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Abstract

Sandwich panels with metallic honeycomb cores have been utilized in many industrial applications where

structures with high specific modulus or stiffness to weight ratios are required, most notably in the aerospace

industry. Sandwich panels with square honeycomb cores have been found to exhibit a slightly higher

strength to weight ratio than their more common hexagonal counterparts, and are also easier to manufac-

ture when high core densities are required. The majority of research on square honeycomb sandwich panels

has been aimed at characterizing the structure’s dynamic blast performance, as well as its response to out-

of-plane shear, bending, and in-plane/out-of-plane compression. In this work, several analytical models for

the failure of metallic square honeycomb structures under three-point-bending loading are evaluated. Fail-

ure modes of interest include face-buckling, face-yielding, core-buckling, and core-yielding. In contrast

to traditional models, in which the moment is resisted entirely by the face sheets and the shear is resisted

entirely by the core, several alternative analytical models are assessed. These account for the axial stress

caused by the bending moment in the core as well as the face sheets, and for the shear in the face sheets.

Accounting for the portion of the moment resisted by the core becomes especially important as the relative

core density increases. Finite element analysis is used to verify and compare with the analytical models.

Post-processing of the finite element models is focused on determining when local yielding and buckling

occur in the structure, and on analyzing the effects of local failure on the global force-displacement behav-

ior of the honeycomb structure. A parametric study with a range of honeycomb geometries is conducted

in order to assess how accurately the analytical models predict failure. The intent is to develop simplified

analytical models that reliably predict the onset of failure for a broad range of loading levels, geometries,

and relative densities. These analytical models are then incorporated in structural optimization protocols

to aid designers in selecting combinations of materials and geometries under competing performance con-

straints.
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Chapter 1

Introduction

Sandwich structures consist of at least two parallel face sheets, with core sections occupying the spaces be-

tween the face sheets. Traditionally, the core section of the sandwich structure is much lighter and less stiff

than the face sheets. As a result, sandwich structures are able to exhibit very high strength to weight ratios

when compared to uniform plates [2–5]. Recent advances in manufacturing technology have increased the

availability of sandwich structures, leading to their wide use in the aerospace industry [6, 7]. Honeycomb

structures are a subset of sandwich structures, in which the core section is made up of hollow cells with thin

vertical walls. Several types of honeycomb structures are shown in Figure 1.1. Currently, the most widely

available types of honeycomb structures are composed of hexagonal core cells. Aluminum and Nomex

hexagonal cores can be manufactured at a lower cost than their square and triangular counterparts through

the use of an expansion manufacturing process. In the expansion process, thin strips of the core material

are stacked, bonded together, and then pulled apart in order to form the hexagonal cell shape [1]. Square

and triangular honeycomb cores on the other hand, have traditionally been manufactured by machining and

slotting together individual strips of the core material, and then brazing the assembly [1, 8, 9]. Currently,

additive manufacturing approaches aimed at expanding design freedom and reducing the production cost

of cellular structures are being explored [10–13].

Optimizations involving analytical failure models for various sandwich structures have shown that hon-

eycomb structures are the most weight efficient structure in three-point-bending applications. Furthermore,

studies have shown that square honeycomb panels are slightly more weight efficient than hexagonal hon-

eycombs panels [2,14,15]. This thesis will evaluate the assumptions made by traditional analytical models

2



Figure 1.1: Examples of three types of honeycomb sandwich panels: (a) hexagonal honeycomb, (b) square
honeycomb and (c) triangular honeycomb [1].

that predict the failure of square honeycomb structures under three-point-bending. The goal is to generate

a modified analytical model that more accurately characterizes the failure of square honeycomb sandwich

structures under three-point-bending over as broad of a range of geometry and loading as possible. This

improved accuracy is critical to the assessment of square honeycomb panels because they are often used in

applications where higher relative core densities are required. It is at these higher core densities where the

traditional decoupled models become non-conservative. At the same time, the proposed modified model

should be tractable: allowing for physical design insight by avoiding unnecessary complexity. The intent

is to use the proposed model in optimization protocols to identify promising, near-optimal, structures that

can be further fine-tuned with detailed finite element analysis. In order to assess the performance of the

models, optimization results for the traditional and proposed modified models will be compared to the

results of broad parametric finite element studies.

The proposed analytical model formulated in this work interrogates assumptions commonly made

3



about the stresses in the honeycomb structure, as well as what constitutes the failure of the structure.

Traditional models for square honeycomb structures, under combined shear and bending, decouple the

loading condition by assuming that the bending moment is entirely resisted by the face sheets, and the

shear is entirely resisted by the core [2, 3, 16]. Furthermore it is often assumed that the shear and axial

stress are uniform across the face and core, respectively. While these decoupled models are useful in

predicting the strength of honeycomb structures over a broad loading range, it will be shown that they

have a tendency to overestimate the strength of the square honeycomb structure. The model proposed

in this thesis will use Euler-Bernoulli beam theory in order to account for the sandwich core’s resistance

to bending and the shear caused by the loading in the core. The proposed model will consider the same

four failure modes found in most square honeycomb analysis: face yielding, core yielding, face buckling,

and core buckling [2, 3, 16]. However, instead of treating face and core members as simply supported for

the buckling criteria, a first step towards accounting for rotational constraints imposed in the structure is

proposed in this work. It should be noted that other failure mechanisms such as core indentation failure,

explored by Petras and Sutcliffe [17] could be included, but are beyond the scope of this work.

The need to create a more accurate analytical model for square honeycomb structures is motivated by

the unique way that the structure is manufactured, as well as the potential applications where a square

honeycomb structure would be necessary. It has been shown that the sizing of a square honeycomb panel

can be optimized by selecting a geometry that causes at least three of the four failure modes considered

to become active [3]. However, when manufacturing constraints, such as minimum thickness for the face

sheets and core members are considered, many of the proposed optimum geometries become impractical.

As the core of the structure becomes thicker than what is strictly necessary to carry the load, the core

begins to play a more active role in resisting the bending moment and restraining the faces from buck-

ling, and the assumptions about the stresses and buckling conditions made by the traditional decoupled

model become less valid. In addition, it is important to consider the cases where a square honeycomb

panel might be utilized, especially considering its usually high manufacturing cost when compared to a

hexagonal honeycomb. The first case is when a very large load must be sustained by the structure. In

this case, a hexagonal honeycomb may not be able to withstand the load. For example, hexagonal honey-

combs manufactured via expansion processes cannot produce cores with high enough relative density [1],

and therefore cannot withstand high shear loads. Ongoing studies are determining the role of additive

4



manufacturing approaches in the low-cost mass production and use of square and hexagonal honeycomb

sandwich structures [10]. The second case where square honeycomb structures may be utilized is when

a very low strength to weight ratio is required. As square honeycombs have been shown to be 10-15%

more weight efficient than hexagonal core honeycombs, the accuracy of the analytical models predicting

structural failure is critical for design decisions.

5



Chapter 2

Model Geometry and Loading

In this work, a square honeycomb panel under three-point-bending is examined using analytical and finite

element approaches. In order to compare the approaches, the geometry of the structure is defined by four

unique design variables. For a prescribed load, these design variables can then be optimized in order to

minimize structural weight. This section will define the pertinent geometric parameters and present them

in non-dimensional form so that structures of different scale can be compared. Finally, non-dimensional

weight and strength indexes will be introduced so that the performance of different panels can also be

compared.

2.1 Square Honeycomb Panel Geometry

The dimensions for a square honeycomb panel are shown in Figure 2.1. The thicknesses of the face sheet

and core materials are denoted as tf and tc, respectively. It should be noted that the height of the core,

Hc, is measured as the distance between the inner faces of the face sheets. The cell width, Lc, on the

other hand, is the distance between the mid-planes of two adjacent core walls. The aspect ratio of the

honeycomb cells, ξ is:

ξ =
Lc
Hc

, (2.1)

and it will be useful particularly when considering the buckling failure criteria.

In order to completely characterize the geometry of the honeycomb structure, the loading condition

6



Figure 2.1: Half-symmetry view of square honeycomb panel under three-point-bending loading.

must also be considered. The analytical models presented in this work derive the stresses in a honeycomb

panel under combined shear and bending. One way to achieve the combined loading is to subject the panel

to a three-point-bend test. A diagram of a three-point-bend test is shown in Figure 2.2. The span of the

honeycomb panel, S, is defined as the distance between the two supports. The three-point-bending load is

applied as a line load at the middle of the panel, a distance S/2 from the left hand support.

Figure 2.2: Three-point-bending loading.

The finite element results and analytical models both utilize the symmetric loading condition and the

cross-sectional symmetry of the square honeycomb panel in order to simplify the analysis. A symmetric

section of the panel cross-section of unit cell width is highlighted in Figure 2.3. Note that to simplify the

analysis, the symmetric section is defined so that the face sheet extends a distance of Lc/2 on either side

of the core, making it symmetric about a vertical and horizontal axis.

7



Figure 2.3: Cross-sectional view of honeycomb panel indicating dimensions of honeycomb analysis cell.

2.2 Normalization of Honeycomb Panel Loading

To compare the specific strength or strength to weight ratio of various panel geometries, the dimensions

of the structure must be normalized with respect to a characteristic length scale. The characteristic length

scale for the loading condition, l, is defined as the ratio of the maximum bending moment per unit width to

the maximum shear force per unit width of the panel. The maximum moment in the panel will occur at the

load line, a distance S/2 from the supports. Figure 2.4 shows a free body diagram for the three-point bend

test. Using symmetry and summing the forces in the vertical direction, it is clear that the support reactions

will both be equal to one half of the applied shear load. In Figure 2.5, a section-cut is made at the load line

in Figure 2.4 in order to determine the internal forces acting on the panel.

Figure 2.4: Three-point-bending free body diagram.

Summing the moments and the forces in the vertical direction, the maximum internal shear force and

bending moment can be determined as follows:

Vmax =
F

2
, (2.2)

8



Figure 2.5: Three-point-bending free body diagram with section cut to determine maximum internal forces.

Mmax =
FS

4
. (2.3)

As a result, the characteristic length scale can be expressed:

l =
Mmax

Vmax
=
S

2
. (2.4)

It is important to note that in order to compare various honeycomb geometries, F , V and M , are all loads

per unit width of the panel.

2.3 Derivation of Non-Dimensional Weight and Performance Indexes

As panels analyzed in this work are, for simplicity, made from a single material, the non-dimensional

weight index can be obtained by dividing the total material volume of a given panel by the surface area

of the panel, and then dividing again by the characteristic length scale. The non-dimensionality of this

parameter can be shown as follows:

Ψ =
(V olume)

(Area)(Length)
=

(Length)3

(Length)3
= Dimensionless. (2.5)

Figure 2.6 shows the dimensions of a unit cell of a square honeycomb panel. Accounting for the

material removed in order to allow the core sections to fit together, the volume contribution of the core is:

V core = 2tcHcLc − t2cHc. (2.6)

The subtracted t2cHc term accounts for the material removed in forming the slots on overlapping core

members. As the core sheet thickness is much smaller than the cell width for all practical geometries, the

9



effect of the removed core material will be neglected in the final formulation of the weight index for the

structure.

The volume contribution of the face sheets is:

V face = 2tfL
2
c . (2.7)

Figure 2.6: Dimensions of square honeycomb unit cell.

Noting that the area of the unit cell is L2
c , the weight index can be expressed as:

Ψ =
V face

L2
c l

+
V core

L2
c l

=
2tf
l

+
2tcHc

Lcl
, (2.8)

where the first term accounts for the contribution of the face sheets, and the second term accounts for the

contribution of the core.

The pertinent load index, Π, for sandwich panels subject to shear and bending is given by [18] as:

Π =
V 2
max

EMmax
, (2.9)

where E is the modulus of elasticity of the panel material. The dimensionality of the load index is:

V 2

EM
=

( forcelength)2

( force
length2

)(force·lengthlength )
= Dimensionless. (2.10)

Recalling that the characteristic length scale for the problem is l = Mmax
Vmax

, equation (2.9) can be used

to express M and V in terms of Π and l as follows:

V = ΠEl, (2.11)

10



M = ΠEl2. (2.12)

Equations (2.11) and (2.12) will be useful when determining the non-dimensional failure load for the

structure in terms of the loading condition and panel geometry. Finally, the displacement at the mid-point

of the honeycomb panel can be normalized as:

δnorm =
δ′

S
, (2.13)

where δ′ is the vertical y-displacement at the midpoint of the panel (see Figure 2.1). This term will be used

when determining the global force-displacement response of the structure using finite element analysis.
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Chapter 3

Derivation of Analytical Models

There are many computational techniques that can be used to analyze the three-point-bending perfor-

mance of metallic honeycomb structures. Some of these include finite element and homogenization ap-

proaches [16,19–21]. For design purposes, analytical models can provide promising geometries for further

development. They may also allow for structural insight and the identification of design guidelines. In this

work, analytical models are developed that can be used in concert with more detailed finite element anal-

ysis for design tuning.

This work compares a traditional decoupled modeling approach to a more detailed Euler-Bernoulli

beam theory based modeling approach. The Euler-Bernoulli model is then simplified to identify a model

that balances accuracy with simplicity for analytical structural insight. The simplified Euler-Bernoulli

approach is also of interest for efficient optimization purposes.

Although the models make different assumptions about the structural mechanics and stress distribu-

tions in the structure, they all consider the same failure modes, and define failure as the onset of plastic

yielding or buckling of the face sheet and core members. This chapter will first define the failure modes

and present the common assumptions that are shared between the models. Based on these definitions and

descriptions, the traditional decoupled model, a proposed Euler-Bernoulli model, and a simplified Euler-

Bernoulli model will be presented. Finally, failure mechanism maps will be used in order to compare the

models.
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3.1 Failure Modes and Common Assumptions

Four failure criteria will be considered in all of the models: core yielding, face yielding, core buckling,

and face buckling. In this work, less common failure modes such as core indentation and face sheet

delamination, will be ignored for the following reasons. In order to neglect core indentation as a failure

mode, it is assumed that the three-point-bending supports have a radius large enough to distribute the load

over a sufficiently large area so as to not cause local yielding. In order to neglect the face delamination

failure mode, it is assumed that the braze joint between the core and face sheets is at least as strong as the

base material for the structure.

3.1.1 Yielding

A von Mises yield criterion will be used, and it will be assumed that the structure has failed when yielding

first occurs at any point in the structure. The face sheets and core members are thin relative to the other

dimensions of the structure, so a plane stress condition is assumed. In cases of plane stress, where there

are shear stresses and only one axial stress component, the von Mises criterion simplifies to:

σ2 + 3τ2 = σ2
Y , (3.1)

where σ is the axial stress at the location of interest, τ is the shear stress, and σY is the yield stress for the

material.

3.1.2 Buckling

For the buckling failure criteria, it will be assumed that the face and core sections of the structure are

made up of many smaller thin rectangular plates. The boundaries of these plates are determined by the

intersections of the face sheets and core members. As a result of the geometry of the structure, local plates

on the face sheets have dimensions Lc × Lc, while the local plates in the core section have dimensions

Lc ×Hc. Local plates for the face sheet and core section are highlighted in Figure 3.1. Structural failure

is considered to have occurred when any local plate in either the face sheet or core section of the structure

has buckled.

Thin rectangular plates subjected to axial stress will buckle when the maximum axial stress at the
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Figure 3.1: Location of face and core plates used in buckling criteria.

mid-plane of the plate reaches a certain threshold stress, σcr, where σcr is defined by [22]:

σcr = Kb
π2E

12(1− ν2)

(
t

b

)2

. (3.2)

Similarly, if the plate is subjected to a shear load, it will buckle when the shear stress reaches a certain

threshold stress, τcr, where τcr is defined by [22]:

τcr = Ks
π2E

12(1− ν2)

(
t

b

)2

. (3.3)

In equations (3.2) and (3.3), Kb and Ks are buckling coefficients, E is the elastic modulus of the material,

ν is Poisson’s ratio for the material, t is the thickness of the plate, and b is the length of the loaded edges of

the plate. Diagrams for both loading cases are shown in Figure 3.2. The buckling coefficient is dependent

on the boundary conditions and aspect ratio of the plate.

Figure 3.2: Loading of rectangular plate under uniform shear (left), and uniform compressive stress (right).

If a thin plate is subjected to combined axial and shear loading, it will not buckle as long as [22]:

(
σmax
σcr

)2

+

(
τmax
τcr

)2

≤ 1. (3.4)

In each model, failure loads corresponding to each of the failure modes will be derived in terms of
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parameters relating to the structure geometry and loading conditions. Globally, the structure is considered

to have failed when the lowest of the four failure loads is applied to the structure. It is important to note

that because all failure loads are calculated independently, there will be no coupling of the failure modes.

As a result, conservative assumptions must be made when developing the models.

3.2 Traditional Decoupled Modeling Approach

Typical decoupled models for the failure of sandwich structures under three-point-bending assume that

the bending moments are entirely resisted by the face sheets, and the shear load is entirely resisted by the

core. Furthermore, in this work it will be assumed that the axial stress caused by the moments is uniformly

distributed across the face sheets, and the shear stress caused by the shear load is uniformly distributed

across the core. Figure 3.3 schematically depicts the stresses that act on a panel of unit cell width as

dictated by the decoupled model.

Decoupled models for sandwich panels are commonly presented in the literature, and are also com-

monly used in industry to provide a first estimate for sandwich panel strength. For example, Allen [23]

presented decoupled models for sandwich panels and described cores of low stiffness as “antiplane,”,

meaning that they are unable to support a compressive load. Wicks and Hutchinson [2] used decoupled

models in order to optimize truss and honeycomb core panels under three-point-bending.

Figure 3.3: Internal force and moment acting on honeycomb panel (a), and resulting axial (b) and shear
(c) stress distributions given by the decoupled model.

For convenience, Tables 3.1 and 3.2 summarize the stresses and non-dimensional failure constraints

predicted by the decoupled model. A full derivation of the decoupled model failure loads is included in

Appendix A.
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Axial stress in face sheets Axial stress in core Shear stress in face sheets Shear stress in core

σf = M
tf (Hc+tf ) 0 0 τc = V Lc

tcHc

Table 3.1: Face sheet and core stresses for decoupled model.

Face Yielding Core Yielding Face Buckling Core Buckling

Π l2

εY tf (Hc+tf ) ≤ 1 Π
√

3Lcl
εY tcHc

≤ 1 Π 3l2(1−ν2)L2
c

t3f (Hc+tf )π2 ≤ 1 Π12lLc(1−ν2)Hc

Kst3cπ
2 ≤ 1

Table 3.2: Failure constraints for decoupled model.

The advantages of the decoupled model are that it results in simple failure constraint calculations, and

that it allows for a clear understanding of how the geometry of the square honeycomb structure determines

which failure mode is active. For example, given a loading condition and a maximum allowable core

height, a designer could use the decoupled model to immediately determine the appropriate range for

material yield strain. The simple relationships in the decoupled model also make it apparent that:

• increasing the face sheet thickness decreases the likelihood of face sheet yielding and buckling

• increasing the core member thickness decreases the likelihood of core yielding and buckling

• increasing the cell width increases the likelihood of face sheet and core buckling

While these relationships are intuitive and are present in all of the analytical models, they are most clearly

identified by examining the failure constraints proposed by the traditional decoupled model.

The clarity and simplicity provided by the decoupled model are a result of the assumptions made

in the analysis. While the simplifying assumptions are often warranted, important structural trends can

be lost. For example, with the decoupled model assumptions, the face sheet yielding criterion does not

depend on the cell width. In reality, however, reducing the cell width will increase the cross-sectional

area moment of inertia of the structure, which will increase both its strength and stiffness. Although the

traditional decoupled model is an excellent starting point for design, a more detailed model with modified

assumptions about the structural mechanics can be more accurate and useful for optimizing the geometry

of the structure, without resorting to full finite element calculations.
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3.3 Euler-Bernoulli Coupled Modeling Approach

Instead of relying on the traditional decoupled model to characterize the structure, a more detailed model

using Euler-Bernoulli beam theory can be implemented to more accurately predict failure. Although the

Euler-Bernoulli analysis adds a significant amount of complexity to the model, it is appropriate because

the resulting failure constraints can still be expressed in closed form, and thus the model can still be easily

implemented in an optimization scheme. The Euler-Bernoulli approach has also previously been applied

in modeling sandwich structures with diamond prismatic cores [15].

