes (see also the 

schematic of figure 5.5) that region. The change in the total energy (elastic+potential) 

of the system has to be proportional to  -mgh in such a process. This can be shown by 
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writing the elastic and the potential energies of a sphere as  
 
h

el mghdhfE
0

' , where 

fel is the force on the sphere due to elastic deformation. Setting 0/  hE  leads to the 

equilibrium condition mg=fel . For an elastic deformation, fel=Ch’n (n>1). Substitution 

of this expression in the above integral leads to the result: )1/(  nnmghE . As the 

spheres descend, x decreases and E becomes more negative.  

 

 
 

Figure 5.6: (a) This graph reveals the long range nature of the attraction of two solid 

spheres inside the hydrogel.   Here, D is the diameter of the sphere,  h∞ is the depth of 

the two spheres after they come in full contact, h0 is the initial depth of the first 

submerged sphere and h is the average depth of the two spheres (see also the schematic 

of figure 5.1) that varies with the distance (x) of separation. The black curve was 

obtained from fitting the experimental data using Origin software, which has the 

following expression, )104.0ln(096.0203.0  xh , where   hhhh /)(  and 

Dhxx 0/  (b) The squared distance of separation varies linearly with time with 

correlation coefficients better than 98% . The symbols are same as in figure (a).  
0x  and  

x  are the scaled distances of separation at times t=0 and  t, respectively.  

 

We should be able to extract a first order estimate of how attractive force varies with 

the distance of separation of two spheres from the variation of -mgh as a function of 

the distance of separation. In order to make such an analysis, we measured h as a 

function of x for two identical spheres but with materials having different radii and 
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densities. The videos of the experiments involving the attraction of the spheres were 

decomposed into images in VirtualDub followed by the analysis of those images to 

obtain the distance of separation between the spheres using the SpotTracker plugin35 in 

ImageJ. Although the data obtained from each experiment could be analyzed 

independently to obtain the distance dependent law of attractive force, it is more 

convenient to process the data in terms of non-dimensional variables. In that spirit, the 

depth of the submersion of the ball was divided by the maximum descent of the adhered 

spheres [  
  hhhh / ], and the distance of separation ( x )  was normalized by 

dividing it with 
0Dh , where D is the diameter of the sphere and ho is the initial depth 

of descent of the first sphere.  For a linear elastic system the scale 
0Dh  has the same 

meaning36 as /mg .  An equivalent length can also be extracted for a non-linear 

elastic gel as well.  The experimental data plotted as above cluster around a single curve 

and can be fitted with a logarithmic function, i.e. )ln(~)( cxxU 
 , which is an 

asymptotic form of  a more realistic modified Bessel function ( )(0 cxK  ) of the second 

kind so that )(xU  saturates at large separation distances.  The spheres do not interact 

significantly at large distances, e.g. x > 1.5 cm. Here c is a small curve fitting constant 

that prevents the divergence of the interaction energy at 0x . In real situation, the cut-

off can be provided by a short range repulsive force between the spheres. The force of 

attraction obtained from the derivative of  )(xU   therefore follows )/(1~)( cxxF   in 

conformity with the observation that the interaction is rather long range.  This inverse 

distance law ( xxF /1~)( ) in conjunction with a linear kinematic friction law (

dtxdFdrag /~  ) suggest that the square of the distance of separation would decrease 

linearly with time, which is also observed experimentally (figure 5.6B).  
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5.3.3 Motion of a Sphere in a Thickness Graded Gel 

The above discussions suggest that two identical spheres approach each other inside a 

gel following an inverse square law, and with a friction that is linear with the approach 

velocity. The kinematics should be contributed by such factors as the bulk dissipation 

in the gel as it folds and relaxes, the relative sliding of the hydrogel surfaces within the 

contact region, and the relative motion of the sphere inside the capsule it is in.  

 

 
 

Figure 5.7: The video micrographs in (a) capture the motion of a steel ball (4 mm 

diameter) on a thickness graded gel, the surface of which is inclined by 14° from the 

horizontal plane. The gradient is constant and steepest at the central portion of the cell 

where both the horizontal (x) and the vertical (h) displacements of the ball increase 

linearly with time (c). The white scale bar represents 10mm. The micrographs in (b) 

capture the motion of a ceramic sphere (diameter 4.8mm) on a thickness graded gel that 

had ink marks. As the ball rolls down the gradient, the ink is pulled from the surface, 

rolls over the ball and finally returns to the surface. The black scale bar represents 5mm. 

The schematic of the ball rolling down the graded gel is shown in (d). 

  

Motion due to the gradient of elastic strain energy has been observed previously by 

Hore et al.37 in which the differential swelling of an elastomeric rod created the force 
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needed to propel it uphill even carrying a load that is larger than the cylinder itself. 

Style et al.38 used a thickness graded silicone elastomer to study the phenomenon of 

durotaxis, in which the gradient of elastic strain energy induces a liquid drop to move 

on its surface. We show here that motion of an object can also be induced by the 

gradient of the strain energy resulting from the continuous folding and relaxation of the 

surface of a thickness graded gel. As a sphere submerges inside such an asymmetric 

gel, it experiences a gradient of strain energy and thus moves from the thicker towards 

the thinner part of the gel. If ink dots are introduced on the surface of the gel, it can be 

seen to be drawn inside the gel as the sphere moves and returns to the gel’s surface 

when the sphere passes by it. Within the observation window, where the gel has a 

constant gradient of thickness, both the descent and the translation of the sphere in the 

gel increase linearly with time. Since the driving force is equal to the frictional drag 

force at steady state, we anticipate that )/(~)/( dxdhmgdtdx , or 2/~ xhmg  , 

where the dot indicates a derivative with respect to time. Using the data shown in figure 

5.7c we estimate the value of to beNs/m. A comparable value of  is also needed 

to explain the dynamics of attraction of two spheres as summarized in figure 5.6B.  The 

fact that the solvent viscosity induced friction coefficient (~8R) is orders of 

magnitude smaller than the above values suggest39 that the viscous friction related to 

the rotation of sphere inside the capsule is not the limiting factor in these experiments. 

The process is most certainly related to the deformation and the relaxation within the 

volume of the gel that is much larger than that of the sphere.   
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 5.3.4 Interactions between Dimers and Clusters 

The long range interaction coupled with the fact that an object can freely rotate inside 

the capsule created by the surrounding gel lead to several interesting scenarios 

prevailing in complex geometries. For example, if a dimer made of two glued balls is 

released inside the gel that already had the dimer formed by the contact of first two 

spheres, they recognize each other via long range interactions and sample the most 

stable energetic state by orienting their axes well before coming into an intimate 

contact. The interaction between small and large spheres is equally interesting in that 

the smaller spheres of one kind (e.g. copper) released on the surface of the gel gets 

pulled into contact by a pre-existing sphere of another kind (e.g. a ceramic ball) of a 

larger diameter. The process continues with the sequential release of small spheres that 

lead to the formation of interesting patterns some of which are shown in figures 5.8 and 

5.9. 

 

Figure 5.8. These video-micrographs capture the events leading to the formation of a 

semi-circular ring caused by the attraction between the copper spheres (diameter 

~2.4mm) and a pre-existing ceramic sphere (4.8mm diameter) inside the gel. The 

copper spheres were added sequentially in the gel. The white scale bar represents 5mm.  
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Figure 5.9: The micrographs in the upper panel show the growth of clusters on 

sequential addition of copper spheres (diameter 2mm) into the gel containing a ceramic 

sphere (diameter 3.2mm). The growing cluster eventually engulfs the ceramic sphere. 

When another ceramic sphere is added, it is attracted by the cluster as well. The copper 

spheres on their own exhibit a structure comprising of parallel columns.  When the 

clusters are large enough (lower panel), they even attract and move towards each other. 

When the clusters coalesce, further re-organization of the spheres occurs that lead to a 

close packed state. In the online video, the abrupt stages of the re-organization of the 

spheres can be seen. These are reminiscent of elastic instabilities and/or plastic events. 

The black scale bar represents 5mm.  

 

 

 

5.4. Conclusions and Outlook 

Motions of biological cells40, liquid drops38and defects41 due to the gradient of elastic 

strain energy are now known in various settings. The phenomenon reported here is 

considerably different from these other effects due to the long range nature of the 

interaction, which manifests macroscopically and which takes advantage of all three 

forces: elastic, surface tension and gravity in a co-operative way. What we discovered 

here is essentially the formation of singular line defects that interact via a long range 

elastic field and even move towards each other thereby giving rise to a viable interaction 

between suspended objects. Analyses of the interactions of two spheres suggest that the 

attractive force follows an inverse distance law.  

 This work illustrates that by intercepting various material scales contributed by 

the elasticity, capillarity and gravity it is possible to tune in a new type of interaction 
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that would, otherwise, not exist without the co-operative effects of its parts. Although 

the length scale (millimeter) explored in the current study has its own place in the 

repertoire of self-assembling systems42, this philosophy of self-assembly with a tunable 

interaction may be extended to microscopic size objects with even softer gels and by 

replacing gravity with an electrical or a magnetic force, or, perhaps, even subjecting the 

gel to a pre-determined mechanical deformation.  

 Finally, we feel that a detailed study involving a non-linear field theory is 

critically needed for further expositions of the types of interactions reported here. This 

is, however, not a simple proposition as some of the deformations encountered here 

may go beyond the scope of the existing large strain neo-Hookean models. Hopefully, 

new theoretical and experimental works will be inspired by the current report. Based 

on various observations described here, we are, however, hopeful that some simple 

scaling models might even emerge from rigorous treatments. 
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Chapter 6 

Elasto-capillary interaction of particles on the 

surfaces of ultra-soft gels: a novel route to study 

self-assembly and soft lubricationa

  

 

 

6.1. Introduction 

Capillary forces prevailing at the surfaces of liquids are exploited in various fields1-27, 

a well-known example of which is the self-assembly of small particles into well-defined 

two dimensional structures7-27. Based on the studies spanning over several decades, the 

mechanisms underlying such interactions can be broadly classified into two major 

categories.  If the bond number (  /2gR ),   being the buoyant density of the 

particle,   is the surface tension of the liquid, g  is the acceleration due to gravity and 

R is particle’s radius)  of a particle is significant, it can deform the surface of a liquid. 

In that case, the effective weight of a particle may be balanced by the capillary force of 

the deformed liquid surface if the particle is suitably hydrophobic.  In delineating such 

interactions, Nicolson7 showed that  a superposition principle can be used by virtue of 

which the field energy is expressed in terms of the force that balances the effective 

weight of a single particle and the profile of the liquid surface that is deformed by the 

other proximous particle. The net result is that the energy of interaction follows9-11 a 

                                                           
a Adapted and Reprinted with permission from [Chakrabarti, A. and Chaudhury, M.K. Langmuir 

2014, 30, 4684-4693]. Copyright © 2014 American Chemical Society. 
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modified Bessel function of second kind (zeroth order), the argument of which is the 

ratio of the distance of separation between the two particles and the capillary length of 

the liquid Lc (= g / ),  being the density of the liquid. The Capillary length is an 

important material length scale in this problem that defines the range over which 

interaction prevails.  Following the lead of Nicolson, several authors9-11 derived detailed 

analytical expressions for the attraction between particles of spherical as well as 

cylindrical geometries on a liquid surface, which resolved some previous incomplete 

observations and analysis of Gifford and Scriven8.  

 If the Bond numbers are very small, the particles can still interact12,13,19  with 

each other on a liquid surface if the three phase contact line is uneven either due to 

chemical heterogeneity, rugosity or other anisotropies. In both cases of low and large 

particle bond numbers, however, the driving force is derived from the excess energy of 

the liquid surface intervening the particles. Kralchevsky and Nagayama13 provided a 

detailed synopsis of the existing theories of capillary attractions and extended them to 

the interactions between particles embedded in thin films supported on a solid support. 

Significant progress has also been made in recent years that is based on the ideas of 

field theory28 within the formalism of the Hilbert-Einstein action in a pseudo-

Riemannian geometry. There are also various discussions in the literature20-25 involving 

capillary interactions in conjunction with hydrodynamic and electrostatic forces leading 

to the self-assembly of colloidal particles.  

 Another class of interaction between particles arises due to the elastic forces of 

the surrounding medium, be it a thin membrane29-31, an elastic string32,33, a liquid 

crystal34-37 or via an Eshelby type inclusions38 in an elastic medium. In all these cases, 

the energetics of elastic distortion provides the necessary force for interaction. 
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Interactions in liquid crystals are of recent interests, where a plethora of studies35-37 

following the lead of Poulin et al34 shows that the distortion of the director fields in a 

liquid crystal around the dispersed particles give rise to a short range repulsion but a 

long range attraction. The orientational elastic energy dependent interaction in a liquid 

crystal also give rise to an interesting phenomenon as levitation35,36 of nanoparticles 

above the ground surface. Elastic interactions in conjunction with defects in liquid 

crystals37 have also been used to assemble particles in a pre-determined fashion. 

Combined effects of elasticity and capillarity have been observed in many two part 

systems, one of which provides the capillarity and the other elasticity39-44. However, to 

the best of our knowledge the literature is essentially devoid of the studies of 

interactions in a single medium that display both the above properties.   

 We recently reported45,46 some experimental results related to the attraction of 

two spheres as they plunge deeply into a very soft hydrogel. Here as a sphere penetrates 

the gel, the neck of contact thins rapidly and forms a line singularity owing to the 

combined effects of a hoop stress and the adhesion forces thereby ensuring that the gel 

completely folds and self-adheres over the particle. The excess energy of the deformed 

surface coupled with the accumulated elastic strain energy is released as the particles 

approach each other, thus guaranteeing a net attraction46 between the particles. This 

emergent47 attractive force between the particles follows an inverse linear distance law 

that is long range and induces 3d assembly of small particles inside the gel. In this 

paper, we study the interactions of small particles that do not deeply plunge inside the 

gel; rather they float on its surface. This is a simpler system to consider for further 

exposition of the roles played by the elastocapillarity in the attraction of particles, which 

is also advantageous in studying the 2d self-assembly processes in a systematic way.  
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There are several motivating factors for such studies. In recent years39-46,48-51, the roles 

played by elasticity, surface tension and the underlying hydrodynamics have captured 

the imaginations of physicists and engineers to study various phenomena of soft 

condensed matter. For example, one might be interested to understand how slender 

objects bend, fold, interact40 and self-assemble with each other on the surface of a soft 

support (e.g. water). One may also be interested to develop a system to study the 

elasticity of particle rafts48, kinetics of self-assembly of particles that form clusters or 

even jammed phases49. There are also several biological phenomena such as tubulation 

and phagocytosis that one may wish to mimic on the surface of a soft support50,51. 

Another interesting problem is that of soft lubrication52,53, in which one is interested 

how frictional resistance to the motion of a particle develops in a system where elastic 

as well as hydrodynamic stresses act co-operatively. One envisages that many of the 

above mentioned phenomena would involve mesoscale level objects, which are 

amenable to detailed studies using an ordinary microscope and analysis using the 

models of continuum mechanics. Ordinary liquids with which capillary interactions are 

studied may not permit many of the mesoscale level objects to float on its surface if 

they are sufficiently denser than water. Furthermore, even if they float, there is very 

little control over the range, the strength as well as the time scales of such interactions. 

What we demonstrate in this work is that an ultrasoft hydrogel with a small amount of 

elasticity affords enough resistance to prevent sinking of a hydrophobic particle 

significantly denser than the support itself, while not compromising appreciably its 

(elasticity modified) Laplace length so that the interactions are long range.  The abilities 

to control the elasticity, the elasto-capillary length and the friction of such a support 

medium are the unique features of this study that vastly extends those of the generic 

systems used to study the capillary interactions on liquid surfaces.  
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We demonstrate the main point of this study by performing a basic experiment in which 

two equal sized hydrophobized (i.e. PDMS, or polydimethylsiloxane grafted) glass 

spheres are allowed to interact on the surface of an ultrasoft hydrogel. The field energy 

of the interaction is estimated from the change in the gravitational potential energy of 

the particles as they approach each other in conjunction with the well-known 

superposition principle that was used by Nicolson7,9  to estimate the same.  We validate 

the underlying scaling analysis with measurements performed with glass spheres of 

three different diameters, gels of two different moduli as well by reducing significantly 

the interaction between the particle and the gel by a suitable choice of an external 

medium. We then show how the knowledge of this field energy of attraction, in 

conjunction with the speed at which the particles approach each other addresses the role 

of underlying friction, which is a parameter of importance in soft lubrication. We 

conclude this study with some demonstrations of how one could begin to study such 

phenomena as tubulation, phagocytosis and self-assembly in many particles systems.  

 

6.2. Results and Discussion 

6.2.1. Estimation of Energy of Interaction using Gravity  

In this research, we use the change of the gravitational potential energy to estimate the 

energy of interaction of two spheres while they attract each other on the surface of a 

gel. We begin with the pioneering idea of Nicolson7 that the driving force behind the 

interaction of the particles is derived from the distance dependent excess energy of the 

surface of the gel that results from the deformation induced by two proximous particles.  

There is a synergistic interplay between this force that is horizontal to the surface and 

the forces that give rise to the vertical stability of the particles. As the particles tend to 
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sink inside a gel due to gravity and the adhesion forces, the hydrostatic and the shear 

deformation fields due to surface tension and elasticity resist them. The balance of the 

above forces dictates the mechanical stability of a particle in contact with gel. Now, as 

the particles are attracted towards each other, the mechanical fields surrounding them 

interact, parts of which are cancelled thus resulting in further penetration of the particles 

inside the gel. We observed a similar phenomenon previously for the particles plunged 

in a gel46. Even when there may be some compensation of the gravitational potential 

energy due to the modification of the elastic strain energy, as we have shown in a recent 

paper46, the overall change of the energy still scales with the former. i.e. U~ –m*gh. 

This would also be the case with a gel undergoing an elastic deformation due to the 

combined actions of the gravity and the adhesion forces. To elaborate this point, we 

consider the case of the small deformation of the gel that can be described by the theory 

of Johnson, Kendall and Roberts (JKR)54, where the total energy of the system is:  
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Here, K is the contact modulus, P ( gm* ) is effective weight of the particle of radius 

R, a is the radius of the contact circle and h is the depth of the penetration of the sphere 

inside the gel (Figure 6.4a). Now, using the equilibrium condition: 0/  aU , and 

equation (6.2) we have: 
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Equation (6.3) shows that the total energy of the system scales with two quantities: the 

gravitational potential energy Ph (or m*gh) and the net energy of adhesion Wa2 in the 
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small deformation limit. For a very soft gel such as our system, there is an additional 

energy term in this equation due to the stretching of the soft solid55 underneath the 

particle deforming it. Furthermore, as the gel undergoes a large deformation, the above 

JKR equation requires modification56. Nevertheless, we expect that the total energy will 

scale as follows:   

contactAghmU  *~      (6.4) 

Where, Acontact  is the area of contact between the gel and the sphere, and  is the net 

change of the interfacial free energy. Furthermore, in the process of the penetration of 

the particle in the gel, if the contact line is pinned so that the energy due to the stretching 

of the gel as well as the energy of adhesion remain more or less constant as the particles 

approach each other, the overall change of the energy of the system would scale simply 

with the gravitational potential energy m*gh A variation of  h  (i.e. h), thus, provides 

a simple option to gauge how the interaction energy scales with the distance of 

separation even in the absence of a detailed knowledge of the system. There is also 

Nicolson’s method of expressing the energy of interaction in terms of the separation 

distance L as )/(~ **

coo LLKghm , where Lc
* is the elastocapillary decay length that 

determines the range of interaction and  h0 is the vertical distance of the three phase 

contact line from the undeformed free surface of the gel (figure 6.4a). The above two 

forms of estimating interactions energies are equivalent. Thus, to a good order 

approximation, we may write: 

        )/( ***

coo LLKghmhgm     or,      )/( *

co

o

LLK
h

h



                 (6.5) 

There are certain details about non-linear elasticity that are ignored in the above 

discussion. We anticipate that an equation of the type described as above would also be 
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valid in a neo-Hookean gel even though the prefactor may be different. Derivation of 

equation (6.5) is based upon several approximations and conjectures.  We are thus 

obligated to test its validity experimentally by studying the interaction of two millimeter 

sized spheres on the surface of low modulus gels where the elastocapillary decay length 

can be estimated independently. As the particles attract each other, we measure how 

much they sink (h) inside the gel as a function of L.  By carrying out experiments with 

particles of different diameters, using gels of different moduli and virtually switching 

off the adhesion term by appropriate choice of the surrounding medium, we examine if 

the data obtained from various experiments would exhibit an universal behavior, i.e. if 

h/ho varies  with L/Lc
*  following a modified Bessel function of the second kind.  In 

order to achieve the above stated goal, our first objective, however, is to examine how 

the elastocapillary decay length Lc
* depends on the elasticity of the gel from which to 

select the appropriate gels for the above stated measurements and analysis.  

 

6.2.2.  Capillary Length Lc for water and Elastocapillary Decay Lengths Lc
* for 

Gels.  

Capillary length describes the extent of deformation of a liquid surface due to the 

competition between the gravity and the surface tension forces. For a liquid surface of 

surface tension () and density (, this parameter is defined as gLc  / , g being 

the acceleration due to gravity. For pure water, Lc is about 2.7 mm. However, with a 

hydrogel, this length is expected to be lower than the above value as the elastic modulus 

of the gel provides additional resistance to surface deformation. We refer this length 

Lc
* to as ‘elasto-capillary decay length’ for gels where both elasticity and capillarity 

contribute. A formal approach to estimate the deformed profile of the surface of the gel 
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would be via a functional minimization of the Lagrangian of the system consisting of 

the gravitational, surface and the elastic energies with respect to the surface elevation [

)(L ] ( see figure 6.1a for definition of )(L  ), which is  postponed for a future 

publication. We expect that the gravitational and the normal component of the elastic 

stress would tend to increase the curvature of the gel surface, whereas surface tension 

and the elastic shear stress would flatten it.  The final shape of the surface of the gel is 

determined by the balance of the above components of stresses, which we examine 

experimentally and provide a scaling level description of the surface profile as 

discussed below. 

 We estimated the elastocapillary decay length by performing experiments with 

water and gels of different elastic moduli (35Pa to 845Pa), in which a pre-adhered 

hydrophobic sphere (diameter 2.4mm) was pulled from the surface of either water or a 

gel and its deformation profile was measured with a microscope. The deformed profile 

of each of the surface could be fitted with a modified Bessel function of second order 

of the form )/( *

0 cLLK  from which the characteristic length scale of the deformation Lc
* 

was obtained (figure 6.1a). In our hand, the value (2.4 mm) of Lc for pure water is found 

to be slightly smaller than its theoretical value (2.7 mm). As the surface tension of water 

used for these measurements is close to the literature value, we ascribe this discrepancy 

to putative experimental shortcomings. Fortunately, the discrepancy is not significant.  

It is reasonable to expect that the value of Lc
* of the elastic gels would be reduced from 

that (Lc) of pure water (=0: g /  ~ 2.4 mm) by a function of the elastocapillary 

number  0 , i.e.   /*

occ fLL  , 0  being the maximum elevation of surface 

(figure 6.1a). The function should have the following properties:   1/:0   of , 
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and   0/:   of .  Among various possibilities, a functional form of the type 

  ],)/(exp[~/ 0

n

of    with 1n  ,  satisfies the above limits and partially 

justifies the observation that Lc
* decreases exponentially with modulus, i.e. 

)exp(* BLL cc  (Figure 6.1b). Figure 6.1c, however, shows that Lc
* decreases fairly 

linearly with  0 , i.e.  















4
1 0*

cc LL                                                            (6.7) 

Equation 6.7 does not satisfy the upper limit, i.e. when the shear modulus of the gel 

becomes extremely large. This equation is likely a low modulus limit of a hitherto 

undetermined function (figure 6.1c) relating 
*

cL  and  0   over a larger range of 

moduli. 

 

6.2.3.   Attraction of spheres on the surface of gel. 

Based on the estimation of the elastic moduli and the elastocapillary decay lengths of 

gels of different amounts of acrylamide compositions, we found that the gels of 

modulus ranging from ~ 10 Pa to ~20 Pa are most suitable for studying the elasto-

capillary mediated interactions of particles on the surface of a gel. Elastic moduli in this 

range are significant enough to resist sinking (Figure 6.3b-d) of the glass spheres of 

radii ranging from 2 to 4 mm in the gel provided that the glass is made suitably 

hydrophobic, with which water exhibits a contact angle of ~ 113o. These glass particles, 

be they hydrophobic or hydrophilic, however, immediately sink in water as their Bond 

numbers are not significantly lower than unity. The relationship between floatability of 

a particle and its wettability on a liquid surface has already been discussed previously 

by Marmur et al.57, albeit for low Bond number systems. The current observations  
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Figure 6.1: (A) Deformed surface profiles of water, and two representative gels are 

shown. In each case, a 2.4mm diameter PDMS grafted glass sphere was used to deform 

the surface. The white curves show the fitted Bessel function [ )/()(
*

00 cLLKL   ] 

to match the deformed surface profiles. For clarity the fitted curves have been shifted 

from the deformed surface profiles along the direction of the red arrows.  (B) The plot 

shows how the elastocapillary decay length decreases with the shear modulus (of 

the gel. The red open diamonds denote the experimental data and the solid black line is 

fitted according to )exp(* BLL cc  with a value of B as 2.6x10-3 m2/N. (C) This plot 

shows that the elasto-capillary decay length decreases with the elasto-capillary number 

(  0 ) for gels of shear modules  555 Pa.  The datum for a gel of even a higher 

modulus (845Pa) deviates from the plot.   

 

suggest a worthwhile new direction for these studies when an ultra-low modulus gel is 

concerned. However, as the focus of our current study is on how the hydrophobic 

particles interact with each other on the surface of a low modulus gel, the detailed 

subject of particle floatation by the combined actions of gravity, elasticity and 

wettability is deferred for a future in-depth study.  
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Figure 6.2: (A) Figure illustrating fine balances of the elastic, wetting and gravitational 

forces giving rise to different types of stabilities of glass spheres (3.2 mm diameter) 

released on the surface of a polyacrylamide hydrogel of modulus 10 Pa.  An untreated 

(hydrophilic) glass sphere (right) immediately plunges into the gel and becomes 

neutrally buoyant afterwards. A hydrophobic glass (left) floats on the surface of the 

same gel. (B) This is an extension of the experiment in A, that shows when another 

hydrophobic particle is released in between the two, (C) it gets strongly attracted toward 

the hydrophilic particle, but moves on the gel’s surface to minimize its distance of 

separation from the latter. 

 

The value of Lc
* of a gel of  ~ 10 Pa to 20 Pa is large (~2.34mm to 2.28mm) enough 

that capillary interactions are expected to prevail at a distance comparable to that 

(2.4mm) of pure water.  This hypothesis is tested with a basic experiment, in which we 

place two glass spheres of equal radii on the surface of a gel at a suitable distance of 

separation then examine how they attract each other. As stated earlier, a hydrophobic 

glass particle of any size ranging from 2.4 mm to 4 mm diameter floats on the surface 

of a PAM gel of modulus ~ 10 Pa to 20 Pa after penetrating the gel  partially.  When 

the second sphere is released at a distance of about 1 cm from the first sphere, we 

studied their mutual attraction on the surface of the gel till they finally come into 

contact, while penetrating a little further down into the gel yet floating on the surface. 

Some representative sequences of events of the elastocapillary mediated attraction of 

particles of three different sizes are shown in figure 6.3, where the curvature of surface 

of the gel intervening two spheres are clearly perceptible. Incomplete wrappings of the 

gel around the PDMS grafted spheres are also evident in these images, a schematic of 

which is illustrated in figure 6.4a defining the various parameters that are measured for 

quantitative analysis of the experimental data. In particular, we measured the average 

10 mm 0 s 30 s

A B C
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depth of penetration h of both the spheres in the gel with respect to the distance of 

separation L. The depth (h0) of the three phase contact line from the flat surface of the 

gel was also measured for each experiment and the average value for a set of similar 

experiments was used for the analysis to follow. 

 

Figure 6.3: (A) A plan view of the interaction of two 3.2 mm hydrophobic glass spheres 

on the surface of a 10 Pa gel.  A wire mesh lined with the base of the glass cell shows 

the field of deformation of the surface of the gel around the particles. (B) Attraction of 

the two 4 mm diameter hydrophobic glass spheres on the surface of a 10Pa gel in air 

(C) Attraction of the two 2.4 mm diameter hydrophobic glass spheres on the surface of 

a 10Pa gel in air (D) Attraction of the two 2.4 mm diameter hydrophobic glass spheres 

on the surface of a 10Pa gel in contact with heptane.   

