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ABSTRACT 

'l'his report describes a method for determining the ultimate 

strength and behavior of longitudinally stiffened ship hull girders 

of single-cell cross section subjected to moment, torque and shear. 

The compression flange is assumed to behave as if it were 

composed of parallel beam-columns whose axial load deformation 

relationship is established by another computer program. Axial 

response of the other components in the section up to yielding or 

buckling is assumed to be of a bi-linear, elastic-plastic pattern. 

!llul tiple tension field action is assumed for the postbuckling shear 

response of the girder web subpanels. 'l'his method can maintain 

plane section or accommodate any degree of warping as specified by 

the user. 

An efficient procedure was developed for this method to 

accelerate the iterative process of establishing equilibrium of 

forces on the cross section. 'l'his procedure has many potential 

applications other than in this method. 

A comparison of this method with the results of twelve tests 

on box girder specimens (ship hull and bridge models) showed this 

method to be acceptably accurate for the combined loading of 

moment, torque and shear. 
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1. INTRODUCTION 

1.1 Background and Related Research 

A need for developing a reliable method of evaluating the 

maximum strength of ship hulls is becoming more important with the 

growing knowledge of ship loHds. Although the traditional methods 

of ship analysis, which have evolved through years of practical 

experience, give adequately safe designs for common ship 

structures, it has been shown by full-scale tests and more exact 

analyses that the mechanisms of failure are often very different 

from the mechanisms predicted by these methods [:-;o]. The major 

contributing factox· to this discrepancy has been the nonlinear 

behavior of the individual components and subsequently of the 

entire hull system. '!'he rapid introduction of novel ship types 

also requires a more rational approach to ship design than the 

semi-empirical traditional methods. 

A considerable amount of research has been conducted on the 

ultimate strength and behavior of individual ship hull components 

such as individual plates [9, 11, 15], stiffened plates and 

grillages [10, 6, 1, 26, 24, 13, 7, 12, 20], 

under shear and bending [ 16, 14, )1, 25]. 

and plate girders 

Although knowledge of 

the behavior of these components is required for the analysis of a 

whole ship hull girder, only a limited amount of research has been 

devoted to the entire ship hull. 
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Caldwell proposed a direct solution for obtaining the ultimate 

bending strength of a hull girder section. This solution consisted 

of merely summing the ultimate strengths of the individual 

components [3]. 'fhe ultimate strength of the plate components was 

incorporated into the solution by means of the effective width, but 

the possibility of the post-ultimate reduction of the capacity was 

not considered. Thus, a summation of the individual ultimate 

strengths, as Coldwell proposed, may lead to a higher estimated 

capacity than the true strength. 

Smith developed a method for obtaining the ultimate bending 

strength and behavior of a hull section [2e]. Large deformations 

were considered for the components and the strain compatibility of 

the hull \'laS enforced by maintaining a plane section. Although 

this method provided an adequate estimate of the bending capacity 

of a hull section, it could not accommodate the effects of shear or 

torque [4]. 

Herzog proposed a method for computing the bending strength of 

box girders by using greatly simplified strengths of the components 

[sJ. 

Billingsley formulated a method which is similar to Smith's; 

however, it does not consider the 

individual components [2]. Again, 

post-ultimate behavior of 

this approach does not 

uccommodute the effects of shear and torque. 
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A method was developed at Lehigh University for describing the 

behavior and predicting the ultimate strength of hull sections 

subjected to moment, shear, and torque [17, 19]. By considering 

large deflections of the compression flange, maintaining a plane 

section, and treating the side plating as the webs of a plate 

girder subjected to shear and moment, adequate results were 

obtained for cases involving shear and moment. However, for the 

cases involving torque the predictions of the ultimate strength 

were optimistic. This method was modified to allow curvature not 

only in the vertical plane but also in the horizontal plane, and to 

introduce the warping of the section as was measured in test 

specimens [21 j. Although this modification improved the results 

for specimens with torque, the estimate was still too optimistic. 

1.2 Purpose and Scope 

The main purpose of the research presented here was to further 

develop the previous analytical method for determining the ultimate 

strength of longitudinally stiffened box girders of the scantlings 

typical for ship hulls and subjected to the combined action of 

moment, shear, and torque as shown in Fig. 1. 

In the process of this work, the research results and computer 

programs which became available since the previous version of the 

method have been utilized [29, 19, 22]. 

'l'he basic procedures of the original Lehigh method for 
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determining the behavior of the individual components were retained 

with some modifications. Components in tension are checked for 

yielding under the combination of shearing and normal stresses and 

the tension-field strength of web subpanels is computed by using a 

more recent approach than before. Also, more accurate computer 

programs are used for defining the axial behavior of the 

compression flange. 

A very significant modification was made to the procedure for 

establishing the overall equilibrium of the cross section in terms 

of the corner strains and a prescribed degree of warping. In the 

previous version, a lengthy process involving incrementation and 

double parabolic interpolation was used. The new procedure leads 

to equilibrium in a few iterations. A study of the effect of 

warping showed that warping becomes significant after buckling of 

some of the web subpunels when the original symmetrical cross 

section is transformed into a structurally unsymmetrical one. 

A comparison of theoretical and experimental results for 

twelve tests on box girder specimens indicated the method to be 

acceptably accurate. 

5 



2. THEORETICAL ANALYSIS 

2.1 Assumptions 

The proposed method of analysis incorporates the following 

simplifying &ssumptions: 

1. Girder is straight and prismatic. 

2. Cross section has a single-cell rectangular shape. 

). Strain distribution between corners of the section is linear. 

4. The section maintains a constant degree of deplanation. 

5. Naterial has a bilinear elastic-plastic stress-strain 

relationship. However, nonlinear materials can also be used 

by defining the stress-strain relationship with a series of 

points. 

6. Transverse stiffeners are sufficiently rigid to provide 

unyielding support to the plating of the flanges and webs. 

1. Effects of shear lag and distortion of the shape of the cross 

section are negligible. 

Some &ddi tional specialized assumptions are stated as needed in the 

discussion of individual components. 

The four component types used in the method are: compression 

flange elements (stiffener-plate combination), tension flange 

plate, longitudinal stiffeners of the tension flange and webs, and 

subpanels of the web plate. These components and the labeling 

system for the corners and webs are shown in Fig. 2. 
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2.2 Basic Stresses in the Box Girder Section 

2.2.1 Effects of Moment and Shear 

Prior to nonlinear behavior of individual girder elements, and 

if the effect of shear lag is neglected 1 the stresses in the box 

girder section due to moment and shear can be computed by using 

ordinary beam theory. The normal stresses vary linearly across the 

width of the fltmges and the depth of the webs. The shearing 

stresses vary linearly in the flanges and are almost constant in 

the webs. 

After some individual girder elements start behaving 

nonlinearly, the stress distribution changes as is shown in Fig. 

j and the anulysis is performed under the following assumptions: 

1. 'rhe non-linear axial response of the compression flange is 

udequately described by a series of points provided in 

advance (by another computer program or from a test). 

2. 'l'he effect of shear on the compression flange is negligible. 

). 'l'he effect of shear on the tension flange is the reduction of 

the axial force required to yield the material. 

4. After buckling 1 a web subpanel cannot carry any additional 

normal or bending stresses other than those present at 

buckling. 
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5. Shearing stresses are uniform in a particular subpanel Emd 

the postbuckling shear strength is developed by tension-field 

action. 