The Euler-Bernoulli model predicts axial and shear stresses both in the face sheets and the core, and

thus the level of stress in the structure is “coupled” with the dimensions of both the face sheets and the

core. One way to think of this from a design point of view is to consider a structure that fails due to core

yielding. If the traditional decoupled model is applied, the only way to increase the strength of the structure

is to increase the amount of material comprising the core. This is the only option because core yielding is

assumed to be caused solely by the shear load, which is uniformly carried by the core. If a “coupled” model

is considered, however, the strength of the structure could also be improved by increasing the amount of

material in the face sheets. Increasing the amount of material in the face sheets will decrease axial stress

in the core (a stress component that was not previously captured by the decoupled model), which will

increase the core yielding load and thus increase the strength of the structure. It is not, however, obvious

whether dedicating more material to the face sheets or the core will be the most optimal way to strengthen

the structure, and in fact, the most optimal solution will likely be a combination of the two. The advantage

of using a more detailed “coupled” model in this way is that an optimization scheme can be used to identify

the choice that may no longer be intuitive to a designer.

One of the key assumptions of Euler-Bernoulli beam theory is that the panel under three-point-bending

acts as one beam, and that all cross-sections remain plane and perpendicular to the longitudinal axis of the

beam during deformation [24]. In many sandwich panel analyses [23], these assumptions are not relevant

because the core is much less stiff than the face sheets, causing shear deformation which is not allowed to

occur in the Euler-Bernoulli model.

In justifying the use of the Euler-Bernoulli model, it is important to consider the square honeycomb

geometry, as well as the scope of this work. First of all, the traditional slotting and brazing process used

to manufacture square honeycomb structures lends itself well to producing structures of relatively high
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core density, when compared to other honeycomb structures. In addition, this work assumes that the core

and face sheets have equivalent material properties, which is not the case when foam core structures or

hexagonal Nomex core structures are considered. Both of these assumptions result in square honeycomb

cores that will be much stiffer than the cores of other structures, allowing them to carry a significant axial

load and making them less likely to deform under shear. Finally, the Euler-Bernoulli model is appropriate

in the context of this work because only the strength of the structure, and not the stiffness, is being consid-

ered. Although the Euler-Bernoulli model is not a conservative measure in determining the stiffness of the

structure [23], it is however conservative in determining the loads that will cause initial structural failure

by yielding or buckling [15].

Figure 3.4 depicts the axial and shear stress distributions across the face sheets and core predicted

by the Euler-Bernoulli “coupled” model. The axial stress is linearly distributed across the entire cross-

section. The shear stress is parabolically distributed across the core and linearly distributed across the face

sheets. In accordance with the plane stress condition assumed for the face sheets and core, the xy shear

component will be neglected in the face sheets, and the xz shear component will be neglected in the core.

This assumption is justified because the in-plane shear components are several orders of magnitude higher

than the out of plane components.

Figure 3.4: Internal force and moment acting on honeycomb strip (a), and resulting axial (b) and shear (c)
stress distributions given by the Euler-Bernoulli “coupled” model.

As shown in Figure 3.4, the shear stress evaluated at the edges of the face sheets in the honeycomb

panel of unit cell width is equal to zero. When considering the shear flow through a much wider honeycomb

panel, this assumption still holds true because of the symmetry of the panel. In other words, the zero value

of shear at the edges of the unit cell width panel occurs not necessarily because the edges are assumed to

be free surfaces, but because there is no shear flow between adjacent symmetrical unit cells when the panel
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is loaded. This concept is schematically illustrated in Figure 3.5.

Figure 3.5: Schematic of shear flow through the cross-section of honeycomb panel under three-point-
bending.

In order to calculate the axial stress in the face sheets and core, the area moment of inertia of the

honeycomb panel of unit cell width must be determined. The contribution of the core moment of inertia

can be expressed as:

Izz,c =
1

12
tcH

3
c . (3.5)

Using the parallel axis theorem, the contribution from one of the face sheets is:

Izz,f =
1

12
Lct

3
f + tfLc

(
Hc + tf

2

)2

, (3.6)

where the first term accounts for the stiffness of a face sheet about its local centroidal axis (shown in

Figure 3.6), and the whole expression accounts for the stiffness of the face sheet about the centroidal axis

of the entire structure. For practical square honeycomb geometries however, tf is very small in comparison

to Lc, and the first term in equation (3.6) can be neglected. Neglecting the first term in equation (3.6) and

accounting for the contribution of both face sheets, the moment of inertia of the entire cross-section of a

square honeycomb analysis cell can be approximated as:

Izz =
1

12
tcH

3
c + tfLc

(Hc + tf )2

2
. (3.7)
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The axial stress in a given cross-section due to bending is:

σxx =
−Mzy

Izz
, (3.8)

where Mz is the moment applied to the cross section and y is the distance from the point of interest on

the cross-section to the neutral axis, which is shown in Figure 3.6. The maximum axial stress in the core

can then be found by evaluating y at Hc/2. The maximum axial stress for the face sheets can be found

by evaluating y at Hc/2 + tf . The average axial stress in the face sheets can be found by evaluating y at

(Hc + tf )/2.

Figure 3.6: Locations of face sheet centroidal and neutral axes.

The total moment applied to the honeycomb panel of unit cell width is MLc. As a result, the total moment

being applied to the cross section is: Mz = MLc.

Recognizing that the total moment applied to the panel of unit cell width isMz = MLc, and evaluating

y at Hc/2, the maximum axial stress in the core is:

σmax,core =
MLcHc

2I
. (3.9)

Evaluating y at Hc/2 + tf , the maximum axial stress in the face sheets is:

σmax,face =
MLc

(
Hc
2 + tf

)
I

. (3.10)
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Evaluating y at (Hc + tf )/2, the axial stress at the mid-plane of the face sheets is:

σmid−plane,face =
MLc (Hc + tf )

2I
. (3.11)

The shear stress for an Euler-Bernoulli beam is calculated as [24]:

τ =
V Q

It
. (3.12)

In equation (3.12), τ is the shear stress at a point of interest, V is the total shear load acting on the beam,

Q is the first moment of the area of the portion of the cross-section above the point of interest with respect

to the neutral axis, I is the area moment of inertia for the entire cross-section, and t is the cross-sectional

thickness at the point of interest.

The first moment of area, Q, is defined:

Q =

∫
ydA =

∑
yA. (3.13)

When the cross-section is made up of simple shapes, as is the case for the square honeycomb, the summa-

tion expression on the right is more convenient to use. For each shape, y is the distance between the axis

of interest (in this case, the neutral axis) and the centroid of the shape, and A is the area of the shape.

When evaluating the shear in the core, the moment of area above the point of interest has a core

contribution and a face contribution, as shown in Figure 3.7. When evaluating the shear at a position y

on the cross-section, the distance between the neutral axis and the centroid of the contributing core area is

yc = y+
Hc
2
−y

2 = Hc
4 + y

2 . The distance between the neutral axis and the centroid of the contributing face

sheet area is, yf =
Hc+tf

2 . The areas of the core and face sheet contributions are (Hc
2 − y)tc and tfLc,

respectively.

Using equation (3.13) and simplifying the expression, the moment of area above a section-cut on the

core becomes:

Qc =

(
Hc

4
+
y

2

)(
Hc

2
− y
)
tc +

Hc + tf
2

tfLc

=

(
H2
c

8
+
�
��

yHc

4
−
�

��
yHc

4
− y2

2

)
tc +

Hc + tf
2

tfLc
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Figure 3.7: First moment of area for a core cross-section-cut.

=
tc
2

(
H2
c

4
− y2

)
+

1

2
tfLc (Hc + tf ) . (3.14)

Noting that the thickness of the section-cut is tc, and the total shear load acting on the cross-section is

V Lc, equation (3.12) can be used to express the shear stress in the core:

τc =
V Lc
2I

[
H2
c

4
− y2 + Lc

tf
tc

(Hc + tf )

]
. (3.15)

The core shear attains its maximum at the neutral axis of the panel (y = 0), and is minimized at the

interface between the core and face sheets
(
y ± Hc

2

)
.

For a section-cut made through the face sheet, the area moment of inertia only has a face contribution,

as shown in Figure 3.8. For a section-cut made a distance z from the vertical axis, the distance between the

centroid of the contributing face sheet area and the neutral axis is yf =
Hc+tf

2 . The contributing face sheet

area is, Af = tf
(
Lc
2 − z

)
. Using equation (3.13), the first moment of area for a face sheet section-cut can

be expressed:

Qf = tf

(
Hc + tf

2

)(
Lc
2
− z
)
. (3.16)

Noting that the thickness of the face sheet section-cut is tf , and the total shear load acting on the

cross-section is V Lc, equation (3.12) can be used to express the shear stress in the core:

τf =
V Lc
I

(
Hc + tf

2

)(
Lc
2
− z
)
. (3.17)
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Figure 3.8: First moment of area for a face sheet cross-section-cut.

The face shear attains its maximum at the interface with the longitudinal core members (z = 0), and is

minimized midway through the core cells
(
z ± Lc

2

)
.

As the axial stress in the core increases away from the neutral axis and the shear stress decreases, it is

unclear where the maximum von Mises stress in the core will occur. As a result, the core yield criterion

will need to be checked for all positions along the core. Using the von Mises yield criterion from equation

(3.1), as well as the core axial stress and shear stress given by equations (3.8) and (3.15), respectively, the

core yield criterion can be formulated:

(
MLcy

I

)2

+ 3

{
V Lc
2I

[
H2
c

4
− y2 + Lc

tf
tc

(Hc + tf )

]}2

≤ σ2
Y , for 0 ≤ y ≤ Hc

2 . (3.18)

Using equation (2.12) for M , (2.11) for V , Hooke’s law for σY , and simplifying, the core yield criterion

is:

(
Π��El

2Lcy

I

)2

+ 3

{
Π��ElLc

2I

[
H2
c

4
− y2 + Lc

tf
tc

(Hc + tf )

]}2

≤
(
��EεY

)2
, for 0 ≤ y ≤ Hc

2 (3.19)

Dividing both sides by ε2Y and factoring out
(

Πl3Lc
εY I

)2
allows the equation to be expressed in non-dimensional

form:

(
Πl3Lc
εY I

)2
{(y

l

)2
+

3

4

[
H2
c

4l2
− y2

l2
+
Lc
l2
tf
tc

(Hc + tf )

]2
}
≤ 1, for 0 ≤ y ≤ Hc

2 . (3.20)

Noting that the core will first yield when the expression on the left hand side is maximized across the range
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of y, the core yielding criterion for the coupled model can be expressed:

(
Πl3Lc
εY I

)
max

0≤y≤Hc
2

(yl )2
+

3

4

[
1

4

(
Hc

l

)2

−
(y
l

)2
+

(
Lc
l

)(
tf
tc

)
(Hc + tf )

l

]2


1
2

≤ 1. (3.21)

In the Euler-Bernoulli “coupled” model, the maximum von Mises stress in the face sheet occurs at the

top surface of the face sheet, directly over the longitudinal core members. Referring to Figure 3.4, the

corresponding zy coordinates on the cross-section of a panel of unit cell width are (0, Hc
2 + tf ). Using the

von Mises criterion (3.1), and equations (3.10) and (3.17) to evaluate the axial and shear stress, the face

sheet yielding criterion can be expressed:

[
MLc

(
Hc
2 + tf

)
I

]2

+ 3

[
V Lc
I

(
Hc + tf

2

)(
Lc
2

)]2

≤ σ2
Y . (3.22)

Using equation (2.12) for M , (2.11) for V , Hooke’s law for σY , and simplifying, the core yield criterion

is:

[
Π��El

2Lc
(
Hc
2 + tf

)
I

]2

+ 3

[
Π��ElLc
I

(
Hc + tf

2

)(
Lc
2

)]2

≤
(
��EεY

)2
. (3.23)

Dividing both sides by ε2Y , factoring out
(

Πl3Lc
εY I

)2
, and taking the square root of both sides allows the face

yield criterion to be expressed in non-dimensional form:

(
Πl3Lc
εY I

)
[
Hc
2 + tf

l

]2

+
3

4

[(
Hc + tf

2l

)(
Lc
l

)]2


1
2

≤ 1. (3.24)

In order to simplify the face buckling calculation while maintaining a conservative approach, the shear

stress in the face sheets will be treated as constant, with a value equal to the maximum face sheet shear

stress. The axial stress will be evaluated at the mid-plane of the face sheet, as presented in equation (3.11).

Recalling that the face is composed of plates with dimension Lc × Lc, the critical axial stress and shear

stress can be calculated using equations (3.2) and (3.3):

σcr = Kb
π2E

12(1− ν2)

(
tf
Lc

)2

, (3.25)

24



τcr = Ks
π2E

12(1− ν2)

(
tf
Lc

)2

. (3.26)

Using equation (3.4), the face buckling constraint is:

[
6ML3

c (Hc + tf )
(
1− ν2

)
EIKbπ2t2f

]2

+

[
3V L4

c

(
1− ν2

)
(Hc + tf )

EIKsπ2t2f

]2

≤ 1. (3.27)

Using equation (2.12) for M , (2.11) for V , the face buckling criterion becomes:

[
6Π��El

2L3
c (Hc + tf )

(
1− ν2

)
��EIKbπ2t2f

]2

+

[
3Π��ElL

4
c

(
1− ν2

)
(Hc + tf )

��EIKsπ2t2f

]2

≤ 1. (3.28)

Factoring out the term
[

6ΠL3
c(Hc+tf)(1−ν2)l2

Iπ2t2f

]2

leads to:

[
6ΠL3

c (Hc + tf )
(
1− ν2

)
l2

Iπ2t2f

]2 [(
1

Kb

)2

+

(
Lc

2Ksl

)2
]
≤ 1. (3.29)

Taking the square root of both sides yields the final expression for the face buckling criterion:

Π
3
(
1− ν2

)
π2

L3
c (Hc + tf ) l2

It2f

[(
1

Kb

)2

+

(
Lc

2Ksl

)2
] 1

2

≤ 1, (3.30)

where for a simply supported square plate with uniform axial and shear loads, Kb = 4, and Ks = 9.35

(see equation (A.10)).

Just like the face buckling criterion, the core buckling condition is simplified by assuming that that

the shear stress in the core is constant with a value equal to the maximum value predicted by the Euler-

Bernoulli “coupled” model. Recalling that the core is composed of plates with dimension Lc ×Hc, equa-

tions (3.2) and (3.3) can be used to calculate the critical axial and shear stress for the core buckling criteria:

σcr = Kb
π2E

12(1− ν2)

(
tc
Hc

)2

, (3.31)

τcr = Ks
π2E

12(1− ν2)

(
tc
Hc

)2

. (3.32)

Using equation (3.9) for the maximum axial stress in the core, equation (3.15) evaluated at y = 0 for the
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shear stress in the core, and equation (3.4) for buckling under a combined shear and axial load, the core

buckling criterion can be expressed:

[
12
(
1− ν2

)
MLcH

3
c

2EIKbπ2t2c

]2

+

{
12
(
1− ν2

)
V LcH

2
c

2EIKsπ2t2c

[
H2
c

4
+ Lc

tf
tc

(Hc + tf )

]}2

≤ 1. (3.33)

Using equation (2.12) for M , (2.11) for V , the core buckling criterion becomes:

[
6
(
1− ν2

)
Π��El

2LcH
3
c

��EIKbπ2t2c

]2

+

{
6
(
1− ν2

)
Π��ElLcH

2
c

��EIKsπ2t2c

[
H2
c

4
+ Lc

tf
tc

(Hc + tf )

]}2

≤ 1. (3.34)

Factoring out the term
[

6ΠLcH2
c (1−ν2)l3

Iπ2t2c

]2

leads to:

[
6ΠLcH

2
c

(
1− ν2

)
l3

Iπ2t2c

]2
 1

K2
b

(
Hc

l

)2

+
1

K2
s
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Hc

2l

)2

+
Lc
l
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(Hc + tf )

l

]2
 ≤ 1. (3.35)

Taking the square root of both sides yields the final expression for the core buckling criterion:

Π
6
(
1− ν2

)
π2

LcH
2
c l

3

It2c

 1

K2
b

(
Hc

l

)2

+
1
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s

[
1
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(
Hc

l

)2

+

(
Lc
l

)(
tf
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)
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l
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1
2

≤ 1. (3.36)

Unlike the face plates which are always square for the structure, the aspect ratio of the core plates changes

with the geometry of the structure. Equation (A.10) can still be used to evaluate Ks. Kb is given by [22]:

Kb =


23.9, if ξ ≥ 2/3,(
π
4ξ

)2 [1+ξ2][1+4ξ2][1+9ξ2]{
[1+ξ2]2( 6

25)
2
+[1+9ξ2]2( 2

9)
2
} 1

2
, if ξ < 2/3,

(3.37)

where ξ is the cell aspect ratio, given by equation (2.1).

3.4 Simplifications to the Euler-Bernoulli “Coupled” Approach

The level of complexity introduced by the “coupled” Euler-Bernoulli approach can be reduced by making

simplifications to the model that are appropriate within the context of the square honeycomb structure.
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In particular, the role of the shear stress in the face sheets and the shear stress distribution across the

core will be examined. Simplifying the Euler-Bernoulli “coupled” model also allows for a more efficient

optimization protocol, and for the relationships between the design variables and failure constraints to be

more clearly identified.

Figure 3.9a shows the contribution of the shear stress to the von Mises stress in the face sheets. Hc was

fixed at one tenth of the panel span for the plot, but it was found that the results are relatively insensitive

to Hc. As the square cell size Lc, increases, the shear stress makes up a larger portion of the von Mises

stress. A non-dimensional cell width of Lc/l = 0.4 is required for the shear stress to constitute at least

10% of the von Mises stress. However this value of Lc/l represents an extreme case because it reduces the

entire span of the structure to only 5 cells. The implication is that for practical honeycomb geometries, the

shear stress in the face sheets does not play a significant enough role to warrant the complexity it adds to

the model.

Comparison of the decoupled model and Euler-Bernoulli “coupled” model in Figure 3.9 also shows

that the parabolic shear stress distribution in the core can be replaced with a uniform distribution in order

to simplify the model. Figure 3.9b uses the decoupled model results in order to normalize the minimum

and maximum core shear stresses predicted by the Euler-Bernoulli “coupled” model. The structure is

assumed to be cuboidal (Lc = Hc), and a range of face sheet and core thicknesses are shown. As the

core member thickness to face sheet thickness ratio tc/tf increases, the minimum shear stress decreases

and the maximum shear stress increases. However, neither deviate far from the decoupled model, with a

non-dimensional value of 1.0 in Figure 3.9b. Increasing the face-sheet-thickness-to-cell-width ratio tf/Lc

has the effect of decreasing both the minimum and maximum shear relative to the decoupled model results.

This trend results from the fact that the decoupled model does not account for the shear load supported by

the face sheets. In Figure 3.9b, the minimum shear stress is of more concern than the maximum because it

occurs at the top and bottom of the core member, where yielding most often first occurs. Thus, simplifying

the parabolic Euler-Bernoulli shear stress distribution by using a uniform distribution is a conservative

measure. With a uniform shear stress distribution, the von Mises stress no longer needs to be sampled

across the entire core in order to determine the maximum, which significantly reduces computation time.