 

For each case, the experiment was repeated at least three times or more to ensure 

reproducibility. While it is possible to carry out these experiments with a gel of modulus 

~140Pa with a significant enough Lc
* (1.62 mm), it was inconvenient to measure h and 

ho accurately as both these parameters strongly decrease with the elastic modulus. We 

thus restricted our experiments to two gels of moduli 10 Pa (Lc
* = 2.34mm) and 19 Pa 
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(Lc
* = 2.28mm), the Lc values having been estimated from the empirical relationship 

obtained in figure 6.1(b). 

 

Figure 6.4: (A) Schematic showing elastocapillary attraction of two spheres of 

identical sizes at a distance L. h denotes the depth of submersion of the ball with respect 

to the initial undeformed level of the gel. The change of  h as the spheres approach each 

other is denoted by h (see text and figure 6.4b) h0 is the vertical distance of the three 

phase contact line from the undeformed free surface of the gel when the spheres are far 

apart. (B) The change in the depth of separation h scaled with h0 is plotted as a function 

of the non-dimensional distance of separation (L/Lc
*). Data from all the experiments 

cluster around the mean curve  )/(5.1/ *

0 co LLKhh  . The open circles [diameters: 

2.4mm (red), 3.2mm (black) and 4mm (green)] denote the 10 Pa gel-Air data. The open 

squares [diameters: 3.2mm (purple) and 4mm (pink)] denote the 19 Pa gel-Air data. 

The blue open diamonds (diameter 2.4mm) denote the 10 Pa gel-Heptane data.  

 

In order to compare the results obtained from various experiments, we plotted the 

normalized average descent of the spheres in the gel, h/ho, against the normalized 

separation distance L/Lc
* (figure 6.4b). It is gratifying that all the data plotted this way 

cluster around a mean curve )/(/ *

0 co LLKhh   with a proportionality factor of 1.5 

that is close to unity expected from a simple model (equation 6.5) discussed as above.  
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Note:  ho (figure 6.4a) has the same physical meaning as 0 (figure 6.1a) in that both 

describe the vertical distance of the three phase contact line from the undeformed free 

surface of the gel. While 0  depends on the vertical displacement of the sphere that is 

controlled externally, ho is determined by the internal balance of different forces.  

 

6.2.4. Attraction of spheres at the interface of n-heptane and gel. 

In all the experiments described in section 2.3, adhesion plays a significant role in the 

sense that the gel wraps around the particle so much that the effective ho is rather small. 

One can surmise that if the interfacial adhesion is decreased, the gel would undergo 

mainly a Hertzian deformation meaning that the sphere mildly deforms the gel so that 

the value of ho would increase. The adhesion energy in this system could indeed be 

reduced considerably by replacing the upper air-layer over gel with n-heptane. The free 

energy of adhesion between a PDMS grafted glass particle with the gel is58:   

                                    ))((2 3231132   dG                          (6.8) 

Where, 1 is the surface energy (totally dispersive) of PDMS (~ 22 mN/m) , 2 is the 

dispersion component of the surface energy (~ 21.8 mN/m) of the gel, and 3 (20.1 

mN/m) is the surface tension (totally dispersive) of n-heptane. The adhesion energy of 

the hydrophobic glass particle with the gel is thus estimated to be -0.08 mJ/m2 which is 

negligible compared to the expected value of -44mJ/m2 in air.  h0 (0.87 mm) of a small 

particle released on the surface of the gel of modulus 10 Pa through heptane is indeed 

found to be larger than that (0.32 mm) in air.  Lc
* of the gel-heptane interface was 

measured by releasing a 4 mm diameter hydrophobic glass sphere at the interface and 

measuring the deformed profile of the same as it bent towards the gel. This contrasts 
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the method used in air, where a pre-adhered sphere was pulled away from the gel-air 

interface (Figure 6.1a).  The deformed profile at the gel-heptane interface could also be 

fitted with a modified Bessel function thus yielding an elastocapillary decay length of 

3.5 mm, which is found to be larger than the value (2.34mm) of the same gel in contact 

with air. It is reassuring that the above value of  Lc
* is close to that (3.9 mm) estimated 

using the empirical relationship )exp(* BLL cc  (figure 6.1b), in which  

gLc   int   is calculated using an interfacial energy ( int ) of the gel-heptane 

interface as 51mN/m (~ the value at heptane-water interface) and  (the difference in 

the densities of water and heptane) as  316 kg/m3. These measurements exemplify that 

the elastocapillary decay length of an interface can indeed be modified by its surface 

tension. As a consequence of both larger values of ho and Lc
*, the spheres recognize 

each other at a distance much larger than they do on the gel in contact with air. The 

strength of the interaction is also larger as evidenced from the fact that the net change 

of the gravitational potential energy for the spheres in going from an infinite separation 

distance to contact at heptane-gel interface is three times larger than that at air-gel 

interface. However, the normalized descent of the spheres in the gel, h/ho, when 

plotted against L/Lc
* (figure 6.4b) still cluster around the same mean curve obtained 

from the experiments at air-gel interface.  

 

6.2.5. Role of friction in elasto-capillary attraction: Difference at Gel-Air and the 

Gel- heptane interfaces 

Apart from quantifying how the surface tension and the elastic forces play joint roles 

in determining the energy of interaction of two spheres on the surface of a soft gel, these 

experiments also have fascinating prospects in studying how the coupled elastic and 
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hydrodynamics forces play their roles in determining the friction of the spheres with 

gel. This subject is of interest in the field of so called52 “soft lubrication”, in which both 

elasticity and hydrodynamics play their respective roles. We begin with the asymptotic 

logarithmic form of the energy of interaction of the spheres as given in equation (6.5), 

the derivative of which gives the force of interaction as: Lghm /0

*
. If we assume that 

this force is balanced by a kinematic resistance that is linearly proportional to velocity, 

we have:  

                                          LghmdtdL /~)/( 0

*                                                       (6.9)      

                                         Or,     /~/ 0

*2 ghmtL                                                       (6.10) 

Where,   is the kinematic friction coefficient. Equation 6.10, in which the negative 

effective diffusivity (L2/t) is inversely proportional to friction coefficient, pleasantly is 

the deterministic analog of the well-known Einstein-Sutherland’s equation59 connecting 

diffusivity and friction.   Here,  0

*ghm  is equivalent to an “effective gravitational 

temperature” introduced earlier by Segre et al60 in the context of sedimentation of 

particles. According to equation 6.10, a plot of L2 versus t should be linear, the slope of 

which is inversely proportional to the kinematic friction coefficient. The dynamics of 

the attraction of spheres at the gel-heptane interface is quite different from that at the 

air-gel interface in that the time taken for the two spheres to come into contact in the 

former case is much larger than that at the gel-air interface. L2 is fairly linear with t in 

both cases (figure 6.5), which further ascertains that the friction is fairly linear with 

velocity and that the form of the attractive field energy is asymptotically logarithmic at 

a short separation distance. The slope of the L2-t for the heptane-gel interface (0.25 

mm2/s) is, however, an order of magnitude smaller than that at the air-gel interface (2.3 

mm2/s ) thus ascertaining the large differences in the friction in both cases. With the 



158 

appropriate values of ho and the fair estimations of the buoyancy corrected weights of 

the spheres in the two cases, we estimate that the kinematic friction coefficient at the  

heptane-gel interface is about 20 times larger than that at the gel-air interface. The 

absolute value of   for the 2.4 mm diameter spheres attracting at the heptane-gel 

interface (equation 6.10) is estimated as 0.7 Nm-1s-1 whereas that from Stokes drag force 

(~ R6 ) is estimated as 8.7x10-6 Nm-1s-1 in Heptane. This large discrepancy of the 

values of   suggest a complex origin of friction, part of which could be arising from 

the deformation of the gel and part due to the wedge flow of the liquid heptane near the 

sphere-gel interface. The friction coefficient for the spheres undergoing attraction at the 

gel-air interface is estimated to be 0.03 Nm-1s-1. In our previous study involving the 

attraction of particles that were completely submerged inside the gel, the friction 

coefficient was estimated to be 1.7 Nm-1s-1,46 which is much higher than the friction 

coefficient value observed for the spheres in the present study where they are only 

partially wrapped with the gel surface.  

 

Figure 6.5: This plot shows that the squared distance of separation between two 

interacting particles decreases linearly with time. The blue open circles correspond to 

the 2.4mm diameter spheres at the gel- heptane interface. (Inset) The pink open squares 

correspond to the 2.4mm diameter spheres at the gel- air interface. The shear modulus 

of the gel in each case is 10 Pa.  
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6.2.6.Tubulation and Self-Assembly of spheres at the n-Heptane and Gel interface 

The long range interaction of the particles in a gel coupled with the fine balance of 

forces that give rise to their stability perpendicular to the surface of the gel, can give 

rise to several interesting scenarios mimicking phenomena in biological and other 

settings50 that are worth studying in detail. Here we provide two examples: tubulation 

and self-assembly of the particles at the heptane-gel interface.  In our experiments, 

tubulation has frequently been observed with a very soft gel (10Pa) when covered with 

a layer of n-heptane that reduces the adhesion energy and thus the propensity for the 

gel to completely wrap around the particles.  

 

 

Figure 6.6: A 3.2mm diameter hydrophobic glass sphere is attracted towards a 4mm 

size hydrophobic glass sphere. As the two spheres contact each other, the pair re-orients 

inside the tube adjoining the two (tubulation). Finally, the pair penetrates inside the gel 

and becomes stagnant to a point where it becomes elasto-buoyant.  

 

When a large particle (4 mm) is first introduced on the surface of such a gel, it attains 

its stability after penetrating the gel to a significant distance, whilst still remaining on 

its surface (Figure 6.6). However, when a smaller particle (3.2 mm) is released at a 

distance of about 9 mm from this particle, it traverses on the surface to reach the larger 

particle due to elastocapillary attraction. As the two particles touch each other, the pair 
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re-orients and inserts itself in the gel till the accumulated strain induced elastic force 

balances the combined weight 

 

Figure 6.7: A plan view of elastocapillary surface force mediated self-assembly of 

2.4mm silanized glass spheres at the interface of a gel (10Pa) and n-heptane. As the 

spheres are randomly dispersed on the surface of the gel through heptane, they form 

random clusters, which then move towards each other forming one large cluster. A wire 

mesh lined with the base of the glass cell shows the field of deformation of the gel 

surface.  

 

of the particles. The sequence of events mimics what is known as tubulation in 

biomembrane system, which underlies the interactions and penetrations of 

nanoparticles through a biological membrane49. However, it is important to emphasize 

that the range, the strength and the origins of interactions here are quite different from 

what is observed in typical biomembrane sytems. What is presented here is only a 

mimicry of the biological phenomena in a mesoscale level system.   

Another observation is the self-assembly in a many particle system that is observed 

when several small particles are dispersed on the surface of the gel under heptane 

(figure 6.7). The experiments shown in the pictures were performed using silanized 

glass spheres, although same kind of interfacial self-assembly was also observed with 

PDMS grafted glass spheres. The particles attract and form various structures 

resembling chains and triangles. These clusters eventually are attracted towards each 

other thus forming larger aggregates. These types of phenomena are generic with 
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particles dispersed on the surface of liquid, such as water. However, here, the ability to 

control the range and the strength of the interaction through the modulation of elasticity, 

the interaction forces, as well as the friction, the parameter space of investigation can 

be vastly enhanced. Thereby, these systems could potentially be used to study 

nucleation and clustering phenomena in a 2d system more rigorously than what might 

be possible with a liquid surface alone.  

 

6.3. Reiterating the Main Points 

The elastocapillary force mediated attraction of particles on the surface of an ultra-soft 

gel follows a modified Bessel function of second kind (zeroth order) much like the 

generic capillary attractions of particles on the surfaces of liquids. For an elastic 

hydrogel, however, the range of interaction is reduced by its elasticity, which has 

implications in designing systems where the range of attraction can be tuned in by the 

elasticity of the support.  A simple relationship between the descents of the particles in 

the gel with their distance of separation was developed by equating the change of the 

gravitational potential energy of the attracting spheres with a well-known form of 

interaction obtained from the superposition principle of Nicolson. Though shrouded by 

some uncertainties of the implicit assumptions and approximations, the proposed 

relationship stood firmly against the experimental tests involving spheres of different 

sizes suspended on gels of different moduli, even when the adhesion of a gel/particle 

interface is almost non-existent. This experimental assertion gives us confidence to 

consider that the main physics underlying the interactions of particles on the surface of 

an elastic gel has been essentially captured. There are, nevertheless, some differences 

in the data obtained from one set of experiment to another. While, part of this 
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discrepancy is due to experimental uncertainties, a more precise analysis of the data by 

taking into consideration the second order effects resulting from the stretching of the 

gel, its large deformation neo-Hookean behavior and some change of the interfacial 

energy in those cases where the contact lines are not entirely pinned on the descending 

spheres may also be required.  

In all cases, the particles approach each other with a negative effective diffusivity that 

is a deterministic analog of the Einstein-Sutherland’s relationship. This is a 

consequence of an attractive force varying inversely linearly with the separation 

distance and the dynamics of motion being governed by a linear kinematic friction. A 

surprising observation of this study is that the kinematic friction of the sphere on the 

gel in contact with heptane is substantially larger than that in air.  This, we believe, 

presents itself as an important problem of soft lubrication that deserves detailed in-

depth investigation. While in a thermal system, the particles would move away from 

each other, here they come closer, i.e. they diffuse negatively with an effective 

gravitational temperature. An effective gravitational temperature was introduced 

earlier60 in the context of the sedimentation of the particles.  However, as the “effective 

gravitational temperature” as introduced here does not possess the feature of fluctuation 

that allows particles to explore the entire phase space, no major issue is to be  made of 

out of it other than treating this quantity  as an “intensive property” of the system that 

gives rise to an effective diffusion like kinetics.  We expect that the putative analogy 

may be more useful for an ensemble of a large numbers of particles, where they could 

form random clusters and could even move against a concentration gradient. This 

particular feature could be interesting in setting up experiments to study clustering 

phenomena and phase separation kinetics in mixed particle systems.   
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Elucidation of the nature of friction in such systems is an important challenge, a 

satisfactory resolution of which would require full knowledge of whether the spheres 

rotate or slip, and if the wedge flow of the surrounding liquid through the gap formed 

by the sphere on the gel (that has a diverging stress) plays any role. Preliminary studies 

with the attracting spheres do not show any clear evidence of rotation as they approach 

each other, even though, surprisingly, some azimuthal motion of the spheres was 

noticeable. The subject promises rich underlying physics of soft lubrication, which is a 

coupled problem of hydrodynamic flow and elastic deformation.  Nevertheless, the fact 

that friction can be modified in such systems provides another avenue to manipulate the 

dynamics of the motion of the particles as much as the range and the strength of 

interaction can be modulated by appropriate choices of the surface tension and the 

elasticity of the gel itself.  

We end this section by commenting that what we learned here involving the interaction 

of particles on the surface of a gel can be combined with what we reported earlier46 , 

namely the interaction of particles deeply plunged inside a gel in order to enhance the 

overall scope of the elasto-capillary mediated interactions of particles in a gel. This 

philosophy can be illustrated with a simple example described in figure 6.2, in which a 

hydrophilic glass particle plunges inside a gel and a hydrophobic particle released far 

away from this one floats on the gel’s surface. If however, a second hydrophobic 

particle is released in between the two, it gets attracted more strongly towards the 

hydrophilic particle, but moves on the gel’s surface in order to minimize its distance 

from it. This observation, in which a floating particle interacts with the strain field 

produced by a submerged particle, may give rise to new twists to particle interactions 

that have not been exploited thus far. Thus, artificially created elasto-capillary field 
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inside a gel may be a novel way to assemble particles on its surface that may even be 

extended to those of colloidal dimensions.  

 

6.4. Summary and Conclusion.  

 This study shows that elastic forces coupled with surface tension are advantageous in 

studying the attraction mediated 2d organization of particles on a soft support.  Dense 

particles can be easily dispersed on such a support that would otherwise sink in normal 

liquids. Further control of the particle interaction, i.e. its range, strength and dynamics, 

can be easily achieved. It should also be possible to support a relatively thin (~ few 

millimeter) layer of hydrogel on an elastomeric support, e.g. a crosslinked polydimethyl 

siloxane, that can be stretched or compressed uniaxially or biaxially to induce surface 

folding, or in which patterns can be formed via an external field, in order to add 

additional degrees freedom to manipulate interactions and self-assembly of particles 

suspended on the surface of the gel. This configuration could be particularly useful in 

studying the elasticity and the buckling transitions of particle rafts formed by self-

assembly. These studies are poised for further explorations in many particle systems to 

gain deeper understanding of such phenomena as clustering, jamming, tubulation and 

possibly phase separation kinetics in mixed systems. 

 

6.5. Experimental Details. 

6.5.1. Materials.  

The soft elastic hydrogel was prepared using the following materials: N-

(hydroxymethyl)-acrylamide (48% solution in water, Sigma Aldrich), deionized (DI) 

water (Thermo Scientific Barnstead E-pure unit), potassium persulfate (99.99% trace 
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metals basis, Sigma Aldrich), and N,N,N’,N’- tetramethylethylenediamine (TEMED, ≥

99.5%, purified by re-distillation, Sigma Aldrich). Heat resistant borosilicate glass 

spheres (density 2.2 g/cc; their diameters ranging from 2.4mm to 4mm) purchased from 

Winsted Precision Ball Company through McMaster Carr were used for this study 

followed by surface using  as received trimethylsiloxy-terminated 

polydimethylsiloxane (DMS T-22, M.W. 9430; Gelest Inc.). 1H,1H,2H,2H-

perfluorodecyltrichlorosilane (FC-10, 96%; Alfa Aesar) was used as received for the 

silanization of particles. For most of the experiments involving the study of interaction 

between the spheres on the surface of the gel, home built glass cells (each being 

approximately 70mm x 40mm, 50mm high) were used. The glass cells were built from 

glass slides (75mm x 50mm x 1mm, Fisher Scientific) by using Permatex 80050 Clear 

RTV Silicone Adhesive Sealant. These cells were thoroughly cleaned with DI water 

and blow-dried with nitrogen gas before use. For the measurement of the capillary 

length and elastocapillary decay length ( Lc
* ), the gels were cured in a polystyrene petri 

dish (VWR, 100mm diameter, 15mm high) that were purchased from Fisherbrand. All 

experiments for the measurement of the elastocapillary decay length Lc
* were 

performed after placing the test petri dishes on a 3d manipulated stage that was situated 

on the top of a vibration isolation table (Micro-g, TMC). In some experiments, n-

heptane (HPLC grade, Fisher Chemical) was used as received. A steel washer with 

cadmium coating (1” diameter, Aspen Fasteners) was used for the magnetic material in 

shear modulus measurement experiments. 
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6.5.2. Preparation of Gel. 

Gels of different concentrations ranging from 3.2% to 5.5% of acrylamide monomer 

[N-(hydroxymethyl)-acrylamide] were prepared by adding the appropriate amount of 

monomer to DI (distilled deionized) water in a clean jar. The dilute solution of 

acrylamide monomer in DI water was stirred for 30 minutes with pure nitrogen gas 

bubble purging through it. After this step, 0.25% of potassium persulfate was added to 

the solution and further stirred for 10 minutes. The final step was completed by adding 

0.3% of TEMED to the solution following which the gelation begins. For the 

determination of Lc
* , the freshly prepared gel solution was immediately poured into a 

polystyrene petri dish till its brim. The entire dish was then placed in a larger glass petri 

dish containing stacks of DI water-soaked papers to maintain a water vapor-rich 

environment inside. The estimation of Lc
* was performed on the next day. To study the 

attraction of the spheres, the gels were cured in the home built glass cells that were 

covered by glass lids wrapped with parafilm to seal the cell moderately well that 

effectively prevents the drying of the upper surface of the gel. For the measurement of 

the shear moduli, the gel was cured in a parallel plate geometry sandwiched between a 

lower clean glass plate (75mm x 50mm x 1mm, Fisher Scientific) and either a clean 

cover slip (60mm x 24mm x .18mm, Corning) for softer gels or a clean glass plate 

(75mm x 25mm x 1mm, Fisher Scientific) for comparatively higher modulus gels. The 

two glass plates were separated by 1mm thick Teflon coated glass spacers, one each on 

either side, for their easy removal after the gel cured. The whole setup was placed inside 

a large polystyrene petri dish with stacks of filter papers soaked with DI water to 

minimize the evaporation of water from the gel slab. The glass plates in the cure 

geometry for the shear modulus experiments were pre-marked with a permanent marker 

to determine the dimensions of the gel slab. 
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6.5.3. Surface Modification of the Glass spheres.  

 

The glass spheres (2.4 mm to 4 mm diameter) were coated61 with thin grafted layers 

(5nm) of polydimethylsiloxane, PDMS (DMS T-22). The glass balls were cleaned with 

piranha solution (70% Sulfuric acid + 30% Hydrogen Peroxide) for half an hour 

following which they were rinsed with copious amounts of DI water and dried in the 

oven. In the experiments that required hydrophilic glass spheres, they were used right 

after the piranha cleaning and drying step. For making hydrophobic spheres, the 

following reaction was carried out. The dried glass spheres were placed in a clean glass 

vial and PDMS (DMS T-22) liquid was poured over the spheres to cover them 

completely. These were kept in the oven at 80 o C for 24hrs, after which they were 

cooled to room temperature. The glass spheres were then rinsed with chloroform (ACS 

grade, EMD) and dried at room temperature. Some glass spheres were silanized by 

soaking them in chloroform with 3-4 drops of the perfluorodecyltrichlorosilane.  The 

silanized spheres were used in the experiment for observing self-assembly at the gel-

heptane interface.  

 

6.5.4. Measurement of Shear Moduli of the Polyacrylamide Gel.  

The shear moduli of the gels were estimated with a slight modification of a previously 

reported method45. The gel was cured in a thin slab, sandwiched between two glass 

slides, the preparation of which is described above. We previously observed that the 

elastic modulus of a gel cured after 2 to 24 hrs exhibit similar elastic properties. 

However, in order to prevent any possible complications due to the drying of the gel 

from its exposed edges, we performed all the shear modulus measurements after 2 hrs 

of curing the gel. After removing the Teflon coated spacers that separated the two 

parallel glass plates with a thin slab of gel sandwiched between them, the lower larger 
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glass plate was fixed by means of double sided tape (Scotch) to a stage that firmly rested 

on a vibration isolation table (figure 6.8a). A steel piece was then glued at the center of 

the top glass plate/cover slip using Superglue (Scotch) that was used to vibrate the upper 

plate parallel to the bottom plate. A magnet was attached to the end of an aluminum 

stage that was connected to a mechanical oscillator (Pasco Scientific, Model No: SF-

9324) and driven by a Gaussian white noise of strength 0.12 m2/s3 generated by a 

waveform generator (Agilent, model 33120A), via an amplifier (Sherwood, Model No: 

RX-4105).  As the magnet underwent a random vibration, it excited a random 

oscillation of the magnetic steel disk, and thus the upper glass plate above the gel.  This 

fluctuation of the plate was captured by a high speed camera (Redlake Motion-Pro, 

Model no: 2000) operating at 1000 frames/s and later tracked by a motion tracking 

software MIDAS (Midas2.0, Xcitex Inc., USA). OriginLab software was used to 

Fourier Transform the displacement fluctuations that yielded the power spectrum of the 

random motion of the plate, and thus the shear deformation of the gel that allowed 

estimation of the dominant shear resonant frequency of the gel. Addition of ten such 

power spectra for each sample eliminated the background noise and resulted in a clear 

identification of the dominant resonance frequency  for each gel that was used to 

estimate the shear modulus of the gel (by means of the expression of a simple 

harmonic oscillator: mHA /2   , where A the surface area of contact of the 

gel slab (thickness H) with the glass plate,  m is the total mass of the upper glass plate 

and the iron piece attached to it. In all the five experiments whose data shown in figure 

6.8b, same area of contact A, same mass on top m and same thickness of gel slab H 

allow us to observe the shift of peaks to the right as the modulus increases. Some of the 

measurements of the shear moduli (3.2% and 3.4% gels) were carried out with a 
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different technique in which the lower glass plate of the gel slab-glass plate sandwich 

assembly was attached to the stage in a vertical fashion. A small block of weight w was 

suspended with the help of a fine wire that was stuck to the upper cover slip. As the gel 

slab underwent shear deformation due to the suspended weight, the shear modulus of 

the gel was estimated using xAwH  / , x is the net shear displacement of the 

upper glass plate.  The shear moduli of gels with acrylamide monomer concentrations 

of  3.5%, 4%, 4.5%, 5% and 5.5% resulted in the shear moduli ranging from 35 Pa to 

845 Pa that could be fitted nicely with a stretched exponential function (figure 6.8c). 

 
Figure 6.8:  (A) Schematic of the method used to measure the shear modulus of a gel. 

The method involves the creation of a random magnetic field that interacts with the 

steel disk and vibrates the upper glass plate randomly with respect to the lower plate 

thus creating a random shear deformation of the gel. (B)The resonance peak of the shear 

vibration of the gel was obtained from the power spectra of its random vibration with 

which the shear moduli were calculated using mHA /2    . (C) The shear 

moduli ( ) of different gels plotted as a function of the percentage of polyacrylamide 

(x) in them follows an empirical relationship )/178exp(2500 98.2x .  
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6.5.5. Measurements of Lc (Laplace Length) for water and Lc
* (Elasticity 

modified Laplace Length) for Gels. 

The elastocapillary decay length Lc
* of water or a gel was estimated as follows. For 

water, a clean polystyrene petri dish (100mm  was placed on a stage in front of a 

CCD (charged-coupled device) camera (RU, Model: XC-75) atop a vibration isolation 

table and was filled with DI water till the brim. A hydrophobic glass sphere (2.4mm ) 

was attached on the bottom of a stage that could be moved up and down using a 

micromanipulator. The sphere was brought down very close to the surface of the water 

until its reflection was visible on the surface of the water. By knowing the distance 

between the object and the image, we could ascertain rather precisely the reference level 

of the water from the midpoint of the object and its image. The camera was focused in 

such a way that the sphere was on one side of the frame such that a large area of the 

deformed surface could be captured. The glass sphere was then brought downward till 

it touched the surface of the water resulting in a concave meniscus. The sphere was then 

slowly moved upward while the whole process was captured in the form of a video by 

using the CCD camera and recorded with WinTV on the computer. The video was 

decomposed into image sequence in VirtualDub. All the image analysis were performed 

using ImageJ. The deformed profile was plotted as )(L versus L, where L is the 

distance measured from the vertical line passing through the center of the glass sphere 

in the image and )(L is the vertical distance of the deformed profile measured from 

the undeformed reference level (figure 6.1a).  The profile of the deformed surface of 

water could be fitted with a modified Bessel function )/(0 cLLK  of the second kind 

where  Lc is the capillary or Laplace length of water (figure 6.1a). The same process of 

measuring the Lc
* was repeated with physically cross-linked polyacrylamide gels of 



171 

concentrations 3.5%, 4%, 4.5%, 5% and 5.5% of the acrylamide monomer having the 

shear moduli ranging from 35 Pa to 845 Pa. The gels were cured in clean polystyrene 

petri dishes and kept inside a large glass petri dish with stacks of DI water-soaked filter 

papers for 24 hours. The round gel slab was overturned into the lid of the petri dish so 

that we could measure the Lc
* of the gel’s reverse flattened side (Figure 6.1b,c). We 

repeated the measurements of  Lc
* on the top surface of the cured gel slab in the petri 

dish that also gave almost similar values with the experiments done with the reverse 

side that is well within the experimental error. 

 

6.5.6.  Attraction of spheres on surfaces of gels. 

In order to study the attraction of hydrophobic glass spheres on the surface of gel, we 

placed the home built glass cell containing the cured gel on a stage in front of a CCD 

camera (MTI, CCD-72). All the experiments were performed followed by 24hrs of the 

curing the gel, which ensured evaporation of extraneous water from its surface, 

although we suspect that a very thin layer of water still remains on the surface of the 

gel.  All the experiments were performed on the flattest parts of the gels to eliminate 

any putative artefacts arising from the curvature of the gel meniscus close to the walls 

of the test cell. A hydrophobic glass sphere was first released on the gel surface 

followed by the release of a similar sized sphere within ~10mm away from the first one. 

Their attraction was recorded using a CCD camera that was attached to a variable focal 

length microscope (Infinity). Similar experiments were also performed at the interface 

of gel and n-heptane. When the spheres were released on the surface of n-heptane, they 

sunk through heptane and rested at the interface formed between n-heptane and the gel. 