2.2.2 Effect of torque 

Since most of the torque in u girder with a closed cross 

section is carried by pure (St. Venunt) torsion, even in the cases 

of cross sections restrained from warping [21], it is practical to 

neglect the shearing stresses due to warping. Then, the shear 

forces in the webs and flanges due to torque are: 

Web: ( 2. 1 ) 

Flange: (2.2) 

where the shear flow qt is given by 

(2.)) 

with A
0 

being the enclosed area 
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b d (2.4) 

In renli ty, this situation changes after one of the 

components, usually a web subpanel, is significantly weakened. 

'l'hen, the closed section is gradually transformed into an open 

section, with the 11 'treak" component not fully participating in 

carrying additional torque. The shear center shifts and the 

additional torque must be primarily carried by warping stresses. 

The present version of the method does not consider the shifting of 

the shear center; however, it can accommodate the warping of the 

section. 

2.3 Behavior of the Tension Flange Plate 

'l'he shear response of the tension flange plate is assumed to 

be linearly elastic with an unlimited shear strength. On the other 

hand, the axial response is assumed to be linearly. elastic only 

until yielding under the combination of tension and shear according 

to the von Mises yield criterion. 

(2.5) 
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This condition is checked in each subpanel of the tension flange 

plate. 

2.4 Behavior of the Compression Flange 

The compression flange of a hull girder segment is assumed to 

be adequately supported at the transverse stiffeners, and thus, 

consists of a longitudinally stiffened plate subjected to axial 

compression and possibly, lateral loading. The nonlinearity of the 

axial behavior of this plating arises from initial imperfections, 

welding residual stresses, buckling of the plate components, and 

later~il loading when it is present. 'l'he resultant overall strain 

and stress distributions across the width of the compression flange 

are shown in Fig. 3. The analysis is simplified by treating each 

stiffener with a portion of the plate as a separate element, in 

effect, a column under axial load. The method requires that the 

axial load response of such an element of the compression flange be 

defined for the pre- and post-ultimate ranges. Then the 

contribution of the whole compression flange is given by the sum of 

the contributions of the elements. 

An individual compression flange element, consisting of a 

longitudinal stiffener and a portion of the plate with the width 

equal to the spacing of adjacent stiffeners is subjected to an 

axial load ctnd the influence of the nonlinear effects mentioned 

10 



above. Its behavior is then identical to that of a beam-column 

like the one shown in Fig. 4. 

Three separate computer programs were used to determine the 

axial behavior of the compression flange beam-columns. One was 

developed for the unalysis of stiffened plate panels subjected to 

axial and lateral loads and having residual stresses in the 

plute [27]. The method was later modified to obtain the axial 

behavior with zero lateral loads, but it still did not consider 

initial imperfections and tended to be too optimistic [21]. The 

other program, based on the finite-element approach, includes 

consideration of residual stresses as well as of initial 

imperfections [28]. This method 'I'TaS found to be quite accurate in 

comparison with test results, but time consuming and not very 

reliable in the post-ultimate range. The third program is based on 

a rather simple design algorithm originally developed by multi­

variable regression analysis of experimental and theoretical 

data [20]. In accuracy, this method \oras found to be close to the 

second method, yet it is much simpler and has no difficulties for 

the post-ultimate range. Figure 5 shows the stress-strain 

relationships produced by these three programs for the compression 

flange element of one of the test specimens [17]. 

11 



2.5 Behavior of the Webs (Side Plating) 

Up to the point of buckling of one of the plate subpanels, the 

web is assumed to behave linearly for shearing, bending, and normal 

stresses. Once buckling occurs in a subpanel, the postbuckling 

strength of this subpanel is assumed to develop independently from 

the other subpanels. 

'rhe ultimate shear capacity of the whole web is given by the 

sum of the ultimbte shear strengths of the subpanels. 

n 

v,m = L (Vbi + vtf) 
i=1 

where 

buckling strength of the i-th subpanel 

tension field strength of the i-th 
subpanel 

(2.6) 

(2.7) 

(2.8) 

'rhe critical shearing stress 'C" . [in Eq. crl. (2.7)] of each 

subpanel is computed from the buckling interaction equation of the 

bending, normal, and shearing stresses. 

12 



l.cri sbcri t""' ]2 ~ ]2 
Fvcri + Fbcri + 

sccri < 
Fccri 

1.0 (2.9) 

The pure buckling stresses Fvcri' Fbcri' and Fccri given by the 

formulas of Table 1. There, the plate subpanels are assumed to be 

are simply supported on all four edges. 

'l'he shearing stress 'C"tf'i in Eq. (2.t)) results from the 

formation of the tension field after buckling and is given by 

(2.10) 

where 

( 2 0 11 ) 

is the tension field stress at the ultimate condition for the i-th 

subpanel and 

a (2.12) 

13 



is the aspect rntio of the widest subpanel. Thus, Amin is the same 

for all the subponels [18]. 

Since the individual subpanels of the web usually have 

different widths di and are subjected to different combinations of 

bending and normal stresses, their buckling and the attainment of 

the ultimate condition occur at different stages of overall 

deformation of the web as shown in Fig. 6 for a sample web with 

three subpanels. 

Before buckling, deformation of each subpanel up to the point 

of buckling is linear and is readily defined by 

r . crl. 
= 'C"'cri 

G 

where r is the shearing strain. 

Since the postbuckling deformation cannot 

(2.13) 

be accurately 

established, it is approximated with a straight line connecting the 

buckling deformation with the ultimate strength deformation. The 

ultimate deformation rui of the i-th subpanel is assumed to be 

reached when a diagonal fiber in the subpanel yields due to the 

racking distortion of the subpanel edges which are assumed to 

retain their original lengths. Thus, 

14 



(2.14) 

where 

Application of the above formulations at each of the kink 

points of the vs. r diagrams results in a continuous 

relationship between r and V for the whole web. In the process of 

computing this relationship it is important to keep in mind that, 

whereas the shear on a subpanel can increase, the normal and 

bending stresses are assumed to remain constant after buckling and, 

thus, the addi' .:..onal moment corresponding to the increase in the 

totul web shear must be redistributed to the flanges, the web 

stiffeners and to the yet unbuckled web subpanels. 

In the present version of the method, it is assumed that the 

longitudinal stiffeners in the webs are linearly elastic up to 

yielding. '!'his assumption can be modified once the forces in the 

stiffeners due to the bending moment and the tension field action 

15 



are defined and the nonlinear behavior established. 

2.6 Behavior and Ultimate Strength of the Girder 

Once the load-deformation behavior of the individual 

components is defined, the anulysis of the entire hull girder 

segment proceeds by enforcing compatibility between these 

components as the curvatur·e of the girder is incremented. In 

summb.ry, tbe following load-deformation relu tionships of the 

components are involved: 

1. 'fhe nonlinear behavior of the individual beam-columns 

composing the compression flange. Each beam-column consists 

of a longitudinal stiffener and a portion of the compression 

flange plate. The load-deformation relationship for these 

beam-columns was obtained by using other computer programs. 

2. The stiffeners of the tension flange and the web are assumed 

to be perfectly elastic-plastic. 

3. The tension flange is assumed to be linearly elastic up to 

the point of yielding under the tensile and shearing 

stresses. 