The stresses that result from the simplified Euler-Bernoulli “coupled” model are summarized in Ta-

ble 3.3. Equation (3.8) from the Euler-Bernoulli “coupled” model derivation is used to evaluate the axial
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Figure 3.9: (a) Shear stress contribution to the von Mises stress in the face sheet, and (b) minimum and
maximum cross-sectional core shear values normalized by the decoupled model results (b). The analysis
in (a) assumes a cell height of l/20, and (b) assumes a cuboidal (Hc = Lc) structure.

stress in the face sheets and core, and equation (A.3) from the decoupled model derivation is used to eval-

uate the shear stress in the face sheets. The corresponding stresses are shown on the honeycomb unit cell

in Figure 3.10.

Axial stress in face sheets Axial stress in core Shear stress in face sheets Shear stress in core

σf = −MLcy
I σc = −MLcy

I 0 τc = V Lc
tcHc

Table 3.3: Face sheet and core stresses for simplified Euler-Bernoulli model.

As the simplified Euler-Bernoulli model neglects the shear stress in the face sheets, only one axial

stress component is present, and the face sheets will yield when the axial stress exceeds the yield stress.

Evaluating σ as the maximum axial stress in the face sheets given by equation (3.10), using Hooke’s law

to set σY = EεY , using equation (2.12) for M, and dividing through by EεY , the face yielding criterion

can be expressed:

Π
l2Lc

(
Hc
2 + tf

)
IεY

≤ 1. (3.38)

The shear stress in the core given by equation (A.3) and the maximum axial stress in the core given by

equation (3.9) can be used in the von Mises yield criterion (3.1) in order to define the core yield criterion
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Figure 3.10: Internal force and moment acting on honeycomb cell (a), and resulting axial (b) and shear (c)
stress distributions given by the simplified Euler-Bernoulli “coupled” model.

for the simplified coupled model:

M2L2
cH

2
c

4I2
+ 3

V 2L2
c

t2cH
2
c

≤ σ2
Y . (3.39)

Using Hooke’s law to set σY = EεY , dividing through by EεY , using equation (2.11) for V , and using

equation (2.12) for M , the core yield criterion becomes:

Π2l2L2
c

ε2Y

[
l2H2

c

4I2
+

3

t2cH
2
c

]
≤ 1. (3.40)

Multiplying through by l4

l4
in order to non-dimensionalize the terms in equation (3.40) and taking the

square root of both sides allows the core yielding criterion to be expressed:

Π
Lc
εY l

√
l6H2

c

4I2
+

3l4

t2cH
2
c

≤ 1. (3.41)

As only the axial stress is accounted for in the face sheets, the calculation of the face sheet buckling

failure constraint is similar to that of the decoupled model. Using the axial stress at the mid plane of the

face sheets given by equation (3.11), and substituting Kb = 4, b = Lc, and t = tf into equation (3.2), the

face sheet buckling criterion is:

MLc (Hc + tf )

2I
≤ π2E

3 (1− ν2)

(
tf
Lc

)2

. (3.42)
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Using equation (2.12) for M , and dividing both sides by the right hand term gives the final expression for

the face sheet buckling criterion:

Π
l2L3

c (Hc + tf )

2It2f

3
(
1− ν2

)
π2

≤ 1. (3.43)

As the simplified Euler-Bernoulli model predicts both shear and axial stress components in the core,

the combined buckling equation (3.4) can be used to formulate the core buckling criterion. Substituting

equations (3.11), (A.3) and (3.25) into equation (3.4), the core buckling criterion can be expressed:

(
MLcHc

2I

)2
(

12
(
1− ν2

)
H2
c

Kbπ2Et2c

)2

+

(
V Lc
tcHc

)2
(

12
(
1− ν2

)
H2
c

Ksπ2Et2c

)1

≤ 1, (3.44)

where Kb can be evaluated using equation (3.37) and Ks can be evaluated using equation (A.10). Substi-

tuting equations (2.12) and (2.11) in for M and V , the core buckling failure criterion becomes:

Π
Lc12

(
1− ν2

)
Hc

π2t2c

[
l4H4

c

4I2K2
b

+
l2

t2cK
2
s

] 1
2

. (3.45)

For the remainder of this work, the simplified Euler-Bernoulli “coupled” model will be referred to as

the proposed model. Stresses and failure constraints for the decoupled model, Euler-Bernoulli “coupled”

model, and proposed model are shown in Tables 3.4 and 3.5. In Table 3.5, Kb and Ks can be evaluated

using equations (3.37) and (A.10), respectively. Also, it should be noted that the terms on left hand sides

of the inequalities are referred to as failure constraint activity levels. A failure mode is considered to be

activated if its corresponding failure constraint activity level is equal to one.
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3.5 Comparison of Analytical Model Results

Up to this point, the differences between the proposed and decoupled models have been explained, but it

is unclear how the models compare when predicting structural failure. One way to compare the models is

to construct failure maps. Failure maps for sandwich structures with honeycomb and diamond prismatic

cores have been previously developed by Petras and Sutcliffe [25], and Valdevit et al. [15]. The failure

maps presented in this work are similar to those constructed by Valdevit et al., because the structural weight

for each map is held constant.

The following section presents failure maps for the decoupled and proposed models in Figures 3.11-

3.12. As there are many design variables related to geometry and loading, failure maps are restricted to

cases where constant weight is imposed for ease of understanding. Holding both the non-dimensional

weight Ψ and cell height Hc constant allows for the failure map to be visualized in two dimensional space.

The face sheet thickness tf is varied along the x-axis, and the core thickness tc is varied along the y-axis.

As a result of the weight and cell height being held constant, the cell width Lc can be calculated as a

function of tf and tc. As tf and tc are increased, Lc increases in order to respect the constant structural

weight constraint.

In the failure maps presented in Figures 3.11-3.12, two independent geometric parameters, tc/l and

tf/l, are varied while Hc/l is fixed at 0.2 and the weight index is held at 0.035. Over this range of tc/l and

tf/l, the boundaries of failure mechanisms, or the transitions between failure mechanisms are shown by

solid black lines. At these lines, two or more failure constraint activity levels from Table 3.5 have values of

unity, indicating multiple active failure mechanisms. On either side of these failure boundaries, only one

mechanism is active in a region. The darkened region around the failure mechanism borders represents

conditions where two or three failure modes are at least 90% active (see Table 3.5). Superimposed over

the failure mechanism maps are contours of constant load.

Some key results are highlighted by the decoupled model failure map in Figure 3.11. As the core sheet

thickness tc is increased, the cell width Lc of the structure increases, and the structure is prone to face

buckling. For smaller face sheet thicknesses tf , the structure is more prone to core buckling. As the face

sheet thickness tf is decreased beyond a certain level, the face sheets are no longer capable of supporting

the bending moment, and face yielding becomes more likely. If the face sheets are sufficiently thick and

the structure is not at risk of face or core buckling, then core yielding failure mode is active.
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Figure 3.11: Constant weight failure map for decoupled model.

The failure zones on the proposed model map (Figure 3.12) differ significantly from the zones on

the decoupled model map. Most notably, the core buckling and yielding zones are expanded because the

axial stress in the core is accounted for by the proposed model (see Table 3.4). In addition, the shaded

area indicating zones where multiple failure modes are close to being active, between the core and face

yielding failure regimes, is larger for the proposed model. The enlarged shaded area is a result of the

“coupled” effects of the model. For example, consider a point at the intersection of the face and core

yielding regimes for both models. As the face sheet thickness is increased, the face sheet area for the

cross-section of the structure increases. At the same time, the distance between the top of the face sheet

and top of the core also increases. For the proposed model, these two effects compete against each other

in determining what failure mode is active. Increasing the face sheet cross-sectional area allows for the

axial load to be distributed over a larger area, reducing the chance of face yielding. As a linear axial

stress distribution is predicted, increasing the distance between the top of the core and the outer surface

of the face sheet also increases the difference between the maximum face sheet and core axial stresses.

The increased difference between the face sheet and core axial stress causes the face sheet yielding mode
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Figure 3.12: Constant weight failure map for proposed model.

to remain at an almost active level for a significant portion of the core yielding regime. In contrast, the

decoupled model does not account for the core’s resistance of the bending moment, and thus the effect of

the difference in the maximum face sheet and core axial stress is not captured. As a result, the decoupled

model predicts a sharper transition from face yielding to core yielding dominated failure as the face sheet

thickness tf is increased.

The models also show significant differences in terms of which structural geometry can support the

largest load. The decoupled model predicts a maximum non-dimensional load of roughly 1.8× 10−5,

while the proposed model predicts a maximum non-dimensional load of 1.5× 10−5. The decoupled model

also predicts optimal face sheet thicknesses that are larger than those predicted by the proposed model for

the same non-dimensional weight index. The “coupled” nature of the proposed model is also demonstrated

in the determination of where the largest load-bearing geometries lie, in comparison to the decoupled

model. For the decoupled model, the optimal geometry is at the intersection of the face and core yielding

zones. This is because the face yielding failure mode is independent of the core thickness, and the core

yielding failure mode is independent of the face sheet thickness. For the proposed model, the optimal
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geometry is in the middle of the core yielding regime. Even though core yielding is the only active failure

mode, further decreasing the face sheet thickness will not result in a more efficient structure, because the

area moment of inertia of the structure would be reduced.
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Chapter 4

Comparison With Finite Element Results

In order to compare the analytical models presented in this work, it is important to recognize that while the

predicted failure modes are the same for all of the models, the behavior of the structure after and during

failure may be different. For example, the traditional decoupled model assumes that the bending moment

is entirely resisted by the face sheets, and that the resulting normal stress is evenly distributed across the

face sheets. Under these assumptions, as the structure is loaded and the normal stress exceeds the yield

stress, the cross-section will no longer be able to support any additional moment, and a sudden collapse

failure mechanism will occur. The proposed model, on the other hand, predicts a linear stress distribution

across the face sheets and core. When the face yielding failure criterion for the model is met and the outer

surfaces of the face sheets yield, the unyielded portion of the face sheets and core will continue to resist the

internal bending moment. The result will not be a sudden structural collapse, but rather a gradual decrease

in stiffness until the structure eventually collapses when the entire cross-section has yielded.

Finite element analysis (FEA) is a useful tool in verifying analytical results, however it can be difficult

to determine the precise point at which failure occurs. One approach is to compare the peak load that

the panel is able to sustain from the finite element results to the analytically predicted failure load. This

comparison can be problematic because the post-buckling strength and post-initial-yielding stiffness of the

panels may cause the FEA peak load to be higher than the failure loads identified by the analytical models.

Valdevit et al. [15] address this issue by analytically approximating the post-buckling strength of the plates

making up a diamond prismatic core honeycomb structure, but they acknowledge that such approximations

are only valid when yielding failure modes are not active. As the analytical models in this work are used to
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optimize the panel geometry, both buckling and yielding failure modes will likely be active for the panels

of interest. As a result, in this work, simple approximations for post-buckling strength are not utilized in

the analytical models, and new approaches for characterizing failure in the finite element model will be

explored.

4.1 Finite Element Model

Reduced integration four node shell elements (S4R) were used to construct the model in the commercial

finite element package ABAQUS. A honeycomb panel of unit cell width, with two half-cells on either side

was modeled. Quarter symmetry was utilized in order to reduce the size of the model. The symmetry

conditions were applied along the face coinciding with the load line at the midspan of the panel, and along

one of the sides of the panel, as shown in Figure 4.1. In order to simulate a panel of infinite width, a

generalized plane strain condition was applied to the nodes along side of the panel without the symmetry

constraint. The generalized plane strain boundary condition constrains all of the nodes along the side

of the panel to have the same displacement in the z-direction. The span of the panel and support roller

diameter were selected in accordance with ASTM guidelines, as 150 mm and 25 mm, respectively [26].

The support rollers were modeled as rigid analytical surfaces in contact with the panel. Hard contact with

a friction coefficient of 0.02 was used in the ABAQUS model. In order to simplify the analysis, the load

was modeled by controlling the displacement of the line of nodes on the top face sheet at the midspan of

the panel. Linear elastic-perfectly-plastic material properties E = 70 GPa, σY = 490 MPa and ν = 0.3

were used in order to model a typical high strength aluminum. A representative python job file is given in

Appendix B.

A mesh convergence study was run in order to determine the appropriate mesh size for the model. The

model geometry was selected so that all four failure modes are active, with Hc/l = 0.103, Lc/l = 0.094,

tf/l = 0.0041 and tc/l = 0.0019. In order to accurately capture the buckling failure modes it is important

that there are enough elements per unit cell width and height. The model was meshed with rectangular

elements with an aspect ratio as close as possible to unity. Element side lengths ranging from Lc/5 to

Lc/40 were tested, and a comparison of the force vs. displacement results are shown in Figure 4.2.
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Figure 4.1: Boundary conditions and mesh size used in finite element model.

The percent error in a measured value is defined:

%Error =
xmeasured − xaccepted

xaccepted
× 100. (4.1)

Taking the peak load for the model with the most refined mesh as the accepted value, the error in the peak

loads for all of the less refined meshes can be calculated. A precent error comparison in Figure 4.3 shows

how the peak load decreases as the mesh is refined. Based on Figures 4.2 and 4.3, an element width of

Lc/20 was chosen as sufficiently accurate for the purposes of this work. In cases where the core height is

less than the cell width, the elements are set to a width of Hc/20 in order to accurately capture the core

buckling failure mode.

In a typical simulation of a structure with a cell aspect ratio close to unity and a span of 10 cells, roughly

8,000 elements are required. However, the number of elements required drastically increases when the cell

aspect ratio is far from unity, or when there are many cells across the span of the panel. In cases when

more than 50,000 elements are required, the mesh size was increased within the range Lc/20 − Lc/10 in

order to reduce the computational cost of the simulation.

The generalized plane strain and symmetry boundary conditions along the edges of the honeycomb

panel allow for buckling to occur, but the effect of the generalized plane strain condition on the buckling

load is not immediately clear. In order to investigate the panel edge boundary conditions, a unit cell study
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Figure 4.2: Load vs. displacement plot for mesh refinement study.

was also performed on structures that are expected to fail by face buckling. In the study, panels with one to

five complete unit cells along the panel width were modeled. Figure 4.4 shows a half-symmetry schematic

of the panels that were modeled. The dashed lines on Figure 4.4 indicate the quarter-symmetry lines for

the panel under three-point-bending. As before, the single unit cell panel uses quarter symmetry to model

a panel with one complete cell and one half cell on either side. The free edges of the panel are modeled

with a generalized plane strain constraint. The five cell panel consists of five full cells with a half cell on

either side. The results of the cell study are shown in Figure 4.5.

Analysis of the cell study shows that the buckling load increases with the number of cells. This result is

expected because Timoshenko [22] has shown that thin plates simply supported on three sides with one free

edge have lower buckling loads than plates with four simply supported edges. While the generalized plane

strain condition at the edges of the half cells does not allow for completely free movement, the buckling

load for those cells is certainly lower than that of the full cells and cells modeled with the symmetry

constraint (u3=ur1=ur2=0). As the number of full cells through the width of the structure increases, the

generalized plane strain half-cells make up a smaller portion of the structure, which causes the buckling

load to increase.

Although the face buckling load is impacted by the number of cells modeled through the width of

the panel (see Figure 4.5), using a single unit cell panel ensures conservative results while lowering the
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Figure 4.3: Percent difference between peak load different mesh densities.

Figure 4.4: Schematic of panels tested in unit cell study.

computational cost of the simulation. For both of these reasons, panels of unit cell width are used in the

parametric studies presented in this work. However, it would be prudent for a designer to consider multiple

cells in finite element simulations when selecting and refining a final geometry.

With these baseline parameters relating to mesh size, symmetry, and boundary conditions for the finite

element model determined, the following sections describe the FEA post-processing procedure for “fail-

ure” detection. In order to monitor the square honeycomb panel as it is loaded, the von Mises stresses at

all integration points and nodal deflections for every loading step were collected. In addition, the vertical

component of the reaction force at the support was monitored to assess the global force-deflection behavior

of the panel. The stress, deflection, and force data were used in a post-processing routine (Appendix B) to

determine the failure load and mechanism experienced by the panel.
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Figure 4.5: Normalized load vs. displacement plot for unit cell study.

4.2 Defining Failure in the Finite Element Model

In order to compare the analytical models to the finite element results, finite element failure thresholds

must be developed that detect exactly when the simulated sandwich panel has failed. In this work, failure

in the analytical models is considered as the first instance of yielding or buckling. In order to determine

when failure has occurred in the FEA, both the global force-displacement behavior of the panel and the

local stress in the panel are monitored. In order for the panel to still be considered pre-failure at any point

in the finite element simulation, the force-displacement behavior must be linear, all face and core nodes

must remain in plane, and all integration points (excluding those near stress concentrations) must remain

unyielded. If any of these conditions are violated, the simulated structure is considered to have failed. The

failure load for the panel then corresponds to the first load that initiates any of these failure criteria.

In order to determine when the force-displacement behavior of the structure deviates from linearity,

either an offset method or a slope method can be utilized. The offset method involves fitting a line through

a linear portion of the data and checking for the first time that the data differs from the projected line by

a certain percentage. The slope method involves calculating the slope of a linear portion of the data and
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comparing it to the slope between each set of two successive data points. While the offset method is less

sensitive to sudden changes in slope than the slope method, the offset method has the advantage that it

is also less sensitive to noise in the data, making it the standard in the analysis of experimental results.

In a finite element simulation, however, where noise is negligible, the slope method can be used to more

accurately determine when the presence of yielding or buckling has caused the panel to deviate from global

linear force-displacement behavior.

In applying the slope method to the finite element results, thresholds were introduced in order to

determine both the original slope, and how much of a deviation constitutes a significant change in slope.

The original slope of the force-displacement data was calculated by running a linear regression through a

set of data points at the beginning of the simulation, where the load applied was far below the peak load.

The first data point corresponding to a force above 10% of the peak load on the panel, along with the four

subsequent data points were used in the linear regression. Data points corresponding to forces lower than

10% of the peak load were not included in order to eliminate any non-linearities that may have occurred

when the panel was making initial contact with the three-point-bending support at the beginning of the

simulation. In cases where yielding occurred in the model before the calculation of the initial slope, the

set of data points for the linear regression was truncated and a new regression was run.

Based on non-linearities that may result from yielding o buckling in the panel, sliding between the

panel and support, or numerical rounding errors, a threshold of a 20% deviation from the original slope

was chosen to represent failure. The 20% threshold was chosen because it is not sensitive to non-linearities

that arise from sliding between the sample and support or rounding error. These are behaviors that are not

accounted for in the analytical models. At the same time, the 20% slope deviation threshold is triggered

by both yielding and buckling.

In addition to using the global force-displacement results to monitor failure, the displacement data

from all of the nodes for every step of the simulation were analyzed in order to determine if buckling

failure had occurred on a local level. Face sheet and core members of the panel were considered to have

buckled if the relative out-of-plane displacement for any node exceeded one tenth of the sheet thickness.

As the entire panel translates vertically during the three-point-bending loading, the relative out-of-plane

displacement for the face sheet nodes was calculated by comparing the true displacement of each node to

a projected displacement. Before the onset of yielding, the displacement for a given face sheet node in the
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vertical (y) direction is directly proportional to the load applied to the structure. As a result, the projected

displacement for a given face sheet node can be determined by running a linear regression on that node’s

force-displacement results for steps in the simulation before the onset of yielding. Because the structure

does not experience a significant displacement in the horizontal (z) direction as a result of the loading

condition, the projected out of plane displacement for the nodes on the longitudinal core members is zero.

The yielding failure modes can be checked on a local level by monitoring the von Mises stress at all

integration points of the model, however it is important to neglect areas containing stress concentrations

and localized loading effects. The finite element model has one main stress concentration, which manifests

itself along the load line, at the intersection of the face sheet and longitudinal core member. Figure 4.6

shows a contour plot of the von Mises stress over the top face sheet; it is seen that the stress concentration

is highly localized. The von Mises stresses for the integration points on the top face sheet next to the

longitudinal core interface are shown in Figure 4.7. From Figure 4.7 it is clear that there are two factors

contributing to the elevated stress level at the load line: (i) the connection with the lateral core members,

and (ii) the localized loading effects. In order to evaluate the effectiveness of the analytical models without

higher order local loading application effects in the FEA, a strategy of post-processing the FEA results for

comparison is needed. As a first comparison approach, post-processing is used to filter out the localized

loading effects, while maintaining the effect of the core connection. This is done because the local load ap-

plication effects are seen as a numerical artifact of how the load is applied and not a physical characteristic

that the analytical models are unable to capture.

