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1.· Abstraet 

Geoloqic mapping, field studies, and detailed 

analysis of the minor structures within the Starhope 

:anyon-Muldoon Canyon area ln the Pioneer Mountains of 

south•central· Idaho indicate that the Mississippian 

:opper Basin rormatfon is contained within two 

allochthonous plates. Rocks in the upper, Glide Mountain 

plate are characteristica11Y f.olded by pervasive small 

and intermertiate scale folds 1n contrast to the rocks of 

the lower, Copper Basin plate which typicallY are only 

~ently folded. Both allochthonous plates and the thrust 

which seperates them are aentlv folded on a regional 

scale. The Brockie suhplate of Nilsen (1977) is 

correlated With the Glide Mountain plate of the Copper 

B~s1n formation based on mapping evirtence, s1milar1ties 

in structural style, and contr~sting structural styles 

between the Brockie subpl~te ~nrt the Copper Basin plate. 

Therefore the Brockie subplate and the Glide Mountain 

Plate are considered to b@ on~ and the same (the Glide 

Mountain plate) and the Muldoon Canyon thrust, which 

Nilsen (1977) maps at the base of his Brockie subplate, 

is· correlated with the Glide Mountain thrust which 

underlies the Glide Mountain plate. This thrust is a 

thick brecc1~ zone which can be traced throughout most of 

the study area, except alonq the east rfdqe of Muldoon 

1 



:anyon where it is extensivelY covereo hy surficial 

deposits. 

Two periods of foldinq (r and r ) are identified: 
1 2 

but D and D deformational evP.nts are not designated due 
1 2 

to the tact that F folds ~nd r folds display equivalent 
1 2 

0 0 
axial trends (~15 W•S15 E1 ano may have developed under a 

stress continuu~. Small anrl intermediate scale folds 

throughout the Glide Mountain Plate, directly beneath the 

:opper Basin plate, and within the Drummond Mine 

Limestone of Paull and others (1972) in the Copper Basin 

plate are all assigned An r notation. F folds 
1 1 

developed, to a large deqree, during thrusting of the 

Glide Mountain plate. Gentle to open reqlonal folds 

which post-date thrust1nq are assigned an F' notation. 
2 

A wealclY to moderately developed spaced fracture 

\:..:• cleavage (S ) was forme, ln the less competent 
1 

stratigraphic units within both thrust plates of the 

:opper Basin Formation durinq the F folding and 
1 

thrustin~ period. This c:leavaqe is best displayed within 

the Copper Basin plate in the Drummond Mine Limestone of 

Paull and others (1972). A well developed joint system, 

composed of three joint sets, Is present in both thrust 

plates of the Copper Basin Formation and is 

post•thrustinq in age. Eocene quartz monzonite intrusive 

2 



StOCKS, Eocene Challis Volcanics, and the Upper 

:retaceous C?) to Lower F.oc~ne (?) Smiley Creek 

:onqlomerate all post•date emplacement of the Glide 

~ounta1n plate. Jointing ts Pre-intrusive in aqe and 

minor offsets along joint sets are developed in the a 

kinematic direction and m~v hav~ been produced by the 

S3me stress system which nroduced F 
1 

minor tectonic adjustments Within 

and F folds. Some 
2 

the rocks of the 

Starhope Canyon• Muldoon Canyon area are post-intrusive 

1n a~e and are not related to the dominant regional 

structural fabric. Th~ Starhope Canyon-Muldoon Canyon 

area may be intrusively domed, which could be responsible 

for minor tectonic adjustments. 

3 



2. Introduction 

The primary objective of thiS study was to undertake 

a detaile~ analysis of the structural geology of the 

Starhope Canyon•Muldoon CAnyon areA in the Pioneer 

Mountains Jn south-central r~aho in an attempt to resolve 

the controversy concernina the number of allochthonous 

plates ~nd stratigraphic r~lat1onsh1ps within the 

Mississippian Copper Basin Formation. The stratigraphy 

of the ~1ss1ss1pp1an Copper Aasin Group (now rP.ferred to 

as· the Copper Aasin Fnrmatl~n) which was proposed by 

Paull and others (1972) an~ mortified by Paull and Gruber 

(1977) has subsequently heen rejected by other workers 

(Nilsen, 1977; Skipp and others, 1979; Dover, 1980, 19R1) 

on the premise that thrust faults complicate the 

strat1qraph1c sequence. P~ull and others (1972) 

considered the rocks of their Copper Basin Group to 

represent a normal stratiaraphfc sequence. Nilsen (19771 

sug~ested that the Copper Aasin r.roup of Paull and others 

(1972) actually consists of three allochthonous plates: 

the Scorpion subplate, Arockie subplate, and Glide 

Mountain plate. Alternatively, Dover (1980, 19R1) 

proposed that Ctl the Brockle subplate of Nilsen (1977) 

and the Glide Mountain plate of Nilsen (1977) are parts 

of the same allochthonous pl~te, and therefore (2) the 

Copper Basin Group of Paull anrt others (1972) consists of 

4 



only two allochthonous plates. 

The StarhoPe Canyon-Muldoon Canyon area was selected 

for this study because of its strategic location in 

relation to the strat1gr~phic and structural ~roblems 

concernin~ th~ rocks Which cnmPrise thP. Mlssissipp!an 

:opper Basin Formation. The present study area is 

contained within the larqP.r study areas of Paull an~ 

others (1972), Paull and Gruher (1977), Nilsen (1977) and 

Dover (1990, 1991). 

2.1 GeograPhiC· Setting 

The Starhope Canyon-Muldoon Canyon area consists of 

an BS square kilometer req!on at the headwaters of the 

East fork of the Big Lost River in the Mackay 3NW and 

~ackay 3NE 7.5 minute TJ. s. Geological Survey 

topographic quadrangle maps. The area lies at the 

southern end of the Copper Basin, in the Pioneer 

~ountains of south•central Idaho: approximatelY 28 km. 

southwest of Mackay, 32 km. east of Ketchum, and 40 km. 

west of Arco (see figure 2•1 and Plate Al. Access to the 

stu1y area can be gained bv two alternative routes: (1) 

from Mackay via the Burma Road through the White Knob 

~ounta1ns to the Copper B~s1n LooP Road, which enters the 

northern end of the study ~rea: or (2) from either Mackay 

or Ketchum by exiting the Trail creek Road at the Copper 

5 
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Figure 2•1z LocatJnn Map of the 
Starhope Canyon-Muldoon Canyon Area. 
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B~s1n Road w~lch connects With the Copper Basin Loop 

Road. Unimproved rorest Service and mining roads provide 

access from the Copper Basin Loop Road into Muldoon and 

Starhope :anyons, but most of the study area is 

accessible onlY by foot. 

The study area 1nclud~s the full extent of both 

Starhope and Muldoon Canyons, from their mouths, which 

face Copper Basin to th~ ~orth, to their head~alls 

approximately B to 10 kilometers· to the south. The 

western border of the study areA, which roughlY coincides 

with the B1a1ne County-Custer County Line, is defined by 

the points of highest elevation on the west ridge of 

Starhope :anyon. The east~rn border is definPd by the 

points of highest elevatton on the east ridqe of Muldoon 

:anyon. The southern boundary is defined by the 

headwalls of both Starhope Canyon and Muldoon Canyon; and 

the northern boundary ts the 43 degree 45 minute 

parallel, which constitutes the northern border of the 

~ackay 3NW and Mackay 3NE 7.5 mtnute quadrangles. 

Elevations in the study are~ range from a minimum of 

approximately 7sqo teet at the front of the ridge between 

Starhope Canyon and Muldoon Canvon to a maximum of 11,258 

feet on the east ridge of ~uldoon Canyon above Green 

LaKe. The lower and middle slooes of the ridges are to a 

large extent underlain by unconsolidated 
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deposits (talus, colluvium, ~lluvial fans, and glacial 

tills) and are vegetated w1th sa~ebrush, aspen, and pine. 

Tne floors of both canyons ~re underlain by glacial 

tills, glacial outwash and recent stream alluvium. 

2.2 GeolDOiC Setting 

The Pioneer Mountains of Idaho, Which include the 

study area, are located 1n the Central Rocky Mountain 

Province of Eardley (19~2). They lie south and east of 

tne Idaho batholith, west of the Lost River Range and the 

White Knob Mountains, and north of the Snake Piver Plain. 

Most of the major mountain ranges in the vicinity of 

the study area follow a pronounced north-north~est; 

south•southea•t regional structural trend. These ranges 

include the B~averhead, Lemhi, Lost River, and Pioneer 

Mountains. They were 'ormed during Miocene-Pliocene 

times as •Great Basin" tyoe structures (Anderson, 1934; 

Baldwin, 1951: Ruppel, 1964). Both Muldoon Canyon and 

Starhope Canyon also lte Parallel to this north

northwest; south-southeast trend. 

The north•northwestJ south-southeast 

tr~nd ls expressed in both Ctl macroscopic 

structural 

structural 

elements, such as major told ~xes and compressional and 

tensional faults; ~nd (2) mesoscop1c structural elements, 

such as minor told axes, strike and dip of Paleozoic 

B 



strata and cleavage. 

generally reflected in 

This structural trend is also 

depositional patterns in Upper 

Paleozoic sedimentary rocks (Scholten, 1957; Thomasson, 

1959; Ross, 1962a, 19&2b; Churk1n, 1962). Other workers 

(Skipp and MaMet, 1970; Schramm, 1978), however, suggest 

that north-south facies chanaes may comPlicate previously 

accepted models of northeast-southwest facies changes and 

north-northwest; south-southeast depositional patterns. 

Rocks exposed in the study area range from Lower 

Mississippian to Eocene. U~per Paleozoic sedimentary 

rocks within the study area are restricted to the 

Mississippian Copper Basin Formation. A tew, small, 

isolated outcrops of the tlpper Cretaceous C?l to Lower 

Eocene C?l Smiley Cree~ Conatomerate occur within the 

study area in upper Muldoon Canvon. Extrusive rocks of 

the Eocene Challis Volcanics are locallY present at hiah 

elevations. Post-orogenic quartz monzonite intrusive 

bodies in the form of stocks and associated rhyolite and 

andesite dikes of Eocene aqe are also present. 

Unconsolidated Pleistocene to Holocene surficial deposits 

line the valley floors and mantle some of the slopes. 

The stratigraphic and structural relationships in 

Upper Paleozoic rocks ot the Starhope Canyon-Muldoon 

Canyon area are obscured hv the following: 
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1. The stratigraphic units which comprise the 
Copper Basin Formation ar~ relatively thick 
C~enerally on the order of thousands of 
~eters), lithologicallY similar, and contain 
few distinctive markP.r b~ds. 

2. Contacts between t~e stratigraphic units are, 
for the most o~rt, gradational over 
considerable vertical intervals (generallY on 
the order of 60 to 1~0 met~rs). Also, complex 
facies changes tenn to mask stratigraphic 
relationships. 

3. Extensive 
deposits 
resulteri 
rocks in 

cover of unconsolidated Quaternary 
and Eocene Chellis Volcanics has 
in poor exposurPs of Upoer Paleozoic 

much of the are~. 

4. Eocene intrusive rocks rstocks and dikes) that 
have been injected into Upper Paleozoic strata 
and structural zones of weakness (faults, 
joints, etc.) have ohscured structural 
relationships. 

These difficulties have hindered this study and 

previous sturiies within the Pioneer Mountains (Paull and 

others, 1972; Nilsen, 1977~ Dover, 1QRO, 1981). 

Furthermore, scarcity ot fossils has prevented precise 

a~e assi~nments for several nf the stratigraphic units 

which comprise the Copper Basin Formation. 

2.3 Tectonic· History 

Early ideas concernlnq the depositional and tectonic 

setting for the M1ssissfpp1an Copper Basin Formation 

include: 

1. The northern end of a qeosynclinal trough 
adjacent to a source area now obscured bY the 
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Idaho batholith (Poss, t934a, 1934b, t934c; 
Bissell·, 1962). 

2. A transitional zone between m1ogeosync11ne and 
eugeosyncline (Kay, 19~1: Scholten, 1957). 

3. A rapidly subsiding trouqh CMul~oon trough of 
Thomasson, 1Q5q) artj~cent to the Antler 
orogenic belt (Chur~1n, 1962: Roberts and 
Thomasson, 1964~ Roberts and others, 1965: 
Paull and Gruber, 1977). 

Poole (1975) suggested, based on 11tholoq1c 

comparison with similar deposits in Nevada and regional 

~ap distribution of these rocks, that the Copper Basin 

formation (then the Copoer Basin Group) was part of the 

flysch deposits of the Antler foreland basin. Based on 

sedimentolo~ic data NilsPn (1Q77, p. 275) identified the 

:opper Basin formation as 

"a deep sea fan and related turbidites 
~eposited in a trouqh or foreland basin that 
developed between the Antler orogenic belt on the 
~est and the cratonal-minqeosynclinal hinge line 
to the east." 

According to ~ilsen•s model, terrigenous turbidites 

preserved in the Copper Basin Formation were derived from 

the ~ntler hi~hlands to the west, while the carbonate 

turbidites of the Copper Basin formation were derived 

from the cratonal shelf to the east. 

The Late Devonian and F.arlY Mississippian Antler 

oro~eny, which gave rise to the deposition of the Copper 
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Basin Formation and other flvs~h deposits of the Antler 

foreland basin, was first re~oqntzed In central Nevada 

(Roberts, 1q64: Smith An~ Ketner, 1968). The Roberts 

~ountaln thrust has been the principal structure 

attributed to the development of an Antler highland In 

~evad~ (Roberts and others, 1q5B). Several workers 

c:hurkln, 1962: Roberts an~ ThO~ASSon, 1964: Poole, 1974) 

have presumed that Late nevonian and/or Early 

~1ssiss1pp1an thrusts equivalent to the Roberts Mountain 

thrust may project northward into central Idaho, but Late 

:enozo1c volcanic rocks of the Snake River Plain Group 

and Early Cenozoic (?) olutontc rocks of the Ioaho 

batholith and associated stocks and plutons prevent 

tracing of these thrusts C~ilsen, 1977). However, Dover 

c1qeo, p. 371) points out that 

~ore 

"evidence which suqaests that thrusting 
accompanied Antler hiqhland nevelopment 1n Idaho 
has not yet been demonstrated." 

recently, Ketner and Smith, Jr. (1982) have 

demonstrated that a mid•Paleozoi~ age for the Roberts 

Mountain thrust in Nevada can no longer be taken for 

granted and a post-Paleozoic aqP cannot be ruled out. 

Regional· mapping by many workers <Dover, 1969, 1975; 

Schanz and others, 1974; Hall and others, 1975; Skipp and 

Hall, 1975a, 1975b; Dover and others, 1976; Skipp and 
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Halt, 1977) confirms the fa~t that the central Idaho 

reQion is complicated by Mesozoic thrusttnq commonly 

attributed to the Sevier oroqenv. 

Skipp and others (1Q7Q) present two possible plate 

tectonic models for the Plate boundary tectonic events 

along the western margin of a proto-North American 

continent Which gave rise to the Antler oroqPny and the 

deposition of the CoppP.r Basin rormatlon. Both models 

involve (1) an arc-continent co111slon on the western 

margin 

in (2) 

of the proto-North American continent culminating 

major changes 1n structural settings for 

deposition of Carboniferous rncks in latest Devonian to 

earliest Mississippian tim~. 

Model I, modified from Poole (1974a, 1974h) and 

Poole and Sandberg Is base~ on back-arc thrusting during 

a period (Late Devonian to F-arly M!ss!ss1PP1an) of 

increased plate motion along an eastward dippina 

subduction zone. As a r~sult of back arc thrusting, 

obducted inner arc basin sediments formP.d the Antler 

orogenic belt which served as a source area for the 

flysch of the Copper Basin Group of Paull and others 

(1972), as well as MississiPPian flysch in Nevada south 

of the snake River Plain. In this model the inner arc 

basin continued to close throuah the Permian, culm1nat1nq 

in collision and weldinQ of the island arc (Klamath-North 
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Sierran arc terraine ot Poole ~nd Sandberg, 1977) to the 

proto-North ~merican continent in the Triassic. 

Model II, from Dickinson (1977), 15 based on 

eastward thrusting of an Antler highland onto the 

continental ~arg1n along a westward dipping subduction 

zone durin1 latest Devonian to earliest Mississippian 

time. ~ccord1ng to this model m1d•Carbon1ferous rifting 

broke up the ~ntler oroqenv, which interrupted maturation 

of the ~ntler flysch (including the Copper Basin 

formation) to molasse. The rifting produced various 

fault-bounded basins and hiqhlands in Pennsylvanian and 

Permian time. In Permian time the volcanic h!qhland 

collided with the proto-North American continent and was 

welded to it by mid-Triassic time. 
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l. Previous Work 

3.1 Upper Paleozoic Stratiqraphy ahd Structure 

The earliest geoloqtcal Investigations into Upper 

Paleozoic stratigraphy In south-central Idaho were 

conducted by Lindgren Cl900), Umpleby (2917), and Umplehy 

and others (1930). Later modifications concerning Upper 

Paleozoic stratigraphie nomenclature In south-central 

Idaho were suggested by Bostwick (1955), Sandberg (1975), 

and Sandberg and others (1975). Ross C1934a, 1934b, 

1937, 1947, 1960, 1961, 1962a, t962b, 1962c, 1963, 1969a, 

1969b) and Nelson and Ross (196A, 1969a, 1969b) conducted 

extensive mapping, stratiqraohfe, and structur~l studies 

in the Pioneer, White Knob, anrl J,ost River Ranqes. 

Thomasson (1959) descrlberl complex stratigraphic 

relations in the Upper Paleozoic section of the Pioneer 

~ountalns and informally proPosed the name ~uldoon 

rormation for these rocks. Ross (1960, 1962a, l962c) 

suggested that the Upper Paleozoic rocks of the central 

Pioneer ~ountains merge and interfinger with the White 

Knob Limestone on the east and wfth the Milllgen and Wood 

R!ver Formations to the west. Ross C1962a) proposed the 

name Copper Basin Formation for this complex of 

interfin~ering Upper Paleozoic rocks. He assigned an 

~arly M1ss1ss1pp1an to EarlY Permian age to the Copper 
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Basin Formation and estimated Its thickness to lie in the 

range of 3050 to 4575 meters. 

undertook extensive geoloq1c mapping in the Pioneer 

~ountains ann suggested that the abrupt east-west Upper 

Paleozoic facies changes w~rP. partially the result of 

thrust faults of great magnitude. He reserved 

conclusions concerning s~ratlqraPhic relations until 

structural relationships were bPtter understood. 

Paull and others (197,, p. 1372) noteci that 

"Lithology and thickness comparisons (of the 
Upper Pal~ozoic rocks of the· Pioneer Mountains) 
with lithologic sequencP.s In adjacent areas are 
difficult because faults have telescoped the 
Paleozoic statigraphfc ~uccession of the Wood 
River Valley on the west into juxtaposition with 
the Paleozoic roc~~ of. the central Pione~r 
Mountains ~h1ch, in turn, aoparently have been 
faulted into juxtaposition With the Paleozoic 
rocks of the White Kno~ Mountains on the east. 
The age, geometry, and ~ISPlacement of these 
faults are not well known, and it may be that 
none of the Upper Pateozoi~ rocks in the Pioneer 
~ounta1ns are autochthonous." 