4. The webs of the girder are assumed to respond elastically up 

to the buckling or yielding of the plate subpanels. A 

buckled subplJnel can clJrry mor·e shear only by means of the 

tension field action. The bending and normal stresses, 

however, are assumed to remain at the buckling level. 

16 



In the course of establishing the load-deformation response of 

the girder segment, the method leads to many instances of iteration 

and thus becomes too time-consuming for manual computations. A 

computer program was written to overcome this difficulty. The 

present computer progi~m is only for sections which are symmetrical 

about the vertical centroid~:~} axis. However, this restriction is 

not a limitation of the method. The computer program is described 

in detail elsewhere L23]. Here is given only the general procedure 

of the method employed. The flowchart of Fig.? shows the logic of 

the computer progrum BOX. 'l'he names in capital letters refer to 

the n~:~mes of subroutines, such as, WVSDEF, PROPRT, etc., or to 

variables F, MY, ~:~nd MX. The computational procedure can be 

explained by the following steps: 

1. For a given value of curvature, the strains at the four 

corners of the cross section (Figs. 2 and 3) are calculated 

using an iterative process which makes the resultant axial 

force (F) and the bending moment about the vertical 

centroidal axis (MY) to become equal to zero. The strains 

are assumed to vary linearly on each side from corner to 

corner and the cross section is enforced to remain plane or 

to have the pt·escribed degree of warping. 

2. After the equilibrium of the cross section is achieved for 

the given value of curvature, the bending moment about the 

17 



horizontal axis (MX) is calculated. Since the bending 

moment, shear, and torque are each related to a load 

parameter (W) by a constant, the values of the transverse 

shear (V) and the torque (T) can be readily computed. 

v: = MX/ ANU2 

then, V 

und 

(2.16) 

(2.17) 

(2.18) 

where AMU1, AMU2, and AMU) are the constants defined by the 

conditions of loading. 

) • Shearing stresses due to transverse shear and torque are 

computed for each web subpanel. 'l'he buckling interaction 

value, given by the buckling interaction equation [Eq.(2.9)], 

is then checked for each web subpanel to see if any have 

buckled. 

4. If a subpanel has buckled, the curvature is decreased and 

iteration is performed to get to the theoretical buckling 

state of that subpanel before the value of curvature is 

incremented again. After buckling, a web subpanel is assumed 

to carry no additional normal or bending stresses beyond 

those present at buckling. However, additional shearing 

stress can develop due to the tension field action. 

18 



5. If the subpanel has not yet buckled, it is still behaving 

elastically. Then, the calculated load parameter represents 

one state of load response of the hull girder for the given 

value of curvature. Repeated curvature input produces an 

array of load parameters for the hull girder from zero to 

beyond the ultimate load. 

Many special programming techniques were incorporated into the 

program. One of these deserves a detailed discussion since it 

considerably simplified the problems of convergence. 

presented next. 

19 
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3. PROCEDURE FOR OBTAINING EQUILIBRIUM OF CROSS SECTION 

3.1 Introduction 

A procedure for obtaining equilibrium of the girder cross 

section directly for a prescribed curvature was developed as an 

important component of the method. The problem is to find a set of 

strains to meet the following requirements: 

1. The value of curvature (CE) is kept constant. 

2. The prescribed degree of warping (SWP) is maintained. 

). 'l'he axial force (AXF) and the bending moment about the 

vertical centroidal axis (YBM) are both equal to zero. 

With four unknowns [the four corner strains S1, S2, S3, and 

S4], and the above stated independent requirements (a total of 

four), it should be possible to find a unique solution. However 

since not all of the relationships are linear, a direct solution is 

not possible. The procedure described next presents a method of 

solving this problem and it was incorporated into the computer 

program as subroutine TWOPLA [23]. 

'l'he requirements that the degree of warping (SWP) and the 

value of curvature (CE) be constant, cause strains S3 and S4 to 

become the following functions of strains S1 and S2. 

('. 1 ) 
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S1 . + CE 
~ SWP + (3.2) 

Subscript i indicates the i-th set of S1 and S2. 

Once strains S3 and S4 are defined, the axial force AXF and the 

bending moment YBM become nonlinear functions of strains S1 and S2 

only. 

AXF f(S1, S2) (3.3) 

YEN f(S1, S2) (3-4) 

Each of these functions can be viewed as a surface with S1 and S2 

being the independent variables. 

The desired solution is the set of values of S1 and S2 at 

which both surfaces have zero values. Graphically this point can 

be visualized as the intersection point of the AXF and YBM surfaces 

and the S1-S2 plane (where AXF=YBM=O). 'l'he procedure for finding 

this point is an iterative procedure based on the Newton-Raphson 

method. In the procedure, each surface is approximated by a 

tangent plane defined by some three points on that surface. The 
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intersection point of these tangent planes with the S1-S2 plane 

gives the next approximation for the solution of S1 and S2. 

Since this type of problem is encountered often in analysis of 

nonlinear structures, the methodology of the procedure is discussed 

here in considerable detail. 

3.2 Methodology 

The procedure for obtaining the values of S1 and S2 to make 

AXF and YBM equal zero for the given value of curvature starts with 

the assumption of the first set of s1 1 and S2 1• For example, these 

values could be linearly projected from a solution which was 

previously calculated for a lower value of curvature. 

The AXF 1 and YBM 1 values computed for s1 1 and S21 are used as 

a guide for incrementing or decrementing S1 and S2 to calculate two 

more sets of strains and AXF and YBM. The resultant three values 

of AXF (AXF 1 , AXF2 , and AXF3) lie on the AXF surface and the three 

values of YBM on the YBM surface. In general , none of the sets of 

str~ins will give zero values of both, AXF and YBM, and a 

projection is made for a better set of S1 and S2. This is 

accomplished by using the three points on the surface to define an 

approximately tangent plane to each surface and solving for the set 

of s1 4 and s24 where these two planes indicate both, AXF and YBM, 

equal to zero as shown in Fig. B. Then, the actual values of AXF4 

and YBM4 are calculated for s1 4 and s24 and compared with the other 
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vnlues. The process is repeated with the best three out of the 

four points for each plnne. 

Plane 1 Plane 2 

( s ,, 1 S2 11 AXF 1 ) ( s ,, 1 S2 1 , YBM 1 ) 

(S1 21 S221 AXF2 ) (co• -.JI2' S221 Ymi2 ) (3.5) 

(s1,~ S231 AXF:;) ( s 1.~, 
:; 

S231 YBN3) 

Equation ( 3. 5) symbolically indicates the two tangent planes 

defined by the three initial sets of S1 and S2. Subroutine TWOPLA 

wus written as a part of the general program to perform the 

projection to a better point [23]. First 1 subroutine TWOPLA finds 

the equation of each plane: 

Plane AXF: AXF. A1 + A2 S1. + A3 S2. 
1 1 1 

(3.6) 

Plane YBM: YBMi = Bl + B2 S1i + B3 S21 (3.7) 

fixed values. of the coordinates S 1 1 S2, AXF and YBN. In the 
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following, the methodology is shown for Plane AXF, for Plane YBM it 

is similar. For the AXF plane, the three linear equations of Eq. 

().6) are solved for A1 , A2 , and A
3

. 

S1 1 S2 1 

S1 2 S2 2 (3.8) 

s1 3 s23 

Using the terminology of Cramer's Rule (solution by determinants) 

A1 _Jll - D 

A2 = ~2 

A3 =~ 

(3.9) 

(3.10) 

(3.11) 

when: D1, D2, D) are the numerator determinants and D is the 

determinant of the coefficient matr~£. 