In order to determine the contribution of the localized loading effects to the von Mises stress in the

FEA, the projected stress for each integration point was calculated based on the stress at other correspond-

ing integration points further away from the load. The corresponding integration points started a distance

Lc from the point of interest, and were uniformly spaced with a distance of Lc between each point. In this

way, the group of integration points used to calculate the projected stress were all spaced the same distance

away from the closest lateral core member, ensuring that the effects of the lateral core member interaction

would not be lost. As the stress concentration is the strongest directly over the longitudinal core member,

only the integration points next to the longitudinal core member intersection were analyzed. Although the

stress distribution across the top face sheet is expected to be quadratic in the x-direction, it has been shown

that the axial stress dominates the shear stress on the face sheets, so the relationship between stress and
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Figure 4.6: Contour plot of von Mises Stress at top face sheet for typical honeycomb geometry.

distance from the load line is mostly linear. As a result, a linear regression was fit through a given group of

integration points with spacing Lc in order to determine the projected stress for a corresponding integration

point near the load line. Figure 4.7 schematically shows how projections for the first two integration points

were constructed.

A parametric study was performed in order to determine the number of integration points that are

significantly affected by the stress concentration. Six cases with different panel aspect ratios (l/Hc), cell

aspect ratios (Lc/Hc), and face sheet thicknesses (tf ) were investigated. A summary of the selected

geometries can be found in Table 4.1. The contribution of the loading effects can be normalized by

taking the percent difference between the FEA von Mises stress including the loading effects, and the

FEA projected von Mises stress that filters out the loading effects. This percent difference was calculated

for all integration points along the top face sheet-longitudinal core member interface, lying within one cell

width of the load line, for each geometry in the parametric study. It was determined that using the cell

height, Hc, in order to normalize the distance from the load line allowed the results from each geometry to

most closely match, and the resulting plot is shown in Figure 4.8. Based on Figure 4.8, integration points

within a distance of 0.2×Hc from the load line are significantly affected by the localized loading stresses,
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Figure 4.7: Normalized von Mises stress at integration points on top face sheet-longitudinal core interface.

while integration points outside that region are affected by no more than 10%. Clearly, the loading effects

are not solely dependent on the cell height, Hc, however for practical ranges of characteristic length scale

l, cell aspect ratio Hc/Lc, and face sheet thickness tf , cell height is the best indicator of the region of

the structure that will be significantly impacted. As a result of the parametric study, all integration points

within a distance of 0.2×Hc along the x direction from the load line were ignored when checking for face

and core yielding at a local level.

4.3 Evaluating the Performance of Analytical Models Using FEA Results

A parametric study is used to compare the analytical models and finite element results. The range of ge-

ometries presented in the failure plots from Section 3.5 were considered, and 19 finite element simulations

45



Case Hc/l Lc/l tc/l tf/l Cell Aspect Ratio
1 0.2 0.2 0.02 0.02 1
2 0.1333 0.1333 0.01333 0.01333 1
3 0.0667 0.0667 0.00667 0.0667 1
4 0.2 0.2 0.02 0.01 1
5 0.2 0.1333 0.01333 0.01333 0.667
6 0.1333 0.2 0.01333 0.01333 1.5

Table 4.1: Geometries used in parametric study investigating localized loading effects.

Figure 4.8: Percent contribution of the localized loading effects to the FEA von Mises stress at the top
face-longitudinal core interface, as a function of distance from the load line normalized by the cell height,
Hc.

were run. The results of the parametric study are shown in Figure 4.9.

The black circles in Figure 4.9 indicate the geometries used in the finite element simulations. Two

numbers are located next to each finite element simulation black circles. The top number is the percent

difference between the finite element failure load and the traditional decoupled analytical model failure

load. The bottom number is the percent difference between the finite element results and the proposed

model prediction. The finite element failure modes are listed to the left of each finite element simulation

black circle data point. In cases where multiple failure modes were triggered within two subsequent

simulation loading steps, both are shown on the plot. For each simulation, the failure modes in bold

represent those that were activated on the first of the two simulation steps. The non-bolded failure modes

are those that occurred one loading step after the initial failure mode.
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The results of the parametric study show that the proposed model is more accurate at predicting which

failure mode will be active than the traditional decoupled model. The differences between the models can

most clearly be seen in the core yielding regime for the proposed model. While the proposed model is more

successful at predicting core yielding, the traditional decoupled model does a slightly better job predicting

when core buckling will occur. The core buckling failure zone for the proposed model is expanded because

the axial stress in the core is accounted for. Although the traditional decoupled model more accurately

predicts the the transition to core buckling being the dominant failure mode, the failure load prediction

associated with the onset of core buckling is non-conservative because the axial stress in the core is not

accounted for.

In the face and core yielding regimes, the proposed model is more accurate than the traditional de-

coupled model in predicting both the failure load, and which failure mode will be active. The proposed

model is accurate to within 10% across its predicted face and core yielding failure regions, while the tra-

ditional decoupled model is anywhere from 30% non-conservative, to 20% conservative. The traditional

decoupled model predictions become more conservative as the face sheet thickness is decreased, and much

less conservative as the face sheet thickness is increased. This is again because the traditional decoupled

model does not account for the axial stress in the core. When the face sheets are thin and more material

is devoted to the core, the core’s contribution to the cross-sectional moment of inertia of the structure is

not captured by the decoupled model, resulting in a very conservative estimate of strength. When the

face sheets are thick and the core is relatively weak, the decoupled model fails to account for the yielding

caused by the high axial stress at the top and bottom of the core members, and decoupled model prediction

is very non-conservative.

While the models differ in their levels of conservatism when predicting the yielding failure modes,

both models are very conservative when face and core buckling are the dominant failure modes. The

conservatism arises because neither of the models accounts for rotational constraints of adjacent plate

members during buckling. As will be shown in the following section, the optimal structure in the low

loading regime is governed by both the yielding and buckling failure modes. As a result, it is not desirable

for the buckling load predictions to be significantly more conservative than the yielding predictions. In

an attempt to reduce the amount of conservatism in the buckling failure load predictions, the discussion

section of this work will present some first steps towards considering adjacent plate rotational constraints
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in the face buckling failure mode for the proposed model.

Figure 4.9: Comparison between finite element results and analytical model predictions.

Lastly, the optimal geometries with non-dimensional structural weight, Ψ = 0.035, predicted by the

analytical models are also compared to the finite element results. Figure 3.11 shows that the optimal (i.e.

highest load bearing) geometry predicted by the traditional decoupled model is at the intersection of the

face and core yielding regimes. Figure 3.12 shows that the optimal structure predicted by the proposed

model is not unique but encompasses 0.01 ≤ tf/l ≤ 0.012, where core yielding is the dominant failure

mode. Looking at these two areas on the parametric study map presented in Figure 4.9, it is clear that the

optimal geometry predicted by the traditional decoupled model lies in an area where the decoupled model

makes non-conservative predictions. The optimal geometry predicted by the proposed model, however, lies

in an area where the proposed model makes an accurate and conservative prediction. A further discussion

of the optimal geometries suggested by both models and the finite element results will be presented in

Chapters 5 and 6.

In summary, while the proposed model still has some areas for improvement, it can be relied upon to

consistently provide accurate and conservative predictions for the strength of the honeycomb panel under
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three-point-bending. The benefit of the proposed model is that it can more accurately predict the failure

load and active failure modes than the traditional decoupled model, while still remaining computationally

tractable. As such, it is a valuable tool to be incorporated in optimization protocols to identify generally

promising structure geometries for a variety of objectives. Certainly, optimal geometries would need

further refinement with parallel more detailed finite element analysis for end use.
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Chapter 5

Optimization

While finite element simulations could be used in an optimization scheme that selects the lowest weight

structure for a given load, such a brute-force scheme would require an extraordinary amount of processing

power. Instead, the analytical models have been incorporated into an optimization scheme in order to

identify relationships between minimum weight structures and the loading regime. Optimizations using

analytical models have been performed previously by Wicks and Hutchinson [2], Valdevit et al. [15] and

Rathbun et al. [3] for various honeycomb and truss structures under combined shear and bending loads.

The numerical optimization protocols in this work are similar to those presented by [2, 3, 15], the only

difference being that a multi-objective function is required in this work in order to explore the entire range

of optimal geometries in the high loading regime. The multi-objective scheme is necessary because the

exact geometry of the optimal structure, and not solely the non-dimensional structural weight, is of interest

in this work. From a designer’s point of view, with a light weighting mandate, it would be practical to select

a geometry suggested by the analytical model optimization, and then to run several more detailed finite

element cases that vary the geometric parameters in order to determine if any additional weight can be

saved.

5.1 Optimization Scheme

The MATLAB R© sequential quadratic programming optimization algorithm “FMINCON” was used to op-

timize the honeycomb geometry to achieve the lowest possible weight for non-dimensional loads ranging

from Π = 10−6 to Π = 10−4.5. Optimizations were run for both the decoupled (Section 3.2) and the pro-
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posed simplified coupled (Section 3.4) analytical models, under the geometric constraints in Table 3.5. In

addition, an upper bound on the core height of the panel, Hc, was set at 0.2× l to ensure that the optimized

panel is slender in accordance with the Euler-Bernoulli model assumptions. The maximum core and face

sheet thicknesses were also constrained in order to maintain the slender plate assumptions utilized in the

derivation of the buckling failure modes. The upper limit on the core sheet thickness, tc was set to one

tenth of the minimum of the cell width and cell height. The upper limit for the face sheet thickness, tf was

one tenth of the cell width, Lc. The constraints imposed to respect the model assumptions are summarized

in Table 5.1.

Constraint Model Assumption
Hc
l ≤ 0.2 Euler-Bernoulli slender beam assumption
tc ≤ Hc Thin plate assumption
tc ≤ Lc Thin plate assumption
tf ≤ Lc Thin plate assumption

Table 5.1: Constraints in accordance with the model assumptions. Optimization constraints governing
structural failure are shown in Table 3.5.

Single and multi-objective optimization approaches, both using “FMINCON” were taken in order to

determine the lowest structural weight and the most efficient geometry for a given load. The objective

function for the single objective optimization is solely the non-dimensional structural weight, given by

equation (2.8). A multi-objective optimization scheme was necessary in order to determine the optimal

honeycomb geometry for certain loads; this was because the yielding failure constraints given by the

decoupled and proposed simplified coupled models are dependent only on the ratio tc/Lc, and not on the

two design variables independently. As a result, there are a wide range of minimum weight geometries for

some loads, and a multi-objective scheme is necessary in order to identify the limits of that range.

In order to reach the global minimum weight and avoid local minima for the single objective opti-

mization, ten optimizations were run for each load case, each one using a different set of initial geometric

design variable values. The first optimization for each load was run with initial design variables equal

to the optimized variables from the previous load. The initial design variables were randomized for the

remaining nine optimizations, each one taking on a value between 50%-150% of the optimal value from

the previous load.

Using the lowest structural weights generated by the single-objective optimization approach, a multi-
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objective optimization was then used to determine the range of Lc and tc values that correspond to the

allowable structures of minimum weight for a given load. In addition to identifying the allowable range

of Lc and tc, another multi-objective optimization was used to find the structure that achieved the lowest

possible weight; however, an additional objective related to minimizing the cumulative failure activity

level was added to reduce the chance of structural failure. The multi-objective function is:

f(Lc, Hc, tc, tf ,Π) = k0
Ψ−Ψ

Ψ
× 100 + k1FY

2 + k2CY
2 + k3FB

2 + k4CB
2 + k5Lc, (5.1)

where Ψ is the non-dimensional structural weight given by equation (2.8), and Ψ is the minimum structural

weight for the given load (generated by the single-objective optimization). FY , CY , CB and FB, are all

failure constraint activity levels that range between 0 and 1, given by the left hand side of the inequalities

in Table 3.5. They have been squared in order to add an additional penalty as the activity level reaches the

maximum allowed value of 1. Some tuning parameters (k0−5) are added to control the weights assigned

to each objective in the function. To force the structure towards the lowest possible weight, k0 should be

set to a much higher value than k1−5.

5.2 Optimization Results and Discussion

Figure 5.1 shows how the weight of the square honeycomb structure increases with the applied load. Based

on the results of the single-objective optimization presented in Figure 5.1, it is clear that the decoupled

model suggests a lower optimal weight structure than the proposed simplified-coupled model. This result

is in accordance with the comparison of the models in Section 4.3, that suggested that the decoupled model

is non-conservative when compared to the proposed simplified model and finite element results.

In order to determine the geometry of the optimal structure over a broad range of loads, three multi-

objective optimizations were run to find the minimum weight structure with the maximum cell width,

Lc, minimum cell width, Lc, and lowest chance of failure. Determining the entire range of optimal cell

width, Lc, and core member thickness, tc, is important from a designer’s point of view because certain cell

widths or core member thicknesses may offer benefits such as reduced manufacturing cost. The minimum

weight structure with the lowest cumulative failure constraint activity level, on the other hand, can be

used as a guideline for designers in selecting a geometry when structures with particular cell widths or
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Figure 5.1: Non-dimensional weight vs. load for decoupled and proposed models using single-objective
optimization scheme.

core sheet thicknesses do not offer any additional benefits. Table 5.2 shows the tuning parameters used in

each optimization. When k5 is positive, the contribution of the last term in the objective function given

by equation (5.1) increases with increasing Lc, so the optimization scheme seeks to minimize Lc, after

minimizing the structural weight. When k5 is negative, the opposite is true. Because the yielding failure

criteria are dependent on the ratio tc/Lc, the maximum allowable value of tc for a given structural weight

and load is obtained when Lc is maximized. The minimum core sheet thickness is obtained when Lc

is minimized. For the third multi-objective optimization, preference is given to reducing the structure’s

proximity to failure. The tuning parameters k1−4 are all set at equal values that are substantially lower than

k0, so that after the dominant k0 term of the objective function is minimized, the geometry of the structure

is selected to be as far away as possible from violating the failure constraints. Although decreasing a

failure constraint activity level below unity when others are active does not offer any advantages according

to the analytical models, in cases where doing so does not sacrifice any weight, it may end up benefiting

the structure if there is any coupling between failure modes.
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k0 k1 k2 k3 k4 k5 Description
1 0 0 0 0 0.05 Minimize weight with lowest choice of Lc and tc
1 0 0 0 0 -0.05 Minimize weight with highest choice of Lc and tc
1 0.01 0.01 0.01 0.01 0 Minimize weight with lowest failure activity levels

Table 5.2: Tuning factors used for multi-objective optimizations.

Figure 5.2 shows how the geometry of the structure changes with the load. The grey lines indicate the

maximum and minimum allowable Lc and tc values that still result in the lowest possible weight, and the

black lines show the results given by the minimized failure activity level optimizations. For both models,

the point where the minimum and maximum Lc and tc (grey lines) branch off marks the transition from

buckling-dominated to yielding-dominated regimes. The area between the branched grey lines for each

model represents all of the allowable minimum weight choices for Lc and tc. As the value of Lc/tc is fixed

by the minimum weight term in the optimization, once a value of either tc or Lc is selected, the other one

is then fixed and it cannot be freely chosen.

The bounds on the minimum and maximum cell widths, Lc, and core thicknesses, tc, result from

the buckling failure constraints and the constraints necessitated by the model assumptions. For example,

consider the maximum core thickness, tc, and cell width, Lc, line for the proposed model. Initially, tc

and Lc can be increased until the point where the cells are too large and the face buckling constraint is

violated. At the same time, the maximum core thickness, tc, cannot exceed 0.02 × l, without violating

the constraint that tc must be less than one tenth of the cell height, Hc. As the load increases and the core

thickness is maximized at tc = 0.02 × l, there is a sharp drop in the maximum cell width, Lc, because

more core sections per unit width are required in order to support the increasing load. A similar trend

is found in the minimum core thickness, tc, and cell width, Lc, results. Initially, the cell width and core

thickness can be minimized up until the core buckling constraint is violated. The cell width, however,

is also constrained to be at least ten times the face sheet thickness (Lc ≥ 10tf ). As the required face

sheet thickness, tf , increases, this constraint overwhelms the core buckling constraint, and there is a sharp

increase in the minimum allowable cell width, Lc, and core sheet thickness, tc.

For both models, the point where the minimum and maximum Lc and tc (grey lines) branch off marks

the transition from the buckling dominated regime to the yielding regime. This can be visualized by

looking at the failure constraint activity levels as a function of the load for the decoupled model and

proposed model, in Figures 5.3 and 5.4. In the low loading regime for the decoupled model, face yielding,
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core buckling, and face buckling are all active failure modes. As the load increases, the core yielding failure

mode becomes active, and the buckling constraints are dependent on the selected core sheet thickness and

cell width. If the maximum cell width, Lc, is selected, the core buckling failure activity level is minimized,

but the face buckling activity level persists at unity. The reverse is true if the minimum cell width, Lc, is

selected. If the cumulative failure constraint activity level is reduced by the multi-objective optimization

scheme, the face and core buckling activity levels can be reduced simultaneously.

Figure 5.4 displays buckling and yielding regimes for the proposed model that are similar to those

exhibited by the decoupled model. A major difference is that core yielding plays a more active role than

face yielding for the proposed model. The buckling regime can be understood in two parts. In the first

part, face yielding is active in addition to the buckling modes. In the second part, core yielding becomes

active along with the two buckling modes. The activity levels for core yielding and face yielding are

determined by the face sheet thickness to cell height ratio, tf/Hc. Recall that according to the proposed

model, the maximum axial stress in the face sheets is proportional to the maximum axial stress in the core

(Section 3.4). The linear stress distribution through the cross-section of the structure allows the maximum

face sheet normal stress to be written in terms of the maximum core normal stress:

σf,max =

(
1 +

2tf
Hc

)
σc,max. (5.2)

Also, a shear stress component is predicted in the core, while the shear stress in the face sheets is neglected.

For the face sheet yielding failure mode to be active, the maximum von Mises stress at the surface of the

face sheets must exceed the von Mises stress at the top of the core. A higher face sheet von Mises stress can

only be achieved if the contribution of the
(

2tf
Hc

)
σc,max term to the face sheet von Mises stress outweighs

the contribution of the core shear term (given in Table 3.3), to the core von Mises stress. As the load

increases, the cell height, Hc, increases faster than the face sheet thickness, tf . The increase in Hc/tf

reduces the contribution of the additional axial stress in the face sheets given by equation (5.2), which

causes the core yielding failure mode to surpass face yielding failure mode at a relatively low load.

The inactivity of the face yielding failure mode in the yielding regime for the proposed model illustrates

the face and core “coupling” effects of the model. In the decoupled model, both face yielding and core

yielding are active in the yielding regime. Both yielding modes are active because the face yielding failure

criterion is independent of the core thickness, tc, and the core yielding failure criterion is independent of
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the face sheet thickness, tf . Consider for example, a structure carrying a given load in the yielding regime

with core yielding being the only active failure mode. If the decoupled model is used, the weight of the

structure could be reduced at the same load level by decreasing the face sheet thickness, tf . As the core

yielding criteria is independent of the face sheet thickness, the face sheet thickness could be reduced until

either face yielding or buckling became active. Whereas, if the proposed model is applied, the face sheet

thickness, tf , could not be reduced, because such a reduction would lower the area moment of inertia of

the structure, decreasing the load that it could carry.