The attractions were recorded in the CCD camera and analyzed using ImageJ. All the 

experiments were repeated at least three or more times. A stainless steel (SS316) wire 
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cloth (opening size 0.015”, wire diameter 0.010”) was lined with the base of the glass 

cell to observe the deformations in the gel as the particles interacted. At this point, we 

have not analyzed the optical distortions of the wire mesh; however they can be 

analyzed with a ray tracing software to quantify the deformations of the surface of the 

gel (figures 6.3a and 6.7). 
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Chapter 7 

Elastic Cheerios effect: self-assembly of 

cylinders on a soft solida 

 
 
 
 

7.1. Introduction.  

It is well-known that a small particle can float at an air-liquid interface due to the 

capillary force acting along its contact line1-3. The combination of the gravitational and 

the surface energies can lead to an attractive or a repulsive interaction between particles 

depending upon their specific gravity relative to the liquid4-6. This observation, dubbed 

the Cheerios effect7-8 is the basis for capillarity driven self-assembly9-12. Similar 

phenomena are also observed on microscales in such instances as proteins embedded 

in a lipid membrane13, in which the interactions are mediated by elasticity and 

capillarity. These observations lead to a natural question- what if the fluid interface is 

replaced by its elastic analog, such as the surface of a soft solid, or a thin elastic 

membrane?  Recent experiments14-16 have shown that this elastic analog  of the  

Cheerios  effect, wherein heavy spheres  settling  on a soft solid deform the  interface  

and create  a topography that serves as an energy landscape  on which  they  move. 

These observations are consistent with a scaling theory14-16 that captures the essential 

features for the forces and dynamics between two spheres. Here, we complement these 

                                                           
a Reprinted with permission from [Chakrabarti, A.; Ryan, L.; Chaudhury, M.K. and Mahadevan, L. EPL 

2015, 112, 54001]. Copyright © 2015 Institute Of Physics. 
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studies by studying the statics and dynamics of heavy parallel cylinders sitting atop a 

soft substrate using a combination of experiments, theory and numerical simulations. 

 

7.2. Experiment.  

Our  experiments followed a  protocol  similar  to  that in earlier  studies14-16 and  used 

a physically cross-linked gel as the soft substrate, starting with a solution of N-

(hydroxymethyl)-acrylamide (48% solution in water,  Sigma Aldrich) in water that was 

then polymerized by adding 0.25wt% of the catalyst potassium persulfate (99.99%, 

Sigma Aldrich) and initiating the reaction with 0.3wt% N,N,N’,N’- 

tetramethylethylenediamine (TEMED, ≥ 99.5%, Sigma Aldrich). After crosslinking 

was complete, we measured the shear modulus of this gel using an oscillatory rheology 

test [12] and found that the modulus = 18 Pa.  For the  cylinders,  we used  highly  

polished  ¾’’ long aluminum   rods (2024 Aluminum,  3/16 ’’diameter, density  2.8 g/cc, 

McMaster Carr) which were cleaned  and  sonicated in  acetone and dried  with  

ultrapure  nitrogen gas.  They were then plasma-oxidized and soaked in trimethylsiloxy-

terminated polydimethylsiloxane (DMS T-22, M.W. 9430; Gelest Inc.), and baked at 

80oC for a day to allow the  polydimethylsiloxane  chains  to  graft  with the  surface, 

and then rinsed with chloroform (ACS grade, EMD) in order to remove the unreacted 

siloxanes and dried. 

 

When a single cylinder is placed on the gel surface, it deforms the interface locally. 

When another cylinder is placed within 5-8mm from the first one, they attract towards 

each other until they coalesce (Appendix, Movie 1) as shown in Figure 7.1A. The 

interface was filmed with a CCD (charge coupled device) camera (MTI-72) that was 

equipped with a variable focal length microscope (Infinity), and the images analyzed 
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using ImageJ to yield the surface of the gel (h)  as  a  function  of the  edge to edge 

separation distance  (  )  between  them, as shown in Figure 7.2C (inset). In Figure 

7.1B-C, we see that when there are more number of cylinders, they may undergo either 

complete or arrested coalescence (Appendix, Movies 2 and 3). In the experiments 

involving two or more cylinders, care was taken to keep them as parallel as possible. 

Figure 7.1: (A) Two cylinders placed parallel to each other on a soft gel (=18 Pa) 
move towards each other and eventually coalesce.  (B) If the distance between the 
cylinders is large enough, we also see elastically arrested configurations as well. (C) A 
similar self-organized pattern to (A) arises for this initial configuration after sufficient 
time. The time stamps in the second and third images in the panel in C) are relative to 
the panel’s first image. 
 
To understand these results, we first consider the interaction of a slightly heavy cylinder 

of radius R with a soft gel of shear modulus µ. Assuming  that the  deformations  of the  

relatively  incompressible  gel are small and  of order  h in the  vertical  direction,  the  

elastic energy of deformation of the medium  per unit  depth  scales as 22  where 

the strain Rh /~ , and   is a characteristic horizontal scale over which the 

deformations decay.  The gravitational energy of the deformed gel per unit depth scales 

as 2gh , where ∆ρ is the density difference between the cylinder and the gel. 
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Balancing these energies yields the characteristic scale  /~ 2gRh   over which 

deformations decay in the horizontal scale17,18. 

 

 

7.3. Theory.  

 A more formal analysis may be carried out by considering the total energy per unit 

width of the system, composed of the sum of the gravitational potential and elastic 

energy: 
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Where the free surface displacement is )(x , the surface tension is T, and the vector of 

displacement fields in the incompressible solid of modulus   is given by 

)),(),,(( zxwzxu , with )()0,( xxw  . Using a separable potential of the form 

)()(),( zxzx    to characterize the deformations with 
zu   and 

xw  , we see  

that the incompressibility condition 0 zx wu  is automatically satisfied. Then, (7.1) 

may be rewritten as:  
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Functional minimization of U with respect to   along with the zero shear stress 

condition on the free surface ( 0)0()()()0(   xx xxzz
) leads to the following Euler-

Lagrange equation:  
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For the case when the shear modulus vanishes, so that 0 , the surface profile is 

controlled by the balance between tension and gravity, and we find that ,0

xe    

 

Figure 7.2: (A) A schematic illustrating the numerical model.  (B) The deformed profile 

of the surface of a gel for a single cylinder.  The red open circles show the experimental 

points and the black line are obtained from simulation. Both fit an exponential function 

)/exp()0()(0 co Lxx   , with Lc = 7.23 (simulation) and 2.25 mm (experiment).  (C) 

The settling depth of the cylinders )()0(0 o   scaled with their initial depth )0(h  is 

plotted as a function of the non-dimensional distance of separation 
cL/ where Lc is the 

effective decay length of elastic deformations. The open symbols represent the data 

obtained from three different experiments. The black line shows the results of the 

numerical simulations of the equations of motion (7.4-7.6) with parameter values R = 

3, K = 2000, ρ = 0.35 with τ = 14.59. (Inset: Schematic of two cylinders approaching 

each other on the surface of a gel with appropriate notation used in the text) (D) The 

dynamics of attraction of two cylinders showing an exponential collapse (see text for 

details). The open symbols represent the experimental data. The red line is obtained 

from simulations. The black line corresponds to a linear fit of the experimental data. 
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and thus xe   )0( with a decay length: gT  1 . In the case when the tension 

vanishes so that T=0, the surface profile is controlled simply by the balance between 

gravity and elasticity, and the surface profile is of the form xe   )0( , where 

2/1
0

22 /)0(2











  

dzg   with  g  /~1   being the decay length (we note that   

in this case the integrals of   and its derivatives are all bounded).  This implies that 

the descent of the cylinder can be expressed as  2gRo  , which agrees with the 

scaling ansatz discussed previously.  We emphasize that the functional minimization of  

U  has been carried out in the absence of the constraint: 0



dx . Consideration of 

this condition in the constrained functional minimization only requires that all the 

measurements of 0 need to be performed relative to the plateauing surface of the gel 

in the deformed state. The energetics remain unaltered; thus the final result of equation 

7.3 remains the same. 

 

7.4. Simulation.  

To verify our scaling and analytic estimates, we now simulate numerically the 

interaction of the cylinders on a soft gel.  Small particles are used to model the gel and 

large particles are used to model the cylinders that interact with the gel19-20, as shown 

in the Figure 7.2A.  The equations of motion for the discretized gel are given by,  
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Where  we use a modified  Lennard -Jones  potential, that uses  springs  for  short  range  

repulsion, and the viscosity b = 10 to eliminate any oscillations. The large particles 

representing the cylinders had the same equations of motion with the inclusion of a 

gravity term, 
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With R = 3, g = 9.81, ρ =.35. The equations (7.4-7.6) were numerically integrated using 

a leap-frog- integration scheme with a time step of ∆t = 0.01, with the gel domain [0, 

100] × [0, 40]. 

 

The results of our simulations confirmed the experimental observation that the profile 

of the deformed surface of the gel is indeed exponential with respect to  , i.e  

)/exp()0()(0 co L   , as shown in Figure 7.2B, upto a simple rescaling of 
cL , and 

show that the omission of a logarithmic correction )/ln(~)(0 cL  due to the classical 

Boussinesq stress field due to a line force exerted by the cylinder is justified. 

Simulations reproduced the general features of the attraction of two cylinders on a gel 

(Appendix, Movie 4) in that the experimental and theoretical results of the energy of 
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two cylinders plotted as   )0(/)()0( hoo     versus cL/  exhibit excellent agreement 

with each other  (Figure 7.2C).  Since the attractive energy of two parallel cylinders is 

exponential in  , the resulting force is also exponential. Assuming the friction between 

the cylinder and gel to be a linear function of their relative velocities, we can write: 

dtdU  ~ ,   being the coefficient of kinematic friction. Integration of the 

preceding equation leads to    tLLgRee c

LL cc 2

0

2//
)0(~   , where 

  is the 

initial distance of separation between the two cylinders. Plots of  cc LL
ee

// 
  versus 

t shown in Figure 7.2D confirms the agreement between experiment and theory once 

the differences in kinematic friction are taken into account.  

 

 

Figure 7.3: The space time dynamics of coalescence of five cylinders.  The variable i 

represents the index of the cylinder and is used to eliminate the space between cylinders 

in contact. These simulations solve the equations of motion given in (7.4-7.6), with the 

parameter values R = 3, K = 500, ρ = 0.25, yielding Lc = 10.03. The dynamics 

qualitatively capture the experimental scenario shown in Figure 7.1, wherein the 

cylinders aggregate in pairs before slowing down and coalescing together. 
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Finally, in Figure 7.3, we show the space-time plot of the coalescence of five cylinders 

as obtained from a numerical simulation, where we see that the rate of coalescence 

changes as the cylinders form pairs and then triplets, qualitatively consistent with our 

experimental observations (Figure 7.1B-C). 

 

7.5. Conclusion.  

Our study has uncovered the profile of the deformed gel around a single cylinder as a 

simple exponential that is consistent with a simple theory and corroborated by 

simulations, in which the  gel was modelled as a network of beads connected and 

strings. When multiple cylinders are placed on the surface, they assemble to form 

smaller clusters that eventually aggregate to form one large cluster (Appendix, Movies 

5 and 6), but also may be arrested elastically at times. Our elastic analog of the classical 

capillary attraction of particles at fluid interfaces opens a plethora of possibilities to be 

explored that are equally rich and perhaps more interesting, as elasticity provides an 

additional controllable degree of freedom.      

      

A. Six movies. Available on http://iopscience.iop.org/0295-5075/112/5/54001/media. 

Movie 1: Coalescence of two rigid cylinders on gel (= 18 Pa) (experiment). 

Movie 2: Arrested coalescence of multiple cylinders (experiment). 

Movie 3: Complete coalescence of multiple cylinders (experiment). 

Movie 4: Coalescence of two cylinders on gel (simulation). 

Movie 5: Arrested coalescence of multiple cylinders (simulation). 

Movie 6: Complete coalescence of multiple cylinders (simulation). 
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Chapter 8 

Attraction of Meso-Scale Objects on the Surface 

of a Thin Elastic Film Supported on a Liquida

 

 

8.1.  Introduction 

Interaction of particles on the surface of a liquid mediated by the joint effects of 

capillarity and gravity is a well-studied problem1-6. Elasticity mediated interactions of 

molecules and particles on a thin film or a solid surface has also been discussed 

extensively in the literature7-11.  The ability to manipulate the properties of soft 

materials has opened up new experimental and theoretical studies in this subject in 

recent years involving liquid crystals12-15 and gels16-17. We recently reported16,17 

interactions of different types of solid beads in an ultra-soft gel as a function of latter’s 

elasticity (shear modulus ).  If the density of the bead (b) is much larger than that of 

the gel (g) and if its size (radius R) is significant, it plunges inside the gel and becomes 

neutrally buoyant due to elastic deformation forces in the gel. While still submerged, 

the beads, however, attract each other due to the combined effects of elastic and the 

surface forces of the gel16.  On the other hand, if its density is not significantly larger 

than the gel, the beads float on its surface again mainly by the force due to elastic 

deformation of the gel but attract17 each other somewhat like the hydrophobic particles 

                                                           
a Reprinted with permission from [Chakrabarti, A. and Chaudhury, M.K. Langmuir 2015, 31, 1911-

1920]. Copyright © 2015 American Chemical Society. 
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do on the surface of an ordinary liquid1-6.  Whether the bead will sink in the gel or float 

on it can be discerned on the basis of a dimensionless number  

[    /RgEBo gb  , g being the acceleration due to gravity] – an elastic Bond number 

-- in analogy to the classical Bond number, a large value of which indicates sinking, 

while a low value implies floatation.  While studying the interactions of particles in a 

gel is both interesting and useful, analyses of these interactions are somewhat 

complicated because of various non-linear effects intrinsic to the gel and the 

phenomena involved, the full understanding of which requires a 3d analysis of the non-

linear field equations describing the deformation of the gel. A model system that 

simplifies the role of elasticity in particle interactions is a two dimensional elastic 

membrane that undergoes large deformation under stretching. The situation can be 

simplified further by studying interactions of two parallel cylinders, which, is ideally a 

2d problem.  These studies are also valuable in the context of understanding the 

elasticity mediated interaction of particles that is generic to various phenomena 

involving  biomolecules on a cell membrane.8-9  Here we report interactions of particles 

on a thin elastomeric film that is supported on the surface of an incompressible liquid. 

The advantage of this system is that the role of the thin film can be studied explicitly 

while the hydrostatic pressure in the liquid tempers the length scale over which 

interaction prevails. Superficially, the elastic Bond number [   TgREBo lb /2  , l 

being the density of the supporting liquid], in this case, resembles the classical Bond 

number, except that the film tension (T) here is composed of the surface free energies 

() of the air-film and film-liquid interfaces as well as an elastic tension TE. 

Furthermore, as there is no pre-existing tension in the film, the elastic tension here is 

encumbered by the strain in the film induced by its stretching imposed by the weights 
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of the cylinders.  Nevertheless, by varying the value of TE , the magnitude of the vertical  

penetration of the cylinder in the liquid while still floating the membrane and the range 

of interaction can be easily controlled. 

The main experiment involves the interactions of two parallel cylinders on the surface 

of a thin elastomeric (polydimethyl siloxane) film supported on the surface of a mixture 

of glycerol and water. As mentioned above, we chose cylinders as opposed to spheres 

mainly because of the simplicity of data analysis, in that energy minimization in 2d 

suffices to capture the main physics of such interactions. Because of the excess elasto-

capillary field energy on the surface of the film, the cylinders roll towards each other 

and come into close contact. At this juncture, we point out that these types of 

experiments are not easy to perform on a liquid surface as such a parallel configuration 

is intrinsically unstable; thereby the cylinders approach each other displaying various 

metastable configurations with a non-parallel geometry2.  In the case with solid 

cylinders on an elastic film, the sliding friction at the interface stabilizes their parallel 

configuration from a modest distance all the way to contact.  These interactions are the 

combined effects of elasticity and gravity. As the elastic strain energy of the deformed 

film is released, the cylinders descend further in the liquid while still supported by the 

elastic film. Estimation of the change in the gravitational potential energy, therefore, 

provides a first order estimate of the energy of interaction of the cylinders as we have 

also shown recently with various particles interacting in a gel. During the course of the 

analysis of the data, we noted that the experimentally observed energy of interaction is 

somewhat smaller than that predicted theoretically. We argue that the discrepancy is 

related to the hysteresis of adhesion18,19 between the cylinder and the elastic film. As a 

cylinder rolls, its leading edge makes new contact with the film, whereas the contact is 

broken at its rear edge. Due to the difference of these two adhesion energies, some of 
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the elastic field energy released from the intervening region of the cylinders is used up 

in further stretching the film behind the cylinders. A simple experiment in which a 

cylinder was forced to roll on the surface of the elastic film provided ample evidence 

that the role of adhesion hysteresis cannot be ignored. If this frictional resistance is 

reduced by supporting a layer of an ultra-soft hydrogel on the surface of the elastic film, 

cylinders as well as spherical beads attract each other from a much larger distance than 

what is observed with an elastic film alone.  

 

8.2.  Results and Discussion. 

8.2.1. Estimation of Energy of Attraction Using Gravity. Both the stability of the 

cylinders in the vertical direction as well as their mutual attraction are the results of the 

balance of the elastic stretching energy of the film, and the gravitational potential 

energies of the deformed liquid as well as that of the cylinder itself. For the case of a 

single cylinder, the profile of the deformed surface can be obtained from the usual 

minimization of a functional comprising of the gravitational potential energy of the 

liquid and the stretching energy of the film (see the appendix for a detailed discussion 

of equation 8.1):  

                   dxT
L

dxg
L

U x  22

1
22

                                            (8.1) 

Where,  ))(( x  is the deformation of the surface measured from the far field 

undisturbed surface of the film,  is the density of the liquid, g is the acceleration due 

to gravity and T is the tension in the film. A clarification of equation 8.1 is waranted 

here. Equation 8.1 is what one would expect for a deformed liquid surface as the surface 

of the liquid has a surface free energy that increases with the curvature of the surface. 
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However, for the elastic film considered here, it has no excess free energy in the 

unstretched state in the absence of a pre-stress. We confirmed that the pre-stress in the 

film is negligible from a simple obervation in which a small hole is created at the center 

of the film with a sharp needle. If there is a substantial pre-tension, one would expect 

the hole to grow. We, however, observed that the punctured hole either does not grow 

or grows by such a small amount that it is inconceivable that any substantial pre-tension 

exists in the films. The justification of using a linear model for elastic modulus is based 

on the experimental observation that the profile of the membrane on both sides of the 

cylinders decay exponentially and that in between them it decays following a cosine 

hyperbolic function (see below).   

A minimization of the energy functional ]0/..[ 1 Uei  leads to the familiar3 

differential equation of capillarity,  ].[ 2 xxei , the solution of which leads to an 

exponential variation of surface deformation  xe   0
with a decay length   

gT  1  . The exponential solution ensures that   vanishes far field with its 

maximum value 
o  at x =0. The experimental measurement of the deformed surface 

profile in conjunction with the preceding expression for    can be used to estimate the 

decay length  1 . The differential equation needed to estimate the surface profile20,21 

of the film that undergoes both bending and stretching would be: 0  pgTD xxxxxx  

(D being the bending constant), which has a periodic solution with an exponential decay 

when bending dominates. A scaling analysis leads to the ratio of the bending and the 

stretching terms in the above equation as 2))(1(  H  , where H is the thickness of the 

film (<10 m), 1  (~1 cm) is the relevant lateral length scale (the decay length: see 

below) and    (~10-1) is the strain in the membrane due to the stretching induced by the 
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weight of the cylinder. Using the above parameters, the ratio of the bending to 

stretching terms is on the order of 10-5 ; thus, the bending term is negligible as compared 

to the stretching of the elastomeric membrane.  Its neglect is also justified on the basis 

of the observation that the interface profile is only exponential in x within an 

observation window of about 5 cm; no oscillatory profile was visible in the region 

where membrane undergoes out of plane stretching.   

In order to estimate the energy of interaction of the parallel cylinders, we need to 

consider their potential energies  in addition to the stretching energy of the film as well 

as  the gravitational free energy of the liquid in the region intervening the cylinders and 

beyond. The total excess energy 
TU   then becomes:  
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dxTdxgLghmU xxT       (8.2) 

 

Where,   represents the separation distance between the lines where the film meet the 

cylinders and h represents the depth of immersion of the base of the cylinder measured 

from the far away undeformed surface of the film (Figure 8.5 a).  The minimizations of 

the above energy functional  with respect to   and   '   lead to two differential 

equations, the  subsequent solutions of which lead to exponential profiles of the film 

beyond the intervening space, but has a solution of the type shown in equation (8.3) in 

the space  intervening the cylinders: 

)2/cosh(

)cosh(
'' 0






x
                                              (8.3) 

Using these surface profiles and taking the depth h to be nearly equal to the 
o  (based 

on experimental observations) , equation (8.2) can be integrated to obtain the following 

result:  
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The stability condition 0/ 0  U , furthermore,  leads to: 
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Substitution of the above expression in 
TU , and appropriate algebraic manipulations 

yield the following result: 

0

* gmUT                                                           (8.6) 

Equation 8.6 is a form of 
TU    that can be estimated from the change in the gravitational 

potential energy of a single cylinder in which  
o  depends implicitly on the distance 

of separation  , which can also be expressed explicitly as a function of    using 

equation 8.5. Combining these two forms of the energy, we obtain the following 

equation:  

)sinh()2(cosh2

)sinh()(
2 
















h

hh
                                  (8.7) 

 

Since there is not much of a difference in the experimentally measured values of 0  

and h , we express the net change in energy with respect to the final energy in terms of 

h as it is more convenient to measure the depth of submersion of the cylinder from the 

images. h∞ is the final depth of submersion when the cylinders make contact. Thus, 

from the vertical descents of the cylinders alone, it is possible to estimate the form of 

the attractive energy of the cylinders as a function of their distance of separation.   
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8.2.2.  Thin Elastic Films Supported on a Pool of Liquid. Thin elastomeric films 

were prepared by depositing drops of a (1:1) mixture of Sylgard 184 and Sylgard 186 

(Dow Corning®) on the surface of a (1:1) Glycerol-Water solution that pre-filled part 

of a petri dish. Such a composite elastomer possesses high tear strength with an elastic 

modulus ~ 1MPa. Thus, it is quite durable and withstands the weights (1.2 gm) of the 

steel cylinders placed above it. The choice of liquid was made on the basis of certain 

complementary properties it affords. For example, its dispersion component (29 mN/m) 

of the surface tension being higher than that of PDMS (22 mN/m) allows uniform 

spreading of the drops of PDMS on its surface without undergoing dewetting that could 

happen on the surface of pure water. Furthermore, its moderate viscosity (6 cP, 20°C)22 

ensures that the film remains reasonably undisturbed while handling and transporting 

the samples from one location to another. The uniform interference colors observed on 

the surfaces of the cured elastic films are indicative of the fact that uniform films of 

PDMS can be successfully prepared using the mixture of sylgard 184 and sylgard 186 

on the water-glycerol solution.  

 

8.2.3. Estimation of the Decay Length ( 

Our main experiment was to study the distance dependent attraction of two solid 

cylinders on the surfaces of the thin elastic films with their long axes parallel to each 

other and to analyze the data in view of the equation (8.7) proposed as above. These 

experiments were performed with steel cylinders on the surface of PDMS films of  

different thicknesses, hence with different tensions. In order to study the universal 

behavior of these attraction, the non-dimensional descents of the cylinder (LHS of 

equation 8.7) were plotted in terms of a non-dimensional distance of separation (  ).  
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Our first task, therefore, was to estimate 1  as a function of film thickness, which we 

accomplished in two different ways and selected the more reliable  method of 

estimating the same based on the criteria discussed below.  

 

A. Estimation of the Decay Length from the Side-View.  

A cylinder was placed  on the elastic film parallel to the edge of a square petri dish 

containing the solution of water and glycerol that supported the film. Image of the side 

view of the deformed profile was captured by placing the axis of microscope (equipped 

with a CCD camera) parallel to that of the cylinder, which were then analysed in ImageJ 

and fitted with an exponential equation of the form:   

)1()( 00

xe                                      (8.8) 

All the analyses were performed with an Originlab software, by setting the point where 

the film meets the cylinder as a reference. The decay length 1  for each film could thus 

be obtained from the fitted profile directly. The decay length  could also be estimated 

from the deformed profile of the elastomeric film in between the parallel cylinders 

floating on an elastic film in view of equation 8.3. While both these methods yielded 

similar values of , there are concerns that these values could be somewhat obscured 

by the folding and wrinkling instabilities (Figure 8.1) that ensue near the edges of the 

cylinders (somewhat similar to what happens with a drop liquid on a floating elastic 

film23 ), which is the region that is captured by the  optical method used here. We thus 

opted for another direct method of estimating  from the deformed profile of the film 

near the mid-section of the cylinder as discussed below.  
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B. Estimation of the Decay Length from the Mid-Section of the Surface Profile.  

In order to visualize the profile of the surface near the mid-section of the cylinder, we 

deposited a thin line of ink on the film spanning across a square petri dish prior to 

placing a cylinder upon 

 
 

Figure 8.1: Plan view of the folding and wrinkling instabilities at the end of a cylinder 

placed on an elastic film (3.3 m thick)  supported on a pool of a water-glycerol 

solution. The wire mesh lined with the base of the petri dish containing the sample 

shows the deformations in the film surface.  

 

 
Figure 8.2. (A) The ink line (as shown by the arrow) follows the deformation of the 

surface of a 7.2 micron thick elastic film supported on the glycerol-water solution when 

a steel cylinder (diameter 1/8”) is placed upon it. (B) The deformed profiles analysed 

from images of two different elastic films (1.8 m and 12.1 m) and the values of 1  
obtained from the analysis of the data using equation 8.8 are 2.7 mm and 5.9 mm 

respectively. (C) A typical snapshot of the intermediate profile between two steel 

cylinders on a 6.2 micron thick film. (D) Intermediate profile between two steel 

cylinders resting on a 5.7 micron film ( having an initial separation distance of 17 mm) 

fitted with equation 8.3 to obtain the decay length (5.6 mm).  
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it. (Figure 8.2 a) After gently placing a cylinder on the surface of the film perpendicular 

to the ink line, its deformation was captured with a camera. The deformed profile from 

the image was then analysed using ImageJ and fitted with equation 8.8 to obtain the 

decay length 1  of the film. (Figure 8.2 b). 

 

C. Analysis of Data by Contrasting the Two Approaches:  

The values of 
1  as a function of the thicknesses of the PDMS films obtained from the 

above two methods fortunately do not differ in a significant way although a slight 

difference was observed as noted below. If the surface tension of the solid contributes 

to the total tension of the film, T should be expressed as  ETT , where elastic 

tension ),,(~ HEfTE  , E being its elastic Young’s modulus,   is the strain in the 

film and H is its thickness (see appendix). As the decay length is given by 

gTE  )(1 
 , we plot the experimental values of 2 as a function of H  and 

found an empirical systematic linear relationship (figure 8.3). Thus the extrapolated 

value for H=0 should provide an approximate estimate of the surface tension of the 

solid film, which is contributed by the free surface of the film and that of the film-

solution interface. While the decay lengths were measured for a range of elastic film 

thicknesses, the data were well-behaved (i.e. 2  is fairly linear with H)  for films of 

thickness less than 15 m.  For films thicker than  15 m, some wrinkling was observed 

underneath the cylinder along its length of contact that was not evident in the thinner 

films. Since these wrinklings use up some of the available energy, the decay length is 

somewhat underestimated that introduces uncertainity in quantitative analysis of the 

attractions of the cylinders on such thicker films.  We thus avoided using such thick 
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films for additional measurements and analysis in the current study.  At a 95% 

Confidence Limit, the surface tension   is found to be about 297   mN/m from the 

data obtained from the side view of the profiles and about 2756  mN/m with the profile 

obtained from  the mid section of the cylinder.  Although both the methods yield large 

uncertainity of estimating , the latter method, at least, yields a positive mean value of 

the surface tension of the solid. Based on the above observations and due to the 

possibility of 1  measured from the side view being somewhat obscured by the folding 

and wrinking of the film around the edges,  we relied on its value obtained from the 

profile near the mid-section of the cylinder. 

 
Figure 8.3: Squared values of the decay length 1  are plotted as a function of the film 

thickness H. The red open circles represent the data obtained from the profile of the 

deformed line of ink as discussed in section 8.2.3 B. (Inset) The purple open diamonds 

represent the decay lengths measured from the side view of the deformed profile as 

discussed in section 8.2.3 A. The scales of the X and Y axes in the inset graph are same 

as those of the main plot. 