Substitution of Eqs. (3.9),(3.10) and (3.11) into Eq. 

(3.6) yields Eq. (3.12) for the AXF-plane. 
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D*AXF = D1 + D2 S1 + D) S2 (3.12) 

An analogous procedure for the YBM-plane results in 

E*YBM = E1 + E2 S1 + E3 S2 

where E, E1, E2 and E) correspond to D, D1, D2 and D3 of the AXF­

plane, respectively. 

In both of these equations [Eqs.().12), (3.13)], S1 and S2 are 

free variables. To find their values where both planes give a zero 

function, Eqs.(3.14) and (3.15) are solved simultaneously for the 

fourth set of S1 and S2, i.e., s1 4 and s24 • 

D1 + D2 S1 + D) S2 = 0 (3.14) 

E1 + E2 S1 + E3 S2 = 0 (3.15) 

Since the AXF and YBM surfaces are generally curved, not 

plane, the values of AXF 4 and YBM4 calculated for these strains 

will not be equal to zero. By replacing the worst point of each 

plane with the new values and repeating the procedure, a set of 
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strains S1 and S2 is found which causes both, AXF and YEN to be 

equal to zero within a prescribed tolerance. Figure 8 shows the 

AXF and YEM planes for some later iteration , when each is defined 

by a separate set of three points. Their intersection point on the 

S1-S2 plane gives the next approximation for S1 and S2. 

To accelerate convergence, it was found that the two dependent 

functions, AXF and YEN, should be of approximately the same order 

of magnitude. To achieve this, the values of YEM are divided by a 

constant before they are entered into subroutine TWOPLA. This 

constant is related to the first-yield moment about the vertical 

axis. 

).3 Limitations of the Procedure 

Most of the time, subroutine TWOPLA performed very well (3-4 

iterations). However, there are some cases that require special 

treatment, these are: (1) both planes are parallel to each other; 

(2) one or both planes are perpendicular to the S1-S2 plane; (3) 

tl1e intersection line of the two planes is parallel to the S1-S2 

plane; (4) one or both planes are coincident with the S1-S2 plane. 

Solution of these special cases is planned as an improvement 

of the program; ut present, a corresponding message is printed. 
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4. WARPING OF CROSS SECTION 

4.1 General 

Test observations hove shown the possibility of warping of the 

girder cross section that is, of non-planar distribution of 

strains. To include this effect in the proposed method of 

analysis, the degree of warping was defined in terms of the mid-

width curvature by 

SWP = 2(S4-S1) 
~ S3 

(4.1) 

where S1 and S4 are the strains ut the top und bottom of Web 1 of 

the cross section us shown in Figs. 9 and :; , and ~ S3 is the 

increase (or decrease) of strain S3 relative to the value of S3 as 

would be given by the plane defined by the strains at the other 

three corners (S1, S2, S4). 

The effect of warping was introduced into the computational 

procedure as described in the preceeding chapter. A specific study 

of the effect of warping was conducted for Lehigh Test 3 [21] which 

was subjected to the combined action of bending, shear and torque 

(other results of this test are described in Chapter 5). Two 

aspects were looked into: (1) the effect of warping at low and 

high levels of loading, that is, respectively, when there was no 

buckling in the web subpanel, and after some web subpanels have 

buckled in the heavier loaded web, Web 1; and (2) a procedure for 
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deterndning the optimum degree of warping which would most likely 

develop in the girder segment. 

4.2 Effect of Warping at Low and High Loads 

In Figure 10(b), load parameter W is non-dimensionalized with 

respect to W
0 

which is the load parameter for zero degree of 

warping. The W/W
0 

is plotted against the degree of warping SWP 

varying from -0.5 to +0.5 while the curvature is kept constant. 

The dashed curve in Fig. 10(b) is for a low value of curvature 

when there is no buckling in the web subpanels at zero warping. 

The .essentially horizontal curve indicates that 'tmrping had no 

influence on the load parameter. Only at a rather high negative 

warping of SWP = -0.4 there begins a reduction of W/W 0 due to the 

buckling in the web at this large distortion. 

The solid curve in Fig. 10(b) is for a larger value of 

curvature, almost at the ultimate load. Some web subpanels have 

already buckled and the nonlinear effect of the degree of warping 

is quite pronounced. The curve is somewhat irregular due to the 

tolerance limitations in various iterative routines in the computer 

program, but the scatter is quite small, less than 1%. 

Thus, it can be concluded that warping becomes a noticeable 

influence only at higher levels of loading, after the behavior of 

some of the girder section components become nonlinear due to 
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buckling or other effects. Before thnt, the effective section 

remains symmetric and is not influenced by warping. 

4.3 Optimum Degree of Warping 

'l'he solid curve of Fig. 10(b) is replotted in Fig. 10(a) but 

with respect to the Hctual value of the load parameter W which was 

the load applied to the test specimen. After smoothening 

(averaging) the curve as shown in the figure by the dashed curve, 

one can see that there is a maximum value of the load parameter W 

approximately at the degree of warping of SWP = +0.1. 

These plots indicate a plausible procedure for determining the 

optimum value of the degree of warping. A series of W values 

should be computed for a constant value of curvature by varying the 

degree of warping SWP from a small negative value, say SWP = -0.2, 

to a small positive value, such as, SWP = +0.3 (four to six points, 

including a point ut SWP 0.0 for the plane section). Then, u 

parabolic curve can be used to smoothen the computed points and to 

determine the maximum value of Wmax' as well as the W
0 

value at 

zero warping. 

The study illustrated in Fig. 10(a) seems to indicate that the 

assumption of a planar section (zero warping) should introduce only 

a small error. This appears to be reasonable as long as the cross 

section behaves us a closed section without u shift of the shear 
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center. Consequently, this procedure was not incorporated into the 

computer program. 
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5. COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS 

In order to verify the accuracy of the proposed method, 

theoretical and experimental results are compared in Tables 2 and 

j for the available twelve tests. Included are tests on box 

sections subjected to pure moment, to moment combined with shear or 

to moment, shear and torque. 'l'he only tests that appear to be 

available are those conducted at Lehigh University [17, 21 ], the 

Imperial College of London [5] and one test by Heckling [4]. In 

the following, the principal characteristics of each test : re 

described and the theoretical and experimental results are 

compared. ExpJanation is given for any special methods or 

observations which may contribute to the understanding of any 

discrepancies. First are described the tests at Lehigh University 

as a group, then the tests conducted at the Imperial College and, 

lastly, the test reported by Heckling. 

5.1 Lehigh Tests 

5.1.1 Description of Specimen and Tests 

'l'he scantlings of the test specimen were selected to model 

portions of a typical hull girder, and the relative proportions of 

each component were approximately the same as used in engineering 

practice. The scantings of each test segment (the portion of the 

girder between adjacent transverse stiffeners) were: length 
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- 4?7. 2mm ( W in.), width - 667mm ( 26.25 in.), depth - 508mm ( 20 

in.), und plate thickness - l.85mm (0.072 in.). 'l'he re were two 

equally spaced longitudinal stiffeners on each web and five equally 

spaced stiffeners on each flange. All of them were 19.0 mm (0.748 

in) wide and ).2 mm (0.126 in) thick. 

specimen was 2)8 MPa (34.34 ksi). 

