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ABSTRACT 

To assess the potential design life for reinforced concrete highway infrastructure in 

the Northeastern United States, the resistance to corrosion must be known. Reinforced 

concrete structures in both cold and marine environments are exposed to chloride, an ion 

with the potential to migrate through concrete and corrode steel. Chloride content can be 

assessed relative to the chloride migration coefficient determined at an age of 28-days using 

methods defined in NT Build 492. This approach is a departure from traditional rapid 

chloride permeability testing methods used for qualification of concrete mix designs by 

state departments of transportation. To investigate the impact of these methods, a 

comprehensive experimental study of PennDOT qualified mixes was conducted. Each mix 

was procured from ongoing construction efforts in the state and subject to both NT Build 

492 and ASTM C1202 (Rapid Chloride Permeability Test). The results show that chloride 

migration coefficient varies considerably throughout the state, from 0.545 x 10-12 m2/sec to 

17.24 x 10-12 m2/sec. The variation is in line with the results from Rapid Chloride 

Permeability Tests (RCPT) conducted on the same mixes. Results for NT Build 492 also 

correlated strongly with results for the RCPT, despite high coefficients of variability for 

both tests.  

Chloride migration was also found to be related to the coarse aggregate used in the 

mix design as well as the coarse aggregate’s absorption. Due to Pennsylvania’s diverse 

geologic make-up, 9 different types of coarse aggregate were used in the 20 mix designs 

tested. Mixes using Diabase and Dolomite as coarse aggregates were the most resistive to 

chloride migration, while mixes containing Gravel and Limestone experienced poor 
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resistivity to chloride ingress. Coarse aggregate was sourced from 12 different counties in 

the mix designs tested. Results for NT Build 492 and the RCPT varied considerably in 5 of 

the counties.   
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1. BACKGROUND 

Concrete is the world’s primary building material and is used in most types of 

construction due to its flexible design and relative low cost. An estimated 25 billion metric 

tons of concrete are manufactured each year [1]. Concrete production at this magnitude 

carries with it a significant environmental impact. In 2002, 1.4% of the U.S. anthropogenic 

CO2 emissions stemmed from the energy intensive production process of Portland cement, 

a primary constituent of many concrete mix designs [2-4]. The global focus on 

sustainability places a significant value on the development of concrete mix designs that 

will reduce the use of Portland cement and maximize a concrete construction’s service life.    

Concrete mix designs can be manipulated in many ways to attain desired properties. 

In 2008, the Pennsylvania Department of Transportation (PennDOT) and the concrete 

industry recognized the need for higher quality reinforced concrete (RC) bridge structures 

and pursued new mix design specifications. The primary objectives were to develop 

concretes with reduced shrinkage potential and enhanced permeability characteristics [5]. 

The traditional AAA concrete mix design was improved by decreasing the maximum 

water-cement ratio, setting a minimum requirement for compressive strength at 28 days, 

and recommending the “judicious” use of supplementary cementitious material (SCM) as 

pozzolan material in conjunction with Portland cement. Mixes that meet these 

specifications are designated as AAAP concrete [5].  

A principal concern in RC structures is the susceptibility of the concrete to chloride 

ingress and the subsequent corrosion of the steel reinforcements. Concrete bridge decks are 

exposed to aggressive chloride environments in coastal marine areas and in cool climates 
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where they are subjected to chloride laden deicing salts [6]. Application of deicing salts 

has been confirmed to cause a decrease in the structural and serviceability reliabilities of 

concrete bridge decks [7]. Corrosion of steel reinforcements and the formation of corrosion 

products such as rust can result in internal micro-cracking, external cracking, and 

eventually spalling [8]. Identifying, maintaining, or replacing these structures requires 

testing and other potential high costs for repairs [9].  

