Recognition of three-dimensional objects from two-dimension line drawings.

Linda Kay Ludwigs

Follow this and additional works at: http:// preserve.lehigh.edu/etd
Part of the Computer Sciences Commons

Recommended Citation

Ludwigs, Linda Kay, "Recognition of three-dimensional objects from two-dimension line drawings." (1983). Theses and Dissertations. Paper 2459.

RECOGNITION OF THREE-DIMENSIONAL OBJECTS

 FROM TWO-DIMENSION LINE DRAWINGSby
Linda Kay Ludwigs

A Thesis
Presented to the Graduate Committee of Lehigh University in Candidacy for the Degree of Master of Science in Computing Science

Lehigh University 1983

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest EP76736
Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

This thesis is accepted and approved in partial tuiflliment of the requirements for the degree of Master of Science.

Professor in Charge

Table of Contents

Abstract 1

1. Introduction 2
2. Scene Analysis: What is it? 4
3. Partitioning the scene into Bodies and 8 Descriptions
3.1 Partitioning 8
3.2 Initial Work with Picture Lahelifng 9
3.3 Labelling Methods 12
3.4 Quantitative Approach: Dual and Gradient Space 21
3.5 Sidedness Reasoning 33
3.6 finear Algebra for Realizabllity 36
3.7 Sumnary of Partitioning 40
4. Recognition of Objects in a Scene 42
4.1 Elements of Pattern Reconnition 42
4.2 Extending the Descriptinns of Dojects 43
4.3 Decision-Theoretic Aporoach to Recognition 47
4.4 The Syntactic or Structural Approach 53
4.5 Attributed Grammars 60
4.6 RECOGNIZE: An Attributed frammar 65
4.7 Conclusion: Recognition 73
5. Conclusion 74
References 76
vita 79

List of Fiqures

Figure 1-1: Roberts Morels $\left.{ }^{\circ} 1\right\}$ 3
Figure 2-1: Scene Inderstandina System [11] 4
Figure 2-2: Line Drawinas: Qualitatively Equal 6Figure 2-3: Different Shade - Same Line Drawing 66[16]
Figure 3-1:Guzman's Possinle Vertices [10]10
Figure 3-2: Guzman's Links [10]: 'ARROW" 11
Figure 3-3: Is it an inset corner or a cube ? 12
Figure 3-4: Huffman-Clowes Labeliling [17] 13
Figure 3-5: Non-labelable Drawing [21] 14
Figure 3-6: Vertex Labels: Hiffman-Cloves [26] 15
Figure 3-7 Edges with Clowes fabelling 18
Figure 3-8: Junction Not Allower in Trihedral 20
Norld
Figure 3-9: Picture Takina orocess [18] 23
Figure 3-10: Projection: Dual to Grarient Space 24
Figure 3-11: Gradient Soace niagram 26
Figure 3-12: Organization of poLy [18] 26
Figure 3-13: Connect examole 27
Figure 3-14: Gradient Diaaram Construction 29
Figure 3-15: Convex - Concave Tabellings 30
Figure 3-16: Siderness felations [5] 35
Figure 3-17: Concurrent Cyclie Set of Four 36
Figure 3-18: Eues for Alaebraic Analysis [?2] 39
Figure 4-1: Skewed Symmetry 45
Figure 4-2: Trapezold and Rectangle possible 45
Figure 4-3: Decision-Theoretic Model [7] 47
Figure 4-4: Syntactic Recoanition System [7] 54
Figure 4-5: Pascal Tree 55
Figure 4-6:
Tree Representation of a Simple Scene 55
Figure 4-7:
Relational Tree 58
Figure PDL Operations [8] 59
Figure 4-9: Strings in PDP [6] 59
Figure 4-10: Scene [2] 63
Figure 4-11: Attributed Grammar Graph [2] 63
Figure 4-12: Using Attribited firammars [24] 64
Figure 4-13: Blocked object.s 66
Figure 4-14: Accepted Viens of Polyhedra 70
Figure 4-15: Scene Used for ReCOGNIZE 71

List of Tables

Table 3-1: Clowes Predicate Tahle Entry [3] 16
rable 3-2: u abeliing schemes [i5] 41
Table $4=18$ Training Table for K Supervised Ciasses 52
Tsble 4-2: Input Data from Partitioning 72
Table 4-38 Results of RECOGNTZE on figure 4-14 72
Abstract
The development of scene analysis with respect to interpretation of two-dimensional projections of threedimensional scenes is reviewed. Advantages and inadequacies of line labellina techniques are illustrated through exanples. The use of aradient space to test the validity of labelifings is discussed. Linear algebra and sidedness reasoning are introduced as accurate and understandable approaches to oartitioning. The results of partitioning are used in various ways to identify the oojects whose inages are in the plcture under analysis. Some of these ways are presented. The development of a siall attributed grammar demonstrates an alqorithm for identification of three-dimensional objects.