 

 

8.2.4. Estimation of Elastic Modulus of the Film.  

In order to ascertain that the thin films have been adequately crosslinked on the surface 

of the water-glycerol solution, we estimated its elastic modulus. For a quick estimation 

of the elastic modulus, we induced buckling by compressing a section of the film by 

bringing in closely the edges of two glass slides gently touching a section of the film 
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resting on the pool of a liquid. The Young’s modulus E of the film was estimated from 

its bending modulus [ )1(12/ 23  EhD ], which is related to the buckling wavelength 

() as20,21  4
2/ gD  . While the Young’s modulus of the PDMS films was in the 

range of  1-2 MPa, the method was suitable only for thinner films (4-10 m). It was 

rather difficult to generate uniform buckles perperndicular to the edges of the glass that 

made it difficult to measure the wavelength accurately and hence the method was 

unsuitable for the thicker films. Since our main purpose was to determine if all the films 

had the same elastic modulus, we opted for a different technique to test the same by 

deforming the films by a  thin plate as described below.  

In this method, a thin plate (Cover Glass Slide, 0.18mm, 24 mm x 50mm ) was pushed 

into the film vertically and the force of penetration was measured as a function of the 

displacement of the edge of the plate (figure 8.4 a). Modification of equation (8.1) by 

considering the energy due to the profiles on either side of the plate yields the total 

gravitational and elastic energies of the liquid and the elastic film as 
12 2UU  . The 

force per unit width of the glass cover slip (F/L)  can be obtained as 
02  UF . 

Using the method described in the appendix, we obtain two expressions (under two 

different assumptions) for the pushing force F as a function of the depth of penetration

0  as: 

2/3

0

4143 )()(3.1  EHgLF                              (8.9A) 

                                                      34

0

3132 )()(1.1  EHgLF                             (8.9B) 

The results summarized in figure 8.4 b show that F/L is slightly super-linear with 

respect to 
o  with a power law exponent close to 1.3, which is closer to the prediction 

of equation 8.9B. Using a value of E=1.2 MPa, which is the modulus expected24 of a 
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composite film of sylgard 184 and 186, a plot of LF /  against 2/3

0

4143 )()(  EHg  for 

seven different elastic films (1.8 m to 14.4 m) yields a slope of 02.058.1  , which is 

close to the theoretically predicted value 1.3 (equation 8.9a).  

 
Figure 8.4: (A) Schematic of a thin cover glass (width L= 50mm) indenting the surface 

of the composite elastic film of Sylgard 184 and 186 due to a vertically applied force 

F. The indentation depth 0  increases slightly super-linearly with F (not shown here) 

(B) The force per unit width of the glass plate F/L increases super- linearly with 
0

  with 

an exponent close to 1.3. Here data are shown for three representative film (1.8, 6.2, 

14.4m). (C) LF /  is plotted against 2/3

0

4143 )()(  EHg  (equation 8.9a) for seven 

different elastic films (1.8 m to 14.4 m) (D) LF /  is plotted against 34

0

3132 )()(  EHg  

(equation 8.9b) for the same films as above.  

 

On the other hand,  a plot of LF /  against  34

0

3132 )()(  EHg  for the same films yields 

a slope of 01.003.1  , which, in fact is in much better agreement with the theoretically 

predicted value of 1.1 (equation 8.9b) than that of the previous plot. The excellent 

collapse of the load-displacement data, nevertheless, suggests that all the elastic films 

have very similar Young’s modulus. 
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8.2.5. Attraction of Cylinders on Thin Elastic Films. We studied the attraction of 

two identical cylinders on three  PDMS films of thickness ranging from 5.7 m to 12.6 

m while they rolled and made final contact in perfect alignment on the film (Figures 

8.5 a-b ). The force of attraction between the cylinders increases as their separation 

distance decreases with concomittant descent of the cylinders in the liquid while still 

floating atop the film. The results obtained from three different sets of experiments were 

compared by plotting the normalized descent of the cylinder h/h∞  against the 

normalized separation distance  . The 1  values (4.3 mm, 5.5 mm and 6 mm 

respectively) used for these analyses were obtained from the experiments described in 

section 2.3 C. Although an excellent collapse of the data was obtained for  three 

different films with each experiment repeated 5 times,  the magnitude of the attraction 

energy is lower than that predicted by equation 8.7. We discuss the possible origin of 

this discrepancy in the following section.  

At this juncture, we point out that we estimated the gravitational potential energy of the 

cylinders with the depth h estimated from its base from the undeformed surface of the 

elastic film (figure 8.5a), whereas 0  is the distance of the contact line where the film 

meets the cylinder from the undeformed surface. The  separation distance between the 

contact lines of the two cylinders is only slightly greater than that of the contact edges. 

Fortunately, the errors associated with these approximations are rather small and thus 

shifting (Figure 8.5 c) all the minimum values of    to zero introduces negligible error 

in the estimation of the net attraction energy.  
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Figure 8.5: (A) Schematic of the side view for the attraction of two PDMS coated steel 

cylinders on the surface of an elastic film (PDMS 1:1 Sylgard 184 and 186) supported 

on glycerol-water solution in a polystyrene petri dish. (B) Plan view of the attraction of 

two steel cylinders from an intermediate separation distance ( 5 mm) to final contact 

preserving parallel alignment. The wire mesh lined with the base of the petri dish shows 

the deformation field of the film. (C) This graph summarizes the non-dimensional 

descents of the cylinders h/h∞ as a function of the non-dimensional distance of 

separation  . The red curve shows the theoretically predicted (Equation 8.7) energy 

of attraction in an ideal situation without adhesion hysteresis. The experimental data 

for the attraction of two cylinders on three different films (5.7, 10.4 and 12.6 m) show 

a good collapse but being much lower in magnitude than that predicted from theory. 

The theoretical black curve accounts for the role of adhesion hysteresis (Equation 8.12).  

 

 

8.2.6.  Role of Adhesion Hysteresis 

Equation 8.7 is applicable when the cylinders roll freely from a pre-determined distance 

on the elastic film till the final contact is established. However, rolling hardly occurs 

freely on any surface. Rolling of a cylinder on a surface can be viewed as the 

propagation of two cracks, one in the front and the other at its rear edge18, 19. The energy 

to break contact is usually somewhat higher than the energy gained in making contact. 

Thus, not all of the available energy of attraction is converted to the gravitational 

potential energy of the cylinders -- some of the energy is stored in stretching the film 

behind the cylinders. In the absence of a detailed model, we assume that this additional 

energy is proportional to the square of the descents of the cylinders from the starting 

position (third term on the RHS in equation 8.10): 
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Using the stability condition 0/ 0

*  U , we obtain an expression for 
o as a function 

of  :  
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At this point, we again replace 
o with )(h  and 

1o with h0 as the depth of 

submersion (h) of the cylinders into the film for the reasons already discussed above. 

Evaluation of C from equation 8.11 yields a modified form of equation 8.7 that takes 

into account the role of adhesion hysteresis, where all the parameters can be estimated 

experimentally as shown below: 

 

 
)sinh()2(cosh

)sinh()(

2

0

*
































hhL

mh

hh
                            (8.12) 

 

8.2.7.  Analysis of the Energetics of Attraction 

It is evident in figure 8.5 c that equation 8.7 over-predicts the descents of the cylinders 

as a function of the separation distance than what is observed experimentally. When the 

denominator of equation 8.12 is calculated with the corresponding value of 

  0

* hhLm  , the corrected values of the descents of the cylinders are in excellent 

agreement with those observed experimentally. 

Based on the above discrepancy between the experimental results and theoretical 

predictions of the descends of the cylinders, it is possible to make an approximate 

estimate of the magnitude of adhesion hysteresis as follows. The main difference comes 
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from the theoretical value of 5.0)( 0   hhh  without adhesion hysteresis and that [

25.0')'( 0   hhh ] with adhesion hysteresis. The adhesion hysteresis W (energy/area) 

is the difference in the energies of adhesion in opening a crack at the trailing edge and 

closing a crack at the advancing edge of the rolling cylinder. For a cylinder of length L 

(19 mm) rolling over a distance    (8 mm), the energy due to adhesion hysteresis can 

be represented as: )'()( *

  hhgmLW  . From the experimentally estimated 

value of  )'(   hh , the adhesion hysteresis W is estimated to be about 135 mJ/m2, 

which we now compare with that obtained from the forced rolling of a cylinder on the 

surface of a PDMS film.  

 

8.2.8. Adhesion Hysteresis From Forced Rolling 

We confirmed the presence of adhesion hysteresis at the interface of the steel cylinder 

and a PDMS film as follows. After placing a  PDMS coated cylinder on the elastic film 

it was pushed by one end of a  tungsten wire spring. As the stage containing the cylinder 

translated quasi-statically, the cylinder deflected the spring as it rolled on the PDMS 

film (Figure 8.6). Three different elastic films (7, 11, 16 m) were used to perform 

these experiments. By knowing the spring constant of the wire, the adhesion hysteresis 

( LFW / ) was estimated18,19 from the deflection of the spring at the onset of rolling 

that yielded a value close to 100 mJ/m2 for all the films, which agrees well with the 

value (135 mJ/m2) reported in section 2.7 above.  

 

8.2.9. Attraction of Cylinders on a Hydrogel Coated Elastic Film. In view of the 

previous observations, it is transparent that rolling friction impedes the attraction of 

cylinders beyond only about 3-4 times its diameter.  We hypothesized that the cylinders 
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could attract from a much larger separation distance taking lesser amount of time than 

what is observed with a bare  

 
Figure 8.6: Displacement of the end of a tungsten spring wire caused  by the rolling of 

a cylinder on the surface of a 11.2 m elastic film supported on glycerol water solution. 

Image (A) shows when the wire just touches the cylinder and image (B) shows the 

maximum deflection the wire spring as the cylinder continues to roll on the surface.  

 

PDMS film if the impeding friction is reduced or eliminated. In order to test this 

hypothesis, we designed an experiment in which a thin uniform layer of a low modulus 

(~ 10 Pa) hydrogel (1.5mm thick) was cross-linked above the thin PDMS film so that 

the deformation of the PDMS/Gel composite layer provides the energy of attraction, 

whereas the low friction hydrogel affords this attraction to commence from a large 

distance (Figure 8.7 a). What we observe on the surfaces of these supported gel films 

is the  steel cylinders (as well as steel spheres) attract from an initial separation distance 

of about 6 times the diameter of the particles (Figure 8.7 b-c), that is almost more than 

double of what is  observed with the cylinders on the bare elastic films. Because of the 

low friction of the hydrogel film, the cylinders occasionally attain intermediate non-

parallel configurations that is similar to that observed with the cylinders on the surface 

of a liquid2. When several particles are released on such a surface, they formed clusters 

(figure 8.8).  

In order to prove that the long range attraction observed with the hydrogel-PDMS film 

composite is indeed due to their complementary properties, we performed a control 

experiment in which the cylinders were placed in close proximity on the surface of a 

5mm

BA
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thin hydrogel film cured against a rigid substrate (glass plate or flat base petri dish). 

Here, either no visible interaction, or sometimes a very weak attraction, was observed 

between the cylinders or particles, thus suggesting that the long range attraction 

observed on the composite of the hydrogel and PDMS film is unique. A more detailed 

study of the interaction of particles on thin hydrogel film on a rigid substrate is reserved 

for a future in-depth study as the shear deformation in such thin films could give rise to 

new length scales of attraction and repulsion of particles on its surface.  

 

8.2.10.  Role of Instability on the Hydrogel Coated Elastic Film. Soon after the 

hydrogel films are deposited on the PDMS film, it remained smooth. However, with 

time, morphological instabilities develop on the surface of the hydrogel (Figure 8.9 a) 

that leads to a rough energy terrain with intermittent barriers. When particles are 

deposited on such a surface they do not necessarily move in straight path; instead they 

follow corrugated (minimum energy) paths guided by the folds on the surface. 

Occasionally, the particles get pinned on such a surface at local energy minima, which 

prevents them from attracting from even a very small separation distance. When many 

particles are released on such a surface, they formed clusters (Figure 8.9b) around the 

edges of the folded structures, which are reminiscent (in a microscopic sense) of the 

assembly of particles along the defects of liquid crystals.15 
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Figure 8.7: (A) Schematic of the thin gel layer (1.5 mm thick, 10 Pa shear modulus) 

supported on the elastic film (14.4 m thick) on the pool of liquid. A super-wetting 

silicone surfactant was added to the gel to promote its spreading on the PDMS film  (B) 

Long range attraction of two steel spheres (diameter 3mm) making final contact on the 

surface of the gel layer. (C) Long range attraction of two cylinders (length 1.5”) 

approaching each other in a parallel fashion on the similar gel supported on 19.7 m 

thick elastic film.  

 

 

 

 
Figure 8.8: Assembly of particles via long range attraction on the surface of a thin 

hydrogel layer supported on a 19.7 m elastic film. The steel spheres (diameter 3mm) 

seek the minimum energy state and move towards the gaps crated by the neighboring 

spheres. The white arrows indicate the direction of the movement of the spheres.  
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Figure 8.9: (A) Surface instabilities on the hydrogel layer (1.5mm) supported on a 12.6 

m elastic film guide the corrugated paths of particles (steel sphere, diameter 3mm) as 

indicated by the white arrows, following a minimum energy path. The wire mesh lined 

with the base of the petri dish helps in the visualization of the instabilities. (B) Several 

metastable states as created on a hydrogel layer (1mm) supported on the surface of a 

7.4 m elastic film prevent a global clustering of the  steel spheres even when the 

separation distance is small, even though local aggregation of particles are evident near 

the defects.   

 

 

8.3. Summarizing Main Points 
 

As far as we know, this is the first systematic study of the attraction of two cylinders 

on a surface that preserves its parallel configuration from a modest separation distance 

all the way to contact. This contrasts with what is observed2 with the attraction of 

cylinders on liquid surface, where they attain several intermediate unstable 

configurations before coming into final contact without necessarily preserving a 

parallel configuration. The difference in these two types of behaviors lies in the sliding 

friction between the cylinder and the substrate, a finite value of which stabilizes the 

parallel configuration on the surface of a thin elastomeric film. The results presented 

here demonstrate that a thin PDMS film prepared from the mixtures of Sylgard 184 and 

186 supported on a pool of glycerol-water solution is a viable way to study interaction 

of particles mediated by elastic tension and gravity. The energy analysis demonstrates 

that the energetics of attraction can be adequately quantified by the change in the 

gravitational potential energy resulting from the descents of the cylinders into the liquid 

0 s 3

7 135mm

B

A
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while still floating on the surface. Examination of the profile of the deformed surface 

in the vicinity of the mid-section of the cylinder provides a slightly more reliable 

estimate of the characteristic material length scale gT  1   than that estimated 

from the side view due to the obscurities resulting from folding and wrinkling 

instabilities of the film.  However, the value of the solid surface tension of the film (

2756  mN/m ) obtained from the extrapolation of  1 to zero film thickness is 

unreliable due to large standard deviation. This result, however, contrasts a recent 

report25 where significantly higher values (100 – 200 mN/m) of solid surface tension 

for PDMS was obtained from the  deformations of thin films caused by liquid drops.  

The observations of the exponential profile of the thin film PDMS when deformed by 

a cylinder as well the results of the indentation experiments are all consistent with a 

linear elasticity model. Hence, no attempt was made to invoke a non-linear elasticity 

model in all the subsequent analysis of the data presented in this study.  

Although the change of the gravitational potential energy of the cylinder provides an 

easy option to estimate the energy of attraction of the cylinders, it is found that not all 

of the available energy is converted to the gravitational potential energy. This 

discrepancy can be ascribed reasonably to the hysteresis of adhesion due to rolling of 

the cylinders on the elastic film, which in turn converts some of the energy to stretching 

the film behind the cylinders as they approach each other. This conjecture has been 

supported by both an energy analysis accounting for hysteresis and an experiment that 

provided direct evidence of its presence at the cylinder-film interface. While 

performing the experiments involving the attraction of the cylinders on the elastic film, 

we frequently noticed that when the initial separation distance is much larger than the 

decay length -1, they approach towards each other initially by a slight amount, but then 
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no perceptible movement is observed. This is an evidence of the adhesion hysteresis 

providing a threshold force that prevents the rolling of the cylinders on a thin elastic 

film. Then again, we made some infrequent observations in which the  cylinders 

approach towards each other very slowly over a long time (> 30 min) and come into 

contact starting from a rather large separation distance (~ 1.5 cm) , thus suggesting that 

hysteresis may relax with time. However, a further in-depth study is needed to 

characterize the origin of the hysteresis, as it is not entirely clear, at present, if this 

hysteresis only provides a threshold force or it relaxes with time. In particular, the roles 

of the weak bonds between the cylinder19 and the elastic film or formation of the wetting 

ridges26 at the trailing edge of the cylinders rolling on the film need to be investigated.  

The role of rolling resistance due to adhesion hysteresis, motivated us to carry out a 

new experiment with which to observe what happens when such a frictional resistance 

is eliminated. Indeed, with the deposition of a low friction hydrogel layer atop the thin 

elastomeric film  led to a much longer range attraction of the cylinders (as well as solid 

spheres) than what was observed with the PDMS film alone. We reserve further 

analysis of the distance dependent attraction energy in such a system for future. Such a 

composite film, however, became the ground for more fascinating experiments 

involving the assembly of multiple particles on its surface.  A potentially important 

observation is that morphological instabilities on the hydrogel layer may induce 

creation of metastable states leading to a mechanically tunable rough energy terrain. 

We may expect that more interesting studies could be performed with such a surface 

exhibiting rugged energy landscapes with which to perform mechanical computation of 

the paths that the particles would follow to reach a global energy minimum state.  

The model system in this study and a 2d analysis used to describe the phenomena 

reported in this work are deceptively simple. The real situation is somewhat more 
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complex. For example, surrounding the out-of-plane stretched region brought about by 

the weight of the cylinder lie a region where compressive stress develops in the film. In 

this compressed region, bending of the film also plays a role, which induces wrinkling 

and the folding instabilities that are evident near the two poles of the cylinders (Figure 

8.1).  Even beyond the out-of-plane stretched region that we subscribe as the “active 

zone” lie a region extending all the way to the wall of the container, where the film 

undergoes an in-plane stretching that accommodates the liquid displaced from the out-

of plane stretched zone. While the resulting gravitational head of the liquid near the 

walls may be ignored while accounting for the profile in the out-of-plane stretched 

region, it should play a role in defining the state of the film in the in-plane stressed 

region. Full understanding of the problem, therefore, would require a rigorous analysis 

of the mechanics of thin film (e.g. extending the type of analysis reported in reference 

27) while sacrificing the simplicity used here. Nevertheless, the success of the 

approximate analysis to account for the main observations reported here may be 

motivational in terms of the reasonableness of the approximations that need to be made 

in developing a more rigorous 3d analysis of the problem.  

 

8.4. Conclusion 
 

Our system comprising of a thin elastic film supported on a pool of liquid allows the 

study of interaction of particles on its surface, in which a two dimensional energy 

minimization captures the main underlying physics of the problem. An advantage of 

studying interactions on thin elastic film is that both the strength and the range of 

interactions can be easily controlled by the thickness and the elasticity of the film. The 

work points out the eminent role of adhesion hysteresis between the particle and the 

film that impedes long range attraction to an appreciable degree. This problem can, 
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however, be alleviated by supporting a thin layer hydrogel on the elastic film, where 

the low friction of the hydrogel and  the deformability of the membrane provide 

complementary properties with which a long range attraction can be studied. 

Modification of the property of the hydrogel (including its morphological instability) 

and that of the elastic membrane could vastly extend the range of studies involving 

elasto-capillarity thus enriching the scope of new physics to be discovered.  

 

8.5. Experimental Details 
 

 

8.5.1. Materials.  Stainless steel cylinders (Length ¾”, Diameter 1/8”, Density 

7.8g/cm3) were used for all the experiments in this study that were treated with 

trimethylsiloxy-terminated polydimethylsiloxane (DMS T-22, M.W. 9430; Gelest Inc.) 

for 24 h in the oven followed by an oxygen plasma cleaning for an hour. This is a 

modified method of the treatment explained by Krumpfer et al.28 The contact angle of 

water on such a treated cylinder was found to be around 90°.  Steel balls (E52100 alloy 

steel or SS316, density 7.8g/cm3, McMaster Carr) were used as is. A stainless steel 

(SS316) wire cloth (opening size 0.015 in., wire diameter 0.010 in., McMaster Carr), 

was lined with the base of the glass cell to observe the deformations in the gel as the 

particles interacted for the plan view images of the experiments.  

 

8.5.2. Preparation of the Elastic Film on a Pool of Liquid. A 1:1 solution (density 

 1.13 g/cc, 20°C) of glycerol (Fisher Chemical) and deionized (DI) water was degassed 

for 30 min using a vacuum pump (Welch Duo-Seal, Model no. 1402). Sylgard 184 and 

Sylgard 186 (Dow Corning®) were mixed in 1:1 ratio (the amount of crosslinker added 

to the mixture was 10% of the weight of the base polymer) that was degassed for 10 

min under high vacuum. Such a combination of the polymers was chosen to ensure that 
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the film has a high tear strength as well as a moderately high elastic modulus24. All the 

samples were prepared in square polystyrene petri dishes (VWR, 100mm ×100mm 

×10mm). The petri dishes were filled with the glycerol-water solution to about half of 

their height. Different quantities of the PDMS mixture were gently released on the 

surface of the liquid with the help of micropipettes and the added amount was weighted 

using a sensitive balance. The samples were allowed to stand for 15 min that allowed 

the spreading of the PDMS mixture on the liquid surface following which they were 

carefully placed inside an oven and cured for 90 min at 75° C.  Using the known cross 

sectional area of the dish and the weight of the polymer added, the thicknesses of the 

elastic films (2 - 17 m) were estimated. The cured samples were cooled before using 

them for further experiments. The time duration from the preparation of the samples to 

further experiments was >2 hrs.  For the purpose of plan viewing of the samples, some 

round petri dishes (VWR, 100mm diameter, 10 mm high) containing the samples were 

used occasionally. 

 

8.5.3.  Estimation of the Decay Length (-1). The decay lengths of the different 

thickness elastic films were estimated using two different techniques. In the first 

technique (discussed in Section 2.3 A), a cylinder was placed on the surface of the film 

and the deformed profile was imaged using a microscope (Infinity) equipped with a 

Charge Coupled Device camera (MTI, CCD-72) from the side through the transparent 

wall of the polystyrene petri dish. The calibration factor was obtained from the image 

itself from the known diameter of the cylinder. 

In the second technique (discussed in Section 2.3 B), a linear trace of ink was made by 

a glass slide whose edge was inked with a black water-based marker (Crayola). A 
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cylinder was placed at the centre of the petri dish such that the ink trace was at its mid 

section. The deformed profile of the ink was then imaged using a regular camera 

(Samsung, angle of lens at 75 0 from the horizontal surface of the film)  (figure 8.2 a). 

Prior to performing the final experiments with the elastic films, we verified the 

appropriateness of this method and estimating the appropriate calibration factors by 

taking an image of a graph having an pre-designed exponential profile. On each image, 

a horizontal line was drawn parallel to the undeformed portions of the ink line at the 

two sides of the cylinder. The composite image with the line was then analysed using 

ImageJ where the vertical distance of the deformed ink trace was calculated from this 

horizontal line as a reference. In all experiments, it was ensured that vibration has no 

significant effects in the measurements.   

 

8.5.4. Attraction of Cylinders on the Elastic Film. Experiments involving the 

attraction of cylinders were carried out on three different PDMS films of thicknesses  

5.7 m, 10.4 m and 12.6 m. Two identical PDMS coated stainless steel cylinders 

(Length ¾”, Diameter 1/8”) were placed on the surface of the film such that they were 

in perfect alignment. With the help of two pairs of tweezers, they were then separated 

to a considerable distance (several  times the diameter of the cylinders) and then brought 

back slowly to about 1 cm separation till they started to attract each other. We recorded  

the attraction as the cylinders rolled towards each other and descended in the liquid with 

a CCD camera, MTI CCD-72.  The separation distance between the cylinders and their 

descents ( h, the vertical distance of the base of the cylinder from the undeformed 

surface of the gel) were noted using the ImageJ software.    
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8.5.5.  Adhesion Hysteresis: Rolling of Cylinder on Elastic Film. A cylinder was 

placed on the sample containing the elastic film that was placed on the X-Y manipulator 

stage. A tungsten wire (diameter 0.02”, SPI) of a known spring constant was fixed 

above the cylinder so that it just touched one edge of the cylinder (figure 8.6 a). The 

stage was moved quasistatically so that the cylinder rolled on the elastic film while 

displacing the spring wire laterally. From the maximum deflection of the wire, the 

adhesion hysteresis was estimated using the equation19 LFW /  as shown in section 

2.8. The spring constant of the wire was determined from the deflection of its one end 

by  hanging a known weight from it. The image analysis was performed in ImageJ. 

 

8.5.6.  Hydrogel Coated Elastic Film. In a clean glass jar, N-(hydroxymethyl)-

acrylamide (48% solution in water, Sigma Aldrich) and Deionized water were mixed 

to prepare a 3.2% (w/w) of the monomer in the solution that was followed by purging 

it with ultrapure nitrogen gas for 30 minutes while stirring it constantly. This was 

followed by stirring in 0.25 wt%  Potassium Persulphate (99.99% trace metals basis, 

Sigma Aldrich) for 10 min. Few drops of a surfactant (Q2-5211 Superwetting agent , 

Dow Corning ®) was stirred in following the addition of 0.3 wt%  N,N,N′,N′- 

tetramethylethylenediamine (TEMED, ≥99.5%, purified by redistillation, Sigma 

Aldrich). The surfactant ensured that the gel solution spreaded completely on the 

surface of the PDMS thin film, which afforded preparation of  a thin gel layer.  The 

shear modulus of such a gel is about 10 Pa16. The experiments involving the long-range 

attraction of particles on the Gel/PDMS composite were performed after 1 h of curing 

the gel. Morphological instabilities developed on some of the gels that were allowed to 

stay in the ambient  condition for a much longer time (>2 h). 
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A. Appendix Justification of Equation 8.1 
 

The constancy of the tension of the film is related to the fact that there is no interfacial 

shear stress to balance the gradient of stress along the deformed arc length of the film. 

If a rectangular strip anchored on both ends is depressed in its middle by the weight of 

a cylinder, then the entire film will have uniform tension of magnitude, EHuo/L, where 

uo is the total deformation and L is the total length of the film. In our case, however, 

because of lateral constraints, the film cannot deform all the way to the length scale of 

the container. There will be a cut-off length (L*), up to which the tension will be more 

or less uniform and beyond which the tension should be vanishingly small. Since, uo  ~




0

2)2/1( dxx  ; the elastic tension is:  *2

0

2* 4~)2(~ LEHdxLEHT oxE 


.                                            

The total energy functional comprising of the gravitational potential energy of the 

liquid and the stretching and the surface energies of the film on both sides of a 

cylinder resting on its surface is thus given as follows: 

 dxLdxLTdxgLU xxEf

222                                   (A.1) 

 

A functional derivative of Uf  yields: 

 

    dxTgL
U

xxE

f





2                                              (A.2) 

 

Setting 0 fU  and denoting the 
ET   as T, we obtain the desired differential 

equation the solution of which yields the exponential profile of the film.  

