
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1983

Merging of bibliographic data bases in the leader
retrieval system.
Steven Alan Russell

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Databases and Information Systems Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Russell, Steven Alan, "Merging of bibliographic data bases in the leader retrieval system." (1983). Theses and Dissertations. Paper 2467.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2467&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2467&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2467&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=preserve.lehigh.edu%2Fetd%2F2467&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2467?utm_source=preserve.lehigh.edu%2Fetd%2F2467&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

MERGING OF BIBLIOGRAPHIC DATA BASES IN THE

LEADER RETRIEVAL SYSTEM

by

Steven Alan Russell

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Information Science

Lehigh University

1983

ProQuest Number: EP767 44

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Pro

ProQuest EP767 44

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition© ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

This thesis is accepted and approved in partial fullfillment of

the requirements for the degree of Master of Science.

Date

Professor in Charge

Chairman of the Department

ii

Acknowledgements

I wish to thank Dr. Donald J. Hillman for the many

opportunities he has given me and for the valuable experience I have

gained while employeed at the Center for Information and Computer

Science. I also wish to thank Dr. Robert T. Meadowcroft of Marist

College, who provided the key input for the completion of this

project. But the people I owe most of my gratitude to are those who

put up with my constant change of moods while I was trying to get

this thing done. So to Mom, Dad, Henz, Bryce, Kerry, Mac, Rick,

Dana, and most especially to Carol, I offer my deepest appreciation.

iii

Table of Contents

Abstract
1. Introduction
2. Glossary of Unique Terms
3. Program Descriptions
).1 Sorts A- E
).2 EILOAD: Process the COMPENDEX Tape
3.) ZERO: Merge Phrases
).4 ONE: Create Phrase Dictionary
3.5 T'NO: Document 'ferm Affiliation Merge
).6 THR~E: Associated Phrase Merge
3.7 FOUR: Create Phrase Retrieval Files
j.d FIVE: Create Document Retrieval Files
5.9 SIX: Phrase Analysis
j.10 SEVEJ: ~tem File Merge
j.ll ~IGHT: Create Stem Retrieval Files
4. Performing a Connectivity Run
5. Maintenance and Portability
5.1 Non Standard Language Elements
5.2 Changes in Data Types
6. Use of the LEADER Retrieval Files
6.1 Initial Phrase Retrieval
6.2 Document Retrieval
6.) Affiliated Phrase Retrieval
6.4 Associated .Phrase Retrieval
6.5 Document and Phrase Text Retrieval
Bibliography
I. Connectivity Program Structure Charts
II. Connectivity System Flow Chart
III. Data Element Descriptions
III.1 Connectivity Data Elements
1II.2 Retrieval Data Elements
IV. File Descriptions

iv

2

5
7
7
8

10
12
13
14
15
16
17
18
18

20

23
23
24
25
28
31
32
33
34
36
37
50
55
55
70
71

Figure 1-1:
Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 6-5:
Figure 6-6:
Figure 6-7:
Figure 6-8:
Figure 6-9:
Figure 6-10:
Figure 6-11:
Figure 6-12:
Figure 6-13:
Figure 6-14:
Figure 6-15:
Figure 7-1:
Figure 7-2:
Figure 7-3:
Figure 7-4:
Figure 7-5:
Figure 7-6:
Figure 7-7:
Figure 7-8:
Figure 7-9:
Figure 7-10:
Figure 7-11:
Figure 8-1:

List of Figures

The L~ADER Retrieval System
Form of a Relation
Relation with a Repeating Group
Relation in First Normal Form
Physical depresentation of a Relation
Organization of the Retrieval Files
Query Relation
Match Between ~ystem and Query Stems
Profile of System/Query Stem Match
Final Output of Initial Phrase Retrieval
Affiliated Document Relation
Retrieved Document Relation
Affiliated Phrase Information
Output of Affiliated Phrase Retrieval
Associated Phrase Relation
Output of Associated Phrase Retrieval

EILOAD
SORT A
ZERO
ONE
T'tiO
THREE
FOUR
FIVE
SIX

SEVEN
EIGtiT

System Flow Chart

v

2
25
26
26
27
29
30
30
30
31
31
32
32
33
34
'34
38
40
41
42
43
44
45
46
47
48
49
50

Abstract

'.rhe LEADBR Document Retrieval System consists of two

components, both of which are currentJ y programmed in Pascal. The

retreival component, which is responsible for processing user

queries and returning relevant documents, is well sui ted for the

language. The connectivity component, which is responsible for

producing internally stored information, consists of file sorts and

merges. These applications are not Pascal oriented. Another

problem with Pascal is that lack of standardization causes lack of

portability. This project involved the programming of connectivity

in 1974 ANSI COBOL and producing the documentation necessary for its

implementation. Tile final product is a highly structured, highly

portable, and easily maintained system which provides the input

necessary for the retrieval component of LEADER. This paper

contains descriptions of all the programs, plus instructions for the

use of the LEADER retrieval files.

1

1. Introduction

The LEADER Document Retrieval System was originally developed

at Lehigh University in the late 1960's and early 1970's.

Programmed in FORTRAN for a CDC 6000 series machine, LEADER was

totally machine dependent and, due to the technology of the day,

required huge amounts of storage space and processing power. The

system was very well received and continued in operation into the

mid 1970's. In 1981, work began on converting LEADER to run on a

DECSY'S'fb:M.-20 with the possibility of moving the retrieval portion

onto a minicomputer. The new version was written entirely in Pascal

and, due to lack of standardization in the language, was once again

machine dependent.

Bibl'

Past Internal Info

.Figure 1-1:

Document References

The LEADER Retrieval System

In both versions, LEADEH consisted of two components. In the

retrieval component, user requests are broken down into structures

which can be recognized by the system. These structures are merged

2

with internally stored information to return documents for the user

to choose from. The data structures provided by Pascal are very

well sui ted to the processing which is performed in the retrieval

component. '.Pherefore, it was decided to leave retrieval in Pascal

and go through the conversion when changing machines.

The connectivity component is responsible for producing the

internally stored information which user queries are compared with.

Connectivity is strictly a sequential application consisting mostly

of file sorts and merges. Input consists of past connectivity runs

and tapes provided by bibliographic data base vendors. In general,

each tape consists of document references which include title,

author, citation, CODEN designation, abstract, and a number of

phrases which reference each document. After processing is

completed, ten retrieval files are produced. These files are

transferred onto the retrieval machine and serve as input to the

system.

The second version of connectivity was also written in Pascal.

There were a number of problems with the choice of this language.

First, the input/output capabilities of Pascal are poorly suited to

an application which deals strictly with file processing. Second,

the use of Pascal is not widespread enough to allow connectivity

runs to take place on a large majority of machines. And third, as

was mentioned above, lack of standardization makes conversion a

difficult and tedious task.

There were a number of problems encoutered during the

programming of the second version of connectivity due to lack of

documentation from the first version. The only materials available

were FORTRAN listings, file specifications, and operating

instructions. Therefore, it was necessary to perform a substantial

amount of additional work to finish version two. And like version

one, the amount of documentation produced for version two was

minimal.

This project was undertaken to provide solutions for the above

problems. The programs necessary for connectivity have been

rewritten in 1974 ANSI COBOL which provides input/output and file

processing capabilities superior to those of Pascal. The new

version of connectivity is a highly structured and highly portable

system which produces a set of ten retrieval files necessary for the

execution of the LEADER Retrieval System. What follows in the

remainder of this report is the documentation necessary to implement

and maintain connectivity on any machine which offers 1974 ANSI

COBOL. Also included is a description of the function of the LEADER

retrieval files.

4

2. Glossary of Unique Terms

A number of terms which are unique to LEADER must be defined to

facilitate understanding of this report.

Index Term: A phrase which serves as an identifier for a given

document. In LEADER, index terms are supplied along with each

document reference. Each document must have at least one index

term. Note that index terms are referred to as phrases throughout

the programs.

Affiliation: The notion of affiliation can be expressed as

follows. If X is an index term for document D then X is affiliated

with D and D is affiliated with X.

Affiliation Weight: The value of an affiliation between a

document and an index term. These weights are determined by what

type of index term is being looked at. Normally, the bibliographic

data base vendors provide different types of index terms for each

document. For example, Engineering Index provides main headings,

sub headings, cross reference terms, and free language terms. Each

would be assigned a different affiliation weight.

Association: If X and Y are index terms and both are affiliated

with document D then X is associated with Y and Y is associated with

x.

5

Association Weight: '.Phe value of an association between two

index tenns. When two terms are initially associated, the

association weight is defined to be the product of their affiliation

weights. For each subsequent association of the same two tenns, the

association weight is equal to the sum of the old association weight

and the last association weight minus the product of the two.