1. Introduction

As automation and robotics become ever expanding fields, it becomes increasingly necessary to develop a system by which a computer can interpret the picture it sees of a threencimensional scene. Computers must be capable of visual processina. For a robot to carry out an order like "pick up the cuben, it must be able to recognize the cube from the world it sees with its electronic eye. Its world is built from many parts and that fact becomes a useful tool in interpreting the scene. The initial goal of scene analysis is to identify the parts of the scene. using those parts the process advances to the ultimate aoal of naming those objects in the scene on the basis of fescriptions and known constraints. This paper reals with vork done on line drawings representing three-rimensional polyhedral scenes.

The original work in scene analysis was done solely oy model recognition. There was no analysis of the various parts of the scene in context with each other. It was simply done by attemoting to locate qiven shapes in a scene. L.G. Roberts, who began his work in 1963, is thought to have been the first pioneer in the area of scene analysis. Roberts took as the basis for his analysis three polyhedral models shown in fiqure $1-1$. He
attempted to interpret nolyhedral scenes as transformations and/or comoositions of his three models [1]. Later studies pointer out that this technique falled on some basic polvhedra. It was much too restrictive in what it could find in a scene. The need for a more general system led to advancement in the field of scene analysis as it is known today.

Figure 1-1: Roberts' Models [1]

2. Scene Analysis: What is it?

A scene can be considered to be an arrangement of things in three-dimensional soace. The analysis of a scene by computer involves analysis of the twodimensional image it projects. Analysis of that image involves the interaction of the input from the image itself and the knowledge associated with the visual world or space [10]. The polyhetral world provides a clear domain to study. There is a clear set of constraints to which the parts of the scene must conform. These constraints define how barts may interact, and lead to the ability to systematically recover shapes.

Figure 2-1: Scene Understanding System [11]

It is necessary to process the input picture of the scene. This processing beqins with transforming the picture into a line drawing. The transformation is a complicated process based on things like liqht intensity
and tone changes. This processing, though necessary, is not discussed in this paper. nnce the line drawing is obtained the partitionina and recognition from that line drawing can be dealt with.

The process of scene analusis from line drawings began as the matching of morel oatterns and nothing else. These simple schemes were inadeduate, and the process is now more complex. It basically involves two parts. The first part is the partitioning of the scene into objects or what Guznan calls bodies. The second part involves the analysis of those bodies by some means so as to arrive at an actual classification of them by name [19]. The concern here is to find proderties which are of value to look at and compare. Kanade noints out that there are two basic levels of analysis involved in these two steps. The first level is the qualttative analysis which deals with labelifing junctions and lines to recover possible geonetric shapes. The second level involves quantitative analysis which expands on the qualitative description. Here assumptions including acridental aliqnment and picture regularities are exploited to recover probable shapes [16].

The actual process by which a scene is partitioned requires the establishment of descriotions of the primitives of the scene leadina to construction of a

Figure 2-2: Line Drawings: Qualitatively Equal [16]

description of the scene as a whole. The primitives talked about here are the functions, edges, and regions. These are labelled with qualifiers which must be consistent with the constraints of the given environment. From these primitives a description of the scene can be
constructed. This description is then used to establish the number of objects in the scene, the spacial relationships between obfects, and any relevant properties of those objects 〔261.

The process of identityina the objects in the scene by name is accomplished by matching properties of those oojects in the scene to orooerties of objects in the world of knowledge. It places a great demand on the shape analysis algorithms. Decisions concerning which nethod is most accurate and least time consuming must be nade. The methods of recoqnition can be classified in three general: cateqories: masking, decision-theoretic natching, and syntactic pattern matching. The variations in the methods above deal with what kinds of thinas should be matched, how to to about natching them, and how exact the match must be. In all methods the decision as to what should be matched for recognition is vitally inportant.

3. Partitioning the Scene into Bodies and Descriptions

3.1 Partitioning

The recognition process for planesurfaced threedimensional objects involves the partitioning of a scene for identification by analyzing local and global information from the line draming determined from the inage of the three-dimensional objects. There are four basic steps.

```
1. Determining the characteristics of the primitives of the line drawing (i.e. junctions, lines).
```

2. Determining the reaions formed by these
primitives in the picture. (Regions are the
two-dimensional bounded areas in a ilne
drawing.)
3. Combining regions to form possible bodies. The bodies correspond to objects in the scene and regions to their surfaces.
4. Providing descriptions of the various possible bodies in terms of properties and relationsinos involving the reaions and the primitives.

Because these are the steps involver in partitioning the scene for identification, the goal of work in scene analysis has been and is to accomplish and refine the use of these steps. Partitioninas are not always unlque but are basef on certain heuristics to achieve the "most 11kely" analysis.

3.2 Initial. Work with Picture Labelilng

Guznan [10], in his PhD thesis in 1968, began work along these lines. His was the first work which pertained to using the characteristics of the image to describe it. Specifically, the classification of vertices shown in figure $3-1$ was used. He used this classification, and the knowledae that the world under consideration consisted of polytedra, to partition the scene into bodies. His goal was to find relationships between regions and use them to group reqions into sets which might represent the imaces of actual objects.