Skipp and Hall (1975a, 1975b) considered Upper Paleozoic 

rocks of the Pioneer Mountains to be contained within a 

qently folded and faulted allochthon, which they named 

the :opper Basin allochthon. The Copper Basin allochthon 

is· considered to be about 19 kilometers wide and to have 

been thrust over older Paleozoic strata to the west and 

~1ss1ss1pp1an to upper Permian strata to the east (SkiPP 
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and Hall, 1975a, 1975b). 

Paull and others (1972) formallY proposed raising 

Ross's (1962a) Copper Basin Formation to qroup status and 

designated six formations within the Copper Basin Group. 

The Copper Basin Group ~f Paull and others (jQ72) 

consists of the follow!nq stratigraphic units in 

ascendin~ stratigraphic or~er: the Milligen Formation, 

Drumrnond "fine Limes tone, Scorp 1 on Mountain F'ormat ion,. 

"fuldoon Canyon F'ormat1on including the Green Lake 

Limestone Member, Brockie Lake Cnnglomerate, and Iron Bog 

Creek Formation. Paull and oth~rs (1Q72) stat@d that the 

Copper Basin Group consists of ~ continuous sequence of 

5490 meters of Lower (?) M!ss1s~ipp1an to Middle C?> 

Pennsylvanian predominantly terrigenous rocks. 

Terminology and age ass!anments within the Copper Basin 

Group of Paull and others (tQ72) were later modified by 

Paull and Gruber (1977>. The lowest formation of the 

Copper Basin Group of Paull and others (1972) was 

originally nam@d the Mill!qen Formation and correlated 

with the M1111qen Formation of the type area in the Wood 

River Valley. When SandbP.rq and others (1975) later 

described the Milligen ror~atlon at the type area as a 

relatively deep•water deposit of Devonian age, Paull and 

Gruber (1977) renamed the lowest formation of the Copper 

Basin Group the Little Copper Formation. SkiPP and Hall 
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C1975b) later restricted the aqe of the Copper Basin 

Group of Paull and others (1q72) to the Mlsstssipptan. 

However, Nilsen (1977, p. 279) noted that 

"no fossils 1nd1cat1nq that any part of the 
type sections of the Copp~r Basin Group of Paull 
and others (1q72) is un"uPstionably younger than 
Early Mississippian in ~qe have yet been found." 

The :opper Basin Grouo of PAUll an~ others (1972) 

~as mapped in the Pioneer Mountains by Wolbrink (1970), 

Bullman (1971), Lukowicz Ctq71), Grover (1971), Volkmann 

(1971), Pruit (1971), ~rwin (1972>, Rothwell (1973), 

Larson (1974), Yokley Clq74), and Schramm (197R.), 

students of R. A. Paull at the tTnlverslty of Wisconsin at 

Milwaukee, and Spoelhof (1972), a student at the Colorado 

School of ~ines. The strat1qraphy of the Copper Basin 

Group as described by Paull and others (1972) was 

considered to be essentiallY correct by all of Pau11•s 

students. However, slight modiftcattons were proposed by 

Schramm (1978), who sugqestPd that the Brockle Lake 

Conglomerate and Scorpion ~ounta!n Formation of Paull and 

others (1972) merged laterally towards the south in the 

Pioneer Mountains. 

Alternatively, Nilsen (1977, pp. 279•280) noted that 

"At least 
stratigraphic 
of Paull· and 

one ma1or fault within the 
sequence of the Copper Basin Group 
others (1972> ••• has probably 
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repeated the sequence (and) as a result, the 
proposed thickness of Paull and others (1972) for 
their Copper Basin Group ••• iS about twice the 
true thickness." 

Nilsen (1977) cited or!marilY stratiqraphic and 

sedimentolo~ic evidence combined with some structural 

evidence to support the hypnthesis that the Copper Aasin 

Group of Paull and others (1972) is actually composed of 

(1) two structural plates Cor subplates) which are both 

age-equivalent and fac!Ps•equivalent and rePeat the 

stratigraphic sequence due to the fact that one plate 

(Brockie subplate) structurallY overlies th~ other plate 

(Scorpion subplate), and (2) a third structural plate 

(Glide Mountain plate) containing rocks which 

lithologically resemble some units within the Scorpion 

and Brockle subplates and mav be a partial facies 

equivalent of rocks in both of these Csee Tahle 3•1 and 

figure 3•1). 

According to Nilsen's model, the Brockie subplate, 

which contains the morP. proximal facies of the Antler 

foreland basin, is thrust atop the Scorpion subplate, 

which contains the more distal deposits. The (lower) 

Scorpion subplate of Nilsen (1977) is composed, in 

aseend!ng stratigraphic order, of the Little Copper 

Formation, Drummond Mine Limestone, Scorpion Mountain 

formation, and lower part of th~ Muldoon Canyon Formation 
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of Paull· and others (1972) and Paull and Gruber (1977). 

The (upper) Brockie suhplate of Nilsen (1977) ls 

composed, in ascending st~at1graphic order, of the upper 

part of the Muldoon Canyon Formation containing the Green 

Lake Limestone Member, Brockie Lake Conqlomerate, and 

Iron Bog :reek Formation of Paull and others (1972). 

~ccordlng to Nilsen C1977l the Glide Mountain plate, 

which is thrust atop both the Scorpion and Brockle 

subplates, is composed of either (1) a more western, 

largely terrigenous and plant-rich facies of the Copper 

Basin Group of Paull and othP.rs (1972), or (2) the lower 

part of the Brockie subplate Which became detached 

(during thrusting of the Rrock1e subplate) and was then 

later thrust eastward. 

Wolbrink (1970) and Schramm (1978) mapped the strata 

of the Glide Mountain Plate of Nilsen (1977) as part of 

the Muldoon :anyon Formation of Paull and others (1972) 

which they showed was thrust atop the Scorpion Mountain 

Formation of Paull and others (1972). Wolbr1nk (1972) 

and Schramm (1978) recoqnized this thrust plate on the 

ridge between Starhope Canyon and Muldoon Canyon. Nilsen 

(1977), Dover and others (1Q76), and Dover (1981) also 

mapped this thrust (the Glide Mountain thrust) on the 

east ridge of Starhope Canyon, including Glide Mountain. 

Nilsen (1977) noted that the strata of the Glide 
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~ountaln plate Creferre~ to as the Glide Mountain 

sequence) Is tightly folde~ and cleaved in contrast to 

the strata of the un1erly1nq Scorpion and Brockie 

subplates, which are gentlY folded. Rased on this 

rtlfference in structural character between the Glide 

~ounta!n plate and the Scorofon and Brockie subplates 

Cto~ether), and the litholoqic similarities between the 

Scorpion and Brockle subptates, Nilsen (1977) qrouped the 

Scorpion and Brockie subpl~tes together into a single 

structural unit, the Cooper Basin plate (see Table 3•1 

and Figure 3•1). Nilsen (1977) suggested that the 

Brockie subplate was thrust eastward atop the Scorpion 

subplate durin~ closing of the Antler foreland basin in 

8arly to Late Mississippian tl~e. This thrust is 

referred to as the Muldoon Canyon thrust by Nilsen 

(1977). ~ccord!nq to Nilsen•s model, the Scorpion and 

BTOckie subplates were later tectonically transported as 

a unit, the Copper Basin plate, durinq the post-Paleozoic 

Sevier orogeny. Nilsen (t977) inferred that the Glide 

Mountain plate may have been "later" thrust atop the 

Copper &asln plate alonn a thrust referred to as the 

Glide Mountain thrust. Nilsen (1977) does not offer any 

structural evidence to supoort hiS dating of the thrusts. 

More recently, Dover (1980) has demonstrated that: 
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1. Post•Antler, mainlY Mesozoic thrusting 
dominates the tectonic fr~mework of the Antler 
oroqen in Idaho. 

2. The severity of the Mesozoic tectonic 
seriously 

of Antler 
overprint is such that is 
complicates the ident1f1catton 
structures, interpretations of Antler 
orogenesis, and paleogeograPhic 
reconstruction. 

3. All datable thrusts are post-Permian (aqe of 
the Wood River formation, youngest rock 
stratigraphic unit involved in thrustinq) to 
pre-Eocene Cage of Challis Volcanics and 
post-orogenic intrustvesl in age in Idaho. 

Dover (1980, 19B1) suaqpsted that the Brockle 

subplate of Nilsen (1977) is, in fact, part of the 

(upper) Glide Mountain plate, and therefore the Muldoon 

:anyon thrust of Nilsen (1Q77) is a continuation of the 

Glide Mountain thrust throuahout the rest of the Pioneer 

Mountains. The m~jor evtdencp Which Dover cites in 

support of this hypothesis is the recent discovery of 

limestone equivalent to thP Green Lake Limestone Member 

in the Glide Mountain plate at Aig Rocky Canyon (located 

north of the present study area) and "other lithologic 

similarities and mapping ev!dP-nce." Therefore, the Glide 

Mountain plate as defined by Dover (1980, 19811 consists 

of both the Glide Mountain plate of Nilsen (1977) and the 

Br~ckle subplate of Nilsen, 1977 (see Table 3•1). Nilsen 

(1981, personal communication) still maintains, however, 

that the Brockie subplate of Nilsen (1977) is part of the 
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(lower) Copper Basin plate, and the Glide Mountain plate 

of Nilsen (1977) is a sep~rate, higher structural Plate. 

3. 2 Mesozoic· al'\d Cenozoic stratlqraphy 

3.2.1 Upper Cretaceoul (?) to Lower Eocene (?) S~1ley 

Creek ConQlomerate 

Although students of R. A. Paull at the University 

of Wisconsin, Milwaukee (Wol~rink, 1972: Schramm, 1978) 

have mapped this conglomerate extensively in the Pioneer 

Mountains, a type section hBS never been formallY 

proposed and described (Paull,· 1981, personal 

communication). A Late Cretaceous (?) to Early Eocene 

(?) age is suggested tor the Smiley Creek Conglomerate 

based on limited botanical evidence (Paull, 1974; Dover, 

1981). This unit has been mapped beneath the Challis 

volcanics by several workers including Nelson and Ross 

(1969) and Dover (1981). This tact and the absence of 

Challis clasts within the Smiley Creek Conglomerate 

identify the unit as beina older, though pP.rhaps only 

slightly so, than the Challis volcanics. Paull (1974) 

considers this unit to be a post-orogenic deposit. 

Unfortunately the tentative aqe of this unit prevents 

precise dating of the latest orogeny in south-central 

Idaho. 



3,2,2 Eoctnt Chal~11 Volcanlel 

as· 

Ross (1961, p. C17B) ~ef1ned th@ Challis volcanics 

"dominantly volcanic strata of early Tertiary 
age within the part of C@ntrAl Idaho north ot the 
Snake River Plain anrt south of the westward
flowing segment of the ~almon River (near 
latitude 45 degrees 30 ~inutes." 

Ross (1961) reported the 8Qe of the Challis Volcanics as 

Eocene to Early Miocene (?). Siems and Jones (1977), 

however, concluded that the Challis Volcanics were 

extruded over most of centr~l Idaho in Middle Eocene 

time. 

Ross (1937) distingulshe~ several members within the 

:hall1s Volcanics, which are, in ascending stratigraphic 

order: the latite-andeslte Member, basalt and related 

flows, the Germer Tuffaceous Member, and the Yankee rork 

Rhyolite. The most extensive m~mber within the Challis 

Volcanics is the lat1te•andes1te member, to which all of 

the rocks in the present study area are assigned 

(Anderson and Wagner, 1946: Ross, 1962b). Armstrong 

(1975) reported a K•Ar age of 42.0 m. y. with a possible 

error of 1.3 m. y. on Challis Volcanics from SmileY 

Cree~, approximately 5 k1lometer5 east of the present 

study area. 
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3.2.3 Eocene Intru11ve Rocks 

Intrusive quartz monzonites cropping out in Muldoon 

Canyon are lithologicallV identical and geneticallY 

related to the larger stock in Lake Creek canyon just 

east of the present study arPa (Wolbrink, 1970~ Dover, 

1981). Dover £19B1) reporte~ that this stock intrudes 

both the Glide ~ountain Plate an~ Copper Basin Plate of 

the :opper Basin Pormation. 

The Lake Creek stock lies along an elongate gravity 

low that trends northwest alonq the crest of the PloneP.r 

Mountains !~to the Boulder Mountains where Tschanz and 

others (1974) have mappe~ similar stocks and plutons 

(Dover, 1981). ~ccord1no to nover (19B1) these plutons 

may connect at shallow depth with a large northwest• 

trendin~ batholith or zone of hathol!ths. These quartz 

monzonite intrusive bodies postdate major thrust faulting 

and are responsible for local intrusive doming in the 

Pioneer and Boulder Mount~!ns (Dover, 1981). 

~rmstrong (1975) reported a K-~r date of 47.7 m. y. 

with a possible error of 1.4 m. y. for chloritized 

biotite from the Lake Creek stock: While Stern and others 

(in Armstron9, 1975) reported a Pb•alpha age of so m. y. 

with a possible error of 1~ m. y. on zircon from the Lake 

Creek stock. Dover (1Q81) cites field evidence to 

sug9est that these quartz monzonite intrusive bodies are 
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voung~r than (though perh8PS onlY slightly so) or coeval 

with the Challis Volcanics. Wolbrink (1972) reported 

xenoliths of Challis Volcanics included within a quartz 

monzonlt~ intrusion Calthouqh h~ does not mention the 

location of this occurrence). 

28 



t. Purpose of· Study 

The major goal of this study was to conduct a 

detailed study of the structural geology (especially the 

minor structures) of the thrust plates of the Copper 

Basin formation in the Starhope Canyon-Muldoon Canyon 

area of the Pioneer Mount~ins. A study of this nature, 

comparing and contrasting the minor structures in the 

various thrust plates of the Cnoper Basin rormation, had 

not been done in this area prior to this stuny. 

The focus of the stu~y w~s three-fold: 

1. To map the Starhope Canyon-Muldoon Canyon 
area. 

2. To determine a chronnloqy of deformation based 
on relative age relationships between the 
various structures. 

3. To determine whether the Copper Basin Plate 
and Glide Mountain plate of the Copper Basin 
formation possess any characteristic 
structural syles and/or deformation fabrics 
which would be useful ln determining whether 
the BrocKle subplate of Nilsen (1977) is 
actually part of the lower, Copper Basin Plate 
(Nilsen, 1977) or Part ~f the upper, Glide 
Mountain plate (Dover, 19~0, 1981). 
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5 •. Method of· Study 

field work for the Present study was conducted 

during July and August of t981 and July of 1982. Mapping 

was performed on aerial photographs at the scale of 

1:15,600 and 7.5 minute u. s. Geological survey advance 

print topographic maps. Hncons"Olidater'l Quaternary 

deposits ~ere mapped 1n the laboratory on aerial 

photographs. ror production of the final map (Plate A), 

data was transferred from ~1r photos to 7.5 minute u. s. 

Geo loql cal sur v·ey advancE' or 1 nt orthophoto maps anr'l then 

to 7.5 minute u. s. Geolootcal survey advance print 

topographic maps. The purpose of including surficial 

material (unconsolidated ouaternary deposits) and dikes 

on Plate A is to document areas where the relat!onshjps 

of thrusts and contacts between stratigraphic units are 

obscured. Geologic cross-sections (Plate B) have been 

derived from 

stratigraphic 

the qeologic•topooraphlc map to illustrate 

and structur~l relationships in the 

Starhope Canyon-Muldoon Canyon area. 

Oriented hand specimens were obtained at various 

localities wlthln the stu~y area for petrofabrlc analysis 

of quartz optic· axes (0001). This procedure was 

performe~ using a Leitz 4-axis universal stage following 

the techniques of Turner and Weiss (1963). 
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6 •. Tera1noloqy 

6.1 Strat1;ra~hle Nomenclature 

The stratigraphy of the Copper Basin Group as 

proposed by Paull and othP.rs (1972) and modified by Paull 

and Gruber (1977) has recentlY been rejected by other 

worKers (Nil~en, 1977: SkiPP and others, 1979: Dover, 

1980, 1981). Nilsen (19771 proposed reducinq the rank of 

the :opper Basin Group to formation status, and other 

workers have subsequently adopted this terminology. 

The Copper Basin Group as modified by Paull and 

Gruber (1977) consists of the following formations in 

ascending stratigraphic or~er: Little Copper Formation, 

Drummond ~ine Limestone, Scoroion Mountain Formation, 

Muldoon Canyon Formation Including the Green Lake 

Limestone Member, BrocKle Lake Conglomerate, and Iron Bog 

Creek Formation. Most recently, Dover (1981), who 

divides the Copper Basin Group of Paull and others (1972) 

into two allochthonous pl~tes, has suggested that: 

1. The Little Copper Formation of Paull and 
Gruber (1977) and the Drummond Mine Limestone 
of Paull and others (1972) should be reduced 
to member status (within the Copper Basin 
plate of the Copper ~asin Formation). 

2. The Scorpion Mountain Formation and the lower 
part of the Muldoon canyon Formation of Paull 
and others (1972) Should he referred to as the 
upper clastic unit of. the Copper Basin plate 
(of the Copper Basin Formation). 
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3. The upper part of the Muldoon Canyon 
Formation, Brockie Lak~ Conglomerate, and Iron 
Bog Creek Formation, all of Paull and others 
(1972), should be discarded as formation 
and/or member titles in favor of the term 
Glide Mountain plate (of the Copper Basin 
Formation). 

4. The Green Lake Limestone Member remain as the 
only member within the Glide Mountain Plate 
Cot the :opper Basin Formation>. 

Despite these recent ~evelopments in stratigraphic 

nomenclature, the stratlqraPhY of the Copper Aas1n Group 

as· modified bY Paull and Gruber (1977) will he used 

extensively in this manuscript as· it provides a useful 

framework for three important aspects of the present 

study: (1) mapping, (2l diseussion of the structural 

geology of the Starhope Canvon•Muldoon Canyon area, and 

(3) evaluation of the structural models of Nilsen (1977) 

and Dover (1980, 1981). The stratigraphic units within 

Pau11•s Copper Basin Group are much thinner than the 

allochthonous plates within which they are now contained. 

Thus, by employing the strat1qraphy of the Copper Basin 

Group, a more precise description of both the macroscopic 

and mesoscopic structural qeology can be provided. 

However, the thrust plate nomenclature of Nilsen (1977) 

and Dover (1980, 1981) must also be used when evaluating 

their structural models. The stratigraphic and thrust 

plate nomenclature which 1s employed within the course of 
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this study is summariz~d on Table 3•1. When a given 

worKer's stratigraphic or thrust Plate nomenclature 1s 

used 1n this report, it will be cr~d1ted to that worker 

(e.g. Glide Mountain Plate of Oover, 1980, 1981; Glide 

Mountaln plate of Nilsen, 1977) so as to avoid 

misunderstanding on the part of the reader. 

6.2 Other TerainolDOY 

The term argillite, as used in this study and other 

related studies, refers to a siltstone, mudstone, or 

claystone which has underqone a slightly higher degr~e of 

induration than shale without secondary cleavage 

development (Twenhofel, 1Q37). 