Stem: A stem is a word which has been extracted from an index

ter;n and conforms to the following characteristics. First, a stem

must be at least three characters in length. Sec9nd, if a word ends

in 'S', that character is truncated making the word into a stem.

'rhird, the stem may not appear in the stop list (includes words such

as THE, AND, BUT, FOR, etc •••). And fourth, a word which is greater

than fifteen characters in length is truncated to a stem of fifteen

characters.

Stem Position: This denotes the position of a stem within an

index tenn. For the purpose of comparing stems with user queries,

stems are numbered from right to left. For example, the rightmost

stem in any index tenn will be in position one.

6

Association Weight: 'rhe value of an association between two

index terms. When two terms are initially associated, the

association weight is defined to be the product of their affiliation

weights. For each subsequent association of the same two terms, the

association weight is equal to the sum of the old association weight

and the last association weight minus the product of the two.

Stem: A stem is a word which has been extracted from an index

ter;n and conforms to the following characteristics. First, a stem

must be at least three characters in length. Second, if a word ends

in 'S', that character is truncated making the word into a stem.

Third, the stem may not appear in the stop list (includes words such

as THE, AND, BUT, FOH, etc •••). And fourth, a word which is greater

than fifteen characters in length is truncated to a stem of fifteen

characters.

Stem Position: This denotes the position of a stem within an

index term. For the purpose of comparing stems with user queries,

stems are nu:nbered from right to left. For example, the rightmost

stem in any index term will be in position one.

6

5. Program Descriptions

Wnat follows is a general description of the processing which

occurs in the connectivity programs. For more detail, Appendix I

and Appendix II can be referenced for structure charts and the

system flow chart. Note that each program, except for the sorts,

produces a file called STAT-FILE. This file contains statistics for

the current connectivity run and must be printed out after execution

of the program or else the next program will write over it. Also,

in the input/output section of each program description, the name

following the actual file name is the physical location of the file

on a DECSYSTEM-20 directory. The listings for these programs are on

file at the Lehigh University Center for Information and Computer

Science.

3.1 Sorts A - E

These programs are responsible for sorting transaction files

before they are used as input to a merge program. SORTA sorts the

phrase transactions in phrase text order with the secondary key

being document number. SORTB sorts the partial phrase key file in

phrase number order. SORTC sorts the document term affiliation

transactions into phrase number order within document number order.

SORTD sorts the phrase association transactions in associated phrase

number order within phrase number order. And SORTE sorts the stem

transactions alphabetically by stem with phrase nu:nber and position

7

as a concatenated secondary key. Each of these programs uses the

SOrl'.P feature offered in 19'74 ANSI COBOL. Note that this feature

will only be available on machines which have a sorting utility.

The only sort which differs from the others is 30nTA. This is

because SORTA outputs variable length phrases. Rather than using

the full 150 characters alotted for each phrase, only the actual

characters in the phrase are written. This processing occurs in the

output procedure of the program.

3.2 EILOAD: Process the COMPENDEX Tape

INPU'r

OUTPUT

E:<TEND

COMP~NDEX-FILE

SKELETON-FILE (SKEL.CON)
NOUN-PntiASE-FIL8 (CNFLOl.CON)
SKELETON-FILE (SKEL.CON)
STAT-FILE (STATS.CON)
DOCUMEN'r-FILE (CY3DC1. NEW)
PARTIAL-DOCUM~~T-KEY (CNFL20.CON)

For EILOAD to run properly, entries have to exist for SKELETON-

FILE and the files which are extended. If a previous connectivity

run has taken place, those files will contain information from the

past run. Otherwise, they will be empty.

'o'lhen the program starts off, the operator is given a choice

between three options, either process the entire tape, process the

first n records, or process the last n records. After the choice is

made, the appropriate number of documents is skipped, if any. Then

the last document n~~ber assigned is read from SKELETON-FILE. This

8

is necessary for assignment of numbers to those documents which will

be read off the current tape. If SKELETON-FILE is empty, the last

document number assigned will be zero.

'rhe tape consists of fixed length records of 2046 characters

each. Within those records are variable length documents. Each

document begins with a directory which gives the length of each of

the eighteen available fields in characters. After the directory is

read into an eighteen place array, processing of the document can

begin. The fields processed, in order, are title, main heading, sub

heading, author, citation, CODEN, affiliation, abstract, Card-A-Lert

codes, cross references terms, and free language terms. The title,

author, citation, CODEN, affiliation and abstract are written

directly to DOCD.'olENT-FILS. Information concerning the lengths of

these fields along with their location within DOCUMENT-FILE is

written to PARTIAL-DOCUMENT-KEY.

The main heading and the sub heading are concatenated into one

phrase. This phrase, along with the Card-A-Lert codes, cross

reference and free language terms are written to >•WUN-PHRASE-FILE

along with the affiliated document number and the affiliation

weight, The main/sub heading is assigned a weight of eight, Card-A­

Lerts a weight of five, cross references a weight of seven, and free

language terms a weight of six.

9

After processing of the tape is completed the last document

number assigned is written to SKELETON-FILE for use in future

connectivity runs. Final statistics are compiled and written to

.:3TAT-F'ILI!:. Errors, wnich will mainly be truncated phrases, will

also be reported in STAT-FILE.

3.3 ZERO: Merge Phrases

INPU'r : 1~0UN-PtlRAS~-TRAN (CNFL02.CON)
OLD-NP-MASTER (CNFL04.CON)
CARD-A-LERTS (CALCS.TXT)
SKEL~TON-FILE (SKEL.CON)

OUTPUT: NEw-NP-MASTER (CNFL05.CON)
DOCUMENT-'rERM-TRANS (CNFL10.CON)
NEW-PHRASE-FILE (CNFL23.CON)
SKELETON-FILE (SKEL.CON)
STAT-FILE (STATS.CON)

Program ZERO is responsible for merging transaction phrases

with previously existing phrases. Included in this process is the

writing of two other files which serve as input to other

connectivity programs. · Processing begins with retrieval of the last

phrase number assigned from SKELETON-FILE. For an initial run, this

value will be zero.

The only difference between the transaction file and the master

files is that the master files have a PHRASE-NU~BER field.

Otherwise, both are sorted on DOCUMENT-NUMBER within PHRASE-TEXT. A

copy of the last record written to the new master file is kept for

the purpose of assigning phrase numbers to transaction phrases. The

name of this record is PREVIOUS-RECORD.

10

•rnere are two modules which write records to the new master

file. 232-PROCESS-OLD-MAS'rER copies the old master record into

PREVIOUS-RECORD and into the new master record which is then written

to the new master file. 231-PROCESS-TRANSACTION is slightly more

involved. If a transaction phrase is a Card-A-Lert code, the actual

text of the phrase has to be retrieved from CARD-A-LERTS. The

transaction phrase text is compared to the text of the previous

phrase. If they are the same, the transaction receives the same

phrase number as the previous phrase. Otherwise, the last phrase

number is incremented and assigned to the transaction record and the

transaction phrase is written to the NhlW-PHRASE-.J.t,ILE. After the

phrase number is assigned, an affiliation record containing the

transaction's document number and phrase number is written to

DOCUMENT-'rERM-TRANS. Then the transaction, along with its phrase

nurnber, are copied into PREVIOUS-RECORD and the new master record

which is written to the new master file.

In the merge, the first record is read from both OLD-NP-MASTER

and HOUN-PHRASE-TRAN. The phrase texts are compared to determine

which record is to be processed. In short, the algorithm is

expressed below.

IF transaction phrase < old master phrase
Process transaction
Read next transaction hlL8E

IF old master phrase < transaction phrase
Process old master
Read next old master ELSE

IF transaction document < old master document

11

Process transaction
Read next transaction &LSE

IF old master document < transaction document
Process old master
Read next old master.

As soon as the end of either file is reached, the other file is

processed sequentially until it is empty. After the merge is

completed, the last phrase nuinber assigned is written to SKELETON-

FILl!:. Then the statistics report is compiled and written to STA'.P-

FILE.

).4 ONE: Create Phrase Dictionary

INPU'l' : NOUN-PHRAS£-I<!ASTER (CNFL05. CON)
OUTPUT: PARTIAL-PHRASE-KEY (CNFL08.CO~)

PHRASI!:-'rEXT-F ILE (C:i2RT2. NEW)
DOCUMENT-STORAGE (CY4RT2.NEW)
STAT-FILE (STATS.CON)

Program ON£ processes the phrase master file sequentially and

produces two retrieval files, along with a partial key for those

files. For each record on the phrase master file, the document

number and affiliation weight are written to DOCUMENT-STORAGE. The

n~~ber of these records written for each phrase is kept track of and

eventually becomes NUii\BER-AFFILIAT~D of PARTIAL-PHRASE-KEY.