Guznan accomplished this task by use of a proaram called SEE [10]. SEE Derformed a tree search creating links between regions thought to have good associations. These associations were basen on a variety of heuristics concerning the function tvoes [i7]. Links resulting from the heuristics could be strona or weak. Links may also be inhibited or prohibiter hy evidence found which suggests tio regions should not be part of the same bory, see flgure 3-2. Once links were established regions satisfying the necessary conditions were put together to form nuclei. The process of meraing was continued until there were no more regions which could be merged under the given set of rules. In this way SEE could partition a scene in a way similar to the way in which a human

- L^{\prime}

${ }^{-}{ }^{\prime}$

- FORK ${ }^{\circ}$

- ARROW ${ }^{\circ}$

Figure 3-1: Guzman's Possible Vertices [10]
looking at the line drawing would.
In determining a possible partitioning of a scene Guznan's SEEfails in some asopcts of achieving the final goal of partitioning. SEE Hoes not consider all the constraints and characteristics of the polynedral environment. SEE looks at links between regions based

Figure 3-2: Guzman's Links [10]: ${ }^{\text {ARROW. }}$
only on the shape at the vertices. Because Guzman does not extend this to consider now two surtaces the sides of the object in the three-timensional scene) may connect, SEE 15 unable to recover the actual three-dinensional shape. When considering the steps in partitioning where Guzman fails is in the fact that SF.e. does not produce the necessary descriptions for indentification. Figure $\mathbf{3 - 3}$ shows SEE's result. It only shows that there is one body not anything more conclusive gbout that body.

Figure 3-3: Is it an inset corner or a cube ?

3.3 Labelling Methods

The desire to use to a fuller extent what is known about the trinedral world led David Huffman of MIT and Yax Clowes of the University of Sussex to elaborate on Guzman's classification of functions. They dealt with labelifng lines, categorizina functions, considerina occluded faces and consistency in labelifing. Their method of labelifing provided a clear definition of the object world. This provided a systematic approach to What was known and allowet them to use some clear neuristics. They compiled a function dictionary and established an efflcient labelifing procedure which used filtering. Huffman presented the labelling scheme but fid not rite an actual nroaram. Clowes developed an algorithm and program for the scheme.

The line labeliling scheme is based on knowing now vertices may appear in a line drawing of, in this case, a
trinedral world. Lines must he labelled in one of the following four ways: +(convex) or -(concave) for connect edges, and --> or <-- for occluding edges. The arrow in the last two labels is directer so that if you face in the direction of the arrow, the face to the right is visible and the tace to the left is not visible in the picture.

Figure 3-4: Huffman-Clowes Labeling [17]

A figure can only be a protection of an object in the trihedral world and thus realizable li all its vertices can be labelled consistently from the set of sixteen allowable corner labels shown in figure 3-6. A figure is labelled consistently only if every vertex is labelled and every line has only one label such that the line is not ambiguously defined [26]. The demand that the line labelling be consistent implies that only certain kinds of corners are allowed to he adjacent to one mother. For example vertex 3 cannot be adjacent to
vertex 7 because there are no lines comina into either corner that have matching labels. One way to achieve a consistent labelling is shown bu Waltz. He sugqests that the labelifng be done using a Dairwise tree search. He compared labels of adjacent vertices and eliminated any anich contain the kind of inconsistency shown in the previous example. Waltz $[26]$ repeated this pairwise search until no more labels collid be eliminated. A case where no consistent labelling for all lines can be found is shown in figure 3-5.

Figure 3-5: Non-labelable Drawina [21]

Clowes [3] realized that it is important to adopt a notation in milch corners are tescribed by more than their ciass membership. He described them in such a way so as to specify the corners in terms of surfaces and edges at the corner and their relationships. A given picture fragnent may corresoond to a variety of scene

Figure 3-6: Vertex Labels: Huffman-Clowes [26]
fragments (see figure 3-3) and thus labeling is not always uni que. こlowes was sure to consider all possible scene fragments for the various corners when he set up a predicate table. The table includes information about the scene fragments. A vi predicate refers to a convex edge. The cu predicate refers to a concave edge. A hind predicate refers to the fact that an edge at the corner is hidden by those which are visible. Clowes then used
this table to describe a method of scene analysis based on the labelifng process.

vx: convex
cv: concave

Table 3-1: Clowes Predicate Table Entry [3]

The partitioning method described by Clowes [3] Involves finding a labelling which is compatible with respect to all its parts. Clowes does this by beginning at the function level and hullding up from there by grouping parts under certaln rules to form possible larjer pieces. The first step is to look at the picture and consider the junctions alonn with Clowes predicate table (see table $3-1$). This information is used to assign to each junction a set of descriptions called scene fragnents in the table. The descriptions describe the surfaces and lines at the corners: see fiqure 3-7. The figure in $3-7 I$ can be thought to represent the edqe of 3 box where B, C and D are visible sides and A is the table or backround. In this interpretation surfaces B
and C are considered to be oart of corner 2 because they are two of the three surfaces which form the corner of the box. Surface A is not part of corner 2 . B and C are also visible surfaces while there is another surface which is part of corner 2. E, that is not visible. It is also possible that a function may not even represent a corner as in the case of some "T" functions not pletured in this fizure.