Along with the inactivity of the face yielding failure mode, the most significant difference between

the decoupled model and the proposed model is that the decoupled model maximizes the cell height, Hc,

at a much lower load than the proposed model. This difference between the two models can be seen by

looking at the cell aspect ratio as a function of load in Figure 5.5. At low loads, the optimal cell aspect

ratio, Lc/Hc, identified by the decoupled model is much lower than that identified by the proposed model.

The optimal cell aspect ratio identified by the proposed model is close to unity across the entire loading

regime, suggesting that cuboidal honeycomb structures are preferred.

The decoupled model predicts that the optimal structure in the buckling regime should have a much

lower cell aspect ratio, Lc/Hc, than the proposed model because it does not account for the effect of the

axial stress in the core. By neglecting the axial stress in the core, the decoupled model considers the

core less prone to buckling than the proposed model, allowing the core sections in the decoupled model

to be larger and thinner than in the proposed model. In addition, neglecting the axial stress in the core

causes the face sheet stress to be higher because the core’s resistance of the internal bending moment

is not accounted for. As a result, the decoupled model predicts an increased risk of face buckling, so

the optimization scheme identifies geometries with a lower cell width, Lc, than the proposed model. The

additional weight placed on the face buckling failure constraint by the decoupled model ends up increasing

the cell height, Hc, and decreasing the cell width, Lc, which in turn lowers the cell aspect ratio, Lc/Hc.
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Figure 5.2: Optimal structural geometry for the decoupled and proposed models given by the multi-
objective optimization scheme.
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Figure 5.3: Failure constraint activity levels for the decoupled model.
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Figure 5.4: Failure constraint activity levels for the proposed model.
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Figure 5.5: Cell aspect ratio, Lc/Hc, vs. non-dimensional load for the proposed and decoupled models.
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Chapter 6

Discussion

Through the analysis in Chapters 1-5, the proposed analytical model for the performance and failure of

square honeycomb panels has been verified and its benefits compared to existing traditional decoupled

models have been outlined. Below, for a given load level, the weight optimal geometries identified by the

analytical models are compared to the optimal geometry identified by a parametric finite element study.

While the proposed model balances accuracy with simplicity and computational costs, several points for

discussion and directions for further improvement are also presented below.

6.1 Comparison of Analytical Model Optimizations to FEA Results

To evaluate the performance of the analytical model optimization schemes, finite element parametric stud-

ies were conducted to determine the optimal structural geometry for two different non-dimensional struc-

tural weights. Non-dimensional structural weights Ψ = 0.0123 and Ψ = 0.035 were selected in order to

cover both the low and high loading regimes.

6.1.1 Low Loading Regime

In the low loading, buckling dominated regime, the optimal geometry predicted by the decoupled model is

very different from the geometry predicted by the proposed model. The most notable difference between

the structures is in the cell height, Hc. Figure 5.2 shows that the optimal cell height, Hc, identified by the

decoupled model, is higher than the optimal cell height identified by the proposed model in the low loading

regime. The cell height, Hc, is the most important geometric parameter because it controls the aspect ratio
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of the panel, (l/Hc), and has the largest contribution to the cross-sectional moment of inertia of the panel

(see equation 3.7), which is directly related to the stiffness of the panel. Therefore, if a designer can

identify the optimal cell height, he or she will have a better idea of how the panel will fit in with other

design elements spatially, and how the panel will perform in terms of stiffness.

In order to compare the model results, finite element simulations were run for the optimal geometry

with fixed non-dimensional weight (Ψ = 0.0123) identified by both the decoupled and the proposed

models. In addition, a parametric finite element study was conducted to identify the optimal geometry

according to the FEA results. The non-dimensional structural weight Ψ = 0.0123, was chosen because

the proposed model predicts that all four failure modes are active in the optimal structure at that weight

(see Figures 5.1 and 5.4). The optimal honeycomb structure geometry with a non-dimensional weight Ψ =

0.0123 identified by the traditional and proposed models, as well as the geometry identified by the finite

element parametric study are summarized in Table 6.1. The core height, Hc, identified by the proposed

model matches very closely with the optimal core height identified by the finite element parametric study.

On the other hand, the optimal cell width, Lc, identified by the finite element study, matches more closely

with the decoupled model optimization results. The cell width, however, is not as important as the core

height because it does not have a significant effect on the panel’s external dimensions or stiffness. The

optimal face sheet and core thicknesses identified by the finite element parametric study are in between

the optimal face sheet and core thicknesses identified by the analytical model optimizations.

Hc/l Lc/l tc/l tf/l

Decoupled Model 0.2000 0.0698 0.0011 0.0030
Proposed Model 0.1029 0.0954 0.0019 0.0041

Finite Element Study 0.1100 0.0647 0.0015 0.0036

Table 6.1: Optimal geometries for non-dimensional structural weight Ψ = 0.0123.

The finite element results for the optimal structures with non-dimensional weight Ψ = 0.0123 iden-

tified by both analytical models and the finite element parametric study are shown in Figure 6.1. The

peak load for the structure identified by the decoupled model is higher than the peak load of the structure

identified by the proposed model. However, the core of the structure predicted by the decoupled model

buckles well before the peak load is reached. On a global force-displacement level, it could be argued that

the structure identified by the decoupled model optimization performs better than the structure identified

by the proposed model because the core buckling does not significantly affect the structure’s overall per-
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formance. However, according to the failure criteria presented in this work, the optimal structure identified

by the proposed model fails at a higher load than the structure selected by the decoupled model. Minimal

finite element tuning of the proposed model panel geometry was required in order to arrive at the finite ele-

ment parametric study identified optimal geometry, making the proposed model optimization an excellent

starting point for design.

Figure 6.1: Finite element load vs. displacement results for optimal geometries with non-dimensional
weight Ψ = 0.0123, identified by the decoupled and proposed models.

6.1.2 High Loading Regime

The optimal geometry identified through parametric finite element studies in the high loading regime can

also be compared to the analytical model predictions. Figure 6.2 indicates where the optimal geometries

predicted by the analytical models and finite element results lie on the constant weight failure mechanism

map presented in Section 3.5. The shaded areas for the analytical models indicate geometries with at least

99.5% of the maximum failure load for the decoupled or proposed model. The boundary of the shaded

area corresponding to the finite element optimal geometries was approximated based on a parametric study

of finite element cases run with a spacing of 0.001in the tc/l and tf/l directions.

Figure 6.2 shows that the optimal geometry predicted by the proposed model is closer to the finite

element results than the decoupled model. Furthermore, the optimal finite element model geometry range

shows a greater dependance on the core thickness tc, than the decoupled and proposed model predictions.
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Figure 6.2: Optimal geometries predicted by analytical models, and observed in FEA results. Lc/l = 0.2,
and Ψ = 0.035.

The optimal finite element geometry has a cell aspect ratio Lc/Hc close to unity, and is located midway

between the face buckling and core buckling failure zones. The finite element optimal geometry results

for a structural weight of Ψ = 0.035 agree well with the multi-objective optimization results presented in

Figure 5.2. The location of the optimal finite element geometry and its dependance on tc could indicate that

there is some coupling between the failure modes in the finite element results. If there were no coupling

between failure modes in the finite element results, all finite element models of geometries located in the

face and core yielding failure zones with the same normalized face sheet thickness, tf/l, would behave

identically. By being located in the middle of the proposed model core yielding failure zone, the optimal

finite element geometry reduces the failure activity levels of face and core buckling without sacrificing any

load bearing capability.
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6.2 Consideration of Rotational Constraints in Face Buckling Failure Mode

Thus far, all of the analytical models have neglected the rotational constraints of adjacent plate members

in the buckling failure modes. Proper treatment of the boundary conditions for plates subject to buckling

is important because the buckling coefficient can vary by as much as 100% depending on the plate edge

conditions used in the calculations. In this section, a simplified but conservative approach is taken to

determine how the buckling coefficient of a face sheet plate is affected by the consideration of the rotational

constraints from adjacent face sheet and core members.

In order to consider the face plate edge constraints, the adjacent members to the plate that will first

undergo buckling must be identified. Figure 6.3 shows a quarter-symmetry view of a square honeycomb

panel under three-point-bending. In Figure 6.3, assume that plate A carries a significant axial load, and is

therefore one of the first plates to buckle. Adjacent face plate members B and C will carry a similar axial

load to plateA, and therefore will not rotationally constrain plateA from buckling in the y-direction. Plate

E is part of a longitudinal core member, which means that it may be close to buckling or yielding near

the shared edge with A. To be conservative, it will be assumed that plate E poses no rotational constraint

about the x-axis to the edge of plateA. PlateD however, is part of a lateral core member, which is virtually

unstressed according to the present analytical models. As a result, it will be assumed that plateD is able to

provide a rotational constraint about the z-axis along the edge of plates A and B. Plate A can therefore be

modeled as a square plate that has some rotational constraint on the loaded edges, and is simply-supported

along the other two edges.

Figure 6.3: Quarter symmetry view of honeycomb panel under three-point-bending.

To simplify the proposed model while maintaining a conservative approach, only the stiffness of the

lateral core members with respect to bending moments in the z-direction in Figure 6.3 will be considered.
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In order to visualize this approach, each lateral core member can be imagined as a set of thin parallel

beams (Figure 6.4). In order to illustrate the concept, the beams in Figure 6.4 have finite width. In the

actual model, however, the beams are treated as infinitely thin so that the rotation at the top edge of the

core member can be considered a continuous function. Modeling each core member in this way allows the

angle of rotation at a point along the top edge of the core member to be directly proportional to the moment

applied at that point, which simplifies the analysis of the face plates. The approach is conservative because

it does not account for the added stiffness resulting from the plate twisting or bending in the y-direction.

Figure 6.4: Visualization of lateral core sheet and face sheet members before and after buckling.

Furthermore, it will be assumed that the angle of rotation at the edge of the buckled face sheet is equal

to the angle of rotation at the top edge of the adjacent core sheet, as shown in Figure 6.5. In other words,

it is assumed that all adjacent core and face sheet members meet at an angle of 90 degrees throughout

the deformation. Modeling the lateral core members as sets of vertical beams allows the rotationally

constrained edges of the face plates to be modeled as though they are supported by torsional springs

of constant stiffness, as shown in Figure 6.6. The stiffness of the torsional spring depends on both the

geometry and boundary conditions of the lateral core members.

Figure 6.5: 2D schematic of interaction between lateral core members and face sheets during buckling.

The lateral core members require boundary conditions at their intersection with the top and bottom
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face sheets. Due to the three-point-bending load, the top face sheets are in compression, while the bottom

face sheets are in tension. In such a loading case, only the top face sheets in compression are prone to

buckling. Once buckling occurs, the top sheets rotate by an angle θ as a result of the instability caused

by the compressive loading. As the tensile stress in the bottom face sheet does not cause any instability,

it will be assumed that the bottom face sheet does not undergo any out-of-plane deformation. As a result,

the lateral core member can be modeled as though it is clamped at its bottom edge. At the top edge, the

lateral core member is pinned in place, but is free to rotate.

Figure 6.5 shows two face sheet plates undergoing a buckling deformation. Due to the nature of the

loading, the top face sheet plate marked by the solid line carries a slightly higher axial load, and will buckle

before the one marked with the dashed line. Thus, the rotational constraint caused by the plate marked with

the dashed line is neglected. The approach of ignoring rotational constraints posed by adjacent members

on the verge of buckling is the same as the one taken by Valdevit et al. [15] when analyzing buckling in

corrugated diamond prismatic structures. As only one face sheet and one core member contributes to the

internal moment at their interface, it is apparent that the moment that causes the bending of the lateral core

member will be equivalent to the moment that restrains the face sheet from buckling.

Figure 6.6: Loading and boundary conditions for face plate during buckling.

With the boundary conditions for the lateral core member in mind, the stiffness of the torsional spring

employed in the face sheet model can be calculated by superimposing two loads on the infinitely thin

beams that make up the lateral core member. As described before, the infinitely thin beams are clamped

on one side and simply supported on the other. The goal is to determine proportionality between the angle

of rotation of the simply supported end and the moment applied to that end. The two superposed loads are
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a moment and a point force acting at the end of a cantilever beam, as shown in Figure 6.7. The magnitude

of the point force is chosen so that it exactly balances the displacement caused by the applied moment,

in accordance with the pinned/simply-supported boundary condition. For a cantilever beam subjected

to a moment at its free end, the end point displacement, δM , and rotation, θM , are given by Beer and

Johnston [24]:

δM =
ML2

2EI
, (6.1)

θM =
ML

EI
. (6.2)

For a cantilever beam subjected to a force at its free end, the end point displacement, δF , and rotation, θF ,

are given by [24]:

δF =
−FL3

3EI
, (6.3)

θF =
−FL2

2EI
. (6.4)

Figure 6.7: Cantilever beam deformations due to point force and moment loading.

Setting the total displacement at the end of the beam equal to zero yields:

δM + δF =
ML2

2EI
− FL3

3EI
= 0,
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and solving for F gives the relationship:

F =
3M

2L
. (6.5)

Summing θM and θF , and using equation (6.5) for F allows the total angle at the end of the beam to be

expressed:

θ =
ML

EI
−
(

3M
2L

)
L2

2EI
=
ML

4EI
, (6.6)

where I is the moment of inertia of the beam.

A constant, C, can be used represent the stiffness of the torsional spring acting on the face plate. Using

equation (6.6) but expressing the moment on a per unit width basis leads to the following expression for

C:

C =
M ′

θ
=

4EI ′

L
, (6.7)

where I ′ is the moment of inertia of the beam per unit width. For the honeycomb geometry, I ′ = 1
12 t

3
c ,

and L = Hc, so the stiffness of the torsional spring can be expressed:

C =
Et3c
3Hc

. (6.8)

The governing equation for the buckling of a plate subjected to uniform compression on two sides is

given by Timoshenko [22]:

∂4∂w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4∂w

∂y4
=
−Nx

D

∂2w

∂x2
, (6.9)

where Nx is a force per unit length, and compression is defined as positive. D is the flexural rigidity of the

plate:

D =
Eh3

12 (1− ν2)
, (6.10)

where h is the thickness of the plate.
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The loading conditions and dimensions of the rectangular plate are shown in Figure 6.8. The edges at

y = 0 and y = b are simply supported, while the edges at x = ±a/2 are restrained by torsional springs.

In addition, a uniform compressive force per unit length, Nx, is applied to the edges at x = ±a/2. The

coordinate axis has been placed so that the loading and boundary conditions of the plate are symmetric in

the x-direction. This symmetry will later be used in order to simplify the solution of the problem. It is

assumed that the out-of-plane displacement of the plate, w, can be expressed as a sine function:

w = f(x) sin
nπy

b
. (6.11)

In this expression f(x) is a function of x only, and n is the number of half waves that form in the y

direction when the plate buckles. The boundary conditions for the simply supported edges are:

w = 0 on y = 0 and y = b, (6.12)

−D
(
∂2w

∂y2
+ ν

∂2w

∂x2

)
= 0 on y = 0 and y = b, (6.13)

and equation (6.11) satisfies these boundary conditions.

Figure 6.8: Dimensions of rectangular plate under uniform axial load.

Substituting equation (6.12) into (6.11) gives the following fourth order linear ordinary differential

equation:

d4f

dx4
+

[
Nx

D
− 2

n2π2

b2

]
d2f

dx2
+
n4π4

b4
f(x) = 0. (6.14)
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The characteristic roots of equation (6.14) are:

α =

√
−Nx

2D
+
n2π2

b2
−
√
Nx

√
b2Nx − 4Dn2π2

2bD
, (6.15)

β =

√
−Nx

2D
+
n2π2

b2
+

√
Nx

√
b2Nx − 4Dn2π2

2bD
, (6.16)

both with a multiplicity of 2.

For a square simply supported plate under a constant axial load, it has been by [22] that Nx =

4π2D/b2. The elastic supports on the plates analyzed in this section will increase the buckling load,

so it can be stated that Nx ≥ 4π2D/b2, or:

b2Nx ≥ 4π2D. (6.17)

This relation indicates that the last term in equations (6.15-6.16) will always be real, and will approach

zero as the stiffness of the elastic restraint decreases.

As the plates being analyzed are square, it will also be assumed that only one half wave forms in

the x and y directions during buckling, so m = n = 1. From equation (6.17), it becomes clear that

Nx/D ≥ 4π2/b2, and so the first term under the radical in α (6.15) and β (6.16) will always be greater in

magnitude than the second term. As a result, it can be seen that α will always be imaginary.

In order to determine whether β is real or imaginary, a plate with clamped boundary conditions along

the loading edges is considered. While very weak torsional springs can be modeled as simple supports, the

strongest possible spring can be modeled with a clamped boundary condition. For a plate where the loaded

edges are clamped and the other two edges are simply supported, it has been shown thatNx = 6.74π2D/b2

[22]. Substituting this relation into the expression for β (6.16) and setting n = 1 yields:

βclamped =

√√√√−6.74π2

2b2
+
π2

b2
+

√
6.742π4D2

b2
− 4(6.74)π4D2

b2

2bD

=

√
(−2.37)

π2

b2
+

√
6.742 − (4)6.74

2

π2

b2
=
√
−0.221

π

b
(6.18)
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From (6.18), it is clear that if the torsional spring is very stiff, β is imaginary. In the case of a torsional

spring with very low stiffness, the relation Nx = 4π2D/b2 for a simply supported plate can be used

in equation (6.16) to show that β is still imaginary. Because the torsional spring supported boundary

conditions represent the cases between simply supported and clamped, then β must be imaginary for any

spring stiffness and plate rigidity.

As both characteristic roots of equation (6.14) are imaginary, the general solution is:

f(x) = C1 cosαx+ C2 sinαx+ C3 cosβx+ C4 sinβx. (6.19)

Since it is assumed that the square plate buckles in one half wave in each direction, the symmetric torsional

spring boundary conditions then cause f(x) given by equation (6.11) to be an even function. As a result,

C2 = C4 = 0, and the general solution to the governing equation is reduced to:

f(x) = A cosαx+B cosβx. (6.20)

Using the sign convention shown in Figure 6.9, the boundary conditions for the torsional spring supported

edges are:

−D
(
∂2w

∂y2
+ ν

∂2w

∂x2

)
= −C∂w

∂x
on x = −a/2, (6.21)

−D
(
∂2w

∂y2
+ ν

∂2w

∂x2

)
= C

∂w

∂x
on x = a/2. (6.22)

The term on the left hand side of equations (6.21) and (6.22) represents the moment applied to the bound-

ary, C is the stiffness of the torsional spring, and ∂w
∂x is the angle of rotation of the edge. The term on the

right hand side of equation (6.21) is negative because according to the sign convention, a positive angle of

rotation at the left edge of the plate will result in a negative moment reaction. The term on the right hand

side of equation (6.22) is positive because a positive angle at the right edge of the plate will be resisted by

a positive moment reaction.

It will also be assumed that the torsional spring supported edges do not displace vertically in the z-
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Figure 6.9: Sign convention for moments applied at the boundary of the loaded plate.

direction of Figure 6.3, so:

w = 0 on x = −a/2 and x = −a/2. (6.23)

Applying a zero-displacement boundary condition for the edge at x = a/2 in equation (6.20),

A cosαx+B cosβx = 0. (6.24)

Applying boundary condition (6.22) to equation (6.20),

D

[
−α2A cos

αa

2
− β2B cos

βa

2

]
+ C

[
−αA sin

αa

2
− βB sin

βa

2

]
= 0. (6.25)

A non-zero solution for A and B can be found by setting the determinant of equations (6.24) and (6.25)

equal to zero:

cos
αa

2

[
−Dβ2 cos

βa

2
− Cβ sin

βa

2

]
= cos

βa

2

[
−Dα2 cos

αa

2
− Cα sin

αa

2

]
. (6.26)

Dividing both sides by
(
− cos αa2

)
gives:

Dβ2 cos
βa

2
+ Cβ sin

βa

2
= Dα2 cos

βa

2
+ Cα tan

αa

2
cos

βa

2
. (6.27)

Dividing through by
(
− cos βa2

)
gives:

Dβ2 + Cβ tan
βa

2
= Dα2 + Cα tan

αa

2
. (6.28)
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Recall that α (6.15) and β (6.15) are functions of the critical buckling load, Nx, and the plate geometry.