DOCU~Ei~'.P-LOCA'l'IO~ will be the record number of the first DOCU!I\EN'.P-

STORAGE record written for each phrase number.

The phrase text of each record is compared with the phrase text

of the previous record. lf they are not the same, the text of the

12

new record is written character by character to a page of PHRASE-

TEXT-FILE. If tne length of the page becomes greater than 512, the

page is written to the file and the counter is reset to one. •r:ne

PAGE-NUMBER and LOCATIO~ fields of PARTIAL-PHRASE-KEY represent the

location of the phrase within the PHRASE-TEXT-FILE. LOCATION is the

index of the first character of the phrase within the current PAGE-

NUMBER.

3.5 TWO: Document Term Affiliation Merge

INPUT : DOCUMENT-TERM-'rRANS (CNFL11 .CON)
OLD-DOCUMENT-TERM (CNFL12.CON)

OU'rPUT: NE'.i-DOCU!"iE.NT-TERM (CNFL13.CON)
NEW-ASSOCIATION-FILE (CNFL14.CON)
STAT-FILE (STATS.CON)

Program TwO is not actually a merge. Since the input files are

sorted on phrase number within document number, and the lowest

document n~~ber on DOCUMENT-TERM-TRANS is greater than the highest

document number on OLD-DOCUMEN'r-'ri!:RM, the transaction file is just

appended to the end of the old master file.

First, OLD-DOCU.MEN'r-TERM is processed seq_uentially with each

record being written to NEW-DOCUlolENT-TERM. Then, the same process

is carried out with DOCUMENT-TERM-TRANS, along with some additional

processing. Before a transaction record is written to the new

master file, information to produce associations is gathered. There

exists a fifteen place array which contains the phrase numbers

affiliated with a single document. When a record containing a new

lj

document number is read from DOCUMENT-TERM-TRANS, associations for

the previous document are written to NEW-ASSOCIATION-FILE in the

following manner:

FOR index-1 = 1 TO number-affiliated DO
FOR index-2 = 1 TO n~~ber-affiliated DO

IF index-1 NOT EQUAL TO index-2
create-association([index-1J and [index-2j)

when the merge is completed, statistics are compiled and

written to STAT-FILE.

3.6 THR~E: Associated Phrase Merge

INPUT : TR-ASSN-FILg (CNFL15.CON)
OM-ASSN-FILE (CNFL16.CON)

OUTPUT: NM-ASSN-FILE (CNFL17.CON)
STAT-FILE (STATS.CON)

In program 'fHRE:E, TR-ASSN-FILE and OM-ASSN-FILE are merged to

produce OM-ASSN-FILE. All three association files are sorted on

associated phrase number within phrase number. The merge is very

straight forward. If the TR-ASSN-FIL!i: record is less than the OM-

ASSN-l<,ILE record, the TR-ASSN-FILE record is written to the new

master file, and vice versa. When a transaction record is written

to the new master file, a new field is added in. REAL-wEIGHT is the

ASSOCiATIO.N-wEIGtlT of 'rH-ASSN-F IL3 divided by 100. Also, if the TR-

ASSN-FILg record and the OM-ASSN-FILE record are equal, a new weight

is calculated and the next transaction record is read. The formula

for the new weight is given below:

(ASSOCIATION-WEIGt!T/100 + REAL-wEIGrlT) -

14

(ASSOCIA'riON-WEIGHT/100 * REAL-WEIGH'.P)

When the end of either file is reached, the remainder of the other

file is sequentially processed until it is empty. Then statistics

are compiled and written to STAT-FILE.

3.7 FOUR: Create Phrase Retrieval Files

INPUT : PARTIAL-PHRASE-KEY (CNFL09.CON)
ASSOCIA'HON-MAS'.r.Elli (CNFL1'7. CON)

OU'.PPUT: PHRASE-KI!:Y-.r'IL!!: (CY1R'f2.NEW)
ASSOCIATION-STORAGE (CY)RT2.NI!:W)
STAT-FIL~ (STATS.CON)

Program FOUR computes the number of associations and the

location of the first association for each phrase. These fields are

added on to PARTIAL-PHRASE-KEY forming PHRASE-KEY-FILE. For each

phrase, the processing is as follows. Assuming the next

ASSOCIATION-MASTI!:R record is always available, a record is read from

PARTIAL-PHRASE-KEY. The field PK-ASSOCIATION-LOCATION is set to the

current record number in ASSOCIATION-STORAGE. The phrase numbers

from PARTIAL-PHRASE-KEY record and ASSOCIATION-MASTER record are

compared. If they are equal, ASSOCIATED-NUMBER and REAL-WEIGHT of

ASSOCIATION-MASTER are written to ASSOCIATION-STORAGE, PK-NUMBER-

ASSOCIATED is incrementdd, and the next ASSOCIATION-MASTER record is

read. 'l'he same procedure is carried out until the phrase numbers

are not ~qual. At that time, the PARTIAL-PHRASE-KEY record, along

with the fields PK-ASSOCIATION-LOCATION and PK-NUMBER-ASSOCIATED, is

written to PHHASii:-KEY-F!LE and the next PARTIAL-PHRASE-KEY record is

read.

15

Processing has been completed when the end of PARTIAL-PHRASE-

KEY has been reached. If there are any records left in ASSOCIATION-

MASTER at this point, an error message will be displayed to the

screen. 'fhe error will be "PR&">\ATURE END OF PARTIAL PHRASE KEY

FILE." The results of the run should be checked out manually to

make sure the error will not effect the rest of the connectivity

run. After the error check is perfonned, statistics are compiled

and written to STAT-FIL~.

3.8 FIVE: Create Document Retrieval Files

INPUT : PAR'fiAL-DOCUMENT-KEY (CNFL20.CON)
AFFILIATION-MASTER (CNFL13.CON)

OUTPUT: DOCUMEN'f-KEY-FILE (CY2DC1.NE'Il)
AFFILIATION-STORAGE (CY4DC1.NEW)
STAT-FILE (STATS.CON)

Program FIVE computes the number of affiliated phrases and the

location of the first affiliated phrase for each document. These

fields are added on to PARTIAL-DOCUMENT-KEY forming DOCUMENT-KEY-

FILE. The processing for each document is the same as the

processing for each phrase in program FOUR, except that affiliated

phrases and documents are being processed rather than associated

phrases and phrases.

16

~·9 SIX: Phrase Analysis

lSPUT : NEW-PHRA~E-FILE (CNFL2j.CON)
STOP-LIST-FILE (CNFL24.CON)

OU'.PPU'.r: NEw -STEM-FILbi (CNFL25. CON)
STAT-FILB (STATS.CON)

Program SIX is responsible for breaking phrases up into stems

and recording information about the occurrence of each stem within a

phrase. The phrases to be analyzed are located on NEw-PHRASE-FILE,

along with their phrase numbers and lengths. Each phrase is read in

as a 150 character array and is processed one character at a time.

As long as the characters are alphanumeric, they are entered into a

fifteen place array which represents a stem. If the length of the

stem gets to be greater than fifteen, the last characters are

truncated. As soon as a non-alphabetic character is reached, the

stem packing procedure is called. In this procedure, a trailing 'S'

is truncated and the stem array is strung into a word which is

compared with the words in STOP-LIST-FILE. If the word does not

occur in ~TOP-LlST-~ILB, it is added to an array of stems occurring

in the current phrase.

When the end of a phrase is reached, the array containing all

the stems is written to NEW-STEM-FILE. The fields in NEW-STEM-FILE

record are determined as follows. PHRASE-NUMBER is the number of

the phrase which has just been analyzed. NUMBER-OF-WORDS is the

number of entries in the arruy containing all the stems for this

phrase. S'.PEM-POSITION is equal to one plus the index of the current

17

stem subtracted from the number of entries in the table.

After all the phrases have been analyzed, statistics are

compiled and written to the STAT-FILE.

3.10 SEVEN: Stem File Merge

INPUT : STEM-TRANS-FILE (CNFL26.CON)
OLD-STEM-MASTER (CNFL27.CON)

OUTPUT: NEW-STEM-MASTER (CNFL28.CON)
STAT-FILE (STATS.CON)

WORK MERGE-FILE

Program SEVEN is a straight forward merge of STEM-TRANS-FILE

and OLD-ST!ill4-l-1ASTER into NEW-S'rEi'1-MASTER. The iYIERGE feature of 1974

ANSI COBOL is used to accomplish this. After the merge is

completed, an output procedure is called to check for errors and

accumulate statistics. Upon completion of processing, statistics

are written to STAT-FIL~.

The files to be merged are sorted alphabetically in STEM order.