After the descriptions have been assigned, pairs of corners are constructed such that the pairs could represent edaes in the scene. The creation of these edjes is based on the fact that for the common line the predicate relations must mat.ch. For example in fiqure 3-7 the following descriptions aoply.

For figure 3-7I:

1. $v \times(B C b) \quad v \times(C D C) \quad v x(D B d)$
2. $v x(B D a) v x(B D d) v x(D E e)$ nind(BAa) nind(DAe)

For figure 3-7II:
3. $v x(B C b) \quad c v(B D A) \quad v \times(C D C)$
4. sane as 2 in figure $3-7 \mathrm{I}$

Line d in 3-7I is acceptable as an edqe because the description containing the A component in both corner 1 and 2 is $v \times(S D d)$, thus the descriptions are compatible.

Line d in $3-7 I I$ is not a possible edge because the label $v x(B D d)$ at 4 says d is convex and the label cu(BDd) at 3 says dis concave.

In a similar way, edge descriptions can be connected "end-to-end" so that they form a closed area to find possible surfaces. If descriptions that form such an area also describe the common region they enclose with a compatible descriptions, the region may be considered to be the surface of an object. The hind predicate is useful in determining when surfaces are partially occluded.

I.

TI.

Figure 3-7: Edges with Clowes Labelling

A body description can be found by connecting adjacent surfaces. The same rules apply as before. The connection must be cyclic this the body is closed and common edges must have compatible descriptions. The
labelling process for a ofcture is complete anen all picture regions are accounter for. Each picture may have nore then one possible labelling based on combinations possible when building from the tunctions.

OBSこENE is the name of a program in which the progression of unions derived by Cloxes is appiled. OBSEENE begins with the corner level description. The unions for building are based on coherence rules between the edges and the surfaces. OBSCENE provided an advancement from SEE but still fid not take into account the viening angle and depth.

The advancements of Huffman and Clowes were inportant contributions to scene analysis. They made effective use of the necessity for consistency in a scene. There are several inadequacies involved in the labelling process and ORSCENE. These inadequacies stem Eron the fact that the lateliling scheme is based on two assumptions: that the world is trinerral and that there is a "general viewpoint" camern dosition [5]. In the trinedral world corners can only have three surfaces, pleture functions must be the intersection of two or three lines and all surfaces are planar such that surfaces which share an edqe are not coplanar. Fiqure 3-8 shows some functions which could not be accounted for by this method.

Figure 3-8: Junction Not Allowed in Trinedral World

Clowes \quad OBSCENE did allow for more than three lines at a function out the other restrictions remained. A "general viexpoint" is necessary to avoid accidental junctions. Huffinan [i3] demonstrated the problem caused by this assumption as it allows unlikely pictures to be labelled in a unique way. He also showed how some unrealizable objects can be consistently labelled. These failings made clear the fact that further work was needed towards a goal of geometric adequacy. Waltz introduced shadows and cracks to the thinas he analyzed. He allowed some non-trihedral vertices and accidental junctions though his nethod could not handle them in general [5]. The method Naltz used is not however discusser here. A
goal to establish still more quantitative basis for partitioning is what prompted further work.

3.4 Quantitative Approach: Dual and Gradient Space

The work in gradient space came as the result of a desire to lift some of the restrictions formeriy placed on scenes for analysis. In association with this work plctures involving straight line segments and scenes made of opaque polyhedra could be considered. Mackworth [5] ereated a program for this world trying to achieve geonetric adequacy. Gradient snace is based on coherence rules between surfaces and edaes mich are determined by the knowledge of gradient soace. Previously the partitioning results had been hased on the categorizing of functions [18]. This method is used to check the labelling from a geometric standpoint. It is helpful to define several terms here for clarity. A plcture is the two-ilmensional representation made up of line seqments and regions. A scene is the actual three-dimensional odject made up of eriges, vertices and surfaces. A connect edge will correspond to concave and convex edges in the previous work. The goal is to fetermine the relationships between the various reqions from a valid jeonetric standpoint.

The basis for this qeometric approach is a set of
properties belonging to aradient space. Gradient space is a two-dinensional profection of dual space. It is important to note some of the characteristics of dual space. The representation of aigure in conventional space by a $\mathfrak{E l}$ gure in dual soace is such that points map into planes, lines into lines, and planes into points. The origin is to be the viewina doint, and planes through the origin are not considered. The equation of any plane not through the origin can be written as

```
ax + by + cz + 1 = 0
```

The plane is mapped into the dual point (a, b, c). Since points map into planes and connecting lines of two planes must pass through the points which represent the planes connected by that line, a corner made of n surfaces is represented in dual space bv a olanar n-gon. The mafor concern here deals with the profection of a threedinensional body into a two-dimensional picture. This inage can be considered in terms of a vieving position and the picture olane ri8) (see flqure 3-9). Any edqe, its projection, and the viewing point must ile In the same plane called the plane of interdretation.

