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GENERAL ABSTRACT 
 
 

The overarching objective of this thesis was to: (I) synthesize and review the 

conservation history of an endangered species of pupfish (Cyprinodon bovinus), (II) test 

for genetic and phenotypic divergence between a captive and wild population, (III) 

examine the wild population for signs of introgression with its congener, C. variegatus, 

(IV) evaluate evidence for the exhibition of maladaptive behaviors following the release 

of captive animals into the wild, and (V) examine how the presence of a putative egg 

predator (Gambusia nobilis) may affect density-dependent behavior and the future 

persistence of C. bovinus in the wild. The first chapter illustrated that while there has 

been a contemporary increase in the number of territorial C. bovinus, there may be 

unintended consequences of habitat restoration projects on reproductive success. In the 

second chapter, landmark-based geometric morphometrics revealed considerable 

morphological divergence in body shape and examination of both neutral and adaptive 

variation revealed significant levels of genomic divergence as well as evidence for local 

adaptation, possibly relating to differences in salinity between environments. While the 

captive population showed higher levels of genetic diversity, the wild population has 

maintained substantial genetic variation despite its small estimated effective population 

size. The third chapter revealed that the wild population failed to show substantial 

evidence of introgression or contemporary hybridization with the congener, C. 

variegatus, which was demonstrated by a lack of morphological overlap with C. 

variegatus, distinct genotypic clustering, and high levels of genetic divergence with the 

conger. The fourth chapter illustrated that following the release of captive C. bovinus into 
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their ancestral habitat, the behavior of the reintroduced population was both 

quantitatively and qualitatively similar to that of the wild population; the reintroduced 

captive and wild populations exhibited comparable levels of reproduction, foraging and 

agnostic behavior. The fifth chapter demonstrated that G. nobilis failed to exert a 

negative density-dependent effect on C. bovinus reproductive behavior or fecundity.  
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GENERAL INTRODUCTION 

 

  Imperiled species are reared in captivity for the purpose of reintroduction, to 

supplement declining wild populations or to maintain a continued representation of the 

population (Kleiman 1989; Brown and Day 2002). Support of this conservation practice 

can be clearly demonstrated by high profile cases such as the black-footed ferret [Mustela 

nigripes] (e.g. Jachowski and Lockhart 2009), the California condor [Gymnogyps 

californianus](e.g. Meretsky et al. 2000), the Owens pupfish  [Cyprinodon radiosus] (e.g. 

Miller and Pister 1971) and the Arabian Oryx [Oryx leucoryx] (e.g. Spalton et al. 1999). 

By preventing the extinction of these species in the wild, captive breeding (or ex situ 

conservation) can be viewed as a viable option for combating biodiversity decline 

(Ebenhard 1995). 

  While captive breeding was first initiated and reserved for the most critically 

endangered species it has now increased in frequency for use with both threatened (Araki 

et al. 2007) as well as endangered populations (Snyder et al. 1996). For example, it has 

been estimated that 2000 - 3000 terrestrial vertebrates will be recommended for captive 

breeding management over the next several centuries (Soulé et al. 1986). However, with 

a rising number of ex situ populations under management, concerns associated with 

captive breeding have begun to surface (Snyder et al. 1996).  

By raising animals in an environment very different from their natural one, 

species are exposed to varying sources of both natural and sexual selection in captivity 

(Snyder et al. 1996). This can cause genetic adaptation, or domestication, to the captive 

environment and has been documented across a wide range of taxa (Heath et al. 2003; 
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Frankham 2008). Domestication, arising from a combination of environmental change as 

well as genetic adaptation has been a major cause of divergence between captive and wild 

populations (Price 1999). Compared to their wild counterparts, species maintained in 

captivity have revealed differences in genetic structure as well as a divergence in 

morphology and behavior (Wilcox and Martin 2006; Blanchet et al. 2008).  The 

alteration in these traits is considered to arise in part due to adaptation to a benign 

environment, and can have a drastic effect on the establishment and persistence of captive 

animals when they are reintroduced into their former habitat (Woodworth et al. 2002; 

Frankham 2008; Christie et al. 2012).  

  A reintroduction is defined as "an attempt to establish a species into an area which 

was once part of its historical range, but from which it has been extirpated or become 

extinct" (IUCN 1998). While there are over 489 species in focus of recent, current or 

planned reintroduction efforts for conservation purposes (Seddon et al. 2007), success 

rates are typically low with a majority failing due to a high post-release mortality 

(Teixeira et al. 2007). In fact, Fischer and Lindenmayer (2000) estimated the success rate 

of reintroductions at 23%. Possible causes could stem from domestication, the decreased 

ability to adapt to a novel habitat, obtain adequate resources, reproduce or avoid 

predation (Teixeira et al. 2007).   

Animal behavior is rarely incorporated into conservation management, but by 

assessing possible maladaptive behavior it is feasible to improve overall reintroduction 

success, especially in regard to predation, competition and social behavior (Sutherland 

1998). Despite the challenges facing many reintroduction programs, studies are lacking in 
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assessment of the causation contributing to low reintroduction success in the wild 

(Seddon et al. 2007).  

  Some of the most extensive research that has been conducted in understanding the 

costs and benefits of captive breeding has focused on fish, which have received 

centralized attention due to their high socio-economic value in aquaculture. However, 

comparative analysis between captive and wild populations has demonstrated similar 

captivity induced changes. For example, captive animals have shown deviation in 

morphology (Hard et al. 2000; Blanchet et al. 2008; Collyer et al. 2011), growth 

(Johnsson et al. 1996), population genetic structure (Wilcox and Martin 2006), 

aggression (Wilcox and Martin 2006; Blanchet et al. 2008), predator avoidance 

(Johnsson et al. 1996), reproductive behavior (Fleming et al. 1996; Araki et al. 2007) as 

well as egg size (Heath et al. 2003) relative to their wild counterparts.  

  The pupfishes (family Cyprinodontidae) of southwestern North America are 

commonly maintained in captivity, as the sustainability of these wild populations is 

frequently contingent on external support (Miller and Pister 1971; Koike et al. 2008). 

Maintaining these species in captivity, or in artificial environments, has resulted in 

genetic divergence among sub populations (Wilcox and Martin 2006). Captive pupfish 

populations have also shown a high degree of non-genetic morphological plasticity in 

addition to rapid genetically based divergence in body shape (Collyer et al. 2005, 2007, 

2011) as well as changes in head and mouth morphology due to diet specialization 

(Martin and Wainwright 2011). This phenotypically plastic predisposition may underlie 

the remarkable ability of pupfish to survive under extremely adverse and variable 

environmental conditions (Bennett and Beitinger 1997; Feldmeth and Brown 1971) and 
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has been suggested to facilitate the directional evolution of body shape characteristics 

(Collyer et al. 2007). As the reestablishment of captive animals in wild habitats may be 

affected by the decreased ability to adapt to local, natural selection pressures, shifts in 

both genetic and phenotypic characteristics are of concern, especially in view of the fact 

that a majority of desert fish reintroductions fail to establish (Henderickson and Brooks 

1991).  

  As it is difficult to predict the adaptive importance of specific genetic 

characteristics for the future persistence and adaptation of a population, the preservation 

of extant, natural genetic and phenotypic characteristics is believed to be an effective 

strategy to increase the ability of future reintroduced individuals to adapt to ancestral 

habitats (Frankham 1986). However, because selection and genetic drift can shape the 

genetic architecture of subdivided populations in different ways, genetic cohesion 

between captive and wild populations can be difficult to preserve. It is therefore 

important to assess how a founding captive population and a wild population compare 

with regard to the preservation of genetic variation and whether they have, despite their 

isolation, maintained genetic and morphological cohesion.  

   Therefore, the objective of this thesis is to use a comparative approach (between a 

wild and captive population) to evaluate the potential effects of ex situ conservation on 

the preservation of genetic and phenotypic characteristics, and how deviation in these 

features may then affect the ability of reintroduced animals to become established in their 

ancestral habitat. 
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I. THE HISTORY AND CONSERVATION OF THE LEON SPRINGS PUPFISH  

 

I.1 Introduction  

 The increased threat of extinction for many endangered species has led to the 

implementation of a variety of recovery plans, ranging from single-species efforts to 

whole-habitat restorations (Lundquist et al. 2002; Sodhi et al. 2011). While extensive 

effort is often invested into the preservation of endangered species and their ecosystems 

(Hoekstra et al. 2002), many conservation efforts are often ineffective (Butchart et al. 

2010).  However, examination of implemented methodology, both successful and 

unsuccessful, can be instructive and directly or indirectly contribute to the sustainability 

of the target species as well as inform those with similar recovery plans (Clark et al. 

2002; Lundquist et al. 2002; Bottrill et al. 2011; Sodhi et al. 2011; Bottrill and Pressey 

2012; Masica et al. 2014).   

The endangered Leon Springs pupfish (Cyprinodon bovinus) can help provide 

insight into the success and failures of other equivalent recovery plans. To date, a single 

wild population of C. bovinus occurs in an isolated desert spring in southwestern Texas 

(Gumm et al. 2011). Similar to many other desert pupfish species, habitat loss has 

contributed to their decline in abundance and distribution (Williams et al. 1985; 

Hendrickson and Romero 1989). Within the last 30 years this species of pupfish has also 

endured hybridization and introgression with non-natives, egg predation by the sympatric 

Pecos gambusia (Gambusia nobilis), and pollution (Echelle and Miller 1974; Kennedy 

1977; Hubbs 1980; Echelle and Echelle 1997; Echelle et al. 2004), resulting in federally 

listing C. bovinus as an endangered species (US Federal Register 2008). Because of these 
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extrinsic factors, the sustainability of endangered pupfish populations is often highly 

contingent on careful surveillance and the protection of the remaining habitat (Williams 

et al. 1985).  

Therefore, the overarching goals of this chapter are to survey the history and 

examine the progress of a multi-decade recovery plan focused on C. bovinus (Table I.1). 

Assessing these conservation efforts will allow management to identify the strengths and 

weaknesses of these strategies, determine the direction of future conservation efforts for 

C. bovinus, and provide others with a framework for the implementation, assessment, and 

re-examination of equivalent recovery plans. To this end, the following work has a three-

fold purpose: (i) to provide a description of the behavioral ecology of C. bovinus, (ii) 

synthesize the conservation literature on this species over the last 50 years and, (iii) 

review and expand on the results of over a decade of work maintaining the sole 

remaining wild C. bovinus population.  Following this, conclusions are drawn by 

discussing some of the critical issues that need to be addressed for the continued 

sustainability of C. bovinus. 

 

I.2 Species description  

 The Leon Springs pupfish are a small (≤ 7 cm) sexually dimorphic freshwater fish 

that have stout bodies and short fins (Echelle and Miller 1974; Kennedy 1977). Males 

have a prominent predorsal ridge, a conspicuous terminal black stripe on their caudal fin, 

and yellow fin pigmentation, while females typically have a narrow body with 

discontinuous lateral bars, grey fins, and bear a resemblance to immature / juvenile males 

(Figure I.1A & Figure I.1B; for additional information see: Echelle and Miller 1974). C. 
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bovinus are estimated to live 20 - 23 months and reach maturity within just a few months 

(Kennedy 1977). 

Similar to other pupfish species (Itzkowitz 1974; Kodric-Brown 1986), the 

breeding season for C. bovinus begins mid-April and concludes mid-September, with a 

peak in spawning activity mid-July (Kennedy 1977). At the onset of the breeding season, 

large male C. bovinus emerge from deeper water to secure open breeding territories (44 

cm ± 10 SD), differing slightly from several other Cyprinodon sp. that utilize rock 

formations and sunken debris as territorial centerpieces (Kodric-Brown 1977, Ludlow et 

al. 2001). Pupfish compete intensely to claim these limited breeding sites, resulting in 

conditional breeding behavior, which can be observed by the occurrence of both 

territorial and non-territorial males (Kodric-Brown 1986).  

Territorial C. bovinus are generally larger than non-territorial males and adopt a 

blue nuptial coloration during the summer breeding season (Echelle and Miller 1974). 

Territorial males will actively defend small heterogeneous sites and attempt to exclude all 

conspecific and heterospecific intruders from their territories, with the exception of 

receptive females (Leiser and Itzkowitz 2003a). These aggressive behaviors can include 

direct contact, such as chasing, fighting and/or biting intruders; as well as the non-contact 

signal of lateral displays (Leiser and Itzkowitz 2003a). Territorial males will exhibit 

elevated levels of aggressive behavior toward heterospecifics and non-territorial male 

conspecifics, while non-territorial males are generally smaller (i.e. satellite males), and 

may bear a cryptic female coloration (i.e. sneaker males; Echelle and Miller 1974; Leiser 

and Itzkowitz 2003a). Accordingly, these non-territorial males will usually exhibit 
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reduced levels of agonistic behavior and will steal copulations with females within the 

boundaries of other males’ territories (Leiser and Itzkowitz 2003a). 

The courtship and mating behaviors of C. bovinus also show similarities with 

other Cyprinodon species (for a review see: Kodric-Brown 1981). While C. bovinus 

females are promiscuous, they are also highly discriminatory of potential mates, visiting 

all available territorial males before selecting a partner for spawning (Leiser et al. 2015). 

Once an acceptable male is identified, a female will descend to the substrate, the pair will 

align and form a sigmoidal shape, which is followed by a rapid jerking movement during 

egg deposition (Figure I.1C; Gumm et al. 2008). Females will typically deposit one to 

several demersal eggs (≤ 0.4 mm in diameter) on the substrate during a spawning event 

(Kennedy 1977; Leiser and Itzkowitz 2003a). Similar to other species of pupfish, males 

provide no parental care to these deposited eggs (Kodric-Brown 1977), with the 

exception of inadvertently driving away male intruders from his territory, which can help 

reduce filial egg cannibalism (Loiselle 1983). This is particularly relevant because C. 

bovinus lives sympatrically with a suspected egg predator, the endangered Gambusia 

nobilis (for details see Gumm et al. 2008, 2011; Figure I.1C). 

 

I.3 Conservation history  

 C. bovinus have historically been distributed throughout Leon Creek, both 

upstream and downstream to highway 18 north of Fort Stockton, Texas (Figure I.2A; 

Kennedy 1977; Hubbs et al. 1978). Recently however, the range of C. bovinus has 

become restricted within Diamond Y Draw, a historical tributary of the Pecos River 

(Veni 1991), to two discrete locations: Diamond Y Spring (31° 0'4.75" N, 102°55'27.09" 
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W) and Monsanto Pool (31°1'51.60" N, 102°53'49.73" W; Figure I.2B). Separated by 4.2 

km of predominantly dry land, the draw flows from Diamond Y Spring NNE to 

Monsanto Pool, predominantly fed by the Rustler aquifer (Boghici 1997). Water in this 

area is low in dissolved oxygen and high in chloride, sodium, and sulfate ions (Brune 

1975; Veni 1991).  

Diamond Y Spring is located 8 km west of highway 18 and is comprised of a 

circular head pool ~ 419 m2 and 3.8 m in depth with steep undercut banks and a shallow 8 

m2 natural breeding shelf (Veni 1991; Gumm et al. 2011). From the head pool, water 

flows down a long stretch of land choked with bulrush (Scirpus americanus; ~ 2 m in 

width and 5 - 15 cm in depth) before terminating into the ground 1 - 2 km to the NNE 

(Echelle and Miller 1974). Monsanto Pool, located downstream from Diamond Y Spring, 

is primarily fed by groundwater seepage and potentially by a nearby Euphrasia Spring 

(31°01'56.1" N, 102°53'39.2" W; Veni 1991; Figure I.2B). Monsanto pool has maintained 

a small population of C. bovinus, which overwinter in a deep ~ 1 m2 refugium, exiting to 

spawn in the surrounding shallow ponds (M. Itzkowitz, personal observation). Much of 

the area surrounding the refugium contains dense emergent vegetation (~ 10 m2), with an 

estimated water depth of 5 - 10 cm, which can impede spawning by overtaking the 

shallow breeding areas. Unlike Diamond Y Spring, there is an absence of compact 

substrate at this locale, and the majority of the shallow areas are muddy and full of 

flocculent silt and algal material (A. Black, personal observation). 

The first documented collection of C. bovinus occurred in 1851 (16 specimens 

collected by John H. Clark) from Leon Springs (or Lake Leon; 30º53’N, 103º01’W; 

Brune 1975) during a U.S. and Mexican boundary survey (Girard 1959; Echelle and 
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Miller 1974; Kennedy 1977; Hubbs 1980), yet subsequent surveys of the area 

surrounding the initial collection site were fruitless and C. bovinus were declared extinct 

(Kennedy 1977; Hubbs 1980). However, conservation efforts were renewed in December 

of 1965 when Minckley and Barber collected a putative C. bovinus sample from a desert 

spring north of Fort Stockton, TX (Echelle and Miller 1974; Kennedy 1977; Hubbs 

1980). The collected species was later verified as C. bovinus during future surveys in the 

downstream watercourse of Diamond Y Draw (Echelle and Miller 1974).  

The population persevered uninterrupted until the release of a baitfish (the 

sheepshead minnow; Cyprinodon variegatus) precipitated hybridization and genetic 

introgression with C. bovinus during the 1970s (Hubbs 1980) and then again in the 1990s 

(Echelle and Echelle 1997; Echelle et al. 2004). Balmorhea Lake, (30°57'46.46" N, 

103°43'12.82" W) in Reeves County, Texas (76 km west of Diamond Y Spring), was the 

apparent source of the introduced non-natives (Echelle and Echelle 1997). Following the 

introduction of C. variegatus into Balmorhea Lake during the 1960s, there have been 

documented hybridization events with other Cyprinodontidae, such as C. elegans 

(Commanche Spring pupfish; Echelle and Echelle 1994) and C. pecosensis (Pecos 

pupfish; Echelle and Connor 1989; Wilde and Echelle 1992; Childs et al. 1996; 

Rosenfield and Kodric-Brown 2003).   

C. variegatus were first identified in Diamond Y Draw in 1974 near the highway 

18 bridge (Kennedy 1977) and the first documented C. bovinus x C. variegatus hybrids 

occurred in 1975 within the downstream watercourse (Echelle and Echelle 1997). From 

1976 - 1978, conservation efforts focused on eradicating hybrids through intensive 

seining and the use of ichthyotoxins (for additional details see: Hubbs 1980). Both 
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morphological characteristics and allozyme electrophoresis verified that the renovation 

had been successful; no morphological or genetic signatures of introgression were 

observed or detected in any of the specimens collected from the downstream watercourse 

(Hubbs 1980; Echelle and Echelle 1997). As a safeguard, 80 genetically uncompromised 

C. bovinus were translocated from the upstream watercourse to the Southwestern Native 

Aquatic Resources and Recovery Center (SNARRC; formerly Dexter National Fish 

Hatchery and Technology Center) as an assurance colony (Edds and Echelle 1989). 

A second, more pervasive, invasion event occurred again during the early 1990s 

when diagnostic allozyme and mtDNA markers were detected in individuals from both 

the upper and lower section of the watercourse (Echelle and Echelle 1997; Echelle et al. 

2004). The severity of the invasion was substantial enough to result in a second project to 

eradicate the genetically compromised C. bovinus (Echelle et al. 2004). From 1998 – 

2001, extensive seining and ichthyotoxins were once again employed to remove putative 

hybrids throughout the watercourse (Echelle et al. 2004). Following completion of the 

renovation, between 5 000 and 10 000 captive C. bovinus were subsequently reintroduced 

from SNARRC to restock the decimated C. bovinus population as well as swamp out any 

potential exotic alleles that may have remained (Echelle and Echelle 1997; Echelle et al. 

2004). Few non-native allozyme markers (ranging in frequency from 0.0 – 4.2 %) were 

found in any of the post-renovation C. bovinus samples (Echelle and Echelle 1997; 

Echelle et al. 2004). 