Equation (6.28) can then be solved numerically along with equations (6.15) and (6.16) in order to deter-

mine the critical buckling load for any square plate with torsional spring stiffness, C, and flexural rigidity,

D.

The non-dimensional buckling coefficient used in the the face buckling failure mode equations is de-

fined as:

Kb =
Nxb

2

π2D
. (6.29)

For a square plate that is restrained by torsional springs on the loaded edges and simply supported along

the other two edges, the buckling coefficient depends on a single non-dimensional parameter, Ca/D. In

this parameter, a is the side length of the plate, and a = b because the plate is square. Figure 6.10 shows

how the buckling coefficient, Kb, varies with Ca/D.

Figure 6.10: Relationship between the buckling coefficient and Ca
D .

This buckling coefficient relationship is in agreement with the results for the extreme boundary condi-

tion cases presented by Timoshenko [22]. For very low torsional spring stiffnesses, the buckling coefficient

approaches the simply supported case value of 4.0. For high spring stiffness relative to plate flexural rigid-

ity, the buckling coefficient approaches the clamped case value of 6.74.

In order to get a better sense of how the buckling coefficient changes with the geometry of the square

74



honeycomb structure, equations (6.8) and (6.10) can be used for C and D in the solution of equations

(6.15), (6.16) and (6.28). In this case, the buckling coefficient is dependent on both the core to face sheet

thickness ratio tc/tf , and the cell aspect ratio ξ = Lc/Hc. Results using these two non-dimensional

parameters are shown in Figure 6.11.

Figure 6.11: Buckling coefficient vs. core to face sheet thickness ratio (tc/tf ) and cell aspect ratio (ξ =
Lc/Hc).

The buckling coefficient increases as tc/tf increases, and also as Lc/Hc increases. The first trend is

fairly straightforward. Holding all else constant, as the core member thickness, tc, increases, the rotational

spring constraining the loaded edges of the face sheet becomes stiffer, and the buckling coefficient there-

fore increases. For the second trend between the buckling coefficient and the cell aspect ratio: as the cell

aspect ratio, Lc/Hc, increases, the height of the core, Hc, decreases relative to the face sheet cell width,

Lc. As a result, the cantilever beams comprising the torsional springs decrease in length, and the stiffness

of the torsional springs increases. As has already been shown, the spring stiffness increase will result in

an increased buckling load. It is worth noting that as the cell aspect ratio, Lc/Hc, decreases, the model

assumptions become more conservative. In particular, it was assumed that the core members making up

the torsional springs have no stiffness with respect to bending moments in the y-direction in Figures 6.3

and 6.4. As the cell aspect ratio decreases however, stiffness with respect to bending in the y-direction

clearly plays more of a role in the core plate’s resistance to a moment applied at the top edge.
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In the end, it is unclear whether a structure will actually perform better at higher cell aspect ratios, or

whether this apparent trend is just a result of the model assumptions. What is clear, however, is that even

with the proposed conservative approach, the buckling coefficient increases when the loaded edges of the

face plates are modeled with torsional springs as opposed to simply supported edges. For example, based

on Figure 6.11, the buckling coefficient for a cuboidal structure (ξ = 1) with equally thick core and face

sheets (tc/tf = 1), will increase from 4 to 5 if rotationally constrained boundary conditions are employed.

That increase in buckling coefficient corresponds to a 25% increase in the face buckling failure load, which

is certainly significant within the scope of this work.

6.3 Additional Directions for Proposed Model Improvement and Perspec-

tives for Future Work

This work has made several limiting assumptions about the characteristics of the square honeycomb sand-

wich panel analyzed under three-point-bending loading. First of all, it was assumed that the sandwich panel

is made of one material. With minimal additional complexity, the analytical models presented in this work

could be extended to address panels with different core and face sheet material properties. Multi-material

or composite sandwich structures are of interest for a variety of multifunctional applications [23, 27, 28].

Considering core and face sheets with different strengths, stiffnesses and densities would increase the

number of design variables in the optimization, but may also lead to the identification of lighter or more

efficient structures. It is also important to point out that only a single loading direction was considered in

this work. The Euler-Bernoulli “coupled” models proposed in this work cannot be easily extended to dif-

ferent loading directions, because the panel could no longer be treated as a beam of constant cross-section.

In considering different loading directions, the optimal analytical model geometries presented in this work

could at least be used as starting points for further finite element analysis and fine-tuning.

This work has also assumed that the first instance of yielding or buckling in the face or core of the

structure determines when failure has occurred. Although conservative, these failure criteria may not be of

interest to all designers, because plates often have post-buckling strength and are able to carry additional

loads after they have buckled. Future work could be carried out to extend the model derivations to account

for the post-buckling behavior of face and core members of the structure. The effective width method,
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first proposed by von Karman in 1932, and later explored by Hu et al. [29], is most commonly used to

evaluate the post-buckling strength of plates. Further steps could also be taken in modeling the rotational

constraints on the edges of the face and core plates undergoing buckling. Finally, coupling of the failure

modes could be considered. It would be very difficult to construct such a model in an analytical sense, but

a broad parametric study could be conducted in order to determine tuning factors that penalize structures

with multiple active failure modes in a multi-objective optimization scheme.

Lastly, this work could also be strengthened through experimental validation. To validate the work,

experimental results for a broad range of square honeycomb geometries would need to be obtained. Several

aspects of the physical model, such as the strength of the braze joints and higher order loading effects that

have not been explored by the analytical models or the finite element studies presented, would need to be

considered. These effects may prove to be significant when the structure is tested experimentally.
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Chapter 7

Conclusions

This work has compared the traditional decoupled model for a square honeycomb structure under three-

point-bending to a proposed simplified Euler-Bernoulli “coupled” modeling approach. Both models are

useful for identifying near-optimal designs that could be refined by more detailed finite element analysis. In

the cases considered, the proposed analytical model provides solutions that are closer to optimal geometries

identified by finite element parametric study results.

Both the failure maps and optimal geometry plots presented in this work can be used by designers

in selecting near-optimal geometries for further FEA refinement. The constant weight failure maps in

conjunction with the predicted load contour level sets can be used to understand how changing the ge-

ometry of a structure affects its likelihood of initiating different failure mechanisms. The multi-objective

optimization scheme presented in this work can be utilized to determine the range of geometries that are

optimal for a prescribed load. Furthermore, the multi-objective optimization scheme could be tailored by

a designer to weight design factors according to his or her needs. For example, manufacturing cost terms

could be included in the multi-objective scheme.

This work has shown that the proposed simplified Euler-Bernoulli-based “coupled” analytical model

yields more accurate optimal geometries than the traditional decoupled model, when failure is defined as

the first instance of yielding or buckling in the face or core of the honeycomb structure. Two key design

guidelines result from the analysis in Chapters 3-6. Both guidelines can be used in combination with the

dominant failure mode plots presented in Section 3.5 and the optimization scheme described in Section 5.1

to help designers rapidly identify near-optimal geometries for a given application.
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The first guideline is to remain close to cuboidal cell structures: the optimal structure usually has a cell

aspect ratio Lc/Hc close to unity over a broad range of loading conditions (see Figure 2.1). By narrowing

in on structures with aspect ratios near unity, a designer can speed up any necessary parametric studies and

identify the near-optimal geometry more quickly. The second guideline is that when two geometries have

the same weight and analytically predicted failure load, it is best to search for geometries that reduce the

failure constraint activity levels of the non-dominant failure modes. Although the analytical models do not

themselves account for the coupling of different failure modes, this feature can be somewhat moderated

by the multi-objective optimization scheme presented in Chapter 5. A pseudo-failure mode coupling can

be incorporated into the optimization scheme by penalizing structures in which multiple failure modes are

active.
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Appendix A

Decoupled Model Derivation

The decoupled model assumes that the moment is entirely resisted by the face sheets, while the shear

stress is resisted entirely by the core. It is also assumed that the normal and shear stresses are uniformly

distributed across the face sheets and core respectively. Figure A.1 shows the stresses that act on a panel

of unit cell width for the decoupled model.

Figure A.1: Stress distribution in unit cell width panel for decoupled model.

The axial stress in the face sheets can be determined by summing the moments around the horizontal

axis running through the midpoint of the core. Figure A.2 shows how the evenly distributed axial stress

on each face sheet can be expressed as a point load acting in the middle of each face sheet. Equating

the moment caused by the axial stress to the maximum internal bending moment on the panel yields the
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following expression:

MLc = 2σ(tfLc)

(
Hc + tf

2

)
. (A.1)

Equation (A.1) can be re-arranged in order to give an expression for the axial stress in the face sheets:

σf =
M

tf (Hc + tf )
. (A.2)

Figure A.2: Expressing the evenly distributed axial stress on the face sheets (left) as point loads (right).

The decoupled modeling approach assumes that the shear load is entirely resisted by the core, and

thus there is no shear force in the face sheets. Furthermore, it is assumed that the shear load is distributed

uniformly in the core. The magnitude of the shear load acting on a panel of unit cell width is V Lc. The

shear stress in the core is calculated by dividing the shear load on the panel by the cross-sectional area of

the core:

τc =
V Lc
tcHc

. (A.3)

The shear stress in the core given by equation (A.3) can be used in the von Mises yield criterion,

equation (3.1), in order to determine the core yield criterion for the decoupled model. Note that since there

is no axial stress in the core for the decoupled model, the value of σ in equation (3.1) is set to zero. The

resulting yield criterion becomes:

3

(
V Lc
tcHc

)2

≤ σ2
Y . (A.4)

Taking the square root of both sides, using Hooke’s law to set σY = EεY , dividing through by EεY , and
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using equation (2.11) for V , the core yield criterion becomes:

Π

√
3Lcl

εY tcHc
≤ 1. (A.5)

Since there is only the one axial stress component in the face sheets, face sheet yielding will occur

when the stress exceeds the yield stress. Using the axial stress derived in equation (A.2), the yield criterion

for the face sheets is:

M

tf (Hc + tf )
≤ σY . (A.6)

Setting σY = EεY , and dividing through by EεY , as well as using equation (2.12) for M allows the face

yielding criterion to be expressed as:

Π
l2

εY tf (Hc + tf )
≤ 1. (A.7)

Equations (3.2) and (3.4) can be used in order to determine the face buckling criterion for the decoupled

model. For a square honeycomb panel, the plates that make up the face sheet will be square, with a side

length of Lc. For a simply supported square plate with a uniformly distributed axial load, the buckling

coefficient is Kb = 4 [22]. For the decoupled model, there is no shear in the face sheets, so only the first

term of equation (3.4) will be considered. Using the expression for axial stress in the face sheets derived

in equation (3.2), the face buckling criterion can be expressed as:

M

tf (Hc + tf )
≤ π2E

3(1− ν2)

(
tf
Lc

)2

. (A.8)

Using equation (2.12) for M and rearranging the terms, the face buckling criterion becomes:

Π
3l2(1− ν2)L2

c

t3f (Hc + tf )π2
≤ 1. (A.9)

Equations (3.3) and (3.4) can be used in order to determine the core buckling criterion for the decoupled

model. For a square honeycomb panel, the plates that make up the core members will be rectangular, with

a height of Hc, and a width of Lc. For a simply supported rectangular plate under shear loading, the
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buckling coefficient is given by Timoshenko [22]:

Ks =


5.35 + 4

(
Hc
Lc

)2
, if Lc ≥ Hc,

5.35
(
Hc
Lc

)2
+ 4, if Lc < Hc.

(A.10)

For core buckling, t = tc, and b = Hc. Since the decoupled model does not account for shear in the face

sheets, only the second term of equation (3.4) is considered. Using the expression for the shear stress in

the core (3.3), the core buckling criterion can be expressed:

V Lc
tcHc

≤ Ks
π2E

12(1− ν2)

(
tc
Hc

)2

. (A.11)

Using equation (2.11) for V and rearranging, the final core buckling criterion becomes:

Π
12lLc(1− ν2)Hc

Kst3cπ
2

≤ 1. (A.12)
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Appendix B

Python Job File and Post-Processing Script

for Finite Element Model

from p a r t i m p o r t ∗

from m a t e r i a l i m p o r t ∗

from s e c t i o n i m p o r t ∗

from assembly i m p o r t ∗

from s t e p i m p o r t ∗

from i n t e r a c t i o n i m p o r t ∗

from l o a d i m p o r t ∗

from mesh i m p o r t ∗

from o p t i m i z a t i o n i m p o r t ∗

from j o b i m p o r t ∗

from s k e t c h i m p o r t ∗

from v i s u a l i z a t i o n i m p o r t ∗

from c o n n e c t o r B e h a v i o r i m p o r t ∗

from abaqus i m p o r t ∗

from a b a q u s C o n s t a n t s i m p o r t ∗

from caeModules i m p o r t ∗

from math i m p o r t ∗

from odbAccess i m p o r t ∗

from a b a q u s C o n s t a n t s i m p o r t ∗

######################################################## ENTER DATA FOR MODEL ####################################################

# E n t e r geomet ry p a r a m e t e r s

l = 0 .075

Hc = 0.11∗ l

Lc = 0.0647∗ l

t c = 0.0015∗ l

t f = 0.0036∗ l

l e x t r a = 1 . 3

To ta lL = l∗ l e x t r a
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# E n t e r m a t e r i a l p r o p e r t i e s

E=70000000000.0

nu =0.30 # Po i s son ’ s r a t i o

Y i e l d S t r e s s =490000000.0

# E n t e r a d d i t i o n a l s i m u l a t i o n i n f o r m a t i o n

R=0.025 # R o l l e r r a d i u s

maxdisp =−0.0027 #max l o a d l i n e d i s p l a c e m e n t

myOdbName = ’ SquareHComb

############### CREATE MODEL ###############

# De f i ne model

ModelName = myOdbName+ ’ Model ’

mdb . Model ( name=ModelName , modelType=STANDARD EXPLICIT )

# C r e a t e base s k e t c h ( i n XY p l a n e )

IbeamSketch = beam . C o n s t r a i n e d S k e t c h ( name= ’ IbeamSketch ’ , s h e e t S i z e = 2 0 0 . 0 )

IbeamSketch . Line ( p o i n t 1 =(−Lc / 2 . 0 , Hc / 2 . 0 ) , p o i n t 2 =( Lc / 2 . 0 , Hc / 2 . 0 ) )

IbeamSketch . Line ( p o i n t 1 =(−Lc / 2 . 0 , −Hc / 2 . 0 ) , p o i n t 2 =( Lc / 2 . 0 , −Hc / 2 . 0 ) )

IbeamSketch . Line ( p o i n t 1 = ( 0 . 0 , Hc / 2 . 0 ) , p o i n t 2 = ( 0 . 0 , −Hc / 2 . 0 ) )

# E x t r u d e base s k e t c h

SquareHComb = beam . P a r t ( name= ’ SquareHComb ’ , d i m e n s i o n a l i t y =THREE D ,

t y p e =DEFORMABLE BODY)

SquareHComb . B a s e S h e l l E x t r u d e ( s k e t c h =IbeamSketch , d e p t h = To ta lL )

d e l IbeamSketch

# C r e a t e s k e t c h f o r h o r i z o n t a l c e l l p a r t i t i o n s on t o p s u r f a c e o f I beam :

# De f i ne s k e t c h i n g s u r f a c e

P a r t i t i o n S k e t c h = beam . C o n s t r a i n e d S k e t c h ( name= ’ P a r t i t i o n S k e t c h ’ , s h e e t S i z e = 2 0 0 . 0 ,

t r a n s f o r m =SquareHComb . MakeSketchTransform ( s k e t c h P l a n e = \

SquareHComb . f a c e s . f i n d A t ( c o o r d i n a t e s =( Lc / 2 . 0 , Hc / 2 . 0 , Lc / 2 . 0 ) ) ,

s k e t c h P l a n e S i d e =SIDE1 ,

sketchUpEdge=SquareHComb . edges . f i n d A t ( c o o r d i n a t e s = ( 0 , Hc / 2 . 0 , Lc / 2 . 0 ) ) ,

s k e t c h O r i e n t a t i o n =RIGHT ,

o r i g i n =( Lc / 2 . 0 , Hc / 2 . 0 , 0 . 0 ) ) )

SquareHComb . p r o j e c t R e f e r e n c e s O n t o S k e t c h ( f i l t e r =

COPLANAR EDGES, s k e t c h = P a r t i t i o n S k e t c h )

# loop t o c r e a t e p a r t i t i o n s

Zcoord = 0 . 0

w h i l e Zcoord <= To ta l L :

P a r t i t i o n S k e t c h . L ine ( p o i n t 1 = ( 0 . 0 , −Zcoord ) , p o i n t 2 =( Lc , −Zcoord ) )

Zcoord = Zcoord + Lc

# E x t r u d e p a r t i t i o n s

SquareHComb . S h e l l E x t r u d e ( d e p t h =Hc , f l i p E x t r u d e D i r e c t i o n =OFF , s k e t c h = P a r t i t i o n S k e t c h ,

s k e t c h O r i e n t a t i o n =RIGHT ,

s k e t c h P l a n e =SquareHComb . f a c e s . f i n d A t ( c o o r d i n a t e s =( Lc / 2 . 0 , Hc / 2 . 0 , Lc / 2 . 0 ) ) ,

s k e t c h P l a n e S i d e =SIDE1 ,

sketchUpEdge=SquareHComb . edges . f i n d A t ( c o o r d i n a t e s = ( 0 , Hc / 2 . 0 , Lc / 2 . 0 ) ) )

d e l P a r t i t i o n S k e t c h
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# P a r t i t i o n bot tom f a c e where s u p p o r t c o n t a c t w i l l o c c u r

i f abs ( l % Lc ) > 0 .00000001 and abs ( l % Lc ) < Lc − 0 . 0 0 0 0 0 0 0 1 :

MyDatum = SquareHComb . D a t u m P l a n e B y P r i n c i p a l P l a n e ( p r i n c i p a l P l a n e =XYPLANE, o f f s e t = l )

SquareHComb . P a r t i t i o n F a c e B y D a t u m P l a n e ( da tumPlane =SquareHComb . datums [ MyDatum . i d ] ,

f a c e s =SquareHComb . f a c e s . f i n d A t ( c o o r d i n a t e s =( Lc / 4 . 0 , −Hc / 2 . 0 , l ) ) )

SquareHComb . P a r t i t i o n F a c e B y D a t u m P l a n e ( da tumPlane =SquareHComb . datums [ MyDatum . i d ] ,

f a c e s =SquareHComb . f a c e s . f i n d A t ( c o o r d i n a t e s =(−Lc / 4 . 0 , −Hc / 2 . 0 , l ) ) )

# P a r t i t i o n s t r u c t u r e t o i g n o r e s t r e s s c o n c e n t r a t i o n a r e a

i f abs ( 0 . 2∗Hc % Lc ) > 0 .00000001 and abs ( 0 . 2∗Hc % Lc ) < Lc − 0 . 0 0 0 0 0 0 0 1 :

MyDatum2 = SquareHComb . D a t u m P l a n e B y P r i n c i p a l P l a n e ( p r i n c i p a l P l a n e =XYPLANE, o f f s e t =0.2∗Hc )

SquareHComb . P a r t i t i o n F a c e B y D a t u m P l a n e ( da tumPlane =SquareHComb . datums [ MyDatum2 . i d ] ,

f a c e s =SquareHComb . f a c e s . f i n d A t ( c o o r d i n a t e s =( Lc / 4 . 0 , −Hc / 2 . 0 , 0 .2∗Hc ) ) )

SquareHComb . P a r t i t i o n F a c e B y D a t u m P l a n e ( da tumPlane =SquareHComb . datums [ MyDatum2 . i d ] ,

f a c e s =SquareHComb . f a c e s . f i n d A t ( c o o r d i n a t e s =(−Lc / 4 . 0 , −Hc / 2 . 0 , 0 .2∗Hc ) ) )