 

 



220 

Discussion of Equations 8.9: 

Substituting    
xe   0
 in equation A.1 (ignoring the role of surface tension  ) 

yields: 

 

)16(32/ *242 LHgLU oof                                           (A.3) 

At this point, we make two bold (ad hoc) assumptions and test their validities 

experimentally. The first one is to assume that  *L   is on the order of /1 , but somewhat 

larger than the latter. With this assumption, the minimization of  Uf /L with respect to  

yields    4/1238~ oEHg  . Eliminating  in equation A.3 and taking the derivative of 

the energy with respect to 
0 , we obtain equation (8.9A) in the text. The experimental 

data are, however, more consistent with the strain scaling as  0
 , which yields 

equation (8.9B) of the text. The change of the power index could be the result of the 

finite contact area between the cylinder and the film due to adhesion that we have 

neglected so far. 
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Chapter 9 

 
Wetting of Soft Elastic Gel Spheres on Flat 

Rigid Substrates 

 

 

 
9.1. Introduction  
 

Contact Mechanics is an important field that constitutes the study of how a solid surface 

deforms when it touches another substrate or when a force is applied to it. While the 

Hertz model1 forms the basis to characterize infinitesimal deformations for relatively 

hard spheres, the Johnson-Kendall-Roberts (JKR) theory2,3 has been found to be more 

appropriate for situations in which adhesion becomes important in for soft surfaces such 

as rubbers in contact. There is yet another regime where the elasticity of the sphere is 

even lower such that its surface tension also contributes to its mechanics in a non-trivial 

manner. This regime, where the elastocapillary length much greater than micron scale, 

can be important to understand cell adhesion and migration on substrates4–7, 

nanoparticle adhesion8 for various industrial applications and for designing new 

approaches for atomic level characterizations9–11. In such cases, it has been found that 

the JKR theory is no more applicable11,12. One has to then invoke the contribution of 

the surface tension forces acting on the solid and modify the laws of contact mechanics 

appropriately. While previous attempts to include this correction in order to explain the 

softer limit of the JKR theory has been mainly theoretical8,13, not many experimental 

studies have been performed to shed light upon the same. Our objective in this work is 

to firstly show that when soft gel spheres are placed on rigid hydrophilic substrates, 
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they deform by forming a “foot”-like regime close to the contact while retaining its 

global spherical shape due to its elasticity. This is quite different from the picture that 

is generally considered8,13 for all theoretical explications where the entire free surface 

of the sphere is assumed to shift laterally maintaining its volume conservation. In such 

a consideration, one misses the point that for such a shape, the sphere needs to pay a 

huge elastic energy cost, however, in reality, as we observed in the current experiments, 

it bypasses such a scenario by deforming to a greater extent closer to the contact thereby 

forming a lip while still retaining its spherical bulk shape away from it. Secondly, we 

point out that the contact angles of the gel spheres increase as their elastic moduli 

increases15 and they decrease as the adhesion energy of the substrates increases. 

Additionally, we show qualitatively that when these sphere/substrate systems are 

immersed in another liquid (e.g. heptane) such that the gel’s interfacial tension is 

lowered, the general scenario observed for these systems in air is maintained where we 

can still capture the essence of the “foot”-forming regime in the most wetting case.  

 To the best of our knowledge, these studies are the first of its kind to describe 

wetting of soft spheres in the macroscopic regime, nevertheless, we would like to 

briefly discuss the previous theoretical and simulation analyses in this subject. Joanny 

et. al.16 considered a problem of adsorption of a cylindrical polymer gel on a rigid 

substrate where they envisioned an equilibrium shape with a lip due to a positive 

spreading coefficient S such that its dimension at the scaling level obeys the ratio S

,  being the elastic shear modulus of the polymer. They, however, ignored the effect 

of surface tension of the polymer in their analyses. This scenario is more applicable to 

cases of polymeric materials spreading at interfaces17,18. Lau et. al.19 studied the 

spreading of latex particles on rigid substrates using atomic force microscopy (AFM) 
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technique very carefully where they observed the extended foot like regime. However, 

there are a few limitations of their studies that we would like to point out. Firstly, due 

to very small sample size (~0.1 m), it was only possible to image them from the top. 

Therefore, instead of directly measuring the contact angle at the triple line, they used 

the equilibrium height of the latex particles measured by AFM to estimate them based 

on their global shape. We know that in the large spreading limit for such soft particles, 

the contact angle measured at the triple line deviates from the global shape due to the 

presence of a “foot”. Secondly, latex is a glassy material that can flow if the contact 

stresses exceed its yield point thus limiting its applicability in studying the elastic 

properties in the soft wetting problem. The conjugate problem of a rigid sphere 

deforming a soft elastic half-space12,20–22 has also been studied and complemented with 

experiments to understand the regime where the solid surface tension becomes 

important. As pointed out by Style et. al.12, the approximation of using a linear Hookean 

law to describe the elastic deformations does not affect the JKR or capillary-dominated 

limits however it may lead to inaccuracies in the transition region where strains are 

large23.  

 In our study, we have not limited ourselves to a Hookean description for the 

strains of the soft spheres undergoing large deformation during spreading. We derived 

an expression for the excess elastic force in the gel spheres at the crack tip by using an 

approach that is similar to estimating the viscous dissipation at the contact line during 

spreading of liquids. By using a general constitutive law where the elastic energy is not 

limited to the square of the strains, the singularity at the crack tip vanishes thereby 

forcing the gel to assume an artificial liquid-like behavior. Our experimental results 

agreed reasonably well with the model. Furthermore, we measured the length of the 
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foot and found that it follows the relationship   31*2 tanRW linearly, a scaling that 

comes out of a dimensional analysis by balancing the adhesion and the elastic shear 

energies. Our study involved hydrogel spheres of shear moduli in the range of ~ 61 Pa 

– 789 Pa with their surface tension close to water24 such that we could use millimetric 

sized spheres for the same to afford a large elastocapillary number ( R / ) thereby 

providing a direct way to image from the side via usual microscopy techniques.  

 

9.2. Experimental Details. 

9.2.1. Preparation of Hydrogel Spheres.  

 We used physically crosslinked polyacrylamide gel24 prepared from the 

monomer N-(hydroxymethyl)-acrylamide (48% solution in water, Sigma Aldrich®) and 

deionized water. Its polymerization was initiated by the catalyst and promoter system 

of potassium persulphate (99.99% trace metals basis, Sigma Aldrich®) and N,N,N',N'-

Tetramethylethylenediamine (TEMED, ≥99.5%, purified by re-distillation, Sigma 

Aldrich®). We varied the monomer concentrations to control the elasticity of the cured 

gels. In order to synthesize highly spherical gel spheres15, we used a method of 

suspending drops of gel solution in a beaker containing a liquid density gradient. The 

density gradient was formed in small beakers with two sparingly miscible liquids: a 

heavier Silicone oil (Poly[dimethylsiloxane-co-methylphenylsiloxane], Sigma Aldrich, 

 = 1.05 g/cc) at the bottom and lighter n-Octane ( 99+% pure, Acros organics,  = 

0.71 g/cc) at the top that was gently added using a pipette. The ratio of the volumes of 

silicone oil to octane used in these experiments were around 2:1 to prolong the time of 

suspended state of the spheres as the diffusing front continues to move down gradually. 

The interface between these two liquids was allowed to be well diffused to attain a 
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uniform composition. When the gel drops of different volumes were released slightly 

into the octane layer, they sank to the level where their density was matched with the 

surrounding medium. Even though the two liquids used to create the density gradient 

have slightly different surface tension values, by having a greater diffused zone at the 

interface, we ensured uniform curvature of the cured gel spheres. All experiments 

involving the gel spheres were performed after allowing them to completely cure for 

two hours in the liquid density gradient such that they were elastic. The elastic modulus 

of these gels (  ranging from 61 Pa – 789 Pa) were measured using an oscillatory shear 

rheology experiment that has been reported previously15.  

 

9.2.2.  Diffusion Controlled Silanization of Silicon Wafers. 

 Silicon wafers were cut into small pieces of about 2 cm2 each. They were burnt 

with the flame of a propane torch to remove all the organic contaminants and render 

them hydrophilic. After cooling each of these silicon wafer pieces, they were placed in 

a chamber underneath a horizontal silane source at a separation distance of about 13 

mm. The silane source was prepared by attaching a flat sheet of filter paper to a glass 

slide with double-sided tape. A few drops of silane (Dodecyltrichlorosilane, Gelest Inc.) 

were spread uniformly on the filter paper backed with the rigid glass slide and any 

excess silane was removed with Kim-wipes. The samples were treated by the diffusing 

silane vapors in the chamber at a room temperature and relative humidity of 20°C and 

35% respectively. In our experimental configuration, an exposure time of about 2 

minutes led to surfaces with contact angle (CA) of water ~60° and that of about 12 

minutes led to complete grafting of the surfaces giving CAwater ~106°, the untreated one 
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being most hydrophilic. Other variations of this diffusion controlled silanization 

process can be found in a recent review by Chaudhury et. al.25  

 

9.2.3.  Measurement and Estimation of the Contact Angles of Hydrogel Spheres. 

 Each elastic gel sphere was gently taken out from the surrounding oil medium 

with a plastic pipette (whose tip was cut to remove rough edges)  and rinsed in pure n-

heptane (Fisher Chemicals) repeatedly followed by moderate drying in air to evaporate 

traces of heptane. The inner walls of the containers, which were used to house the 

heptane for cleaning, were also hydrophobized with dodecyltrichlorosilane to prevent 

the gel spheres from sticking to the walls thereby avoiding any possible damage to their 

soft surfaces. A treated silicon wafer was placed on a weighing balance and a cleaned 

elastic gel sphere was placed upon it. The radius of the original perfectly spherical gel 

drop was estimated from its weight and its value ranged from 1.2 mm – 3.8 mm for the 

ones we used for our experiments. The gel-sphere-on-substrate-system was 

immediately photographed with a CCD camera (Sony Model XC-75). The images of 

the shape and thus the contact angle of the gel spheres in their equilibrium wetting 

configuration were analyzed using a DropSnake26 plugin on ImageJ software. This 

software gives away the contact angle of the sphere at both left and right edges from a 

spline fitting tool. Each measurement was completed in a few minutes within which 

there was no observable loss in volume of the gel sphere due to evaporation. For the 

measurements of the contact angle of gel spheres in the liquid environment, we placed 

a treated silicon wafer at the base of a quartz cuvette (45 mm × 30 mm, 45 mm high, 

Rame Hart) that was filled with n-heptane. An elastic gel sphere was placed through 

the liquid environment onto the silicon substrate. The analysis of the CA and the shape 

was performed in the same way as mentioned above. These experiments are very 
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sensitive and each gel sphere was used for the measurement only once since after its 

contact with a rigid substrate, it is not possible to remove it without damaging the 

surfaces of the sphere.  

 

9.2.4.  Measuring the length of “Foot” of the Hydrogel Spheres placed on the 

Substrates. 

 As explained before, when the elastic gel spheres are placed on the rigid 

substrates, they spread to their equilibrium shape by extending a “foot” close to the 

contact regime between the sphere and the substrate. We measured its length in the 

following way: a circle of the known diameter of the sphere (estimated from its weight) 

was fitted such that its top coincided with the upper periphery of the deformed gel 

sphere on the substrate. A line was drawn to highlight the rigid substrate by joining the 

two triple contact points of the sphere along the reflection plane. The distance between 

a triple contact point of the gel sphere and the point of intersection of the fitted circle 

with the horizontal was noted as the length of the “foot” for every measurement (Figure 

9.6, inset). While for the softer gel spheres the deformation was much larger than the 

stiffer gels, we used the mentioned technique to measure the foot lengths to be 

consistent with the analysis of the data. 

 

9.3. Observations and Results. 

9.3.1  Contact angle of Gel Spheres different than that of Liquid on Same 

Substrates. 

 The measured contact angles of the gel spheres was found to increase as a 

function of elasticity of spheres (shear modulus )and decrease with increase of work 
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of adhesion, they don’t change much as a function of size (and radius R) although it 

was not possible to vary the radii of spheres much as well as it was important to stay 

below the elastocapillary length (to neglect gravity). Figures 9.1 and 9.2 summarize the 

observations of the contact angle and shape of the soft gel spheres. 

 

 
Figure 9.1: Comparison of contact angles of water (top panel, A-D) and those of gel 

spheres (shear modulus = 61 Pa) (bottom panel, A’-D’) on silicon wafers of varying 

work of adhesion. Each column (e.g. A-A’) corresponds to silicon wafers of same 

surface energy, with (A-A’) being completely hydrophilic. (B-D’) are hydrophobized 

by exposure to vapors of dodecyltrichlorosilane. Scale bars indicate 1 mm. 

 

 

 

Figure 9.2: The panel shows four different cases of wetting on completely hydrophilic 

silicon wafers. Water spreads completely as a thin film in (A). (B-D) As the shear 

modulus of the gel sphere increases, its contact angle increases with lesser deformation. 

The foot size also progressively decreases with increase in shear modulus.  

 

 

The observed contact angles (*) of the gel spheres are plotted as a function of their 

size (R) and work of adhesion (W) in Figure 9.3.   
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Figure 9.3: (A) Observed contact angles * of gel spheres of different shear moduli as 

a function of work of adhesion W between the gel and the silanized silicon wafers. The 

data sets for (= 61 Pa, 320 Pa and 789 Pa) indicate contact angles for gel spheres with 

similar radii (R~ 0.0019 mm) on surfaces with varying W. The data sets for (= 71 Pa, 

93 Pa, 211 Pa and 520 Pa) indicate contact angles for constant W and varying as a 

function of the sphere radius R. The latter group is plotted separately in (B) to indicate 

the trend of the contact angle * as a function of sphere radius R. 

 

9.3.2  Theory to explain the difference in contact angle of gel and that of water. 

In order to explain the observed contact angles of the gels, we present a theory based 

on a general constitutive law that is chosen to remove the singularities at the crack tip 

of the gel sphere. From the incompressibility condition, at a scaling level, we can write: 

. The displacement in the x-direction, u ~ l, where l is the characteristic 

length of the lip formed by the gel sphere. The displacement in the z-direction, w ~ , 

where is the normal deflection of the gel from its original spherical shape. The 

characteristic lengths in the x- and z- directions are contact length, a and the maximum 

height in the lip region, , where  is the contact angle of gel. By using 

these, we have a relationship for the lip l from the incompressibility condition,  

.                                                 (9.1) 

From JKR, we have the relationship between the tensile load (~ WR) and the contact 

length a, i.e,  

zwxu  /~/

*)tan(~ lh *

*)tan(~  al
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.                                                 (9.2) 

In order to derive the excess tensile force, TE (this is an average value of elastic force) 

at the contact line due to elasticity, we approach that is similar to estimating the viscous 

dissipation at the contact line during spreading of liquids. Here, instead of considering 

a quadratic form of the strain for the elastic energy, we used a shear thinning model that 

helps to remove the singularity at the crack tip (i.e. the elastic material is forced to 

behave like a liquid at the crack tip as elastic stress vanishes). Thus, we write the tensile 

force as follows:  

                                         (9.3) 

By solving the above differential equation assuming that at the contact line (

xz~tan * ),                                                                

                                              (9.4) 

Combining equation (9.4) for the expression for TE , the scaling for lip l derived from 

the incompressibility condition [equation (9.1)] and using the relationship between the 

contact length a and vertical deformation   from geometry ( ), we 

have: 

.                                            (9.5) 

Now, let us consider that the gel sphere has an effective tension Teff comprising the 

elastic component T and surface tension . The work of adhesion for a gel sphere and a 

liquid drop, and  where  is the contact 
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angle of gel and is the contact angle of pure liquid. The excess tensile force in the 

horizontal direction will be given by,  

.                                             (9.6) 

Thus, by equating the expressions of TE from the two equations (9.5) and (9.6), we have:  

               (9.7) 

We consider a value for n = 1.5, that is in the shear thinning regime for the spreading 

of the gels, which artificially removes the singularity at the crack tip. The left-hand side 

of equation (9.7) then simplifies to    ** sincos11cos11    and is plotted as 

a function of 
WR

 for our experimental data in Figure 9.4. Although this model is 

approximate, it can capture the physics well with a reasonable collapse of the data but 

with a slight deviation from the origin. We need to delve deeper into the problem to 

understand the discrepancies that lead to such a result.  

 
Figure 9.4: Plot of experimental data by using the model expressed in equation 9.7. 

The excess elastic tension   ** sincos11cos11   is plotted as a function of a 

dimensionless elasto-adhesive number, WR . Here, * indicates contact angle of gel 

and  indicates contact angle of pure liquid formed on the same surface. In the X-axis, 

 represents shear modulus of the gel, R is the radius of the gel sphere and W is the 

work of adhesion of the liquid/substrate.  
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9.3.3. Scaling Analysis for “Foot” during Spreading of Gel Spheres on Hydrophilic 

Substrates.  

 In the last section, we discussed a general constitutive model to express the 

excess elastic tension in the gel spheres that reasonably agree with our experimental 

data. Here, we describe a scaling analysis by comparing the adhesion energy  WlR  in 

the “foot” region with the elastic energy in the peripheral deformed region   VRl
2

 , 

where V is the volume of the deformed region. Thus, we get by balancing the adhesion 

and the elastic energies,  

                                   (9.8) 

Simplifying the above expression in equation 9.8, we get the scaling for the lip l,                                            

                                        (9.9) 

We plot the experimental data by using the expression derived in equation 9.9 in Figure 

9.5. 

 

9.4. Summary  

 We presented some new results on how soft elastic gel spheres spread on rigid 

substrates. Our observations indicate that the contact angles of gel spheres are slightly 

greater than those of equivalent liquid drops on similar substrates. The contact angles 

of these gel spheres increase as a function of elasticity and decrease when work of 

adhesion increases. We derived an expression for the excess elastic force in the gel 

spheres at the crack tip by using an approach that is similar to estimating the viscous 
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Figure 9.5: Plot of experimental data for lip lengths (  ) as a function of the scaling 

obtained from the balance of surface and elastic shear energies in equation (9.9). Inset. 

An experimental snapshot to show how the lengths of lips were measured. The dotted 

circle is of diameter of the undeformed gel sphere (estimated from its weight). The 

horizontal line represents the reflection plane, i.e, at the substrate. The distance between 

a triple contact point of the gel sphere and the point of intersection of the dotted circle 

with the white horizontal line was noted as the lip.  

 

dissipation at the contact line during spreading of liquids. By using a general 

constitutive law where the elastic energy is not limited to the square of the strains, the 

singularity at the crack tip vanishes thereby forcing the gel to assume an artificial liquid-

like behavior. This model agrees with the experiments reasonably well. We also 

measured the contact angle of gels on surfaces of different hydrophobicity through 

another liquid medium (heptane) as shown in Figure 9.6. Since, our theoretical model 

is applicable to gel contact angles of less than 90°, we did not include the results from 

the wetting of gels through a liquid medium in the current analysis. However, the 

interesting thing to note from these is that we see the formation of the “foot” in the gel 

sphere in the completely hydrophilic case even through heptane (Figure 9.6 A’).  
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Figure 9.6: Comparison of water (top panel, A-C) and the shape of the gel spheres 

(shear modulus 789 Pa) (bottom panel, A’-C’) on silicon wafers with varying work of 

adhesion while completely immersed in a surrounding medium of heptane. Each 

column (e.g. A-A’) corresponds to silicon wafers of same surface energy, with (A-A’) 

being completely hydrophilic. (B-C’) are hydrophobized by exposure to vapors of 

dodecyltrichlorosilane. A ‘foot’ has formed in the gel sphere in (A’). Scale bars 

represent 1 mm. 

 

 

In such soft gels, there is always a possibility of phase separation due to 

osmocapillarity27,28, however, even if the liquid is squeezed out from the network it will 

be limited to very small scales close to the triple point and it will not affect the contact 

angle of the gel sphere.  

 

 

References 

(1)  Hertz, H. Ueber Die Beruhrung Fester Elastischer Korper. J. fur die Reine und 

Angew. Math. 1882, 1882 (92), 156–171. 

(2)  Johnson, K. L.; Kendall, K.; Roberts, A. D. Surface Energy and the Contact of 

Elastic Solids. Proc. R. Soc. A Math. Phys. Eng. Sci. 1971, 324 (1558), 301–313. 

(3)  Johnson, K. L. Contact Mechanics. Journal of the American Chemical Society. 

1985, pp 1–17. 



238 

(4)  Joanny, J.-F.; Jülicher, F.; Prost, J. Motion of an Adhesive Gel in a Swelling 

Gradient: A Mechanism for Cell Locomotion. Phys. Rev. Lett. 2003, 90 (16), 

168102. 

(5)  Engler, A. J.; Sen, S.; Sweeney, H. L.; Discher, D. E. Matrix Elasticity Directs 

Stem Cell Lineage Specification. Cell 2006, 126 (4), 677–689. 

(6)  Schwarz, U. S.; Safran, S. A. Physics of Adherent Cells. Rev. Mod. Phys. 2013, 

85 (3), 1327–1381. 

(7)  Fischer-Friedrich, E.; Hyman, A. a; Jülicher, F.; Müller, D. J.; Helenius, J. 

Quantification of Surface Tension and Internal Pressure Generated by Single 

Mitotic Cells. Sci. Rep. 2014, 4, 6213. 

(8)  Carrillo, J. M. Y.; Raphael, E.; Dobrynin, A. V. Adhesion of Nanoparticles. 

Langmuir 2010, 26 (15), 12973–12979. 

(9)  Evans, E.; Ritchie, K.; Merkel, R. Sensitive Force Technique to Probe Molecular 

Adhesion and Structural Linkages at Biological Interfaces. Biophys. J. 1995, 68 

(6), 2580–2587. 

(10)  Erath, J.; Schmidt, S.; Fery, A. Characterization of Adhesion Phenomena and 

Contact of Surfaces by Soft Colloidal Probe AFM. Soft Matter 2010, 6 (7), 1432. 

(11)  Luan, B.; Robbins, M. O. The Breakdown of Continuum Models for Mechanical 

Contacts. Nature 2005, 435 (7044), 929–932. 

(12)  Style, R. W.; Hyland, C.; Boltyanskiy, R.; Wettlaufer, J. S.; Dufresne, E. R. 

Surface Tension and Contact with Soft Elastic Solids. Nat. Commun. 2013, 4, 

2728. 

(13)  Salez, T.; Benzaquen, M.; Raphaël, É. From Adhesion to Wetting of a Soft 

Particle. Soft Matter 2013, 9 (45), 10699. 

(14)  Maugis, D. Extension of the Johnson-Kendall-Roberts Theory of the Elastic 



239 

Contact of Spheres to Large Contact Radii. Langmuir 1995, 11 (2), 679–682. 

(15)  Chakrabarti, A.; Chaudhury, M. K. Vibrations of Sessile Drops of Soft 

Hydrogels. Extrem. Mech. Lett. 2014, 1, 47–53. 

(16)  Joanny, J. F.; Johner, A.; Vilgis, T. A. Gels at Interfaces. Eur. Phys. J. E 2001, 

209 (6), 201–209. 

(17)  Daillant, J.; Benattar, J. J.; Bosio, L.; Leger, L. Final Stages of Spreading of 

Polymer Droplets on Smooth Solid Surfaces. Europhys. Lett. 1988, 6 (5), 431–

436. 

(18)  Martin, A.; Clain, J.; Buguin, A.; Brochard-Wyart, F. Wetting Transitions at 

Soft, Sliding Interfaces. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 2002, 

65 (3), 5–8. 

(19)  Lau, A. W. C.; Portigliatti, M.; Raphael, E.; Leger, L. Spreading of Latex 

Particles on a Substrate. Europhys. Letts 2002, 60 (5), 717–723. 

(20)  Rimai, D. S.; Quesnel, D. J.; Bowen, R. C. Particle Adhesion to Highly 

Compliant Substrates: Anomalous Power-Law Dependence of the Contact 

Radius on Particle Radius. Langmuir 2001, 17 (22), 6946–6952. 

(21)  Hui, C.-Y.; Liu, T.; Salez, T.; Raphael, E.; Jagota, A. Indentation of a Rigid 

Sphere into an Elastic Substrate with Surface Tension and Adhesion. Proc. R. 

Soc. A Math. Phys. Eng. Sci. 2015, 471, 20140727. 

(22)  Butt, H.-J.; Pham, J. T.; Kappl, M. Forces between a Stiff and a Soft Surface. 

Curr. Opin. Colloid Interface Sci. 2016, 27, 82–90. 

(23)  Chakrabarti, A.; Chaudhury, M. K.; Mora, S.; Pomeau, Y. Elastobuoyant Heavy 

Spheres: A Unique Way to Study Nonlinear Elasticity. Phys. Rev. X 2016, 6 (4), 

41066. 

(24)  Chakrabarti, A.; Chaudhury, M. K. Direct Measurement of the Surface Tension 



240 

of a Soft Elastic Hydrogel: Exploration of Elastocapillary Instability in 

Adhesion. Langmuir 2013, 29 (23), 6926–6935. 

(25)  Chaudhury, M. K.; Chakrabarti, A.; Daniel, S. Generation of Motion of Drops 

with Interfacial Contact. Langmuir 2015, 31 (34), 9266–9281. 

(26)  Stalder, A. F.; Kulik, G.; Sage, D.; Barbieri, L.; Hoffmann, P. A Snake-Based 

Approach to Accurate Determination of Both Contact Points and Contact 

Angles. Colloids Surfaces A Physicochem. Eng. Asp. 2006, 286 (1–3), 92–103. 

(27)  Jensen, K. E.; Sarfati, R.; Style, R. W.; Boltyanskiy, R.; Chakrabarti, A.; 

Chaudhury, M. K.; Dufresne, E. R. Wetting and Phase Separation in Soft 

Adhesion. Proc. Natl. Acad. Sci. 2015, 112 (47), 14490–14494. 

(28)  Liu, Q.; Suo, Z. Osmocapillary Phase Separation. Extrem. Mech. Lett. 2016, 7, 

27–33. 

  



241 

Chapter 10 

Summary and Future Directions 

 

 
 

In this dissertation, we studied the joint roles of surface tension ( ), elasticity ( ) and 

gravity ( g ) in various phenomena in soft elastic solids. The interplay of each of 

these forces in soft solids leads to important material lengthscales such as 

elastocapillary length (  ) or elastobuoyant length ( g  ), which interact with the 

geometric lengthscales of the system giving rise to diverse interesting scenarios. 

Although each chapter in this thesis has its standalone summary and conclusions, we 

will reiterate some of the key results and findings here. It will then be followed by a 

discussion highlighting some additional lines of investigations that are inspired from 

my doctoral work.  

 

10.1. Summary of Doctoral Research  

 In chapter 2 of this thesis, we discussed how elastocapillarity affects the 

adhesion-induced pattern formation in thin films during debonding from rigid 

substrates. While such instabilities have been well studied for the purely elastic case, 

our experiments and theory uncovered the role of surface tension in amplifying the 

wavelength of interfacial pattern formation in very soft and thin films. We also found 

that the critical stress to fracture the film/substrate interface is very high for these soft 

films. A part of the reason for such high values is the enhancement of the Griffith’s 

stress by the elastocapillary number that can be quite high. Another reason may be due 
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to the extension of long fibrils of gel from the film about a few anchor points on the 

substrate when it is being removed, which can store a lot of elastic energy that is 

ultimately dissipated when the film detaches completely. During the course of this 

research, we designed a new oscillatory rheology test to measure the shear modulus of 

such soft gels with the help of only a high-speed camera and an oscillator. This home-

built rheometer is very convenient to use and gives accurate results of the modulus as 

was verified with another independent zero-frequency modulus measurement.    

 Another highlight of our work was to directly estimate the surface tension of 

the soft hydrogels since it was essential to establish the role of elastocapillarity in these 

solids. In chapter 3, we studied the vibration modes of sessile spherical gels as a 

function of their volume and elastic moduli. We found that the spheroidal resonance 

mode ( ) varies with volume as is the case with a liquid drop governed by capillarity 

and its effective surface tension is weakly dependent on the modulus as expected of a 

pseudo-capillary mode. All the resonance frequencies could be collapsed about a line 

obtained from a plot of    versus  21 h  using  to be the surface tension of 

water (72 mN/m) and the measured elastic moduli of the gels. Therefore, we concluded 

that the surface tension of the gels is similar to that of water.   

 In chapter 4, we introduced the phenomenon of ‘elastobuoyancy’, where a 

particle when placed on a soft elastic gel is engulfed by it, such that its weight is 

balanced at a depth , by the strain energy of the surrounding medium. In the 

elastobuoyant regime, where the spheres are completely engulfed, the depth of the 

spheres varies as the radius as 
23~ R . For slightly stiffer gels, where the spheres only 

partially deform the interface remaining largely on the surface, their depths scale as 

2~ R . An asymptotic analysis explained the experimentally observed scaling law in 
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the large deformation limit. That the elastic energy scales over a large volume (

3~  elastic ) is confirmed by a different experiment of indenting the gel with a sharp 

slender needle. Comparing the variation of the gravitational energy (  3~ gRgravity  )  

with that of the elastic energy at equilibrium, we find that the penetration depth of an 

elastobuoyant sphere scales as its radius raised to the exponent 3/2 in the limit of large 

deformations. This study defines a new paradigm in the field of contact mechanics, for 

the softest limit of a sphere indenting an elastic half-space.  

 In Chapters 5-8, we showed how self-assembly of particles can be brought about 

by using elastic forces in conjunction with capillarity and gravity. While motions of 

particles due to the gradient of elastic strain energy is well-known in various settings, 

the fact that particles can interact with the help of long range forces in elastic mediums 

in the macroscopic realm is the main finding of this group of studies.  We studied 

particle assembly inside a soft gel, on the surface of a soft gel and on a thin elastic film 

supported on a pool of liquid. Dense particles can be easily dispersed on such elastic 

supports that would otherwise sink in normal liquids and thus ensure better control in 

designing self-organizing systems. One could then extend this philosophy to 

microscopic size objects with even softer gels and by replacing gravity with an 

electrical or a magnetic force, or, perhaps, even subjecting the gel to a pre-determined 

mechanical deformation.   