 

I.4 Recent management  
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 Since the large-scale release of captive C. bovinus into the wild in the early 2000s, the 

population size rapidly declined until in 2006, only one territorial male was reported 

(Gumm et al. 2008). This precipitated an extensive habitat restoration project that 

entailed clearing an area of S. americanus vegetation ~ 10 x 1.5 x 0.2 m immediately 

downstream of the natural breeding shelf at Diamond Y Spring in 2007. Cement tiles (30 

x 10 x 5 cm) were placed in the cleared area to prevent regrowth of S. americanus and to 

provide suitable breeding grounds for pupfish (Figure I.1D; Kodric-Brown 1978, 1981). 

Habitat restoration methods were repeated prior to the breeding season in January 2013 

and 2014 to create four additional breeding pools (7 x 2 x 0.2 m each) further 

downstream of the natural breeding shelf.  The reiterated habitat expansions sought to 

decrease the extent of vegetation coverage and provide additional substrate availability 

for territorial males.  

Leading up to and following these habitat restoration projects, annual surveys 

were conducted to evaluate fluctuations in the C. bovinus population size at Diamond Y 

Spring from 2001 - 2014 and at Monsanto Pool from 2009 - 2012. To estimate population 

size each year the number of territorial males was documented, which was used as a 

proxy for total population size. A population census was not possible due to the extent of 

vegetation coverage, but territorial male counts have been used previously to estimate 

population size in other pupfish species (Kodric-Brown 1978) as well as C. bovinus 

(Gumm et al. 2011).  

Following the large-scale reintroduction of C. bovinus in 2000 (Echelle et al. 

2004), there has been a decline in the estimated number of territorial males on the natural 

breeding shelf of Diamond Y Spring, with an all-time low of one territorial male 
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observed in 2006 (Figure I.3). However, following the extensive habitat restoration 

project that occurred at Diamond Y Spring in 2007 (Figure I.1D), the population has 

shown a rapid, and stepwise, increase in estimated population size (Figure I.3). In fact, 

the most recent population size estimate at this location (2014 = 20 territorial males) is 

close to the estimated population size that was observed following the reintroduction 

event in 2001 (Figure I.3).  

Population size estimates at Monsanto Pool were less encouraging. While the 

2009 survey revealed 82 adults (45 males; 37 females), and the 2010 survey showed 80 

fish (36 males; 44 females), soon after the 2010 survey, the pool became severely choked 

with bulrush (S. americanus) and water levels receded (≤ 5 cm). An ancillary census 

following the 2010-breeding season revealed just 24 adult and 17 juvenile C. bovinus, 

and in 2012 only 4 adults remained. Since 2012, subsequent surveys of this location have 

been unsuccessful, leading to the conclusion that C. bovinus have become extirpated at 

this site (M. Itzkowitz, personal observation). The extirpation at this location was likely 

due to the observed increase in S. americanus coverage that had overrun the shallow 

breeding areas, which are essential for the persistence of pupfish populations (Kodric-

Brown and Brown 2007).   

 Following the habitat restorations in 2011 and 2012, male C. bovinus were 

observed defending territories in the newly established pools both within, and 

downstream from the natural breeding shelf (Table I.1). Males exhibited characteristic 

behavior within these newly excavated sites, and were observed chasing away intruding 

conspecifics and heterospecifics in addition to spawning with arriving females. However, 

across all breeding territories, males exhibited a downward trend in the frequency of their 
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reproductive behavior (Figure I.4A), which was highly correlated with an increase in the 

number of territorial males (Figure I.5 & Table A1.01; Spearman’s rank correlation, rho 

= - 0.42, N = 78, P < 0.001).  With the exception of 2011, there was no noticeable pattern 

in the number of females entering male territories (Figure I.4B). 

 

I.5 Discussion  

The recovery plan of C. bovinus (Table I.1) appears to have been successful, yet 

may have also produced unintended consequences. Following the population decline at 

Diamond Y Spring in 2006, work began with the objective of maintaining and enhancing 

a sustainable wild population of C. bovinus. After the 2007 habitat restoration (Figure 

I.2D), when emergent vegetation was removed to expand the natural breeding area, the 

wild population began to increase in size (Figure I.3), presumably highlighting a positive 

effect of the restoration efforts. However, with an increase in the number of territorial 

males (Figure I.3), promiscuous females (which have been shown to be choosy in this 

species; Leiser et al. 2015) would have a larger group of potential mates to choose from, 

which may be decreasing individual territorial male reproductive success (Spence and 

Smith 2005; Figure I.5). This suggests that with an increase in territorial males, perhaps 

females are spending more time assessing males / habitat quality prior to spawning, 

which may be resulting in the observed decrease in reproductive success (Figure I.5).  

It is also possible that the individual decrease in male reproductive success could 

be due to an unequal sex ratio (Clutton-Brock and Parker 1992). While the mechanism 

contributing to this reduce reproductive success are difficult to delineate, these results 
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may represent potential negative by-products of expanding the natural habitat of C. 

bovinus. 

 

I.6 Further considerations and conclusions  

 In addition to focusing on C. bovinus, the environment itself must also be 

considered.  Habitat destruction, such as groundwater pumping and drying of surface 

springs, represents a major challenge for maintaining small populations of desert fish 

(Williams et al. 1985). For example, groundwater pumping was identified as a primary 

reason for the extinction of the Commanche Springs pupfish (C. elegans) during the 

1950s (Hubbs and Echelle 1972; Leiser and Itzkowitz 2003b). With local seasonal 

fluctuations in water flow common, even a small decrease in the water level could impact 

the amount of available breeding habitat and therefore persistence of C. bovinus (Brune 

1975; Kennedy 1977). Therefore, in order to protect the habitat and mitigate further 

habitat loss, extensive aquatic reclamation needs to occur. At a minimum, the continued 

upkeep of S. americanus at Diamond Y Spring is essential for maintaining the available 

breeding habitat and preserving the current population size. However, the potential 

effects that altering habitat may have on the behavioral ecology of C. bovinus needs to be 

carefully monitored.  

The massive reintroduction of captive C. bovinus released 5 000 - 10 000 pupfish 

into the Diamond Y Draw (Echelle et al. 2004). While a population census has not 

occurred  (nor would it be feasible), anecdotal evidence places the population size at 

roughly 250 individuals within Diamond Y Spring, and surveys have failed to locate any 

other local populations. Therefore, survivorship of reintroduced C. bovinus was 
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exceedingly low. At this time, the reason for such low settlement success is unknown but 

is likely due to rapid habitat loss (Williams et al. 1985). 

Based upon the historical incidence of introduced C. variegatus into Leon Creek, 

it is imperative to continuously monitor and protect Diamond Y Draw from future 

introductions of exotic species. While the elimination of genetically compromised C. 

bovinus and subsequent release of pure C. bovinus from SNARRC is a viable solution, it 

should be done as a last resort in order to prevent the loss of any private alleles that may 

only be occurring in the wild population (Echelle and Echelle 1997; Echelle et al. 2004). 

 In order to preserve the remaining wild C. bovinus population and continue to 

develop the recovery plan (Table I.1), the following conservation strategies are 

emphasized: (1) continued habitat restoration to increase (or maintain) the amount of 

available breeding habitat, (2) careful monitoring of Diamond Y Draw for introduced 

non-native species and putative Cyprinodon hybrids, (3) thorough and sustained 

assessment of the hydrogeology of Diamond Y Draw and the aquifer system that supports 

it, and (4) further examination of possible effects inadvertently introduced by increasing 

breeding habitat. 
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Figures I: 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure I.1 Male and female Cyprinodon bovinus, spawning behavior, and habitat 
restoration: a) male, and b) female C. bovinus; c) spawning between a territorial male 
(top) and female (bottom) C. bovinus and Pecos Gambusia (Gambusia nobilis; pictured 
below the spawning) the putative egg predators; d) habitat restoration project at Diamond 
Y Spring conducted in 2007 entailed the manual excavation of bulrush (Scirpus 
americanus) vegetation to provide an additional open, shallow, breeding territory habitat. 
Cement tiles were used to prevent S. americanus regrowth and to provide additional 
oviposition substrate for C. bovinus.  
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Figure I.2 The geographic range of Cyprinodon bovinus: a) the two study locations are 
located ~ 18 km north of Fort Stockton TX and b) a close-up of the two locations within 
Diamond Y Draw, which are separated by ~ 4 km of predominantly dry land. 
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Figure I.3 Population estimates of Cyprinodon bovinus over 15 years based upon the 
number of territorial males observed at Diamond Y Spring.  Note: a population size 
estimate was not conducted in 2011.   
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Figure I.4 Reproductive behaviors and females occurring within C. bovinus territories of 
territorial males across the 2007 - 2014 breeding seasons at Diamond Y Spring: a) Mean 
frequency (± SE) of reproductive behaviors (spawns and attempted spawns) by territorial 
males across the 2007 - 2014 breeding seasons; b) Mean number of females (± SE) 
observed entering male territories. A gray dashed line depicts years that habitat 
restoration projects occurred. Note, data was not obtained for the number of females 
entering male territories in 2012 
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Figure I.5 Negative correlation between mean (± SE) annual reproductive behaviors 
(spawns & attempts) and the number of territorial males at Diamond Y Spring, factored 
by year (2007 – 2014; Spearman’s rank correlation, rho = - 0.42, P < 0.001, n = 78).  
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Table I.1 Summary of the three main goals of the Cyprinodon bovinus Recovery Plan 
and associated expected outcomes, actions, assessment tools, and findings. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 EXPECTED 
OUTCOMES 

ACTION ASSESSMENT TOOL FINDINGS 

Goal 1: Habitat Restoration 

 

Entire habitat 
used for 

breeding, 
including newly 
renovated shelf 

Increase the size of 
the breeding habitat 
through extensive 

restoration 

Observations of 
reproduction and other 

behavior within the 
newly renovated area 

Behavioral observations reveal breeding 
across the original natural shelf as well as the 

newly renovated area. 

Pupfish observed 
throughout the 
spring system 

Survey for evidence 
of population 

expansion 
throughout spring 

system 

Observations of 
reproduction and other 
behavior within new 
areas of the spring 

system 

No pupfish found in the exterior spring 
system after 2012. Absence likely due to 
poor quality habitat for breeding, ground 

water drainage, and bulrush encroachment. 

Goal 2: Monitor population size 

 
A significant 
increase in 

overall 
population size 

Monitor population 
size 

Yearly (2000-2014) 
counts of territorial 

males 

After all time low population in 2006, 
numbers have increased. 

Goal 3: Monitor and evaluate habitat use, behavior, and reproduction 

 

Use of entire 
habitat for 
breeding, 

including newly 
renovated shelf 

Monitor habitat use 

Observations of use of 
natural habitat at the 

breeding shelf, 
throughout the spring 

system, and newly 
created habitat 

Spawning occurred throughout the natural 
shelf and newly renovated areas. 

Increase in 
overall 

reproductive 
success 

Evaluate spawning 
success 

Annual analysis of male 
reproductive successive 

Male spawning success has decreased, 
possibly due to increased habitat, which 

disbursed male territories. 
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II. THE EX SITU CONSERVATION OF CYPRINODON BOVINUS  

 

II.1 Introduction 

 The integration of genetic monitoring and assessment into conservation biology 

allows managers to quantitatively gauge the efficacy of ongoing recovery plans through 

the evaluation of population structure and the evolutionary potential of endangered 

species (Hendrick 2001; Frankham 2005; Schwartz et al. 2007; Harrisson et al. 2014). 

Historically, conservation geneticists have relied on tools that provide data from only a 

limited number of anonymous, presumably neutral markers (e.g. short-tandem-repeat 

polymorphisms) to examine population structure (Wan et al. 2004). Recently however, 

Single Nucleotide Polymorphisms (SNPs) have gained popularity due to their abundance, 

high quality, and presence across both coding and non-coding regions of the genome 

(Vignal et al. 2002; Morin et al. 2004). 

 With declining costs of Next Generation Sequencing (NGS) technology and 

continuing improvement in bioinformatic tools (Shendure and Ji 2008), powerful 

techniques for assessing variation at thousands or even tens of thousands of genetic loci 

in multiple individuals are rapidly being adopted for ecological and conservation research 

applications (Kohn et al. 2006; Allendorf et al. 2010; Rice et al. 2011; Narum et al. 2013; 

Reitzel et al. 2013; Martin and Feinstein 2014). These emerging tools facilitate the 

increased resolution of neutral population structure and can simultaneously help to 

identify genomic regions that are evolving under novel selective pressures (Nielsen et al. 

2009; Narum et al. 2010; Rice et al. 2011; Funk et al. 2012; Lemay and Russello 2015). 

By examining genetic markers on a genome-wide basis, NGS technologies can therefore 
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provide valuable insight into the genetic status and adaptive potential of managed and 

endangered populations (Kohn et al. 2006; Allendorf et al. 2010; Funk et al. 2012; 

Gruenthal et al. 2013; Ogden et al. 2013). 

 Endangered species are frequently reared in captivity to provide stock for 

reestablishing or augmenting declining wild populations, or as a hedge against the 

imminent extinction of species of particular public focus (Kleiman 1989; Seddon et al. 

2007; Seddon 2010). While augmentation of imperiled populations can be requisite for 

the enhancement and survival of many natural populations (Kozfkay et al. 2008), the 

establishment and persistence of captive animals in natural habitats can be greatly 

affected by extrinsic factors (Williams et al. 1985; Holsman et al. 2012; Bennett et al. 

2013) in addition to the intrinsic genetic characteristics of the source population 

(Woodworth et al. 2002; Frankham 2005; Araki et al. 2007; Carroll and Fox 2008; Milot 

et al. 2014). 

 Traits favored by selection in captivity may be maladaptive upon release into a 

natural environment, well within the time scale of most conservation management plans 

(Ford 2003; Heath et al. 2003; Frankham 2008; Williams and Hoffman 2009; Christie et 

al. 2012; Milot et al. 2014). This reduction in local adaptation coupled with concomitant 

habitat loss and fragmentation has the potential to produce a high initial mortality rate 

following the release of captive-bred animals into natural habitats (Brown and Day 2002; 

Laikre et al. 2010; Tracy et al. 2011; Holsman et al. 2012). Because only a small fraction 

of released individuals may survive, the resulting demographic and / or genetic 

bottlenecking can effectively reshape the genetic architecture of wild populations, despite 

the release of a large number of captive animals (McCullough et al. 1996; Friar et al. 
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2000; Ramey et al. 2000; Bristol et al. 2013). 

 Because of the important role genetic variation has with increasing a populations 

resiliency to environmental change (such as reintroducing into a novel habitat), it is 

therefore important to assess how captive and wild populations compare with regard to 

the preservation of genetic variation and whether they have, despite their isolation, 

maintained genetic and phenotypic similarity (Wisely et al. 2008). However, because 

selection and genetic drift can shape the genetic architecture of isolated populations in 

different ways, maintaining natural genetic and phenotypic characteristics can be difficult 

(Wilcox and Martin 2006; Blanchet et al. 2008). Comparing the genetic characteristics of 

an established captive population of known origin and demographic history to those of a 

wild population can enable strong inferences about the genetic health and status of wild 

populations based on levels of genetic variation and demographically important metrics 

such as inbreeding levels and effective population size (Witzenberger and Hochkirch 

2011; Gonzalez et al. 2014). Additionally, by complementing a genetic assessment with 

phenotypic data, further inferences about spatial patterns of adaptation can be made 

(Kawecki and Ebert 2004; Funk et al. 2012). 

 With these concerns in mind, a NGS approach was employed to conduct a 

genome-wide assessment of neutral and adaptive population structure, which was 

accompanied with morphological data in order to gauge variation occurring within and 

between a captive and wild population of the endangered Leon Spring pupfish 

(Cyprinodon bovinus). 

 For assessment of both genomic and morphological patterns, the null hypothesis 

was posited to be an absence of divergence between the two populations, which would 
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provide conceptual support for preserving the natural genetic and phenotypic 

characteristics through the augmentation of the wild population from captive stock. 

Alternatively, rejection of the null hypothesis could signal the effects of environmental 

stochasticity and / or the occurrence of local adaptation, which could potentially 

compromise future supplementation efforts and therefore encourage reconsideration of 

the current C. bovinus management strategy. 

 

II.2 Materials and methods 

2.1 Subject species 

The pupfishes (Cyprinodontidae) of southwestern North America are commonly 

maintained in captivity, as the sustainability of these wild populations is frequently 

contingent on external support (Miller and Pister 1971; Wilcox and Martin 2006; Koike 

et al. 2008; Finger et al. 2013). Between captive and wild populations, restricted gene 

flow has contributed to genetic divergence across populations (Wilcox and Martin 2006; 

Finger et al. 2013) with pupfish maintained in these environments showing a high degree 

of non-genetic morphological plasticity in addition to rapid genetically based divergence 

in body shape (Collyer et al. 2005, 2007, 2011). This phenotypically plastic 

predisposition may underlie the remarkable ability of pupfish to survive under extremely 

adverse and variable environmental conditions (Feldmeth and Brown, 1971; Bennett and 

Beitinger 1997) and may facilitate the directional evolution of body shape characteristics 

(Collyer et al. 2007). As the reestablishment of captive animals in wild habitats may be 

affected by the decreased ability to adapt to local, natural selection pressures, shifts in 

both genetic and phenotypic characteristics are of concern, especially in view of the fact 
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that a majority of desert fish reintroductions fail to establish (Hendrickson and Brooks 

1991). 

C. bovinus are an endangered desert pupfish restricted to an isolated spring 

system in SW Texas, USA (US Federal Register 2008). Following near extinction due to 

habitat loss and an episode of ‘genetic contamination’ from the non-native sheepshead 

minnow (Cyprinodon variegatus; Echelle and Echelle 1997), C. bovinus have been 

maintained in captivity at the Southwestern Native Aquatic Resources and Recovery 

Center (SNARRC; Dexter, NM) as a “genetic replicate” since 1976 (Edds and Echelle 

1989). During the mid 1990’s, a second hybridization event occurred with C. variegatus, 

and due to the rapid and ubiquitous spread of C. variegatus throughout the entire spring 

system, the wild population was largely eradicated to remove genetically compromised 

individuals (Echelle and Echelle 1997). 

Following the apparently successful renovation, a large-scale release of captive 

pupfish (~ 10 000 individuals) occurred from 1998 - 2001 to replenish the culled C. 

bovinus population and to dilute the frequency of C. variegatus alleles in rare hybrids that 

might still be present in the watercourse; the number of remnant wild pupfish was never 

quantitated prior to this restocking (Echelle et al. 2004). Despite the large number of 

captive C. bovinus released into the wild, the population size rapidly declined, until in 

2006, less than 5 individuals were observed. This precipitated multiple habitat restoration 

projects, which effectively counteracted the downward trend in population size (Gumm et 

al. 2008, 2011); anecdotal evidence places the current population size ~ 250 individuals 

(A. Black, personal observation).  
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2.2 Sample collection 

 Wild and captive C. bovinus were collected from Diamond Y Spring, TX (DY; 

31°0'4.75"N, 102°55'27.09"W) and supplied by Southwestern Native Aquatic Resources 

and Recovery Center (SNARRC; Dexter, NM), respectively (Figure II.1). Fish were 

captured using minnow traps and sedated with ~ 50 ppm Tricaine methanesulfonate (MS 

- 222) in natural spring water. Each individual was then measured (with electronic 

calipers) and photographed prior to the removal of a small tissue segment from the 

medial caudal fin. Photographs were taken using a Nikon D5100 digital SLR camera 

(16.2 megapixels) with an 85 mm lens mounted to a copy stand. Prior to each 

photograph, individuals were patted dry with kimwipes and carefully oriented left side up 

over a 2 mm reference grid ~ 0.25 m below the camera lens. Digital images of the left 

lateral surface of each individual fish were captured under natural lighting conditions and 

fish were subsequently placed in holding aquaria to await recovery from anesthesia. After 

fish resumed normal swimming behavior, all individuals were successfully released back 

into their respective habitats with no observed losses.  