Gradient space then is a two-dimensional projection of dual space. A dual Doint (a,b,c) corresponis to the gradient point (i/c,b/c). The ilne $a=0, b=0$ is taken to

Figure 3-9: Picture Taking Process [18]
e the viewing axis. planes with c=0 correspond to planes parallel to the viewing axis and are not represented in frailent space. See figure 3-10. The projection is made With the center of the profection at 0 , the origin of the dual space, and ($0,0,1$) the oriain of the aradient plane. Note that in figure $3-10$, $-c$ is the distance from point I to the $x=y$ plane of the dual space. since parallel planes have the same a:b:c ratin, they correspond to the sane point. If a point S in the gradient plane is chosen, the length of the vector from O_{G} to that point S is the tangent of the angle between the picture plane and the plane corresponding to S. In the case where the
gradient point is $G=(0,0)$ the tan $(a)=0$ and thus $a=0$ so G represents planes where za-c which are perpendicular to the view line. A gradient point $G i=(p, 0), p>0$, would give $\tan (a)=p$. Thus $0<a<9 n$ and the point $G 1$ would correspond to planes with a dip of between 0 and 90 degrees relative to the picture plane. The larger p, the more slanted the surface being considered [16]. This knowledge may be useful in reverse. Knowing the equation of surface plane and the picture plane allows the calculation of the distance the gradient point representing a surface plane should be from the gradient origin.

Figure 3-10: Projection: Dual to Gradient Space

Along with the points and the planes, the edqes must be considered. The aradient line is simply the projection into the gradient space of the dual line. As a result it carries most of the characteristics of dual lines: specifically, the oroderty that says if a ine represents a connect efae, the aradient line must pass through the points which correspond to the surfaces it connects. It may he noted here that the doints will be ordered in the same order as the surfaces on an edqe which is convex and in reverse order on an edge which is concave. The orientation of a gradient line is determined by the picture line since they must be perpendicular. Thus a gradient diagram like the one in figure 3-11 can be obtainer. It has been pointer out that gradient diagrams are not unique, because a aradient flajram nay move or change sizes. It may not however change shape. That is tetermined by the line rrawing [21].

With a background of this theory Mackworth (181 constructed a program which used the conerence rules established in gradient snace. The proaram is called PoLy the outine of which is in figure 3-12. The rule stating that the points representing two connected surfaces lie on a line perdendicular to the connect edqe played a major role in Mackworth's program. POLY's goal

a. Line Drawing
b. Gradient Diagram

Figure 3-11: Gradient Space Diaqram

Is to determine which edaes are connect, the details about the edges, and the orientation of surfaces and edges. Fron the two-dimensional line drawina it is not possible to calculate the ealuation of each surface to deterinine the exact gradient point, since the third coordinate is unknown. As a result, there are some arbitrary selections POLY mist make during its analysis.

Pigure 3-12: Orqanization of POLY [18]

CONNECT 15 the portion of poLy which finds the connect edges. It does this by trying to make all the edges connect edges at first ques. Upon finding that this is inconsistent with the coherence rules, CONNECT reduces the number of connect edges and tries to establish a labelling again. It continues this process until it obtains a coherent labelling. The exact process can oe explained in conjunction with figure 3-13.

Figure 3-13: Convect example

The first point is chosen arbitrarily and will represent the origin for the gradient space diagram. In this example G (gradient point $A)$ will be the origin. A If 1 is to be a connect edge then, to comply with coherence rules discussed previously, G must lie on a line through G perpendicular to 1. since G may le
anywhere on such a line, G is also arbitrary to some extent. This early use of arbitrary selection is usually referred to as arbitrary choice of orioin and scale [5].

It 2 were now to be established as a connect edqe, then G must also lie on A line perpendicular to 2 through G. Since this is imoossible both 1 and 2 cannot be connect edges. 3 could be a connect edge if G were on a line perpendicular to 3 through G. Now 4 may also be established as a connect edqe because placement of G can be made so it is also on aline perpendicular to 4 through G. The progressinn for constructing this grajient diagram with CONNECT is shown in flqure 3-14. This method is called trianquiation.

After establishing connect edges and constructing a diagram. POLY continues to work with the edqes. It uses VEXCAVE to determine which connect edges are concave and which are convex. Recause picture lines are perpendicular to their gradient fuals, it is known that if the faces in the picture are ordered the same as the corresponding points the eriges are convex. If they are in reverse order, the edaes are concave. fiqure 3-15 shows an example of this. Finaliy poly uses ocrulude to determine detalls regarifng the non-connect edaes using two rules. The first rule is if two non-connect edges intersect at a connect edae it can be determined which

3.

c.

b.