 The penultimate Chapter 9 discusses how hydrogel spheres spread on substrates 

with different surface energies. While the work is still ongoing, we summarize the main 

observations of this study. For the completely hydrophilic case, the gels spread by 

forming a “foot”-like regime closer to the substrate, while maintaining its spherical 

global shape is maintained away from the contact region due to elasticity. The measured 
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contact angles at the triple line of these soft spheres show that they systematically 

increase with their elasticity and decrease as the work of adhesion is increased. 

Additionally, we learned that the dimension of the “foot” follows a simple scaling law 

derived from the balance of the adhesion and elastic strain energies in that region. A 

constitutive model to describe the elastic tension similar to that of the viscous 

dissipation for the spreading of liquids but with an arbitrary exponent for the strain to 

remove the singularity at the crack tip, reveals that it may be a good assumption for the 

elastic wetting since the deformations are large and highly nonlinear.  

 Therefore, through this dissertation, we learned how elastocapillarity and 

elastobuoyancy can play profound roles in diverse phenomena in soft solids. The 

surface tension of these soft solids plays a significant role in the mechanics of 

deformation of the soft solids along with their elasticity that manifests in surface 

instabilities, adhesion, wetting and substrate induced particle aggregation. In the 

following section, we will present some new ideas and directions that we plan to pursue 

in the future.  

 

10.2. Suggestions for Future Work  

10.2.1. Elastic Vibration of Soft Spheres by Suppressing Surface Tension.  

 In chapter 3, we found a scaling for the resonant modes of vibration of the soft 

hydrogel spheres, subjected to random noise, which is weakly dependent on elasticity 

and mainly governed by capillarity. It will be interesting to check the robustness of the 

scaling by varying the interfacial tension of the gel spheres. This can be done by 

submerging the spheres in another liquid of known surface tension and subjecting the 

whole system to random Gaussian noise. The asymptotic limit would be to nullify the 
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surface tension completely by making the interfacial tension zero. In this case, one 

could expect only the role of elastic spring constant to govern the resonant modes of 

the hydrogel spheres. One has to be careful about the optical contrast between the gel 

spheres and the surrounding liquid as well as make sure that there is an effective gravity 

in the system to allow for the surface fluctuation of the spheres.  

 

10.2.2. Effect of Surface Energy of Particles in Elastobuoyancy Phenomenon.  

 In Chapter 4, we talked about the effect of elastobuoyancy and how a sphere is 

engulfed by a gel in the large deformation limit and on the other hand remains largely 

on the surface of stiffer gels. An experiment depicted in Figure 10.1 shows that a 

hydrophobic glass sphere remains on the surface whereas a hydrophilic one of the same 

size is engulfed to reach the elastobuoyant state. While our analyses in the asymptotic 

regimes of large and small deformations stand, it will be interesting to see how the 

surface energy of the sphere may play a role in the intermediate regime where the ratio 

of the radius to the elastobuoyant length ( gR ) is of the order of one. This analysis  

 

 

Figure 10.1. Figure illustrating fine balances of the elastic, wetting and gravitational 

forces giving rise to two different scenarios for same sized glass spheres (3.2 mm 

diameter) but with different surface energy in a polyacrylamide hydrogel of shear 

modulus 10 Pa.  An untreated (hydrophilic) glass sphere (right) immediately plunges 

into the gel and becomes neutrally buoyant afterward. A hydrophobic glass (left) floats 

on the surface of the same gel. 1 
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of including the role of surface tension in the intermediate regime will be very useful 

in designing systems to guide the self-assembly of particles or under-substrate soft-

fluidic devices. 

 

10.2.3. Elastocapillary Assembly followed by Dis-Assembly: Design Protocol.  

 While we stressed upon new protocols to design self-assembly in elastic 

systems, one could also ask the question: how one could bring about disassembly of 

particles to make it a reversible process. We know that when a polymer gel is heated, it 

becomes stiffer while its elastic modulus is lowered when it is cooled. Beginning with 

a container of homogeneously elastic gel, we can release particles such that they will 

undergo elastocapillary aggregation to form a cluster floating at the central region in 

the container. Now, if we heat the region that has the group of particles, such that it 

becomes stiffer while the outer periphery is cooled, there will be a radial gradient of 

elasticity and the particles will migrate away from the stiff part into the softer parts. 

Daniel et. al.2 used the idea of creating radial gradients for surface energy for 

asymmetric wetting and outward migration of the liquid drops condensing on them. 

Here, we propose to do the same but with spheres on a gradient elasticity substrate 

(Refer to Appendix IV for more details on thermally induced motion of particles along 

a strain energy gradient).  In this way, one can essentially design at her/his own will a 

system to control particle assembly or disassembly and even have a sorting device. A 

soft fluidic device could also be generated in situ by cooling selective channels to create 

“soft pathways” without actually designing a fluidic device a priori. One could then 

also think of creating an Elasto-thermal trap whereby a particle could be manipulated 

on a soft substrate by modulating the elasticity with a moving cooling source.  
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Appendix I

Rayleigh Taylor Instability in Soft

Elastic Solidsa

I.1 Introduction

When elastic solids are subjected to a stress, they undergo morphological tran-

sitions forming different kinds of instability patterns.1,2 Several experiments and

theoretical studies have been performed to show how relatively stiffer elastic ma-

terials undergo wrinkling, folding or creasing.3–9 Similarly, elastic solids also un-

dergo instabilities by the influence of destabilizing adhesive forces,10–12 by electric

field13 or when elastic properties are partially altered due to either stiffening14 or

swelling.15 Very compliant softer solids where surface forces are of the order of the

strain energy deform somewhat differently from their stiffer counterparts and an

entire class of such instabilities have been recently discovered.16–18 We explore one

such instability in a layer of soft solid attached to a rigid substrate, whose free

surface develops periodic hexagonal undulations due to downward gravitational

volume force.18 The other scenario where such an instability will be observed is

when a heavier phase (a liquid layer that has a higher density than the soft solid)

is placed above the soft solid.

aManuscript under preparation [Chakrabarti, A.; Mora, S.; Audoly, B.; Phou, T.; Fromental,
J. M.; Richard, F.; Pomeau, Y. 2017].
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Formation of hexagonal patterns in elastic systems undergoing instability have

been experimentally observed before, however the nature of the bifurcation, the

control parameter that drives the instability or stability of the patterns differ

from one situation to another. Extensive theoretical work has also been done

to study all possible patterns that may form during bifurcation from the base

state.4–8,19–21 These studies compare the relative energies as well as the stability

of the various possible patterns and match their predictions with experimental

studies in some cases. In our system of a soft elastic layer that is subjected to

the downward gravitational volume force, only hexagonal patterns were observed

experimentally. The origin of this elastic instability bears stark similarities with

its analogous hydrodynamic version: the Rayleigh Taylor instability (RTI) that

arises due to the mismatch of densities in the two adjacent fluid layers where the

upper heavier fluid (liquid) tries to displace a lower lighter fluid (air). However,

the fluctuations that develop on the free surface of liquid in RTI grow with time

that eventually drains the liquid by pinching off into droplets from the surface.22–24

In this regard, the elastic version of the RTI is different in that once the patterns

form on the surface, they remain stationary until the downward gravitational

acceleration is switched off by reversing the boundary conditions of the top and

bottom surfaces of the soft layer.

Before going into the detailed bifurcation analysis of such a system, we recall

that occurrence of hexagons in fluid instabilities has been reported by Beńard25

around a century ago. When a liquid layer is heated from the bottom and the

upper surface is free, flow patterns are observed due to surface tension gradients

induced by temperature, which is commonly known as the Beńard-Marangoni

instability.26 However, when the upper layer of the fluid is bounded by a cooler

plate, flow patterns are due to gradients in buoyancy, termed as the Rayleigh-

Bénard instability.27 Palm28 was the first to explain a perceived tendency towards

formation of hexagonal cells in Rayleigh-Bénard convection by an argument of the
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resonance of three linear modes superimposed in a way such that the phase of each

one is separated from the adjacent ones by 2π/3 and the sum of their wave-vectors

in the three direction resulted to zero. Similarly, one would expect for an elastic

system that the resonance of the modes will lead to the formation of hexagonal

patterns, failing which may result in dis-ordered patterns.14 Experiments reveal

that such patterns appear subcritically. This enforces us to compare our system

again with that of liquids undergoing Bénard convection where Segel and Stuart,29

Busse30 and Joseph and Sattinger31 showed that it was theoretically possible to

obtain hexagonal patterns through a subcritical bifurcation.32 Extensive reviews

discuss this subject in detail.33–36

In this study, we also considered a more formal approach based on the Lyapunov-

Schimdt decomposition along with an asymptotic expansion about the bifurcation

point. This is particularly applicable to elastic systems that have a well defined

potential energy function. Koiter developed this theory to analyze the stability

of loaded elastic systems with or without the presence of imperfections.37–39 This

has been widely used to analyze the problems of shell-buckling,2,40,41 casting light

upon the highly nonlinear postbuckling behavior that had great practical impli-

cations on the design and engineering of almost perfect shells. The advantage

of this method is that it provides a reduced nonlinear system of equations that

gives better insight into the nature of postbuckling behavior of an elastic system

as well as help in deducing the stability of the same.42,43 The scenario of buckling

arises in various other elastic systems, e.g, a thin stiff film on compliant elastic

substrate subjected to compressive bi-axial stresses.4–6,8,9,44 Another scenario of

these buckling instabilities arise when there is a rigid shell on a soft cylindrical

or a spherical core.19,45,46 While these studies have considered other approaches,

we show how to study the bifurcation of an elastic system undergoing instability

by using the LSK approach on the model system of a soft elastic layer that is

supported by experimental observations.
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This paper is organized as follows. In Section 2, we report our experimental

observations. In Section 3 we present the general framework of the energy formu-

lation of the elastic system and we reiterate the linear stability analysis that yields

the threshold for the parameter α. In Section 4, we discuss the hexagonal pattern

formation in the regime of the small amplitudes, and discuss its stability. Section

5 is devoted to patterns of finite amplitude obtained by numerical simulations or

from an heuristic functional energy. Section 6 discusses other possible patterns,

which are shown to be less stable than hexagonal patterns. In the final Section 7,

we summarize our results and we extend our analysis to the wide range of patterns

formation cases in elastic systems.

I.2 Experiments

A square container of sides equal to ` × ` × h = (40 cm)2 × 2.5 cm is filled with

the reagents generating a crosslinked polyacrylamide gel, dissolved in ultra-pure

water. The resulting gel behaves as an incompressible, isotropic and purely elastic

solid for strains up to several hundred percent. The shear modulus (µ) can be

finely tuned by varying the concentrations in monomers and cross-linkers or the

temperature. The density (ρ) is almost equal to the density of water. After

the gel has cured, the container is turned upside down so that its free surface

undergoes the normal outgoing gravitational acceleration g. Several experiments

have been performed with different concentrations and temperatures, by gradually

decreasing the shear modulus. We observe that the surface remains perfectly flat

(see Fig. I.1-a) in all the experiments made with shear moduli larger than 40.5

Pascals, whereas many hollows spontaneously appear, and remains permanently

for all the tested gels having a shear modulus lower than 40.5 Pascals (see Fig. I.1-

b). These hollows, which are separated by vertical walls, are organized following

a quasi-hexagonal patterns.

251



Figure I.1: Downward-facing initially flat surfaces of two gel slabs fixed in a
square container of lateral size 40 cm and height 2.5 cm. The free surfaces are
pictured from below. (a) Specimen with a shear modulus equal to 45 Pa: the
inverted surface remains flat. (b) Specimen with a shear modulus equal to 37 Pa:
a quasi-hexagonal pattern spontaneously appears as soon as the sample is turned
upside down.

The average depth of the hollows has been measured as a function of the shear

modulus of the specimen. To avoid bias due to the proximity of the borders of

the container, we have selected for averaging the hollows whose boundaries are

not in direct contact with the borders. In figure I.2, the mean depth is plotted as

a function of the dimensionless control parameter ρgh/µ. Strikingly, the depth of

the hollows is directly finite and we do not observe a regime of smaller amplitudes,

in contrast with previous observations made in containers with a far smaller lateral

size compared to the height.18 The absence of small amplitude near the threshold

appears here as a specific feature to systems with lateral sizes far larger than the

thickness (` � h). Moreover, the value for the instability threshold is found at

ρgh/µ = 5.67 ± 0.1 for the experiments made in the large cells (` = 40 cm, h =

2.5 cm), a value significantly smaller than the value of instability threshold found

with the cells having a smaller aspect ratio (diameter = 18 cm ; h=2.75 cm).18

Below we explain why either flat surfaces or hexagonal patterns with finite

amplitudes are observed, we show that the value of the threshold defining the

boundary between the two regimes is well captured by the corresponding non-
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Figure I.2: Mean amplitude (downward displacement) of the deformed gel sur-
face as a function of the control parameter ρgh/µ.

linear analysis, as well as the geometry of the patterns.

I.3 Linear Stability Analysis

I.3.1 Energy

In order to define the total potential energy of the incompressible and isotropic

elastic material subjected to the downward volume force ρg, we begin with the

most general form for its strain energy density. Let x = (x, y, z) denote the

deformed coordinates in terms of X = (X, Y, Z), the Lagrangian coordinates (the

axis for Z in the Cartesian coordinate system is vertical and upward, see Fig.

I.3). We consider a block of elastic material initially contained in the domain

0 ≤ Z ≤ h, with free lateral boundaries, and a total potential energy:

E =

∫∫∫
W (I1, I2) dX dY dZ −

∫∫
p(X, Y, Z)

(
detF − 1

)
dX dY dZ

+

∫∫
ρ g x(X, Y, Z) dX dY dZ (I.1)
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where W (I1, I2) is the strain energy, F = ∇x(X) is the deformation gradient and

p(X, Y, Z) is a Lagrange multiplier connected to the pressure. The three terms

in (I.1) are the potential elastic energy, the Lagrange multiplier term associated

with the incompressibility condition and the potential energy due to gravity, re-

spectively.

z

free interface

rigid substrate

compliant solid
g

0

1

Figure I.3: A compliant layer of thickness h = 1 and shear modulus µ = 1 is
rigidly attached at its upper surface to a undeformable horizontal flat substrate.
The lower surface is free to deform. The system undergoes the downward volume
force α = ρg with ρ the mass density of the elastic material and g the gravity
acceleration.

For an isotropic material, the strain energy is a function of the strain invariants,

(
I1, I2

)
=

(
trC − 3,

tr2C − C : C

2
− 3

)
(I.2)

where C = F T · F is the Green’s deformation tensor. Different constitutive laws

correspond to different choices of the strain energy function W (I1, I2); the partic-

ular case of a neo-Hookean material corresponds to

WNH(I1, I2) =
µ

2
I1. (I.3)

In the following, we work with units such that h = 1, and the tangent shear

modulus is µ = 1. We denote by α the dimensionless gravity, i.e. we substitute

ρ g → α in the above equations.
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In terms of W , one can express the tangent shear modulus as

µ = 2

(
∂W

∂I1
(0, 0) +

∂W

∂I2
(0, 0)

)
. (I.4)

Therefore, for our particular choice of units such that µ = 1, we have

∂W

∂I1
(0, 0) =

1

2
− τ0, (I.5)

where we denote by τ0 the strain second energy gradient near the undeformed

configuration:

τ0 =
∂W

∂I2
(0, 0). (I.6)

By (I.3), we have τ0 = 0 in the neo-Hookean case.

We denote by t = (x, y, z, p) the extended set of unknowns including the pres-

sure.

I.3.2 Base solution

The undeformed solution is given by

t0(α) =
(
x0 = X, y0 = Y, z0 = Z, p0 = αZ + 1

)
. (I.7)

It is a solution of the nonlinear equations of equilibrium,

∀t̂(X, Y, Z) k.a, DE(α, t0(α)) · [̂t] = 0 (I.8a)

and of the kinematical boundary conditions

(
x0, y0, z0

)
(X,Y,1)

= 0. (I.8b)
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Virtual displacements t̂ in (I.8a) must be kinematically admissible (k.a), i.e.

must satisfy the incremental kinematical boundary conditions
(
x̂, ŷ, ẑ

)
(X,Y,1)

= 0.

In (I.8a), DE(t) · [t1] denotes the first variation of the energy evaluated in the

configuration t with an increment t1 of the unknowns.

I.3.3 Linear stability

For the linear stability,18 one seeks a perturbation about the base solution in the

form t1(X, Y, Z) = T 1(Z) eı k·(X,Y ), where T1(Z) is a set of four complex ampli-

tudes, and k is a 2D wavevector in the plane (OXY ). Since we consider a pure

harmonic wave for the moment, one can temporarily align the X axis with the

wavenumber k. In this frame, the perturbation reads

tX1 (X, Y, Z) = TX1 (Z) eı k X (I.9)

where now k = (k, 0). The equations of equilibrium linearized about the base

solution t0(α) read, in weak form,

∀t̂(X, Y, Z) k.a, D2E(α, t0(α)) · [tX1 , t̂] = 0 (I.10a)

where D2E is the second variation, which is a bilinear form on the real increment

tX1 and on the virtual increment t̂. The increment is subjected to the incremental

boundary conditions (
xX1 , y

Y
1 , z

Z
1

)
(X,Y,1)

= 0. (I.10b)

Inserting the special form (I.9) of the perturbation and integrating by parts, the

problem (I.10) is transformed into a set of 12 homogeneous linear differential

equations with 12 boundary conditions. There exists non-trivial solutions only
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when the critical condition is met,18

α∗(k) = 2 k
1 + 2 k2 + cosh(2 k)

sinh(2 k)− 2 k
. (I.11)

Neither the linear mode tX1 nor the critical load α∗(k) depend on the strain energy

function W and on its derivatives as long as µ = 1 in equation (I.5). As a result,

the results of the linear stability analysis presented here are universal, i.e. they

apply to any constitutive law. The value of k that minimizes α∗ is denoted by kc

and satisfies

dα∗

dk
(kc) = 0. (I.12)

The corresponding value of α∗ is the critical load,

αc = α∗(kc). (I.13)

The numerical values are found by root-finding as

αc ' 6.223, kc ' 2.120. (I.14)

These values were previously derived for analyses on adhesion induced instability

patterns in thin elastic films.10 The explicit expression of the marginal mode, in

the frame such that k = (kc, 0) reads

xX1 (X, Y, Z) = <
(
−ı ξ eı kcX

)
fx(Z) (I.15a)

yX1 (X, Y, Z) = 0 (I.15b)

zX1 (X, Y, Z) = <
(
ξ eı kcX

)
fz(Z) (I.15c)

pX1 (X, Y, Z) = <
(
ξ eı kcX

)
fp(Z) (I.15d)
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where < stands for the real part, ξ is a complex amplitude and fx, fz and fp are

known functions of Z:

fx(Z) =
1

2kc − sinh(2kc)

[
Z sinh(kcZ)

(
αc sinh kc cosh kc − kc

(
αc + 2k2c

))
+ kc(2kc(Z − 1)− Z sinh(2kc)) cosh(kcZ)

] (I.16)

fz(Z) =
1

4kc(kc − sinh kc cosh kc)

[
(sinh(2kc)− 2kc)

(
αc + 2k2cZ

)
sinh(kcZ)

bigg.+ kc cosh(kcZ)
(
2kc
(
2k2cZ + αcZ + 2

)
− sinh(2kc)(αcZ + 2)

) ]
(I.17)

fp(Z) = − 1

4kc(kc − sinh kc cosh kc)

[
kc cosh(kcZ)

(
4k3c (αcZ − 2) + 2α2

ckcZ − α2
cZ sinh(2kc)

)
+ (sinh(2kc)− 2kc)

(
α2
c + 2k2c (αcZ − 2)

)
sinh(kcZ)

]
(I.18)

Note that the normalization of this mode is such that fz(0) = 1. As a result,

the complex amplitude of the mode ξ can be interpreted as the complex amplitude

of the deflection of the free surface,

zX1 (X, Y, 0) = <(ξ eı kcX). (I.19)

The mode in (I.15a–I.18) having a wavevector along the X axis is written in

compact form as

tX1 = <
(
ξ T̃

X

1 (Z) eı kcX
)

(I.20)

where T̃
X

1 (Z) =
(
−ı fx(Z), 0, fz(Z), fp(Z)

)
collects the complex amplitudes of the
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unknowns.

Relaxing the assumption that k is aligned with the X axis, and denoting by φ

the polar angle of k in the (OXY ) plane, k = kc (cosφ, sinφ). The corresponding

linear mode is easily obtained by applying a rotation with angle φ about the the

Z axis onto the special solution tX1 corresponding to φ = 0. The result reads

t1,φ(X, Y, Z) = <
(
ξφ T̃ 1,φ(Z) eı kc (X cosφ+Y cosφ)

)
, (I.21)

where ξφ is the complex amplitude of this harmonic solution, and T̃ 1,φ(Z) is a

vector containing the complex amplitudes of the 4 unknowns,

T̃ 1,φ(Z) =
(
−ı fx(Z) cosφ, ı fx(Z) sinφ, fz(Z), fp(Z)

)
.

I.4 Hexagonal Patterns with infinitesimal amplitudes

Different instability patterns, e.g: hexagons, stripes or even rhombics, may be

theoretically possible in a confined layer of elastic solid undergoing Rayleigh Taylor

Instability. We discussed in Section I.2 that the experimental patterns in such

an instability are always hexagons. Thus, firstly we dedicate this section to the

discussion of the hexagonal patterns. To begin with, we study the weakly nonlinear

regime of the formation of these patterns by using the framework of General

Lyapunov Schmidt Koiter (LSK) Expansion which is a nonlinear perturbation

method, used to study asymptotic postbuckling theory.37 Using the LSK approach,

one can gain valuable insights about the bifurcated states of a particular system

from its equilibrium solution by the expansion of the reduced equilibrium equations

about any reference point. In our problem, we have considered the expansion of the

reduced equilibrium condition about the critical threshold point that is obtained

from the linear stability analysis. One could also, by employing the LSK method,

look at the decomposition of the displacements into various admissible planes,

however for our particular problem of the Elastic Rayleigh Taylor Instability, we
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did not need such decomposition of the displacements.

In what follows, we systematically discuss the asymmetric bifurcation case

that is a precursor to derive the hexagonal solutions for Elastic Rayleigh Tay-

lor Instability. After obtaining the various branches from the weakly nonlinear

perturbation analysis, we discuss stability of these branches.

I.4.1 Asymmetric Bifurcation: Introduction to LSK

The nonlinear equilibrium condition is given by Eq. I.8a. The force parameter α

and the deformed coordinates t(X, Y, Z) are weakly perturbed in terms of a small

parameter η as follows:

α = αc + η α1 (I.22a)

t(α) = t0(α) + η t1 + η2 t2 + · · · (I.22b)

The expansion of the nonlinear equilibrium condition (Eq. I.8a) for the weakly

perturbed parameters α and t (Eq. I.22) about the bifurcation point (given by the

base solution, Eq. I.7) gives rise to the reduced equilibrium conditions at different

orders of the small parameter η, which are given below. At order η, we have linear

stability criterion as already discussed before (Eq. I.10):

∀t̂(X, Y, Z) k.a, D2E(αc, t0(αc)) · [t1, t̂] = 0. (I.23)

At order η2, we have:

∀t̂(X, Y, Z) k.a, D2E(αc, t0(αc)) · [t2, t̂] +
1

2
D3E(αc, t0(αc)) · [t1, t1, t̂]

+ α1
dD2E(α, t0(α))

dα

∣∣∣∣
α=αc

· [t1, t̂] = 0, (I.24)

where t̂(X, Y, Z) is the set of virtual functions
(
x̂, ŷ, ẑ, p̂

)
that represent infinites-
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imal increments of the displacements and the Lagrange multiplier. The solvabil-

ity conditions are obtained by setting the arbitrary incremental displacements

t̂(X, Y, Z) to the linear order solution for the displacement t1(X, Y, Z) that leads

to the simplification of of the above equation as a consequence of Eq. I.23. As a

result, Eq.I.24 now writes:

1

2
D3E(αc, t0(αc)) · [t1, t1, t1] + α1

dD2E(α, t0(α))

dα

∣∣∣∣
α=αc

· [t1, t1] = 0. (I.25)

I.4.2 Solution of the Hexagons

In this section we show that the possibility of a resonance between three wave-

vectors ki with the same modulus and at 2π/3 angle of each other explains the

hexagonal patterns.28 We first combine three linear modes (Eq. I.21) with inde-

pendent complex amplitudes ξ1, ξ2 and ξ3 and polar directions φ1 = 0, φ2 = 2π/3

and φ3 = 4π/3, respectively. The expression of the linear mode t1(X, Y, Z) ob-

tained by superposition of these three modes with arbitrary complex amplitudes

reads, in compact form,

t1(X, Y, Z) = <
(∑
j=1

ξi T̃ 1,φj
(Z) eı kc (X cosφj+Y cosφj)

)
. (I.26)

The resulting deflection of the free surface, for instance, writes

z1(X, Y, 0) = <
(

3∑
j=1

ξj e
ı kc (X cosφj+Y sinφj)

)
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thanks to the normalization convention used in Eq. I.17. We use the solvability

condition obtained from the LSK expansion at order 2. From Eq. I.24, by taking

t̂ = t̂1, we get:

∀
(
ξ̂1, ξ̂2, ξ̂3

)
∈ C3 D3E(αc, t0(αc))·[t1, t1, t̂1]+α1

dD2E(α, t0(α))

dα

∣∣∣∣
α=αc

·[t1, t̂1] = 0,

(I.27)

where (i) t̂1(X, Y, Z) is the set of virtual functions
(
x̂, ŷ, ẑ, p̂

)
obtained by re-

placing the true complex amplitudes
(
ξ1, ξ2, ξ3

)
with virtual complex amplitudes(

ξ̂1, ξ̂2, ξ̂3
)
, (ii) the first term involves the third variation of the energy D3E eval-

uated in the marginally stable state with 2 increments equal to the marginal

mode (I.26) and the last increment equal to the virtual increment t̂1, and (iii) the

last term involves the second variation D2E of the energy, which is sequentially

evaluated in a base state t0(α), then differentiated with respect to α, then evalu-

ated in the marginally stable state α = αc and finally evaluated with the real and

virtual increments.

Equation (I.27) is polynomial with respect to the true complex amplitudes(
ξ1, ξ2, ξ3

)
, and linear with respect to the virtual complex amplitudes

(
ξ̂1, ξ̂2, ξ̂3

)
.

With the help of a symbolic calculation language, it has been rewritten in a more

explicit form as

∀
(
ξ̂1, ξ̂2, ξ̂3

)
∈ C3 −γ <

(
ξ1 ξ2 ξ̂3+ξ2 ξ3 ξ̂1+ξ1 ξ3 ξ̂2

)
−α1

2
<
(
ξ1 ξ̂1+ξ2 ξ̂2+ξ3 ξ̂3

)
= 0,

(I.28)
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where ξ denotes the complex conjugate of ξ and γ is the numerical constant,

γ = − k2c
16(sinh(2kc)− 2kc)3

(
96(4τ0− 1)k3c cosh(kc) + 32(4τ0− 1)k3c cosh(3kc) · · ·

+12
(
−8τ0 + (8τ0 − 1)k2c + 2

)
sinh(4kc)−48kc

(
−8τ0 + (8τ0 − 1)k2c + 2

)
cosh(2kc) · · ·

+ 4kc
(
39(4τ0 − 1) + 6(7− 24τ0)k

4
c + (68− 320τ0)k

2
c

)
· · ·

+ 3
(
−68τ0 + 4(24τ0 − 7)k4c + 8(64τ0 − 15)k2c + 17

)
sinh(2kc) · · ·

+ (4τ0 − 1) sinh(6kc) + 60(1− 4τ0)kc cosh(4kc)

)
(I.29)

With kc given by Eq. I.14, this evaluates to

γ = 1.191594− 9.139691 τ0. (I.30)

The nonlinear elastic modulus τ0 = ∂W
∂I2

(0, 0), as defined in Eq. I.6, fully captures

the dependence on the constitutive law. It is in fact remarkable that only a single

modulus enters into the final result: the second derivatives ∂2W
∂I1

2 (0, 0), ∂2W
∂I1 ∂I2

(0, 0)

and ∂2W
∂I2

2 (0, 0) do enter into the intermediate expressions of γ but they ultimately

cancel out when simplifications are carried out. As mentioned above, the case of

an incompressible neo-Hookean material corresponds to τ0 = 0.