 

2.3 Morphological variation 

 To quantitate variation in body shape between populations, landmark-based 

geometric morphometrics, a commonly used technique for ecological, evolutionary and 

developmental inquiry (Bookstein 1991; Rohlf and Marcus 1993; Marcus 1996), was 

employed. By quantifying relative distances between anatomically homologous points 

(i.e. landmarks), shape complexity was extracted in the form of Cartesian Coordinates, 

which were subsequently used as ordination variables in the analysis of body shape. 
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 Following digital image acquisition, photographs were uploaded to a computer 

and 12 landmarks were assigned to each individual image based upon anatomical 

reliability and prior success in mapping body shape variation in other Cyprinodon species 

(Collyer et al. 2005; Figure II.2A). A single investigator (A. Black) digitized all 12 

landmarks for each specimen using tpsDig2 (Rohlf 2013), and the Cartesian coordinates 

(x, y) of each landmark for all individuals were imported into MorphoJ (Klingenberg 

2011), where geometric morphometric methodology largely followed Klingenberg et al. 

(2003). 

 Centroid size, defined as the square root of the sum of squared distance from each 

landmark to their configurations centroid, was used to quantitate body size (Bookstein 

1991). To determine whether sexual dimorphism and population source had effects on 

body size, a two-way analysis of variance (ANOVA, Type II) was implemented using the 

Mass package (Venables and Ripley 2002) in the R environment (R Development Core 

Team 2014). Non-shape variation was held constant by Procrustes superimposition 

(Figure II.2; Dryden and Mardia 1998; Klingenberg 2011), which implements an iterative 

least squares superimposition of landmark coordinates by first scaling individuals to unit 

size and then aligning the centroid to the origin of a shared coordinate map; this 

superimposition effectively removes minor differences in the size and orientation of 

individuals (Rohlf and Slice 1990). However, as Procrustes superimposition does not 

correct for allometric variance, which can account for a large component of shape 

variation in fishes (e.g. Reis et al. 1998), a multivariate regression of shape onto size was 

performed and tested against the null hypothesis of independence (Monteiro 1998).  
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To reduce the dimensionality of the data, as well as to visualize the main axes of 

variation, a Canonical Variate Analysis (CVA) was performed using ‘sex’ and 

‘population source’ as classification variables (Klingenberg 2011). CVA is an ordination 

method that emphasizes the differences that vary most between groups by maximizing 

between-group variation relative to within-group variation (Legendre and Legendre 

1998). To visualize group shape transformations, a Thin-Plate-Spline method was used to 

generate transformation grids along the CV axes; these grids represent shape deformation 

from the mean landmark configuration along the major axes of variation. Procrustes 

distance, the square root of the sum of squared distance between corresponding 

landmarks, was used for pairwise comparisons as an absolute metric to distinguish groups 

through use of permutation rounds (10 000 iterations). Classification rates were 

calculated using cross-validated discriminant functions, which use a ‘leave-one-out’ 

approach to generate an estimate of membership assignment probability in a priori 

defined groups (Lachenbruch 1967).  

 

2.4. Molecular techniques and bioinformatics 

 To analyze neutral population structure and examine genomic regions for 

signatures of selection, a genome-wide strategy was employed based on restriction 

Associated DNA sequencing (RAD-seq) technology (Baird et al. 2008). RAD-seq utilizes 

restriction endonucleases to create a reduced-representation sequence library that enables 

the identification of thousands of SNPs spanning the genome, simultaneously yielding 

SNP genotypes for all individuals analyzed (Davey et al. 2013), even in non-model 

organisms for which no reference genome assembly exists (Ekblom and Galindo 2010; 
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Davey et al. 2011). However when used without a reference genome, this technology can 

require excessive amounts of sequence data to enable the adequate read depth required to 

achieve high confidence in SNP calls (Peterson et al. 2012; Kai et al. 2014).  

 To reduce the amount of genotyping error by optimizing the number of reads 

sequenced in a non-model organism, an extension of traditional RAD-seq was employed, 

based upon double digest restriction Associated DNA sequencing (ddRAD-seq) 

technology (Peterson et al. 2012). This method employs a cocktail of a rare-cutting 

enzyme and a frequent-cutting enzyme to digest the genomic DNA, followed by a precise 

size selection step (opposed to the random shearing conducted with RAD-seq) to create a 

highly reproducible, reduced representation genomic library (Peterson et al. 2012). 

Tissue samples (n = 48; 24 from each population) were individually stored in 500 

µL of RNAlater and maintained at 4ºC pending digestion with Proteinase K (Qiagen; 

Hilden, Germany). Genomic DNA was extracted using a standard phenol-chloroform 

protocol, and DNA concentrations were quantified for each sample with a Qubit®2.0 

Fluorometer (Life Technologies; Carlsbad, CA). Genomic DNA quality was assessed 

using a 260 / 280 absorbance ratio on a NanoDrop 1000 Spectrophotometer (Thermo 

Scientific; Waltham, USA) and by gel electrophoresis (1% agarose gel).  

 ddRAD library preparations followed the methodology originally described in 

Peterson et al. (2012) with minimal modification. For each sample, one µg of genomic 

DNA was digested overnight at 37ºC in 50 µL reactions containing 20 units each of High 

Fidelity EcoRI and MspI restriction enzymes, NEBuffer 4, and water (New England 

Biolabs; Beverly, MA). Following digestion, samples were purified with 1.5x volume of 

Ampure XP beads (Beckman Coulter; Miami, FL) on a 96-well magnetic plate. For each 
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sample, 100 ng of fragmented DNA was ligated to a universal P2 and P1 adapter (which 

contained 48 unique 5-base barcodes adjacent to genomic DNA fragments). All barcodes 

differed by at least 2-base positions, enabling an accurate read assignment (95 – 99%) 

during the sample demultiplexing procedure (Peterson et al. 2012). Following ligation 

and subsequent Ampure XP bead cleanup, samples were pooled and size selected for a 

range of 375 ± 38-bp (BluePippin, Sage Science; Beverly, MA), and individual libraries 

were PCR amplified with uniquely indexed primers using a Phusion Polymerase kit (New 

England Biolabs) following the manufacturers default guidelines. Reactions were 

transferred to a preheated Thermocycler (Eppendorf; mastercycler®pro) and amplified 

using the following conditions: 1 cycle of 98ºC for 30 s, 12 cycles of 98ºC for 10 s, 62ºC 

for 30 s, 72ºC for 30 s, and a final cycle at 72ºC for 10 min. Following amplification, 

both libraries were again cleaned with Ampure XP beads, assessed for quality using a 

bioanalyzer, and pooled together at equimolar concentrations. The final pooled library 

was then run on a single Illumina Hiseq 2500 lane (Institute of Biotechnology, Cornell 

University), using 2 x 101-bp sequence chemistry. Only single-end read data were used 

in the current study.  

Raw Illumina reads were assessed for quality using FastQC (Babraham 

Bioinformatics, Babraham Institute; 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and subsequently assembled 

into putative genetic loci using the open source pipeline Stacks (v.1.9; Catchen et al. 

2011, 2013). The ‘process radtags’ script in the Stacks pipeline was first used to 

demultiplex raw sequences by assigning individual reads to corresponding samples 

through the unique combination of ligated in-line barcodes and standard Illumina read 
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indices (Peterson et al. 2012).  After trimming off the verified barcodes, single end reads 

were checked for the presence of the EcoRI restriction cut-site sequence (GAATTC), and 

those with base-call errors were discarded. Using a sliding window (15 % of read length), 

reads that showed a continual decrease in quality score (Q score < 10 [90 % base call 

accuracy]) were also removed.  

Demultiplexed and filtered reads were uploaded onto a computing cluster 

composed of 32 processor cores and 128 GB of memory (High Performance Computing; 

Lehigh University) where the reads were assembled using Stacks ‘denovo_map.pl’ 

wrapper program (which sequentially executes each core component of the pipeline; 

Figure A2.01). All ‘denovo_map.pl’ parameters were set to default (parameters in italics: 

-m 3, -n 0, -t, -M 2, -N 4) and stacks with an excessive number of reads (> 2 SD above the 

mean depth) were filtered to remove stacks that potentially contained more than one 

merged locus (for additional details see: Catchen et al. 2011, 2013).  

Missing data in RAD-seq can arise due to variation in recognition sites, errors 

introduced during library preparation, or sequencing base miscalls (Arnold et al. 2013; 

Davey et al. 2013; Gautier et al. 2013). Using a conservative approach to reduce 

ascertainment bias, loci were required to be present in ≥ 80% of individuals within each 

population, with a minimum stack depth of 5x and a minor allele frequency > 0.02. 

Additionally, to maintain independence of loci with multiple polymorphisms, only the 

first SNP from each locus was retained. Using a False Discovery Rate (FDR) of α = 0.05 

(implemented in R’s Stats package), loci were also excluded if their genotype frequency 

distribution deviated significantly (within both populations) from Hardy-Weinberg 

Equilibrium expectation (Wigginton et al. 2005). The ‘populations’ module of Stacks was 
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used to calculate the number of private variants, FIS, Nucleotide Diversity (∏), Observed 

(HOBS), and Expected heterozygosity (HEXP) for every filtered SNP in the dataset. SNPs 

were exported from Stacks in Variant Call Format (Danecek et al. 2011) and converted to 

Plink (Purcell et al. 2007) for additional data management. Filtered loci were then 

reformatted using PGDspider (v.2.0.5.2; Lischer and Excoffier 2012) for future software 

import.  

 

2.5 Neutral and adaptive variation 

 Delineation of both neutral and adaptive genetic variation can be important for 

evaluating discreteness among endangered populations, especially in the face of low gene 

flow and environmental differences (Funk et al. 2012). Assessment of neutral variation 

can provide insight into stochastic processes as well as the demographic history of 

populations (Wright 1931). Evaluation of adaptive variation, on the other hand, can help 

identify and potentially provide an understanding of local adaptation occurring within 

populations; this can help inform managers of divergent selection patterns that could 

negatively affect future supplementation, reintroduction, or translocation efforts. 

Therefore, following the workflow of Funk et al. (2012), two different datasets were 

created: 1) a ‘neutral’ dataset, and 2) an ‘adaptive’ dataset. These datasets were then used 

to independently examine the relative contribution that these two processes have on the 

genetic distinctiveness of the two C. bovinus populations.   

 First, to examine the likelihood that divergent selection regimes could be 

promoting genetic adaptation to specific local environments (e.g. captive habitat), 

selectively neutral loci were distinguished from those potentially under selection 
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(genomic regions more divergent between populations than that expected by chance, or 

‘outlier’ loci), using Bayescan (v2.1; Foll and Gaggiotti 2008; Foll et al. 2010; Fischer et 

al. 2011). This implements an FST-based approach to estimate the probability that a locus 

is under selection by comparing two models (in the presence / absence of selection) using 

a Markov Chain Monte Carlo procedure. Individuals were grouped according to 

population and a prior odds of 10 was used (implying the prior belief that the neutral 

model is 10x more probable than the model with locus-specific selection) to obtain the 

posterior probability of a neutral model using default settings and an FDR of 0.05. 

Putative outliers were then coded according to their number in the Stacks catalogue, and 

were separated by supplying a “whitelist” (which will include specific SNPs) to the 

‘population’ module in Stacks (Catchen et al. 2013). The consensus sequences of putative 

outliers were then subjected to sequence similarity searches with known NCBI sequences 

using BLAST (Altschul et al. 1997).  

 To generate the ‘neutral’ dataset, outliers that were putatively under divergent 

selection were removed from the dataset by supplying a “blacklist” (which will exclude 

specific SNPs) to the ‘population’ program. Contemporary effective population size (Ne) 

was then estimated from this dataset by using the linkage disequilibrium method 

implemented in the software package NeEstimator (v.2.01; Do et al. 2014). GenoDive 

(v.2.0; Meirmans and Van Tienderen 2004) and the Pegas package in R (Paradis 2010) 

were used to assess population differentiation through mean and pairwise FST values 

(Weir and Cockerham 1984) for both the ‘neutral’ and ‘adaptive’ dataset independently; 

significance was assessed through use of 999 permutations to test if FST differed 

significantly from zero. Finally, clusters of genetically similar individuals were visualized 
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with an individual principal component analysis (PCA) for both datasets using the 

package Adegenet in R (Jombart 2010). For the PCA, data were scaled and centered and 

missing values were replaced with mean values for each locus.  

 

II.3 Results 

3.1 Morphological variation 

Landmark coordinates were assigned to 66 wild (DY; male / female = 35 / 31) 

and 72 captive (SNARRC; 40 / 32) adult C. bovinus (Figure II.2B). Centroid size (CS) 

was calculated and log transformed for normality for both DY (3.898 mm ± 0.131 SD) 

and SNARRC (3.851 mm ± 0.069 SD) populations (Figure A2.02). There was a strong 

association between caliper measured length (log total length [mm]; measured from snout 

to terminal caudal fin) and logCS (Pearson’s correlation = 0.98, N = 138, P < 0.001, 

Figure A2.03 & Table A2.01). A two-way ANOVA revealed no significant main effect 

of ‘population source’ (F1,134 = 1.55, P = 0.215), ‘sex’ (F1,134 = 0.357, P = 0.551) or the 

‘population source’ * ‘sex’ interaction (F1,134 = 0.192, P = 0.662; Table A2.02 – A2.04) 

on ‘logCS’. A pooled within-group regression (population source, sex) of shape (i.e. 

Procrustes coordinates) onto size (i.e. logCS) predicted 4.7 % of shape variation (10 000 

iterations; P = 0.001), so to account for allometric variance, residuals were used for all 

subsequent morphometric analyses (Figure A2.04 & Table A2.05).  

 Matrices derived from the residuals of pooled within-group data were used for a 

CVA and the results were visualized using the first two canonical axes (Figure II.3). 

Permutation tests revealed significant differences between all mean treatment groups 

(Procrustes Distance; P = 0.001; 10 000 Iterations [Table II.1]). Canonical Variate 1 
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(CV1, 74.39 % of explained variance) clearly illustrated variation occurring between the 

two sexes, which was demonstrated predominantly by difference in body depth. 

Transformation grids associated with CV1 illustrated that males exhibited greater body 

depth, while females were more streamlined (Figure II.3D & E). Canonical Variate 2 

(CV2, 22.01 % of explained variance) characterized shape variation occurring between 

the two populations. Transformation grids associated with CV2 illustrated that group 

separation was most apparent in the anterior tip of the snout (Landmark 1), ventral 

opercular slit (Landmark 12) and the pectoral fin attachment points (Landmarks 10 + 11). 

Compared to the consensus shape, the SNARRC population exhibited a downward 

sloping head while the DY population displayed a more upward head slope and dorsal 

shift in pectoral fin attachment points (Figure II.3B & C). Cross-validation of 

discriminant functions showed clear separation between populations (P = 0.001; 10 000 

iterations) and correctly classified individuals to their corresponding group at 91% and 88 

% accuracy for the DY and SNARRC population, respectively (Figure A2.05 & Table 

A2.06).  

 

3.2 SNP discovery and filtering 

One Illumina HiSeq 2500 lane yielded 141 551 650 single-end 101-bp reads. Raw 

sequences had a GC content of 38 % and base calls had a mean phred quality score of 34, 

with 85% having Q ≥ 30 (99.9 % base call accuracy). A visual examination of terminal 

read quality showed no substantial decrease in base call accuracy, so the entire read 

length was retained for all reads (after truncating the 5-base barcodes). After 

demultiplexing the first index (n = 48 individuals [a second index was used for a separate 
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study]), reads were filtered based on: (i) indeterminate barcodes (309 526 [0.4 %]); (ii) 

sub threshold quality (4 193 636 [5.8 %]) and; (iii) ambiguous RADtags (501 835 [0.7 

%]). Out of the total sequence reads generated from a single index, 93 % (66 542 557) 

remained with 1 444 182 mean reads per individual. 

Filtered and trimmed 96-base reads were then aligned de novo into stacks of 

homologous reads using Stacks core pipeline, ‘denovo_map.pl’. Following completion of 

the ‘denovo_map.pl’ script, 339 126 consensus stacks within each individual were 

uploaded into the Stacks catalogue. After removing two individuals from SNARRC due 

to low genotyping rate (> 90 % missing data), 23 692 stacks (38 442 SNPs) across all 46 

individuals remained with a mean site depth of 11x (± 4 SD); mean sequencing coverage 

was similar between DY (12 ± 4 SD) and SNARRC (9 ± 3 SD). The requirement for loci 

to be present in ≥ 80 % of individuals (-r 0.80) from both populations (-p 2) with a 

minimum stack depth of 5X (-m 5) resulted in the retention of 4 328-biallelic SNPs in 3 

241 loci (mean = 1.34 SNPs per locus) following implementation of Stacks ‘Populations’ 

module. Both the total number of private variants and minor allele frequencies were 

higher in the SNARRC population (1215 and 0.1447, respectively) relative to the DY 

population (457 and 0.1334, respectively; Figure A2.06). Descriptive statistics illustrated 

that overall DY had lower diversity values (HOBS = 0.2053, HEXP = 0.1864, ∏ = 0.1906) 

compared to SNARRC (HOBS = 0.2145, HEXP = 0.2060, ∏ = 0.2113; Figure A2.07), with 

DY exhibiting a slightly lower inbreeding coefficient (FIS = - 0.0326 [DY]; FIS = 0.0008 

[SNARRC]).  

 

3.3 Neutral and adaptive variation 
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 After filtering SNPs with Vcftools, inclusion thresholds removed an additional 1 

167 SNPs with a minor allele frequency ≤ 0.02 and 51 SNPs due to deviation from the 

expectations of Hardy-Weinberg equilibrium (α = 0.05 following FDR correction), 

resulting in a matrix of 2 023 SNPs which was subsequently used to identify regions of 

the genome that were putatively under divergent selection. Using a prior odds of 10, 

BayeScan identified eight loci (~ 0.4 % of SNPs) that showed significant deviation from 

a neutral background, with high estimated FST values (0.1478 – 0.1948; Table A2.07) 

relative to the background FST (Figure II.4). Out of these eight outliers (Table A2.08), 

only one, pupfish ddRAD sequence 1363, showed moderately strong matches to known 

sequences in the NCBI nr database, as detected by several different BLAST strategies. 

Interestingly, 1363 exhibited the highest FST value in the dataset (0.587; Figure II.5) and 

was aligned most strongly to a predicted gene (sodium-driven chloride bicarbonate 

exchanger-like transcript; LOC102232885) associated with a sodium-driven chloride 

bicarbonate exchanger function in Xiphophorus maculatus (Genbank: XM_005805324, 

LOC102232885) with an expected value of 2e-08 and a max score of 68 (Table A2.09). 

This gene is homologous to the large SLC4a10 family of vertebrate solute carrier family 

4, sodium bicarbonate transporter genes.  

 Using all eight outlier loci in a principle component analysis illustrated that the 

first two principle components explained the majority of variation (PC1 = 68%, PC2 = 19 

%) and clearly clustered the two groups based upon population origin (Figure II.6A). 

Examination of a loading plot calculated using all 2023 SNPs in an individual PCA 

revealed that five of the eight outliers identified by Bayescan composed the majority of 

the variation in the PCA (Figure A2.08 & Table A2.11). When evaluating the partitioning 
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of genetic variance, the two populations revealed a substantial level of genetic 

differentiation in the ‘outlier’ dataset (mean FST = 0.540; P = 0.001) and examination of 

genetic structure between populations revealed high pairwise FST values for all eight loci 

(min / max = 0.418 / 0.587; Figure II.5).  

The removal of the eight outliers resulted in a ‘neutral’ dataset of 2 015 SNPs. 