The terminology Which is used to describe small and 

intermediate scale folds is based on the twelve 

properties of mesoscop1c folds Of Hansen (1971). Fold 

hinges are described as either sharp (lacking any 

appreciable curvature> or broad. Limbs of folds are 

described as either straight or broadlY curved. The 

ratio of short-limb hetaht to width, which generally 

ranges from 0.1 to s.o, expresses quantitatively the 

relative amount of overtold1nq within a reoular wave 

train of folds. The greater H/W values correspond to 

greater degrees of overfold1ng. An H/W value of o.t 

describes an open fold. An H/W value greater than 1.0 
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describes a fold Which 1s nearly isoclinal. The ratio of 

depth to width of a fold, which generallY ranges from 1 

to 15, expresses the elonoation nf th~ fold in profile. 

~ D/W value of 1 describes an intrafolial fold, or an 

isolated fold that is contained within relatively 

unfolded strata. Greater D/W values correspond to folds 

with axial surfaces which extend through greater 

thicknesses 

(1971) for a 

properties. 

of strata. The reader is referre~ to Hansen 

more complete d1scus~1on of these fold 
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7 •. StratigraPhY 

The information included below is largelY based on 

the descriptive work of others (Paull and others, 1972: 

Nilsen, 1977: Paull and Gruber, 1977: Dover, 19RO, 1981) 

and Is used as a basis for approaching the structural and 

stratigraphic problem with which this study is concerned. 

The (previously discussed) t~rust Plate model of Dover 

(1980, 1981) is largelv based on a revision of the 

stratigraphic, structural, and sedimentological concepts 

of Nilsen (1977), so the stratigraphy of the various 

thrust plates of Nilsen (1977) must be reviewed. 

However, because the structural and stratigraPhic model 

of Nilsen (1977) is based on a reinterpretation of the 

stratigraphy 

others (1972) 

stratigraphic 

modified by 

employed. 

of the Copper 

and Paull 

Basin Group 

and Gruber 

of Paull and 

(1977), the 

nomenclature of the Copper Basin Group as 

Paull and Gruber (1977) must also be 

7.1 Glide Mountain Plate of Nilsen (1977) 

The strata of the Glide Mountain plate of Nilsen 

(1977), which he refers to as the Glide Mountain 

sequence, consists predominantly of argillite and 

interbedded quartzitic sandstone turbidites. This strata 

is• 9enerally plant•rich and contains a high proPortion of 
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interbedded mudstones. 

The Glide Mountain sequence is characteristicallY 

tightly folded. Dover (1980) estimates a tectonic 

Shortening of 50 percent within the Glide Mountain plate. 

Because of the intense toldlng of this sequence, its 

thickness has not been measured or estimated. 

Dover (1980) has identified a carbonate-rich zone 

within the Glide ~ountain plate In Big Rocky Canyon north 

of the Copper Basin in the Pioneer Mountains. This zone 

is· approximately 75 metprs thick and consists of 

interlayered beds of argillite, silty limestone, and 

bioclastic limestone. The bioclastic limestone yields 

the same Upper KJnderhookian conortont fauna as the 

Drummond Mine Limestone of Paull and others, 1972 COover, 

1980). 

The Glide Mountain Plate of Nilsen (1977) was mapped 

within the course of the present study on the east and 

west ridges of starhope canvon and on the west ridge of 

Muldoon Canyon, where 1t is in thrust contact with the 

Scorpion subplate of NllsPn (1977), or Copper Basin plate 

of Dover (1980, 1981). 
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7.2 Scorpion Subplate of M11sen (1977) 

The Scorpion subplate of Nilsen (1977) contains the 

following stratigraphic units of Paull and others (1972) 

and Paull and Gruber (1977) in ascending stratigraphic 

order: the Little Copper Formation, Drummond Mine 

Limestone, Scorpion Mountain Formation, and the lower 

part of the ~uldoon Canvon Formation. According to 

Nilsen•s model these stratiqraohic units in the Scorpion 

subplate are more distAl (relative to the Antler 

highland) equivalents of stratigraphic units contained 

within the BTockle subplate of H!lsen (1977). 

The Little Copper Formation of Paull and Gruber 

(1977) is the lowermost strat!nraphic unit in the Copper 

Basin Group as modified bv Paull and Gruber (1977) and is 

also the lowermost unit in the Scorpion subplate of 

~llsen (1977) or Copper Aas!n plate of Dover, 1980, 1981 

Cs~e Figure 3•1 and Table 3•1). The true stratigraphic 

oase of the Little Copper Formation is not exposed in the 

Pioneer Mountains, althouqh at several localities outside 

the present study area the unit is reported to be in 

thrust contact with Devonian rocks (SkiPP and Sandberg, 

1975; Paull and Gruber, 1977; Schramm, 1978). The top of 

the unit is gradational Into the overlying Drummond Mine 

Limestone of Paull and others (1Q72). 

At its type section the Little Copper Formation of 
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Paull and Gruber (1977) consists of 1,120+ meters of 

thin- to medium-bedded, bloc~y-weathering, dark-gray 

arqllllte with some interbeds of dark quartzite, 

~ranule•size conglomerate and spars~ limestone lenses. 

The unit thins in all directions away from its type 

section (Paull and Gruber, 1Q77). Nilsen (1Q77, p. 286) 

ident1fiert some randomly distributed thinlY bedded, 

carbonaceous, fine-grained facies D or, less commonly, 

facies C terrigenous sandstonP. and siltstone turbidites 

within the unit, but does not rtisttnguish them as marker 

beds at a particular stratiqraphlc horizon. Accordinq to 

Nilsen•s paleoqeographic and sedimentoloqic model the 

Little :opper Formation of Paull and Gruber (1977) is the 

more distal equivalent (relative to the Antler highland) 

of the upper part of the Muldoon Canyon Formation of 

Paull and others (1972>. 

fossils are scarce within the Little Copper 

formation, anrt the unit has not been precisely dated. 

stratigraphic relations 1nrt1catP. that it is older, though 

perhaps only slightly so, than the Drummond Mine 

Limestone of Paull and others (1972), which is 

K1nderhoook1an in age. Dover (!981) believes an Early 

~lssissippian age is probable. 

In the present study the Little Copper Formation of 

Paull and Gruber (1977) was mapped on the west ridqe of 
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starhope Canyon, Where lt strat1qraphically underlies the 

Drummond Mine Limestone of P8ull and others (1972). In 

this general area the Little Copper Formation Is also 

found to be in thrust contact with the overlYing Glide 

Mountain plate of Nilsen (1977). Due to lithologic 

similarities between the Little Copper Formation of Paull 

and Gruber (1977) and the rocKs of the Glide Mountain 

plate of Nilsen (1977), these twn units are difficult to 

distinguish ln this area, until the thrust fault which 

separates the~ has been recognfzed. 

The Drummond Mine Limestone of Paull and others 

(1972) is contained within the Scorpion subplate of 

Nilsen (1977), also referred to as the Copper Basin plate 

by Dover (1980, 19B1). The nrummond Mine Limestone of 

Paull and others (1972) conformably overlies the Little 

Copper rormation of Paull and Gruber (19771. The contact 

between these is gradational through an interval of 

approximately 60 meters. The upper contact of the 

Drummond Mine Limestone of Paull and others (1972) is 

~radatlonal with the overlying Scorpion Mountain 

Formation of Paull and others (1Q72) through an interval 

of 92 to 153 ~eters. 

At its type section the Drummond Mine Limestone is 

BOB meters thicK and consists predominantly of limestone 

with interbedded argillite, siltstone, sandstone, 
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conglomerate, and chert. The lower 305 meters at the 

type section iS mostly medium• to thick•bedded micritic 

limestone, with a few thin beds of dark-gray argillite, 

some chert, and small amounts of granule conglomerate. 

The upper 488 meters fs very thin• to medium•bedded 

micritic limestone with interbedded very thin- to 

thin-bedded argillite, cRlcareous siltstone, and fine

grained sandstone (Paull et al., 1972). According to 

Nilsen (1977) the Drummond Mine Limestone of Paull and 

others (1972) generally consists of facies C and D 

limestone turbidites with interbedded noncalcareous to 

slightly calcareous argillite. Nilsen (1977) thought 

that the limestone turbidites were derived primarily from 

eastern source areas an~ rl~pos1ted in a basin plain 

environment, in contrast to the clastic units within the 

:opper Basin Formation, which were derived from the 

Antler highland to the west. According to Nilsen's 

paleogeographic and sedimentologic model the Drummond 

Mine Limestone of Paull and others (1972) is 

stratigraphicallY equivalent to the Green Lake Limestone 

Member of the upper part of the Muldoon Canyon Formation. 

Conodont faunas Indicate ~ Kinderhookian age for the 

Drummond Mine Limestone (Sandherq, 1975). 

In the present study the Drummond Mine Limestone was 

mapped on the east and west ridges of Starhope Canyon. 
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Within the study area the base of the Drummond Mine 

Limestone is poorly exposert on the west ridge of starhope 

:anyon where it lies in gr8dational stratiqraphic cont8ct 

with the underlying Little CopPer formation of Paull and 

Gruber (1977). On the e~st ri~qe of Starhope Canyon and 

at the head of the canvon, the upper (gradational) 

contact of the Drummonrt Mine Limestone of Paull and 

others (1972) with the overJying Scorpion Mountain 

formation of Paull and others (1972) is exposed. At 

several localities within the Present study area, notably 

Starhope Gulch, the Drummon~ ~ine Limestone of Paull and 

others (!972) is ln thrust contact with the overlying 

Glide Mountain plate of Nilsen (1977). 

The Scorpion Mountain formAtion of Paull and others 

(1972) is also contained within the Scorpion subplate of 

Nilsen (1977) or Copper Rasin Plate of Dover (1980, 

1981). The Scorpion ~ount81n Formation conformably 

overlies the Drummond Mine Limestone of Paull and others 

(1972) in gradational strat1qraPh1c contact. The top of 

the unit is gradational With the overlying lower part of 

the Muldoon Canyon Formation of Paull and others (1972). 

At its type section, the scorpion Mountain Formation of 

Paull and others (1972) consists of 1,106 meters of 

medium gray to medium dark•qray chert•quartzite•arglllite 

conglomerate, interbeddert with similarlY colored 
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quartzite. Granule an~ pebble conglomerate generallY 

predominate, but cobble conalo~erate Is also common. 

Conglomerate clasts are contained within a quartzite 

matrix (Paull et al., 197?.). 

The lower 92 to 153 meters of the unit at its type 

section, which is in close proxt~ity to th~ present study 

area, is interbedded verv thin• to thin-bedded quartzite 

and argillite, with some san1v limestone. R~dding in the 

remainder of the unit ls thick t.o very thick. Graded 

conglomeratic Deds in which conglomerate grades upward 

into quartzite are common. Graded conglomeratic beds are 

commonly interbedded with non-oraded beds (Paull et al., 

1972). 

Nilsen (1977) identified the Scorpion Mountain 

formation of Paull and others (1972) as outer•fan 

deposits consisting mnstly of quartzitic sandstone 

turbidites (facies A, B, c anrt D). According to Nilsen's 

Paleogeographic and sedimentoloa1c model the Scorpion 

Mountain formation of Paull and others (1972) is the more 

distal (relative to the Antler highland) equivalent of 

the Brockie Lake Conglomerate of Paull and others (1972>. 

The Scorpion Mountain Formation of Paull and others 

(1972) has not been dated. Based on stratigraPhic 

relations it 1s younger than the Kinderhookian Drummond 

~ine Limestone. Dover (1981) favored a late 
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Mississippian aqe for the scorpion Mountain Formation. 

The Scorpion Mountain Formation of Paull and others 

(1972) was mapped extensivelY throughout the study area 

on the east ridge and headwall of Starhope Canyon and on 

the east and west ridges of Muldoon Canyon. At the head 

of Starhope Canyon, the lower contact of the Scorpion 

~ountaln formation with the underlying Drummond Mine 

Limestone of Paull and others (1972) is well exposed. 

The upper contact of the Scorpion Mountain Formation with 

the overlying lower part of the Muldoon Canyon Formation 

of Paull and others (1972) is exposed on the unnamed 

mountain in upper Muldoon Canyon (sec. 19, T.4N., 

R.22E.). On the east ridae of Starhope Canyon and the 

west rid~e of Muldoon r.~nvon, the Scorpion Mountain 

formation of Paull and others (1972) is in thrust contact 

with the overlying Glide Mountain Plate of Nilsen (1977). 

~ laterally continuous section of overturned beds in the 

Scorpion Mountain formation of Paull and others (1972) is 

found at the northern end of Muldoon Canyon on the lowest 

slopes of the east ridge. 

Paull and others (1972) measured and described the 

type section for the Muldoon Canyon Formation at two 

locations, one on either side of upper Muldoon Canyon. 

The basal 337 meters of this unit was measured and 

described on the unnamed mountain 1n upper Muldoon Canyon 
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(sec. 19, T.4N., R.22.E.). The remaining (upper) 793 

meters of this unit was measured on the east ridge of 

~Uldoon Canyon. Nilsen (1977) refers to the basal and 

upper type sections as the lower and upper parts of the 

Muldoon Canyon Formation of Paull and others (1972), 

respectively. The lower p~rt of the Muldoon Canyon 

Formation of Paull and others (1972) is the uppermost 

unit in the scorpion subpl~te nf Nilsen (1977) or Copper 

Basin plate of Dover (1980, 1981). The upper part of the 

Muldoon :anyon Formation of Paull and others (1972) is 

the basal unit in the Brockle subplate of Nilsen (1977). 

Nilsen (1977) considers the lower and upper parts of the 

Muldoon Canvon formation of Paull and others (1972) to be 

separated by the Muldoon Canvon thrust fault. 

Paull and others (\972) have shown the lower part of 

the Muldoon Canyon Formation to be in gradational 

stratigraphic contact with the underlying Scorpion 

Mountain Formation. The lower part of their Muldoon 

Canyon Formation consists of dark-grAy to medium 

light-gray silty, locallY shaly•bedded argillite 

interbedded with subordtn~te dark gray quartzite and 

quartzite•chert•argillite oranulP to pebble conglomerate 

and micaceous mudstone (Paull et al., !972). Nilsen 

(1977) identified this unit as consisting primarily of 

interbedded quartzitic sandstone turbidites and argillite 
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with subordinate granule to pebbl~ conglomerate. 

Nilsen (1977) mad~ the followinq obs~rvations 

concerning the sedimentoloqy of the lower part of the 

~uldoon Canyon Formation of Paull and others (1972): 

1. Facies C and o turbidites 
charact~ristic of the sequence. 

ar~ most 

2. The unit was depos1t1~d primarily in 
basin•plain environments, although some lobe• 
fringe deposits are orsent in the lowest Part 
of the unit. 

3. Paleocurrent data 1ndicatps sediment transport 
to the east. 

~ccording to Nilsen's model the lower part of the Muldoon 

:anyon Formation of Paull and others (1972) is the more 

distal (relative to the Antler highland) equiValent of 

their Iron Bog Creek Formation. 

The lower part of the Muldoon Canyon Formation of 

Paull and others (1972) has not been dated. Based on 

stratigraphic relations tt is younger than the 

Kinderhookian Drummond Mine Limestone and the overlying 

Scorpion Mountain Formation of Paull and others (1972). 

In the present study the lower part of the Muldoon 

Canyon Formation of Paull and others (1972) was mapped on 

the west ridge of Muldoon Canyon and on the unnamed 

mountain in upp~r Mul~oon Canyon (sec. t9, T.4N., 

R.22E.>. At the latter site the base of the unit is 
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exposed. in gradational stret1araph1c contact with the 

underlying Scorpion MountRtn Formation. on the west 

ridge of ~ulrtoon Canyon, towarrt the southern end of the 

canyon, the lower part of the ~•lldoon Canyon Formation of 

Paull and others (1972) is in thrust contact with the 

overlying Glide Mountain plate of Nilsen (1977). 

7.3 BToc~ie Subplate of Nilsen (!977) 

The Brockie subplate of Nilsen (1977) contains the 

following stratigraphic units of Paull and others (1972) 

in ascending stratigraphic order: the upper part of the 

Muldoon Canyon Formation including the Green Lake 

Limestone Member, the Rrock1~ Lake Conglomerate, and the 

Iron Bog :reek formation. According to Nilsen's model 

the stratigraphic units in the Brockie subplate are more 

proximal (relative to the Antler highland) equivalents of 

the units contained in the Scorpion subplate of Nilsen 

(1977). According to N115en (1q77) the Brockle subplate 

is separated from the Scorpion 5ubplate by the Muldoon 

Canyon thrust fault, which has repeated the stratigraphy 

of the Copper Basin formation. Dover (1980, 1981) 

suggested that the Brockie subplate of Nilsen (1977) is 

part of the Glide Mountain plate. 

The upper part of the ~uldoon Canyon formation of 

Paull and others (1972) ls considered bY Nilsen (1977) to 
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be the . lowermost stratigraphic unit In the Brockle 

subplate of Nilsen (1977), which is included in the Glide 

~ounta!n plate of Dover, 1980, 1981 (see Fiqure 3•1 and 

Table 3•1). The upper part of the Muldoon Canyon 

Pormatlon of Paull and others (1972) corresponds to the 

upper 793 meters of type section of the Muldoon Canyon 

Pormatlon of Paull an~ others (1972) which was measured 

on the east ridge of Muldoon Canvon. At the type section 

31 to 122 meters of the Green Lake Limestone Member is 

found near the top of the upper part of the Muldoon 

:anyon Pormat1on. The Green Lake Limestone Member of the 

upper part of the Muldoon Canyon Pormation of Paull and 

others (1972) is separate~ from the overlying Brockle 

Lake Conglomerate of Paull and others (1972) by 30 meters 

of argillite which they (Paull and others, 1972) assign 

to the upper part of the Muldoon Canyon Formation. 

The upper part of the Muldoon Canyon Formation 

consists primarily of gr~Y silty-, locally shaly•bedded 

argillite with minor amounts of interbedded dark-gray 

quartzite and quartzite•chert•arqillite granule to pebble 

conglomerate and micaceous mudstone (Paull et al., 1972). 

According to Nilsen (1977) the upper part of the Muldoon 

Canyon Formation of Paull and others (1972) consists 

primarily of argillite with some randomly distributed 

thinly bedded, carbonaceous, flne•gralned tactes D or, 

47 



less commonly, facies 

Siltstone turbidites 

C terrigenous sandstone and 

indicative of basin-Plain 

deposition. The paleogeoqraphtc and sedimentologic model 

of Nilsen (1977) considers the upper part of the Muldoon 

Canyon Formation of Paull and others (1972) to be the 

more proximal· (relative to the Antler highland) 

equivalent of the Little Copper rormation of Paull and 

Gruber (1977). 

The age 

rormat1on of 

predominantly 

of the upper part of the Muldoon Canyon 

Paull and others (1972) is probablY 

Kinderhookian, the age of the Green Lake 

Limestone Member. 

In the present study the upper part of the Muldoon 

:anyon Formation of Paull and others (1972) was mapped on 

the east ridqe of Muldoon Canyon. However, this unit is 

poorly exposed due to an extensive cover of 

unconsolidated slope deposits, including glacial till, 

colluvium, and especially talus. 