The secondary key is a concatenation of PHRASE-NUMBER and STE!t\-

POSITION.

3.11 EIGHT: Create Stem Retrieval Files

INPUT : S'fi'.:M-I'lASTER-FILE (CNFL28.CON)
OUTPUT: PROFILE-FILE (C~4RT1.NgW)

KE~-FILE (CY3RT1.NEW)
INDEX-FILE (CY2RT1.NEW)
STAT-FILE (STATS.CON)

Program EIGHT processes STEM -lo1AS'r ER-FILE

1B

sequentially,

producing three stem retrieval files. .!!'or each record on STEM-

i-1Ad'f~H-F lLE, a profile is written to PROF ILE-.I!'lLE which contains

PrlHAS~-.NUio!BER, STEM-POSITION, and NUMBER-OF-WORDS, each of which

comes from the ST&'l.-MAS'fER-FILE record. Keys to PROFILE-FILE are

stored in KEY-FILE. KI!:-STEM is the stem for which profiles are to

be looked up. KE-S'ri!:M-PTR is the location of the first profile

stored for KE-S'fEioi in PROFILE-FILE. KE-NUMBER-RECS is the number of

profiles which are stored for KE-STEM.

KEY-FILE tends to grow relatively large, so to facilitate

searching of that file, an index is created. Every time twenty-six

records are written to KEY-FILE, a record is written to INDEX-FILE.

This record contains the last of the twenty-six stems previously

written to the KEY-FILE, the location within KEY-FILE of the first

of t.tl~ twenty-six stems, and the number of records stored

inclusively between the two. This value will be twenty-six, unless

the last index record is being written for which it will be less

than or equal to twenty-six. The value twenty-six was chosen

because that many KEY-FILE records can fit on one page of memory at

a time.

After processing is completed, statistics are compiled and

written to STAT-FILE.

19

4. Performing a Connectivity Run

Note that since development of these programs occurred on a

DECSYS'l'l!!L"i-20, some of the following instructions may seem machine

oriented.

All of the record definitions for both the connectivity and

retrieval files are located in a library which is stored on disk.

Use of libraries is included in 1974 ANSI COBOL, but the procedure

for their creation is a machine dependent function. Therefore,

before a connectivity run can take place on a new machine, a library

containing all the record definitions must be created.

For a connectivity run to be successfully completed, directory

entries must previously exist for SKEL, CALCS, CNFL04, CNF112,

CNFL16, CNF120, CNFL27, and CY)DC1. For an initial run, each of

these will be empty files. For all subsequent runs, each will

contain information from past connectivity runs.

The programs are executed in the following order.

1. EILOAD

2. SORTA

5. ZERO

4. ONE

5. SOR'l'B

20

6. .SIX

7 • .SOH'rl!:

B. SEVEN

9· EIGHT

10. SOR'rC

11. •rwo

12. SORTD

13· THREE

14. FOUR

15. FIVE

After tne run has been completed, the four new master files

must be copied into the old master files for future connectivity

runs. •rnis is accomplished with the following commands:

rlENAME (*b'ROM*) CNFL05 (*TO*) Clflt'L04
REL~AME (*FROM*) CNFL1j (*TO*) CNFL12
RE.NAl'il!.! (*FROM*) CNFL17 (*TO*) CNFL16
ttENAME (*FROM*) CNFL28 (*TO*) CNFL27

'rhese files, along with St<.EL, CALCS, CNb'L20, and CY')DC1 will serve

as input to the next connectivity run.

Note that a number of transaction files can de deleted

throughout the run, after they have served as input. Care must be

taken in determining when deletion can occur. Also, if tapes other

than COMPENDEX are to be run, their load programs can be executed

right after EILOAD. These programs will append all the files which

21

are produced by EILOAD.

22

5. Maintenance and Portability

5.1 Non Standard Language Elements

There are three major machine dependencies in the new version

of connectivity. 'fhe first occurs in EILOAD, where two of the

output files are extended rather than rewritten. The statement used

to perform this function is

OPI!:N EXTEND DOCUM.EWr-I<'ILE: PARTIAL-KEY-FILE

In changing machines, this statement may have to be altered

according to the facilities offered for appending files.

1'ne second machine dependency occurs in programs which write

vdriable length phrases, specifically, ~ILOAD, SORTA, and ZERO. The

facility for writing variable length fields is located in the record

descriptions and is an extension of the OCCURS clause. The syntax

for the extension is

PHRASE-T~XT PICTURE IS X
OCCURS 1 TO 150 TIMES
DEPENDING ON PHRASE-LENGTH.

Each time one of these records is written, PHRASE-TEXT will take up

PHRASE- rENGTH characters. Again, this syntax will have to be

changed according to the version of COBOL being implemented.

In the FD statements, two non standard statements are added.

'rhey are

VALUE OF ID IS identifier
RI!:CORDING MOD8 IS character-set

2)

In the first statement, identifier is the name of the directory

entry for which the file is listed. The directory entry consists of

nine characters, the first six being the filename and the last three

being the extension. In the second statement, character-set is the

mode which the file is written in. All files, except for COMPENDEX­

FILE in EILOAD, have ASCII as their recording mode. The recording

mode of COMPENDEX-FILE is F which stands for fixed length industry

compatible EBCDIC records.

5.2 Changes in Data Types

Appendix III contains data element descriptions for the

connectivity and retrieval files. Each connectivity description

lists the libraries, programs, and retrieval data elements which

must be fixed for a data type change. To fix a library, the only

change made will be in the record description for the data element

being changed. For programs, previous records and statistical

fields declared in WOdKING-STORAGE will be the major fields which

have to be changed. In the case of subscripted variables, certain

indexes within the programs may also have to be changed. The

RE'rRIEVAL-ITEMS field in the data element descriptions denotes the

retrieval data elements which will be affected by changing the given

connectivity data element. The libraries in which the retrieval

items are located, are listed in the retrieval data element

descriptions.

24

6. Use of the LEADER Retrieval Files

The retrieval files were defined using a relational approach.

There are two distinct advantages to this approach. First, it is

very useful for expressing single concepts along with their

characteristics. And second, normalization of the relations reduces

the entire structure down to one which has minimal redundancy and

avoids harmful retrieval anomalies.

R

Figure 6-1: J.t'orm of a Relation

An example is shown in figure 6-t. The name of the relation is

R. It has a primary key, which is underlined, and four attributes.

The key uniquely defines an occurrence of R, while A, B, C and D are

descriptors of that occurrence. In a set of relations, R would have

a number of pointers entering or leaving it. A two headed arrow

pointing to R represents multiple occurrences, whereas a single

headed arrow represents a single occurrence.

'fhere are a number of characteristics which are desirable for a

set of relations. First, a relation should have no repeating

groups. The reasons for this are that repeating groups cause

unnecessary redundancy and the nu;nber in the group would have to

remain static. To remove repeating groups, the following procedure

25

lDOCUMENTlSOURCE\PHRASE\PHRASElPHRASEl
\NUMBER \ \NUMBER\NUMB8R\NUMBER\

Figure 6-2: Relation With a Repeating Group

is performed. A document relation is shown in figure 6-2. To

remove the repeating group, a new relation is created and the

structure in figure 6-3 is produced.

Figure 6-3:

DOCUMENT

1DOCUMENT\SOURCE\
1 NUMBER l l

PHR-AFFILIATION

1DOCUMENT\PHRASE\
\NUMBER \NU{;!BER\

Relation in First Normal Form

Note that figure 6-3 is a logical representation, not a

physical one. Physically, the location of the first PHR-AFFILIATION

occurrence and the n~~ber of occurrences for that document would be

stored in the DOCUMEN'.P relation. '.Pherefore, the actual physical

structure is shown in figure 6-4.

A relation without repeating groups is said to be in first

normal form. The other ch3racteristics which are desirable are for

the relation to be in second and third normal form. For a relation

26

DOCUi'1Ei'H

I nocu1"1EN'.r I soURCE I AFFIL PHR I NU!;IBi!.:R 1
,NUMBER I !LOCATION !AFFILIATED,

PHR-Ai''FILIATION

1 PHRASi!.:l
1 NUMBERI

Figure 6-4: Physical Representation of a Relation

to be in second normal form, it must be in first normal form and

every attribute must be fully determined by the primary key of the

relation. For a relation to be in third normal form, it must be in

second normal fonn with all transitive dependencies removed. Given

three attributes of relation R, A, B, and C, a transitive dependency

occurA if B is determined by A and C is detennined by both A and

B. 'l'o remove the dependency, the relation is replaced by two

relations, one with B determined by A, and the other with C

determined by B.