Capillary absorption, hydrostatic pressure, and diffusion are mechanisms by which 

chloride can migrate through concrete. The principle method of chloride ingress is 

diffusion, the movement of chloride ions under a concentration gradient [10, 11]. The 

variable nature of concrete mix design offers concrete producers many options to 

manipulate the materials used in an effort to maximize the concrete’s resistivity to chloride 

ingress. Changes in the water-cement ratio, concrete age and degree of hydration, curing 

temperature, C3A content, and use of SCM’s have all been shown to affect concrete’s 

resistance to chloride migration [10, 11]. Feng et al. show that the use of fly ash and blast 

furnace slag improves concrete’s resistivity to chloride ingress [12]. The use of fly ash and 

blast furnace slag as supplementary cementitious material in concrete demonstrated a 

decrease in the diffusion coefficient of chloride ions. With a higher content of C3A, 

concretes with fly ash and blast furnace slag additives can form more chloride absorbing 

Freidel’s salt (C3A∙CaCl2∙10H2O) [12]. Concrete’s age can also influence the chloride 

penetration rate; as concrete ages and the subsequent degree of hydration increases, the 

internal pore matrix becomes more developed and eliminates potential paths for diffusion 

[10-12].  



5 

 

The rate of chloride ion diffusion through different concretes, while varied, is still 

extremely small. The study and determination of the steady state chloride diffusion for a 

particular mix design would take years. As such, the concrete industry developed and 

standardized several short term procedures to determine non-steady-state rates of chloride 

ingress that could be used to approximate a concrete’s resistance to chloride migration. 

Due to the many mechanisms by which chloride ions can migrate through concrete, each 

test has drawbacks due to varying preconditioning methods and experimental procedures 

[10]. Using the results from multiple tests gives one a better idea of a concrete’s resistance 

to chloride migration in the field.  

Isolating and optimizing particular aspects of a concrete mix design to improve the 

concrete’s resistivity to chloride migration would prove to be extremely valuable. 

Increasing a concrete’s service life will diminish the need for future concrete production, 

reducing future spending and carbon emissions through cement manufacturing. States that 

utilize a broad range of SCM’s and coarse aggregate types may experience high variability 

in their RC structures. Identifying the mix design components that drive these variations in 

concrete’s chloride resistance can be used to develop more resistive structures in the future 

with longer service lives.   
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2. MATERIALS AND METHODS 

2.1 NT Build 492   

2.1.1 Concrete Samples 

Following the casting of AAAP concrete bridge decks at PennDOT construction 

sites, three 4” x 8” cylinders in accordance with ASTM C31 are sealed and shipped to 

Lehigh University [13]. Upon arrival at Lehigh University’s campus in Bethlehem, PA, the 

concrete cylinders are documented and placed in a water curing tank maintaining a constant 

temperature of 25⁰C. 27 days after fabrication, 50 ± 2mm thick samples are cut from each 

of the cylinders using a water cooled diamond saw blade as shown in Figure 1. Samples 

are then washed of excess material and dried.   

 

Figure 1. 4” x 8” Concrete Cylinders and 50mm Thick Concrete Sample 
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2.1.2 Sample Preconditioning 

After cutting, samples are placed under a vacuum for 3 hours. The vacuum chamber 

must maintain a pressure of less than 50 mbar (5 kPa) [14]. The vacuum chamber is then 

flooded with a saturated Ca(OH)2 solution until the concrete samples are fully submerged 

as shown in Figure 2.  

 

Figure 2. Preconditioning Samples in the Vacuum 

Samples remain in the vacuum sealed solution for an additional hour. The vacuum is then 

depressurized and the samples soak in the solution under atmospheric pressure for an 

additional 18 ± 2 hours.  
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2.1.3 Sample Testing 

After preconditioning, samples are rinsed with deionized water, air dried, and 

tightly sealed in a rubber sleeve exposing only the top and bottom face. The sample is 

placed on an inclined support with the bottom face exposed to a 10% NaCl catholyte 

solution (by mass) and the top face exposed to a 0.3 N NaOH anolyte solution. Figure 3 

illustrates the experimental set up. 

 

Figure 3. Migration Test Experimental Setup [14]  

The anode and cathode of each sample are connected to a power source and initially 

subjected to 30V. The corresponding current is measured and Table 1 is used to determine 

if a voltage adjustment is required, followed by the necessary testing duration. The initial 

and final voltage, current, and anolyte solution temperature are recorded.  
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Table 1. Voltage Adjustment Table [14] 

Initial current I30V 

(with 30 V) (mA) 

Applied voltage U 

(after adjustment) 

(V) 

Possible new initial 

current I0 (mA) 

Test duration t 

(hour) 