The yield stress of the 

Fieure 11 shows the test specimen which was designed for the 

purpose of conducting three tests. For each test, a particular 

segment was tested to failure while the adjoining segment( s) were 

reinforced. The three identical segments were each subjected to 

different combinations of moment, shear and torque which are listed 

in the figure to the right of the sketches. 

For 'l'est 1, the adjacent segment, Segment 2, was temporarily 

reinforced by using: ( 1) small steel bars "C"-clamped to the 

longitudinal stiffeners, (2) corner angles at the web to 

compression flunge junctions, and (3) pieces of wood on the 

compression flange. All of these reinforcements were tightly 

wedged between the transverse stiffeners. Their function was to 

reduce the axial force in the compression flange of Segment 2. 

For Test 2, the segment which failed in Test 1 was permanently 

reinforced with four steel bars and two corner angles tack welded 

to the compression flange and wedged between transverse stiffeners. 

The webs were reinforced with steel bars placed in the direction of 
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tbc tension diagonals. All of these reinforcements were welded to 

the transverse stiffeners. Meanwhile, the segment reserved for 

Test 3 was reinforced by steel bars clamped to the longitudinal 

stiffeners and pieces of wood wedged between transverse stiffeners. 

For Test 3, the failed segment of Test 2 was permanently 

reinforced in the manner of Segment 1. 

5.1.2 General Observations 

Measurement of initial imperfections of the plate components 

showed that the out-of-flatness of the compression flange was 2 to 

3 times the plate thickness. These high imperfections were caused 

by the welding process during fabrication. Although not measured, 

the residual stresses were expected to be relatively high. 

Additional initial imperfections were created in Segment 2 as a 

consequence of Test 1 and in Segment 3 after Tests 1 and 2. 

The reinforcing system used during testing created some 

undesirable effects which became especially evident for Test 2. 

The compression flange of this segment buckled downward (convex on 

the plate side) instead of upward, as was expected. The reason for 

this behavior was an apparent upward shift of the centroid of the 

cross section at one end of the segment due to the reinforcements 

of Segment ".l 
.J, and due to a negative residual moment (causing 

compression in the stiffeners) introduced by the process of 

wedging. At the other end of Segment 2 adjoining Segment 1, there 
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was a similar upward shift of the centroid and a moment which 

remained from the plastifica tion of the longi tudinals in Test 1. 

The net result was that the compression flange was subjected to 

residual flexure which in combination with the applied loads forced 

the flange to deflect downward, rather than upward, as would have 

been expected. 

The eccentricity of the vertical load on the specimen changed 

somewhat during the course of Tests 2 and 3. This was due to the 

ungle of r·otation of the girder, as well as, to the distortion of 

the shape of the cross section in the latter stages of the tests 

and the consequent lateral shift of the compression flange. 

Although adjustments of the point of load application were made 

during the test, the eccentricity could not be kept constant 

continuously. 

During Test 2, there was also a noticeable change of the shape 

of the cross section, especially, of the end transverse frame which 

resisted the torque. For Test 3, this end frame was braced by a 

diagonal bar to prevent this type of distortion. 

In consequence of all of the detrimental complications 

associated with these tests, the experimental results were expected 

to be on the low side, especially, for the tests with torque (Tests 

2 und ) ) when compared with the results which would have been 

expected for more ideal test specimens. 
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5.1.3 Lehigh- Test 1 (Moment and Shear) 

The theoretical ultimate strength of the segment for Test 1 

WHS 1.8% below the experimental ultimate strength as shown in Fig. 

12 and Table 2. The ultimate strength of the section was limited 

by the strength of the compression flange. Considering the 

condition of the test specimen, this correlation was much better 

than could have been expected. 

5.1.4 Lehigh- Test 2 (Moment, Shear, and Torque) 

The experimental ultimate strength of Segment 2 was expected 

to be greater than the experimental ultimate strength of Segment 3 

since both segments were geometrically identical and the loading 

was nearly the same except that Segment 3 was subjected to a 

somewhat greater amount of torque and shear. 

However, the theoretical ultimate strength was 49.1% over the 

experimental strength as shown in Fig. 13 and Table 2. This 

exceptionally low experimental ultimate strength of Test 2, can be 

attributed to the effects which caused the compression flange to 

buckle downward, instead of upward as discussed above in Subsection 

5.1.2. 
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5.1.5 Lehigh- Test 3 (Moment, Shear, and Torque) 

The theoretical ultimate strength of the girder for this test 

was 26.4~ greater than the experimental ultimate strength as shown 

in Fig 14 and Table 2. In view of the many factors which 

detrimentally influenced this test (see Subsection 5.1. 2), the 

agreement is not as bad as could have been expected. 

5.2 Imperial College and Heckling Tests 

Eight tests performed by Dowling at the Imperial College [5] 

and one by Heckling [4] are compared next with the theory. Among 

these, only one test included torsion. 

5.2.1 Imperial College -Model 1 (Moment and Shear) 

The scantlings of the test segments in the specimen \-/ere: 

length 787.44mm (31 in.), width - 1219.2mm (48 in.), depth 

- 914.4mm (36 in.), flange plate thickness - 4.95mm (0.195 in.), 

und web plate thickness - 3.)8mm (0;133 in.). There were four 

equally spaced stiffeners on each flange and two stiffeners on each 

web. The flange and web plates of the specimen had the yield 

stresses of 247 ~lPa (:;5.8 ksi) and 273 NPa (39.7 ksi), 

re spec ti ve ly. 

The theoretical ultimate strength was 9.8% greater than the 

experimental ultimate strength, as shown in Fig. 15 and listed in 

'l'able 2. 'l'he ultimate strength of the model was limited by the 
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cap~city of tllli compression flange. 

5.2.2 Imperial College - Model 2 (Moment) 

'l'he scantlings of the test segments were: length - 7S7. 4mm 

(31 in.), width - 1219.2mm (48 in.), depth - 914.4mm (36 in.), 

flange plate thickness 4.88mm (0.192 in.), and web plate 

thickness - 3. 38mm (0.133 in.). There were four equally spaced 

stiffeners on each flange and two stiffeners on each web. The 

yield stresses of the flange and web plates were 298 MPa (43.2 ksi) 

and 212 MPa (30.7 ksi), respectively. 

The theoretical ultimate strength was 9. 2% greater than the 

experimental ultimate strength (Fig. 16 and Table 3). The strength 

of the girder was limited by the ultimate strength of the 

compression flange. 

5.2.3 Imperial College - Model 3 (Moment and Shear) 

The scantlings of the test specimen were: length - 787. 4mm 

(31 in.), width - 1219.2mm (46 in.), depth - 914.4mm (36 in.), 

compression flange thickness - 5.02mm (0.198 in.), tension flange 

plate thickness - 4.95mm (0.195 in.), and web plate thickness 

- 4.98mm (0.191 in.). There were nine equally spaced stiffeners on 

each flange and five stiffeners on each web. The compression and 

tension flange plates had the yield stresses of 221 MPa (32.0 ksi) 

and 216 MPa (31.2 ksi), respectively. The yield stress of the web 
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plutes was 281 MPa (40.8 ksi). 

The theoretical ultimate strength was 3. 2% greater than the 

experimental ultimate strength, as shown in Fig. 17 and Table 2. 