Tne relations represented in the retrieval files have been put

into third normal form and are implemented in a partially inverted

file structure. The organization of the files is shown in figure

6-5. Note that in PHRTXT, DOCTXT, PHRASE and DOCMNT, the keys are

not actually stored, but the records are in referential position.

That means that to retrieve phrase number 87, record number 87 must

be accessed in PHRASE.

27

There are six retrieval functions which can be performed with

this type of structure. 'rhey are initial phrase retrieval, document

retrieval, affiliated phrase retrieval, associated phrase retrieval,

phrase text retrieval, and document text retrieval.

described in detail below.

6.1 Initial Phrase Retrieval

Each is

Initial phrase retrieval is the entry point into the retrieval

system. Specifically, a user query undergoes the same process which

index terms are subjected to in program SIX.

structure is shown in figure 6-6.

'rhe resulting

This structure is merged with STMIDX which is an index into the

STMKEY relation. An index match occurs when STEM of QUERY is

alphabetically less than STEM of STMIDX. If there is an index

match, R~CORD NUMBER of STMINX is the location of the first stern on

the desired page. That location is randomly acce~sed and the first

NUMBER OF Kli!YS records are retrieved. Those records are searched

for an exact rna tch between STEM of QUERY and STEt-1 of STMKEY. If a

match occurs, a record is written to a new relation expressed in

figure 6-7.

28

PtHt'l'XT

I~ I Pri:RASi!! 'l'EX'l' I
I NUl'1HER I PAGE

ASNSTR

1 ASSOCIATEDI~EIGHTI
,PHRASE I I

1AFFILIATEDIWEIGHTI
I DOCUMENT I I

S'l'l<liDX

ISTEMiftECORDINUMBi!!R I
INUMB!!:RlOF i<EYSl

S'l'MKEY

1STEM 1PROFILE 1 NUMBER OF 1
_I I I

I lPOINTERlPROFILES l

STMPRO

rPHHASEILENGTH lPOSITIONl
I NUMBER lIN 'iORDS I l
---]1---------------------

PHRAs~r.~------------------------~

------~--
PHRASElPAGElLOCATIONILENGTHlDOC AFFILlNUMBER l
NUMBEHI I I ILOCATION !AFFILIATED\

\ASSOCIATIONlNUMBEH I
I LOCA'l' ION lAS SOC I A TED l

;;;~;;1[:~~~~~~~~~~~----;~~~~~------------
IAFFILIATEDl~EIGHTI
IPHHASE l l

~~ \ DOCUMEN'l' l
INUMBERITEXT PAGEl

------~----------- ---1'-------------
~~:~~:1_1 _________________________________ _
\DOCUMENT,PAGE ILOCATION\DIRECTOHY\SOURCEI
,NUMBER ,NUMBER\ I l I

IAFFILIATIONINUMBER I
!LOCATION !AFFILIATED\

Figure 6-5: Organization of the Retrieval Files

29

MATCH

QUERY.

l STEM 1 PHRASE 1 POSITION l LENG'l'H l
l ! NUMBER! lIN WORDS l

Figure 6-6: Query Relation

1 STEM 1 QU~R'f.lQUER'f. \QUEH'f. \PROFILE\NUMBER OF\
! !PHH #:POSITION\LENGTH\POINTER\PROFILES l

Figure 6-7: Match Between System and Query Stems

The MATCH relation is processed sequentially. PROFILE POINTER

is the location of the first system profile for S'l'Et"'.. That loction

is accessed and NUMBER OF PROFILES records are retrieved from

STMPRO. For each of these records, a new relation , sho~n in figure

6-8, is built.

PROFILES

Figure 6-8: Profile of System/Query Stem Match

When completed, this structure is subjected to a weight

calculation procedure where a similarity measure is computed for

each system phrase. This procedure is explained in detail by

i'ieadowcroft [JJ. The result is a new relation which serves as the

)0

input to phrase text retrieval. The new relation is shown in figure

6-9·

IPR

ISYST~1 PHRASE NUMBERl~EIGHTl

Figure 6-9: Final Output of Initial Phrase Retrieval

6.2 Document Retrieval

The input to doc~~ent retrieval is a list of phrases which have

been selected by the user, along with their weights. First, the

list is sorted into PHRASE NUi'lBER order and then is processed

sequentially. For each PHRAsg NUMBER, the PHRASE relation is

accessed and the relation shown in figure 6-10 is built.

DOC INFO

lPHRAsElwEIGHTIDoc AFFILINUMBER l
lNUMBERl ILOCATION lAFFILIATEDl

Figure 6-10: Affiliated Document Relation

DOC AFFIL LOCATION is the location of the first document in

DOCSTR affiliated with PHRASE NUMBER. That location is accessed and

NUMBER AFFILIATED records are retrieved. For each affiliation, a

weight is calculated and assigned to each AFFILIATED DOCUMENT. This

weight is equal to the product of WEIGHT of DOCS'fR and WEIGHT of

51

DOClNFO. If the same AFFILIATED DOCUMENT is retrieved more than

once, the weights are added using a probabilistic sum which is the

product of the weights subtracted from the sum of the weights. The

resulting structure is shown in figure 6-11.

DOCRE'l.'

\AFFILIATED DOCUM~NT\wEIGHT\

Figure 6-11: Retrieved Document Relation

The top two hundred weights are stored and serve as input to

document text retrieval.

6.3 Affiliated Phrase Retrieval

The processing in affiliated phrase retrieval is basically the

same as document retrieval. The input consists of a list of

documents which have been chosen by the user, along with their

weights. 'rhe list is sorted by DUCULI!EN·r NUi'1BER and then processed

sequentially. l<'or each DOCU1'1ENT NUMBER, the DOCMNT relation is

accessed and the relation shown in figure 6-12 is created.

Al!'PiiRIUFO

I DOCUMENT I WEIGI"i'r I PHR AFI<'IL I NUi-tBER I
\NUMBER I !LOCATION \AFFILIATED\

Figure 6-12: Affiliated Phrase Information

32

PHR AFFIL LOCATIO~ is the record number of the first PHRASE

NUMB~R in PHRSTR affiliated with DOCUMEN'l' NUMB~R. That location is

accessed and NUMBER AFFILIATED records are retrieved. ~ach

AFFILIATED PHRASE is assigned a 1NEIGii'l' equal to the product of

WEIGHT of PHRSTR and WEIGHT of AFPHRINFO. The result is the

relation shown in figure 6-1j.

AFFRET

:AFFILIATED PHRASE: "'IIEIGH'l' I

Figure 6-13: Output of Affiliated Phrase Retrieval

Once again, the records having the top two hundred weights are

stored and are used as input to phrase text retrieval.

6.4 Associated Phrase Retrieval

Associated phrase retrieval uses the same type of processing as

the previous two retrieval types. 'l'he input consists of a list of

phrases which have been selected by the user. The list is sorted by

PHRASE NUMBER and then processed sequentially. For each PHRASE

NUl>iBER, the PiiRASE relation is accessed and the relation shown in

figure 6-14 is created.

A:330CIA'l'10N LOCA'l'ION represents the location of the first

phcase in ASN3TR associated with PHRASE NUMBI!!R. 'l'hat location is

accessed and NUMBErl ASSOCIATED records are retrieved. Each

33

ASPnRlNFO

lPHRAsglwEIGHTIAssocrATIONlNUMBBR I
lNUt'lBEHl lLOCATION lASSOClATEDl

Figure 6-14: Associated Phrase Relation

ASSOCIATED PHRASE is assigned a WEIGHT equal to the product of

~~IGdT of ASPHRlNFO and WEIGHT of ASNSTR. If an ASSOCIATED PHRASE

appears more than once, its weights are summed using the

probabilistic su.<n described in section 6. 2. The resulting relation

is shown in figure 6-15.

ASNRE'l'

lASSOCIATED PHRASEl~EIGHTl

Figure 6-15: Output of Associated Phrase Retrieval

Again, the records having the top two hundred weights are saved

and used as input to phrase text retrieval.

6.5 Document and Phrase Text Retrieval

'fhe input to phrase/document text retrieval consists of a list

of phrase/document numbers and their assigned weights. To access

the text the following procedure is performed. The appropriate

record from PHHASE/DOCMJ.'l'f is accessed randomly. The PAGE NUMBER

field in PHRASE/DOCMNT is the location of the record within which

the phrase/document text is located in PHRTXT /DOCTXT. LOCATION is

the index of the first character of the phrase/document on the

'54

PHRASE/DOCUMENT TEXT PAGE. To retrieve phrase text, return the next

LENG'J.1H of PHRASE characters. To retrieve document text, check the

DIR8CTORY field of DOC1"1NT. This field consists of six integers,

each representing the length of a different field within a document.