त.

Figure 3-14: Gradient niagram Construction
surface is in front of the other and to which surface the edge belongs. This rile is used to add the hidden surface at the edge beina considered. The diagram is then completed by use of the second rule which adds the ninimum number of hidden surfaces to satisty the fact that a corner made of n surfaces is represented in gradient space by an nogon. After one interpretation progresses through OCCLUDE other possibilities are looked for in CONNEET and the proaression of analysis continues
until all coherent labellinas are established.

a. Convex
b. Concave

Figure 3-15: Convex - Concave Labelifings

Mackworth's work was based on properties of gradient space and thus dealt with surface properties as opposed to function properties. From a gradient interpretation it is possible to determine information about the tangent of the angle between a surface and the picture plane. This is information about the orientation of the surface not about its actual position. The position as such cannot be determined because the depth parameter is missing. No absolute values for the unknown coordinates In the gradient space can be found, they can only be calculated in terms of each other [5].

Huffman [12] wished to expand work done with dual and gradient space to set up conditions of closure for a set of lines in a scene and thus determine the
realizability of configurations. Thru a sequence of calculations he demonstrated the following. If (x, y, z) represents the coordinates of a point in a scene and (u, v, w) represents the coordinates of a point in dual space, the rite of change of z with respect to the distance along a picture line is equal to the distance from the origin to the corresonning line in the gradient space. Along the same lines, the rate of change of w with respect to the distance along a gradient ine is equal to the distance from the origin to the corresponding line in the scene. It is also observer that the distance from the oriain to the point in the gradient diagran 15 equal to the tangent of the angle of tilt of the surface corresponding to that point as mentioned, before. Using these facts a path which appears closed in a picture can be analyzed to see if it 15 really closed or not. The amount z changes along a picture line l_{1} with siode s_{1} is $\mathrm{I}_{1} \mathrm{~s}_{1}$, where l_{1} js the length of the line. A closer path must start and end at the same point, therefore for a oath to be closed the net change in z nust be

$$
0=\sum 1_{15}
$$

If this is not the case, the path 15 not closed. With these concepts and the idea of cut sets Huffman
tried to establish a method to determine the realizapility of a scene. A cut set of picture ines is the set of picture lines that "enter a simple closed region of the picture from outside that region". It should be noted that movement along the surface of a polyhedron generates a corresponding path in the dual scene called a trace. This trace consists of a sequence of points associated with surfaces of polyhedra connected by lines associated with the eros. Huffman's [14] claim is that a certain labelling is realizable if and only if the trace corresponding to it is a closed path. The closure of the path could be shown to be false by finding a region phi, containing possinle picture origins, to the right of all directed line segments in a cut set. The path is not closed in this situation because if phi exists all changes in w are onsitive and thus the sum

$$
\sum w_{1}^{* 1} \text { does not equal zero. }
$$

Huffing [14] states that testing all possible subsets in this way is a necessary but not sufficient condition to determine the realizability of a configuration. Draper
[5] finds that this inadequacy is the result of a movement from the global characteristics beginning to be dealt with in gradient space back to line labelling and
use of restricted areas of analysis.
The use of dual and qradient space came about as the result of a desire to make the oartitioning orocess based more on geometric, quantitative information. this approach morked on less restrictive environment. The gpproaches developed alona these lines vere more surface oriented then the line labelifing achieved previously. Mackworth began his work by finding and using the coordinates of the end-points. ooly, his program, took these end-points and searched over connect and non-connect edges for possible labelifing. Improvements have been suggested for the work done and new approaches outside of the dual space concept nave been motivated hy this work.

3.5 Sidedness Reasoning

Stephen Draper [5] presents a new approach which he claims combines the ability to to the partitioning task competently (like the olane equation approach) while still using the geometric theory (the geometric approach). Some specifics must be recalled here. Any plane divides space into two halves. Line labels on lines where two planes intersect allow the determination of wich plane is infront of the other. This is the Dasic geometry on Which Draper's proposal is based.

The characteristics of Mraper's theory are these. Properties of planes and knowlenge of connect edaes allow certain claims to be made. The rule generated here is that two faces A and B which meet across a concave eige are such that everywhere on a's side of the line (extended if necessary) A is in front-of B and on $B^{\circ} s$ side A is behind B [5]. For convex edges the rule is reversef. This rule lears to certain statements about the relationsing between planes. It makes dossible the refection of incorrect labelifng. This is illustrated in figure $3-16$ below by considering how C relates to A and 8. Label 1 impiles that visible a is behind extended C therefore 2 is behind C. Label 3 finplies the visible B is in front of C therefore 2 is in front of C. There a contradietion has been reached and the labelling is deemed incorrect [5]. The consistency of qeometry provides this logical sideness reasoning.