The Green Lake Limestone Member of the upper part of 

the Muldoon Canyon Formation of Paull and others (1972) 

is· contained within the Rrockie subplate of Nilsen 

(1977). It lies below the uppermost 31 meters of 

argillite in the upper part of the Muldoon Canyon 

Formation of Paull and others (i972) and it is variable 

in thickness, ranging fro~ 3t to 122 meters. The basal 

48 



and upp@r contacts of the Gr@en Lake Limestone Member 

with the upper part of the Muldoon Canyon Formation of 

Paull and others (1972) are gradational. 

The Green Lake Limestone Member consists of 

~ray•black, silty micritic limestone in 2 to 15 

centimeter beds that weather grayish-orange to very 

light-gray. Thin (1 em.) Interbeds of medium•qray to 

~ray•brown argillites are common. Nodules and thin beds 

of chert are locally present in the middle of the member 

(Paull et al., 1972). Accor~ing to Nilsen (1972) the 

Green Lake Limestone Member consists of facies D 

limestone turbidites and lnterbedde~ noncalcareous to 

slightly calcareous argillite. The limestone turbidites 

are thou~ht to have been derived primarily from eastern 

source areas and deposite~ in a basin plain environment, 

in contrast to the clastic units Within the Copper Basin 

rormation, which were derived from the Antler highland to 

the west. Grain size is finer and turbidite beds are 

thinner than in the Drummond ~ine Limestone of Paull and 

others (1972). According to Nllsenrs paleogeoqraphic and 

sedimentologic model the Green Lake Limestone Member is 

equivalent to the Drummond Mine Limestone of Paull and 

others (1972). Based on datlnq of conodont faunas, the 

Green Lake Limestone Member 1s Kinderhookian ln aqe, the 

same age as the Drummond Mine Limestone of Paull and 
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others, 1972 ~Paull, 1981, personal communication). 

In the present study the Green Lake Limestone Member 

was mapped on the east ridae of ~uldoon Canyon, where the 

type section of this unit !s found near Green Lake. The 

Green Lake Limestone Member disappears abruptly 

approximately 2 km north and the same distance south of 

the type section. Dover (tQRO, 1981) reported the 

discovery of a 75 meter thiCK limestone Which he 

considers to be equivalent to the Green Lake Limestone 

~ember (based on litholoalc associations, thickness, 

conodont assemblage, and aqe) in the Glide Mountain plate 

in Big Rocky :anyon, north of the present study area. 

Accordin~ to Dover (19~0, 1Q81) this fact along with 

other 11tholo~1c similarities and continuitY of map 

distribution, indicate th~t the Brockle subplate and 

Glide ~ountaln plate of Nilsen 

Structural evidence obtained 

present study supports this 

discussed below. 

(1977) are equivalent. 

within the course of the 

hYPothesis and w111 be 

The BrocKie Lake Conalomerate of Paull and others 

(1972) is contained within the Brockie subplate of Nilsen 

(1977). The contact of the Brockie Lake Conglomerate 

with the underlying upper part of the Muldoon Canyon 

Formation is generallY an ~brupt lithologic change, but 

Paull and others (1972) note that at several localities 
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near Green Lake, within t~e present study area, a thin 

gradational zone exists. The upper contact of the 

BrocKie LaKe Conglomerate of Paull and others (1972) with 

their Iron Bog Creek Form~t1on is gradational through an 

interval of 244 meters at the type section, which is 

located just outside the eastern border of the present 

study area. The thickness of the Brockle Lake 

Conglomerate at the type section ranges from SAO to 730 

meters (Paull and others, tQ72). 

The characteristic litholoqy of the Brockie Lake 

Conglomerate of Paull ~nd others (1972) is light gray 

~ranule, pebble, and cobble conqlomerate in a liqht gray 

quartzite matrix. Clasts are generally rounded to 

sub-rounded, spherical, White to 11ght•qray quartzite. 

Other subordinate clast types include mudstone and chert. 

Light•gray quartzite beds without clasts are also common. 

Minor silty argillite beds can also be found. 

Conglomerate beds are commonly greater than 3 meters 

thick, while quartzite 8nd arq1111te beds are generally 

thinner (Paull· et al., 1972). 

Nilsen (1977) ld~ntlfled the Brockle Lake 

Conglomerate of Paull and others (1972) as middle• and 

inner•fan deposits consisting of channelized, thicklY 

bedded, facies A pebble and cobble conglomerate with 

interbedded facies B, c, and D quartz1t1c sandstone 
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turbidites and argillite. Paleocurrent directions 

indicate sediment transport from west to east in an 

outward radiating pattern with the major source of 

sediment input near the tvoe section of the Brockie Lake 

:onglo~erate of Paull and others (1972). Conglomerate 

clasts are largest and conqlomerate beds are thickest in 

this area (~llsen, 1977). These facts led (Nilsen, 1977) 

to conclude that the Brockle Lake Conglomerate of Paull 

and others (1972) represents the proximal portion of a 

deep sea fan deposit (built into the Antler foreland 

basin). This conclusion Is further supported by the 

observation of Paull an~ others (1972) that the unit 

thins both north and south of the type section. 

According to N1lsen•s model the Brockle Lake 

:onglomerate of Paull and others (1972) is the more 

proximal (relative to the Antler highland) equivalent of 

the Scorpion Mountain Formation of Paull and others 

(1972). The predominance of larger, lighter clasts 

generally distinguishes the Brockie Lake Conglomerate of 

Paull and others (1972) from their Scorpion Mountain 

~ormation, which generallY contains a predominance ot 

smaller, darker clasts. HowP.ver, beds which are 

characteristic of the conglomerate of the Scorpion 

~ountain Formation of Paull and others (1972) are found 

interbedded within the Brockle Lake Conqlomerate of Paull 
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and others (1972), and vice-versa. This was noted by 

Schramm (1978), Who suggested that the two units merge 

laterally. Nilsen (1977) used this fact coupled with 

other sedimentologic and stratiqraPhic data to develop 

his paleogeographic model. 

In the present studv the Brockle L~ke Conglomerate 

of Paull and others (1972) was mapped on the east ridge 

of Muldoon :anyon (see plates A and B). The lower 

contact Is well exposed alonq several stretches of this 

ridge, whereas the upper contact is not exposed within 

the present study area, but has been mapped by other 

workers (Volkmann, 1972: Nilsen, 1977) in the Iron Bog 

:reek drainage area just east of the present study area. 

The Iron Bog Creek Formation of Paull and others 

(1972) is not exposed within the present study area, but 

is· exposed just east of the present study area (Volkmann, 

1970). The following description of the Iron Bo9 Creek 

rormat1on of Paull and others (1972) is included below in 

order to provide a complete description of the Brockie 

subplate of Nilsen (1977). 

The Iron Bog Creek Formation of Paull and others 

(1972) is the uppermost strat1qr~Phic unit in the Brockle 

subplate of Nilsen (1977), which is included ln the Glide 

~ountaln plate of Dover Ct9RO, 1981). The Iron Bog Creek 

Formation overlies the Brockie Lake Conglomerate· with a 
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gradational stratigraphic contact (Paull and others, 

1972). At the type section of the Brockie Lake 

:onglomerate of Paull and others (1912), this contact ls 

gradational through an interval of 244 meters. The true 

stratiqraphic top of the Iron Bog Creek Formation of 

Paull and others (1972) has not been recognized. The 

apparent top of the unit is unconformably overlain by 

Challis Volcanics, talus and/or alluvium. The thickness 

of the unit is therefore greater than the 458 meters 

~easured at the type section (Paull et al., 1972). 

The Iron Bog Creek Formation of Paull and 

(1972) consists primarilY of intP.rbedded 

thin-bedded, blocky-weathP.rinq argillite and shale, 

others 

silty, 

with 

minor interbeds of quartzite and conglomerate. Color of 

these rocks ranqes from black to medium-gray (Paull et 

al., 1972). Nilsen (1977) identified the Iron Bog Creek 

Formation of Paull and others (1972) as consisting 

primarily of argillite with interbeds of facies D 

quartzitic sandstone turbidites and granule and pebble 

conglomerate. Paleocurrents lnrlicate sediment transport 

to the east. According to Nllsen•s model the Iron Bog 

Cree~ Formation of Paull and others (1972) is the more 

proximal (relative to the Antler hi9hland) equivalent of 

the lower part of the Muldoon canyon Formation of Paull 

and others (1972). 
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Characteristic trace fossils within the Iron Bog 

Cree~ Formation of Paull and others (1972) are of 

deep-marine Nereites•facies (Nilsen, 19771. SkiPP 

C1974b) reported that trilobites found near the base of 

the unit indicate an Earlv ~ississ!ppian age for the 

unit. 

7.4 Upper Cretaceous C?> to Lower Eocene (?) Smiley Creek 

Conglo~er~te 

The Smiley Creek Conqtomerate consists primarily of 

(1) varicolored pebble to boulder conqlomerate with 

well-rounded clasts, and (?) varicolored conglomerate or 

breccia composed of anaular fra~ments. The former is 

thought to represent stre~m aravels, while the latter 

probably represents talus and other colluvial deposits 

(Dover, 1981). Quartzite clasts set in a poorlY sorted, 

fairlY well cemented matrix are most characteristic of 

the Smiley Creek Conglomerate. Within the present study 

area clasts are recognizablY locally derived from various 

stratigraphic units of the Copp~r Basin Formation. Dover 

(1981) reported that, reqlonally, 

absent and plutonic cl~sts are rare 

Smiley Creek Conglomerate. 

volcanic clasts are 

to absent in the 

The Smiley Creek Conglomerate lies in angular 

discordance over the deformed Copper Basin Formation and 
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1s· disconformable With the overlying Eocene Challis 

Volcanics. Some beddina is visible, but is poorly 

developed. The thickness at the unproposed type section 

of the Smiley Creek conglomerate is 137 meters, but where 

the unit is exposed within the present study area, at the 

southern ~nd of Muldoon Canyon, its thickness is much 

less (approximately 3 meters>. 

Dover (1981) reported that the Smiley CreeK 

Con9lomerate occuppied pa1eova11eys that existed prior to 

Challis volcanism and are presently beinq exhumed by 

modern erosion. Only three isolated remnants of the 

Smiley CreeK Conglomerate were mapped in the study area, 

in upper ~uldoon Canyon (see Plate A). The significance 

of these outcrops is discussed helow. 

7.5 Eocene Challis Volcanics . . 

Within the study area the Challis Volcanics consist 

of a heterogeneous sequence of flows and pyroclastic beds 

of a wide compositional rAnge including andesite, latite, 

dacite, rhyolite, and some basalt. These rocKs are 

varicolored, but are usuallY shades• of yellow, green, 

brbwn, red, or gray. Flows and pyroclastic beds are 

variable 1n thickness. Wolbrlnk (1970) reported that 

textural varieties within the present study area include 

welded tuffs, crystal tuffs, v1tr1c tuffs, lithic tufts, 
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volcanic agglomerates and tuffaceous sedimentary rocks. 

B~th the flows and pyroclastic rocks are QenerallY 

porphyritic, with phenocrysts (sometimes highlY altered) 

of plagioclase, biotite, quartz an~ mafic minerals. 

The total thickness of the Challis Volcanics is 

unknown ~ue to post-extrusive eros1on. Several workers 

report that the Challis Volcanics are at least 600 meters 

thick (Ross, 1962b; ·Axlerod, 1968; Dover, 1969). 

Wolbrink (1970) estimates that the Challis Volcanics may 

have been as much as 900 meters thick within the present 

study area. These rocks presumably once covered the 

entire study area but have since been partly eroded away 

leaving discontinuous remnants along the tops of ridges. 

In some localities resistant beds form ledaes, but in the 

present study area these rocks are generally non• 

resistant slope formers. 

Within the present study area the Challis Volcanics 

lie In angular discordance above the deformed 

~1ss1ss1pp1an Copper Basin Formation. In other areas, 

however, some outcrops of the Challis Volcanics 

unconformably overlie the Smiley Creek Conglomerate 

(Nelson and Ross, 1969; Dover, 1QB1). 

The Challis Volcanics crop out extensivelY on the 

east ridge of Muldoon Canyon and the west ridge of 

Starhope Canyon. No attempt was made to map 1nd1v1dual 
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flows or beds, however. 

7.6 Eoeene Intrualve Rocks 

Quartz monzonite intrus1V@ bodi@s are @XPosed in the 

northern part of the studv ar~a on both the ~ast and west 

ridges of ~ulrloon Canyon. Thes~ intrusive bodi~s are 

composed mainly of porphyritic pyroxen~·hornblenrle

o1ot1te quartz monzonite cnov~r. 1981) with minor granite 

(Schramm, 1978) that is tine- to medium-grained with a 

holocrystalline, porphyritic, qranitic textur~ (Wolbrink, 

1970). These stocks and plutons are gray in color and 

are generallY easy to differ~ntiate from the finer• 

grained rhyol1t~ to andesite dikes which occur throughout 

the present study area. Wolbrink (1970) reported that 

the small stocks within Mulrloon r.anyon are lithologically 

identical to the Lake Cree~ Stock Ca much larger 

intrusion) just east of the pr~sent study area. 

Dover (1981) reporte1 non-systematic cross-cutting 

relationships between Eocen~ ouartz monzonit@ intrusive 

rocks and the Eocene ChalliS Volcanics, which suggests 

that the two are coeval in aqe. Howev~r, Dover (1991) 

also reported that some of the Eoc~ne quartz monzonite 

bodies may be slightlY younger than the Challis 

Volcanics. 

Dikes and other small hypabyssal intrusive bodi@S 
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occur throu~hout the study area. Major dikes (those 

recognizable on 1:15,600 scale air photos) were mapped 

Within the course of the Present study, but no attempt 

was made to map them all. Dikes within the study area 

range from less than 1 meter to approximately 20 meters 

in thickness. Wolbrink (1970) reports that averaqe 

thickness of dikes is 2 meters. 

Dikes range in comoosttion from rhYolite to 

andesite, but rhyolite dikes are the most common. 

Rhyolite dikes are generallY porphyritic with phenocrysts 

of quartz and oligoclase. They range in color from 

yellow-~ray to ollve•gray and weather to various shades 

of yellow and brown. The less common andesite dikes 

contain phenocrysts prprtomlnantly of plagioclase. 

Andesite dikes are generally dark greenish-gray and 

weather to brown (Wolbrink, 1Q70). Some or all of the 

diKes may be associated with the quartz monzonite 

Intrusive bodies occurrlna within and in close proximity 

to the present study area (Dover, 1981). 

1.1 Unconsolidated Quaternary Deposits 

The glacial geoloqy and geomorphology ot the 

Starhope Canyon-Muldoon canvon area is reported by 

Pasquini (1976), Wiqley (1976), and Evenson, Cotter, and 

Clinch (1983, 1n press) and does not directly bear upon 
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this study. The reason that unconsolidated Quaternary 

deposits (undifferentiated) are mapped on Plate A is to 

document wnere bectrock is covered bY surficial deposits 

which compromise interpret~tions of local bedrock 

structure. Glacial till anrt glacial outwash are the 

Pleistocene units Which occur in the valleys of Muldoon 

Canyon and Starhope Canvon. Pleistocene to Holocene 

units include alluvium, talus, and colluvium. 
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8 •. structurali Geoloqy 

Structural elements tnclu~e all components such as 

surfaces (cleavage, faults), folds, and 

lineations that collectivelY form the geologic structure. 

Structur~l or tectonic fabric comprises the complete 

spatial or geometrical con,lauration of the structural 

elements. Structural elements which possess a preferred 

orientation within a gtven region are said to be 

penetrative within that fabric domain. Otherwise, they 

are non-penetrative. 

Table 8•1 is a list of the structural element 

notation which will he emploYed in the following 

discussion of the structural aeology of the Starhope 

:anyon•"''uldoon Canyon The description, 

orientation, and configuration of structural elements 

comprises the main body of. ~ata which was obtained during 

the course of this study. Structural elements which will 

be discussed include beddina, folds, cleavage, faults, 

tension gashes, joints an~ microscopic structures. 

e.t Beddtno 

Bedding (5 ) is fairly easv to recognize within the 
0 

rocks of the Copper Basin Formation for the following 

reasons: 

1. Cleavaqe (S ) ts not develoPed to the extent 
1 
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s0 - Bedding 

s1 - Spaced (fracture) cleavage 

LOXl - Bedding - spaced cleavage intersection 

F
1 

- Folding developed during the Glide Mountain plate 
folding and thrushing episode. 

F2 - Second folding event: post thrust folding 

a - a kinematic direction; direction of tectonic 
transport (N70°E - N80°E) 

b - b kinematic direction; fold axes (Nl0°W - N20°W) 

c - c kinematic direction 

fable B•tt 
Structural element notation 

designated in the present study. 
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that it obscures bed~lnq. 

2. The contacts hetween the 
strat1qraph1c units gradationallY 
such that 11tholocr1c layering 
define bedding. 

different 
Interfinger 
distinctly 

3. ~lthough the various str~tigraphlc units 
generally dominated by one litholoqy, 
contain interbeds of other lithologies 
distinctly define bedding. 

8.2 Fol~s 

are 
they 
that 

Styles of folding d!f.fer between the Glide Mountain 

plate of Nilsen (1977), th~ Scorpion subplate of Nilsen 

(1977), and the Brockie subplate of Nilsen (~977). The 

Glide Mountain plate of Nttsen rt977) is more pervasively 

and tightly folded than the Scorpion subplate of Nilsen 

(1977), which is generallY homoclinal or qentlv folded. 

Styles of folding within the BrocKie subplate of Nilsen 

(1977) vary among the different stratigraphic units 

comprising the plate. 

8.2.1 Folds 1n the Glide Mountain Plate of Nilsen (1977) 

The Glide Mountain Plate of Nilsen (1977) 

characteristically possesses two scales of parallel 

folds: (1) tight intermediate scale folds with 

amplitudes and wavelengths WhiCh range from tens to 

hundreds of meters; and C?l sm~ller, mesoscopic folds 

with amplitudes and wavelengths both ranging from half a 

meter to several meters. Both of these fold types within 
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the Glide Mountain plate of Nilsen (1977) are assigned an 

f notation. The followinq pieces of evidence suggest 
1 

that F folds within the Glide ~ountain plate of Nilsen 
1 

(1977) developed concurrentlY with thrusting of this 

plate over the Scorpion suhplate of Nilsen (1977): 

1. Directly beneath the Glide Mountain thrust 
(the thrust at the base of the Glide Mountain 
plate of Nilsen, 1q77) the strata of the 
Scorpion subplate nf Nilsen (1977) are highly 
folded in styles equjv~lent to the F fold 

styles in the Glide Mountain plate 
(1977), which were ment1oned above 
described more fully below. 

1 
of Nilsen 

and are 

2. Some sheared zones within the Glide Mountain 
plate of Nilsen (1977) ~re folded by F folds, 

1 
whereas others cross-cut F folds. These 

1 
sheared zones resemble the main Glide Mountain 
thrust zone at the hase of the Plate 
(described more fullv below under "Faults•), 
and are therefore assumed to represent break 
thrusts anrt/or splavs off the main thrust 
zone. 

It 1s, of course, possible that some r folding of the 
1 

Glide Mountain plate of Nilsen (1977) pre-dates thrusting 

ot the plate. 

Intermediate scale F folds generallY have tight 
1 

lnterlimb angles. No isoclinal folds were identified 

within the Glide Mountain plate of Nilsen (1977) within 

the course of the present study. Short•l1mb height to 

width ratios (as defined by Hansen, 1971) range from 2 to 
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s. Depth to width ratios of intermediate scale folds are 

extremely variable where det~rminable, ranging from 1 to 

10: but limited exposures ~t outcrops make these ratios 

difficult to determine. The nature of hinges and limbs 

of these inter~ediate scale folds is also variable. 