In both cases, if the page index ever becomes greater than five

hundred twelve, read the next PHRASE/DOCUMENT 'fEXT PAGE and change

the value of the index to one.

35

Bibliography

L1J Hillman, Donald J.
Negotiation of Inquiries in an On-Line Retrieval System.
Information Storage and Retrieval 4:219-2)8, 1968.

L2J Martin, James.
Computer Data-Base Organization.
Prentice-Hall, Inc., Englewood Cliffs, 1977.

L3J Meadowcroft, Robert T.
A Model and a Method for Phrase Matching in the LEADERMART

System.
Master's thesis, Lehigh University, 1972.

56

/
/

I. Connectivity Program Structure Charts

Structure charts are provided for the following connectivity

programs:

- SORTA: Sort Phrase r~aster File Transactions

- ~ILOAD: Load Engineering Index

- ~~RO: Phrase Merge

- ONE: Create Phrase Dictionary

- 'rHO: Document Term Affiliation Merge

- THREE: Association Merge

- FOUR: Create Phrase Retrieval Files

- FIVE: Create Document Retrieval Files

- SIX: Phrase Analysis

- SEVEN: Stem Merge

- ~IGHT: Create Stem Retrieval Files

37

I 100

000

Load Engineering
Index

_I

300 I 400 \ 600

Get Record Info Skip Records Process Document Write Statistics

200 SOD

Get Skel Info Put Skel Info

310

Skip Document 1

210

Read Skel

Figure 7-1: EILOAD

lJ.I'lO- ~ 420

Get Header 1 . Get Record
Length

I 400-A 400-I 430

Get Directory r- Get Cales 1- Get Next Char
1-

400-B I 400-I 440

Get Title Process Calc 1- Convert String 4
f-

400-C 400-J 440

1- Get Cross Convert String'S Get Headings References 1-
1-

400-D I 400-J 450

Get Author Process
i-

Move Char To
1- Character Document· 'File

400-E 400-K 460

Get Citation "-- Get Free Move Char To
Language 1-- Phrase

1-

400-F I 400-K 470

Process ~lri te Phrase
Get Coden Character 1-- Transaction

1-

400-G 400-L 480

Affiliation 1- Skip Chars
Fillin Document

Get 1- Key -
400-H 410 490

Get Abstract 1- Read Tape 1-- Process Error
1-

39

.p.
0

000

Sort Noun
Phrase Records

100

Truncate Phrases

110

Truncate Phrase

Figure 7-2: SOHTA

I . 200

Exit

000

Noun Phrase Merge

I 100 I 200 I JOO I 400
Get Last lr'ierge Phrases \'irite Last \'lrite Statistics Phrase Number Phrase Number

I
J 210 I 220 l 43_0

Read Old Master Read Transaction Compare Records

I L
221 43_1 2'34

Read Transaction !Process Transactio \'lrite
r- Affiliation

222 2)2 2)5

~ Read CALC* Process Old Master }--- f- \'/rite New Master

233 2'36

\'lrite New Phrase 1--"- Process "Error

Figure 7-3: ZEnO

000

Split Phrase File

_l
I 100 I 200

Process Phrase \·:rite Statistics Record

I I I 110 I . lJO 21_Q

Read Phrase \•1ri te Phrase Write \'leight Table · Record

120 140 I 211

Write Key Accumulate \'/rite Weight Line Statistics

115
Write Storage

Record

I 1 '31 I 132

\'lri te Character I \'/rite Text Page

Figure 7-4: ONE

000

Merge Affiliations

I
100 200 I)00

\'lri te Old I·iaster \•lri te Transactions \·~rite Statistics

I 110 I 120 210 220
.

Read Old Master Write Record Read Transaction \~rite Record

220-A 226

Write Record Write Entries

221 227

Gather lrite Associations Association Data

225 XXX

\~rite Table Process 'Error

Figure 7-5: TiO

000

Merge Associations

I
I 100 l 200

Merge Files \'/rite Statistics

I
I 110 I 120 l ·no

Read Old Master Read Transaction Compare Records

I 1
I 121 I 122 I 1.31 l 132

Read Transaction Check Error Process Process
Transaction Old J/iaster

r--
135 1'36

Write New Master Process Error

I
I 11_5-=..b I 11'i-B

Gather Stats Check Asso.cia tio~s

Figure 7-6: TnRBE

000

Create Phrase
Files

I
100 I 200 I JOO

';lri te Fhrase Check Completi<;m \·lri te Statistics Files

110 I 120 I 13_0

Get Phrase Info Get Associations Write Phrase Info

l
111 121

~ad Part Key 1-- ~ead Association 1--

112 122

Enter Phr Info i- Gather Assn Info r--

12)

\~rite Association 1--

Figure 7-7: FOUR

000

Create
Document Files

I
I 100 I 200 1 JOO

\1ri te Check Completion \'lrite Statistics Do'cument Files

I
I 110 I 120 I .130

Get Document Info Get Affiliations Write
Document Info

I I
111 121

~ead Part Key. I-- Reaf Affiliation t--

112 122

Enter Doc Info I-- Gather Affn Info t--

123

Write Affiliation I-

Figure 7-8:

000

Phrase Analysis

I 100 I 200

Process Phrases \O:ri te Statistics

I
I 110 1 120 I 110

Read Phrase Break Up Phrase vlri te Stem
Records

I I·
120-A I 121 122 130:..A

Getnextchar :-- Pack Stem Check Stop List - Process Error

120-B \ 121-A 122-A l_30-Jl

Process Stem t-- Blank Fill Co:npare \'lords - Move Er Phr

r---
12)
~-

1)1

Gather Stem Data t-- 1--- \•lri te Stem

Figure 7-9: SIX

000

Merge Stems

I
I 100

' 200
Process Stems

Write Statistics (Output Section)

I
I 110 I 120 I 110

Process Stem Check For Error Gather Information

\ 12S

Process Error

Figure 7-10: SEVEN

000

Create Retrieval
Files

I
l 100 l 200

Process Stem \'lri te Statistics Records

I
I 110 I 120

-
Read Stem Check Stem

~ I
I 121 I 122 l 121

Write Profile Write Key \'lri te Index

Figure 7-1.1: EIGHT

II. Connectivity System Flow Chart

Figure 8-1: System Flow Chart

Start

50

Stats/
Error

Stats/
Error

9-----> ONE

"

~~,:-~e \ ' t::J
1--....---1 \ ...

\,',~9
\

~ , Stats/
Error

51

t:J----- ->- ~--8-0 RT_C _ __, ---- -7-· d
Stats/

, Error
-;1

TWO

t:J-----~- ~---.----.~ ',:~'elNFL14
k,.