Sideriness reasoning can reason without fepth equations. It can also tetermine valid labellings for figures when considering concurrent or non-concurrent "cycilc sets of four". A cycile set of four is a set of four faces each of which shares an edge with two of the other faces. The set is concurrent if the edges meet at a point. Sidedness reasoning demonstrates the inposibility of the concurrent, cyclic set of four in

Figure 3-16: Sidedness Relations [5]
figure 3-17. 2 is behind A since 1 is convex making the visible part of A in front of $B .2$ is in front of D since 3 is concave making the visible part of C in front of D. 2 must have the same dent value on both A and D since It is collinear with 4 and 4 is on both A and D. Therefore there is a contradiction because 2 cannot have the same depth in terms of A and D and still be behind A and in-front of D.

This reasoning combines occlusion information with that of connect edges and therefore is not totally dependent on the connect edges as Clowes' method was. The basic development for an actual program would involve

Figure 3-17: Concurrent cycilc Set of Four
taking the possible line labelifngs and translating them into sidedness constraints. It vould check for consistency against those already accepted. An inconsistency would cause the proaram to refect the labelling and go on. Sifeness mpoears to be a promising look at a method of partitionina. It has the quality of being geometrically correct and easy to understand.

3.6 Linear Algebra for Realizability

Even though extensive work has been done along with partitioning in the ares of realizability of configurations, the problem of recognizing incorrect line trawings is still being examined. The method in which line labels are checked for consistency is one of local analysis and results in probabie Interpretations. These

Interpretations may contain nglobal inconsistencies"
[22]. It is desirable to be able to tell whether a line drawing correctiy represents a polyhedron. Methods previously discussed seem to provide necessary but not sufficient conditions. The durpose as discussed by Suginara and Snirai [22, 211 of the linear aloebra is to provide those sufficient conditions.

The discussion has been on labelifng line drawings Which are projections of three-dinensional scenes. All labelabie pictures horever are not necessarily representations of polyherra or unique. Once the labelled picture is given it is possible to determine its realizability usina linear alaebra. The drawing is considered to have n vertices and m faces. Assume in a line drawing (X_{1}, y_{i}, z_{i}) are coorinates for vertex V_{1}, where z is unknown since twondimensional space is the jomain.

is the equation for face F there a, b and c are also unknown. It is possible to obtain L linear equations for the f , vertices on face F. There are $L=$ $L+L+\ldots . L^{j}$ equations where the number of unknown 12 m variables is $n+3 m$. Let \vec{W} be a vector whose components correspond to the $n+3 m$ unknown variables. Then a
fundamental system of equations for the picture is

$$
A \vec{W}=0
$$

$$
\text { and } A \text { is coefficient matrix determined }
$$

by the picture [22]

Some observations about the system can be made. One important observation is that there is no difference between the algebraic structure of an orthographic and perspective projection so this system does not depend on the eye position of the camera.

The picture can give clues as to the depth of parts of the scene. Three kinds of cues give information along these ines. First the physical edge, second the thickness of the body and third the existence of occlusion can all be used. Tn the first clue if the edge where F and F meet is concave and V is on F as in fIgure 3-18, then

$$
a_{1} x_{k}+b_{1}^{y} y_{k}+z_{k}+c_{1}>0 .
$$

IRis kind of inequality could be determined for any of the faces and edges. The inequality above becomes $>=$ because V might be on F since it intersects with F. This is related to a range of values pertaining to the thickness of a body. If there are "T" junctions along
occluding lines a new vertex is introduced on the appropriate face as in figure $3-18$ and $V{ }_{k}$ should be closer than F. This can be represented by the inequality fust developed and a set of these obtained for 311 ' T ' functions. This set of inequalities for vertices and faces is reduced to

Figure 3-18: Cues for Alaebraic Analysis 〔22]

Finding a \vec{w} where $\overrightarrow{A W}=0$ and $B \vec{W}<0$ is a necessary and sufficient condition for realizablifty. [2i] It is possible then to determine the correctness of a ine draxing. This work accomolishes what Huffman falled to do in his work with cut sets. Developments from here With linear algebra lean to the ability to correct line drawings based on alaebralc rules. This is not discussed in this paper.

3.7 Summary of Partitioning

The goal in the analysis in scenes in this part has been the partitioning of a picture which is a two-dimensional representation of a polytidral scene. The process for doing this has varied through time and fron person to person. It is the alm of each worker to break the picture into bodies and their descriptions. The process involves the four steps that are mentioned in section 3.1. Not every researcher applied all four steps but the most recent work has made use of them. The principle of breaking the scene into descriptions of its parts and building a complete scene description has, however, always been the underlying theme. The methods Dy which this is done have progressed from edge and function labelifing, to surface orientation properties, to a stricter use of algebraic principles.

An important part of partitioning is a labeling process. The labels as descriptions for the parts are generated in some way and then tested for consistency and realizability. Table $\mathbf{3 - 2}$ indicates the various techniques discussed and the subsets with wich the interpretations are involven. It can be noted that there is nothing listed under tester in the Hufiman-Clowes nethod. \quad Elowes [3] did nowever test labels for consistency along iines when using this method in

OBSCENE. More recently such labels have been tested with the use of linear alqebra hy Suginara and shirai [22, 21]. The process of provifing a partitionina and description of a picture for scene analysis is the first major step in recovering the obfects in a scene.