Within this dataset significant genetic differentiation was also observed (mean FST = 

0.049; P = 0.001). Based upon the minor allele frequency cutoff, contemporary Ne 

estimates for wild C. bovinus ranged from 28 (95 % CI = 27.6 – 28.5, minor allele 

frequency = 0.05) to 32.9 (95 % CI = 32.4 – 33.4, minor allele frequency = 0.02), while 

estimates for captive C. bovinus ranged from 221.5 (95 % CI = 200.9 – 246.8, minor 

allele frequency = 0.05) to 175.3 (95 % CI = 164.0 – 188.1, minor allele frequency = 

0.02, Table A2.10). Using allele frequencies derived from the neutral dataset illustrated 

that the eigenvalues associated with the first and second principle components composed 

a minor amount of the total variation (8% and 4% of variance explained, respectively) but 

clearly clustered the two groups by population origin (Figure II.6B).  

 

II.4 Discussion 

 To assess the effectiveness of the current C. bovinus captive breeding program 

and historical release of captive stock into the natural Diamond Y habitat, a genome-wide 

approach was used to measure levels of genetic variation within, and subdivision 

between, contemporaneous samples of individuals from the captive and wild population. 

Results revealed that the large-scale release of thousands of captive animals failed to 

prevent a severe genetic bottleneck that appears to have contributed to loss of genetic 
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variation and substantial neutral genetic divergence between these two “subpopulations” 

(defined as such based upon two episodes of unilateral gene flow between SNARRC and 

DY). Divergence also extended beyond these stochastic processes, which was evident by 

the presence of multiple genetic outliers and significant morphological divergence 

between the two populations, suggesting that selection may be promoting local 

adaptation, which may also be shaping population specific body shape characteristics. As 

the preservation of natural qualities is of utmost importance in conservation breeding 

programs, evidence for such substantial levels of divergence holds serious implications 

with regard to the preservation of natural genetic and phenotypic characteristics.  

 

4.1 Morphological variation 

 The two populations of C. bovinus exhibited significant body shape 

differentiation. Clearly discernible was variation in pectoral fin attachment points and in 

the slope of the snout (Figure II.3B & C), a modification that could have a direct effect 

on foraging behavior. Of note is that this difference in head orientation results in a 

distinct upward repositioning of the head in fish from the captive population (relative to 

DY), a finding that was also reported by Wilcox and Martin (2006) who illustrated that 

C. diabolis maintained in artificial refuges showed an upward slope to the head relative to 

the natural Devils Hole population.  

 The captive C. bovinus population is maintained in a 0.10-acre earthen pond at 

SNARRC, which is enhanced with organic fertilizers; approximately 30% of the pond 

possesses vegetation covering (personal communication, M. Ulibarri). While speculative, 

it is therefore possible that reduced substrate heterogeneity or increased nutrient 
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availability may have relaxed selection within captivity, resulting in modification of 

foraging behavior (relative to the wild) and consequently the observed morphological 

shift in head position. While the functional significance of this morphological change is 

unknown, future evaluation of variation in feeding mechanics or trophic structure 

between populations may help elucidate this difference (McGee et al. 2013). 

 Body shape also significantly differed between sexes, which were most evident in 

body depth (Figure II.3D & E). Relative to females, larger size and an exaggerated body 

depth in males has also been reported in other studies examining pupfish morphology 

(Collyer et al. 2005), and may play a key role in agonistic displays and territory defense 

(Kodric-Brown 1978). While there were significant differences in shape between the two 

sexes from both populations (Table II.1), it remains unknown if local variation in social 

behavior may be further driving this sexual dimorphism. 

The population-specific shape characteristics that were detected could be a 

function of phenotypic plasticity independent of genetic differences between the 

populations, or could be genetically based as a result of rapid evolution (Collyer et al. 

2011). Based on the employed methods, the discrimination between these two, non-

mutually exclusive, possibilities was not possible.  

 

4.2 Neutral and adaptive variation  

Genetic drift can rapidly erode genetic diversity in small populations over a 

contemporary time scale and promote interpopulation divergence through stochastic 

changes in allele frequencies (Briscoe et al. 1992; Hartl and Pucek 1994; Jezkova et al. 

2014). This was evident in the asymmetrical distribution of private alleles and substantial 
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differences in allele frequencies, which were clearly discriminated on the PC1 and PC2 

axes (Figure II.6B). Examination of the genetic composition of both captive and wild 

populations revealed that the captive population retained higher levels of genetic 

variation relative to the wild population, a situation that opposes that typically observed 

in conservation breeding. While loss of heterozgosity can occur rapidly in managed 

populations (Briscoe et al. 1992; Hartl and Pucek 1994; Jezkova et al. 2014), it appears 

SNARRC has efficiently maintained levels of heterozygosity in the captive population 

(relative to the wild population) following the founding event in 1976. However, genetic 

bottlenecks in the wild can precipitate genetic changes similar to those associated with 

the founding of captive populations, such as rapid reductions in genetic diversity (Nei 

1975; Leberg 1992; Robichaux et al. 1997; Taylor et al. 2007) and effective population 

size (Ryman and Laikre 1991). This appears to have been the case with the DY C. 

bovinus. Since 2006, extensive habitat restoration projects have led to a rapid increase in 

the estimated DY population size (Gumm et al. 2008, 2011), yet based on diminished 

genetic diversity and low estimated effective population size of this population (Ne = 28), 

it is apparent that genetic drift has exerted a significant effect on allele frequencies, 

including both frequency shifts and allelic loss. This is of concern because the fixation of 

mildly deleterious alleles at multiple loci can contribute to the extinction of small 

populations (e.g. with Ne < 50; Higgin and Lynch 2001; Rowe and Beebee 2003). While 

the census population size (N) of DY is unknown, it is suspected to be ~ 250, which 

would result in Ne / N ratio around 0.112, consistent with the median Ne / N ratio of 0.11 

observed across the 102 endangered wildlife species reported by Frankham (1995).  
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The captive SNARCC population was founded ~40 years ago from wild DY stock 

and ~ 10K captive bred SNARCC animals were released into the wild 14 years ago. It is 

therefore difficult to define a precise temporal separation metric between these two 

populations; however, it is certainly less than 40 years (~ 80 generations). Regardless of 

the time frame, the mean FST value for ‘neutral’ SNPs was considerable (0.049), with 

high variation in pairwise FST values (min / max = -0.0396 / 0.4216; Figure II.5), 

suggesting that the founding event coupled with the two documented population 

bottlenecks have exerted a large effect on population structure. This amount of genetic 

differentiation is close to an order of magnitude less that that observed in the ‘adaptive’ 

dataset, but nevertheless represents considerable genetic divergence over a relatively 

brief period of separation.  

Because the sustainability of endangered populations can be contingent on the 

maintenance of genetic diversity, preservation of standing variation is a primary goal in 

conservation breeding programs (Pelletier et al. 2009; Engelhardt et al. 2014). 

Unfortunately, efforts failed to determine homologous relationships or likely conserved 

syntenic genomic positions for any of the eight-outlier loci that appeared to be under 

positive selection in the pupfish ddRAD dataset. Only one of these ddRAD fragments, 

sequence 1363, showed strong alignment to an annotated gene in highly inclusive 

BLAST strategies.  This alignment, to a predicted sodium-driven chloride bicarbonate 

exchanger-like (LOC102232885) gene of Xiphophorus maculatus (Southern platyfish), 

was initially intriguing due the fact that X. maculatus and C. bovinus are members of the 

same family (Poecilliidae) and because this gene is homologous to members of the highly 

conserved vertebrate Slc4a10 gene family, which are important in regulating bicarbonate 



	  
47	  

secretion and cellular pH. These functions are likely to be affected by environmental 

inorganic solute concentrations in aquatic organisms. Since DY and SNARRC differ 

greatly in water chemistry (Table II.2), a relationship between variation in a C. bovinus 

Slc4a10 homologue and water conditions could be a driver of divergent selection on 

sequence 1363. However, inspection of the X. maculatus LOC102232885 gene model 

shows that the region to which the C. bovinus 1363 ddRAD sequence aligns is not within 

the protein coding region of this predicted gene, but lies instead in a 1167 nt region that is 

3' to the canonical SLC4A10 protein-coding region of other vertebrates.  

 Nevertheless, the C. bovinus 1363 ddRAD sequence does appear to represent a 

conserved sequence in vertebrate genomes.  For example it aligns with substantial 

agreement (e.g. E values of 1e-10 to 8e-07; identities of 76 - 84%) to sequences in un-

annotated sequences in several linkage groups in Zebrafish (Danio rerio), several other 

fish species predicted collagen alpha-2 (VI) chain-like sequences, and many unanchored 

scaffolds in other fishes and non-fish vertebrates. It also shows good alignment (8e-07; 

76 % identity) to sequence within the mesp gene homologue in Medaka (Oryzias latipes). 

Further characterization of this fragment is, however, beyond the intended scope of this 

study.   

 

 4.3 Implications for future conservation 

 The evaluation of genetic structure revealed that genetic differentiation was 

present in regions of the genome subject to non-adaptive forces (e.g. genetic drift), as 

well as regions likely under the influence of divergent selection (Figure II.6). Because it 

is difficult to predict the adaptive importance of specific genetic characteristics for the 
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future persistence and adaptation of a population, the preservation of extant, natural 

genetic and phenotypic characteristics is believed to be an effective strategy to increase 

the ability of captive populations to produce individuals that can survive and reproduce 

under ancestral conditions (Frankham 1986). Despite the fact that genetic cohesion can 

be maintained by periodic artificial gene flow between captive and the wild populations, 

no such transfer has been conducted since the founding of the captive SNARRC 

population (Echelle and Echelle 1997). Enabling immigration between populations could 

slow the rate of genetic adaptation to the artificial environment and balance levels of 

heterozygosity between the two groups (Frankham and Loebel 1992; Araki et al. 2007). 

Therefore, in light of the high levels of neutral genetic divergence, the putative evidence 

of local adaptation, and the asymmetrical partitioning of genetic variation documented, 

the periodic reciprocal transfer of genetic material between the DY and SNARRC 

populations is strongly recommended.  

 Despite failure to identify environmental factors that might drive divergent 

selection for any of the eight-outlier loci, the fact that water chemistries at DY and 

SNARRC are so different (Table II.2), suggests that water quality could play a role in 

selective divergence of these populations. Additionally, while the underlying 

developmental cause for divergence in body shape is unknown, pupfish body shape 

characteristics can be influenced by salinity differences between environments (Collyer et 

al. 2005).  If local adaptation is in fact occurring based on spatial differences in water 

conditions, adjusting the salinity of the captive population to an intermediate value may 

be an effective initial strategy to help captive animals survive and breed in their natural 

habitat.  In summary, reciprocal gene flow, the evaluation of water chemistry tolerance, 
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feeding mechanics, variation in trophic structure between environments, and 

understanding the genomic contexts of loci that show documented outlier status with 

regard to neutral evolutionary models are areas that merit attention in connection with the 

future release of captive C. bovinus to help ensure successful future supplementation 

efforts. 
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Figures II: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure II.1 Map illustrating the location of the wild Cyprinodon bovinus population 
(DY; circle) in SW Texas and the captive population (SNARRC; triangle) in SE New 
Mexico.   
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Figure II.2 12 landmarks used to quantitate shape variation in Cyprinodon bovinus and 
Procrustes superimposition. (a) Landmarks assigned clockwise from the left to: 1) tip of 
the snout, 2) eye center, 3) predorsal elevation, 4) dorsal elevation, 5) anterior base of 
dorsal fin, 6) upper margin of caudal peduncle, 7) lower margin of caudal peduncle, 8) 
posterior insertion of anal fin, 9) anterior insertion of anal fin, 10) dorsal base of pectoral 
fin, 11) ventral base of pectoral fin, and 12) ventral opercular slit. (b) Illustrates the raw 
coordinates of wild (black) and captive (grey) C. bovinus prior to Procrustes 
superimposition, (c) the resulting consensus shape and (d) illustrates the coordinate shift 
following Procrustes superimposition of raw coordinates of wild (black) and captive 
(grey) C. bovinus. 
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Figure II.3 The ordination of body shape from a pooled Canonical Variate Analysis 
(CVA) using corrected data. (a) Biplot of the first two CVs with symbols representing 
individuals. Shape information derived from 12 landmarks assigned to the wild  (DY; 
black) and captive (SNARRC; grey) populations with male (triangles) and females 
(circles) factored into the model. Transformation grids are associated with CV1 (-6, +6) 
and CV2 (-3, +5) relative to the mean configuration shape (0, 0). CV2 is associated with 
shape deformation in the wild (b) and captive (c) populations while CV1 is associated 
with shape deformation in males (d) and females (e).    
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Figure II.4 BayeScan results for outlier tests of polymorphic loci (n = 2 023). Y-axis, 
genetic divergence (FST) in Cyprinodon bovinus. X-axis, logarithm to base 10 of the 
posterior odds. Black data points reflecting balancing selection, light grey reflecting 
neutral selection, and dark grey representing divergent selection. The long dashed line 
represents a False Discovery Rate of 0.05, which represents the minimum value at which 
a locus may be considered to deviate significantly from a neutral model. 
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Figure II.5 Pairwise frequency distribution of FST values from 2 023 SNPs typed in 46 
individuals across both populations. FST values were calculated as in Weir and 
Cockerham (1984). Grey bars represent SNPs from the ‘neutral’ dataset (n = 2 015) and 
black bars represent SNPs from the ‘adaptive’ dataset (n = 8). Arrow represents outlier 
1363 that matched a predicted gene sequence (with accession number) in Xiphophorus 
maculatus. 
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Figure II.6 First two axes from a centered and scaled principle component analysis of 
allele frequencies from the (a) ‘adaptive’ dataset (8 SNPs) and (b) ‘neutral’ dataset (2 015 
SNPs). Dots represent individuals for the wild (DY; black) and captive (SNARRC; grey) 
populations. Scree plots illustrate the eigenvalues with the relative contribution labeled 
on each axis for each dataset.  
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Tables II:   
 
 
Table II.1 Pairwise Procrustes distance measures using corrected data. Calculated from a 
pooled within group Canonical Variate Analysis.   

* Indicates significance at P = 0.001 using 999 permutations 
 
 
Table II.2 Readings at DY were taken in the field from 06 – 07 / 2013 using a LaMotte 
Water Test Kit (#3633-04) following the manufacturers instructions. Readings from 
SNARRC were obtained from analytical reports completed on pond surface water or 
from weekly logs from 07 - 08 / 2013.  

 
DY SNARRC 

Chloride 3079 630 
pH 7.0 7.5 
Alkalinity 364 82 
Dissolved O2 11 7 
Hardness  2776 3000 
*All concentrations are in mg / L 
 

 

 

 

 

 

 

 

 

 

 

 Wild Females Wild Males Captive Females 
Wild Males *0.0634     
Captive Females *0.0210 *0.0670  
Captive Males *0.0548 *0.0263 *0.0533 
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III. ASSESSMENT OF INTROGRESSIVE HYBRIDIZATION  

 

III.1 Introduction 

 Interspecific hybridization, crossbreeding between two different species, can 

effectively alter the genetic structuring of populations and introduce variation at a much 

faster rate than mutation alone (Allendorf and Leary 1988; Martinsen et al. 2001; Laikre 

et al. 2010; Brennan et al. 2012). Interspecific hybridization can also disrupt local 

adaptation (Alendorf et al. 2001), which can effectively reduce fitness (Muhlfeld et al. 

2009). In the most extreme cases, hybridization can effectively eliminate native genomes, 

even in the absence of introgression (Rhymer and Simberloff 1996). For rare or 

endangered species, introgressive hybridization can be particularly troublesome 

following the introduction or contact with a more abundant species (Rhymer and 

Simberloff 1996; Allendorf et al. 2001), especially if hybrid swarms are created between 

endemic species and non-natives (Echelle and Connor 1989). Because of these factors, 

introgressive hybridization can pose a significant threat to the effective management of 

imperiled populations.  

One management solution in conservation is to simply eradicate genetically 

compromised individuals (Hubbs 1980; Rhymer and Simberloff 1996; Echelle et al. 

2004), yet as evolutionary biologists are discovering, hybridization is a continuously 

occurring process, which has contributed greatly to shaping the evolutionary trajectories 

of both plants (Stebbins 1950; Arnold et al. 1999) and animals (Dowling and Secor 1997; 

Arnold 1997). While this is a distinction that has fueled considerable debate (Allendorf et 

al. 2001; Edmands 2007), it can generally be classified as detrimental when endangered 
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species undergo introgressive hybridization due to anthropogenic events (Allendorf et al. 

2001). Because many fish endemic to the southwestern Americas have shown declines in 

population size due to anthropogenic factors, such as human-mediated dispersal of non-

native species and habitat degradation (Miller et al. 1989; Minckley and Deacon 1991; 

Smith 1992), the sustainability of many endangered fish species can be difficult. 

Frequently, exotic species are inadvertently, or purposely, introduced into 

waterways by anthropogenic means, such as from baitfish or for biological control 

(Hubbs 1980). For example, following their introduction during the 1980s, Cyprinodon 

variegatus led to the rapid formation of a hybrid swarm that contributed to the eradication 

of pure C. pecosensis throughout a majority of their habitat range (Echelle and Connor 

1989). Following their introduction into Balmorhea Lake (Reeves CO., Texas) during the 

1960s, C. variegatus has hybridized with multiple other pupfish species such as the 

Commanche Spring pupfish (C. elegans; Echelle and Echelle 1994), the Pecos pupfish 

(C. pecosensis; Wilde and Echelle 1992; Childs et al. 1996), and the Leon Springs 

pupfish (C. bovinus; Hubbs 1980; Echelle and Echelle 1997).  

The Leon Springs pupfish (Cyprinodon bovinus) are a federally listed endangered 

desert pupfish isolated to a single spring in southwestern Texas, Diamond Y Spring (DY; 

31° 0'4.75" N, 102°55'27.09" W; Figure III.1), where they are currently protected within 

the Diamond Y Preserve and under management of the Texas Nature Conservancy. 

 Facilitated by anthropogenic measures, the inadvertent or intentional release of C. 

variegatus in the natural habitat of C. bovinus was first documented in the 1970s, which 

precipitated the selective eradication of genetically compromised individuals (Echelle 

and Echelle 1997). As an assurance colony, 80 genetically uncompromised C. bovinus 
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were translocated from the upstream watercourse to the Southwestern Native Aquatic 

Resources and Recovery Center (SNARRC; formerly Dexter National Fish Hatchery and 

Technology Center; Figure III.1) in 1976 (Edds and Echelle 1989). Both morphological 

characteristics and allozyme electrophoresis (Hubbs 1980) verified that the renovation 

had been successful; no morphological or genetic signatures of introgression were 

observed or detected in any of the specimens collected from the downstream watercourse 

or brought into captivity (Echelle and Echelle 1997; Hubbs 1980). However, in the mid - 

late 1990s C. variegatus was introduced again into the Diamond Y Draw, which 

prompted a management decision to cull the native C. bovinus population and restore it 

with a large-scale (~ 5 – 10 000) release of captive fish into Diamond Y Draw (Echelle et 

al. 2004). Following the release and attempted establishment of the captive stock, few 

non-native allozyme markers were found in the wild (frequency 0 – 4.2 %; Echelle and 

Echelle 1997; Echelle et al. 2004), yet genetic monitoring for hybridization in the wild 

has not transpired since.  

In the previous chapter, both divergent selection and genetic drift were identified 

as probable drivers for the substantial levels of genetic (and potentially morphological) 

divergence observed between the wild (DY) and captive (SNARRC) C. bovinus 

population. However, as hybridization can enhance both genetic and phenotypic variation 

(Brennan et al. 2012), it leaves the untested hypothesis that introgressive hybridization 

may be responsible for the documented genetic and possible phenotypic divergence. To 

address this, the previous chapter’s results were extended to examine the wild C. bovinus 

population for associations with the genetic and morphological characteristics of C. 

variegatus. The prediction was that the presence of introgressive hybridization would 
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leave a genomic signature in the wild population and reveal morphological overlap or an 

intermediate body shape between the wild C. bovinus population and the congeneric C. 

variegatus.   