Note that the dependence on the complex amplitudes in Eq. I.28 could have

been anticipated easily by analyzing the average of the products of the various

harmonic components. To calculate the coefficients, however, one needs to eval-

uate integrals involving the functions (fx, fz, fp) and their derivatives across the

thickness.
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I.4.3 Branches of the hexagonal patterns

In this section, we show that a resonance between three wave-vectors ki with the

same modulus and at 2π/3 angle of each other (i.e. such that
∑

i ki = 0) explains

the hexagonal patterns.28

The amplitudes of the three modes are connected with each other in the fol-

lowing manner as obtained from Eq. I.28 by setting sequentially two of the three

virtual increments
(
ξ̂3, ξ̂1, ξ̂2

)
to 0:

2γ ξ1 ξ2 = −α1 ξ̄3 (I.31a)

2γ ξ2 ξ3 = −α1 ξ̄1 (I.31b)

2γ ξ3 ξ1 = −α1 ξ̄2 (I.31c)

By combining Eqs. I.31-a and I.31-b, we have as follows:

−2γ |ξ1|2 · ξ2 = −2γ |ξ3|2 · ξ2. (I.32)

Equation I.32 implies that either ξ2 = 0 or |ξ1| = |ξ3|. Similarly, by combining

Eqs. I.31-a & c and Eqs. I.31-b & c as above, we find that ξ1 = ξ2 = ξ3 = 0

or, |ξ1| = |ξ2| = |ξ3|: for the non trivial solution, the moduli of the complex

amplitudes are equal. Let us denote this value of the uniform amplitude by β.

We now introduce an unknown phase ϕi such that the complex amplitudes for

the three modes write: ξi = βeϕi , where the arbitrary phases ϕi (i =1,2,3) can be

denoted by a unique phase variable ψ = (ϕ1 + ϕ2 + ϕ3) such that ξ1 = |β|eψ and

ξ2, ξ3 = |β| due to translation invariance. On multiplying Eq. I.31-a with ξ3 the
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following is obtained:

2γξ1ξ2ξ3 = −α1β
2 ⇒ βe(ϕ1+ϕ2+ϕ3) = −α1

2γ
. (I.33)

Thus, β = α1/2γ and ψ = π if α1/γ > 0. Otherwise, β = −α1/2γ and ψ = 0. Note

that α1 varies between negative and positive values depending upon subcritical

and supercritical bifurcation. β is plotted as function of α in Fig. I.5.

These equilibrium solutions correspond to a deflection at the interface w|interface
as follows:

z|interface (X, Y, 0) = 0 + η β <
(
eı (kcX+ψ) + eı kc (−

X
2
+Y

√
3

2
) + eı kc (−

X
2
−Y

√
3

2
)
)
.

(I.34)

Two kinds of periodic hexagonal patterns emerge, depending on the value of ψ

(see Fig. I.4): for ψ = π the deflection of the interface is minimum and negative

at the center of the hexagons, whereas for ψ = 0 the deflection of the interface

is maximum and positive. The center of the hexagons can thus be either bumps

(ψ = 0) of hollows (ψ = π).

From Eq. I.34 we can evaluate the peak of the maximum deviation of the

surface height, wb = 3
∣∣∣ηα1

2γ

∣∣∣.
Let us summarize: γ (defined in Eq. I.30) can be positive or negative, depend-

ing on the constitutive law of the elastic layer.

• If γ > 0 then for an applied volume force smaller than the one corresponding

to the linear threshold, α < αc, the ratio α1/γ is negative. In this case, the

equilibrium solution emerging from the weakly nonlinear analysis is for ψ = 0

and the center of the hexagons are hollows. On the contrary, beyond the

linear threshold (α1 > 0), the weakly nonlinear equilibrium solution if for

ψ = π and the center of the hexagons are bumps (Fig. I.5-left).

• If γ < 0, ψ = π for α < αc and ψ = 0 for α > αc (Fig. I.5-right).
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Figure I.4: zinterface(X, Y, 0) computed from Eq. I.34 with ηβ = 1, kc = 2π,
ψ = 0 (left) and ψ = π (right). For ψ = 0, zinterface(X, Y, 0) is maximum at the
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zinterface(X, Y, 0) is minimum at the center of the hexagons, hence bumps at the
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Figure I.5: Amplitude β of the modes constituting the four branches arising
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the critical value of the control parameter. The unique stable branch is for β = 0
and α < αc (green solid line). The other branches are unstable (red dashed lines).
Left: for an elastic layer with γ > 0. Right: for an elastic layer with γ < 0.

I.4.4 Stability Analysis of the branches found with the LSK expansion

Here we discuss the stability of the hexagonal equilibrium patterns emerging from

the weakly nonlinear analysis. The basic principles of determining whether an

equilibrium state of a particular system is stable or not depends on the second

variation of the free energy of the system. If this quantity is positive definite, the
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equilibrium state is energetically stable. On the other hand if the second variation

of the free energy is negative, the equilibrium state is unstable.

We derive a generic expression for the energy of the non linear solution in-

tridued in Eq. I.22, t(α) = t0(α) + ηt1 + η2t2 + · · · where t1 is given by Eq. I.26.

The equilibrium state(s) are found by minimizing an energy functional denoted as

V which is assumed to depend on the three complex amplitudes ξi of t1.

The translational symmetry of the system in plane (OXY) imposes that V

expressed as a function of the complex amplitudes is invariant upon any horizontal

translation. Therefore, the more general expression of V is:

V(ξi) = A(ξ1 ξ1 + ξ2 ξ2 + ξ3 ξ3) +B(ξ1 ξ2 ξ3 + ξ1 ξ2 ξ3) + · · · . (I.35)

The cubic term is invariant through horizontal translations thanks to the condition∑
i ki = 0. Otherwise, the coefficient γ would be zero. The functional Eq. I.35

can be viewed as a series expansion at order 3 in the amplitudes, of a quantity

proportional to the total energy of the system. A and B are two real parameters

which depend on α. In order to be consistent with the linear stability analysis,

A has to be positive for α < αc and negative for α > αc. As shown in section

I.4.3, one can take, for any equilibrium solutions of the system, ξ1 = βeiψ and

ξ2 = ξ3 = β. Eq. I.35 simplifies in:

V(β, ψ) = 3Aβ2 + 2Bβ3 cosψ + · · · (I.36)

The equilibrium condition ∂V/∂β = 0 yields A/B = (α− αc)/(2γ). One rewrites

V (up to a multiplicative positive constant) as:

V(β, ψ) = −3(α− αc)
2

β2 − 2γβ3 cosψ + · · · (I.37)

From ∂2V/∂β2|β=0 = −3(α − αc), ∂2V/∂ψ2|β=0 = 0 and ∂2V/∂ψ∂β|β=0 = 0, we
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conclude that the branches with β = 0 are stable for α < αc, and unstable for

α > αc.

For the amplitude of the non trivial branches deduced from the LSK method, β =

−(α − αc)/(2γ cosψ), one finds ∂2V
∂β2 = 3(α − αc). Thus, the non zero equilibrium

solution for α < αc is unstable (with respect to a perturbation of the amplitude of

the modes). Furthermore, ∂2V/∂ψ2 = 2γβ3 cosψ is negative if γ > 0 and ψ = π

or if γ < 0 and ψ = 0. Thus the non zero equilibrium solution for α > αc is also

unstable (with respect to a perturbation of the relative phase). One concludes

that the non trivial branches found with the LSK expansion at order 2 (in Sec.

I.4.2) are unstable, expect for the trivial branch β = 0 for α < αc (see Fig. I.5).

Above, we have considered arbitrary small amplitudes, hence |α−αc| � 1. In

the next section we deal with finite amplitudes of the deformations, and we demon-

strate that, upon a gradual decrease of α, the subcritical branch (corresponding

to α < αc) continuously leads to a new branch which is stable, the structure of the

hexagonal patterns being identical (with hollows at the center of the hexagons).

I.5 A tentative functional for the energy

The series expansion at order 3 of V developed in section I.4.4 (see Eq. I.37)

has been deduced from the LSK development at order 2, taking into account the

translational symmetry of the system. It is valid in the small amplitudes limit.

On the other side, the limit of the energy as the deformation approaches infinity

anywhere in the system, has to be infinity (due to the elastic part of the energy).

In order to get a series expansion that captures this property, one considers the

quartic terms in the energy expansion, and we arbitrarily drop the higher order

terms. Here, the goal is not to obtain a quantitative description of the system but

to get a qualitative, yet heuristic, description able to give insight on features re-

lated to finite deformations. With the requirement of the translational symmetry,
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the functional to be minimized reads now:

V(ξi) = −α− αc
2

(ξ1 ξ1 + ξ2 ξ2 + ξ3 ξ3)− γ(ξ1 ξ2 ξ3 + ξ1 ξ2 ξ3)

+ κ(ξ21 ξ
2

1 + ξ22 ξ
2

2 + ξ23 ξ
2

3) + λ(ξ1 ξ1ξ2 ξ2 + ξ3 ξ3 ξ2 ξ2 + ξ3 ξ3 ξ1 ξ1).(I.38)

We assume that quartic terms are positive definite (κ + λ > 0). Again, we look

for the minimum of V as a function of β, restricted to cases (see below) where all

ξi’s have the same modulus β but an arbitrary phase ψ. The quantity to be be

minimized reads:

V(β, ψ) = −3(α− αc)
2

β2 − 2γβ3 cos(ψ) + 3(κ+ λ)β4. (I.39)

As previously, the sign of γ is irrelevant because it can always be changed by

a change of ψ into ψ + π. Therefore we shall take γ positive. The equation of

equilibrium with respect to the fluctuations of ψ is:

∂V
∂ψ

= 0. (I.40)

This yields ψ = 0 or ψ = π. The equation of equilibrium with respect to the

fluctuations of β is:

∂V
∂β

= 0. (I.41)

This yields

β
[
−3(α− αc)− 6γβ cos(ψ) + 12(κ+ λ)β2

]
= 0. (I.42)

One finds for the equilibrium values of the amplitude β = 0, β = βπ, β = β0+, or

β = β0−. βπ is for a phase ψ = π. β0+ and β0− are for ψ = 0. Since β has to be
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real and positive, the three last solutions are limited to restricted ranges of α:

βπ =
−γ +

√
γ2 + 4(κ+ λ)(α− αc)

4(κ+ λ)
∀α > αc (I.43)

β0+ =
γ +

√
γ2 + 4(κ+ λ)(α− αc)

4(κ+ λ)
∀α > αc −

γ2

4(κ+ λ)
(I.44)

β0− =
γ −

√
γ2 + 4(κ+ λ)(α− αc)

4(κ+ λ)
∀α ∈

[
αc −

γ2

4(κ+ λ)
: αc

]
(I.45)

β is plotted as function of α in Fig. I.6. The branch βπ is unstable with respect
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Figure I.6: Bifurcation diagram showing the amplitude of the modes as a function
of the control parameter α, for γ = 1.19 (from Eq. I.30) and (κ+ λ) = 0.79 in
Eq. I.42. The stability of the branches are indicated in the plot.

to small fluctuations of ψ because the coefficient −γβ3 of cosψ in the expression

of V is negative. This branch is stable with respect to small fluctuations of β

because, as it can be checked, the sign of ∂2V/∂β2(βπ, π) is positive. In the same

way, the branch β0+ is stable with respect to small fluctuations of β or ψ, whereas

the branch β0− is stable with respect to small fluctuations of π but unstable with

respect to small fluctuations of ψ (see Fig. I.6).

To conclude, one has found a unique stable non trivial branch, β0+. The corre-

sponding patterns are hexagonal, with hollows of finite amplitude at the center of

the hexagons. The two other non-trivial branches, whose instability for infinitesi-

mal amplitudes were already demonstrated (see I.4.4), are unstable even for finite
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amplitudes.

Beyond this conclusion arising from a heuristic form for the energy functional,

one can infer the existence of a branch of stable subcritical solutions by a general

argument. The subcritical branch has been rigorously evidenced in the limit of

infinitesimal amplitudes, and it is found to correspond to a saddle point of the

energy, with a maximum in the β-direction. The existence of a local minimum

beyond the linear threshold in the energy landscape is ensured by the infinite limit

of the energy as β approaches infinity.

I.6 Conclusions

Above we have considered equilibrium solutions emerging from the superposition

of three modes whose wave-vectors fulfill the resonance condition, and we have

focused on hexagonal patterns for which, as demonstrated above, the (real) am-

plitude of the modes are equal. Consider the fourth order series expansion of

the energy functional, which is formally given by Eq. I.39. As stated above,

the energy is stationary against a variation of the amplitudes and the phase for

|ξ1| = |ξ2| = |ξ3| and ψ = ±π, yielding the hexagonal patterns.

We have demonstrated, with the help of the LSK Expansion, the existence of

two non trivial branches of periodic hexagonal equilibrium patterns. One of them

is supercritical, and leads to unstable patterns with bumps at the centers of the

hexagons. The subcritical one, for which the centers of the hexagons are hollows,

is also unstable for infinitesimal amplitudes. It is connected to another non trivial

branch with the same type of hexagons, which are stable. Other patterns are

possible but they lead to either unstable states, or patterns with a higher energy

compared to the energy of the stable hexagons. This scenario, in which the insta-

bility is subcritical, is fully consistent in with experiments. Thes observations and

calculations have also been confirmed with the help of Finite Element Simulations
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which we mention briefly below.

The non-linear threshold, at which the instability patterns appear, obtained

from the simulations (α = αmin(kc) ' 5.75) is in agreement with the experi-

mentally observed threshold (Fig. I.2). The maximum vertical deviation of the

surface calculated from the simulations are slightly smaller than those measured

experimentally. This small difference is probably due to the constitutive law of

the polyacrylamide gels, which may not be rigorously neo-Hookean for these large

deformations. The mean area A per hexagons has been estimated by dividing

the area occupied by the hexagons whose boundaries are not in direct contact

with the borders. One finds A = 53 ± 6 cm2. The corresponding area calculated

from the simulations, i.e. for ` ' 2.96h,10 is ' 47.4 cm2, in agreement with the

experiments.
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Appendix II 
 

Propagation of Interfacial Waves in a Thin film 

supported over Liquid 

 

 

 

II.1. Introduction  

 Understanding the friction between solid surfaces is of utmost importance due 

to its widespread practical implications. The common modes of propagation of a rigid 

slider over an elastomeric material are either by true sliding or stick-slip. Schallamach1 

made an important observation that there can be a third mode via which a rigid object 

moves over the elastomer, i.e, via forming interfacial surface instabilities that are 

commonly known as ‘Schallamach waves’. Schallamach waves2,3 can be considered as 

waves of detachment that induce localized slip and thus help in sliding. When the rigid 

slider is brought into contact with the elastomer and set into motion in one direction, 

the elastomeric substrate at the slider’s frontal edge is compressed, whereas the rear 

edge is stretched. When the stored elastic energy in the buckle (formed at the front edge 

of the contact) exceeds the adhesion energy in the contact region, it relaxes and passes 

as a wave underneath it. The motion of these interfacial waves is in a direction opposite 

to the motion of the slider. This is in contrast with the movement of bubbles observed4 

under the contact between a rigid slider and an elastic substrate where they move in the 

same direction as the slider. In spite of several studies in this field, there are opposing 

ideas regarding the origin of these interfacial waves: some authors argue that they are 
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purely elastic5 while others believe that these are viscoelastic6. Recent experiments7–9 

to understand these points were performed using semi-infinite elastic media. We 

propose that studying the statics and dynamics of these waves by sliding a smooth rigid 

indenter over a thin elastomeric film10 may give a better understanding of these 

interfacial instabilities. Not only is such a system more suitable to understand 

Schallamach waves but the moving wrinkle could also serve as a nice model system to 

study the motion of an elastic contact line11 that may be pinned via double or 

multivalued energy wells.  

 

II.2. Experimental Section  

II.2.1. Preparation of the Elastic Film on a Pool of Liquid.  

 A 1:1 solution (density  1.13 g/cc, 20°C) of glycerol (Fisher Chemical) and 

deionized (DI) water was degassed for 30 min using a vacuum pump (Welch Duo-Seal, 

Model no. 1402). Sylgard 184 and Sylgard 186 (Dow Corning®) were mixed in 1:1 ratio 

(the amount of crosslinker added to the mixture was 10% of the weight of the base 

polymer) that was degassed for 10 min under high vacuum. Such a combination of the 

polymers was chosen to ensure that the film has a high tear strength as well as a 

moderately high elastic modulus. All the samples were prepared in round polystyrene 

Petri dishes (VWR, 100 mm diameter and 10 mm high). The Petri dishes were filled 

with the glycerol-water solution to about half of their height. Different quantities of the 

PDMS mixture were gently released on the surface of the liquid with the help of 

micropipettes and the added amount was weighted using a sensitive balance. The 

samples were allowed to stand for ~1h that allowed the spreading of the PDMS mixture 

on the liquid surface following which they were carefully placed inside an oven and 

cured for 90 min at 75° C.  Using the known cross-sectional area of the dish and the 
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weight of the polymer added, the thicknesses of the elastic films (2 - 20 m) were 

estimated. The elastic modulus of these films is about 1MPa. 

 

II.2.2. Observation of Schallamach Waves in the thin Elastic film.  

 A glass hemisphere (7.5 or 12.5 mm diameter) was cleaned in piranha solution 

and grafted with polydimethylsiloxane chains (DMS T-22, Gelest Inc.). It was then 

thoroughly washed with chloroform and dried with ultrapure nitrogen gas. A micro-

load cell (Phidgets Inc.) was attached to the glass indenter such that it could measure 

the tangential force (Labview) that it experiences. The sample containing the thin elastic 

film supported over liquid is placed on a motorized stage that is moved at fixed 

velocities. The whole setup is placed atop a vibration isolation table (Micro-G, TMC). 

A high-speed camera (Redlake MotionPro) is used to record the interfacial phenomena. 

 

II.3. Observations and Results 

 Preliminary observations show that when a PDMS grafted glass hemisphere is 

slid laterally against a thin elastomeric film (~ 5-20 m) supported on an incompressible 

liquid (1:1 aqueous glycerol), interfacial wrinkles form in the contact region that passes 

through the area of contact as pulses (Figure II.1). Our experiments show that the 

tangential force experienced by the hemispherical slider increases by almost three times 

when the film thickness is increased by a factor of three (Figure II.2). 
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Figure II.1: (A) Formation of interfacial waves at the interface of a PDMS-grafted 

rigid hemisphere and a thin film of silicone elastomer supported on the surface of an 

incompressible liquid (1:1 mixture of water and glycerin by volume) due to sliding. 

When the hemispherical indenter (PDMS) is slid past the elastomeric film of thickness 

(7.5 m), a single wrinkle develops, which propagates through the interface when the 

bending energy stored in it overcomes the adhesive energy. The sequences of the 

motion of the wrinkle are shown in (B). (C) A typical graph of the tangential force (FT) 

experienced by the indenter as a function of time (Film thickness: 16m and Stage 

velocity Vstage: 0.2 mm/s) that shows the signature of the periodic pulses of the 

Schallamach waves.10 

 

  

 
Figure II.2: Graphs of the tangential force (FT) experienced by the PDMS-grafted 

hemispherical glass slider (12.5 mm diameter) during each pulse of the interfacial 

instability as a function of the film thickness (left: 8 m and right: 22 m) on a pool of 

1:1 aqueous glycerol. The stage velocity is 0.2 mm/s in each case. If a pulse gets pinned 

somehow, multiple waves may pin additionally thereby increasing the tangential force 

recorded by the load cell as seen here (left), which collectively depin from the contact 

region.  
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Now, when the contact area between the glass slider and the thin elastic film was 

increased by using a larger slider, the tangential force experienced by the same film was 

much higher (Figure II.3). We also note that experiments of sliding over a 16 m thick 

elastomeric film showed that the maximum tangential force experienced during each 

wave pulse increased as the stage velocity was increased (Figure II.4). With an order of 

magnitude increase in the stage velocity (0.2mm/s to 2mm/s), the force increased by 

70%.  

 
Figure II.3: Graphs of the tangential force (FT) experienced by PDMS-grafted 

hemispherical glass sliders of different diameters (7.5 mm and 12.5 mm) during each 

pulse of the interfacial instability over an elastic film (thickness: 16m) over a pool of 

1:1 aqueous glycerol at stage velocity, Vstage=0.2 mm/s. 

 

 

 

 
Figure II.4: The maximum tangential force experienced by a PDMS-grafted 

hemispherical slider (diameter: 12.5 mm) as the stage velocity (Vstage) is varied. These 

experiments were performed with a 16 m thick PDMS film over a pool of 1:1 aqueous 

glycerol (by volume). 
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A possible way to approach understanding the interfacial wave motion in these thin 

elastic films is given below. Initially, the rigid contactor is brought into contact with 

the film due to which there is bending in the film against which there is the hydrostatic 

loading of the liquid. We expect there to be a characteristic lengthscale in the system 

from the balance of the bending and the gravitational energies, 
4/1)/( gDLc  ,12 

where D is the bending rigidity of the film [ )1(12/ 23  EHD ],  is the density of the 

liquid underneath and g is the acceleration due to gravity. Now, when the contactor (or 

the stage on which the sample is placed) is moved, a wrinkle forms at the frontal edge 

of the contact that stretches to a point when the stored energy in the wrinkle becomes 

equal to that of the adhesion energy in between the contact region of the hemisphere 

and the elastic film. The viscoelastic dissipation in the wrinkle can be linked to an 

analysis by Chaudhury and Kim13 for the case of bubble motion underneath a contact 

of the rigid object over a thick substrate. Our case is slightly different as we have thin 

films and the relationship for the dissipation rate will modify as follows, 

  VVVaHVF
n

T 0~                                                     (II.1) 

Where  is the shear modulus, a is the contact diameter, V is the stage velocity and Vo 

is a constant. We can take n =1 for polymeric materials and for these thin films too.13 

In figure II.2, we observed that when the film thickness was increased by three times, 

the tangential force FT became twice. In figure II.3, we observed that when the contact 

diameter was increased by about two times, the tangential force FT also doubled. 

Finally, figure II.4 points to the fact the tangential force is linear with the stage velocity. 

All these observations show that the model used for the viscoelastic dissipation in the 

bulk may also be applicable to the thin films, however the vertical deformation into the 

bulk may be limited by the film thickness that reduces the resistive force in sliding over 
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surfaces. This leads us to the expression of the tangential force experienced in these 

thin films as  0~ VVaHFT  . 

 

II.4. Summary and Future Work   

 We observed the formation and sliding of interfacial wrinkles in between a rigid 

glass hemispherical slider and a thin PDMS elastic film supported over a pool of 

aqueous glycerol. We showed preliminary results of how the tangential force 

experienced by the slider during each wave pulse varies with the velocity of the 

substrate, the thickness of the elastic film and the contact diameter. These results may 

help in developing a model for the interfacial wave propulsion. The tangential force 

and the velocity will give us an estimate of the viscoelastic dissipation.13 At this stage, 

we have some understanding of the mechanism of the motion of the waves and it can 

be linked to the viscoelastic dissipation in the bulk. Sliding over thin films is much 

easier than over bulk as the tangential force is proportional to the film thickness as 

opposed to the vertical deformation in the bulk. This model study will be useful to 

understand viscoelastic dissipation at the crack tip and even rate dependent adhesion 

hysteresis. Measuring the shape of the elastic contact line (pinned wrinkle) will give an 

estimate of the spring constant. At the end, defects (in the form of tiny bumps of 

different geometry) can be introduced over the curved surface of the hemisphere to 

study pinning and depinning of the elastic contact line over them that may give us 

important insights into the rich field of contact line phenomena. 
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Appendix III 

 
Motion of Soft Gel Spheres over Soft Substrate 

  

  

 

 

 

III.1. Introduction and Observations 

 
Particles1 or drops2 on a soft deformable substrate can move if they experience a strain 

energy gradient underneath it. An elastomeric object can also roll up an inclined flat 

solid substrate due to the differential swelling on the either edges of its contact that 

creates a torque.3 We ventured to see what happens when a highly deformable soft 

sphere is placed atop a soft thin film so that their strain energy fields can interact 

cooperatively. When a single such sphere of a very soft gel is placed upon the gel thin 

film, it appears somewhat like a hemisphere. Close observation at the contact line 

reveals that the lower substrate deforms significantly too due to the normal upward 

component of the surface tension of the gel drop4–6. When two of these spheres are 

placed on the gel film close to each other, they attract and soon upon formation of a 

bridge at the base of the two, their edges heal instantaneously (Figure III.1 A). The 

scenario here is somewhat similar to that of two coalescing liquid drops7,8. However, 

when the spheres were placed at some distance away from each other, they were found 

to repel (Figure III.1 B). We made these observations in the summer of 2014 and a 

recent publication reported how liquid drops repel from each other on a soft thin 

support9. Performing very careful experiments with our system maybe a better way to 

study such motions on thin substrates as one need not have to make the substrate vertical 
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to facilitate the motion of liquid drops by gravity9 as the deformations in the silicone 

gel films are much smaller than those in our softer polyacrylamide gels.   

  If many such gel spheres are placed on the soft film, they may all coalesce to 

form a tightly packed array that could have potential use in optics as an assembly of 

lenses. One could then vary their curvature by changing the modulus and sizes. The 

motion of a gel sphere on a substrate may also serve as a model system to understand 

how cells move on tissue substrates.  

    

 

Figure III.1: Attraction or Repulsion of two gel spheres (shear modulus ~ 40 Pa) when 

placed on a thin gel film (40 Pa, 1 mm thick) (A)  When two such gel spheres were 

placed close enough, they attracted and coalesced forming a curved ridge in between 

the two spheres. The coalesced gel spheres (A, final snapshot) maintain their original 

shape partially as opposed to that of liquid drops where they meet to form a single drop 

finally. (B) When the gel spheres were placed a little further away from each other, they 

were found to repel, thus moving apart.  

 

The problem of studying the coalescence of two gel spheres is complex and needs a 

detailed theoretical analysis in conjunction with clean experiments. To begin with, one 

could write down the total energy of the system due to the different contributions 

(adhesion energy, surface energy and elastic energies due to the deformation in the 

sphere as well as the gel film). By performing a functional minimization of the total 
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energy as a function of the separation distance between the two gel spheres, we will be 

able to find the energy of attraction in such a system. Thus, a thorough analysis by 

taking into consideration large deformation theory of the soft solid along with the 

appropriate adhesion and surface energies will be required. 

 

III.2. Experiments 

 
 Highly spherical gel spheres were made by curing polyacrylamide gel solution 

drops of different volumes by suspending them in a liquid density gradient (Figure III.2) 

The density gradient was formed in small beakers with a liquid heavier than the gel 

solution (PDM-7040, Gelest Inc., density 1.07 g/cc) at the bottom and a lighter liquid 

(n-octane, 97% pure, Acros organics, density 0.7 g/cc) on the top. After all the 

ingredients of the gel were mixed, different volumes of the gel solution were released 

gently over the top surface of the octane in the container housing the density gradient. 

The drops of gel solution become neutrally buoyant at the diffusing interface of the two 

liquids forming the density gradient. These suspended gel drops cure to form highly 

spherical gel drops that were subsequently washed in fresh n-heptane (Fisher 

Chemicals) repeatedly and dried moderately in air. The shear modulus of this gel was 

measured to be 40Pa. The addition of a red dye in the gel solution to form spheres 

allows better visualization. The gel film was cured between two parallel glass plates 

separated by 1mm thick Teflon coated spacers. The upper glass plate being hydrophobic 

allowed its easy removal from the gel film. The events of attraction or repulsion of the 

gel spheres on the gel film were recorded using a CCD camera. 
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Figure III.2: Schematic of the experimental method to prepare perfectly spherical gel 

spheres in a density gradient, where the upper lighter liquid was octane (density 0.7 

g/cc) and the lower heavier liquid was silicone oil (PDM-7040, density 1.07 g/cc). The 

gel drops were introduced in the density gradient as soon as the catalyst and initiator 

were mixed in the precursor solution and the drops were cured to form elastic gel 

spheres in the density gradient for 2h at room temperature before any experiments were 

performed.  
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Appendix IV 

 
Thermally Induced Durotaxis of Rigid Spheres 

on a Soft Hydrogel: Elastic Marangoni Effect 

 

 

 
IV.1. Introduction 

 
Directional transport of particles induced by a gradient of elasticity is well known. 