Hinge geometry ranges from hroad to sharp. Limbs of 

intermediate scale folds ranqe from straight to broadlY 

curved. ~ssymetry of these fol~s is dominantly clockwise 

Cas viewed down the plunqe of the fold axis), but 

counter-clocKwise assymmetries were also observed. 

These intermediate scale F folds are generallY 
1 

difficult to recognize as one traverses the slopes within 

tne present study area, due to the fact that both 

Starnope Canyon and Muldoon Canyon and their associated 

rid~es run parallel to the ~lrection of fold axes 
0 0 

CN10 W•N20 W) within the Glide ~ountain Plate of Nilsen 

(1977). ~n excellent exposure of these folds can be 

seen, however, on the southeastern face of Glide 

Mountain, where a tributarv of Starhope Creek cuts the 

ridge at an angle approximately Perpendicular to fold 

axes. ~ typical intermediate scale F fold from the 
1 

Glide Mountaln plate of Nilsen (1977) is shown in Figure 

B•l. 

The smaller, mesoscoplc folds within the Glide 

~ountain plate of Nilsen Ct977) are ;enerally less tight 
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·''~ ... . , 

Floure B•lz 
Typical intermediate scale F fold 

1 
in the Glide Mountain Plate of the Copper 

Basin formation on the west rid9e of starhope 
Canyon south of Glide Mountain. Field assistant 

is present in the core of fold for scale. 
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than the intermediate sc~le folrts. Short-limb heiqht to 

width ratios of the small seal~ folds range from 0.3 to 

1; and depth to width r~t1os r~nge from 2 to 5. Hinges 

of tile small scale F folrls are qenerally broad Cas 
1 

opposeo to t1~ht) and 11mhs are straiaht to broadly 

curved. Assy~metry of the small scale folds is variable. 

F1~ure R-1 shows a typical wavP train of small scale F 
1 

folds within the Glide ~ount~in Plate of Nilsen (1977). 

At several localities within the study area, small scale 

F folds were recognizablv cont~ined within intermediate 
1 

scale F foljs. It is probable that all of the small 
1 

scale folds are relatert to the same stress svstem that 

produced the intermertiat~ sc~le folds, and therefore they 

are all included as F fol~s. 

1 
Equal-area plots of (A) oolPS to bedding, 

fold axes, and (C) poles to axtal planes of P 
t 

(B) F 

1 
folds in 

the Glide Mountain plate of Nilsen (1977) within the 

study are3 are shown 1n Piallre B-3. Poles to bedd!nq 

(figure R-3-A) form a clear areat circle distribution 

With a pole plunging at a shallow angle to the 

north-northwest. This Pole 1s 1ndlst1ngu1shable from 

~easured F fol1 axes In Fi~ure B·3•B. Hence, the folds 
1 

are coaxial and cyllndr!c~l. 
0 0 

orientation ls 15 N'O w. 

The averaqe fold axis 

Dover (19B1, p. 65) reportPd that, within the Glide 
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Flqure 8•51 
Typical cross•bed~tna and graded bedding 

in the Drummond Mine Limestone of Paull and others 
(1972) in Starhooe Canyon. 
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F1qure 8•2: 
Typical wave train of small scale F 

1 
folds in the Glide ~ountain plate of the 

:opper Basin Formation on the west ridge of 
~uldoon Canyon. Small Pine above folds is 

approximately two teet· hiqh. 
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Flour@ 8•3: 
Equal-area plots of various 

structural elements of the Glide Mountain plate 
plate of Nilsen (1977) in the Starhope 

Canyon-Muldoon Canyon area: 

(~) Poles to beddina showing a major point 
0 0 

maxima with girdle ~xis strikinq NlS W•S15 E; 
0 0 * 

max.=72 N69 F.1 n=77; contours =1,3,5,7,9. 

(B) f fold axes Showlnq a strong preferred 
1 

0 
orientation in the N1R W•S!R+<o>E direction with 
gentle to moderate plunqes in both directions: 

0 0 
max.=15 N20 W; n=531 contours=2,4,6 ••• 12. 

C:l Poles to axial planes showing a maximum 
0 0 

concentration at 28 N60 E: n:45; contours=1,3,S,7. 

* Contours in this and all succeeding equal-area 
plots are ba~ed on the numher of points falling 

within a 1% area of the diagram. 
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(A) 

(B). 

Figure 8•3 , continued 
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(C) 

Figure R-3, concluded 
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~ountain plate, folds are ov~rturned to the ~ast. It can 

be seen from Figure 8•3-c, however, that although axial 

planes of F folds dip dominantly westward, they also diP 
1 

eastward. This dominant ~1P of axial planes to the west 

agrees with a tectonic transoort of the Glide Mountain 

plate from west to east, which has been suggested by 

previous wor~ers (~ilsen, tQ77: nover, 1980, 1981). 

The Glide Mountain thrust is recognizably folded on 

a broad, regional scale in one section of the present 

study area (sec. 24,T.4N.,R.21E.> in upper Muldoon 

:anyon. Because F 
1 

of Nilsen (1977) 

folds within the Glide Mountain plate 

develooed concurrently with (and 

possibly before) thrustinq of the Plate, the fold of the 

thrust zone postdates F foldinq and Is assigned an F 
1 2 

notation. F folds Within the study area are coaxial 
2 

with F folds. The previously mentioned variability in 
1 

orientation of axial Planes of F folds probablY results 
1 

from their reorientation durlnq F folding. F folds are 
2 . 2 

discussed below 1n greater detail. 

8.2.2 Folds ln the Scorpion Subplate of Nilsen (1977) 

In the study area the strata within the Scorpion 

subplate are dominantly homoclinal or gently folded on a 

regional seal~. This reqional folding is generally 

subtle and can onlY be recoqniz~d by minor changes in the 
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attitude of bedding as one traverses the study area. 

Three exceptions to this aeneraltzation were observed and 

these are discussed below. 

(1) Where the Glide Mountain Plate of Nilsen (1977) 

has tectonicallY overrid~en the Scorpion subplate of 

Nilsen (1977), the strata of the latter immediately below 

the Glide Mountain thrust are generally folded (with 

accompanying shearing an~ tension gashes> in both tight 

intermediate seal~ folds ~nd small scale mesoscop!c folds 

resembling those in the Glide Mountain plate of Nilsen 

(1977). These folds immedlatelv below the Glide Mountain 

thrust are especially well ~eveloped within the less 

competent stratigraphic units of the scorpion subplate of 

~ilsen (1977), as can be seen in: (a) the Little Copper 

formation of Paull and Gruber (1Q77) on the west ridge of 

Starhope Canyon, (b) the nrummon~ Mine Limestone of Paull 

and others (1972) in the vicinitY of Starhope Gulch, and 

(c) the lower part of the Mul~oon Canyon Formation of 

Paull and others (19721 on the west ridqe of Muldoon 

Canyon. These folds resemble those within the Glide 

Mountain plate of Nilsen C1977l in every characteristic. 

Short•limb height to width ratios range from 0.3 to 1J 

and depth to width ratios ranqe from 2 to s. Hinqes are 

generally broad Cas opposed to tight); and limbs are 

straight or broadly curved. Assymmetry of these folds is 
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variable. Because thes~ folds lie only directly below 

the Glide Mountain thrust, it is suqqested herein that 

they developed in response to thrusting of the Glide 

Mountain plate. The style of these folds is identical to 

r folds within the Gl!~e Mountain plate of Nilsen 
1 

(1977), and therefore it is reasonable to assume that 

they formed in response tn the same system of stresses. 

Therefore the folds occurring directly beneath the Glide 

~ountain thrust within the Scorpion subplate of Nilsen 

(1977) are also assigned an F notation. 
1 

(2) several mesoscoplc folds were encountered in the 

Drummond Mine Limestone of Paull and others (1972) in 

upper Starhope Canyon at vertical distances in excess of 

200 meters below the Gli~e Mountain thrust. These folds 

occurred as isolated intrafolial folds within the 

relatively unfolded stratA of the Drummond Mine Limestone 

of Paull and others (1972). A tYPical example of one of 

these folds is Shown in Fioure 8·4. The clockwise 

vergence of these folds (As viewed down the plunge of the 

fold axis) was consistent throuqhout the study area. If 

these folds were to be considered parasitic <related to 

folding on a larger scale) they would indicate that the 

Drummond Mine Limestone o£ Paull and others (1972) in 

upper Starhope Canyon is overturned. Cross-bedding and 

qraded bedding in the Drummond Mine Limestone (Ftqure 
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P't;ure 8•4z 
Typical mesoscoofc F intrafolial 

1 
fold within the Drummonrt Mine Limestone of Paull 

and others (1972) in uoper Starhope Canyon. 
0 

View is to the south. ~olrt axis plunges 12 
to the north, therefore fold vergence is clockwise 

(as viewed down the olunge of the fold axis). 
Wavelength is approximately 8 meters. 
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8•5) are generally unequivocal in terms of documenting 

upright sedimentary facino. However, bedd1ng•cleavage 

relationships (discussed more fully below In ~cleavage") 

throughout most of the nrummond Mine Limestone in 

Starhope Canyon indicate that the unit Is right•side up. 

Therefore it is probable that these folds are related 

either to thrusting of the Glide Mountain plate of Nilsen 

(1977) over the Drummonrt ~in~ Limestone of Paull and 

others (1972), or thrustlno of the scorpion subplate of 

Nilsen (1977). These intrafolial folds are therefore 

assigned an F notation. The axial planes of these 
1 

intrafollal folds all dip to the east (in contrast to the 

dominantly west-dipping axial olanes of F folds within 
1 

the Scorpion subplate of Nilsen, 1Q77, immediately below 

the Glide Mountain thrust). Consequently, it appears 

that these folds were tectonically rotated during 

thrustin9 of the Glide Mount~in plate of Nilsen (1977) 

over the Dru~mond Mine Limestone of Paull and others 

(1972). 

(3) At one locality in u~per Muldoon Canyon (sec. 

24, T.4N., R.21E.) the Glide Mountain thrust fault and 

the strata of the Scorpion subplate of Nilsen (1977) 

immediately below the thrust are recogn!zeablY folded in 

an open Cin terms of interl!mb angle> regional fold. 

Because the Glide Mountain thrust is folded, 1t can be 
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assu~ed that ~t least some of the regional folding of the 

Scorpion s~bplate of Nil5~n (1Q77), and the other thrust 

plates of the Copper ~a sin formation, postdates 

thrusting. ~n r notation is assigned to this period of 
2 

folding. It ls possible, ho~ever, that some of the 

~entle to open re~ional foldinq of the Scoroion subplate 

~ay predate thrustlnq or h~ve nevelooed concurrently with 

tnrustin~. These possJh111t1es are impossible to 

estaol1stl, however, with exJstin~ field relationships. 

f folds reco~nized ~1th1n the study area display the 
2 

same axial trend as f folds within the study area 
0 0 t 

(Nl5 W-515 E). 

f.qual-area plots of (~) roles to beddina, (B) F 
1 

foli axPs~ and (C) POles to 3Xial planes ofF folds 
1 

~1tn1n the Scorpion subpl~te of Nilsen (1977) in the 

stu1y area are sho~n in riaure 8•6. Figure 8·6-A 

displays a ~axlmum concentration of poles to beds at 
0 0 

30 580 w, illustrating th~ aenerally homocl1nal nature of 

the Scorpion subplate of Nilsen (1977) within the study 

area. Poles to bedding are somewhat spread alona a great 
0 

circle girdle striking NSO E, due to local F foldinq 
1 

occurr1n~ beneath the Gl1rte ~ountain thrust and/or to 

regional r fold1na. F folds within the Scorpion 
2 1 

subplate of Nilsen (1977), 1nclurting those folds directly 

beneath the Glide Mountain thrust and intrafolial folds 
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Flqure 8•6z 
Equal-area plots of various 

structural elements of the Scorpion subplate 
of Nilsen (1977) ln the Starhope Canyon

~uldoon Canyon area: 

(A) Poles to beddlnQ showlnq a major point maximum 
0 0 

within Qirdle with axis Nto w-sto E: 
0 0 

max.=30 580 W; n=74: contours=1,3,s ••• t7. 

(6) F fold axes showinq a preferred orientation 
1 

0 0 
in the N15 w-515 E ~1rect1on with gentle to 
moderate plunges in both directions; n=1B; 

contours=1,3,5. 

c:> Poles to axial planes of F folds with 
1 

several maxima in a poorly defined girdle with 
0 0 

axis N15 w-515 E; n=t4; contours=1,3. 
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(A) 

I -·-1 

(B) 

Fiqure R•6, cnntinued 
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(C) 

F'tgure B-6 , 
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within tne Dru~mond Min~ tJ1mestone of Paull and others 

(1972) ~aintaln a statistical fold axis orientation at 
0 0 

NlS W•S15 E Clllustraten in figure B-6-P.). This 

orientation is equivalent to that maintained by F fold 
1 

axes within the Glide ~ounta1n Dlate of Nilsen (1977). 

Poles to axial pl~nPs of r folds within the 
1 

s:orp1on snoplate of Nilsen (1Y77), st1own in Fiaure 

R-6-:, do not s~o~ a well nevelnpen point maximum due to 

the fact that fol~inq within the Scorpion subplate was 

not extensive enouoh to vleln the number of data points 

necessary for statistical ~nalvs1s. It is important to 

note, no~ever, that axi~l olRnes of f folds in the 
1 

Scorpion suoplate of Uilsen (1Q77) directly beneath the 

~11i~ ~ountaln thrust dtnoen do~inantly to the west (in 

response to overturning to the e~st). Axial planes of 

~entle to open f realonal folds within the Scorpion 
2 

subplate of Nilsen (1Y77) were qenerally vertical or 

1ip;:>1ng to tn~ west (nverturne1 to the east) where 

reco;1n1zable. Axial pl~nes of f intrafolial folds 
1 

within the Drummond ~ine Limestone of Paull and others 

(1972) at considerable vertical distances below the Glide 

Mountain thrust all dip to the east. 
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8.2.3 roldl 1n tht Brockie SUbPl&tl Of Nllaen (1977) 

FoldlnQ is Qenerallv difficult to recoqnlze within 

the BToc~ie subplate of Nilsen (1917), due to the fact 

that, in the study area, this "plate" is only exposed 

along the east ridqe of ~uldoon Canyon, an area 

extensively covered bY unconsoli1ated surficial deposits. 

However, detailed mapplna within the course of the 

present study establishes that the upper part of the 

~uldoon :anyon Formation of Paull and others (1972) 

including the Green Lake Limestone Member (both of which 

comprise the lower part of the Brockie subplate of 

Nilsen, 1977) are highly folded in styles which are 

identical to those of P fold styles in the Glide 
1 

~ountaln plate of Nilsen (1q77). A typical small scale 

F fold in the Green L~ke Limestone Member is shown in 
1 

Fiqure 8•7. 

Well•developed foldlnn in the upper part of the 

Muldoon Canyon Formation of Paull and others (1972) and 

in the Green Lake Limestone Memher occurs as (1) tight 

intermediate scale folds with amPlitudes and wavelengths 

which range from tens of meters to hundreds of meters, 

and (2) small scale, mesoscoofc folds with amplitudes and 

wavelengths ranging from half ~ meter to several meters. 

Both of these fold types possess similar short-limb 

height to width ratios, depth to width ratios, 

83 



Flqure 8•7t 
Typical small scale r fold in 

1 
the Green Lake Limestone ~ember. View is to 

the north along the east ridge of Muldoon 
canvon. 
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assymmetries, hinges, and limbs to those F folds in th~ 
1 

Glide Mountain Plate of Nilsen (1977). It is sugqested 

here that these ar~ a)so F folds which developed in 
1 

response to thrusting. Purth~r evidence for this is 

discuss~d in the s~ction entitle~ "Thrust Faults." 

Alternat1v~ly, the Rrockie Lake Conqlornerate of 

Paull and others (1972), which stratigraPhicallY overlies 

their upper part of the Muldoon Canyon Formation, is 

homoclinal within the studv area. It seems reasonable to 

assume that the Brockie Lake Conglomerate in this area 

resisted the tendancy to fold during thrusting due to its 

greater comp~tence than the underlying units. However, 

approximately 11 km south of. the present study area, in 

the valley of Friedman Creek, Lukowicz (1971) mapped 

Intense folding in the Brockie Lake Conglomerat~ of Paull 

and others (1972) in a plate overlYing a thrust fault. 

Volkmann (1972) reoorted that th~ Iron Bog Creek 

formation, Which is th~ uopermost stratigraphic unit in 

th~ Brockle subplate of Nilsen (1977) contains several 

r~coqnizable zones of compl~x foldinQ and faulting along 

the Left Fork of Iron Bog creek in sec. 23, T.4N., R.22E, 

to th~ east of the present study ar~a. 

Equal•area plots ot (A) poles to bedding, (B) F 

fold axes, ahd (Cl poles to axial Planes of F 
1 

1 
folds 

•ithin the Brockie subplat~ of Nilsen (1977) in th~ study 
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Figure 8•81 
Equal-area plots of v~rious structural elements 
of the Brockie subpl~te of Nilsen (1977) in the 

Starhope Canyon-~uldonn Canyon area: 

(~) Poles to bedding wjth a maximum concentration 
0 0 

within girdle with axis N20 W•S20 E; 
0 0 

max.=35 S70 W; n=39~ contours=1,3,5. 

(B) f fold axes show!nq a strong preferred 
1 

0 0 
orientation in the N!O W•S10 E direction with 

gentle to moderate plunqes 1n both directions; 
n=15; cnntours=l,2,3. 

(C) Poles to axial olanes of F folrts in a 
1 

0 0 
poorly defined girdle with axis N20 w-s20 E; 

n=t6; contours:1,2,3. 
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(A) 

(B) 

riqure A-a, continued 
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(C) 

F'iqure 8•8 , concluded 
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area are sno~n ln ~1gure 8-H. Figure B·P-A displays a 
0 0 

maxl~um of poles to beddino at 35 570 w, but poles are 

so~e~hat sprea1 along ~ areat circle airdle striking 
0 

N70 ~. Given better exposure of tne highlY folded upper 

part of the ~ul~oon Canyon Form~t1on of Paull and others 

(1972) and the Green Lake T.imestone Member, poles to beds 

~ould proDaolv snow a qrP~ter 11strihut1on along the 
0 0 

~irdle ~70 E-570 w, reflectina a more pronounced effect 

of F fold1n~. 

1 
Poles to hens in the Brockie Lake 

:on~lomerate of Paull and others (1972) maintain a tight 
0 0 

statistical maximum at 35 S70 w, Which accounts for the 

strong max1~u~ shown in Ftaure R-B·A. 

Figure R-8-R illustrates that F fold axes within 
1 

the Rrockie subplate ot Nilsen £1977) have been developed 
0 0 

~lth a preferred orientation of NlO W•SlO ~ with gentle 

to moderate p1un1es to both the northeast and southwest. 

rn1s trend a~rees with the orientation of F folds within 
1 

tne Glide Mountain plate and Scorpion subplate of Nilsen 

(1Y7Jl. No do~inant plunae direction is evident for f 
1 

fold axes within the Brockie sub~late ot Nilsen (1977). 