 

III.2 Materials and methods 

2.1 Sample collection 

 On 08 - 23 - 2013, forty (20 male / 20 female) adult C. variegatus samples were 

caught using minnow nets from Balmorhea Lake (BL; 30°57'46.46"N, 103°43'12.82"W) 

Reeves County, the suspected source population of the C. variegatus historically 

introduced into Diamond Y Draw (Echelle and Echelle 1997; Figure III.1). Tissue 

samples and images were acquired from these samples following the methods listed in 

the previous chapter and in accordance with stipulations defined in TX Parks and 

Wildlife permit No. SPR-0812 - 967.  

2.2 Morphology 

 Historically, C. bovinus have provided visual evidence for introgressive 

hybridization by exhibiting morphological traits that were characteristic of C. variegatus 

(Echelle and Echelle 1997). To evaluate contemporary evidence for morphological 

introgression in DY, photographs of the left lateral surface of each individual fish were 

taken using a Nikon D5100 digital SLR camera (16.2 megapixels) with an 85 mm lens 

mounted to a copy stand.  

 To look for an association in morphological characteristics among populations, 

landmark-based geometric morphometrics (Bookstein 1991; Rohlf and Marcus 1993; 
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Marcus et al. 1996) was employed. A single investigator (A. Black) digitized 12 

landmarks for each specimen using tpsdig2 (v2.16, Rohlf 2013) and non-shape variation 

was held constant through Procrustes superimposition (Rohlf and Slice 1990). Procrustes 

superimposition effectively eliminates non-shape variation by translating all specimen to 

the origin, scaling them to unit centroid size, and optimally rotating them until 

corresponding landmarks across all specimen are aligned as closely as possible (Rohlf 

and Slice 1990). For additional information about image acquisition and digitization 

methodologies, see chapter II.  

 The Cartesian coordinates (x, y) of each landmark for all individuals were 

imported for use with the geomorph (Adams and Otarola-Castillo 2013) package in the R 

environment (R Development Core Team 2014), where a Principle Component Analysis 

(PCA) was then performed to reduce the dimensionality of the data and to visualize the 

Procrustes aligned specimen. This ordination method offers the advantage of requiring no 

a priori defined groups, which allows the visual discrimination of spatial clustering 

purely based upon morphological characteristics (e.g. putative morphological 

introgression). The contribution of each Principle Component (PC) was calculated and 

displayed in a scree plot, with deformation grids illustrated at the ends of the axes 

showing maximal variation (PC1 – PC3). Coordinates were then imported into morphoJ 

(Klingenberg 2011) for discriminant function analysis where classification rates were 

calculated using cross-validated discriminant functions, which use a ‘leave-one-out’ 

approach to generate an estimate of membership assignment probability in predefined 

groups (Lachenbruch 1967).  
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2.3 SNP discovery and filtering 

 To evaluate the wild population for signatures of introgression, a genome-wide 

strategy was employed based on double digest restriction Associated DNA sequencing 

(ddRAD-seq) technology (Peterson et al. 2012) following the methods described in 

chapter II. Briefly, genomic DNA from each individual (from both species) passing 

quality control thresholds (n = 24; 16 samples were removed due to low [DNA]) was 

digested with two restriction enzymes (High Fidelity EcoRI and MspI), ligated with 

barcoded adapters (1 - 48), PCR amplified with indexed flow cell adapters, size selected 

(375 ± 38-bp), and sequenced on a single Illumina Hiseq 2500 lane (Institute of 

Biotechnology, Cornell University) using 2 x 101-bp sequence chemistry.  

Demultiplexed and filtered reads were uploaded onto a computing cluster 

composed of 32 processor cores and 128 GB of memory (High Performance Computing; 

Lehigh University) where the reads were assembled using stacks ‘denovo_map.pl’ 

wrapper program (which sequentially executes each core component of the pipeline) 

using the following parameters: -m 3, -n 2, -t, -M 2, -N 4. Briefly, ‘ustacks’ combined 

reads of identical sequences (i.e. stacks) within each individual and merged these stacks 

based upon the number of nucleotide differences to accommodate individual 

polymorphisms, ‘cstacks’ created a catalog of all stacks across all individuals based upon 

the number of nucleotide differences, and ‘sstacks’ then matched each individual from 

each population against the catalog to determine the allelic state using a maximum 

likelihood framework. Stacks with an excessive number of reads (> 2 SD above the mean 

depth) were removed to screen out stacks potentially containing more than one merged 

locus (for additional details see: Catchen et al. 2011, 2013).  
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To avoid the loss of data and prevent a potential biased screening process, 

tolerance levels for missing data were relaxed to 50% (Huang and Knowles 2014); loci 

were retained if they were present in ≥ 50% individuals examined, with a minimum stack 

depth of 10x, and a minor allele frequency (MAF) > 0.05. Using a False Discovery Rate 

of α = 0.05 (implemented in R’s stats package) loci were excluded if their genotype 

frequencies deviated significanly (P < 0.05) from Hardy-Weinberg Equilibrium 

expectations for two or more populations (Wigginton et al. 2005). Additionally, to 

maintain independence of loci with multiple SNP sites, only the first SNP from each 

locus was retained.  

 

2.4 Genetics 

 To examine genotypic clustering, all filtered SNPs were grouped by population 

and uploaded for analysis with a Discriminate Analysis of Principle Components (DAPC; 

Jombart 2008) in R’s Adegenet package. This test first transforms the multilocus 

genotype of all individuals with a principle component analysis prior to running a 

discriminant function analysis to provide a spatial clustering of individuals. To prevent 

over fitting of discriminant functions by using an excessive amount of variation, 1/3 of 

the total principle components (23 PCs) were initially retained and optimized by using 

the ‘optim.a.score’ function (Figure A3.01). Genodive (v2.0; Meirmans and Van 

Tienderen 2004) and the pegas package in R (Paradis 2010) were used to assess 

population differentiation through mean and pairwise FST values (Weir and Cockerham 

1984) and significance was assessed through use of 999 permutations to test if FST 

differed significantly from zero. Genodive was additionally used to calculate a Hybrid 
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Index, which is a maximum-likelihood estimate of the proportion of alleles a putative 

hybrid individual obtained from either parental genotype (Buerkle 2005). A hybrid index 

of 0.50 would indicate an equal contribution of parental alleles in a hypothetical hybrid.  

 Introgressive hybridization was further evaluated by filtering loci that were fixed 

between reference and alternative populations (FST = 1; SNARRC * BL), which were 

then imported into structure (Pritchard et al. 2000) to identify similar clusters of 

individuals based upon allele frequencies. This model estimates the group membership of 

each individual, assuming Hardy-Weinberg and linkage equilibrium within groups 

(Pritchard et al. 2000). Parameters were run using correlated allele frequencies, an 

admixture model, a burn in period of 10 000, 100 000 repetitions, and k was run for 1 - 5 

possible genotypic clusters with 10 iterations for each k value. Results were uploaded to 

structure harvester (Earl et al. 2012) where the optimal k was identified using Evanno et 

al. (2005) delta k formulation method. Files were then imported into clumpp (Jakobsson 

and Rosenberg 2007) for aggregation, and Q-matrices were visualized with distruct 

(Rosenberg 2004). 

 

2.4 Extension of previous chapters results 

 Raw demultiplexed sequence reads and raw coordinates obtained from digitized 

photographs of C. bovinus from chapter II were processed along with original sequence 

data and digitized photographs of C. variegatus. The barcoded index containing pooled 

C. variegatus samples were sequenced in the same final library as the wild and captive 

populations of C. bovinus. Pooled genomic and morphometric datasets were then used to 

examine the wild C. bovinus population for evidence of introgressive hybridization by 
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using the C. variegatus and the captive C. bovinus population as reference 

genotypes/phenotypes.   

 

III.3 Results 

3.1 Morphology 

 Figure III.2 illustrates the external characteristics exhibited by the two C. bovinus 

populations for contrast with C. variegatus. Representative of C. bovinus, males from 

both populations showed a slightly convex terminal caudal fin (Figure III.2A & Fig2E), 

opposed to the slightly concave fin of C. variegatus males (Figure III.2C; Echelle and 

Echelle 1997). Multiple female C. bovinus from SNARRC (Figure III.2F) showed similar 

pigmentation patterns to female C. variegatus (Figure III.2D), which appeared absent or 

reduced in the wild C. bovinus population (Figure III.2B). Specifically, several females 

from SNARRC showed conspicuous vertical bars, opposed to the characteristic 

intermittent vertical bars characteristic of female C. bovinus, which were observed in DY.  

 After importing the Cartesian Coordinates of all specimens into R (n = 178), a 

PCA was conducted on the superimposed specimen from all three populations. The range 

of variation in PC1 (40.5% variation explained) showed little apparent group 

discrimination when individuals were labeled by population source (Figure III.3A). 

However group division became clearly evident when individuals were labeled according 

to sex (Figure III.3B). Deformation grids along PC1 illustrated difference occurring in 

body depth (Figure III.3). The range of variation of PC2 (12.1% variance explained) was 

illustrated by shape change between the two C. bovinus populations (Figure III.4A), with 

C. variegatus grouping between the two C. bovinus populations with minor overlap with 
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individuals from DY (Figure III.4A). Deformation grids along PC2 illustrated the same 

difference in head slope orientation previously outlined in chapter II (Figure III.4A). The 

range of variation of PC3 (9.8% of variation explained) grouped the two C. bovinus 

populations discretely from C. variegatus (Fig4B). Deformation grids along PC3 

illustrated differences occurring in the predorsal elevation, body depth, and dorsal fin 

attachment point (Figure III.4B).  

 To examine the wild population for the presence of morphological intermediates, 

a discriminant function analysis was conducted on all individuals from all three 

populations. Discriminant function analysis provided strong support for separating the 

morphological characteristics of the two C. bovinus populations from C. variegatus, with 

little evidence for overlap (Figure III.5). Discriminant function with cross-validation 

correctly assigned a priori defined groups with a high accuracy for both captive (T2 = 

1092.4, P-value  < 0.001) and wild populations (T2 = 832.9, P-value  < 0.001) when a 

pairwise comparison was conducted with C. variegatus (Table III.2).  

 

3.2 SNP discovery and filtering 

After removing two individuals from SNARRC due to low genotyping rate (< 90 

%), a total of 40 498 loci (75 427 SNPs) across all 70 individuals were retained with an 

average of 31 302 loci per individual and a mean merged depth of 12x (± 4 SD). Mean 

depth was well balanced between DY (15 ± 4 SD), SNARRC (11 ± 3 SD), and BL (10 ± 

3 SD). By requiring loci to be present in ≥ 50% of individuals within each population 

with a minimum read depth of 10x, this was reduced down to 4 174-bialellic loci (9 686 

SNPs). Using only the first SNP of each locus, 18 SNPs were removed due to deviation 
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from Hardy-Weinberg Equilibrium (following FDR correction, α = 0.05), and 818 SNPs 

were removed with a MAF < 0.05. This resulted in a final filtered dataset of 3 338 SNPs 

which were used to evaluate the wild C. bovinus population for evidence of introgressive 

hybridization.   

 

3.3 Genetics 

 A DAPC clearly differentiated the two C. bovinus populations from C. variegatus 

and showed a clear membership assignment probability for the two Cyprinodon species 

(Figure III.6); both C. bovinus populations grouped together with the absence of 

intermediate genotypes relative to C. variegatus. When evaluating the partitioning of 

genetic variation, DY revealed significant levels of genetic differentiation with BL (FST = 

0.837; P < 0.001), which was also observed when comparing SNARRC and BL (FST = 

0.829; P < 0.001; Table III.2). Using SNARRC as the reference population and BL as the 

alternative population showed that the DY population provided little to no support as 

putative hybrids (h = 0.9965, ln (likelihood) = - 0.567.19, lower = 0.994, upper = 0.998). 

 Population structuring was further evaluated using 278 diagnostic SNPs that were 

fixed between the SNARRC and BL population. Results showed an optimal genotypic 

clustering at k = 2, which clearly separated the two species (Figure III.7A). Increasing the 

number of clusters to k = 3 illustrated population structuring occurring between the two 

C. bovinus populations with little evidence of genotypic influence of C. variegatus in the 

wild C. bovinus population (Figure III.7B).  

 

III.4 Discussion 
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While assessment of both genetic and morphological characteristics can help 

detect cryptic cases of hybridization (Gaubert et al. 2005), results illustrated a lack of 

genetic or phenotypic evidence to indicate influence from C. variegatus, which suggests 

that hybridization has likely not occurred since the previous identification of hybrids in 

the Diamond Y Draw during the 1990’s. This was apparent by both C. bovinus 

populations exhibiting comparable disparity with the morphological characteristics of C. 

variegatus and similar levels of genetic differentiation with C. variegatus. Additionally, 

using SNPs that were fixed between the captive and C. variegatus population failed to 

detect any patterns of genetic influence from C. variegatus.  

 

4.1 Morphology 

While the majority of shape variation was likely attributed to differences 

occurring between the sexes (Figure III.3B), the three populations showed considerable, 

and significant, separation (Figure III.3 – Figure III.5, Table III.1). While there was some 

ambiguity in the evaluation of the wild populations external characteristics (i.e. 

pigmentation patterns) relative to C. variegatus (Figure III.2), the absence of geometric 

intermediates or overlap implies the absence of recent morphological introgression with 

the wild C. bovinus population. Additionally, cross-validation of discriminant functions 

showed a high classification rate for a priori defined groups and with one exception 

showed a perfect assignment rate (Table III.2). As there were no misclassifications of any 

of the wild individuals with C. variegatus, based upon morphological characteristics, it 

appears that hybridization has not occurred recently in the Diamond Y Draw.  

However, the occurrence of introgression is not always reflected in morphological 
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variation, as individuals that show a “parental” phenotype may in fact show molecular 

evidence for introgression (Rhymer and Simberloff 1996). While using morphological 

characteristics to identify hybrids is often generally quite feasible, similar to molecular 

markers, the difficulty increases with the number of back-crosses, or if weighted towards 

one parental species or sex (Boecklen and Howard 1997). So while morphological 

characteristics provided insufficient evidence for the presence of introgressive 

hybridization, it does not fully eliminate the possibility.  

 

4.2 Genetics 

 Insubstantial evidence was also found in the wild C. bovinus population to 

indicate the presence of genetic introgression with C. variegatus; both C. bovinus 

populations were genetically distinct from C. variegatus. Mean FST values showed that 

both DY (0.837) and SNARCC (0.829) displayed similar, and significantly elevated, 

levels of genetic differentiation with C. variegatus (Table III.1). Group separation was 

additionally confirmed in a DAPC, which clearly illustrated that both C. bovinus 

populations clustered together, and substantially apart from C. variegatus (Figure III.6). 

When using diagnostic markers fixed between SNARRC * BL in a structure analysis, 

results also confirmed that the two C. bovinus populations grouped together, with no 

evidence of genotypic clustering with BL.  

Results revealed a promising lack of evidence for introgressive hybridization in 

the wild C. bovinus population, as illustrated by the absence of genomic and 

morphological C. variegatus characteristics. Yet, it is possible that the C. bovinus 

population maintained in captivity (which were then released back into the wild) had 
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considerable numbers of C. variegatus alleles integrated into their genomes, which were 

undetected by the initial screening process in the mid 1970s. Therefore, using the 

genotype of the captive C. bovinus population as a reference may have introduced a 

substantial bias into the genetic assessment for introgression. While it is possible that the 

low-resolution markers used to evaluate the eradication of non-native genes in the late 

1990s (i.e. allozyme markers) may have been insufficient to detect the cryptic signature 

of hybridization, it is a rather moot point now, as there remain no other source of C. 

bovinus.  

The lack of genetic/phenotypic evidence suggests that recent hybridization or 

historical introgression was not a principal mechanism for the documented population 

divergence previously reported between the captive and wild C. bovinus populations. 

This provides further support for conducting an immediate reciprocal genetic inoculation 

between captive and wild C. bovinus populations, to help mitigate population divergence, 

while minimizing the threat of introducing non-native genetic material. In the mean time, 

it is imperative to continually monitor the genetic and phenotypic characteristics of the 

wild C. bovinus population to help minimize the negative effects of future introduction 

events and ensure that genetic integrity is maintained in the sole remaining wild C. 

bovinus population.  
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Figures III: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure III.1 Map illustrating the location of the wild C. bovinus population (DY; square), 
the C. variegatus population from Balmorhea Lake (BL; triangle), and the captive C. 
bovinus population (SNARRC; circle).   
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Figure III.2 Representative images of (a) male and (b) female C. bovinus from DY, (c) 
male and (d) female C. variegatus from BL, and (e) male and (f) female C. bovinus from 
SNARRC.  
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Figure III.3 Biplot of PC1 (40.5% variation explained) and PC2 (12.1% variation 
explained) from a Principle Component analysis of body shape variables factored for 
illustration purposes by (a) population (DY, black; SNARRC, grey; BL, blue) and (b) sex 
(male, black; female, grey).  Deformation grids represent variation in body shape 
occurring at the ends of each axis. 
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Figure III.4 Biplot of (a) PC2 (12.1% variation explained) and PC3 (9.8 % variation 
explained) and (b) PC3 and PC4 (9.2 % variation explained) from a Principle Component 
analysis of body shape variables. Individuals were factored by population (DY, black; 
SNARRC, grey; BL, blue). Scree plot in lower left hand corners illustrates the relative 
contribution of each principle component (respective PCs are highlighted in red). 
Deformation grids represent variation in body shape occurring at the ends of each axis. 
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Figure III.5 Histogram of cross-validation scores from a pairwise discriminant function 
analysis used to examine differences in body shape between the wild (DY; black), captive 
(SNARRC; grey) C. bovinus populations, and C. variegatus (BL; blue). 
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Figure III.6 Discriminant Analysis of Principle Components using 3 338 SNPs after 
retaining 1 principle component and the associated membership probability for 
individuals from the wild (DY; black) and captive (SNARRC; grey) C. bovinus 
population, and individuals from the C. variegatus population (BL; blue). 
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Figure III.7 Structure run for k = 2 (a) and k = 3 (b) from all three Cyprinodon 
populations using 278 SNPs fixed between the captive C. bovinus and C. variegatus 
population. Optimal k (2) was identified by Evanno’s method. 
 

 

 

 
 
 
 
 

 
 



	  
78	  

Tables III: 

Table III.1 Mean pairwise FST values from 3 338 SNPs typed in 70 individuals across all 
three populations. FST values were calculated as in Weir and Cockerham (1984) and 
significance was assessed through 999 permutations. 
Population Wild Captive C. variegatus 
Wild 

 
0.061 0.837 

Captive P < 0.001 
 

0.829 
C. variegatus P < 0.001 P < 0.001 

  
 
Table III.2 Classification / misclassification rates from cross-validation of pairwise 
discriminant function analysis using morphological characteristics.  

 
Wild Captive Total % Correct 

Wild 60 6 66 91 
Captive 5 67 72 93 

 
Wild Variegatus Total % Correct 

Wild 66 0 66 100 
Variegatus 0 40 40 100 

 
Captive Variegatus Total % Correct 

Captive 71 1 72 99 
Variegatus 0 40 40 100 
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IV. THE REINTRODUCTION OF CYPRINODON BOVINUS 

 

IV.1 Introduction 

 Endangered species are often reared in captivity to augment declining wild 

populations, or to reintroduce them into their historical range from which they have 

become extirpated (Seddon et al. 2007; Seddon 2010). While the reintroduction of 

captive animals is a commonly employed method used to restore native species into their 

former range, success rates of reintroductions are generally low, in part due to the 

impaired ability of captive animals to become established or persist in their ancestral 

habitat (Kleiman 1989; Fischer et al. 2000; Seddon et al. 2007; Teixeira et al. 2007). 