Cells1,2 and droplets of water3 have been found to move along stiffness gradients, an 

elastic cylinder can be rolled on a surface by differential swelling4–6 and this also 

manifests in the study of crystal dislocations, where solute atoms diffuse from one 

region to another in an inhomogeneous strain field in a crystal.7 Our own studies8,9, 

reported in the previous chapters, show how rigid particles interact to form dimers and 

clusters when they are suspended in soft elastic gels that are also induced by the gradient 

of strain energy density. While most of the studies depend upon the differential strain 

induced in an elastic system due to stretching, swelling or designing thickness graded 

substrates, our idea is to find a way to generate a gradient of the elastic modulus itself 

by controlling a system parameter, i.e, temperature. Soft polymers like rubbers and soft 

gels have unique mechanical properties. According to the theory of rubber elasticity, 

their elastic modulus is directly proportional to the temperature of the state it is in. Thus, 

the polymeric gel’s modulus increases when it is heated, and it becomes softer upon 

cooling. Now, if we have a uniformly thick gel slab such that it is cooled on one edge 

and heated on its opposite edge, we would expect a gradient of elasticity to be generated 

along the length of the slab. Using this system with a temperature-induced elasticity 
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gradient and combining our knowledge of how rigid spheres indent soft gels of different 

elastic moduli from elastobuoyancy phenomenon10, we studied how particles move 

along these gradients in soft substrates. Our philosophy was to see the possibility of 

finding an elastic analog of Marangoni flows, the latter being driven by temperature-

induced surface tension gradients in liquids11,12, where we would have a motion of 

particles along a temperature induced elasticity gradient.  

 

IV.2. Experiments  

 
IV.2.1. Preparation of Gel  

Crosslinked polyacrylamide gels were used for our studies that were prepared using the 

experimental protocol mentioned in Chapter 2. The shear modulus of the 11% gel used 

for the current experiments was measured using the oscillatory rheology test described 

in Chapter 6 and it was found to be 294 Pa.  The gel solutions were cured in home built-

glass containers (75mm x 50mm x 50 mm) whose inner walls were grafted with 

polydimethylsiloxane chains (DMS T-22, Gelest Inc.) to ensure that the gel solutions 

contacted the walls at 90° such that the cured gel would be flat. The containers housing 

the gels were covered with Parafilm to avoid evaporation and after 30 minutes of curing, 

a layer of PDMS oil (DMS T-22, DMS T-31, DMS V-35, Gelest Inc.) was poured on 

top of the gel surface. The gels were cured for 2h at room temperature with a layer of 

oil on top to avoid evaporation and formation of surface corrugations.  
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IV.2.2. Surface modification of steel spheres via grafting their surfaces with 

Polydimethylsiloxane chains. 

Steel spheres (bearing-quality E52100 alloy steel, density 7.8g/cm3, McMaster-Carr) of 

diameters ranging from 2mm to 10mm were sonicated in acetone in a Fisher Scientific 

Ultrasonic Cleaner (Model no. FS5) for 10 minutes followed by sonication in ethyl 

alcohol for another 10 minutes after which they were blow dried with ultra-pure 

nitrogen gas. These spheres were submerged in vials containing PDMS oil (DMS T-22, 

Gelest Inc.) and heated in the oven at 80 °C for 24h. After the grafting reaction was 

over, they were cleaned with chloroform thoroughly and dried with compressed 

nitrogen gas.  

 

IV.2.3. Experiment with a directional gradient of elasticity of gel due to a thermal 

gradient. 

The gel container was fixed on a 3D manipulated stage with two degrees of rotation 

about the X and Y-axes, which was mounted on a vibration isolation table (Micro-g, 

TMC) (Figure IV.1). In order to create a temperature gradient across the length (75 

mm) of the glass container housing the elastic gel, we adhered two flat conductive 

copper circulators to its opposite walls with thermal (conductive) resistant double-sided 

tapes. By convectively circulating liquids at the desired temperature through these 

copper walls, it would be possible to either heat or cool the gel. PDMS oils (DMS T-

22, DMS T-31, DMS V-35, Gelest Inc., with different viscosities depending on the 

molecular weight) were used over the surface of the gel in different containers during 

the curing process. Since the surfaces of the steel spheres were grafted with PDMS 

chains, we used PDMS oils of the same chemical composition, the reason for which is 
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explained in the following. The free energy of adhesion between a steel bead and the 

gel13 is given by 
))((2 3231132   dG
 where, 1  is the surface energy of 

the steel bead, 
d

2 is the dispersion component of the surface energy of the gel and 3  

is the surface tension of the surrounding liquid medium. The surface energies of the 

PDMS grafted bead and surrounding PDMS liquid medium are equal, 31   (~ 22 

mN/m), which makes the free energy of adhesion between the bead and gel zero 

allowing a thin lubricating layer of the PDMS oil in between the steel bead and the gel. 

While using water as the surrounding medium would also give a zero work of adhesion 

( 32   ), we saw some swelling induced instability patterns on the surfaces of the gel 

and thus chose PDMS oils and PDMS grafted chains on the beads as our system. 

Subsequently, the surface of the gel was adjusted for zero tilt before we started the 

heating/cooling processes. Each of these copper circulators was then connected to 

temperature baths maintained at 368 K and 268 K respectively. The gel was 

conductively heated and cooled from the two opposite walls of the container over a 

period of 1h to generate the temperature gradient across its length before any 

experiments were performed. We measured the temperature gradient along the length 

using a thermocouple (Figure IV.2). The sphere was placed on the hotter side of the gel 

and its motion was recorded using a Video Microscope (Infinity) that was equipped 

with a CCD camera (Sony, Model no. XC-75).  
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Figure IV.1: Schematic of thermally induced durotaxis of rigid spheres on a soft 

hydrogel. The two opposite walls of a home-built glass container are attached with 

copper plate circulators (with temperature resistant double sided tapes). One of the 

circulators is connected to a hot temperature bath (THOT ~ 368 K) and the other one to 

a cold temperature bath (TCOLD ~ 268 K). The temperature gradient established in the 

gel (after 1h) leads to the gradient of elasticity (modulus decreasing in the direction of 

the arrow). The sphere moves towards the right as will be seen in experimental 

snapshots later. We used PDMS oil as the upper phase to prevent evaporation of the gel 

as well as maintain a thin lubricating layer between the PDMS grafted steel spheres and 

the gel.  

 

 

 
Figure IV.2: A typical temperature profile generated in the gel across its length inside 

the glass container for four different experiments. The temperatures on the two extreme 

ends here denote those measured at the walls from the inner side of the glass container 

with the gel. The temperatures of the two copper plate circulators (attached to the glass 

with temperature resistant tapes), read (left: THOT ~ 368 K) and (right: TCOLD ~ 268 K) 

respectively as measured from the outer exposed side.  
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IV.2.4. Measurement of the Viscosity of the PDMS oils used as the lubricant. 

 We used Ostwald viscometer to measure the kinematic viscosity of the oils at a 

room temperature of 21°C. For the PDMS oils that we used, we found the viscosities as 

259.9 cSt for DMS T-22; 552.8 cSt for the mixture of DMS T-23 & DMS T-31; 1171.7 

cSt for DMS T-31 and 4743.8 cSt for DMS V-35 (Gelest Inc.). The density of these 

PDMS oils is about 970 kg/m3. 

  

IV.3. Observations of thermally induced Durotaxis of rigid spheres. 

 We observed that the spheres moved from the stiffer (hot) side of the gel to the 

softer (cold) side across a temperature-induced elasticity gradient (Figure IV.3). We 

also found experimentally that spheres were able to move upward a slope of about 0.6° 

due to the driving force of the temperature induced elasticity gradient (Figure IV.3 C). 

These experiments show that stiffness gradient gives a driving force to the spheres that 

generates the motion in these gels. We studied the motion of the thermally induced 

Durotaxis of rigid steel spheres by varying their sizes and using PDMS oils of different 

viscosities as the upper phase. The oils prevented evaporation of the water from the gel 

network as well as maintained a thin lubricating layer between the sphere and the gel 

as explained in the previous section. While the spheres moved along the gradient well 

till about ~ 5 – 15 mm depending on the size of the sphere. It was not possible to see 

motions for larger distances probably because the driving force was not enough. At 

times, when the sphere sizes were large, we also saw some tiny droplets of water 

appearing on the gel surface14,15 after a prolonged contact of the sphere with the soft 

gel. These tiny drops of water might also prevent the motion of the sphere by forming 
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liquid water bridges between sphere and gel, leading to breakage of the oil film thus 

thwarting its motion. 

  

 
Figure IV.3: Experimental snapshots of motion of steel spheres (PDMS grafted) along 

a temperature-induced elasticity gradient in the gel (shear modulus 294 Pa) with an 

upper layer of PDMS oil (DMS T-22, kinematic viscosity: 259.9 cSt). The temperature 

of the gel at the left wall was about 348 K and that at the right wall was about 278 K.  

(A) The motion of a 7mm diameter steel sphere on a horizontal surface along the 

gradient. (B) The motion of a 10mm diameter steel sphere on a horizontal surface along 

the gradient. (C) The motion of a 9mm diameter steel sphere uphill (0.6°). We observe 

the formation of some bubbles in the gel after it has been heated that is not present when 

the gel is at room temperature or has been cooled. 

 

 

IV.4. Mechanism of thermally induced Durotaxis of rigid spheres. 

 We describe in the following a possible mechanism of the Elastic Marangoni 

effect. When a rigid sphere is placed on a soft solid, its depth ( ) into the solid is 

determined by the balance of its weight and the elastic forces of deformation. Our 

previous work9,10 shows that as the modulus increases, the depth decreases. The typical 

material length scale in such a system is defined by 0 (~ g  ). We chose to work 

with sphere-gel systems in which the deformations were not very large and the depth 
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of the sphere into the substrate scaled10 as  2~ Rg . When we place a rigid sphere 

on the stiffer (hot) part of the substrate, we observe that it migrates towards the colder 

and softer region. During this process of the sphere traversing on the gel, the latter 

undergoes continuous cycles of deformation followed by subsequent relaxation. While 

part of the potential energy is converted into the elastic energy cost to deform the softer 

substrate further as the sphere moves, another part is dissipated due to the continuous 

deformation-relaxation of the elastic substrate. We can express the driving force 

experienced due to the gradient of elasticity as follows,  

 )/(~ * dxdgmFdriving  .                                     (IV.1) 

Substituting for  2~ Rg from the elastobuoyancy theory in the above equation (

)/(~ 3 dxdRgFdriving  ), and after some manipulations, we get:  

  )/(~ 52
dxdRgFdriving                                   (IV.2) 

Now, using a scaling for the elastic shear modulus,
3~ akT , where k is the 

Boltzmann constant, T is the temperature and a is a molecular dimension, we get the 

following expression:     )/(~ 352
dxdTkaRTgFdriving  . The temperature 

gradient is considered to be more or less linear and therefore a constant at the central 

part of the container as seen from Figure IV.2. If we assume that the thin viscous film 

is draining out gradually from the lubricating layer in between the sphere and the gel, 

the scaling for the thickness of the film, h, as a function of time, t, is: 

R

gt

h 


~

1
                                                  (IV.3) 

where is the viscosity and R is the lateral size of the contact. The viscous stress in the 

thin lubricating film scales as 
h

V
  and the viscous force 

2R
h

V
 . Comparing the 



300 

viscous force with the driving force and solving the differential equation (and taking 

V~ dX/dt ), we find an expression as follows:  

 
t

k

aRg
XT 







 32/72/3

2~



                              (IV.4) 

Plotting the experimental data from spheres of different radii and oils of different 

viscosities as XT 2 as a function of t , we get slopes of each that we plot in Figure IV.4 

A as a function of the size of the spheres. The black dotted line shows arbitrarily the 

slope of this plot if it followed as R7/2 as suggested by the scaling in equation IV.4. In 

any case, we show in Figure IV.4 B the rescaled values of the slope of (XT 2/ t ) with 

the square root of the dynamic viscosity as suggested by the equation IV.4. These 

scaling results are very preliminary and may not be the correct description of the 

thermal induced Durotaxis of these rigid spheres.  

 

 

Figure IV.4: (A) Experimental data showing the slopes of (XT 2/ t ) for steel spheres 

of different radii and moving on a gel (shear modulus 294 Pa) through different PDMS 

oils DMS T-22 ( = 0.259 Pa s), DMS T-31 ( = 1.172 Pa s) and DMS V-35 ( = 4.744 

Pa s). The dotted line shows a slope of R7/2, which shows the experimental data does 

not follow the scaling for R as predicted by equation IV.4. (B) Rescaled slopes of (XT2/

t ) by multiplying with   (equation IV.4) show somewhat collapse of the 

experimental data.  
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 Another mechanism for the thermally induced Durotaxis would be to consider 

the viscous dissipation in the gel underneath the sphere because as it moves over the 

surface, the gel undergoes constant cycles of deformation and relaxation. Since these 

elastomeric processes are rate dependent and includes viscoelastic dissipative 

contributions, we consider a power law for the fraction of energy dissipated16,17 during 

the motion of the sphere on the gel,  nVV 0~ , where V is the velocity of the sphere 

and Vo and n are constants. The rate of energy dissipated is then, 

  VVVR
dt

d nndissipatio

0~ 


                                     (IV.5) 

Here, is given by the elastobuoyant equation in the small deformation limit (~

 /~ 2gR ), and the force is then given by,  

 ndriving VVgRF 0

3~                                        (IV.6) 

Comparing the expressions from equations (IV.2) and (IV.6), we get a relationship for 

the velocity of the motion of the spheres in along the temperature gradient as follows:  

 
dx

d
R

g
VV

n 



 2

20 ~


                                          (IV.7) 

 

For a linear viscoelastic rubber, Chaudhury and Kim17 considered n=1 in the equation 

(IV.5) for their analyses in bubble motion underneath a shear induced motion of the 

rigid contactor that gave reasonable explanations for their observations. Thus, we have 

for the velocity of the motion of sphere under a thermal gradient, by replacing 

3~ akT ,  

t
k

a
RgVXT 










3
2

0

2~                                        (IV.8) 
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While these analyses are preliminary, we hope that it will inspire to develop better 

models of the thermally driven elastic motion of the spheres on a soft gel. 

 

 

 

IV.5. Summary and Future Work. 

 In the above, we have reported some preliminary observations of the motion of 

rigid spheres along a temperature induced gradient of elasticity. While our results are 

promising, we have to study this effect more carefully by taking into consideration 

possible volume changes due to the heating or cooling of the polymer that may lead to 

local curvatures in the gel surface. We have observed that in some cases when the 

spheres are large, few microdroplets of water squeezes out from the gel network14,15 

that leads to the formation of liquid bridges in between the sphere and the gel, thus 

thwarting its motion. Effects of electrostatics between the sphere surfaces and the gel 

may also be the reason why the spheres often abruptly stopped their motion along the 

gradient. The oil phase on top of the gel surface prevented evaporation from the 

polymer network, however, if the experiments were performed over a long time ( 8 or 

more hours), we observed rigidifying of the gel especially close to the hot wall thus 

forming undulatory grooves. We also saw the formation of bubbles in the hotter region 

of the gel that may induce slight curvature of the gel due to volume expansion. A 

possibility to overcome these would be to use a polymeric gel made in a solvent 

different than water that would not evaporate in the temperature conditions needed for 

this study. This would also allow us to increase the temperature gradient thus allowing 

higher variations of elasticity. Another point is that steel is thermally very conductive 

and it may quickly equilibrate the surrounding temperature of the gel thus its elasticity. 

Using a non-conductive yet heavy particle may be better to get unambiguous results of 



303 

the thermal Durotaxis. The elastohydrodynamics of a rigid particle moving over a thin 

elastic film through a viscous liquid has been studied via theory18–21 and experiments22 

recently that could shed light upon our experiments. Performing these experiments 

using hydrocarbon oils like heptane or octane, which are much less viscous than PDMS 

oils, provided more friction to the motion of spheres. We currently don’t understand the 

origins of some of these issues that remain subjects for rigorous investigations in the 

future.   
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Appendix V 

 
Elastobuoyant Liquid Inclusion inside a Soft 

Elastic Hydrogel 

 

 

 

V.1. Introduction and Observations 

A heavy sphere is engulfed by a soft elastic gel due to Elastobuoyancy phenomenon1, 

where its depth inside the gel is determined by the balance of its weight with the 

accumulated strain energy in the surrounding elastic medium. This phenomenon is 

discussed in details in chapter 4. Now, we observed that instead of a rigid particle, when 

a denser liquid was poured over the surface of the soft gel (density: 1000 kg/m3, like 

water) the weight of the liquid deformed the gel forming a deep cavity at its central 

region. When we used chloroform (density: 1450 kg/m3) as the liquid phase over the 

gel ( = 14 Pa), we saw the complete closure of the stretched gel surface around the 

liquid forming a pendant shape (Figure V.1).  

 However, with silicone oil (density: 1050 kg/m3) that it is moderately higher 

than the gel, we see the formation of the long finger-like well (Figure V.2). Now, when 

the gel is slightly stiffer, and the density of the liquid phase is slightly higher than the 

gel, we see formation of undulations of the gel surface that are similar to the lobe-

formation due to gravity acting on the free surface when a flat container of soft gel is 

turned upside down2 (Figure V.3). 
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Figure V.1: An elastobuoyant liquid inclusion inside a soft gel ( = 14 Pa, density: 

1000 kg/m3). We used chloroform (density: 1450 kg/m3) as the heavy liquid for this 

experiment. As soon as the chloroform was poured on the gel surface, due to its weight, 

a cavity was formed inside the gel substrate that was filled by the liquid. The stretched 

gel surfaces folded over the liquid forming a pendant shaped liquid inclusion. The entire 

experiment took about a few seconds and the picture was captured immediately. Even 

after several days, we didn’t see any noticeable evaporation from the stored chloroform 

inside the gel pointing to the fact that the gel surfaces adhesively seal quite well above 

the liquid.  

 

 

 

Figure V.2: An elastobuoyant liquid filled cavity inside a soft gel ( = 14 Pa, density: 

1000 kg/m3). We used silicone oil (density: 1050 kg/m3) as the liquid phase for this 

experiment. As soon as the oil was poured on the gel surface, due to its weight, a cavity 

was formed inside the substrate storing the liquid inside it. However, we do not see the 

closure of the gel above. A layer of the oil is still maintained over the gel surface as 

shown in the figure. 
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 In these studies, apart from the density difference between the liquid and the gel 

() and the elastic modulus of the gel, the interfacial tension between the gel and the 

liquid will also play a very important role. For instance, if the interfacial tension is very 

low or close to zero, the surfaces will not prefer to fold over each other. Also, the shape 

of the liquid pendant drop inside will be determined by the interfacial energy of the 

gel/liquid surface. A higher interfacial energy would mean more circular drops of liquid 

inclusions as the surfaces would prefer to seal as much as possible, whereas, its lower 

values would imply the formation of elongated drops as the surfaces may not close that 

much. One could perhaps even find a phase diagram for the shape of the liquid 

inclusions inside the gel by varying the interfacial energy of the gel/liquid, the elastic 

modulus of the gel and the effective density (). For slightly stiffer gels, the liquid 

phase due to its weight deforms the gel surface forming undulatory wavy patterns just 

like the elastic Rayleigh-Taylor instabilities observed in inverted gel slabs.2 All our 

experiments were performed with a crosslinked polyacrylamide gel, the preparation 

method for which is described in Chapter 2 and its elastic modulus was measured using 

a protocol mentioned in Chapter 6.  

  

 

AV.2. Discussion and Future Work 

 In the following, to understand the elastobuoyant liquid inclusion, we draw an 

analogy with the experimental configuration used by Mora et. al.2 in their study of 

Rayleigh-Taylor instability in soft elastic solids. A large gel slab in a rectangular 

container, when turned upside down undergoes surface instabilities due to its own 

weight and stabilizing elastic energy. When the systems are unconfined (depth of 

container proportional to its width) and elastic modulus of the gel is low, they see 
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Figure V.3: Rayleigh-Taylor instability in soft gels2 due to a heavier liquid phase at 

the top of the elastic gel (density: 1000 kg/m3). (A) The liquid used here is a silicone 

oil (density: 1050 kg/m3) and the shear modulus of the gel is 24 Pa. The gel interface 

was marked with a water-soluble red dye to help in visualizing the deformation of its 

surface. The snapshot on the right gives a side view of the same experiment. (B) The 

liquid used here is diiodomethane (density: 3320 kg/m3) and the shear modulus of the 

gel is 52 Pa. Diiodomethane has been filled completely in the four lobes formed due to 

the gravity induced instability.  

 

 

formation of one large finger at the center of the downward facing gel slab. In our 

current experiments, the formation of a large cavity at the center of the soft gel due to 

the heavier liquid phase on top resembles the former case. However, an important 

distinction in these two cases is that when the upper heavier phase is the solid, as in the 

experiments of Mora et. al., the largest finger formed will be limited by the critical 

stress developed in the system that would ultimately lead to fracture of the solid blob. 

On the other hand, when the upper heavier phase is a liquid, large deformations will 

only lead to the pinching off the liquid from the top forming an enclosed drop. The fact 
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that the entire surface does not undergo Rayleigh-Taylor like instability in Figures V.1 

and V.2 is reminiscent of a situation as pointed out by Pomeau for the case of subcritical 

instability limited to the growth of a narrow band like regime in Taylor-Couette flow 

because by growing it lowered the Reynolds outside and brought it to a linearly stable 

situation.3 This can be thought analogously to our situation as “once the drop begins to 

sink down, all the rest of the silicon layer becomes stable against Rayleigh-Taylor.”  

 Before we come to a more definite conclusion about our observations on the 

elastobuoyant liquid inclusions, we must conduct more detailed experiments to study 

the effect as a function of important parameters such as elastic modulus, the density 

difference between the two phases and interfacial tensions as well as the geometry of 

the containers. We can also vary the quantity of the liquid added to know if the pinch-

off is only for a small amount of liquid. Also, when the liquid is poured progressively, 

it will be interesting to observe the evolution of the shape from a long liquid cavity to 

an engulfed drop where the dynamics would be important. Performing the experiments 

with larger containers might lead to multiple liquid inclusions and in turn, the upper 

free surface of the gel would be covered with topological defects that may serve useful 

for various applications, e.g. self-assembly.  

 

Acknowledgments. We thank Professors Yves Pomeau and Serge Mora for stimulating 

discussions on this observation and linking it with the strongly nonlinear limit of the 

deformation of a soft gel slab due to gravity.  
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Appendix VI 
 

 

Elastocapillary Attraction of Spherical Beads on a 

Soft Solid through a Liquid Medium  

 

 

 

 

 

 

 

1. Introduction and Objective 

The objective of these experiments was to study the effect of viscosity of the 

surrounding medium in the elastocapillary attraction of rigid particles on a soft solid. 

Coupled effects of hydrodynamics with elastic effects has been a subject of detailed 

studies in the past.1–4 Our observations5 from previous experiments indicate that the 

friction experienced by the particles moving on the surface of gel through a layer of 

heptane housed on top of the gel was much higher than that experienced by the particles 

when they moved on the air-gel interface. We had suggested previously5 that the higher 

friction may be due to the effect of viscous dissipation in the thin lubricating liquid film 

in between the particle and the solid. Inspired by a suggestion from Professor Stone 

upon presenting our initial results to him, we carried out the following investigations to 

study the effect of viscosity of the surrounding liquid medium on particle attraction in 

such an elastohydrodynamic setting. 
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2. Experiment 
 

A physically crosslinked polyacrylamide gel6 (shear modulus ~ 14.3 Pa) was used for 

these studies and cured in different containers such that each oil was poured in a fresh 

container of cured gel with which to study the elastohydrodynamics of the particle 

attraction. We used two identical hydrophobic glass beads5 (3.2 mm diameter, density 

2.4 g/cc, its surface grafted with PDMS T-22) for our studies. We used six different oils 

of different viscosities, three of which were PDMS oils and the other three were 

alkanes. The physical properties of all the oils used for these experiments are tabulated 

below:  

 

Oil 

(Upper phase, 

Medium 3) 

Dynamic 

Viscosity,  

( 10-3  Pa s) 

Density,  Surface 

Tension (3) 

(mN/m) 

Free energy of 

Adhesion (G132)  

(mJ/m2) 
(kg/m3) 

n-Heptane 0.376 684 20.14 -0.149096159 

n-Dodecane 1.49 749 25.35 -0.099432127 

n-Hexadecane 3 773 27.47 -0.391574024 

PDMS T-05 5 918 22 0.008913491 

PDMS T-15 50 960 22 0.008913491 

PDMS T-31 1000 971 22 0.008913491 

 

  

 Our choice of liquids was based on a calculation of the free energy of adhesion          

(
132G ) between the particle and the soft substrate through a liquid medium, such that 

the values were close to zero or positive that would imply that the particles would not 

stick to the surface of the gel. This is only a first order approximate calculation that may 

not imply that the spheres will never adhere to the gels and it was only to help us select 
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which liquids to work with from a wide range. The free energy of adhesion between a 

rigid particle (Medium 1) and the gel7 (Medium 2) through a liquid phase (Medium 3) 

is given by ))((2 3231132   dG , where, 1  is the surface energy of the glass 

bead, 
d

2 is the dispersion component of the surface energy of the gel and 3  is the 

surface tension of the surrounding liquid medium. The hydrogel is polar since it is 

largely composed of water but as the oils used for our experiments exhibit only 

dispersive interactions, only the dispersion component of the surface tension of gel (

d

2 ~ 21.8 mN/m) will account for the interactions between itself and the particles. The 

surface energy of the PDMS grafted glass bead ( 1 ) is 24 mN/m (for a disordered 

packing of the grafted polymers that is usually the case when the grafting is not done 

in a highly precise manner). While using water as the surrounding medium would also 

give a zero work of adhesion ( 32   ), we often observed swelling induced instability 

patterns on the surfaces of the gel that made water an unsuitable surrounding medium 

for these studies. The computed values of the free energy 
132G  are also tabulated in the 

table above.  

 In our experiments, the two identical hydrophobic glass beads were released on 

the surface of the gel through the oil medium with an initial separation distance of about 

three times the diameters of the bead. A video of their elastocapillary attraction through 

the liquid was recorded. Using image analysis, we measured how the separation 

distance (between the centers of the two particles) decreased as a function of time until 

they made contact and plotted the data for approach through each liquid in Figure VI.1.  
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Figure VI.1: The center-to-center separation distance (l) between two PDMS grafted 

glass beads (3.2 mm diameter) decreasing as a function of time as they attract on the 

surface of gel (shear modulus ~ 14.3 Pa) through a liquid medium and come into final 

contact. Each data set represents experiments with a different oil as the upper liquid 

medium on the gel as indicated in the legend.  

 

3. Observations and Conclusions 
 

From the experimental data (Figure VI.1) of the distance of separation changing as a 

function of time for the two hydrophobic glass beads, a first general idea can be 

obtained the frictional resistance experienced by them. The trend we observed was not 

monotonous in the increasing or decreasing direction of the viscosities of the 

surrounding medium. Yet, we describe below a scaling analysis that predicts the effect 

of viscous dissipation on the friction coefficient. Based on the well-established 

elastohydrodynamic scaling laws, we calculated the friction coefficient ( ) by 

balancing the driving force with the viscous dissipative forces ( hVFvis

2~  ) exerted 

by the thin lubricating film in between the particle and the gel, where   is the contact 

length, V is the steady state velocity of the particle and h is the thickness of the 

lubricating thin film of the liquid in between the particle and the gel. The vertical lift 

force (
3222~ hVRFl  )8 is balanced by the weight of the particle (m*g). Here, R is the 

radius of the particle and  is the shear modulus of the soft elastic substrate. This leads 

us to a relationship that predicts the friction coefficient should increase weakly with the 
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viscosity, 
3/1~ . Since this effect is not that pronounced in our experiments (Figure 

VI.1), we feel there may be an additional effect due to the hysteresis of adhesion that is 

briefly described below.  

 When the PDMS-grafted glass beads move over the gel, despite the free energy 

of adhesion being zero or positive necessitating a thin liquid film in between the particle 

and the gel, local microscopic contacts may still be made between the polymer chains 

of the gel with the particle surface during its motion. The hysteresis of the formation 

and breakage of these local bonds give rise to additional dissipation and thus combining 

with the effect of the viscosity, the dependence of friction may not be a monotonic 

function of either of the sources but a complex function of all the contributing factors. 

 These experiments point us to an interesting problem of friction between soft 

and hard surfaces through a liquid that may be important in ball bearings with soft 

coatings or even designing soft fluidic devices in the future. Further studies will reveal 

the intricate complexities of the coupled effects of adhesion and viscosity mediated 

dissipative effects on particle motion in elastohydrodynamics.  
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