SORTD
'
',,,~~s >u

/
/

9------'l-.___T_HR_,__E_E____. :~ ~- - ->-t:J

52

\
\

'
Stats/
Error

', ~
''--:1.,

7f

.. / . ' ...
t

E1 --7-u---

t:}-----+_

55

~

~

~~~-->-t:J 



0-----

54 

stats/ 
Error 

-1 
I 

I 

<--~-t::J 
' 
'~ 

' ' CYJRT2 't:j 

stats/ 
Error 



III. Data Element Descriptions 

III.1 Connectivity Data Elements 

NAME: Aff-Weight 

COBOL DATA TYPE: 9 

DEFINITION: Weight at which a document and a phrase are 

affiliated 

LIBRARIES: DvCPHR, NPM5RI, NPMSRO, NPTRSI, NPTRSO 

PROGRAMS: SORTA, SORTC, EILOAD, ZERO, ONE, TwO, FIVE 

RETRIEVAL ITEMS: DS-AFFN-WEIGHT, AF-AFFN-WEIGHT 

NAME: Associated-Number 

COBOL DATA TYPE: 9(5) 

DEFINITION: Pnrase which is associated with the current phrase 

being looked up. or processed. 

55 



LIBRARIES: ASPHR1, ASPHR2 

PROGRAMS: T't/0, THREE, FOUR, SORTD 

RETRIEVAL ITEMS: AS-PHRASE-NUMBER, AF-PHRASE-NUMBEft, PR-PHR­

NUMBER 

NAME: Association-Weight 

COBOL DATA TYPE: 99 

DEFINITION: Represents the weight assigned to each pair of 

associated phrases. 

LIBRARIES: ASPHR1 

PROGRAMS: SORTD, T~O, THREE 

RETRIEVAL ITEMS: AS-ASSN-WEIGHT 

NAME: Calc-Code 

COBOL DATA TYPE: X(4) 

56 



DEFINITION: Identifier for each Card-A-Lert code phrase 

PROGRAMS: ZEHO 

NAME: Calc-Length 

COBOL DATA TYPE: 999 

DEFINITION: Length of a Card-A-Lert·Phrase 

PROGRAMS: ZERO 

NAME: Calc-Actual-Phrase 

COBOL DATA TYPE: X(l?O) 

DEFINITION: Text of a Card-A-Lert Phrase 

PROGRAMS: ZERO 

NAME: Dir-Abstract 

57 



COBOL DATA TYPE: 9(4) 

DEFINITION: Length of the abstract field within the current 

document. 

LIBRARIES: DOCKEY 

PROGRfu~S: EILOAD, FIVE 

RETRIEVAL ITEMS: DK-DIR-AB3TrlACT 

NAME: Dir-Affiliation 

COBOL DATA TYPE: 9(4) 

DEFINITION: Length of the Author Affiliation field within the 

current document. 

LIBRARIES: DOCKEY 

PROGRAMS: EILOAD, FIVE 

RETRIEVAL ITEMS: DK-DIR-AFFILIATION 

58 



NAME: Dir-Author 

COBOL DATA TYPE: 9(4) 

DEFINITION: Length of the Author field within the current 

document. 

LIBRARIES: DOCKEY 

PROGRAMS: EILOAD, FIVE 

RETRIEVAL ITEMS: DK-DIR-AUTHOR 

NAME: Dir-Citation 

COBOL DATA TYPE: 9(4) 

DEFINITION: Length of the Citation field within the current 

document. 

LIBRARIES: DOCKEY 

PROGRAMS: EILOAD, FIVE 

RETRIEVAL ITEMS: DK-DIR-CITATION 

59 



NAME: Dir-Coden 

COBOL DATA TYPE: 9(4) 

DEFINITION: Length of the CODEN field within the current 

document. 

LIBRARIES: DOCKEY 

PROGRru~S: EILOAD, FIVE 

RETRIEVAL ITEMS: DK-DIR-CODEN 

NAME: Dir-Title 

COBOL DATA TYPE: 9(4) 

DEFINITION: Length of the Title field within the current 

docwnent. 

LIBRARIES: DOCKEY 

PROGRAMS: EILOAD, FIVE 

60 



RETRIEVAL ITEMS: DK-DIR-TITLE 

NAME: Doc-Source 

COBOL DATA TYPE: XX 

DEFINITION: Supplier of the document, e.g. l!!I = l!:ngineering 

Index, CA =Chemica] Abstracts, etc ••• 

LIBRARIES: DuCKEY 

PROGRAMS: EILOAD, ~lVE 

RETRIEVAL ITEMS: DK-DOC-SOURCE 

NAME: Doc~nent-Location 

COBOL DATA TYPE: 9(5) 

DEFINITION: Key to stored affiliated document n~nbers 

LIBRARIES: PnrlKEY 

PROGRAMS: SORTB, OHE, f'OUR 

61 



R~TRI~VAL ITEMS: PK-DOCUMENT-LOCATION 

NAME: Document-Number 

COBOL DATA TYPE: 9(5) 

DEFINITION: Each document is assigned a unique document number 

for identification of that document within all files. 

LIBRARIES: DOCK~Y, DOCPHR, NP1'r1SRI, NPi~SRO, NP'fRSI, NPTRSO 

PROGRAMS: SORTA, SOHTC, EILOAD, lERO, ONE, T'IIO, FIVE 

RETRIEVAL ITEMS: D3-DOCW-\ENT-NUtw1HEt\ 

NAME: Integer-weight 

COBOL DATA TYPE: 9(5) 

DEFINITION: Weight assigned to two phrases which are associated 

more than onc-e. 

LIBRARIES: A3PHR2 

62 



PROGRAMS: THREl'.:, FOUR 

NAME: Last-Number-Assigned 

COBOL DATA TtPE: 9(5) 

DEFINITION: Last phrase/document number assigned in the 

previous connectivity run. 

PROGRAMS: ZERO 

NAME: Number-Affiliated 

COBOL DATA TYPE: 999 

DEFINITION: The n~~ber of documents ~ffiliated with the current 

pnrase 

LIBRARIES: PHRKEY 

PROGRAMS: SORTB, ONE, FOUR 

RETRIEVAL ITEMS: PK-NUMBER-AFFILIATED 

6.5 



NAME: Number-Of-words 

COBOL DATA TYPE: 99 

DEFINITION: Indicates the number of stems in the current 

phrase. Must be less than 16. 

LIBRARIES: ST~~RD 

PROGRAMS: SIX, SEVEN, EIGHT, SORTE 

RETRIEVAL ITE!'oiS: PR-NUM-'h'ORDS 

NAME: Page-Location 

COBOL DATA TYPE: 999 

DEFINITION: The location of the current phrase/document within 

the page of text which has been retrieved from the phrase/document 

text file. 

LIBRARIES: DOCKEY, PHRKEY 

PROGRAMS: 30RTB, EILOAD, ONE, FOUR, FIVE 

64 



RETRIEVAL ITEMS: DK-PAG~-LOCATION, PK-PAGE-LOCATION 

COBOL DATA TYPE: 9(5) 

DEFINITION: '.Phe page nu:nber in which the current 

phrase/document text exists in the phrase/document text file. 

LIBRARIES: DOCKEY, PrtRKEY 

PROGRAMS: SORTB, EILOAD, ONE, FOUR, FIVE 

RETRIEVAL ITEMS: DK-PAGE-NUMBER, PK-PAGE-NUMBER 

NAME: Phrase-Length 

COBOL DATA TYPE: 999 

DEFI~ITION: Length of the current phrase in characters. 

LIBRARIES: NUPHRI, NUPHRO, NPMSRI, NPMSRO, NPTRSI, NPTRSO, 

PHRKEY 

65 



PROGRAMS: SORTA, SOR'l'B, EILOAD, ZERO, O~E, FOUR, SIX 

RI!:TRIEVAL ITI!:MS: PK-PHRASE-LENGTH 

NAME: Phrase-Number 

COBOL DATA TYPE: 9(5) 

DEFINITION: l!:ach phrase is assigned unique phrase number for 

identification of that phrase within the files. 

LIBRARIES: ASPHR1, ASPHR2, DOCPHR, NUPHRI, NUPHRO, NPMSRI, 

NPl1S.tW, PHRKEt, S'l'EMRD 

PROGRAMS: SORTB, SORTC, SOR'PD, SORTB, ZERO, ONE, T'fiO, THREE , 

FOUR, FIVE, SIX, SEVEN, EIGHT 

RETRIEVAL ITEMS: AS-PHRASE-NUMBER, AF-PHRASE-NUMBER, PR-PHR­

NU!>IBER 

NAME: Phrase-Text (for INPUT files) 

COBOL DATA TYPE: X(150) 

66 



DEFINITION: Text of the current phrase. Must be less than 151 

characters. 

LIBRARIES: NU PHHI, N PtviSRI, .~PTRS I 

PROGRAMS: SOHTA, EILOAD, ZERO, ONE, SIX 

NAME: Phrase-Text (for OUTPUT files) 

COBOL DATA TYPE: X OCCURS 1 TO 150 TH1ES DEPENDING ON 1 ength-

var 