 Establishment in ancestral habitats can be contingent on adaptive potential, local 

habitat quality and the resulting reproductive and survivorship rates of reintroduced 

populations (Hendrick 2001; Armstrong and Seddon 2008). However, by raising animals 

in an environment very different from their natural one, species in captivity can be 

exposed to different selection regimes than those present in the wild (Heath et al. 2003; 

Christie et al. 2012), which can shape both genetic and phenotypic characteristics of 

captive animals through domestication selection (Snyder et al. 1996; Blanchet et al. 

2008; Frankham 2008). Therefore, unfavorable consequences associated with 

conservation breeding have the potential to negatively impact the ability of captive 

animals to reproduce or survive when released back into the wild (Snyder et al. 1996; 

Woodworth et al. 2002).  

 Some of the most extensive research that has been conducted into understanding 

the association between conservation breeding and reintroduction biology has focused on 
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teleosts, which have received centralized attention due to their high socio-economic value 

in the aquaculture field (e.g. Araki et al. 2007; Milot et al. 2012). Comparative analyses 

between source and recipient populations have shown how raising fish in a captive 

environment can affect local fitness, foraging ability and aggression levels (Kelley et al. 

2006; Araki et al. 2007; Milot et al. 2012). These effects can be readily apparent in fish, 

likely due to their short generation times and high population density coupled with an 

overabundance of a predictable and reliable food source in captivity.  

The pupfishes (family Cyprinodontidae) of southwestern North America have 

received extensive conservation focus as they are commonly maintained in captivity or 

artificial refugia (Echelle and Echelle 1993; Duvernell and Turner 1998; Koike et al. 

2008). Within these artificial environments, changes in both genetic and phenotypic 

characteristics, relative to those exhibited in the wild, have been documented (Wilcox and 

Martin 2006; Collyer et al. 2011). While multiple studies have predicted, or implied, that 

genetic or phenotypic alterations in captivity may have an effect on reintroduction 

success (e.g. Lema and Nevitt 2006; Wilcox and Martin 2006; Collyer et al. 2005, 2011), 

this has not been explicitly tested under natural and semi-controlled environments using 

any endangered Cyprinodon species. 

The Leon Spring pupfish (Cyprinodon bovinus; Baird and Girard [1851]) are an 

endangered species isolated to a single desert spring in southwestern Texas (US Federal 

Register 2008). Since reaching near extinction in the mid 1900s, a founding population of 

C. bovinus has been maintained since 1976 at the Southwestern Native Aquatic 

Resources and Recovery Center (SNARRC [formerly Dexter National Fish Hatchery and 

Technology Center] Edds and Echelle 1989), which has been critical for the continuation 
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of this species (Echelle et al. 2004). As a result of the introduction and subsequent 

interspecific hybridization with the congeneric sheepshead minnow (Cyprinodon 

variegatus), a majority of the wild population was culled in the early 2000s, which led to 

the large-scale release of ~ 10 000 pupfish to replenish the wild population (Echelle and 

Echelle 1997; Echelle et al. 2004). Since the release of captive C. bovinus into the wild, 

the population size has rapidly declined until 2006, when less than five individuals were 

reported (Gumm et al. 2008).  

The proximate reasons for the low observed establishment of captive fish are 

unknown, yet by employing a comparative approach with an established wild population 

of C. bovinus, it is possible to simultaneously identify and potentially assess the 

functional significance of principal behavioral disparities of captive animals in their 

ancestral habitat. That is, maladaptive behavior can be identified in reintroduced captive 

animals by looking for deviation in behavioral patterns exhibited by wild animals 

(Mathews et al. 2005).  

In the current study, a habitat restoration project was employed to accommodate 

an experimental approach, followed by a reintroduction of captive C. bovinus into an 

isolated habitat, located 2 km NNE of the sole remaining wild population. To evaluate the 

behavioral patterns of captive animals, the reintroduced population was monitored 

throughout the summer of 2013. A comparative approach was used (wild vs. reintroduced 

population) to identify the presence of maladaptive behavior, which may be a result of 

conservation breeding and the associated divergent selection regimes. The null 

hypothesis was posited to be an absence of maladaptive behavior exhibited by the 

reintroduced captive population, which would indicate the preservation of natural 
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characteristics. Alternatively, rejection of the null hypothesis could signal the occurrence 

of novel adaptations in either or both populations, which could potentially compromise 

the sustainability of this endangered species and therefore encourage reconsideration of 

the current C. bovinus management strategy.  

 

IV.2 Materials and methods 

The behavior of wild C. bovinus was observed at Diamond Y Spring, TX (DY; 

31°0'4.75"N, 102°55'27.09"W) from June – July 2013 (Figure IV.1). Four hundred adult 

captive C. bovinus were supplied by Southwestern Native Aquatic Resources and 

Recovery Center (SNARRC; Dexter, NM) and were transported and released into 

Monsanto Pool, TX (MP; 31°1'51.60"N, 102°53'49.73"W) where their behavior was also 

observed from June - July 2013 (Figure IV.1). All fishes were handled in accordance with 

stipulations defined in TX Parks and Wildlife permit # SPR – 0812 - 967. 

 

2.1 Study location and species  

DY is comprised of a circular head pool ~ 419 m2 and 3.8 m in depth with steep 

undercut banks and a 8 m2  breeding shelf (Veni 1991; Gumm et al. 2011). From the head 

pool, water flows down a long stretch of land choked with Scirpus americanus (~ 2 m in 

width and 5 - 10 cm in depth) before terminating into the ground 1 - 2 km to the NNE 

(Echelle and Miller 1974). MP, located 2 km downstream from DY, contains dense 

emergent vegetation (~ 1 -2  km stretch) and maintains a deep 1 m2 refugium with a small 

peripheral clearing (~ 3 m2; A. Black, personal observation). Historically, MP supported a 
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small population of C. bovinus, which became extirpated in 2012 (M. Itzkowitz, personal 

observation). 

Cyprinodon bovinus are a small (≤ 7 cm) promiscuous annual breeder that 

maintains small territories on a shallow (5 – 10 cm) breeding shelf throughout the 

summer. During the breeding season (May ~ Oct), territorial male C. bovinus adopt a 

blue nuptial coloration and actively defend small heterogeneous sites (Echelle and Miller 

1974). Females will enter a male’s territory in the upper water column, and if the female 

is interested she will descend to the substrate, allowing the male to align himself parallel 

to her. The pair will then form a sigmoidal shape, followed by a rapid jerking movement 

during egg deposition (Leiser and Itzkowitz 2003a). Similar to other species of pupfish, 

males provide no parental care of these deposited eggs, with the exception of 

inadvertently driving intruders from his territory (Leiser and Itzkowitz 2003a). Territorial 

males are commonly observed chasing, fighting and / or biting intruding conspecific 

males in addition to Gambusia nobilis, a sexually dimorphic small live bearing member 

of the Poecilliidae family (for additional details see: Gumm et al. 2008, 2011). 

Cyprinodon bovinus are opportunistic generalists which feed on diatoms, amphipoda, 

algae, gastropoda, as well as seeds and have been described displaying “pit digging”, a 

behavior used to churn up the substrate in an attempt to excavate any buried food 

(Kennedy 1977).  

 

2.2 Experimental design 
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 To identify the presence of maladaptive behavior in reintroduced captive fish, the 

behavior of adult territorial male C. bovinus was observed under natural and semi-

controlled conditions for both wild and reintroduced captive C. bovinus populations. 

Natural behavior was observed June - July 2013, which entailed the passive 

observation of ten territorial males in the wild population (DY) as well as the recently 

reintroduced captive population (MP). At both DY and MP, ten numbered 2 x 5 cm, 

weighted plastic tags were placed within each focal male territory. These tags facilitated 

the analysis of the same male’s behavior across the breeding season and also provided 

scale for estimating territory size (see below).  

Once a day at both locations, video cameras (JVC GZ-R10B) equipped with 

polarized lenses were placed on tripods on the shore directly above each tagged territory 

(n = 10 males / location) and 15 min recordings were taken between 10 am and 4 pm. For 

evaluation of recorded data, behavior was undocumented for the first 5 minutes to allow 

males to acclimate to the video camera, and a total of 10 min was analyzed from each 

recording. Due to distorted recordings caused by wind or excessive sun glare, the number 

of recordings varied by territorial male (mean = 7.4; min / max = 5 / 12) representing ~ 

25 hours of total video footage [12.5 hrs (DY); 12.2 hrs (MP)].  

From each video recording, the following behaviors / parameters were 

quantitated: 1) total aggressive behavior, 2) foraging behavior, 3) total reproductive 

behavior, and 4) territory size. For quantification purposes, total aggressive behavior was 

comprised of fighting (direct, violent contact between conspecific males), male 

conspecific and G. nobilis chases (mutual acceleration), and lateral displays (extension of 

dorsal / pectoral fins). Total reproductive behavior was comprised of the number of 
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spawning events (sigmoidal orientation with subsequent pause) in addition to the number 

of spawning attempts (male parallel to female but no sigmoidal orientation). Foraging 

behavior was recorded as a discrete event whenever the male struck / dislodged the 

substrate. Territory size was estimated using imagej (Abramoff et al. 2004) by calculating 

the video area of each recording (using the plastic tag as scale), regressing the percent of 

time the male spent within the video frame (y) on territory diameter (sqrt(area) = x), and 

using the slope to predict the territory size (cm) at y = 0.75. All four measures were 

individually averaged to obtain a mean estimate for each territorial male and an average 

was obtained for each location (DY & MP). All behaviors were then converted to 

frequency measures (min).  

Scirpus americanus encroachment is a predominant cause of habitat loss at both 

locations (MP & DY), which severely limits availability of experimental substrate. 

Therefore, to provide accessible habitat for the semi-controlled experiments, two pools 

were manually excavated immediately downstream from the breeding shelf at DY and 

upstream from the refugium at MP during January 2012. Following the construction of all 

four pools (700 x 200 x 20 cm each), cement tiles (30 x 10 x 5 cm) were submerged in 

cleared areas to prevent the regrowth of S. americanus. To compensate for density 

dependent behavior, six mesocosms (three at each location) were placed in newly 

reclaimed habitats and were provided with small diameter river rocks (≤ 1.25 cm) and 2 L 

of substrate / mud from the surrounding area for food (e.g. amphipods); the six m3 

mesocosms were manufactured using 1.90 cm pvc pipe, 0.025 mm grey fiberglass 

screening, and zip ties. 
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 Cyprinodon bovinus and G. nobilis were caught with minnow traps, weighed, 

measured and separated into mesocosms based upon similar size. Each mesocosm 

contained 3 male C. bovinus (mean TL = 5.5 cm ± 1.4 SD), 3 female C. bovinus (mean 

TL = 4.9 cm ± 0.5 SD) and 6 female G. nobilis (mean TL = 4.1 cm ± 0.2 SD) to 

standardize size and species composition. In each mesocosm, three 10 x 20 cm weighted 

scouring pads (Scotch-Brite) were added (prior to the addition of residents) for spawning 

substrate.  

Using a mounted video camera, each mesocosm was recoded daily for a period of 

35 min between 10 and 3 pm (06/09/2013 – 06/14/2013). From these recordings, 

following a 5 min acclimation time, the behavior of all males in each mesocosm were 

analyzed for 30 min each for a total of 18 hrs of documented video footage [9 hrs (DY); 9 

hrs (MP)]. Using the same definitions as in the previous experiment, the following 

behaviors were documented: 1) total reproductive behavior, 2) total aggressive behavior, 

and (3) foraging behavior. Each mesocosm was averaged by male and by behavior to 

obtain a mean estimate for each mesocosm and an average was then obtained for each 

location (DY & MP). All behaviors were then converted to frequency measures (min).  

 

2.3 Statistical analysis 

 Both populations were tested for multivariate normality (Shapiro’s test [W; α < 

0.05]) and the effect of population source on behavior  was assessed with a multivariate 

analysis of variance (MANOVA) using the packages WRS (Wilcox and Schonbrodt 

2015), reshape (Wickham 2007), mvnormtest (Slawomir 2012) and their associated 

dependencies in the R environment (R Development Core Team 2014). Using α = 0.05, a 
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power analysis of the semi-controlled data revealed a low probability of discovering a 

main effect for each behavioral variable (unpaired t-test; d = 0.03 – 0.25), so results from 

the mesocosms were used for descriptive purposes only and figures from both 

experiments were combined to provide a visual comparison using the package ggplot2 

(Wickham 2009) in R. 

 

IV.3 Results 

 Due to violations in multivariate normality for both wild (W = 0.565, P < 0.0001) 

and reintroduced (W = 0.839, P < 0.05) populations, a robust MANOVA was 

implemented using ranked data as in Choi and Marden (1997). For the natural behavior, 

there was no significant main effect of population (DY, MP) on any of the outcome 

variables (H4 = 2.66, P = 0.616).  

IV.4 Discussion 

 While traits selected for in captivity may no longer be adaptive when animals are 

released back into the wild, insufficient evidence was found to indicate that captive C. 

bovinus exhibited maladaptive behavior upon release into their ancestral habitat. By 

evaluating the territory size, foraging behavior, reproductive behavior, and agonistic 

behavior of the reintroduced population, relative to an established (and theoretically 

adapted) C. bovinus population, no significant deviations in any of the documented 

behavioral metrics were found. Similar patterns were additionally observed after 

controlling for the presence of density dependent behavior. These results provide an 

optimistic perspective on the role that conservation breeding may play in regard to the 
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reintroduction of endangered desert fish and offers an experimental approach to help 

evaluate the current or future adaptive ability of reintroduced animals under standardized 

local conditions.  

 The initial survivorship (while not quantitated) of C. bovinus appeared very high, 

signifying that the ensuing shift in abiotic conditions appeared to play a minor immediate 

role. Additionally, the high survivorship also implies that minor stress was imposed 

during transport from SNARRC, which can negatively impact the establishment of 

reintroduced animals (Hartup et al. 2005; Teixeira et al. 2007). Upon release into their 

ancestral habitat, the reintroduced captive fish showed characteristic levels of 

reproductive behavior. In fact, under natural conditions the reintroduced population 

actually exhibited slightly elevated levels of reproductive behavior (relative to the wild 

population; Figure VI.2). However, as this pattern was absent in the semi-controlled 

mesocosms, this could be attributed to differences in density between the two locations 

(Figure VI.2).  

 For both natural and semi-controlled conditions, the wild population exhibited 

slightly elevated levels of foraging behavior compared to the reintroduced population 

(Figure VI.3). While non-significant, this may be a result of inherent habitat differences 

found in captivity. For example, the captive population is maintained at SNARRC in a 

0.10 acre pond with rooted vegetation covering ~ 30 % of the pond (personal 

communication, M. Ulibarri). If the predominant food source in these ponds is primarily 

obtained from / within vegetation (opposed to scavenging in the substrate) it may have an 

effect on foraging strategy in natural habitats. Unfortunately, an absence of aquatic plants 
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near the observed territorial fish at MP prevented testing this hypothesis in regard to 

foraging strategies between locations. Future examination of stomach contents or 

behavior in captivity may help elucidate any variation occurring between locations / 

populations.  

 While there are currently roughly 6000 C. bovinus maintained in the pond at 

SNARRC (personal communication, M. Ulibarri), no significant differences in 

aggression levels (Figure VI.4) or territory size (Figure VI.5) were discovered between 

the wild and reintroduced populations; males at both locations exhibited comparable 

levels of agonistic behavior and defended similar sized areas. This is surprising, as high 

density has been shown to have an effect on both aggression levels and territory size and 

(Kodric-Brown & Mazzolini 1992; Price, 1999; Kelley et al. 2006; Blanchet et al. 2008). 

However, while absent under natural conditions, slightly elevated levels of aggression 

were observed in captive fish maintained in mesocosms (Figure VI.4), which would also 

be an expected carryover effect of being maintained at high density in captivity. 

Additionally, reintroduced captive fish did show a trend for reduced territory size 

(relative to wild individuals), which may also be a result of being maintained at higher 

density in captivity; Figure VI.5). Because sample sizes were constrained by the number 

of mesocosms that could be established in the renovated habitat and the number of 

territorial males, it is difficult to discount the observed trend in aggression levels or 

territory size between locations.  

 In summary, analysis failed to isolate any maladaptive behavior in a recently 

reintroduced population of C. bovinus. However, results of this study faced the small 
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sample sizes that characterize many reintroduction studies, and should therefore be 

interpreted accordingly. Additionally, due to limitations in the number of behavioral 

measures that could be documented, it remains a possibility that other behavioral 

measures may in fact have shown differences between populations. Nevertheless, because 

of the lack of established differences in behavioral patterns between wild and 

reintroduced C. bovinus, it seems probable that other factors, such as habitat loss and 

fragmentation, were the predominant issues that contributed to the historically poor 

establishment and persistence of captive fish in the wild.  

4.1 Concluding note 

 In August 2013 the water column dropped drastically at MP and as a result the 

population appears to have mostly perished; a recent census revealed that only twelve C. 

bovinus remained. A primary factor in the historical, and apparently current, persistence 

of this population is due to the presence of a relatively deep refugium, which helps buffer 

against seasonal fluctuations in local water flow and depth (Brune 1975; Hubbs et al. 

1978). However, it appears that the refugium may be insufficient for the maintenance and 

sustainability of a stable population at this location. The drastic (and rapid) erosion of this 

population provides additional evidence that assessment of groundwater pumping or 

habitat loss merit further attention prior to the future reintroduction of this imperiled 

species.  
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Figures IV: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure IV.1 The geographic range of Cyprinodon bovinus in SW Texas. The sole 
remaining wild population of C. bovinus occurs in Diamond Y Spring (DY) with the 
reintroduction site (MP) ~ 4.2 km downstream.  
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Figure IV.2 Mean reproductive behavior / min ± SE for the wild (DY) and reintroduced 
captive population (MP) under natural and semi-controlled conditions. Dashed line for 
inter-population illustration only. 
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Figure IV.3  Mean foraging behavior / min ± SE for the wild (DY) and reintroduced 
captive population (MP) under natural and semi-controlled conditions. Dashed line for 
inter-population illustration only. 
 

 

 

 

 

 

 

 



	  
94	  

 

 

 
 
 
 
 

 

 

 

 

 

 

 
 
 

Figure IV.4  Mean aggressive behavior / min ± SE for the wild (DY) and reintroduced 
captive population (MP) under natural and semi-controlled conditions. Dashed line for 
inter-population illustration only. 
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Figure IV.5 Boxplot illustrating estimated male territory size (diameter) for the wild 
(DY) and reintroduced captive population (MP) under natural conditions. Boxplots 
represent the median with hinges representing the first and third quartiles. Whiskers 
represent 1.5 * Interquartile range. 
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V. DENSITY-DEPENDENT EFFECTS OF A PUTATIVE EGG PREDATOR  

 

V.1 Introduction 

 Because of natural or anthropogenic mediated habitat loss, maintaining the 

sustainability of an endangered species is a difficult endeavor, even with an effective 

recovery plan (Hoekstra et al. 2002; Butchart et al. 2010). These challenges can be 

further compounded when habitat loss is accompanied by potentially deleterious 

interspecific interactions, which can require active intervention to manage complex 

interactions occurring between sympatric species (Soule et al. 2003; Tilman 2007). As in 

the case of introduced species, a common solution is to typically eradicate, or reduce, the 

exotic species in order to alleviate negative impacts (Westman et al. 2002; Lessard et al. 

2005).  

 However, when addressing negative interactions occurring between two 

endangered species, simply eradicating or reducing the abundance of one of the species in 

question is not a viable option. This challenging dynamic can occur when sympatric 

species compete for similar resources and can require the careful management of 

ecological parameters to help maintain and preserve the fragile status and co-existence of 

both species in question (Soule et al. 2003; Oro et al. 2009). Successfully managing these 

parameters can be particularly challenging however, when an endangered species is 

suspected of directly reducing the fecundity of another sympatric endangered species 

(Gumm et al. 2008, 2011).   