This may De due to a Shortaqe of data points resulting 

tro~ poor outcrop exposure. 

Poles to axial-planes of F folds within the Brockle 
t 

subplate ot Nilsen (1977) nresented in figure 8•8-C show 
0 0 

tnat these poles maintain an orientation (N70 E•S70 W) 
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which is coincident to that shown for the same structures 

in the Scorpion subplat@ an~ Glide Mountain plate of 

Nilsen (1977). However, oauctty of data within the 

Brockle subplate of (1977) precludes the 

determination of any concentration of poles to axial 

planes in this structural unit. 

9.3 Cleavaoe 

Within the study area no slaty cleavaqe is developed 

in the rocks of the Copoer Rasln formation. ~ spaced 

fracture cleavage has formerl in some of the less 

competent rocks (argillites and limestones) and in some 

of the quartzites of the r.11~e ~ounta1n plate of Nilsen 

(1977). The only unit Within the :opper Basin Formation 

that possesses a fairly penetr~tive fracture cleavage is 

the Dru~mond ~ine Limestone of Paull and others (1972). 

8.3.1 Cleavao~ ln the Glide Nountaln Plate o~ Nilsen 

(1977) 

Dover (1981, p. 64) reoorted that 

"the Glide Mountain plate of the Copper Aasin 
Formation is characterized hV pervasive folding 
on small and intermediate scales and by 
well-developed axial•olane cleavage." 

However, in the Starhope r.anvon-~uldoon Canyon area, this 

is not the case. 
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Within the present studv area, a weak to moderate, 

spaced (fracture) cleavage has heen develoPed throughout 

most of the Glide ~ountain plate of Nilsen (1977). This 

spaced fracture Cleavage is asstqned the notation of s 
1 

and is most likely a pressure solution-volume loss 

phenomenon induced by shorten!nq during P fol~1nq and 
l 

thrusting. This Is the mechanism that Alvarez and others 

C197R) propose for the aenerat1on of space~ cleavage. 

Where a fold ~!thin the thrust plate has developed in a 

sequence of rocks which ts ~nminated by arqillltes, the 

spaced cleava~e Is generallY moderately developed and 

"fans" about the axial planes of intermediate scale P 
1 

folds. ~lternat1vely, whPre a fold has oeveloped 1n a 

sequence of rocks which fs ~omtnated by quartzitic beds, 

the argillite interbeds exhibit a strong bedding plane 

f1ss111ty while the qu~rtzite beds exhibit a radial 

spaced fracturing. This radial spaced fracturing 

probably formed at the same time as the spaced cleavage 

in the other rock types, and, hence, is also considered 

to be a cleavage. The radial sp~ced fracture cleavage in 

the quartzites exhibits a much more pronounced "fanning" 

around the fold axes, while "axial-planar" cleavage in 

the argillites "fans" to a much lesser degree. 

&edd1ng•cleavage lineations tn all cases parallel the 

fold axes and are assigned a structural notation of L 
OX1 
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The cleavage within th@ Glide Mountain Plate of 

Nils@n (1977) is more stronqly develoPed in close 

proximity to (1) the thrust zone at the base of the 

plate, and (2) sheared zon~s above th@ main thrust zone. 

This fact supports the hyPothesis that cleavage (S ) in 
1 

the Glide Mountain plate of Nilsen (1977) Is related to 

the foldin~ and thrustinq eoisode CF ) durinq Which the 
1 

Glide Mountain plate of Nilsen (1977) was tectonically 

transported. 

8.3.2 Cleava~~ ln the Scorpion Subplate of Nilsen (1977) 

The Scorpion subplate of Nilsen, 1977, (Copper Basin 

Plate of Dover, 1980, t9Rt) is gently folded on a 

regional scale (F ) althouqh some earlier F folding can 
2 1 

still be found in the present study area. The only 

stratigraphic unit within the plate which contains a 

fairly penetrative spaced fracture cleavage is the 

Drummond Mine Limestone of Paull and others, 1972 (see 

Figure 8•9). This spaced fracture cleavage is generallY 

closely spaced and moderately well-developed. The 

Scorpion Mountain Formation of Paull and others (1972) ls 

highly jointed and generallY lacks a cleavage. Both the 

Little Copper Formation and the lower part of the Muldoon 

C~nvon Formation of Paull and others (1972) contain only 

weaklY developed, spaced fracture cleavages. The 

92 



Ftoure 8•91 
Typical moderately developed 

spaced fracture cleavaae in the Drummond 
Limestone of Paull and others (1972). 
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cleavage in these units 1s found only in the most 

finP•gralned, argillaceous be~s and directly hP.neath the 

Glide ~ountain thrust WherP theY have been tectonicallY 

overridden. Therefore it 1~ assumed that these cleavages 

1eveloped during r foldina ~nd thrusting of the Glide 
1 

~ountaln plate of Nils~n (1Q77) over the Scorpion 

subplate of NilsPn (lq77). Aenntng•cleavage intersection 

lineations associate~ with this cleavage are assigned a 

notation o! L 
OXl 

• 

Equal-area plots of f~) nolP.S to cleavaoe, (8) poles 

to an1 (C) hendfng-cleavaqe intersection 

line~tions in the study are~ wfthin the nrummonn Vine 

[,imestone of Paull and others (1972) are shown in rioure 

8-to. It is apparent fro~ these plots and the plot of 

r fold axes ~!thin th~ Scorpion subplate of Nilsen, 
1 

1977, (figure B-6-B) that cle~vaae ~!thin the Drummond 

~1ne Li~estone of Paull ~nd others (1972) is related to 

F fold!n~. Poles to clP~vaae (Fiqure R-10-A) are 
1 

distributed along a great circle girdle coincident with 

bedding (Figure 8•10-B). Redding-cleavage intersection 

lineations (Figure 8•10-r.) ar~ parallel to F fold axes 
t 

(rl~ure 8•6•8) 1n the Scornion subPlate of Nilsen (1977). 

The cleavage in the Drummon~ ~ine Limestone of Paull 

and others (1972) appears tn h~v~ developerl in response 

to r folding and thrust1na, as ~1d other cl~avages below 
1 



F1;ure 9•101 
Equal•area plots of various 

structural elements of the Drummond Mine 
Limestone of Paull and others (1972) In the 

Starhope Canyon-~uldoon Canyon area: 

(A) Pol~s to S ClPavaqe within a girdle 
l 

0 0 
with axis N20 W•S20 E: n=6. 

(B) Poles to beddina show1n9 a major point 
0 0 

maximum at 39 SS7 w~ n=32: 
contours=1,3,s,7,9. 

(:) Bedd1n9•cleavage Intersection lineations 
(L ) showing a stronq Preferred orientation 

OXt 
0 0 

in the N16 W•S16 F. direction with qentle 
0 0 

plunges in both directions; max.=to 58 E: 
n=1: contours=t,2,3,4. 
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(A) 

(B) 

Figure 8•10, continued 



(C) 

Fiqure 8•10, concluded 
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the Glide Mountain thrust within the scorpion subplate of 

Nilsen (1977). It is hiahlV Probable that this cleavage 

developed concurrently with the development of F 
1 

1ntrafol1al folds within the nrummond Mine Limestone of 

Paull and others (1972) since thiS cleavage "fans" about 

the axial planes of th@Se folds (see Figure R•4). F 
2 

regional folding in the Scorolon subplate of Nilsen 

(1977) does not seem to have produced any associated 

cleavage, probably due to the aentleness of the 1nterl1mb 

angle of these folds. 

In upper Starhope canyon most outcrops of the 

Drummond Mine Limestone of Paull and others (1972) show 

cleavage dipping more steeolv than bedding, indicating 

that heds are right-side up stratigraphically. At a few 

outcrops, howev~r, adjacent to starhope Creek, cleavage 

is less steeply dippinq than bedding, sugqest!nq that 

bedding is ov~rturned. At these "overturned" outcrops, 

as well as within most of thP. outcrops of the Drummond 

Mine Limestone of Paull and others (1972) within the 

study area, cross•bedd!na and graded bedding are 

unequivocal in terms of documenting upright sedimentary 

facinq (see Figure 8•5). Furthermore, bedding•cleavaqe 

relationships cannot be considered unequivocal in terms 

of documenting upright sedimentary facing where cleavage 

"fans" about the axial Planes of folds. Hence, the 
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Drummond Mine Limestone Of Paull and others (1972) may be 

locally overturned by F 1ntrafo11al folds where beds are 
1 

more steeply dipping than cleavage adjacent to Starhope 

:reek, but the unit is domtn~ntly right-side up. 

8.3.3 Cleav~~e ln the Broekle Subplate of Nilsen (1977) 

A generally weaklv-developed, spaced fracture 

cleavage is present in both the upper part of the Muldoon 

:anyon formation and the Green Lake Limestone Member of 

Paull and others (1972). However, the cleavage in the 

Brockie subplate of Nilsen (2977) is not as consistentlY 

or stronqly developed as that in the Drummond Mine 

Limestone of Paull and others (1972) within the Scorpion 

subplate of Nilsen (1977). The Brockie Lake Conqlomerate 

of Paull and others (1972), belnq a massive, competent, 

quartzitic unit, does not possess any significant 

cleavage. The Iron Bog Creek Formation of Paull and 

others (1972) is not exposed within the present study 

area~ consequently its cleavaoe characteristics were not 

determined. 

The development of a weak, spaced fracture cleavage 

in the upper part ot the ~uldoon Canyon Formation and the 

Green Lake Llmestone Member of Paull and others (1972) 

appears to be related to F folding within these units, 
t 

and to the thrust at the base of the Brockle subplate of 
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Nilsen (1977), which Will b@ discuss@d in more detail 

below. 

8.4 raults 

Hlgh•anqle faults (~ip•sliP faults, oblique-sliP 

faults, and strike-slip faults) and thrust tault(s) are 

all present within the stn~v area. However, most of the 

~ajor deformation of the Cop~er Basin formation within 

the study area is related to fol~ing and thrust faulting. 

Tne Glide ~ountain thrust was studied and mapped 

extensively within the stu~v area. Although Dover (1980, 

1981) and Nilsen (19771 reoort that the lower plate of 

the :opper Basin Formation (Copper Basin Plate of Dover, 

1980, 1981; or Scorpion subplate of Nilsen, 1977) is 

allochthonous, the thrust beneath this Plate or 

p~netrative deformational @ffects associated with the 

thrusting of this lower PlAte were not recoqntzed within 

the study area. 
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a.~.l Thrust raults· 

8.~~1.1 Gli~e Mountain Thrust of Nilsen (1977) 

The thrust beneath the Glide Mountain plate of 

~ilsen (1977) was mapped within the course of the present 

study, and its distribution Is outlined on Plate A. This 

thrust is difficult to recoqnize in the field for the 

followin~ reasons: 

1. The thrust is largely covered by slope debris 
(talus, colluvium, and alluvial fans) and 
glacial deposits, especi8llY in the northern 
portion of· the study area where the thrust is 
located close to the valley floors. 

2. Cataclastic rocks associated with the thrust 
are often highlY weathered. 

3. Facies of the Copper Rastn formation above the 
Glide Mountain thrust in the Glide ~ountain 
plate of Nilsen (1977) are structurallY and 
stratigraphicallY similar to facies of the 
Copper Basin formation within the underlYing 
Scorpion subplate of ~ilsen (1977), especially 
the Little Copper Formation of Paull and 
Gruber (1977) and the lower part of the 
Muldoon Canyon Formation of Paull and others 
(1972). The structural resemblence manifested 
in highly folded zones below the Glide 
Mountain thrust, hnwever, is confined to only 
the less competent units beneath the thrust, 
and is not characteristic of the entire 
scorpion subplate of Nilsen, 1977). 

4. The fault zone, beinq a zone of weakness, is 
commonly intruded hy Eocene intrusive rockes 
(stocks and dikes). 

The Glide Mountain thrust fault was recognized in enough 

discontinuous exposures, however, to permit its mapping 
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with a high d~gree of cert~!ntv. 

~n excellent exposure of the Glide Mountain thrust 

can be seen in upper Mulnoon Canyon (sec. 24, T.4N., 

R.21E.). ~t this localttv a zone of brecciation marks 

the thrust (se~ figure 8•t1l. This cataclastic zone is 

extremely thick (approximately 30 meters at one locality 

in upper ~uldoon Canyon) and lts contacts with both the 

overlying plate (Glide ~ountain plate of Nilsen, 1Q77) 

and the underlying plate (Scorpion subplate of Nilsen, 

1977, or :opper Basin plate of Dover, 1980, 1981) are 

visible. The ·fault breccia locallY displays iron• 

staining, bl~aching, silicic mineralization, and chaotic 

fracturing. ~t most localities the breccia contains 

angular clasts of the Copper Rasin Formation which are 

variable in size. At a few localities the breccia is a 

gouge, containing very few anqular fragments in a finely 

granulat~d matrix. Slic~ensided zones are qenerallY 

present within the fault zone, but they do not show a 

systematic sense of displacement. 

As one approaches the thrust zone from either the 

lower plate (Scorpion subPlate of Nilsen, 1977: or Copper 

Basin plate of Dover, tqAo, 1981) or the upper plate 

(Glide Mountain plate of Nilsen, 1977), the following 

structural changes can be observed: 
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rtoure 8•11: 
Glide Mountain thrust zone ln upper 

Muldoon Canyon (sec. 24, T.4N., R.21E.l. 
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1. Cleavaqe becomes ~ore clos~lY spaced and 
stron~lY developed anrt meraes into a hiqhly 
fractured zone lmmedtately above and below the 
thrust. 

2. Brecciated and sh~ared zones resembling the 
thrust breccia become more numerous ann more 
intense. 

3. Folds become tighter anrt more numerous. 

Sheared zones and other evidence of structural 

discordance (disrupted bertrtina and tension aashes) occur 

in the Glide ~ountain plate of Nilsen (1977) at vertical 

distances in excess of two hunrtred meters above the Glide 

~ountain thrust fault. Some sheared zones are folded 

whereas others cross-cut folrts. These sheared zones, 

Which resemole the fault hreccia at the base of the Glide 

Mountain plate, may be spl~vs off of the major thrust 

zone or local break thrusts rteveloped durinq F folding. 
1 

~ typical sheared zone in the r.11de Mountain Plate of 

~ilsen (1977) found on the west ridge of Muldoon Canyon 

approximately 200 meters ahove t~e main Glide Mountain 

thrust zone is shown in F1aure R•12. 

Structures associated with thrust faulting, such as 

disrupted bedding, slickensides, micro-faults, and 

tension qashes, were also locallY imparted to the rocks 

of the Scorpion subplate of Nilsen (1977) where it was 

tectonically overridden bY the Glide Mountain plate of 

Nilsen (1977). ~lso, where the Glide Mountain plate of 
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F1qUr@ 8•121 
Glide Mountain thrust splay or 

break thrust in Glide ~ountaln Plate of 
Nilsen (1977) on west rldqe of Muldoon CanYon. 
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~ilsen (1977) has tectonicallv overridden those less 

competent stratigraphic units Within the Scorpion 

subplate of ~ilsen (1977), the Little Copper Formation, 

Drummond Mine Limestone, and lower part of the Muldoon 

:anyon Formation of Paull an~ others (1972), these rocks 

are highly folded in styles resembling the folding within 

the Glide ~ountain plate of Nilsen (1977). Locally, the 

Glide ~ountaln thrust has incorporated slices of the 

scorpion subplate of ~ilsen (!Q77) within the fault zone. 

One such example of this phenomenon occurs on the west 

ridge of Starhope Canyon where a block of Drummond Mine 

Limestone has been transported an indeterminable, but 

probablY short distance alona the fault zone. A thin 

breccia was recognized below this highly folded block of 

Drummond Mine Limestone. This relationshiP is shown on 

the geologic map (Plate Al. 

An equal-area plot of poles to slickensided surfaces 

within the Glide Mountain thrust zone is shown in Figure 

8•13. It is apparent from this plot that the Glide 

Mountain thrust generally diPs to the northwest within 

the present study area. This observation is supported by 

the mappin~ of the main thrust surface within the study 

area. At one locality, however, at the southernmost 

extent of the thrust on the west ridge of Muldoon Canyon, 

the thrust was observed to be broadly folded (F ) into a 
2 
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Fioure 8•13: 
Equal-area plot of poles 

to slickensided surfaces within the Glide 
Mountain thrust zon~ ln the Starhope 

Canyon-Muldoon Canvon area; n=to. 
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syncline along a told axis that trends approximately 
0 

N15 W. 

Dover and others (1976), Nilsen (1977), and Dover 

(1981) mapped a portion of the Glide Mountain thrust 

through the unnamed mountain at the southern end of 

~uldoon :anyon (sec. 19, T.4N., R.22E.). However, in the 

pr~sent study no thrust f~ult was mapped at this locality 

for the following reasons: 

1. Excellent exposures of relatively undeformed 
strata can be seen at this locality which is, 
1n fact, the type section of the lower part of 
the ~uldoon Canyon ~ormation of Paull and 
others (1972). The strAta on this mountain 
generally do not dlsolay deformational 
features characteristic of. the Glide Mountain 
plate and are gentlY folded on a regional 
scale. 

2. A well-developed .fault breccia characteristic 
of the Glide Mountain thrust was not 
recognized anywhere on this mountain. 

Although the map distribution of the Glide Mountain 

thrust su~gests that it should cut through this mountain, 

it is herein suggested that the Glide Mountain thrust 

does not exist in this portion of. the map area. Two 

alternative hypotheses can be formulated to explain the 

absence of the Glide Mountain thrust in this area. 

Firstly, the thrust surface may have been anticlinally 

folded (F ) over this mountain and subsequentlY removed 
2 
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by erosion. ~lternativelv, th~ thrust surface may have 

been displaced upward ~lonq normal faults at this 

l~cality Cor downtaulted in other localities) and then 

removed by erosion. Either of these hypotheses is 

equallY possible, because both r folding of the thrust 
2 

and post-thrust normal faults have been recognized 

elsewhere within the studv area. 

8.4.1.2 Muldoon C-hyon Thrust of Nilsen (1977) 

The Muldoon Canyon thrust of Nilsen (1977) seperates 

the Scorpion and Brockie subplates of Nilsen (1977). 

Nilsen (1977, p. 283) state~ that 

"the thrust is well exposed at the south end 
of Muldoon Canyon where a thiCk zone of qouge and 
cataclastic material separates the Brockle Lake 
Con~lomerate of Paull and others (1972) from the 
Scorpion Mountain Formation of Paull and others 
(1972)." 

Nilsen (1977) inferred that the Muldoon Canyon thrust 

extends from this outcrop down the center of Muldoon 

:anyon where it is covered bY unconsolidated Quaternary 

deposits. Nilsen (1977) also mapped a small outcrop of 

the Glide Mountain plate at the headwall of Muldoon 

Canyon, immediately overlYinq, and in contact with the 

Mul~oon Canyon thrust. nover (1980, 1981), however, 

suggested that the Muldoon Canyon thrust is an extension 

of the Glide Mountain thrust, thus correlating the 
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Brockie subplate of Nilsen (1977) With the Glide Mountain 

plate of Nilsen (1977). 