The ultimate strength of the model was limited by the capacity of 

the compression flange. 

5.2.4 Imperial College - Model 4 (Moment) 

The scantlings of this test specimen were: length - 787. 4mm 

()l in.), width - 1219.2mm. (48 in.), depth - 914.4mm (36 in.), 

compression flange plate thickness - 5. O)mm (0.198 in.), tension 

flange plate thickness 4.95mm (0.195 in.), and web plate 

thickness 4.9Bmm (0.196 in.).· The yield stresses of the 

compression and tension flange plates were 221 MPa (32.0 ksi) and 

216 MPa (31 .4 ksi), respectively. The yield stress of the web 

plate was 281 MPa (40.8 ksi). There were nine equally spaced 

stiffeners on each flange and four stiffeners on each web. 

The theoretical ultimate strength was 4.8% below the 

experimental strength as shown in Fig. 18 and Table 3. The 

ultimate strength was limited by the capacity of the compression 

flange. 
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5.2.5 Imperial College - Model 5 (Moment and Shear) 

The scantlings of the test specimen were: length- 787.4mm 

(31 in.), width - 1219.2mm (48 in.), depth - 914.4mm()6 in.), 

flange plate thickness 8.128mm(O. 320 in.), and web plate 

thickness - 3.15mm (0.124 in.). '!'here were four equally spaced 

stiffeners on each flange and two stiffeners on each web. The 

flange and web plates of the specimen had the yield stresses of 264 

MPa (38.3 ksi) and 233 MPa (33.6 ksi), respectively. 

The computed ultimate strength was 57.3% greater than the 

experimental as shown in Fig. 19 and Table 2. According to the 

method, the ultimate strength was limited by the shear capacity of 

the webs on the assumption that the longitudinal stiffeners did not 

buckle. However, the photographs of Model 5 in the source 

publication [5] showed that all of the web longitudinal stiffeners 

had buckled before the ul tim~:~te load was reached. 'l'o take this 

into account the model was analyzed again, this time assuming the 

web to be without stiffeners. The theoretical prediction become 

significantly closer to the test result; only 22.6% above the 

experimental strength. 
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5.2.5 Imperial College - Model 5 (Moment and Shear) 

The scantlings of the test specimen were: length - 787.4mm 

(31 in.), width- 1219.2mm (48 in.), depth- 914.4mm(36 in.), 

flange plate thickness 8.128mm(0.320 in.), and web plate 

thickness- 3.15mm (0.124 in.). 'l'here were four equally spaced 

stiffeners on each flange and two stiffeners on each web. The 

flunge and web plates of the specimen had the yield stresses of 264 

MPa (38.3 ksi) and 233 MPa (33.8 ksi), respectively. 

The computed ultimate strength was 57.3% greater than the 

experimental as shown in Fig. 19 and Table 2. According to the 

method, the ultimate strength was limited by the shear capacity of 

the webs on the assumption that the longitudinal stiffeners did not 

buckle. However, the photographs of Model 5 in the source 

publication [5] showed that all of the web longitudinal stiffeners 

had buckled be fore the ultimate load was reached. 'l'o take this 

into account the model was analyzed again, this time assuming the 

web to be without stiffeners. The theoretical prediction become 

significantly closer to the test result; only 22.6% above the 

experimental strength. 
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5.2.6 Imperial College - Model 6 (Moment and Shear) 

The scantlings of the test specimen were: length - 787 .4mm 

(j1 in.), width - 1219.2mm (48 in.), depth - 1219.2mm (48 in.), 

compression flange thickness 4.8mm (0.192 in.), web plate 

thickness - 3.35mm (0.132 in.), tension flange thickness- 6.25mm 

(0. 246 in.), and tension flange coverplate - 813mm (32 in.) by 

37.6mm (1.48 in.). There were nine longitudinal stiffeners on the 

compression flange and seven on each web. The plate of the 

compression flange and web had yield stress of 271 MPa (39.4 ksi) 

and 315 MPa (45.7 ksi), respectively. 

The theoretical ultimate strength was 9. 5% over the 

experimental as shown in Fig. 20 and 'fable 2. 'l'heoretically, the 

shear capacity of the webs controlled the strength. 

5.2.7 Imperial College -Model 7 (Moment, Shear, and Torsion) 

This is the only specimen in this series which was subjected 

to torsion in addition to shear and moment. The scantlings of the 

test specimen were: length- 787.4mm (31 in.), width- 1219.2mm 

(48 in.), depth 914.4mm (36 in.), compression flange plate 

thickness - 7.80mm (0.307 in.), tension flange plate thickness 

- 7.95mm (0.313 in.), and web plate thickness - 3.15mm (0.124 in.). 

'l'he re were four stiffeners on each flange and two on each web. The 

compression flange and \'reb plates of the specimen had the yield 

stress of 273 MPa (39.6 ksi) and of 236 MPu (34.3 ksi), 
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respectively. 

'l'he computed ultimate strength was 51.6% greater than the 

experimental (Fig. 21 and Table 2). The ultimate strength was 

indicated to be limited by the shear capacity of the web which was 

subjected to the higher shear stress (due to torsion). However, 

similarly to Nadel 6, the test photographs indicate occurence of 

buckling of the web stiffeners before the ultimate load was 

re&ched. A re-analysis of the specimen with the web stiffeners 

assumed to be removed brought the theoretical capacity to only 8.9% 

above the test strength. 

5.2.8 Imperial College - Model 8 (Moment and Shear) 

The test on Model 8 is included here although its compression 

flange failed in a grillage mode, that is, combined failure of the 

longitudinals and transverses, which is not considered by the 

proposed method of analysis. 'l'he scantlings of the specimen were 

the following: length - 1320.8mm (52 in.), width - 1219.2mm (48 

in.), depth - 914.4mm (36 in.), compression flange plate thickness 

- 4.72mm (0.186 in.), tension flange plate thickness - 4.67mm 

(0.184 in.), and web plate thickness- ).18mm (0.125 in.). There 

were nine stiffemns on each flange and four on each web. The 

yield stress of the compression and tension flange plates were 276 

NPa (40.1 ksi) and 365 NPa (5).1 ksi) respectively, and the yield 

stress of the web was 252 MPa (36.5 ksi). 
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The theoretical ultimate strength was 46.5% greater than the 

test strength as indicated in Fig. 22 and Table 3. Since the 

ultimate strength of this model was observed to be limited by the 

overall buckling of the compression flange, including the 

trunsverses, the overestimate is not surprising. This test 

indicates the need to extend the method to include the grillage 

mode to cover the girders with weak transverses. 

5.2.9 Heckling - Test 23 (Moment) 

Only nominal design dimensions of this test specimen were 

reported in the publication [4]: length - 500mm (19.68 in.), width 

- 600mm (2).62 in.), depth- 400mm (15.75 in.), and plate thickness 

- 2.5mm (0.098 in.). The reported nominal yield stress of this 

model was 246 MPa (35.7 ksi). 

'l'he theoretical ultimate strength was 6.0% lower than the 

experimental (Fig. 2) and 'l'able 3). The theoretical strength was 

limited by the ultimate strength of the compression flange. 