 The Leon Spring pupfish (Cyprinodon bovinus) is an endangered species that 

occurs sympatrically with Gambusia nobilis, a small live-bearing member of the 
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Poeciliidae family; both species are the focus of ongoing recovery plans (Federal Register 

2008). G. nobilis occur at very high densities in their native habitat, and commonly 

exhibit aggregation behavior around spawning pupfish pairs, suggesting that they may be 

preying upon newly deposited C. bovinus eggs (Gumm et al. 2008, 2011). Because 

Poecillidae have been documented to outcompete native species for resources (Courtenay 

and Meffe 1989; Mills et al. 2004; Rehage et al. 2005) and prey on native species (Meffe 

1985), concerns have been raised about the threat this species poses to the continued 

sustainability of C. bovinus (Gumm et al. 2008, 2011).  

At a contemporary time scale, the primary conservation action has been to reduce 

the putatively negative interspecific impacts with C. bovinus by diluting their spatial 

contact with G. nobilis through habitat expansions. These habitat expansions facilitate the 

increased dispersal of both species, subsequently reducing the magnitude of any potential 

deleterious interactions. However, it is unknown how these habitat expansions, and 

subsequent shifts in G. nobilis density, affect the reproduction of C. bovinus. Therefore, 

the current study sought to experimentally test the behavior and fecundity of C. bovinus 

at varying densities of G. nobilis.   

 

V.2 Materials and methods 

2.1 Study location and species 

Both C. bovinus and G. nobilis (Echelle and Echelle 1980; Hubbs et al. 2002) 

occur within Diamond Y Spring, a historical tributary of the Pecos River (Veni 1991), 

and are commonly observed in conjunction on a shallow breeding shelf (8m2) where C. 

bovinus males defend small territories throughout their breeding season (~ May – Oct). 
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Female C. bovinus will enter these territories in the upper water column, and if the female 

is interested, will descend to the substrate and form a sigmoidal shape with the male, 

which is followed by a rapid jerking movement during egg deposition (Leiser and 

Itzkowitz 2003a). Similar to other species of pupfish, males provide no parental care of 

these deposited eggs (Leiser and Itzkowitz 2003a). 

 

2.2 Density dependent behavior and fecundity  

 Eight 1-m3 mesocosms were manufactured using 1.90 cm pvc pipe, 0.025 mm 

grey fiberglass screening, and zip ties. Mesocosoms were placed in shallow water (10 - 

15 cm), where small diameter river rocks (≤ 1.25 cm) were added to weigh down the 

fiberglass screening and ~ 2 L of substrate / mud was provided from the surrounding area 

for food (e.g., amphipod source). All mesocosoms were placed in newly renovated ponds 

downstream from the natural breeding shelf to minimize disturbance.  

To examine potential density dependent effects imposed by G. nobilis, two male 

(mean TL = 4.34 cm ± 2.7 SD), and two female (mean TL = 4.2 cm ± 2.9 SD) C. bovinus 

were assigned to each mesocosm based upon comparable size and were exposed to 

varying numbers of G. nobilis over three weeks in June 2014. A repeated measure design 

was implemented for each mesocosm (n = 8), which were each exposed to three 

treatment conditions for a period of seven days each: (i) zero G. nobilis, (ii) thirty G. 

nobilis, and (iii) sixty G. nobilis. These densities were chosen to cover the range of 

observed G. nobilis densities that have been documented to occur on the natural shelf at 

DY (unpublished data; A. Black). The order of treatment conditions was randomized for 

each mesocosms and commotions were created in the absence of G. nobilis to model 
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disruptions that occurred while adding G. nobilis.  In each mesocosm, a single 10 x 20 

cm weighted scouring pad was added (prior to the addition of residents) to provide a 

spawning substrate.  

Twice a week, for three weeks, all eight mesocosms were filmed with a mounted 

video camera (JVC GZ-R10B) between 10:00 and 15:00 for a period of 25 min on the 5th 

and 7th day of each treatment week. Behavior was undocumented for the first five minutes 

to allow the fish to acclimate to the video camera, resulting in ~ 20 min of documented 

behavior from each recording; due to variation in recording times (mean = 18.4 min ± 2.5 

SD) behavior was converted to a frequency measure (per min). From each recording, the 

number of spawning events (number of spawns and spawning attempts) that occurred 

within each mesocosm was documented. Following the conclusion of filming on the 7th 

day, all spawning pads were carefully transferred (under water) into separately labeled 

containers filled with natural spring water to obtain a visual count of the number of 

deposited eggs. Each spawning pad was evaluated multiple times to obtain the maximum 

number of eggs found across the entire area of each spawning pad. New spawning pads 

were then added to each mesocosm and the ensuing treatment was started following the 

removal, and (if required) subsequent addition of G. nobilis.  

A repeated-measures ANOVA design was implemented separately for the two 

dependent variables (total reproductive behavior and number of eggs), which were each 

tested for normality (Shapiro-Wilks; P > 0.05 = normality) and for violations in 

sphericity (Mauchly’s test; P > 0.05 = sphericity). Statistical analysis utilized the stats 

and ez packages (Lawrence 2013), and figure generation used the ggplot2 package 

(Wickham 2009) in the R environment (R Development Core Team 2014). 
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V. 3 Results 

 Both dependent variables were rank transformed due to a violation in normality (P 

< 0.05). A repeated-measures ANOVA illustrated that G. nobilis density was not a 

significant main effect on either total reproduction (F2,14 = 1.38, P = 0.28; Figure V.1A) 

or egg number (F2,14 = 1.34, P = 0.29; Figure V.1B).  

 

V.4 Discussion 

 Insufficient evidence was found to suggest that G. nobilis exerted a distinct 

negative effect on either of the documented measures examined in a series of mesocosm 

experiments. Results demonstrated that the three treatment conditions failed to show an 

effect on the number of eggs laid or the frequency of reproductive behavior. However, it 

is possible that the abrasive surface of the spawning pads effectively trapped the 

deposited eggs, and therefore reduced the ability of G. nobilis to extract the eggs in the 

mesocosm experiments. 

 Another possible explanation for the similar levels of deposited eggs across 

treatments may be due to the fact that pupfish have been documented to engage in filial 

cannibalism, preying on eggs fertilized by other males (Loiselle 1983). If this were 

occurring within mesocosms, it is possible that the absence of G. nobilis may have 

allowed male C. bovinus to partition more time scavenging for eggs. Alternatively, in 

mesocosms containing G. nobilis, males may have devoted more time driving G. nobilis 

away from the spawning pad, which reduced the magnitude of filial cannibalism. Yet this 

does not appear to be the case, as comparable patterns were observed for the number of 
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deposited eggs and the frequency of reproductive behavior, which would have shown an 

elevated number of spawns (relative to the number of eggs) in the absence of G. nobilis.  

 In conclusion, an experimental approach was used to evaluate the density 

dependent effects of a putative egg predator on the reproductive behavior and fecundity 

of C. bovinus. Insufficient evidence of a clear negative density dependent effect implies 

that the proposed deleterious interaction occurring between C. bovinus and G. nobilis 

may be of lower severity than initially anticipated. While the results of the study were 

surprising based upon the supposed deleterious interaction occurring between these two 

species (Gumm et al. 2008, 2011), it suggests that experimental approaches may be more 

discriminating of complex relationships occurring within / between sympatric species. 

The lack of evidence suggesting a clear negative interaction between these two 

endangered species implies that perhaps conservation effort should shift away from 

reducing the interaction between these two species towards placing emphasis on the 

sustainability of both species. 
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Figures V: 

 

 

 

 

 

 

 

 

 

 
 
 
Figure V.1 Illustrates (a) mean ± SE reproductive behaviors / min exhibited by territorial 
males and (b) mean ± SE number of eggs deposited on spawning pads in mesocosms 
following exposure to 0, 30, or 60 G. nobilis. 
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GENERAL DISCUSSION 

  

The overarching objective of this thesis was to evaluate the recovery plan of 

Cyprinodon bovinus and to examine how potential consequences of ex situ conservation 

may shape population distinctiveness and ultimately affect the ability of reintroduced 

captive animals to become established in their ancestral habitat. To provide an adequate 

foundation, I first conducted a thorough literature search over a 50-year period and 

examined the effects of the contemporary conservation of this endangered species. I then 

evaluated the potential consequences of ex situ conservation by examining genetic and 

phenotypic characteristics that may be divergent between the sole remaining wild 

population and a population maintained in captivity for the last ~ 40 years. Due to the 

past incidences of documented hybridization events with a non-native, I also examined 

the wild population for genetic and phenotypic evidence of introgression, which would 

bias the comparison of captive and wild characteristics. Following this evaluation, I 

coordinated and monitored a reintroduction attempt to evaluate whether captive animals 

exhibited any maladaptive behaviors upon release into their ancestral habitat. Finally, I 

used a series of field experiments to examine if the wild C. bovinus population showed 

any negative density-dependent effects from a putative endangered egg predator 

(Gambusia nobilis) in order to predict the long term impact they may be exerting on the 

persistence of this imperiled species of pupfish.  

The execution of the recovery plan for C. bovinus appears to have been 

successful, as the removal of emergent vegetation has apparently assisted with increasing 

the estimated size of the wild population. However, by increasing habitat area it may 
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have also dispersed C. bovinus territories, effectively reducing their density, and in turn 

negatively affecting their overall reproductive success. This may be a result of females 

spending more time assessing an increased number of territorial males.  

 To assess the effectiveness of the current C. bovinus captive breeding program, I 

used a genome-wide approach to measure levels of neutral and adaptive genetic variation 

within, and subdivision between, contemporaneous samples of individuals from the 

captive and wild populations. Results revealed that despite relatively high levels of 

genetic diversity in the captive population, the reintroduction of thousands of captive 

animals failed to prevent a severe genetic bottleneck, which appears to have reduced the 

genetic diversity of the wild population and possibly contributed to the substantial genetic 

divergence between these two populations. In addition to the effects of genetic drift, I 

identified multiple outlier SNPs that showed signs of divergent selection, one of which 

matched to a predicted gene likely involved with osmoregulation. I also detected 

significant morphological divergence between the two populations, which may also be 

shaped by differences in local habitat conditions (e.g. salinity). Results illustrated that 

contemporary hybridization or historical introgression was not a principal mechanism for 

the documented population divergence between the captive and wild C. bovinus 

populations; this was evident by both C. bovinus populations showing an absence of 

morphological overlap with C. variegatus, high levels of genetic differentiation with C. 

variegatus, and the limited allocation of shared alternative alleles.  

 To evaluate if traits potentially selected for in captivity may no longer be adaptive 

when animals are released back into the wild, I monitored the reintroduction of captive C. 

bovinus into an extant habitat. I found insufficient evidence to indicate that captive C. 
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bovinus exhibited maladaptive behavior upon release into their ancestral habitat. Similar 

responses were additionally confirmed after controlling for the presence of density 

dependent behavior.  

 To evaluate the potential long-term effect that a putative egg predator (G. nobilis) 

may have on the sustainability of C. bovinus, I observed their behavior and fecundity 

under varying densities of G. nobilis in controlled field experiments. Based upon 

observed similarities in the number of deposited eggs and the frequency of exhibited 

reproductive behavior across G. nobilis densities, I found insufficient evidence to 

conclude that G. nobilis, a putative egg predator, exerted a distinct negative density-

dependent effect on either the reproductive behavior or fecundity of C. bovinus.  

  To summarize, I will briefly outline the implications that the recovery plan, ex 

situ conservation, reintroduction attempt, and G. nobilis densities may have on the future 

sustainability of C. bovinus. While the recovery plan appears to have been successful, 

based upon an increase in the number of territorial males, it appears that additional 

releases of captive fish may need to occur alongside habitat expansions to offset a 

decrease in individual male reproductive success. This should assist with maintaining an 

effective ecological density and preserve levels of male reproductive success. For the 

evaluation of ex situ conservation, the documented evidence for such substantial levels of 

divergence between captive and wild populations hold serious implications with regard to 

the preservation of natural genetic and phenotypic species characteristics. Based upon the 

evidence for local selection and the asymmetrical distribution of genetic diversity 

between populations, I conclude that reciprocal genetic inoculation would greatly assist 
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in re-establishing genetic cohesion between these two populations. While the foundation 

for the documented phenotypic divergence is unknown, altering abiotic conditions in 

captivity (i.e. salinity) may help equalize body shape characteristics that were 

documented occurring between these two populations. Additionally, because I found no 

evidence for introgression with the non-native sheepshead minnow (C. variegatus) (based 

upon the evaluated morphological or genetic characteristics) it appears that the reason for 

the documented divergence between these two populations was not due to introgressive 

hybridization. Therefore, this represents a critical time period, where a translocation of 

wild individuals into captivity could transpire with minimal concerns of facilitating the 

inadvertent introduction of non-native, introgressed genetic material.  

 Taken together, the reason for the historically limited establishment ability of 

captive C. bovinus in their ancestral habitat appears not to have been due to maladaptive 

behavioral in the released captive fish. However, because of the evidence for local 

adaptation, future work is required to investigate the possibility that abiotic conditions 

may have led to the poor establishment and persistence of the historically released fish. In 

conclusion, I stress the importance of prioritizing the following goals to aid in the 

sustainability of this endangered species: (1) the reciprocal genetic inoculation between 

captive and wild populations to help reestablish population cohesion, (2) the continued 

monitoring of Diamond Y Draw for introduced non-native species and putative 

Cyprinodon hybrids, (3) continued habitat restoration and simultaneous release of captive 

fish to increase the amount of available breeding habitat and maintain high reproductive 

success, and (4) the thorough assessment of salinity tolerance between environments and 
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its effects on survivorship and development.  
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APPENDICES 

Appendix.A 

Table A1.01 Bivariate Shapiro-Wilk’s Normality Test prior to conducting a Spearman’s 
correlation between reproductive behavior and the number of territorial males.  

 
P-value W 

Reproduction 0.0003769 0.9306 
# Males 0.0001096 0.9195 

 

Table A2.01 Shapiro-Wilk’s Normality Test prior to conducting Pearson’s correlation 
between Log total size and Log Centroid Size. 

 
W P-value 

Wild 0.9654 0.0624 
Captive 0.9774 0.2202 

Male 0.9781 0.2202 
Female 0.9823 0.4975 

 
 
Table A2.02 Shapiro-Wilk’s normality test for Log Centroid Size prior to conducting a 
two way ANOVA. 
Log.CS W P-value 
Wild 0.9671 0.0771 
Captive 0.9774 0.2202 
Male 0.9752 0.1474 
Female 0.9879 0.7943 
 
 
Table A2.03 Levene's Test for Homogeneity of variance (center = median) prior to 
conducing a two way ANOVA on Log Centroid Size. 

 
df F-value Pr(>F) 

Population 1,136 11.829 0.09 
Sex 1,136 1.2018 0.2749 
 

Table A2.04 Type 2 sequential sum of squares ANOVA results for the effect of 
Population source and Sex on Log Centroid size when comparing the wild and captive C. 
bovinus populations. 

 
Df Sum Sq F-value Pr(>F) 

Population 1 0.01671 1.5550 0.2146 
Sex 1 0.00383 0.3568 0.5512 
Population*sex 1 0.00207 0.192 0.6617 
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Residuals 134 
    

 
Table A2.05 Within group sum of squares for multiple regression, pooled within 
subgroups (Population & Sex).  
Total SS: 0.17483497 
Predicted SS: 0.00826233 
Residual SS: 0.16657264 
 

Table A2.06 Classification / misclassification tables from cross-validated discriminant 
functions. 

 
DY SNARRC Total %Correct 

 
DY          60 6 66 90.9   

SNARRC           9 63 72 87.5   

  Table A2.07 Bayescan results for the outlier analysis. Probabilities and FST values for the 
8 SNPs that showed significant evidence of divergent selection.  

SNP Probability log10(PO) Q-value Alpha FST 
1363 0.998 2.698 0.0020004 1.6896 0.19482 
15156 0.9948 2.2816 0.0036007 1.6652 0.19138 
11917 0.9916 2.072 0.005201 1.5392 0.1737 
24187 0.9874 1.894 0.0070514 1.5408 0.17397 
284 0.95359 1.3128 0.014923 1.4157 0.15988 

17015 0.93639 1.1679 0.023038 1.4346 0.16425 
18316 0.90578 0.98289 0.033207 1.302 0.14785 
9507 0.88018 0.86603 0.044034 1.2885 0.14784 

 
 
 
Table A2.08 Consensus read fragments for outlier SNPs. 

snp Read Sequence 
        

284 
AATTCTCCACTATACCTTTAATATCCAGTTTTTGATCTTTGGATGTTTTATTCAAGAACTGTGTAACTCTGATGT
TCTCTACCAGTTCTTATTGGT 

1363 
AATTCTAGTGTGATACTTTGAGAGGATGCCACCTGTGCAATACCTCCAGTTTTGAAATTCCCTCACCCCTAAAT
ATATCTCTAAGGTATTATTGGT 

9507 
AATTCTTATTAGTTAAAAAAAAAAAAACAATAATTACCATTTGCTCACATTGTCATTGATTCTTTATAGTCTTT
TTTTTCCATTTAGATTGTTAAT 

11917 
AATTCTTCTTCAGGTGAAAATTTCAGTCTCATCTTCTCTGGACCATCTAATTGTATAGGAAACAGAAAGTAAG
GTTAGTTTCTTGAGTTATTGCAA 

15156 
AATTCCGTTATTAAAACAGCAGGCAGAACATTTCCGTACTCTCTGCCTGTGAGAATATGAAACAGTTGGAAGG
CTGGGAAATGCTACATTTTTAAT 

17015 
AATTCTAACTTTATCCAGTAGAATGTAACACCATGACCCCTTCCACCATTTAGTTTCCCTTCTCATTATTTCTGT
CTTTATAACCTACCACCTGTA 
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18316 
AATTCATTCAGATCAGTTTATTTCAGTAGCACCAATTAGCAACACGCATCATCTCAGGGAACTTTATAGAGAT
AATTCAGCGCAAGATAGTCTAAC 

24187 
AATTCAGGCGAGACAGACAGTGATTACTTAAAAGGTTTTTATTGACACCAATGCAGAGCTGTGGATCTGCCGC
AGCTCGAGGAGGGCAGGGCACTG 

 
 
Table A2.09 BLAST results for outlier sequence 1363 
SNP Sequence E-Value Query Cover Max Score Iden Accession 

1363_A 

AATTCTAGTGTGATACTTTGAGAGG
ATGCCACCTGTGCAATACCTCCAGTT
TTGAAATTCCCTCACCCCTAAATATA
TCTCTAAGGTATTATTGGT 2.00E-08 78 68 80 

XM_00580
5324.1 

1363_G 

AATTCTAGTGTGATACTTTGAGAGG
ATGCCACCTGTGCAATACCTCCAGTT
TTGAAATTCCCTCACCCCTAAATATA
TCTCTGAGGTATTATTGGT 2.00E-08 78 68 80 

XM_00580
5324.1 

 
 
 
Table A2.10 Estimated contemporary effective population size (Ne) and confidence 
intervals calculated at various minor allele frequencies for both wild (DY) and captive 
(SNARRC) populations under random mating using the linkage disequilibrium method 
implemented in NeEstimator. 
Population NE_0.05 NE_0.02 NE_0.01 NE_0 + 

5 % CI 200.9 164.0 164.0 164.0 

Captive 221.5 175.3 175.3 175.3 
95 % CI 246.8 188.1 188.1 188.1 

     
5 % CI 27.6 32.4 32.4 32.4 

Wild 28.0 32.9 32.9 32.9 
95 % CI 28.5 33.4 33.4 33.4 

 
 
Table A2.11 Relative loading values reported from a Principle Component Analysis 
using all 2023 SNPs, with the top 16 alleles listed above a defined .00205 cutoff 
threshold. The five SNPs identified by BayeScan potentially under divergent selection are 
Bolded. 