Field mapping undertaken in the present study 

reinforces the suggestions of Dover (1980, 1981) 

concerning the Muldoon Canvon thrust. This conclusion is 

based on the foll~wlng: 

(1) The Scorpion ~ountain Formation of Paull and 

others (1972) crops out extensively on the east ridge of 

~uldoon Canyon (see Plate A). If the Muldoon Canyon 

thrust separates the Scorpion subplate from the Brockie 

subplate, then the "Muldoon Canyon thrust" must actuallY 

lie on the east ridge of Muldoon Canyon somewhere above 

tne highest outcrops of the Scorpion Mountain Formation 

of Paull and others (1972). Placement of the "Muldoon 

Canyon thrust" on the east r!dqe of Muldoon Canyon, which 

is· supported by structural evidence discussed below, 

strongly supports the hypothesis of Dover (1980, 1981) 

that the "Muldoon Canyon thrust" is an extension of the 

Glide Mountain thrust. Mao distribution of these faults 

cs~e Plates A and R) also supports Dover's 

interpretation. 

(2) As previously described, the structures in the 

Green Lake Limestone Member and the upper part of the 

Muldoon Canyon formation of Paull and others (1972) 

resemble those in the Glide Mountain Plate of Nilsen 
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(1977). The similarity of structural style between the 

Brockie subplate of Nilsen (1977) and the Glide Mountain 

plate of Nilsen (1977) stronqlv supports the hypothesis 

that these are 

plate. (The 

others, 2972, 

~apped within 

both parts of the same allochthonous 

Brockie L~ke Conglomerate of Paull and 

is relatively ~omocllnal where it was 

the studv area. This unit is much more 

competent than the underlvtnq GrP.en Lake Limestone Member 

and upper part of the Mul~oon Canyon Formation of Paull 

and others, 1972, and it aoparently resisted F folding 
1 

in this area.) 

(3) Schramm (1878) demonstrated that the Scorpion 

~ountain Formation and Brockie Lake Conglomerate of Paull 

and others (1972) are 1nterbe~ded at the southern end of 

~uldoon Canyon. Nilsen (1977) also imPlies this by 

suqqestlng that these two units are time-equivalent and 

facies-equivalent. In the localitY where Nilsen (1977) 

mapped the "~uldoon Canyon thrust,• beds of Brockie Lake 

Conglomerate and beds of scorpion Mountain Formation are 

interbedded such that it is mere speculation to suggest 

that one unit is thrust atop the other. 

(4) A fault breccia stronqly resembling the fault 

breccia of the Glide Mountain thrust at other localities 

within the study area crops out aPProximately 100 meters 

east of the locality where the "Muldoon Canyon thrust" !s 
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mapped by ~il5en (1977>. This breccia is overlain by 

highlY folded argillites an~ quartzites and displays 

silicic mineralization, !ron staining, Sheared zones and 

angular clasts of various CoPPer Basin Formation 

lithologies. This thrust was mapped as an extension of 

the Glide Mountain thrust hV Oover and others (1976), 

~ilsen (1977), and Dover (lQRO, 1981) and this study 

confirm~ that interpretation. ~aPPing on the east ridge 

of ~uldoon Canyon within the course of the present study 

failed to traee this breccia laterallY within the sparce 

outcrops that occur amonq the extensive slope deposits 

(talus, colluvium, alluvial fans, and glacial tills) on 

this ridge Csee Plate A). However, several outcrops did 

display structures similar th~se that occur in close 

proximity to the Gl1~e ~ountain thrust (silicic 

mineralization, chaotic fracturing, and sheared zones). 

A well•develnped breccia was not recognized at the 

locality where Nilsen (1977) maps the "Muldoon Canyon 

thrust," although a fracturerl zone was seen at this 

locality. This zone is characteristic of deformations 

which occur where a Slice of the lower, Copper Basin 

plate of Dover (1980, 1981) has been transported with the 

ov~rlyinq Glide Mountain plate. 

(5) ~n extensive area of beds of the Scorpion 

Mountain Formation of Paull anrl others (1972) Which are 
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overturned to the east were mapped along the lower slopes 

of the east ridge of Mul~oon Canyon ln the northern part 

of the study area. The overturning of these beds ls 

clearly shown by overturned qroove casts and graded 

bedding. This overturninq to the east agrees with the 

eastward direction of thrusting, suggesting that the 

Glide Mountain thrust Shoul~ be continued across Muldoon 

Canyon above these overturned beds and through the east 

ridge. 

Therefore it appears that the structural model of 

Dover (1980, 1981) best fits the geologic mapping and 

structural data collected during the course of the 

present study. Consequently, the Glide Mountain thrust 

has been projected beneath the unconsolidated Quaternary 

deposits that mantle the slopes of the east ridge of 

Muldoon Canyon Csee Plates A and B). The mapping of the 

Glide Mountain thrust on the east ridge of Muldoon Canyon 

is based on the identlflcation of deformational features 

recognized to be ln close proximity to the Glide Mountain 

thrust at other localities within the study area. These 

deformational· features were recognized at enough 

localities to establish reasonable, although tentative 

mappinQ of the Gltde Mountain thrust on the east ridge of 

Muldoon Canyon. 
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a ••• 1.l Strat1;raph1c Correlation of the Glide Mountain 

Plate ahd the Broekie Subplate of Nilsen (1977) 

Dov~r (19RO, 1981) suooested that th~ Brock!~ 

subplate of Nilsen (1977) and thP. Glide Mountain plate of 

Nilsen (1977) are stratigraphicallY and structurallY 

equivalent. This interprP.tation is based on (1) the 

discovery of a 75 meter thick zone of silty and 

bioclastic limestone and /aroflllte equivalent to the 

Green Lake Limestone Member (based on conodont faunas) in 

the Glld~ Mountain plate 1n Rio Pocky Canyon (north of 

the present study area), and (2) other lithologic 

s1m1lar1t1es and the continuitY of map distribution 

(Dover, 1980, 1981). As pr~viously discussed, this 

interpretation is supported by structural data obtained 

within the course of the present study. 

This interpretation, however valid in the northern 

Pioneer Mountains, introduces an apparent stratigraphic 

prbblem in the Starhope Canvon-Muldoon Canyon area. The 

Glide Mountain sequence, which consists of highlY fold~d 

arqillite and interbedded quartz1t1c sandstone turbidite 

sequences, is well exposed on the west ridge of Muldoon 

C~nyon. The Brockie subplate of Nilsen (1977) occurs on 

the east r1dqe of Muldoon Canyon and also contains highlY 

folded arq1111tes and quartzltlc sandstone turbidites. 

The Brockle subplate, however, also contains the Green 
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LaKe Limestone Member 

Pau 11· and others (1972). 

and BrocKle Lake Conglomerate of 

Nilsen (1977) proposed that his 

BrocKle and scorpion subplates represented lateral facies 

equivalents seperated by a thrust. The apparent 

stratigraphic discontinuity between Nilsen's (1977) 

Brockle subplate and Glide ~ountain plate led him to 

suggest that the thrust beneath the Brockie subplate 

(Muldoon Canyon thrust) ann the thrust beneath the Glide 

Mountain plate (Glide Mountain thrust) are two different 

faults. 

However, the observations of. Dover (1980, 1981) and 

structural evidence discussed above suggest that the 

BrocKie subplate and the Gll~e ~ounta!n plate of Nilsen 

(1977) are different parts of the same allochthon. In 

order to accommodate this hYPOtheSis, the stratigraphic 

discontinuity between the Arockie subplate and the Glide 

~ountatn plate of Nilsen (1Q77) must somehow be 

explained. In other words, whY aren't the Green Lake 

Limestone Member and the Arockie Lake Conglomerate of 

Paull and others (1972) found within the Glide Mountain 

plate of Nilsen (1977) on the west ridge of Muldoon 

Canyon and elsewhere within the study area? 

The Brockle Lake Conglomerate of Paull and others 

(1972) is homoclinal and dlPPlnq to the east on the east 

ridge of Muldoon Canyon. Apparently this structurallY 
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competent unit was tectonicallY transported within the 

Glide Mountain plate of Nilsen (1977) Without becoming 

highlY folded. If this unit were to be geometrically 

projected across Muldoon Canyon to the west ridge, it 

would project into space above the present elevation of 

the top of the ridge. Therefore, it is probable that 

tnis unit has been removed by erosion where it may have 

once occurred above the present west ridqe of Muldoon 

:anyon. 

Similarly, the Green Lake Limestone Member may have 

been removed by erosion in localities other than the east 

ridge of Muldoon Canyon. Another possible explanation 

for the absence of the Green Lak~ Limestone Member on the 

west ridge of Muldoon canyon and in Starhope Canyon, 

however, arises from the fact that the unit thins to the 

west. The Green La~e Limestone Member may thin to the 

west so dramatically that it does not exist within the 

partly terri;enous, most proximal fan facies found in the 

western part of the Glide ~ountain plate. 

Based on the assumptions outlined above and the 

previously discussed structural and stratigraphic 

similarities, it appears reasonable to assume that the 

highlY folded argillite and quartzite sequences of the 

Glide Mountain plate of Nilsen (1977) in Starhope Canyon 

and on the west ridqe of Muldoon Canyon are 
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stratigraphically correlative with the upper part of the 

Muldoon Canvon Formation of Paull and others (1972) found 

on the east ridge of Muldoon Canyon. Wolbrink (1970) and 

Schramm (1978) have also suqqested that the highly folded 

upper thrust plate on the west ridge of 

contained the Muldoon Canvon Formation 

others (1972). 

Muldoon Canyon 

of Paull and 

The nomenclature of nover (1990, 1981) concerning 

the allochthonous plates of the Copper Basin Formation 

appears to incorporate the most reasonable structural 

interpretation and therefore will be adopted in the 

remainder of this report. The Copper Basin plate will 

refer to the lower thrust Plate of the Copper Basin 

Formation (equivalent to the scorpion subplate of Nilsen, 

1977) and the Glide Mountain Pl~te will refer to the 

upper thrust plate of the Copper Basin Formation 

(equivalent to the Brockle subplate and Glide Mountain 

plate of Nilsen, 1977). Dover's (1980, 1981) 

interpretations have been Incorporated into the 

construction of Plate ~. the ,Geologic Map of the study 

area, and Plate R, the Geoloq1c Cross•&ections through 

the study area. However, the stratigraphic units of 

Paull and others (1972) and Paull and Gruber (1977) 

within the Glide Mountain plate (including the Brockie 

subplate of Nilsen, 1977) and the Copper Basin plate of 
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the Copper B~sin Formation have been retained as a means 

ot documenting matroscopic structure within the study 

area. 

8•*•2 Hlgh·~n~le Faults 

High•angle faults with small to moderate 

displacements occur throuqhout the study area. The 

amount of displacement is often difficult to determine 

due to the la~k of significant marker beds within the 

Copper Basin Formation. At one locality on the east 

ridge of Muldoon Canyon south of Green Lake, several 

east•west trending vertical to normal faults with 

displacements ranging from 2 to 20 meters can be 

reco1nized by offsets at the abrupt stratiqraphic contact 

between the upper part of the Muldoon Canyon Formation 

and the overlying Brockie Lake Conglomerate of Paull and 

others (1972). The Glide Mountain thrust is cut by a 

younger east-west trendinq vertical fault just north of 

Starhope Gulch. on its north side this vertical fault 

displaces the thrust surface such that ls ls covered by 

unconsolidated slope deposits. Consequently the amount 

of displacement is indeterminable at this locality. 

Slickensides are developed along many of the 

h1gh•anqle faults and indicate a variety of 

displacements, including d1p•sliP, str1ke•sl1p, and 
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oblique-slip. Dip-slip faults (normal to vertical) are 

the most common and were recoqnlzed in both the Glide 

Mountain and Copper Basin plates of Dover (1980, 1981). 

Reverse d1p•s11p faults, stri~e-sl1p faults, and 

Oblique-slip faults were observed in the Glide Mountain 

plate of Dover (1980, 1981), and also in the Copper Basin 

plate of Dover (1980, 1981) in close vertical proximity 

to the Glide Mountain thrust. Thin zones of breccia, 

~ouge, and silicic mineralization commonly occur locallY 

within these fault zones and often obscure slickensides 

and determination of displacement directions. Drag 

features are only locallv developed and, where present, 

~enerallY die out within a few meters of these hlgh•anqle 

faults. Because these faults are difficult to recognize 

and their displacement ts difficult to estimate not 

enou~h data was gathered for a comprehensive structural 

analysis. However, the following general relationships 

were observed: 

1. Most of the normal and vertical dip-slip 
faults recognized within the study area range 

0 0 
in stri~e orientation from N65 E to N90 E. 
Another, minor set was recognized, however, 

0 
wh1oh ranged in orientation from N30 w to 
N30 E. 

2. Reverse dip-slip faults generally range in 
0 0 

orientation from N10 E to N30 w. 
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3. Stri~e-slip faults and oblique faults 
0 

qenaral1Y range 1n orientation from NSO E to 
N90 E. 

Exact age relat1onsh1os for these various high-angle 

faults are difficult to dPtermine due to (1) the lack of 

a complete Mesozoic stratigraphic record, and (2) 

difficulties in tracing these faults in the field. 

several of the normal to vertical dip-slip faults were 

observed to cut the G11rle Mountain thrust, and are 

therefore post-thrusting !n aoe. Many of the normal to 

vertical faults also cut Challis Volcanics, and are 

therefore post-Challis in aoe. However, it was 

impossible to determine whether any of the pre•Challis 

normal faults are post•thrustino in age. No faults were 

observed to displace Quaternary deposits in the study 

area. Because the reverse dip slip faults generallY 
0 0 

parallel the major structural fabric (NlO W•N20 W), it Is 

herein suggested that thev mav represent splays off of 

the Glide Mountain thrust or associated break thrusts 

Which developed durinq F foldinq. 
1 

The orientation of the stri~e-sllp faults and the 

obl1que•sl1p faults (approximatelY perpendicular to fold 

axes and parall~l· to the direction of thrusting) suggests 

that these may be tear faults related to thrusting of the 

Glide Mountain plate of Dover (1980, 1981). However, one 
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stri~e-sl1P tault on the northern end of the ridge 

between Starhope and Mul~oon canyons cuts an Eocene 

quartz monzonite intrusive body and therefore has at 

least some motion that post-dates thrusting. This fault 
0 

striKes N6 ~, which is approximately perpendicular to the 

direction of tectonic transport during thrusting and is 

therefore not related to the m~jor thrusting episode. 

This suggests that some, probably minor, tectonic 

adjustment within the study area is post-intrusive in 

The only high-angle faults which are mapped are 

those that were recognized as having considerable amounts 

of displacement. In all cases these are normal to 

vertical dip-slip faults. The Glide Mountain Plate of 

Dover (1980, 1981) locally contains numerous high angle 

faults of apparentlY small displacement. These faults 

are so small· and closely spaced that it is impractical to 

map them at the scale of 1:24,000. 

8.5 Tension Ga•hes 

Tension gashes such as thosP illustrated in Figure 

8•14 are ubiquitous throuqhout the Starhope Canyon• 

Muldoon Canyon area in both thP Glide Mountain plate 

(including the Brockie subplate of Nilsen, 1977) and the 

Copper Basin plate of the Copper Basin Formation. In the 
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Ftqure 8•14t 
Typical set of tension qashes 

in the Copper Basin Pormation (Glide 
Mountain plate) on the edst ridqe of 

Muldoon Canyon. 
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Green Lake Limestone Member and Drummond Mine Limestone 

of Paull and others (1972) tension ~ashes are composed of 

calcite: whereas in the araillites, quartzites and 

conglomerates, they consist of quartz. Tension gashes 

vary in both length c.s to 2 meters) and width CS mm to 5 

em>. 

Some tension gashes are post-deformational joint-

fillings (veins> of quartz and calcite, but the following 

evidence sug~ests that at least some of the tension 

gashes were formed during the F folding and thrusting 
1 

episode: 

1. Tension gashes increase in abundance markedly 
toward the Glide Mountain thrust zone, and 
occur most frequently In the thrust breccia. 

2. Many tension gashes !n the 
plate (including the BrocKie 
Nilsen, 1977) are folded by 

Glide Mountain 
subplate of 
F folds and 

1 
therefore must be at 
the folding. 

least sl1qhtly older than 

Stereonet analysis of the orientation of all tension 

gashes showed a random orientation within the Starhope 

Canyon-~uldoon Canyon area. This is undoubtedly due to 

the fact that there were several episodes of 

mineralization of open fractures, such as tension gashes, 

post-deformational joints and th~ like, and, unless these 

mineralized fractures can somehow be separated 
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temporally, their d1strtbut1on in space Is relatively 

meaningless. 

9.6 J~1ntin~ 

Jointing is ubiquitous throughout the study area in 

both the Glide Mountain olate (including the Brockle 

subplate of ~ilsen, 1977) and Copper Basin plate of the 

:opper Basin Formation. Jointing is especially well 

developed in the most comoetent units within the Copper 

Basin Formation (The Scorpion ~ountaln Formation and 

Brockie Lake C~nglomerate of Paull and others, 1972). 

Figure 8•15 shows a tyoical outcrop of the Scorpion 

~ountain Formation of Paull and others (1972), 

illustrating its highlY jointed character. 

An equal-area plot of poles to joint surfaces within 

both thrust plates of the Copper Basin Formation is shown 

in Figure 8•16. This plot was originally subdiVided into 

two separate plots, one for each thrust plate (the Glide 

~ountain plate, including the Brnc~ie subplate of Nilsen, 

1977, and the Copper Basin olate, both of Dover, 1980, 

1981). However, because no important differences in 

orientations of joints 1n the two Plates were found in 

the two plots, they are presented in Figure 8•16 as a 

composite plot of poles to 169 joint planes measured 

throughout the study area. As can be seen 1n Figure 
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rtoure 8•15: 
Typical outcrop of the Scorpion 

Mountain formation ot PaUll and others (1972) 
ln upper Muldoon Canyon illustrating its 
highly jointed character. Note offsets 

along 1o1nt sets. 
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F1;ure 8•16i 
Equal area plot of poles 

to joint surfaces w1th1n both the Glide 
Mountain and Copper Basin thrust plates 
of the Copper Basin Formation: n=169: 

0 0 
max.=12 528 E: contours=2,4,6 ••• 12. 
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8-16, the joint system in the Starhope Canyon-Muldoon 

Canyon area contains thre~ major sets of joints, all 

preferentially oriented at high angles to the horizontal. 

The dominant hlqh-angle 1oint set, represented by a 
0 0 

maximum concentration of ooles at 12 528 E is oriented 

a~proximately perpendicular to fold axes. These are a-c 

joints. ~ second hiqh-~nqle joint set (with poles 
0 0 

located at NS E•SS W) lies clasp to this orientation and 

may, in fact, also be part of the a•c joint set. ~ 

subordinate joint set is oriented approximatelY parallel 

to fold axes (radial joints). This subordinate joint set 

is also dominantly oriented at high angles to the 

horizontal, but, as would be expected in a radial joint 

set, the dip of the joint ~lanes vary with their position 

in the fold. 

It is suggested that the joint system within the 

Copper Basin formation form~d after the thrusting 

episode, but before or dur!nq Eocene intrusion of quartz 

monzonite for the followino reasons: 

1. No joint planes within the present study area 
were recognized to he fol~ed. If the joints 
had formed before the r folding and thrusting 

1 
episode, one would expect to encounter folded 
joints. 