I0 < 5 60  Io < 10 96 

5 ≤ Io < 10 60 10 ≤ Io < 20 48 

10 ≤ Io < 15 60 20 ≤ Io < 30 24 

15 ≤ Io < 20 50 25 ≤ Io < 35 24 

20 ≤ Io < 30 40 35 ≤ Io < 40 24 

30 ≤ Io < 40 35 40 ≤ Io < 50 24 

40 ≤ Io < 60 30 50 ≤ Io < 60 24 

60 ≤ Io < 90 25 60 ≤ Io < 75 24 

90 ≤ Io < 120 20 75 ≤ Io < 80 24 

120 ≤ Io < 180 15 80 ≤ Io < 90 24 

180 ≤ Io < 360 10 90 ≤ Io < 120 24 

Io ≥ 360 10  Io ≥ 120 6 
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2.1.4 Measurement of Chloride Penetration 

When the test is complete, power is shut off and the samples are removed from the 

experimental apparatus, rinsed, dried, and split axially into two pieces. One cross sectional 

piece from each sample is sprayed with 0.1 M Silver Nitrate solution. After 15 minutes, a 

white silver chloride precipitate will be clearly visible indicating the chloride penetration 

profile. Using a slide caliper, measurements of chloride penetration are made in 10mm 

increments across the 100mm diameter of the sample. Five measurements accurate to 

0.1mm are required to accurately determine the non-steady-state migration coefficient.   

 

Figure 4. Chloride Penetration Measurement [14] and Example Image 
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2.1.5 Determination of Non-Steady State Migration Coefficient Dnssm 

The non-steady-state migration coefficient, Dnssm, can be determined using 

Equation (1). The Dnssm is typically reported in units of 10-12 m2/sec. Concrete’s with a low 

values for Dnssm exhibit high resistivity to chloride ion migration.   

Dnssm = 
RT

zFE
 ∙ 

xd−α√xd

t
         (1) 

Where: 

 𝐸 =  
𝑈−2

𝐿
         (2) 

 𝛼 = 2√
𝑅𝑇

𝑧𝐹𝐸
 ∙ 𝑒𝑟𝑓−1 (1 − (

2𝑐𝑑

𝑐0
))      (3) 

Dnssm :  non-steady-state migration coefficient, m2/s; 

z:  absolute value of ion valence, for chloride, z = 1; 

F:  Faraday Constant, F = 9.648 x 104 J/(V∙mol); 

U:  absolute value of the applied voltage, V; 

R:  gas constant, R = 8.314 J/(K∙mol); 

T:  average value of initial and final temperature of anolyte solution, K; 

L:  thickness of specimen, m; 

xd:  average value of penetration depths, m; 

t:  test duration, seconds; 

erf-1:  inverse of error function; 

cd:  chloride concentration at which the color changes, cd ≈ 0.07 N for OPC 

concrete; 

c0:  chloride concentration in catholyte solution, c0 ≈ 0.2 N.  
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2.2 Rapid Chloride Permeability Test – ASTM C1202, ASSHTO T277 

2.2.1 Sample Testing  

In conjunction with the determination of the non-steady-state migration coefficients 

of the bridge deck samples, PennDOT conducted the Rapid Chloride Permeability Test 

(RCPT) for each sample in accordance with ASTM C1202 standards [15]. At 56 days of 

age, three concrete samples are prepared with one face exposed to a 3% NaCl solution (by 

mass) and the other face exposed to a 0.3 N NaOH solution as shown in Figure 5. The 

samples are subjected to an electric potential of 60V for 6 hours.  

 

Figure 5. Rapid Chloride Permeability Test Setup [15, 16] 

2.2.2 Sample Results 

The total ionic movement over the course of the testing time is determined and the 

results are expressed as Coulombs Passed. It is important to note that the movement of 

other ions in addition to chloride affect the test result [10]. Table 1 shows how the test 

results are translated to a concrete’s susceptibility to chloride ion penetration.  
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Table 2. Rapid Chloride Permeability Test Ratings [15] 

Charge Passed (coulombs) Chloride Ion Penetrability 

> 4,000 High 

2,000 – 4,000 Moderate 

1,000 – 2,000 Low 

100 – 1,000 Very Low 

< 100 Negligible 
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3. RESULTS AND DISCUSSION 