DEFINTIION :'!'ext of the current phrase. l1ust be less than 151 

chl:lracters. 

LIBRARIES: NUPHrlO, NPl'I!SRO, NPTRSO 

PROGRAMS: SORTA, EILOAD, ZERO, ONE, SIX 

NAME: Real-Weight 

COBOL DATA TYPE: V39 

67 



DEFINITION: The actual weight of an association between two 

phrases. 

LIBRARIES: ASPHR2 

PROGRAMS: THR~~. !<'OUR 

R&TRIEVAL ITEMS: AS-AS~N-WEIGHT 

NAME: Stem 

COBOL DATA TYPE: X15 

DEFINITION: A component of a phrase which is greater than 2 but 

less than 16 chracters in length, does not appear in the STOP LIST, 

and does not end in 'S'. 

LIBRARIES: STEMnD 

PROGRAMS: SIX, SEVE~~. ElGH'r, SORTE 

RETRIEVAL lTEi>!S: 1~-STEM, KE-S'rE!\1 

68 



NAME: Stem-Position 

COBOL DATA TYPE: 99 

DEFINITION: Position of a stem within a phrase where the 

rightmost stem is in position one. 

LIBRARIES: ST&~RD 

PROGRAMS: SIX, SEVEN, EIGHT, SORTE 

Rli:TRI!i:VAL ITEMS: PH-STEI>l.-POSN 

69 



III.2 Retrieval Data Elements 

Data Element Name Library COBOL Data Type 
-------------------------------------------------
Al<'-A~'FN-NEIGHT PHRS'rR 9 
AF-~iRASB-NUMBER PHRSTR 9(5) 
AS-A.:iSN-'1/EI Gli'l' ASNSrH V99 
AS-PrtRASE-NUMBER ASNSTR 9(5) 
DK-AFl<'-LOCA'l' 10!-l" DOC1'1NT 9(5) 
DK-DlR-ABSTitACT DOC1>1.N'l' 9(4) 
DK-DIR-AFFILIATION DOC1I1N'l' 9(4) 
DK-DIH-AUTrtOR DOCMNT 9(4) 
DK-DIH-Cl'l'A'riON DOCI>1.N'l' 9(4) 
DK-DIH-COD.ii:N DOC1'1NT 9(4) 
DK-DIR-'ri'l'Lhl DOC!•lNT <:J(4) 
DK-NUMBER-AFFILIATED DOCMN·r 99 
OK-PAGE-LOCATION DOCMNT 999 
DK-PAGE-NU.'-!BER DOCl'iNT 9(5) 
OK-SOURCE DOCMN'l' XX 
DOC-TEX'l' DOC TXT X 512 TIMES 
DS-AFF-WEIGi-iT DOCSTR 9 
DS-DOCUMENT-NUMBER DOCS'l'R 9(5) 
IN-INDEX STMIDX 9(5) 
IN-NUMBER-RBCS ST!HDX 99 
IN-STEM S'l'MIDlC X( 15) 
KE-NUMBER-RECS STMKEY 9(5) 
KE-STEM STMKEY X( 15) 

. KE-STEr1-PTR STMKEY 9(5) 
PHR-TEXT PHR'l'XT X 512 TIMES 
PK-ASSOCIATION-LOCATION Pl1RASE 9(5) 
PK-DOCut~ENT-LOC:AT ION PHRASE 9(5) 
PK-NUMBER-AFFlLIATED PriRASE 999 
PK-NUi1l::!ER-A::>SOC IA'l'ED PHRA::>E 999 
PK-PAGE-LOCA'l'ION PHRASE 999 
PK-PAGE-NUioiB.i!:rl PHHASE 9(5) 
Pi<-PI!RASJ!:-LENGTH PnHASE 999 
PR-tWL>t-·llORDS STi'I!PRO 99 
PR-PHrt-,'l"Ui•lBI!:ti 3'l'l~lPRO <:J(5) 
PR-.:i'l'Et'i-POdN ::>Tl<\PRO 99 

70 



IV. File Descriptions 

Note that file names are given as DECSYSTEM-20 directory 

en tries which can be cross-referenced to the file names within the 

programs in the program descriptions. 

boldface; secondary keys are underlined. 

Connectivity Files 

Primary keys are shown in 

SK~L(LAST-NUMB~R-ASSIGNED) 

CALCS(CALC-CODE, CALC-LENGTH, ACTUAL-CALC-PrlHASB) 

C~FLO\(DOCUMENT-NUMBER, 

PdHA::3!!:-TEX'f) 

PHRASE-LENG'fH, AFF-·.YEIGH'f, ACTUAL-

CNFL02(DOCUMENT-NUMBER, 

ACTUAL-PHRASE-TEXT) 

PHHASE-LENGTH, AFlt'-l.iEIGHT, 

CNFL04(PHRASE-NUMBER, DOCUMENT-NUMBER, 

WEIGHT, ACTUAL-PHRASE-TEXT) 

CNFL05(PHRASE-NUMBER, DOCUMENT-NUMBER, 

~EIGHT, ACTUAL-PHRASE-TEXT) 

CNFLOd(PHRAS£-NUMBER, PAGE-NUMBER, 

PHRASE-LENGTH, 

PHRASE-LENGTH, 

PAGE-LOCATION, 

LENGTH, DOCU~ENT-LOCATION, NUMBER-AFFILIAT~D) 

71 

AFF-

AFF-

PHRASE-



CNFL09(PHRASE-NUMBER, PAG~-NUMBER, PAGE-LOCATION, PHRASE-

L~NGTH, DOCUMENT-LOCATION, NUMBER-AFFILIATED) 

CNFL1 O(DOCU!\\EN'l'-NUI<lHER, PHRAS~-NU1'1BER, AF.b'-·t'IEIGHT) 

CNFL11(DOCUMENT-NUMBER, PHRASE-NUMBER, AFF-wEIGHT) 

CNFL12(DOCUMENT-NUMBER, PHRASE-NUr-lBER, AFF-WEIGHT) 

CNFL13(DOCUMENT-NUMBER, PHRASE-NUMBER, AFF-WEIGHT) 

CNFL14 (PiiRASE-Nill'1B8n, ASSOCIATED-NUMBER, ASSOCIATION-WEIGHT) 

CNFL15(PHRASE-NUMBER, AS~OCIATED-NUMBER, ASSOCIATION-t'IEIGHT) 

C1~~'L 16 (PHRASE-NUMBER, AS SOC IA'l'ED-NUMHER, IN'.PEGER-'t'l EIGHT, REAL­

t'll!:lGHT) 

CNFL17(PHRASE-NUMBER, ASSOCIATED-NUMBER, INTEGER-WEIGHT, REAL­

'dEIGH'l') 

CNFL20(DOCUMENT-NUMBER, PAGE-NUMBER, PAGE-LOCATION, DOC-SOURCE, 

DK-DIRECTORY(DIR-TITLE, DIR-AUTHOR, DIR-CITATION, DIR-CODEN, DIR­

AFFILIATION, DIR-ABSTRACT)) 

CNFL23(PHRASE-NUMBER, PHRASE-LENGTH, ACTUAL-PHRASE-TEXT) 

72 



CNFL24(STOP-WORD) 

CNFL25(s·rr;til, PHRASE-NUMBER, S'f~M-PO~ITIOi!, NUt<lBBR-OF-'t'/ORDS) 

CN.I!'L26 (STEM, PHH.ASE-NUit\BER, 3'r&vJ.-POSI'fiO.N, NU!'1BER-Olo'-wORDS) 

CN~L27(STEM, PHRASE-NUMBER, ST&~-POSITION, NUMBER-OF-WORDS) 

CNFL28(STEM, PHRASE-NUMBER, S'rEM-POSI'riON, NUMBER-OF-WORDS) 

Retrieval Files 

Note that a data element in "[ ]" represents a key in 

referential position. 

DK-AFF-LOCATIO~, DK-NU!1BER-

Alo'.lr'ILIATBD, DK-PAGI!.:-NU•'iBER, DK-PAGE-LOCA'riON, DK-SOURCE, DK-DOC-

DIRI!:C'fORY' (DK-DIR-TI'r LE:, DK-DlH.-AU'frlOR, DK-DIH-C ITATION, DK-DIR-

COD~N, DK-DIR-A~FILIATIO~, DK-DIR-ABSTRACT)) 

C'i)DC1 ([PAG!!.:-NU,>\BERJ, DOC-'fEXT) 

C'i4DCt(DS-DOCUMENT-NUMBER, DS-AFF-NEIGtiT) 

CY'1R'r2([PHRASE-NU!1BER], PK-PAGE-NUMBER, PK-PAGE-LOCATIO~, PK-

PHRASE-LENGTH, PK-DOCUMENT-LOCATION, PK-NUMBER-AFFILIATED, PK-

ASSOCIATION-LOCATION, PK-NUMBER-ASSOCIATED) 

73 



CY2H'r2([PAGE-NU!"iBERj, PHR-TEXT) 

CY3RT2(AS-PHRASE-NUMBER, AS-ASSN-WEIGnT) 

CY4RT2(D3-DOCUMENT-NUMBER, DS-AFF-WEIGHT) 

CY2RT1(IN-STEM, IN-INDEX, IN-NUMBER-RECS) 

CYjHTI(KE-STEM, KE-Sf~M-PTH, KE-NUMBER-RECS) 

CY4RT1 (PH-PHrl-NUlllHEH, PR-S'rEM-POSN, PR-NU!FilORDS) 

74 



Vita 

Steven Alan Russell, born June j, 1960, is the son of David and 

Judith RusselL After graduating from 'llhi te Plains High School in 

June 19Td, he was admitted to Lehigh University. As an 

undergradugte at Lehigh, Mr. Russell graduated with honors in June 

1982, receiving a B. S. degree in Computing and Information Science. 

He remained at Lehigh the following year to receive his M. S. degree 

in June 198). While at Lehigh, Mr. Russell was employed as a 

Research Assistant at the Center for Infonnation and Computer 

Science where he was involved in the rejuvenation of the LEADER 

Doc~~ent Retrieval Sys~em. 

7'5 


	Lehigh University
	Lehigh Preserve
	1-1-1983

	Merging of bibliographic data bases in the leader retrieval system.
	Steven Alan Russell
	Recommended Citation


	tmp.1451580486.pdf.lH0ey