2. Metaso~atic alterations and small intrusions 
occur along joint surfaces in the vicinitY of 
Eocene quartz monzontte Intrusive bodies. 
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Minor offsets alonq 1o1nt Planes Cup to 5 em) are 

common 1n the massive quartzite and conglomerate beds of 

the Scorpion Mountain Form~t1on of Paull and others 

(1972). These are recoqnizable in Flqure 8•15. 

Northwest-southeast trend!nq Cradial) joints are commonly 

offset along northeast-southwest trending (a•c) joints. 

This direction of displacement is in agreement with the 

direction of thrusting and suggests that some minor 

tectonic adjustments within the study area occurred after 

the main thrusting episode, as a result of a similar, or 

possibly the same stress field. 

8.7 RelationshiP of Eocene Intrusive and Extrusive Events 

to Deformation 

Rhyolite diKes, which are probably associated with 

Eocene quartz monzonite intrusives (Dover, 1980, 1981) 

are present within both thrust plates of the Copper Basin 

Formation within the studv area. They cross-cut F folds 
1 

within the Glide Mountain plate (including the Brockle 

subplate of Nilsen, 1977) and locally they have been 

intruded along the thrust zone. Two general orientations 

of rhyolite dikes are found within the study area. The 
0 0 

dominant orientation is N30 E•N45 E. A subordinate 
0 0 

orientation is N10 W•N20 w, Which parallels the general 

structur~l trend that is express~d by manY of the 
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structural elements of the Copoer Basin Formation. 

Eocene quartz monzonite Intrusive rocks likewise are 

present in both the Glide Mountain plate and Copper Basin 

plate of the C~pper Basin Formation. However, only a few 

outcrops on the northern part of the east ridge of 

Muldoon :anvon show that the Copoer Basin plate has been 

intruded (see Plate A). These tacts suggest that Eocene 

intrusion was 

event. Dovl!r 

a post•thrust1na (and post•F folding) 
1 

(1980, 1QR1) also states that intrusion 

post•dates thrust•taultina throughout this region. 

However, Dover (1981) also rePorted shearing along 

contacts between quartz monzonite intrusives and the 

Copper Basin Formation at the r.lide Mountain thrust zone 

northwest of the present study area. This suggests that 

some, probably minor, tectonic movement alonq the Glide 

Mountain thrust was post-intrusive. This hypothesis is 

supported bV the strike-sliP tault which cuts a quartz 

monzonite intrusive at the north end of the ridge between 

Starhope and ~uldoon Canyons (discussed above). 

Dover (1981) proposed that plutonism in the Pioneer 

Mountains is dominantly post•oroaenic, and is responsible 

for intrusive doming of both thrust plates of the Copper 

B~sin Formation. It may be that minor, post-orogenic 

movement along the Glide ~ountain thrust and within the 

Glide Mountain plate itself are related to this intrusive 
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doming and/or oth~r post-ornaenic tectonic adjustments. 

Intrusive doming may also be Partly or wholly responsible 

for the absence Of the Gre~n Lake Limestone Member and 

Brockie Lake Conglomerate of Paull and others (1972) 

within the Glide Mountain plate west of the east ridge of 

Muldoon Canyon. 

Within the Starhope Canvon-~uldoon Canyon area, 

Eocene Challis Volcanic5 unconformablY overlie only the 

Glide Mountain plate, and not the Copper Basin plate Csee 

Plate A). However, to the northwest of this study area, 

near the junction of Summit Creek and the Biq Lost River, 

Dover (1981) mapped the Challis Volcanics atop the Copper 

Basin plate and the Glide Mountain plat~. The mapping of 

Dover (1980, 1981) and the fact that the Challis 

Volcanics are thought to be s11ohtly older than or coeval 

with Eocene intrusives clearlv shows that ~xtrusion of 

the Challis Volcanics post~ates thrusting. Furthermore, 

within the course of this study, the Smiley Creek 

Conglomerate was mapped atoP bnth the Glide Mountain 

plat~ and Copper Basin Plat~ of the Copper Basin 

formation. Therefore the sm1l~y Cr~~k conglomerate is 

post-thrusting in age; and sine~ the Smiley Cr~ek 

Con~lom~rate is older than the Challis Volcanics, the 

Challis Volcanics must also b~ post-thrustinq in age. 

The mapping of DovPr (1q81) establish~s the fact 
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that, regionallY throughout the Pioneer Mountains, the 

:hallis Volcanics have been deposited primarilY atop the 

upper (Glide Mountain) thrust plate of the Copper Basin 

Formation. This occurrence suqgests that pre-Challis 

er~sion did not expose larqe oortions of the Copper Basin 

plate by removal of the overlying Glide Mountain plate. 

Therefore, it is assumed that at least some of the 

deformation, Including r folrttng and intrusive doming, 
? 

Which has locallY upwarpert the Copper Basin plate within 

the study area, is post-Challis in aqe. Also, Dover 

(1981) shows that the outcrops of Challis Volcanics on 

the west ridge of Starhope Canvon and the east ridge of 

Muldoon Canyon are continuous with extensive areas of 

Challis cover to the west and east of the study area. 

The rid~e between Starhope and Muldoon Canyons is devoid 

of Challis Volcanics. Furthermore, the southern end of 

the west ridge of Starhope Canyon, where the Copper Basin 

plate has been upwarped and the overlying Glide Mountain 

plate has been removed hV erosion, is also devoid of 

Challis Volcanics (see Plate A>. However, several 

worKers (WolbrinK, 1970: Dover, 1981) sugqest that the 

Challis Volcanics once covered most, if not all of the 

pr~sent study area. These facts suggest that the entire 

central portion of the studY area may be uplifted by 

intrusive doming and/or some other post-Challis tectonic 
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adjustment. This hypothesized uplift would have resulted 

in extensive removal of both the Challis Volcanics and 

tne upper stratigraphic units of the Glide Mountain plate 

(Green La~e Limestone Member, BrocKie Lake Conglomerate, 

and Iron Bog Creek Formation of Paull and others, 1972) 

within the central part of the study area. This 

hypothesis is compatible with all mapping and structural 

data obtained during the course of the present study. 

8.8 Mlcroacoplc· Structure 

The orientation of optic axes (0001) in quartz was 

determined for several orient~d hand samples of the 

Copper Basin Formation obtalne~ from within the study 

ar~a in order to determine whether or not deformations 

~!thin the area had been oenetrative on a microscopic 

sca1e. Samples of quartzite from various units within 

the Copper Basin Formation, a sample of arq1llite from 

the Glide Mountain plate, and a sample of the Glide 

~ountain thrust breccia, were all analyzed tor quartz 

fabrics using the techniques described in Turner and 

Weiss (1963). In all cases, Plots of quartz oPtic axes 

from 300 grains showed a random distribution, indicating 

that deformations of the Copper Basin Formation in the 

Star hope 

to the 

Canyon-Muldoon Canyon area were not penetrative 

microscopic scale. The lack of a strongly 
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developed 

study area 

cleavage in the Copper Basin Formation in the 

1s comp8tibl~ with the results of this 

analysis. However, it should be noted that m1crofabr1cs 

in the C8rbonate units within the Copper Basin Formation 

(Green Lake Limestone Memher and Drummond Mine Limestone 

of Paull and others, 1972) w~re not measured and the 

presence or absence of pPn~trstive deformation in these 

units has not been determined. 
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9. au••ary of• Daforaat1on 

The D and D notations, Which correspond to two 
1 2 

different deformational periods, have not been 

established within the cours~ of this study due to the 

fact that F and F fol~inq within the Copper Basin 
1 2 

0 0 
Formation display the same axial trend (N10 W•N20 W) and 

may be the result of a stress continuum, and not 

necessarilY two different tP.cton1c pulses. 

Field relationships support the interpretation that 

F folding Con small and intermediate scales), which is 
1 

characteristic of the r.lide Mountain Plate, developed 

concurrently with the thrustinq of the Glide Mountain 

plate. This is based on the following observations: 

1. The same style of fold1n9 and structural 
discordance which is characteristic of the 
Glide ~ountain plate 1s locallY developed 
beneath the Glide Mountain thrust in the 
Copper Basin plate. 

2. Some sheared zones within the Glide ~ountain 
plate, which repres~nt break thrusts an~/or 
splays off of the main thrust zone at the base 
of the plate, are fol~ed, whereas others 
cross-cut folds. ThP.se structural relations 
suggest that, although some foldinq of the 
Glide Mountain plate may have occurred before 
thrusting of the plate, at least some (and 
possibly most) of the fold1n9 within the Glide 
Mountain plate occurred concurrently with 
thrusting. 

Althouqh tectonic transport of the Glide Mountain 
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Plate was principally accomodat~d along one major thrust 

zone (Glide Mountain thrust), displacements in the a 
0 0 

kinematic direction (N7o E•N90 E: perpendicular to fold 

axes) also occurred along splays off of the main thrust 

ahd/or along break thrusts. strike-slip faults, which 

are interpreted to be tear faults due to their preferred 

orientation in the kinematic direction, also 

accomodated movement of the G11~e Mountain plate. 

Dover (1980) reported a tectonic shortening of 

approximately fifty percent within the Glide Mountain 

Plate. This shorten!na was accomplished by the 

development of ~ervasive F folding and a generally 
1 

weakly developed spaced fracture cleavage. F fold axes 
1 

0 0 
define the b kinematic direction (N10 W•N20 W). 

Petrofabric analysis performed during the course of this 

study has established that tectonic shortening of the 

Glide Mountain plat~ (and th~ Copper Basin plate) was not 

penetrative on a microscopic scele (at least not within 

the quartzites and araillites of the Copper Basin 

Formation). 

Effects of the thrusting of the Glide Mountain plate 

were Imparted to the Copper Ras1n plate Immediately 

beneath the Glide Mountain thrust zone. These effects 

include the development of: (1) F folds displaying the 
1 
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same fold styles as F folds in the overlYing Glide 
1 

Mountain plate, (2) sheare~ zones, (3) chaotic cleavage 

and fracturing, (4) mlcro•taults, (5) Slickensides, (6) 

tension gashes, and (7) disruoted bedding. It is also 

possible that the moderate, sp~ced fracture cleavage and 

intrafolial folds within the Drummond Mine Limestone of 

Paull and others (1972) were formed and rotated during 

overthrusting of the Glide Mountain plate. 

The Glide Mountain Plate and Copper Basin Plate of 

the Copper Basin Formation display radicallY different 

structural styles. The Glide ~ountain plate (with the 

exception of the Brockie Lake Conglomerate of Paull and 

others, 1972) is highly folded hY pervasive small and 

intermediate scale F folds with associated weakly 
1 

developed spaced fracture cle~vage and sheared zones. 

B~th the Glide Mountain plate and Copper Basin Plate are 

regionally folded by gentle to open F folds, but the 
2 

:opper Basin plate generally lacks the pervasive F 
1 

folds. This structural contrast is one of the most 

useful ~eans by which the r.llde ~ountain plate and Copper 

Basin Plate of the Copper Basin Formation can be 

dist1nqu1shed; although recoqnitton of the Glide Mountain 

thrust zone seperatinq the two plates is still the best 

method by which to differentiate them. 

Gentle to open folds on a regional scale within the 

136 



Copper Basin Formation 8re 8SSigned an F notation. 
2 

B·ecause the Glide Mountain thrust zone Is folded 1n an 

r •style 
2 

folding 

fold, it is apparent that at least some of this 

occurred as a post-thrustinq deformation. 

However, this does not necessarily mean that F folding 
2 

is· entirely post•thrustincr tn aoe. Some F folding may 
2 

have occurred as pre-thrusting or concurrent with 

thrusting, but these possibilities are indeterminable 

given the existing field relationships within the study 

area. 

High•angle normal to vertlc~l dlp•sllp faults cut 

through the Glide Mountain thrust zone in some localities 

and the Chall'ls Volcanics in other localities. It is 

apparent that at least some of these faults are not only 

post•thrust, but also post-Chall's in age: but whether or 

not some of these faults •ere post-thrust, pre-Challis 

displacements can not be determined within the study 

area. Therefore, it is assumed that all high-angle 

normal to vertical dlp•slio faults within the study area 

are post-thrust, and most probablY post-Challis in age. 

Well developed joint sets were observed in both the 

Glide Mountain plate and the Copper Basin plate of the 

Copper B~sin Formation. This 1o1nt system is post-thrust 

but pre-intrusive in its development. Minor offsets 

along joints are developed along the a kinematic 
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direction, su;gesting that these post-jointing tectonic 

adjustments within the study ~rea may have developed 

under the same stress field that produced F and F 
1 2 

folding, or a later stress field With very similar 

kinematic axes. Offsets alonq joints may also have been 

produced by later movements related to intrusive doming 

of the study area. 

One strike-slip tault within the study area was 

observed to cut an Eocene auartz monzonite intrusive 

body, suggesting that some, minor tectonic adjustment 

within the study area was post-intrusive. This fault is 

oriented approximately perpendicular to the direction of 

tectonic transport related to folding and thrusting, and 

is therefore unlikely to he related to the dominant 

regional structural fabric. 

Based on regional considerations throughout the 

Pioneer Mountains, Dover Ct9AO) has demonstrated that all 

datable thrusts (includin~ the Glide Mountain thrust) are 

post-Middle Permian to pre-Eocene in age. No data 

obtained, or structural relations observed, within the 

course of the present study can modify or improve this 

dating. The lack: of a definitive Mesozoic stratigraphic 

record prevents more prP.c1se dating. If thrusting 

occurred during the late Paleozoic to Early Mesozoic, a 

single, long-lived stress field exemplified by F and r 
1 2 

t3A 



folding and minor offSets along joint sets, may have 

dominated this region for a considerable span of geologic 

time. It is equally possible that the different 

deformational events outlined above develoPed 

different (albeit similar in orientation) stress 

which resulted from different tectonic pulses. 

under 

fields 

If 

thrusting occurred at a perio~ of geoloqic time Closer to 

the Cenozoic, the various deformational events outlined 

aoove may have occurred in steady succession as a result 

of a single or several closely rP.lated tectonic pulse(s). 
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10. cone1ua1on1 

(1) the structural ~odel of Dover (1980, 1981), 

which suggests that the Copper Basin Formation is 

contained within two allochthonous plates, best fits the 

mapping and structural data obtained during the course of 

this study in the Starhopp canvon·~uldoon Canyon area. 

The upper Glide Mountain olate Cincludinq the Brockle 

subplate of Nilsen, 1977) has tpctonically overridden the 

Copper Basin plate (equivalent to the Scorpion subplate 

ot Nilsen, 1977). 

(2) The Glide Mountain plate of the Copper Basin 

formation is much more hiqhlV deformed bY folding and 

thrusting than the Copper Aastn plate of the Copper Basin 

formation. Throughout the r.ttde Mountain plate, tiqht 

folding is developed on intermediate and small scales, 

and shearing occurs along break thrusts and/or splays off 

of the main thrust zone at the base of the plate (Glide 

~ountain thrust). The Copper Basin plate is onlY tightly 

folded and sheared directlv beneath the Glide Mountain 

thrust zone. 

(3) The Glide Mountain thrust is marked by a zone of 

intense shearing and cataclasis Which is extremely thick 

(thirty meters in one locality). Deformation within this 

zone has produced a chaotic fault breccia which locallY 

displays iron•staininq, bleaching, s111c1c 
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mineralization, and chaotic fracturing. 

(4) The thrust at the base of the Copper Rasin plate 

is not exposed within the Starhope Canyon-Muldoon Canyon 

area. Thrusting of the Copoer Basin Plate apparently 

produced very few deformational effects within the plate. 

(5) r folding resulted in (a) intricate folding of 
1 

the Glide ~ountain plate of the Copper Basin Formation on 

small and intermediate sc~les, (h) intricate folding of 

the less competent strata of the Copper Basin plate 

immediately below the Glide 4ountain thrust, and probablY 

(c) the development of intrafolial folds within the 

Drummond Mine Limestone of Paull and others (1972) within 

the :opper Basin Plate. 

(6) Some r foldfnq mav have occurred before 
l 

thrusting of the Glide Mountain olate, but much of this 

F folding occurred concurrently with the thrusting. 
1 

(7) WeaklY to moderately developed spaced fracture 

cleavage (S ) within the r.tide ~ountain plate and Copper 
1 

Basin plate of the Copoer Basin formation in the study 

area developed in response to F folding and thrusting. 
1 

(8) Deformations associated with F or F folding or 
1 2 

thrusting within both thrust Plates of the Copper Basin 

Formation did not produce any preferred orientations of 

quartz c•axes Ci.e. these deformations were not 

penetrative to the microscopic scale). 
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(9) F folding result~rl in 9~ntl~ to open r~gional 
2 

folds in both thrust plat~s of the Copper Basin 

Pormation, as well as th~ Glide Mountain thrust zon~ 

s~perating these two plat~s. 

(10) Some P folding may have occurred before or 
2 

during thrusting of the G11~e Mountain plate of the 

:opper Basin Pormation, but much ot this F folding 
2 

occurred after thrusting of the Glide Mountain Plate. 

(11) P fold axes are d~veloped along the same axial 
2 

0 0 
trend as F fol~ axes CN1n W•N2n Wl. 

1 
(12) Some or all F folrls may have be~n the result 

' of a stress continuum associaterl with F folding, and not 
1 

neccessarily a different tectonic pulse. 

(13) The central portion of the study area may be 

-Intrusively domed. This hypothesis is support~d by the 

abs~nce of the :hallls Volcanics and upper stratigraphic 

units within the Glide Mountain plate (Gre~n Lake 

Limestone Member, Brock!~ Lake Conglomerat~, anrl Iron Bog 

:reek Formation of Paull and others, 1972) from the 

central portion of the study area. 

(14) All high-angle normAl to vertical dip-slip 

faults with small to moderate displacements within the 

Starhope Canyon-Muldoon Canyon area are post-thrust, and 

most probably post-Challis in aqe. 
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(15) ~ well develo~ed 1oint system is present in 

both thrust plates of the CopPer Basin Formation in the 

Starhope Canyon•Muldoon Canyon area. This joint system 

is composed of three joint sets: a dominant set of a·c 

joints, another hiqh•angle 1oint set which may be part of 

the a•c joint set, and a subordinate set of radial 

joints. 

(16) The joint system in the Copper Basin Formation 

was post-thrusting and pre-intrusive in its development. 

(17) Eocene Challis Volcanics and Eocene quartz 

monzonite intrusive bodies were both emplaced after 

thrusting of the Glide Mountain olate of the Copper Basin 

Formation. 

(19) Some minor tectonic adjustments within the 

Copper Basin Formation are oost•thrusting, post•jointing 

in age, as indicated by mjnor diSPlacements along joints 

in the Copper Basin Formation. Thes~ displacements are 
0 

developed in the a kinP.m~tic direction (N75 E) of the 

regional structural fabric and may have developed under 

the same stress system that oroduced F and F folds. 
1 2 

(19) Some minor tectonic adjustments within the 

rocks of the Starhope Canvon-~uldoon Canyon area are 

post-intrusive in age, as indicated by one strike-slip 

fault through a quartz monzonite intrusive body. This 

displacement is oriented approximately perpendicular to 
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the a kinematic direction an~ is 

dominant re~1onal· structural fabric. 

not related to the 

This diSPlacement 

may have been produced by intrusive doming or some other 

post•thrustlnq tectonic a~1ustment. 
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