3.1 Comparison of Chloride Migration Coefficient and Coulombs Passed Results 

Research is ongoing to better understand the relationship of different tests that 

assess how resistive concrete is to chloride ingress. Almost all conditions of NT Build 492 

and RCPT procedures differ, yet both experiments are designed to isolate and accelerate 

the transport of chloride ion migration through concrete via diffusion. 13 of the mix designs 

tested at Lehigh University have corresponding RCPT results from PennDOT. Figure 6 

shows a strong positive linear trend between the two tests: as the 28 day chloride migration 

coefficient result rises, so too does the anticipated result for coulombs passed at 56 days of 

age. Higher values for both tests suggest the concrete will have poor resistivity to chloride 

ingress.    

 

Figure 6. Chloride Migration Coefficient and Coulombs Passed Comparison 
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It is important to note that the RCPT has been the subject of criticism due to its 

relatively high variability of results and the heating of the specimen that occurs as it is 

subjected to 60V for 6 hours [17, 18]. The coefficient of variability of the RCPT results 

ranged from 1.42% to 13.12% with an average coefficient of variation of 5.76%. 

Comparatively, results for NT Build 492 varied more. NT Build 492’s coefficient of 

variability ranged from 0.46% to 34.66% with an average coefficient of variation of 

11.22%. McGrath and Hooton attempted to improve the RCPT by reducing the duration of 

the experiment from 6 hours to 30 minutes. Shortening the RCPT did not improve its 

correlation to other test results [17].  

3.2 Comparison of Concrete Properties and Chloride Migration 

Fluctuations in outside temperature and moisture, short and long term internal 

chemical reactions, and the subsequent pore geometry in concrete all play a role in chloride 

migration and chloride penetration rates into concrete [17]. Figure 7 shows how the 

chloride migration coefficient varies based on the concrete’s entrained air percentage. 

While there are many other characteristics that vary within the tested concrete mixes 

besides entrained air percentage, Figure 7 does display some correlation between the two 

variables. Overall, as entrained air percentage increases, so too does the chloride migration 

coefficient. This result makes sense, as concretes with a higher volumetric air content have 

more pathways that chloride can easily migrate through.  
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Figure 7. Chloride Migration Coefficient vs. Entrained Air Percentage 

Fly ash, blast furnace slag, and silica fume are industrial by-products used as SCM’s 

due to their pozzolan properties. The use of SCM’s is incentivized as it reduces the need 

for expensive cement that contributes to greenhouse gas emissions during its production. 

15 of the 20 mix designs tested implemented fly ash, blast furnace slag, silica, or masonry 

mortar as SCM that ranged from 19.69% to 68.2% of total pozzolan material. Most of the 

mix designs tested incorporated blast furnace slag. Figure 8 shows how the chloride 

migration coefficients vary in response to changes in the SCM percentage of pozzolan 

material in the mix design.  
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Figure 8. Chloride Migration Coefficient vs. Percent Supplementary 

Cementitious Material  

The expected trend is as the percent of SCM increases, the corresponding chloride 

migration coefficient should decrease. However, no clear trend emerges. Again, it is 

important to note that many other variables differ in the separate concretes along with 

percent SCM.  

There are documented benefits of incorporating fly ash and slag as pozzolan 

material. Thomas and Bamforth have shown that the incorporation of both fly ash and slag 

have little impact on transport properties at early ages. However, after a few years, the use 

of fly ash and slag as supplementary cementitious materials proved to limit the rate of 

chloride ingress by orders of magnitude of difference [12, 19].  
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3.3 Chloride Migration Variation within One State, Pennsylvania 

Coarse aggregate is the principle contributor to the volume of concrete. The coarse 

aggregate’s potential to absorb water is suspected to play a role in chloride ion diffusivity 

in concrete. Coarse aggregate absorption (ABS) is defined as the increase in weight (%) of 

aggregate due to water infiltrating the pores, ignoring water adhered to the surface. As 

chloride ions have the potential to migrate through both the coarse aggregate and cement 

paste, the relationship between coarse aggregate type, ABS, and chloride migration 

coefficient was investigated [20, 21]. Figure 9 compares the ABS of the different coarse 

aggregates present in the concrete samples tested to their chloride migration coefficient 

results. Data on the coarse aggregate ABS was determined using the concrete mix designs 

provided by the concrete producers coupled with PennDOT’s Bulletin 14. With the coarse 

aggregate supplier code, Bulletin 14 provides information on the coarse aggregates specific 

gravity, ABS, sodium sulfate percentage, and rock type.  
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Figure 9. Chloride Migration Coefficient vs. Coarse Aggregate Absorption 