The validity of the comparison for this test is somewhat 

questionuble because only nominal design values for dimensions and 

material properties were available rather than the measured. Since 

generally, the actual values tend to be somewhat greater than 

nominal, the slight underestimate of the capacity is quite 

reasonable. 
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6. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

6.1 Summary and Conclusions 

A number of methods have been proposed which rationally 

compute the ultimate bending strength of ship hull girders, and one 

of these methods gives a relatively good correlation with test 

results. However, none of them hl:!s provisions for considering the 

effects of shear l:!nd, especially, torque in addition to bending. 

A new method is presented here for determining the behavior 

and ultimate strength of longitudinally stiffened ship hull girders 

subjected to moment, torque and shear. For the geometry and 

material properties of a segment between transverse stiffeners of 

the ship hull, the method gives a relationship between the 

curvature and a load parameter. This load parameter defines the 

values of moment, torque and shear acting on the cross section. 

'l'he principal features of this analytical method are: ( 1) 

compatibility of axial strains is maintained, by keeping the cross 

section plane or subjecting it to a specified degree of warping; 

(2) compatibility of shearing strains in each web is maintained; 

(j) non-linear behavior of individual components due to buckling, 

la1·ge deflections, residual stresses and plastification is taken 

into account. 

Some of the important assumptions used in this method are the 

following: 
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1. 'l'he segment. is prismatic and the shape of the cross section 

does not change. 

2. The nonlinear axial behavior of the compression flange 

elements (stiffener-plate combinations) must be pre-defined 

by & series of points which are provided by other computer 

programs which consider nonlinear behavior due to plate 

buckling, ini tiul imperfections, residual stresses, and the 

beam-column effect. 

3. The axial behavior of the tension flange is of an elastic­

plastic pattern with the plastic limit determined by yielding 

due to shearing and axial stresses. 

4. 'l'he axial behavior of the web plate subpanels is elastic­

plastic with the plastic limit determined by the buckling 

interaction equation or yielding. The shear response is 

defined by an ultimate strength theory previously developed 

for longitudinally stiffened plate girders which considers 

tensiou-field action in web subpanels. 

?. The stiffeners of the web und tension flange are elastic­

plustic. 

6. The effect of shear lug is negligible. 

The basic procedure of the method is to compute the forces in 

the cross section (moment, torque and shear) for a prescribed 

curvature and a constant degree of warping, increment the 
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curvnturc, and repel.lt the process. 'l'hus, for a specific value of 

curv1Jturc u set of four axial strains, one at each corner, is 

found. This set of strains must satisfy requirements of 

equilibrium, that is, the total axial force and the moment ubout 

the vertical axis are each equ&l to zero. With the axial strain 

distribution known, the bending moment can be calculated and, 

because the relative amounts of shear, moment, and torque are 

prescribed, the corresponding values of torque and shear are 

computed from the moment. The shearing stresses, due to flexure 

and torsion, are determined in the cross section, and each 

component is checked for the conditions of buckling and/or 

yielding. If the condition is exceeded, the curvature is reduced 

and the process repeated to convergence. Then, the curvature is 

incremented for the next point. As part of the computationul 

process, a new efficient technique for enforcing equilibrium of 

forces in the cross section was employed. 

A comptll'ison of the theoreticul and experimental results for 

tests on twelve specimens subjected to various combinations of 

moment, shear and torque showed the method to be ucceptably 

accurate (within 10%) for the specimens which satisfy the 

assumptions of the method, that is, maintain their cross-sectional 

shape, have web stiffeners which do not buckle, and have "rigid" 

transverses. The greater deviations for the four specimens which 
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did not satisfy tl1ese requirements could be readily explained 

and/or adjusted. The accuracy of the method, thus, can be 

considered to be confirmed by the available experimental results. 

The following additional studies and observations were made 

during this research: 

1. A study of the sensitivity of a girder segment to warping of 

the cross section indicated that warping was insignificant 

for the cross sections which were analyzed; hence, an 

assumption of It a plane section rema ·.r>s plane" should be 

adequate for "usual" sections. 

2. 'l'he assumption of the method that the effects of shear lag 

are negligible was confirmed by observing the almost linear 

distribution of strains in the tension flanges of the test 

specimens for which data were available. 

). One of the specimens (Dowling Mb) included in the 

comparison had its capacity limited by the grillage mode 

failure of the compression flange (overall failure of the 

·1ongi tudinal and transverse stiffeners). This failure mode 

is not considered in the proposed method and the prediction 

was significantly higher than the test result. 
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6.2 Recommendations for Future Research 

On the basis of the conducted work, the following topics are 

recommended for future research for the purpose of improving the 

proposed method or for extending knowledge of the structural 

behavior of box girders: 

1. Axial strength and behavior of longi tudinnl web stiffeners, 

specifically, proper evaluation of the forces in the 

stiffeners due to the effects of bending und tension-qeld 

~;~ction. 

2. E:ffect of shearing stresses on the axial behavior of the 

compression flange and on its components. 

) • Grillage mode of behavior for compression flange, that is, 

when the transverses cannot be b.Ssumed to be rigid. 

4. Effect of different degrees of modification on the response 

of the cross-sectional components due to torque, on the 

stress distribution and on the overall behavior of the 

segment (shifting of the shear center). 

5. More tests on ship hull models subjected to moment, torque 

and shear. (At present, only three test results are 

available and none of them properly duplicate prototype 

conditions.) 

47 



7. NOMENCLATURE 

A1 ,Al!.,A) 

A 
0 

A 

A· l 

AHU1 

ANU2 

ANU3 

AXF 

B1,B2,B3 

b 

CE 

d 

E 

Length of girder segment. 

Coefficients in the equation of the AXF-Plane; 
Equation (3.6). 

Enclosed area of the cross section. 

Aspect ratio. 

Aspect ratio of the i-th subpanel. 

Aspect ratio of the widest web subpanel. 

Coefficient that relll tes shear force in the section 
to the load parameter. 

Coefficient which relates moment in the section to 
the load parameter. 

Coefficient which relates torque in the section to 
the load parameter. 

Axial force in the hull girder. 

Coefficients in the equation of the YBM-Plane; 
Equation (3.7). 

Width of the hull girder. 

Curvature at mid-width of the hull girder. 

Depth of the hull girder. 

Depth of the i-th web subpanel. 

Largest subpanel depth. 

Nodulus of elasticity. 

Critical bending buckling stress of the i-th web 
subpanel for the case of bending acting alone. 

48 



F . ccr1 

}' . vcr1 

1' 

rui 

s . 
CCrl 

s 
t mux 

SYIP 

'C'tfi 

Critical compressive buckling stress for the i-th web 
subpanel for the case of axial compression acting 
alone. 

Critical shear buckling stress of the i-th web 
subpanel for the case of shear acting alone. 

Yield stress. 

Shearing modulus. 

Shear flow. 

Shear strain. 

Shear strain in the i-th web subpanel at the point of 
buckling. 

Shear strain in the i-th web subpanel •rhen it first 
reaches its ultimate shear strength. 

Bending stress which causes buckling of the i-th web 
subpanel v1hen acting simultaneously with Sccri and 

veri· 

Compressive stress which causes buckling of the i-th 
web subpanel when acting simultaneously with Sbcri 
and veri· 

'l'ension field stress at the ultimate condition for 
the i-th web subpanel. 

Normal _,~ ress which causes yielding of the tension 
flange when acting simultaneously with shear. 

Axial strain lit the corners of the girder(see Fig. 
2). 

See Fig. 9. 

Degree of warping, see Fig. g. 

Shear stress. 