SquareHComb . P a r t i t i o n F a c e B y D a t u m P l a n e ( da tumPlane =SquareHComb . datums [ MyDatum2 . i d ] ,

f a c e s =SquareHComb . f a c e s . f i n d A t ( c o o r d i n a t e s =( Lc / 4 . 0 , Hc / 2 . 0 , 0 .2∗Hc ) ) )

SquareHComb . P a r t i t i o n F a c e B y D a t u m P l a n e ( da tumPlane =SquareHComb . datums [ MyDatum2 . i d ] ,

f a c e s =SquareHComb . f a c e s . f i n d A t ( c o o r d i n a t e s =(−Lc / 4 . 0 , Hc / 2 . 0 , 0 .2∗Hc ) ) )

SquareHComb . P a r t i t i o n F a c e B y D a t u m P l a n e ( da tumPlane =SquareHComb . datums [ MyDatum2 . i d ] ,

f a c e s =SquareHComb . f a c e s . f i n d A t ( c o o r d i n a t e s = ( 0 . 0 , 0 . 0 , 0 .2∗Hc ) ) )

#Mesh P a r t

# C r e a t e mesh so t h a t e l e m e n t s a r e c l o s e t o squa re , w i th 20 e l e m e n t s a l o n g t h e s h o r t e s t edge ( d e f a u l t i s 20)

# MeshSize = min ( Hc , Lc ) / MeshLis t [ I ]

MeshSize = min ( Hc , Lc ) / 2 0 . 0

# Seed p a r t

SquareHComb . s e e d P a r t ( s i z e =MeshSize , d e v i a t i o n F a c t o r = 0 . 1 , m i n S i z e F a c t o r = 0 . 1 )

SquareHComb . gene ra t eMesh ( )

# C r e a t e s e t s

SquareHComb . S e t ( f a c e s =SquareHComb . f a c e s . getByBoundingBox(−Lc,−Hc,−Lc / 2 . 0 , Lc , Hc , 0 . 0 ) , name= ’ HalfCore ’ )

SquareHComb . S e t ( f a c e s =SquareHComb . f a c e s . getByBoundingBox(−Lc / 2 . 0 , 0 . 0 , 0 . 0 , Lc / 2 . 0 , Hc / 2 . 0 , T o t a lL ) , name= ’ TopFace ’ )

SquareHComb . S e t ( f a c e s =SquareHComb . f a c e s . getByBoundingBox(−Lc /2.0 ,−Hc / 2 . 0 , 0 . 0 , Lc / 2 . 0 , 0 . 0 , T o t a lL ) , name= ’ BottomFace ’ )

SquareHComb . S e t ( f a c e s =SquareHComb . f a c e s . getByBoundingBox(−Lc,−Hc,−1.0 , Lc , Hc , T o t a lL + 1 . 0 ) , name= ’ All ’ )

SquareHComb . SetByBoolean ( name= ’ Face ’ , s e t s =( SquareHComb . s e t s [ ’ BottomFace ’ ] , SquareHComb . s e t s [ ’ TopFace ’ ] ) )

SquareHComb . SetByBoolean ( name= ’ Core ’ , o p e r a t i o n =DIFFERENCE , s e t s =( SquareHComb . s e t s [ ’ Al l ’ ] ,

SquareHComb . s e t s [ ’ Face ’ ] , SquareHComb . s e t s [ ’ Hal fCore ’ ] ) )

d e l SquareHComb . s e t s [ ’ TopFace ’ ]

d e l SquareHComb . s e t s [ ’ BottomFace ’ ]

d e l SquareHComb . s e t s [ ’ Al l ’ ]

# C r e a t e s e c t i o n s

beam . HomogeneousShe l lSec t i on ( name= ’ FaceShee t ’ , m a t e r i a l = ’ M a t e r i a l −1’ , t h i c k n e s s = t f , i n t e g r a t i o n R u l e =SIMPSON , n u m I n t P t s =5)

beam . HomogeneousShe l lSec t i on ( name= ’ HalfCore ’ , m a t e r i a l = ’ M a t e r i a l −1’ , t h i c k n e s s = t c / 2 . 0 , i n t e g r a t i o n R u l e =SIMPSON , n u m I n t P t s =5)

beam . HomogeneousShe l lSec t i on ( name= ’ Core ’ , m a t e r i a l = ’ M a t e r i a l −1’ , t h i c k n e s s = tc , i n t e g r a t i o n R u l e =SIMPSON , n u m I n t P t s =5)

# Ass ign s e c t i o n s t o s e t s

SquareHComb . S e c t i o n A s s i g n m e n t ( r e g i o n =SquareHComb . s e t s [ ’ Face ’ ] , sec t ionName = ’ FaceShee t ’ , o f f s e t = 0 . 0 ,

o f f s e t T y p e =MIDDLE SURFACE , o f f s e t F i e l d = ’ ’ , t h i c k n e s s A s s i g n m e n t =FROM SECTION)

SquareHComb . S e c t i o n A s s i g n m e n t ( r e g i o n =SquareHComb . s e t s [ ’ Hal fCore ’ ] , sec t ionName = ’ HalfCore ’ , o f f s e t = 0 . 0 ,

o f f s e t T y p e =MIDDLE SURFACE , o f f s e t F i e l d = ’ ’ , t h i c k n e s s A s s i g n m e n t =FROM SECTION)

SquareHComb . S e c t i o n A s s i g n m e n t ( r e g i o n =SquareHComb . s e t s [ ’ Core ’ ] , sec t ionName = ’ Core ’ , o f f s e t = 0 . 0 ,
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o f f s e t T y p e =MIDDLE SURFACE , o f f s e t F i e l d = ’ ’ , t h i c k n e s s A s s i g n m e n t =FROM SECTION)

# C r e a t e M a t e r i a l

beam . M a t e r i a l ( name= ’ M a t e r i a l −1’)

beam . m a t e r i a l s [ ’ M a t e r i a l −1 ’]. E l a s t i c ( t a b l e = ( ( E , nu ) , ) )

beam . m a t e r i a l s [ ’ M a t e r i a l −1 ’]. P l a s t i c ( t a b l e = ( ( Y i e l d S t r e s s , 0 . 0 ) , ) )

# C r e a t e c o n t a c t s u r f a c e

S u p p o r t S k e t c h = beam . C o n s t r a i n e d S k e t c h ( name= ’ p r o f i l e ’ , s h e e t S i z e = 2 0 0 . 0 )

S u p p o r t S k e t c h . A r c 3 P o i n t s ( p o i n t 1 =(−(R / 2 . 0 )∗ ( 2 . 0∗∗ ( 0 . 5 ) ) , (R / 2 . 0 )∗ ( 2 . 0∗∗ ( 0 . 5 ) ) ) ,

p o i n t 2 = ( (R / 2 . 0 )∗ ( 2 . 0∗∗ ( 0 . 5 ) ) , (R / 2 . 0 )∗ ( 2 . 0∗∗ ( 0 . 5 ) ) ) , p o i n t 3 = ( 0 . 0 , R ) )

S u p p o r t = beam . P a r t ( name= ’ Suppor t ’ , d i m e n s i o n a l i t y =THREE D , t y p e =ANALYTIC RIGID SURFACE )

S u p p o r t . A n a l y t i c R i g i d S u r f E x t r u d e ( s k e t c h = S u p p o r t S k e t c h , d e p t h =Lc∗2 . 0 )

d e l beam . s k e t c h e s [ ’ p r o f i l e ’ ]

XYDatum = S u p p o r t . D a t u m P l a n e B y P r i n c i p a l P l a n e ( p r i n c i p a l P l a n e =XYPLANE, o f f s e t = 0 . 0 )

YZDatum = S u p p o r t . D a t u m P l a n e B y P r i n c i p a l P l a n e ( p r i n c i p a l P l a n e =YZPLANE, o f f s e t = 0 . 0 )

S u p p o r t . P a r t i t i o n F a c e B y D a t u m P l a n e ( da tumPlane = S u p p o r t . datums [ XYDatum . i d ] , f a c e s = S u p p o r t . f a c e s . f i n d A t ( c o o r d i n a t e s = ( 0 . 0 , R , 0 . 0 ) ) )

S u p p o r t . P a r t i t i o n F a c e B y D a t u m P l a n e ( da tumPlane = S u p p o r t . datums [ YZDatum . i d ] , f a c e s = S u p p o r t . f a c e s . f i n d A t ( c o o r d i n a t e s = ( 0 . 0 , R , Lc / 2 . 0 ) ) )

S u p p o r t . P a r t i t i o n F a c e B y D a t u m P l a n e ( da tumPlane = S u p p o r t . datums [ YZDatum . i d ] , f a c e s = S u p p o r t . f a c e s . f i n d A t ( c o o r d i n a t e s = ( 0 . 0 , R,−Lc / 2 . 0 ) ) )

RP1 = S u p p o r t . R e f e r e n c e P o i n t ( p o i n t = S u p p o r t . v e r t i c e s [ 1 ] )

S u p p o r t . S e t ( r e f e r e n c e P o i n t s =( S u p p o r t . r e f e r e n c e P o i n t s [ RP1 . i d ] , ) , name= ’ Fixed ’ )

# C r e a t e assembly

Assembly = beam . roo tAssembly

Assembly . DatumCsysByDefaul t (CARTESIAN)

HCombIns = Assembly . I n s t a n c e ( name= ’ SquareHComb−1’ , p a r t =SquareHComb , d e p e n d e n t =ON)

S u p p o r t I n s = Assembly . I n s t a n c e ( name= ’ Suppor t−1’ , p a r t = Suppor t , d e p e n d e n t =ON)

Assembly . EdgeToEdge ( movableAxis= S u p p o r t I n s . edges . f i n d A t ( c o o r d i n a t e s = ( 0 . 0 , R , Lc / 4 . 0 ) ) ,

f i x e d A x i s =HCombIns . edges . f i n d A t ( c o o r d i n a t e s =( Lc / 8 . 0 , −Hc / 2 . 0 , l ) ) , f l i p =ON)

Assembly . FaceToFace ( movab leP lane = S u p p o r t I n s . datums [ XYDatum . i d ] ,

f i x e d P l a n e =HCombIns . f a c e s . f i n d A t ( c o o r d i n a t e s = ( 0 . 0 , 0 . 0 , l ) ) , f l i p =OFF , c l e a r a n c e = 0 . 0 )

# C r e a t e s t e p

beam . S t a t i c S t e p ( name= ’ Disp lacemen t ’ , p r e v i o u s = ’ I n i t i a l ’ , d e s c r i p t i o n = ’ D i s p l a c e m e n t a t l o a d l i n e ’ ,

i n i t i a l I n c = 0 . 0 2 , maxInc = 0 . 0 2 , nlgeom=ON)

# C r e a t e i n t e r a c t i o n p r o p e r t y

# s e s s i o n . v i e w p o r t s [ ’ Viewpor t : 1 ’ ] . a s s e m b l y D i s p l a y . s e t V a l u e s ( i n t e r a c t i o n s =ON, c o n s t r a i n t s =ON, c o n n e c t o r s =ON,

e n g i n e e r i n g F e a t u r e s =ON, a d a p t i v e M e s h C o n s t r a i n t s =OFF)

beam . C o n t a c t P r o p e r t y ( ’ Con tac t ’ )

beam . i n t e r a c t i o n P r o p e r t i e s [ ’ Con tac t ’ ] . T a n g e n t i a l B e h a v i o r ( f o r m u l a t i o n =PENALTY, d i r e c t i o n a l i t y =ISOTROPIC , s l i p R a t e D e p e n d e n c y =OFF ,

p r e s s u r e D e p e n d e n c y =OFF , t e m p e r a t u r e D e p e n d e n c y =OFF , d e p e n d e n c i e s =0 , t a b l e = ( ( 0 . 0 2 , ) , ) , s h e a r S t r e s s L i m i t =None ,

m a x i m u m E l a s t i c S l i p =FRACTION , f r a c t i o n = 0 . 0 0 5 , e l a s t i c S l i p S t i f f n e s s =None )

beam . i n t e r a c t i o n P r o p e r t i e s [ ’ Con tac t ’ ] . NormalBehavior ( p r e s s u r e O v e r c l o s u r e =HARD, a l l o w S e p a r a t i o n =ON, c o n s t r a i n t E n f o r c e m e n t M e t h o d =DEFAULT)

# C r e a t e i n t e r a c t i o n

s e s s i o n . v i e w p o r t s [ ’ Viewpor t : 1 ’ ] . a s s e m b l y D i s p l a y . s e t V a l u e s ( s t e p = ’ Di sp l acemen t ’ )

s l a v e s u r f = r e g i o n T o o l s e t . Region ( s i d e 1 F a c e s =HCombIns . f a c e s . getByBoundingBox(−Lc /2.0 ,−Hc , l−2.0∗Lc , Lc / 2 , 0 . 0 , l +2.0∗Lc ) )

m a s t e r s u r f = r e g i o n T o o l s e t . Region ( s i d e 1 F a c e s = S u p p o r t I n s . f a c e s . getByBoundingBox(−Lc,−Hc/2.0−R , l−R , Lc , 0 . 0 , l +R ) )

beam . S u r f a c e T o S u r f a c e C o n t a c t S t d ( name= ’ SupContac t ’ , c r ea t eS tepName = ’ Disp l acemen t ’ , m a s t e r = m a s t e r s u r f ,

s l a v e = s l a v e s u r f , s l i d i n g =FINITE , t h i c k n e s s =OFF , i n t e r a c t i o n P r o p e r t y = ’ Con tac t ’ ,

a d j u s t M e t h o d =NONE, i n i t i a l C l e a r a n c e =OMIT, datumAxis=None , c l e a r a n c e R e g i o n =None )
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# C r e a t e BC’ s

SupportRP = Assembly . S e t ( r e f e r e n c e P o i n t s =( S u p p o r t I n s . r e f e r e n c e P o i n t s [ RP1 . i d ] , ) , name= ’ SupportRP ’ )

beam . DisplacementBC ( name= ’ F ixSuppo r t ’ , c r ea t eS tepName = ’ Disp l acemen t ’ , r e g i o n =SupportRP , u1 = 0 . 0 , u2 = 0 . 0 , u3 = 0 . 0 ,

u r1 = 0 . 0 , u r2 = 0 . 0 , u r3 = 0 . 0 , a m p l i t u d e =UNSET, f i x e d =OFF , d i s t r i b u t i o n T y p e =UNIFORM, f ie ldName = ’ ’ , l o c a l C s y s =None )

beam . ZsymmBC( name= ’Zsymm ’ , c r ea t eS t epName = ’ Disp lacemen t ’ , r e g i o n =Assembly . s e t s [ ’ SquareHComb−1. HalfCore ’ ] , l o c a l C s y s =None )

Assembly . S e t ( edges =HCombIns . edges . getByBoundingBox ( Lc / 4 . 0 , −Hc , 0 . 0 , Lc , Hc , T o t a lL ) , name= ’HCombSide1 ’ )

beam . XsymmBC( name= ’Xsymm’ , c r ea t eS t epName = ’ Disp lacemen t ’ , r e g i o n =Assembly . s e t s [ ’ HCombSide1 ’ ] , l o c a l C s y s =None )

Assembly . S e t ( edges =HCombIns . edges . getByBoundingBox(−Lc , Hc / 4 . 0 , −Lc / 2 . 0 , Lc , Hc , 0 . 0 ) , name= ’ LoadLine ’ )

beam . DisplacementBC ( name= ’ LoadDisp ’ , c r ea t eS tepName = ’ Disp l acemen t ’ , r e g i o n =Assembly . s e t s [ ’ LoadLine ’ ] , u1=UNSET, u2=maxdisp ,

u3=UNSET, ur1 =UNSET, ur2 =UNSET, ur3 =UNSET, a m p l i t u d e =UNSET, f i x e d =OFF , d i s t r i b u t i o n T y p e =UNIFORM, f ie ldName = ’ ’ , l o c a l C s y s =None )

Assembly . S e t ( edges =HCombIns . edges . getByBoundingBox(−Lc , −Hc , 0 . 0 , −Lc / 4 . 0 , Hc , T o t a lL ) , name= ’HCombSide2 ’ )

GPE RP = Assembly . R e f e r e n c e P o i n t ( p o i n t =(−Lc / 2 . 0 , Hc , 0 . 0 ) )

Assembly . S e t ( r e f e r e n c e P o i n t s =( Assembly . r e f e r e n c e P o i n t s [ GPE RP . i d ] , ) , name= ’GPE RP ’ )

beam . E q u a t i o n ( name= ’ G e n e r a l i z e d P l a n e S t r a i n ’ , t e r m s =((−1.0 , ’ HCombSide2 ’ , 1 ) , ( 1 . 0 , ’GPE RP ’ , 1 ) ) )

# C r e a t e a d d i t i o n a l s e t s f o r p o s t p r o c e s s i n g

SquareHComb . S e t ( f a c e s =SquareHComb . f a c e s . getByBoundingBox(−Lc / 4 . 0 , −Hc , 0.2∗Hc , Lc / 4 . 0 , Hc , 0.2∗Hc+2∗Lc ) , name= ’ PP YieldLoadCore ’ )

SquareHComb . S e t ( f a c e s =SquareHComb . f a c e s . getByBoundingBox(−Lc / 4 . 0 , −Hc , 0 . 0 , Lc / 4 . 0 , Hc , Lc ) , name= ’ PP BuckleLoadCore ’ )

SquareHComb . S e t ( f a c e s =SquareHComb . f a c e s . getByBoundingBox(−Lc,−Hc,−Lc / 2 . 0 , Lc , Hc , 0 . 0 ) , name= ’ PP HalfCore ’ )

SquareHComb . S e t ( f a c e s =SquareHComb . f a c e s . getByBoundingBox(−Lc / 2 . 0 , 0 . 0 , 0 . 2∗Hc , Lc / 2 . 0 , Hc / 2 . 0 , 0 . 2∗Hc+2∗Lc ) , name= ’ PP YieldLoadTopFace ’ )

SquareHComb . S e t ( f a c e s =SquareHComb . f a c e s . getByBoundingBox(−Lc / 2 . 0 , 0 . 0 , 0 . 0 , Lc / 2 . 0 , Hc / 2 . 0 , Lc ) , name= ’ PP BuckleLoadTopFace ’ )

SquareHComb . S e t ( f a c e s =SquareHComb . f a c e s . getByBoundingBox(−Lc /2.0 ,−Hc / 2 . 0 , 0 . 2∗Hc , Lc / 2 . 0 , 0 . 0 , 0 . 2∗Hc+2∗Lc ) , name= ’ PP Yie ldLoadBotFace ’ )

SquareHComb . S e t ( f a c e s =SquareHComb . f a c e s . getByBoundingBox(−Lc /2.0 ,−Hc / 2 . 0 , l−2.0∗Lc , Lc / 2 . 0 , Hc / 2 . 0 , l +2.0∗Lc ) , name= ’ PP Contac tReg ion ’ )

SquareHComb . S e t ( edges =SquareHComb . edges . getByBoundingBox(−Lc / 2 .0 ,0 . 0 ,−Lc / 4 . 0 , Lc / 2 . 0 , Hc , 0 . 2∗Hc ) , name= ’ PP LoadLineArea ’ )

# Wr i t e . t x t f i l e c o n t a i n i n g s p e c i m i n e geomet ry

mySaveFileName = myOdbName + ’ Geometry . t x t ’

mySaveFi le = open ( mySaveFileName , ’w+ ’)

n e w l i n e = s t r ( Hc ) + ’\n ’ + s t r ( Lc ) + ’\n ’ + s t r ( l ) + ’\n ’ + s t r ( t f ) + ’\n ’ + s t r ( t c ) + ’\n ’ + s t r ( maxdisp )

mySaveFi le . w r i t e l i n e s ( n e w l i n e )

mySaveFi le . c l o s e ( )