The coarse aggregate ABS ranged from 0.27 to 1.19 for the concrete samples tested in the 

study. Figure 9 shows that coarse aggregates with similar ABS values had similar chloride 

migration coefficient results. This trend is observed in concretes with coarse aggregates of 

Diabase, a mixture of Dolomite/Limestone, and Calcareous Sandstone. Limestone stands 

out as an exception.  

Table 3 complements Figure 9, and is grouped by the different coarse aggregate 

rock types, their average chloride migration coefficient, the variance of the chloride 

migration coefficients (if the coarse aggregate was present in more than one mix design), 

and their average coarse aggregate absorption for each rock type. The results indicate that 

there is no correlation between coarse aggregate ABS and the concrete’s corresponding 
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chloride ingress than other rock types. The concrete mixes containing both Dolomite and 

Limestone coarse aggregate also had a consistently low chloride migration coefficient. 

Limestone, Limestone and Chert, and Gravel displayed the highest average chloride 

migration coefficients. The highest chloride migration coefficient determined, 17.24 x 10-

12 m2/sec, contained limestone as the coarse aggregate.  

Table 3. Coarse Aggregate Rock Type Role in Chloride Migration Coefficient 

Rock Type Avg. 

Chloride 

Migration 

Coefficient 

(1E-12 

m2/sec) 

Variance of 

Chloride 

Migration 

Coefficient 

Mix 

Designs 

Tested 

Avg. 

Coarse 

Aggregate 

ABS 

Variance 

of ABS 

Diabase 

(DI) 

1.6425 2.41 2 0.6 0 

Dolomite 

(DO) 

4.94 - 1 0.42 - 

Dolomite, 

Limestone 

(DO, LS) 

6.38 1.20 4 0.44 0.060 

Sandstone 

(SS) 

6.93 0.75 2 1.00 0.018 

Argilite 

(AR) 

7.06 - 1 0.70 - 

Calcareous 

Sandstone 

(CSS) 

8.12 10.21 4 0.59 0.018 

Gravel 

(GL) 

8.49 - 1 1.19 - 

Limestone, 

Chert (LS, 

CH) 

8.52 0.088 2 0.69 5E-5 

Limestone 

(LS) 

10.41 36.51 3 0.47 .011 
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Figures 10-15 were developed using the ERSI ArcMAP program.  

 

Figure 10. Pennsylvania Geologic Variability (USGS) 

Figure 10 displays USGS data of Pennsylvania’s geologic make-up. The six rock 

types shown are the rock types present as coarse aggregate in the concrete mix designs 

tested. Northern Pennsylvania is mainly comprised of sandstone, yet the geologic 

formations in southern Pennsylvania are highly variable. Using PennDOT’s Bulletin 14 

and Bulletin 14 List, it is possible to pair up the coarse aggregate suppliers and what rock 

type they are exporting. This data is displayed in Figure 11.  
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Figure 11. Coarse Aggregate Supplier Zip Code and Rock Type 

Figure 11 illustrates the diversity of coarse aggregates used throughout the state. 

Limestone, Gravel, and mixtures of Sandstone coarse aggregate are exported from much 

of central and northern Pennsylvania. More variability is seen in the south and southeastern 

sectors of the state where Dolomite and Diabase are also exported.  
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Figure 12. Coarse Aggregate Supplier County: Minimum Chloride Migration 

Coefficient 

 

Figure 13. Coarse Aggregate Supplier County: Maximum Chloride Migration 

Coefficient 
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Figures 12-13 are maps indicating the source county of the coarse aggregate used 

in the concrete mix designs and the minimum and maximum chloride migration 

coefficients that were determined. Figures 12-13 are complemented by Table 4. Table 4 is 

grouped by each county that served as a source of coarse aggregate used in the concretes 

tested. The table shows the county name, average and variance of the chloride migration 

coefficient (if there was more than one), and the minimum and maximum chloride 

migration coefficient result.  

Table 4. Chloride Migration Coefficient Variability by County 

County Avg. 