Equivalent shearing stress in the i-th web subpanel. 
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~veri 

'l' 

v 

vwt 

w 

YBN 

Shearing 
subpane] 
s .. 

stress which c&uses buckling of the i-th web 
when acting simultaneously with Sbcri and 

ccr1 

'l'o1·que. 

Web thickness. 

Total shear force carried by both webs. 

She&r force present at buckling of the i-th web 
subpanel. 

Shear force in each flange due to torque. 

Shear force carried by tension field action in the i­
th subpanel. 

Shear force in each web due to torque. 

Load parameter. 

Load parameter for SWP = 0 (plane section). 

Resultant bending moment about 
centroidal axis of the hull girder. 
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Vl 
N 

Pure. Stress 

Shear 
......_..._~...._ 

lDLE 
1:- -a-.. ~I 

Bending 

10\ 
Axia I 

~DI 

Aspect 
Ratio 

cl.=a;(j i 

>_g_ 
3 

<i 
>I 

<I 

Table 1 Reference Buckling Stresses 

Buckling Relative Plate For 
Coefficieni Slenderness ). k . 

~0.58 

5 d·J:f ~0.58 
k =5+- >-v=o.ef E k ~1.41 v d...l. w v 

>1.41 

~0.65 
kb= 24 

~i/fw ./It ~1.5 
kb=24+73(~-cJ 

Ab= 0,95 E kb 

~1.5 

~0.65 
k = 4 

~1.5 c 
_ d1/tw Jlf 

I 2. 
Xc- 0.95 E kc 

~1.5 kc = (d.+ cr> 

Buckling Streii~ 
Yield Stress 

Fvcr 
=0.58 Fy 

Fvcr 1.18 
~= 0.58-0.357(Av-0.58) 

F . 
__yg_ = 0.58 { II A2 ) 
Fy v 

Fbcr 2 
Fy 

0.072( Ab-5:62} -0.78 

Fbcr 2 
Fy = 1/Ab 

Fccr 2 

Fy 
0.072 ("c-5.62) -0.78 

Fccr 2 
Fy 

::: II Ac 



Table 2 

TEST 

Nm:BER 

Comparison of Theoretical and Experimental Results 
Tests for (Homent and Shear) and 

(Homent, Shear, and Torque) 

* ULTH!ATE LOAD ( kN) LOADING \I' th-Wexp 

v ..!L T wexp wth 
~1 exp 

- 'Vif (%) 'rl Vd 

Rer.(l7] Tl 0.615 1.799 0 266.9 262.0 -1 .a 

T2 0.}85 3.150 0.990 164.6 245.4 49.1 

Rer.[27] T3 0.538 2.252 o. 732 192.4 243.1 26.4 

Ref. [ 5 ] HI 0.500 2.153 0 131 5. 2 1444.3 9.8 

~:3 0.500 2.153 0 1913.0 1975.9 }.2 

H5 0.500 2.153 0 1115.9 1367.9 22.6 

1·:6 0.500 1.615 0 2650.3 2902.} 9.5 

M7 0.500 2.153 0.583 817.0 890.3 8.9 

'rl " Load 
V = Flexural shear 
M " Moment 
T = Torque 
d = Depth of section 
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Table 3 Comparison of Theoretical and Experimental Results 
Tests for Pure Moment 

TEST ULTU:ATB LOAD ULTH:ATF: I·:OHENT J.lth-Hexp 
(kN) (kl:-rn) 

NUHBER Mexp 
wexp r.exp Mth 

Ref. [ 5] N2 642.6 1542.2 1684.6 9.2 

114 896.7 2152.1 2046.9 -4.8 

}'j8 553.0 1327.2 1944.2 46.5 

Ref. [ 4) R23 ----- 237.8 223.5 -6.0 
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Hull Segment Analyzed 

Transverses 

VM T 

Fig.l Segment of Hull Girder Subjected to Bending (H), 
Torque (T), and Shear (V) 
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.c 
Q) 

:= 

Corner 4_/ 1· / -1 \.corner 3 

L Tension Flange Element 

Tension Flange Plate 

Tension Flange Stiffener 

Fig.2 Definition of Components in a Cross Section 

57 



Compression Plate 

Compression Flange Stiffener 

~ener Beam -Column 

~ rcorner2 
-+----,---+---; 

.0 
Q) 

::= 

Corner 4_/ 

Web Stiffener 

Web Plate 
1

]Web Subpanel 

+Centroid 

Tension Flange Plate 

Tension Flange Stiffener 

Fig.2 Definition of Components in a Cross Section 
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Strain Distribution ( E ·E) 
Stress Distribution 

S2 (compression) 

S3 (tension) 

S4 

Fig.3 Stress and Strain Distributions in Girder Cross Section 
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Fig.6 Shear Behavior of Web Subpanels 

61 



BOX reads and prints 
input data (geometry, 
load response curve, 
range of curvature) 

PROPRT calculates 
some constants 

CRISTR calculates 
subpanel critical 
buckling stresses 

establish three sets 
of strains for given 
value of curvature 

by using AFAYX which 
calculates axial 

force (F) and moment 
about vertical axis 

(MY) 

T~OPLA finds a better 
set of strains tD 
make F=O and MY-Q 

AFAYM calculates F 
and MY for new set 

of strains 

yes 

replace sets of 
strains which give 
worst values of F 

and/or MY with the 
new set 

Ma~Etrr 
calculates 

moment 
about hori­
zontal axis 
of section 

(MX) 

load para­
meter is 

calculated 
from MX 

finds value 
of curva­

ture' to 
appro~imate 

ultimate 
strength 

no 

Fig. 7 General Flm.,rchart 
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WEBSH calculates 
shear and torque 
for section, and 
buckling inter­
action value for 

each subpanel 

store values of 
curvature, load 
parameter, and 
corner strains 



Points Defining 
YBM Plane 

YBM Plane 
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Values of 
Sf and 52 
Extrapolated For 
AXF =YBM =0 

Fig,8 Use of Tanguut Planes for Equilibrium Convergence 
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Compressive Strains (-) 

Tensile Strains (+) 

Degree of Warping 

(-) 

(+) 

Warped Section 

SWP = b. S 3 
2(S4 -S I) 

Fig.9 Strain Distribution and Definition of Warping 
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W (kN) 

SWP 
-0.5 -0.3 -0.1 0 0.1 0.3 0.5 

(a) W vs. SWP 

/Buckling at SWP= 0 

-0.5 -0.3 -0.1 0 0.1 0.3 0.5 

(b) Effect of web buckling on W vs. SWP 

Fig.lO Load Parameter vs. Degree of Warping 
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Test Segmenf ~w 

5o{ IJ-----{l----1ll-----1r'~"'-!l------IJ. 
I : 

1- 3 @ 457 

1s2s 1 

I 

: l 
a} Tesf I : Momeni + Shear 

b) Tesi 2. : Momenf + Shear + Torque 

b) Tesi '3 : h~omcni + Shear + Torque 

M= ~.5 62.WCkN-ml 
V=O.GIS Vr'{kN) 

T=O (kN-m) 

M= 0.6\ 6W( kN-m} 
V:;: 0.3 SSW( kN). 

T=O.l94WCkN-m) 

M=0.615WlkN-ml 
V=0.538WtkN) 

T=0.200W( kN-ml 

Fig.ll General View of the Lehigh Test Specimen 
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