###################################################### CREATE AND SUBMIT JOB ###################################################

# C r e a t e j o b

mdb . Job ( name=myOdbName , model=ModelName , d e s c r i p t i o n = ’ ’ , t y p e =ANALYSIS , a tTime =None )

# Submit j o b and w a i t f o r c o m p l e t i o n b e f o r e p o s t p r o c e s s i n g

mdb . j o b s [ myOdbName ] . su bmi t ( c o n s i s t e n c y C h e c k i n g =OFF)

mdb . j o b s [ myOdbName ] . w a i t F o r C o m p l e t i o n ( )

##################################################### BEGIN POST PROCESSING ###################################################

#Open Odb

myOdb = openOdb ( p a t h =(myOdbName + ’ . odb ’ ) , r eadOnly = F a l s e )

# C r e a t e f rame r e p o s i t o r y

f r a m e R e p o s i t o r y = myOdb . s t e p s [ ’ Di sp l acemen t ’ ] . f r a m es
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# C o l l e c t f o r c e vs . d i s p l a c e m e n t d a t a

ForceNode = myOdb . roo tAssembly . i n s t a n c e s [ ’SUPPORT−1 ’]. n o d e S e t s [ ’ FIXED ’ ]

f o r c e = [ ]

d i s p l a c e m e n t = [ ]

t ime = [ ]

f o r i i n r a n g e ( l e n ( f r a m e R e p o s i t o r y ) ) :

f r = f r a m e R e p o s i t o r y [ i ]

RF = f r . f i e l d O u t p u t s [ ’ RF ’ ] . g e t S u b s e t ( r e g i o n =ForceNode ) . v a l u e s

RF2 = RF [ 0 ] . d a t a [ 1 ]

f o r c e . append ( RF2 )

t = f r . f r ameValue

t ime . append ( t )

d i s p = t∗maxdisp∗(−1.0)

d i s p l a c e m e n t . append ( d i s p )

# C a l c u l a t e s l o p e f o r d a t a p o i n t s

SLOPE = [ 0 . 0 , ]

s l o p e = 0 . 0

f o r i i n r a n g e ( 1 , l e n ( f o r c e ) ) :

i f ( ( d i s p l a c e m e n t [ i ]−d i s p l a c e m e n t [ i−1]) != 0 . 0 ) :

s l o p e = ( f o r c e [ i ]− f o r c e [ i −1] ) / ( d i s p l a c e m e n t [ i ]−d i s p l a c e m e n t [ i−1])

SLOPE . append ( s l o p e )

# Dete rmine d a t a p o i n t s i n l i n e a r reg ime

l i n e a r P o i n t s = [ ]

f o r i i n r a n g e ( l e n (SLOPE ) ) :

i f ( f o r c e [ i ] >= max ( f o r c e ) / 1 5 . 0 ) :

i f ( abs ( ( SLOPE[ i ]−SLOPE[ i −1]) /SLOPE[ i ] ) <= 0 . 0 1 ) o r l i n e a r P o i n t s = = [ ] :

l i n e a r P o i n t s . append ( i )

e l s e :

b r e a k

# S e l e c t f i r s t and l a s t p o i n t s o f l i n e a r reg ime t o d e f i n e s l o p e

Force1 = f o r c e [ l i n e a r P o i n t s [ 0 ] ]

Disp1 = d i s p l a c e m e n t [ l i n e a r P o i n t s [ 0 ] ]

Force2 = f o r c e [ l i n e a r P o i n t s [−1]]

Disp2 = d i s p l a c e m e n t [ l i n e a r P o i n t s [−1]]

i f Disp1 == Disp2 :

Disp1 = d i s p l a c e m e n t [ l i n e a r P o i n t s [0]−1]

Force1 = f o r c e [ l i n e a r P o i n t s [0]−1]

# C r e a t e l i s t o f p r o j e c t e d d i s p l a c e m e n t s c o r r e s p o n d i n g t o f o r c e s i n f o r c e l i s t

S lope12 = ( Force2−Force1 ) / ( Disp2−Disp1 )

P r o j D i s p = [ ]

f o r i i n r a n g e ( l e n ( f o r c e ) ) :

p r o j d i s p = ( f o r c e [ i ]−Force1 ) / S lope12 +Disp1

P r o j D i s p . append ( p r o j d i s p )

O f f s e t F r a m e = 0

SlopeFrame = 0

# Find f i r s t f rame where t h e r e i s a 2% o f f s e t from l i n e a r i t y

f o r i i n r a n g e ( l e n ( f o r c e ) ) :

i f ( f o r c e [ i ] >= max ( f o r c e ) / 1 0 . 0 ) :

i f ( abs ( ( d i s p l a c e m e n t [ i ]−P r o j D i s p [ i ] ) / d i s p l a c e m e n t [ i ] ) >= 0 . 0 2 ) :
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O f f s e t F r a m e = i

b r e a k

# Find f i r s t f rame where t h e r e i s a 10% change i n s l o p e

f o r i i n r a n g e ( l e n ( f o r c e ) ) :

i f ( f o r c e [ i ] >= max ( f o r c e ) / 1 0 . 0 ) :

i f ( abs ( ( SLOPE[ i ]−Slope12 ) / S lope12 ) >= 0 . 1 ) :

SlopeFrame = i

b r e a k

# Wr i t e f o r c e vs . d i s p l a c e m e n t d a t a t o . t x t f i l e

mySaveFileName = myOdbName + ’ F o r c e D i s p . t x t ’

mySaveFi le = open ( mySaveFileName , ’w+ ’)

n e w l i n e = s t r ( )

f o r i i n r a n g e ( l e n ( f o r c e ) ) :

n e w l i n e = n e w l i n e + s t r ( f o r c e [ i ] ) + ’\ t\ t ’ + s t r ( d i s p l a c e m e n t [ i ] ) + ’\n ’

mySaveFi le . w r i t e l i n e s ( n e w l i n e )

mySaveFi le . c l o s e ( )

#Check f o r y i e l d i n g on t o p f a c e by l o a d l i n e

###################################################################################################################################

LoadTopFace = myOdb . roo tAssembly . i n s t a n c e s [ ’SQUAREHCOMB−1 ’]. e l e m e n t S e t s [ ’PP YIELDLOADTOPFACE ’ ]

LoadTopFaceYield = 0

LoadTopFaceYieldFrame = 0

f o r i i n r a n g e ( l e n ( f r a m e R e p o s i t o r y ) ) :

f r = f r a m e R e p o s i t o r y [ i ]

s = f r . f i e l d O u t p u t s [ ’ S ’ ] . g e t S u b s e t ( r e g i o n =LoadTopFace , p o s i t i o n =INTEGRATION POINT , e lementType = ’S4R ’ ) . v a l u e s

f o r j i n s :

s11 = j . d a t a [ 0 ]

s22 = j . d a t a [ 1 ]

s33 = j . d a t a [ 2 ]

s12 = j . d a t a [ 3 ]

mis = ( 1 . 0 / ( s q r t ( 2 . 0 ) )∗ s q r t ( ( s11−s22 )∗∗2 + ( s22−s33 )∗∗2 + ( s33−s11 )∗∗2 + 6∗( s12∗∗2 + 0∗∗2 + 0∗∗2) ) )

i f ( LoadTopFaceYield == 1 ) :

b r e a k

e l i f ( mis >= 4 9 0 0 0 0 0 0 0 . 0 ) :

LoadTopFaceYield = 1

e l s e :

c o n t i n u e

i f ( LoadTopFaceYield == 1 ) :

LoadTopFaceYieldFrame = i

b r e a k

#Check f o r y i e l d i n g on bot tom f a c e by l o a d l i n e

##################################################################################################################################

LoadBotFace = myOdb . roo tAssembly . i n s t a n c e s [ ’SQUAREHCOMB−1 ’]. e l e m e n t S e t s [ ’PP YIELDLOADBOTFACE ’ ]

LoadBotFaceYie ld = 0

LoadBotFaceYie ldFrame = 0

f o r i i n r a n g e ( l e n ( f r a m e R e p o s i t o r y ) ) :

f r = f r a m e R e p o s i t o r y [ i ]

s = f r . f i e l d O u t p u t s [ ’ S ’ ] . g e t S u b s e t ( r e g i o n =LoadBotFace , p o s i t i o n =INTEGRATION POINT , e lementType = ’S4R ’ ) . v a l u e s

f o r j i n s :

s11 = j . d a t a [ 0 ]

s22 = j . d a t a [ 1 ]
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s33 = j . d a t a [ 2 ]

s12 = j . d a t a [ 3 ]

mis = ( 1 . 0 / ( s q r t ( 2 . 0 ) )∗ s q r t ( ( s11−s22 )∗∗2 + ( s22−s33 )∗∗2 + ( s33−s11 )∗∗2 + 6∗( s12∗∗2 + 0∗∗2 + 0∗∗2) ) )

i f ( LoadBotFaceYie ld == 1 ) :

b r e a k

e l i f ( mis >= 4 9 0 0 0 0 0 0 0 . 0 ) :

LoadBotFaceYie ld = 1

e l s e :

c o n t i n u e

i f ( LoadBotFaceYie ld == 1 ) :

LoadBotFaceYie ldFrame = i

b r e a k

i f LoadBotFaceYie ldFrame ==0:

LoadFaceYie ldFrame =LoadTopFaceYieldFrame

e l i f LoadTopFaceYieldFrame ==0:

LoadFaceYie ldFrame = LoadBotFaceYie ldFrame

e l s e :

LoadFaceYie ldFrame = min ( LoadTopFaceYieldFrame , LoadBotFaceYie ldFrame )

#Check f o r y i e l d i n g a t c o r e

###################################################################################################################################

LoadCore = myOdb . roo tAssembly . i n s t a n c e s [ ’SQUAREHCOMB−1 ’]. e l e m e n t S e t s [ ’PP YIELDLOADCORE ’ ]

LoadCoreYie ld = 0

LoadCoreYieldFrame = 0

f o r i i n r a n g e ( l e n ( f r a m e R e p o s i t o r y ) ) :

f r = f r a m e R e p o s i t o r y [ i ]

s = f r . f i e l d O u t p u t s [ ’ S ’ ] . g e t S u b s e t ( r e g i o n =LoadCore , p o s i t i o n =INTEGRATION POINT , e lementType = ’S4R ’ ) . v a l u e s

f o r j i n s :

s11 = j . d a t a [ 0 ]

s22 = j . d a t a [ 1 ]

s33 = j . d a t a [ 2 ]

s12 = j . d a t a [ 3 ]

mis = ( 1 . 0 / ( s q r t ( 2 . 0 ) )∗ s q r t ( ( s11−s22 )∗∗2 + ( s22−s33 )∗∗2 + ( s33−s11 )∗∗2 + 6∗( s12∗∗2 + 0∗∗2 + 0∗∗2) ) )

i f ( LoadCoreYie ld == 1 ) :

b r e a k

e l i f ( mis >= 4 9 0 0 0 0 0 0 0 . 0 ) :

LoadCoreYie ld = 1

e l s e :

c o n t i n u e

i f ( LoadCoreYie ld == 1 ) :

LoadCoreYieldFrame = i

b r e a k

#Check f o r c o r e b u c k l i n g [ n o r m a l i z e d by p l a t e t h i c k n e s s ]

##################################################################################################################################

BuckleLoadCore = myOdb . roo tAssembly . i n s t a n c e s [ ’SQUAREHCOMB−1 ’]. n o d e S e t s [ ’PP BUCKLELOADCORE’ ]

LoadCoreBuckle = 0

LoadCoreBuckleFrame = 0

unorm = 0

f o r i i n r a n g e ( l e n ( f r a m e R e p o s i t o r y ) ) :

f r = f r a m e R e p o s i t o r y [ i ]

u = f r . f i e l d O u t p u t s [ ’U ’ ] . g e t S u b s e t ( r e g i o n =BuckleLoadCore ) . v a l u e s

f o r j i n u :
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u1 = j . d a t a [ 0 ]

u2 = j . d a t a [ 1 ]

u3 = j . d a t a [ 2 ]

unorm = u1

i f ( LoadCoreBuckle == 1 ) :

b r e a k

e l i f ( abs ( unorm ) >= t c / 1 0 . 0 ) :

LoadCoreBuckle = 1

e l s e :

c o n t i n u e

i f ( LoadCoreBuckle == 1 ) :

LoadCoreBuckleFrame = i

b r e a k

#Check f o r f a c e b u c k l i n g [ n o r m a l i z e d by p l a t e t h i c k n e s s ]

###################################################################################################################################

LoadTopFace = myOdb . roo tAssembly . i n s t a n c e s [ ’SQUAREHCOMB−1 ’]. n o d e S e t s [ ’PP BUCKLELOADTOPFACE’ ]

LoadTopFaceBuckle = 0

LoadTopFaceBuckleFrame = 0

LoadTopFaceBuckleFrame1 = 0

LoadTopFaceBuckleFrame2 = 0

unorm = 0 . 0

maxunorm = −10.0

minunorm = 1 0 . 0

node1 = 0

node2 = 0

FaceBuck leDisp = [ ]

f r = f r a m e R e p o s i t o r y [−1]

u = f r . f i e l d O u t p u t s [ ’U ’ ] . g e t S u b s e t ( r e g i o n =LoadTopFace ) . v a l u e s

f o r j i n u :

u1 = j . d a t a [ 0 ]

u2 = j . d a t a [ 1 ]

u3 = j . d a t a [ 2 ]

unorm = u2

i f ( unorm > maxunorm ) :

maxunorm = unorm

node1 = j . nodeLabe l

i f ( unorm < minunorm ) :

minunorm = unorm

node2 = j . nodeLabe l

e l s e :

c o n t i n u e

f o r i i n r a n g e ( l e n ( f r a m e R e p o s i t o r y ) ) :

f r = f r a m e R e p o s i t o r y [ i ]

u = f r . f i e l d O u t p u t s [ ’U ’ ] . g e t S u b s e t ( r e g i o n =LoadTopFace ) . v a l u e s

f o r j i n u :

i f ( j . nodeLabe l == node1 ) :

u1 = j . d a t a [ 0 ]

u2 = j . d a t a [ 1 ]

u3 = j . d a t a [ 2 ]

FaceBuck leDisp . append ( u2 )

# C a l c u l a t e s l o p e f o r d a t a p o i n t s

SLOPE = [ 0 . 0 , ]
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s l o p e = 0 . 0

f o r i i n r a n g e ( 1 , l e n ( FaceBuck leDisp ) ) :

i f ( ( t ime [ i ]− t ime [ i−1]) != 0 . 0 ) :

s l o p e = ( FaceBuck leDisp [ i ]−FaceBuck leDisp [ i −1] ) / ( t ime [ i ]− t ime [ i−1])

SLOPE . append ( s l o p e )

# Dete rmine d a t a p o i n t s i n l i n e a r reg ime

l i n e a r P o i n t s = [ ]

f o r i i n r a n g e ( l e n (SLOPE ) ) :

i f ( f o r c e [ i ] >= max ( f o r c e ) / 1 5 . 0 ) :

i f ( abs ( ( SLOPE[ i ]−SLOPE[ i −1]) /SLOPE[ i ] ) <= 0 . 0 1 ) o r l i n e a r P o i n t s = = [ ] :

l i n e a r P o i n t s . append ( i )

e l s e :

b r e a k

# S e l e c t two p o i n t s t o d e f i n e l i n e a r reg ime

FaceBuck leDisp1 = FaceBuck leDisp [ l i n e a r P o i n t s [ 0 ] ]

t ime1 = t ime [ l i n e a r P o i n t s [ 0 ] ]

FaceBuck leDisp2 = FaceBuck leDisp [ l i n e a r P o i n t s [−1]]

t ime2 = t ime [ l i n e a r P o i n t s [−1]]

S c a l e d F a c e B u c k l e D i s p = [ ]

S lope12 = ( FaceBuckleDisp2−FaceBuck leDisp1 ) / ( t ime2−t ime1 )

f o r i i n r a n g e ( l e n ( FaceBuck leDisp ) ) :

s c a l e d D i s p = Slope12∗( t ime2−t ime [ i ] ) + FaceBuck leDisp [ i ]−FaceBuck leDisp2

S c a l e d F a c e B u c k l e D i s p . append ( s c a l e d D i s p )

f o r i i n r a n g e ( l e n ( S c a l e d F a c e B u c k l e D i s p ) ) :

i f ( S c a l e d F a c e B u c k l e D i s p [ i ] >= t f / 1 0 . 0 ) :

LoadTopFaceBuckleFrame1 = i

b r e a k

FaceBuck leDisp = [ ]

f o r i i n r a n g e ( l e n ( f r a m e R e p o s i t o r y ) ) :

f r = f r a m e R e p o s i t o r y [ i ]

u = f r . f i e l d O u t p u t s [ ’U ’ ] . g e t S u b s e t ( r e g i o n =LoadTopFace ) . v a l u e s

f o r j i n u :

i f ( j . nodeLabe l == node2 ) :

u1 = j . d a t a [ 0 ]

u2 = j . d a t a [ 1 ]

u3 = j . d a t a [ 2 ]

FaceBuck leDisp . append ( u2 )

# C a l c u l a t e s l o p e f o r d a t a p o i n t s

SLOPE = [ 0 . 0 , ]

s l o p e = 0 . 0

f o r i i n r a n g e ( 1 , l e n ( FaceBuck leDisp ) ) :

i f ( ( t ime [ i ]− t ime [ i−1]) != 0 . 0 ) :

s l o p e = ( FaceBuck leDisp [ i ]−FaceBuck leDisp [ i −1] ) / ( t ime [ i ]− t ime [ i−1])

SLOPE . append ( s l o p e )

# Dete rmine d a t a p o i n t s i n l i n e a r reg ime

l i n e a r P o i n t s = [ ]

f o r i i n r a n g e ( l e n (SLOPE ) ) :

i f ( f o r c e [ i ] >= max ( f o r c e ) / 1 5 . 0 ) :

i f ( abs ( ( SLOPE[ i ]−SLOPE[ i −1]) /SLOPE[ i ] ) <= 0 . 0 1 ) o r l i n e a r P o i n t s = = [ ] :
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l i n e a r P o i n t s . append ( i )

e l s e :

b r e a k

# S e l e c t two p o i n t s t o d e f i n e l i n e a r reg ime

FaceBuck leDisp1 = FaceBuck leDisp [ l i n e a r P o i n t s [ 0 ] ]

t ime1 = t ime [ l i n e a r P o i n t s [ 0 ] ]

FaceBuck leDisp2 = FaceBuck leDisp [ l i n e a r P o i n t s [−1]]

t ime2 = t ime [ l i n e a r P o i n t s [−1]]

S c a l e d F a c e B u c k l e D i s p = [ ]

S lope12 = ( FaceBuckleDisp2−FaceBuck leDisp1 ) / ( t ime2−t ime1 )

f o r i i n r a n g e ( l e n ( FaceBuck leDisp ) ) :

s c a l e d D i s p = Slope12∗( t ime2−t ime [ i ] ) + FaceBuck leDisp [ i ]−FaceBuck leDisp2

S c a l e d F a c e B u c k l e D i s p . append ( s c a l e d D i s p )

f o r i i n r a n g e ( l e n ( S c a l e d F a c e B u c k l e D i s p ) ) :

i f ( S c a l e d F a c e B u c k l e D i s p [ i ] >= t f / 1 0 . 0 ) :

LoadTopFaceBuckleFrame2 = i

b r e a k

i f LoadTopFaceBuckleFrame1 ==0:

LoadTopFaceBuckleFrame=LoadTopFaceBuckleFrame2

e l i f LoadTopFaceBuckleFrame2 ==0:

LoadTopFaceBuckleFrame=LoadTopFaceBuckleFrame1

e l s e :

LoadTopFaceBuckleFrame = min ( LoadTopFaceBuckleFrame1 , LoadTopFaceBuckleFrame2 )
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