SNP	   Var.contribution	  

24187.110	   0.003196072	  

24187.130	   0.003196072	  

11917.120	   0.003196072	  

11917.130	   0.00319607	  
13219.110	   0.002467594	  
13219.130	   0.002467594	  
5571.100	   0.002429089	  
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5571.120	   0.002429000	  
1363.100	   0.002402284	  
1363.120	   0.002402280	  
284.110	   0.002363082	  
284.130	   0.002363082	  

17015.100	   0.002314515	  
17015.120	   0.002314515	  
5035.110	   0.002066608	  
5035.130	   0.002066608	  

 
 
Table A3.01 Structure Harvester Values. Optimal k (2) was identified by Evanno’s 
method. 
K Reps Mean LnP(K) Stdv LnP(K) Ln'(K) [Ln''(K)] Delta K 
1 10 -25254.51 0.7047 NA NA NA 
2 10 -338.72 0.2658 24915.79 24922.81 93753.9779 
3 10 -345.74 113.9644 -7.02 6.02 0.052824 
4 10 -358.78 107.3136 -13.04 8.9 0.082935 
5 10 -362.92 150.0579 -4.14 NA NA 
 
 

Table A4.01 Test for multivariate normality for both wild and reintroduced populations 
for all four behavioral variables documented for the ‘natural’ condition. 

 
W P-value 

Wild 0.5648 0.00002113 
Reintroduced 0.8399 0.04397 

 

 

Table A5.01 Tests for normality (Shapiro-Wilk) and Sphericity (Mauchly’s test) prior to 
running a repeated measures ANOVA. 

 
Shapiro-Wilk 

 
Mauchly's  

 Egg number W P-value W P-value 
[0] 0.722 0.0145 0.9406 0.8321 
[30] 0.837 0.07011 NA NA 
[60] 0.9017 0.299 NA NA 
Total reproduction 

    [0] 0.5268 0.00002168 0.8647 0.646 
[30] 0.4184 0.00000105 NA NA 
[60] 0.6547 0.000686 NA NA 
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Table A5.02 Repeated-Measures ANOVA for the main effect of Gambusia nobilis 
density on egg number and total reproduction. 

 
DFn Dfd F P-value 

Eggs 2 14 1.345 0.2922 
Total Reproduction 2 14 1.38 0.2836 
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Appendix.B 

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
Figure A2.01 Illustration of Stacks pipeline. From Catchen et al. 2013 
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Figure A2.02 Histogram distribution of Log Centroid Size (mm) for the wild (black; DY) 
and captive (grey; SNARRC) C. bovinus populations. 
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Figure A2.03 Pearson’s correlation between Log Total length (mm) and Log Centroid 
Size (mm) for all C. bovinus samples (N= 138).  
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Figure A2.04 Allometric variation demonstrated by a regression of size (Log Centroid 
Size; mm) on shape (Procrustes Coordinates) for the wild (DY; black) and captive 
(SNARRC; grey) populations, with males (triangles) and females (circles) factored into 
the model. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



	  
130	  

 

 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A2.05 Density histogram of discriminant function and cross validation scores 
from Discrimination Function Analysis of population (a & b; DY = black, SNARRC = 
grey) and sex (c & d; male = black, female = grey). 
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Figure A2.06 Untrimmed violin plot of 2 015 loci outlining the distribution of the Minor 
Allele Frequency for the wild (DY; black) and captive (SNARRC; grey) populations.  
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Figure A2.07 Boxplot of all SNPs, outlining the distribution of Observed (white) and 
Expected (grey) Heterozygosity for the wild (DY) and captive (SNARRC) populations. 
Boxplots represent the median with hinges representing the first and third quartiles. 
Whiskers represent 1.5 * Interquartile range.  
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Figure A2.08 Loading plot generated from using all 2023 SNPs, with the horizontal line 
representing an arbitrary threshold value of .00205. Illustrates which SNPs contributed 
most to the individual principle component analysis.  
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Figure A3.01 To avoid over fitting, the a-score function was implemented to select the 
optimal number of principle components for the Discriminant Analysis of Principle 
Components.   
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GLOSSARY: 

	  
Adaptive Genetic Variation: Refers to genetic variation that affects fitness. The variant can either be fixed 

(as it has been present in the population for a long time) or be polymorphic and rising in frequency.  
Allometry: Changes in body shape variation that accompany or is caused by alteration in size.  
Allozyme electrophoresis: Historically used dominant protein marker whose application is becoming rare. 
Ampure XP beads: Binds to contaminants such as salts, primers, and dNTPs. A magnet is then used to 

remove the beads and bound contaminants to clean samples and keep amplicons.  
Ascertainment Bias: Refers to discovering loci prior to genotyping individuals. This biases methods by 

yielding an unrepresentative selection of loci that does not accurately represent the spectrum of allele 
frequencies in a population(s). 

Bioanalyzer: Used to assess the success of the size selection step and subsequent PCR amplification prior to 
pooling and sequencing.  

Bioinformatics: Incorporation of computer programming into biological methodologies.  
Cartesian Coordinates: A pair of numerical coordinates (x, y) for designating a specific location (e.g. 

landmark). 
Centroid Size: The centroid size of a landmark configuration is defined as the square root of the sum of the 

squared distances of all landmarks. It effectively encompasses the “spread” of all landmarks around 
the centroid (center) of the configuration. Centroid size will have the same units as that which was 
originally measured (e.g. mm).  

Centroid: The center of gravity, the x and y coordinates are averaged separately. 
Congeneric: Belonging to the same genus. 
Conspecific: Belonging to the same species. 
ddRAD-seq: Genomic DNA is digested using two restriction enzymes, and the resulting fragments are 

ligated with flanking adapters. These fragments then go through a precise size selection step to select 
a certain size range of fragments (e.g. 300 bases). These selected fragments are then PCR amplified 
and sequenced. By comparing the same loci across individuals, SNPs can be identified. 

Demographic History: The historical reconstruction of metrics such as fluctuation population size, sex 
ratios, growth rates etc. 

Demographic Stochasticity: Refers to random processes within a population, which will generally be more 
pronounced with smaller populations. For example, the number of offspring surviving each season 
will be variable (across seasons) but can have a drastic, and unpredictable, effect on population size.  

Digitization: Simply refers to digitally assigning landmarks to an image, may occur following image 
enhancement (e.g. Photoshop) to assist with identifying anatomical structures.  

Divergent Selection:  Different sources of selection favor different alleles in different populations, resulting 
in divergence in allele frequencies between populations. 

EcoRI and MspI: Were the two restriction enzymes used in the study, a 6 and 3 bp cutter respectively. 
Effective population size (Ne): Reflects the rate at which genetic diversity will be lost following genetic 

drift. The ideal population size that would have the same rate of change as the population under 
analysis. 

Environmental Stochasticity: Similar to Demographic stochasticity, it refers to variability in birth and 
death rates, but is a direct consequence of extrinsic factors such as predation, weather, competition, or 
disease.  

Estimating effective population size: For a single-sample estimator, the linkage disequilibrium (LD) 
method can be used. This is based on the principle that in small populations, genetic drift increases 
the likelihood of non-random associations to occur among alleles from different loci, since only few 
parents will contribute their alleles to the next generation.  

Evolutionary Potential: Relates directly to the amount of genetic diversity within an individual/population, 
which can affect a species ability to adapt to environmental change. Populations exhibiting low 
diversity, or potential, have limited resilience and adaptive potential when faced with environmental 
change.  
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Exact Test: Deviations from HWE can indicate one of the paramount assumptions was not met or that there 
was genotype error. The exact test is based upon contingency tables and involves calculating the 
theoretical probability and statistically comparing it for deviation from observed.  

Expected Heterozygosity: The frequency of heterozygotes that would be expected in the population is in 
HWE.  

FastQC: Provides a quality control check of raw sequence data after you get the sequence data back. Will 
provide an overview of phred scores, GC content, etc. 

Fixed markers: Loci that are diagnostic for a species or population because they are fixed for different 
alleles between the two populations (e.g. A vs C) 

Fst: Fixation index is a standardized index that illustrates the amount of genetic variation occurring between 
populations relative to the total variation.  FST = (Het Total -  Het Sub)/ Het Total . A FST of 0.05 means an 
overall reduction in average heterozygosity is close to 5% of the total heterozygosity. Another way to 
say it is that 95% of genetic variation can be found within populations. 

Gel electrophoresis: Can be used to ensure high molecular weight genomic DNA. Severely degraded DNA 
would show up a complete smear, with a lack of high molecular weight DNA.  

Gene flow: The exchange of genetic material between two (or more) populations through migration 
(assisted or passive).  

Genetic cohesion: This is not referring to the species concept, but relates to preserving species integrity by 
maintaining similar characteristics between populations, whether it be morphological or genetic in 
nature.  

Genetic Differentiation: Populations differ in their allele frequencies 
Genetic Divergence: A process in which two populations independently accumulate genetic changes 

through time.  
Genetic Monitoring / Assessment: Refers to the quantification of temporal changes in a natural population. 

This usually entails using molecular techniques to evaluate population genetic metrics or to study 
demography. This differs from “genetic assessment”, which entails a single snapshot in time, but 
usually looks at similar parameters.  

Genetic Stochasticity: This refers to changes in the genetic structure of populations, unrelated to systematic 
processes (selection, inbreeding, or migration). An example is genetic drift.  

Genetic Variation: Broadly refers to variation at the genetic level. If can occur at multiple levels, such as at 
the chromosomal level, in genes, DNA, proteins, or in the functional differences of proteins.  

Genetic/demographic Bottleneck: Refers to the loss of genes at the level of individuals within a population 
following a reduction in population size.  

Genotype Frequency: The frequency at which a given locus exists (e.g. AG) in a population. 
Heterospecific: Belonging to different species 
Hybrid Swarm: A population of individuals that are all hybrids due to varying numbers of backcrosses with 

parental genotypes.  
Hybridization: Interbreeding between individuals from different populations or species 
Ichthyotoxins: Compounds that are toxic to fish 
In silico: Sequenced Genomic data is screened for the identification of putative polymorphisms.  
Inbreeding levels:  Breeding or mating between related individuals. This can change genotype frequencies, 

leading to elevated levels of homozygotes than would be expected under HWE. The inbreeding 
coefficient (F) quantitates this measure, by representing the difference between expected and 
observed levels.  

Introgression: Gene flow between populations whose individuals have hybridized 
Introgressive Hybridization: Encompasses both hybridization and introgression, referring to the 

production of viable/ fertile offspring of mixed ancestry. 
Landmark Based Geometric Morphometrics: In brief, this entails taking high resolution images of 

specimen, assigning landmarks (coordinates) to specific areas of the body, and using these landmark 
coordinates to compare variation in body shape across individuals / populations.  

Linkage Disequilibrium: The non-random association of alleles at different loci within a given population.  
Minor Allele Frequency: The frequency at which the least common allele (q) occurs within a single 

population.  
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Morphological Introgression: Refers to a differing proportion of morphological characteristics observed in 
an individual due to influence from either “parental” phenotype. Sharing a range of morphological 
characteristics from two different populations / species.  

NanoDrop 1000 Spectrophotometer: Nucleic acids have a specific absorbance at 260 nm and proteins 
have one at 280 nm. Thus by assessing the relative ratio between these two absorbance’s, it can give 
an indication of the purity of the sample. A ~ 1.8 ratio would be considered “pure” DNA.   

Neutral Genetic Variation: Refers to variation in populations that is governed by stochastic processes such 
as drift, recombination and migration.  

Next Generation Sequencing (NGS) technology: A broad category that includes multiple sequencing 
platforms such as: Sanger, 454 pryosequecing, Illumina Genome Analyzer, AB Solid, and HeliScope. 
My research trajectory employed Illumina (or Solexa), which involves using bridge amplified PCR to 
sequence adapter-flanked fragments up to several hundred base-pairs in length. 

Observed Heterozygosity: The number of heterozygotes at a particular locus divided by the number of 
individuals in a population. 

Ordination: In statistics, this entails taking a high dimension data set (large number of variables) and 
distilling it down to 2 - 3 dimensions.  

Outbreeding depression: Reduction in fitness in hybrid individuals (from intra- or interspecific 
hybridization) relative to parental genotypes. 

Outlier Analysis: To identify regions of the genome that are showing signs of positive or balancing 
selection, outlier tests can be employed to assess individual locus for deviation from a model of 
neutrality (which is determined primarily by drift and gene flow). Levels of differentiation at a given 
locus are compared to levels of differentiation across the genome to determine the presence of 
selection.  

P2 and P1 adapters: Ligated to the flanking regions of fragments after digestion. Permits barcoding each 
fragment and amplifying it in the future.  

Phenol-chloroform Extraction: A liquid-liquid extraction molecular technique used to separate proteins 
from nucleic acids based upon differences in acidity as well as density.  

Phenotypic plasticity: The capability to develop into multiple alternative phenotypes under different 
environmental conditions. 

Population Assignment Tests: Populations assignment tests employ a Bayesian analyses to estimate the 
number of clusters (populations; K) by maximizing HWE and linkage equilibrium.  

Population Genetic Structure: Refers to the partitioning of genetic variation both between and within 
populations.  This allows quantifying how genetic diversity contributes to the genetic architecture of 
populations or metapopulations.  

Principle Component Analysis: A powerful tool that enables one to reduce the number dimensions in a 
massive multivariate dataset into a few synthetic variables (PCs). This uses allele frequencies to 
obtain a summary of the genetic variability among individuals and populations without using any 
group assignment.  

Private Variant: The presence of a variant within a population, that is not found in other population(s), 
such as an allele / SNP.  

Procrustes distance: The differences left between landmarks after superimposition can provide a measure 
of shape difference. The square root of the sum of squared distances between homologous landmarks 
between individuals. That is, the square root of the sum of the areas of the circles (between two 
configurations/means).  

Procrustes Superimposition: A necessary step in the analysis of shape, involves removing non-shape 
variation that is associated with differences in size, position, and orientation of individual specimen. 
Individuals are scaled to a standard size, standard position, and standard orientation.  

Proteinase K: Enzyme that digests protein and nucleases.  
Qubit®2.0 Fluorometer: Used to calculate [DNA] by using a florescent dye that binds to the target and the 

degree of fluorescence is used as an index of concentration.  
Reduced Representative Library: Refers to the reproducible sequencing of segments, to obtain a “sample” 

of sequences densely spread across the genome. Is very similar to obtaining a sample from a 
population to make estimates about various measures.  

Refugium: Isolated body of water 



	  
138	  

RNAlater:  An aqueous reagent that permeates tissue and protects cellular DNA and RNA, effectively 
preventing degradation prior to DNA extraction.  

Selection: In general the effects of natural selection compete with the effects of drift, and are therefore 
dependent partly on the effective size of a population. In populations with small Ne, drift will out 
swamp any effect selection may be having and the opposite is true for large populations.  

Size selection: To standardize the size of the fragments, a precise size selection step occurs prior to PCR. 
Otherwise, each library would have a substantial range of fragment sizes, which would reduce the 
amount of useable data following sequencing.  

SNPs: Single Nucleotide Polymorphisms, as the name implies are single nucleotide change in a DNA 
sequence. These are bi-allelic co-dominant markers that can be found in either coding or non-coding 
regions of the genome.  

Stacks: A pipeline used to align raw reads de novo, form Loci, call SNPs within these loci, and calculate 
multiple population genetic parameters.  

Sustainability: Maintaining diversity and viability 
Sympatric: Occur in the same geographic area. 
Thin-Plate-Spline: An interpolation technique used to visualize shape variation. This is done by using 

transformation grids that fit perfectly at all landmarks in the analysis. Therefore, by using the 
consensus shape, you can visualize how a given group / mean shape differs by the direction that the 
grid is stretched. This will illustrate areas that differ more than others.  

Tricaine methanesulfonate: Is a white powder commonly used for the sedation, anesthesia or euthanasia of 
fish.  

Variation in the Number of Tandem Repeats: Microsatellites, also known as simple sequence repeats, are 
stretches of DNA that consist of tandem repeats of 1-6 base pairs. VNTRs are markers that are 
repeating areas of DNA, which is used to quantitate variation in the number of single repeats (SSR) or 
tandem repeats (STR), such as microsatellites.  
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Professional Experience 
 
 Teaching Assistantships 
 
> BIOS 120 Biology Core III: Integrative and  Comparative  
(Spring 2013) 

Experimental and historical approaches to the analysis of structural 
and functional properties in organisms. Use of scientific method to 
study species diversity. Introduction to the analysis of organismal 
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relationships. 

> BIOS 277 Experimental Neuroscience Laboratory  
  (Fall 2010, 2013, 2014) 

Structure and function of the mammalian brain with special attention 
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techniques to determine how the shape and function of the nervous 
system regulates behavior. Experimental design, hypothesis testing, 
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histology and imaging. 

> BIOS 336 Animal Behavior Laboratory  
(Spring 2012) 

Emphasis on observing animals, performing experiments, collecting 
and analyzing data, and individual research.  
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> Thorne Fellowship (Spring 2015) 
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> Lab Manager (Spring 2010, 2011, Fall 2012) 
> BDSI Team Leader (Summer 2011) 
> Research Assistant MSCD (Fall 2008) 
 
 
Research Interests 
 
> Conservation Biology, Ecology, Evolution, Conservation Genomics, Animal 
Behavior. 
 
I am interested in evolutionary ecology, with research experience in both freshwater and 
marine systems. I have used field-based approaches to independently examine genetic 
and phenotypic divergence in an endangered species of pupfish (Cyprinodon bovinus). 
My research utilizes bioinformatics coupled with Next-Generation Sequencing (ddRAD), 
landmark-based geometric morphometrics and ecological assays to critically examine 
how stochastic processes and divergent selection may contribute to the population 
discreetness of an endangered desert spring pupfish. In addition to this multidisciplinary 
research, I have also focused on habitat restoration, biological invasions, sexually 
selected traits, mate choice and game theory in a diverse range of teleost species. 
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in two closely related Caribbean damselfish”. Lehigh Valley Evolution and Ecology 
Symposium, Allentown, PA. 
 
> Black A, Draud M, Itzkowitz M (2009). “Intra and interspecific attack assessment 
in two closely related Caribbean damselfish”. Graduate student symposium. Lehigh 
University, Bethlehem, PA. 
 



	  
142	  

 
Work History 
      2004-2010 

NMFS Fishery Biologist 

>  Observation and evaluation of commercial fishing regulations and 
by-catch. Involved otolith extraction, species identification, 
documentation of travel coordinates and assessment of crew safety and 
fishing practices. 

Tsar nicoulai: Sturgeon aquaculture 

> Water quality readings, microchip injections, overall system 
maintenance, caviar sampling, sorting and census, sturgeon fry nursery 
establishment, shipping and monitoring of live fish, sex biopsy of fish, 
tank establishment and maintenance.   

Volunteer Experience: 

Denver Aquarium: Feeding and tank maintenance 

Denver Water: Water sampling and analysis 

Computational Program Skills: 

> R, Linux, GenePop, Arlequin, Structure, BayeScan, MorphoJ, 
tpsdig, tpsrsw, Univariate & Multivariate statistics, FastQC, Stacks, 
Vcftools, Plink, PgdSpider 

Laboratory Skills: 

> ddRAD-seq library preparation, PCR, Landmark-based geometric 
morphometrics, Phenol Chloroform DNA extraction, Electrophysiology 
equipment, Specimen dissection, Species ID, NanoDrop, Quibit, Ampure 
XP   

Miscellaneous Skills: 

> Habitat Restoration, Experience working with Endangered Species, 
Water quality experience, Diesel engine maintenance, Open Water Scuba 
Certified, Small boat handling (<58ft), Species identification, handling, 
and trapping, Navigational proficiency (GPS, LOREN, Charts) 
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