Chloride 

Migration 

Coefficient 

(1E-12 

m2/sec) 

Variance 

of 

Chloride 

Migration 

Coefficient 

Mix 

Designs 

Tested 

Minimum 

Chloride 

Migration 

Coefficient 

(1E-12 

m2/sec) 

Maximum 

Chloride 

Migration 

Coefficient 

(1E-12 

m2/sec) 

Berks 3.59 112.62 3 0.545 7.50 

Blair 4.94 - 1 4.94 4.94 

Bucks 7.06 - 1 7.06 7.06 

Butler 8.52 0.09 2 8.31 8.73 

Centre 6.21 0.37 2 5.78 6.64 

Dauphin 4.87 - 1 4.87 4.87 

Fayette 5.40 0.19 2 5.09 5.71 

Lehigh 6.53 - 1 6.53 6.53 

Luzerne 7.41 2.35 2 6.32 8.49 

Mifflin 12.73 40.81 2 8.21 17.24 

Wayne 7.55 - 1 7.55 7.55 

Westmoreland 10.85 0.75 2 10.24 11.46 
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Among the 20 concretes tested, coarse aggregates came from 12 different counties. 7 

counties were sources of coarse aggregate for more than one concrete mix design tested. 

Of those seven, Mifflin and Berks County had the most variable results for the chloride 

migration coefficient. Luzerne also experienced variability, though to a lesser degree.  
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Figure 14. Coarse Aggregate Supplier County Coulombs Passed Range - 

Minimum 

 

Figure 15. Coarse Aggregate Supplier County Coulombs Passed Range - 

Maximum 
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Figures 14-15 are maps indicating the source county of the coarse aggregate used in 

the concretes tested and the corresponding minimum and maximum results for Coulombs 

Passed from the RCPT. The Coulombs Passed ranges for “Very Low”, “Low”, “Moderate”, 

and “High” can be found in Table 2. Fayette and Blair County exhibit variance in the RCPT 

results in Figure 14 and Figure 15. The results from the RCPT show variability from 

different counties in Pennsylvania compared to the chloride migration coefficient results.  

 

 

 

 

 

 

 

 

 

 

 

 



28 

 

4. CONCLUSION 

An experimental study was conducted to examine the variation in chloride resistance of 

concrete used in the state of Pennsylvania for state highway construction. 20 mixes were 

examined to determine the chloride migration coefficient and coulombs passed. The 

following conclusions can be made based on the observations presented: 

 There exists a strong linear trend between results from NT Build 492 and the Rapid 

Chloride Permeability Test.  

 Results from both NT Build 492 and the Rapid Chloride Permeability Test exhibit 

significant variability among the same concrete samples.  

o The coefficient of variability of the RCPT results ranged from 1.42% to 

13.12% with an average coefficient of variation of 5.76%. Comparatively, 

the coefficient of variability for NT Build 492 results ranged from 0.46% to 

34.66% with an average coefficient of variation of 11.22%. 

 Resistance to chloride migration in reinforced concrete bridge decks in 

Pennsylvania varies considerably. NT Build 492 results for the chloride migration 

coefficient varied from 0.545 x 10-12 m2/sec to 17.24 x 10-12 m2/sec. RCPT results 

for Coulombs Passed ranged from 924 to 5829.  

 It cannot be determined if the percent of SCM influences concrete’s resistance to 

chloride migration at young ages (28 days). There existed too much variability in 

other aspects of the mix design in the concretes tested to justify a direct comparison 

between them.  

 Pennsylvania has a diverse geologic make-up, resulting in high variability in the  
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coarse aggregate rock types and the coarse aggregate ABS used in concrete mix 

designs throughout the state.  

 Concrete samples with the same coarse aggregate rock types with similar ABS 

values exhibited similar results for chloride migration coefficient.  

 Mix designs with coarse aggregate rock types of Diabase and Dolomite exhibited 

the most resistance to chloride ion penetration. Concretes containing coarse 

aggregates of Gravel and Limestone were the most susceptible to chloride ion 

penetration.  

 Of the 12 Pennsylvania counties that exported coarse aggregate used in the concrete 

mixes tested, significant variability in results for the NT Build 492 and Rapid 

Chloride Permeability Test was experienced in 5 counties.    
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