Method	Generator	Toster	Subset
HuffmanClomes	Trinedral junction dictionary		S tri
Mackworth	Sequential Generation of most connected inter $=$ pretations	Constructive test on coherence rules in aradient soface	$S_{\text {Doly }}$
Huefman		```Ph1(Ph1') onint test. for all cut sets```	s phi(ph1")

Table 3-2: Labelling Senemes [15]

4. Recognition of objects in a Scene

4.1 Elements of Pattern Recognition

Once the scene has been partitioned into individual oojects it is the goal to be able to determine exactly what those objects might be. The descriptions from the partitioning stage include sets of reqions which belong to the same body, the kinds of edaes which connect the regions and an analysis of which regions are "in-front" or occluded. Qualitative function types may also be included. The first sted in recognizing the objects involves expanding the descriotions to include more quantitative information. Thinas such as parallelism and symetry help narrow down the search for the type of region being considered. These regions and their boundaries serve as primitives for recognition of the object as whole.

As mentioned before, there are three qeneral approaches to actual recoanition of objects in a scene. They are the masking (tomolate matching) method, the decision-theoretic (discriminant) method, and the syntactic (structural) method [7]. Masking or template natching is the simplest aporoseh. It was the approach Roberts used. There is a temolate pattern and a match to that tenplate is looked for in the scene. This is useful
in recognizing printed characters but will not be elaborated on in this paper. The decision theoretic approach requires the matchina of a given number of features between a model pattern and the decription of the object fron the scene. Fxact matches are not always required so the levei of similarity in features mich constitute a match is an issue. A diagram of this method is found in figure 4-3. The suntactic approach involves representation of a pattern by a string or tree or graph structure. This structure is built from the primitives In the scene. Because of this kind of representation it is minalogous to parsing strinas in a language and can be talked about in that way. The exactness of matches here is also an issue. A diagran of this approach is in figure 4-4.

4.2 Extending the Descriptions of obfects

Identification of obfects in a scene requires knowledge of the parts. This knowledge comes by way of descriptions of the objects in terms of mantitative information. During partitioning some descriptions are obtained but it vould be more useful to extend these descriptions and thus close in on recognition of an obfect. The inportant part of this process is choosing elenents for the description which can be found and are
able to identify an object. Since the scenes discussed are images of polyhedra it is necessary to recognize the polygons which are thelr component parts. These are such thing as squares, trianales, and trapezoids. Sharacteristics which identify oolygons are numerous. It 15 worthwile to look for etaes which are equal, edges which are parallel, and measures of angles. a heuristic to be used in establishing these fescriptions is that there are no accifental rerularities. For example two lines parallel in the line trawing are assumed to represent tio parallel lines in the scene.

Some of the traits mentioned above can be calculated directiy from the coorinates of the line drawing obtained thru preprocessing the imaqe. Lengths and slopes of edges are tro such traits. since a non-special angle of viewing is assumer, lines parallel and equal in the line drawing can be assumer to be so in the scene. Kanade [16] points out that any time there is a skered symmetry in a line drawina it orobably corresponss to a real synmetry in a scene. skered symmetry means the transuerse axis is not necessarily perpendicular to the symnetric axis but must he at a fixed angle (see figure 4-1). The region in figure 4-1h is assumed to be the projection of a rectanale. Because the skewed symmetry probably indicates a real symmetry, a trapezoid or a
rectangle as see in figure $4-2$ are the possible scene elements corresponding to 4-1h. There is a skewed symmetry in the other direction that probably represents a real symmetry, as a result $4-1$ h is considered to be the projection of a rectangle and not a trapezoid.

Figure 4-1: skewed Symmetry

Figure 4-2: Trapezoid and Rectangle Possible

Other characteristics can also be extracted from the line drawing. The number of etas of a region is easily

Abstract

calculated. After partitioning, the number of visible rejions (fices) on an object can be determined. The angles at which edges intersect can be calculated in the two-dimensional space. The males at which the edges intersect in three-dimensional space sould require knowledge of the third dimension. It is possible to determine the angle at which faces intersect thru use of gradient space if such third dimensional knowledge is obtainable. An eariler discussion showed gradient diagrams can be used to find the slant of a face with respect to the picture plane. These calculations can be applied to intersecting faces to determine the angle at minn the faces intersect if the thirf dimension can be fount. Detalls about numbers of sides and angle measure help classify regions and obtects.

Polygons and hence polyhedra can be viewed as a set of definftions and constraints. Breaking down a line drawing into jescriptions finvolving its traits becomes all important. The qualitative and quantitative geometric descriptions provite a basis from which to make comparisons and decisions as to what an object is. The question now is how those decisinns are made once the descriptions are established.

4.3 Decision-Theoretic Approach to Recognition

One of the major approaches to the lob of pattern recognition is the decision-theoretic or discriminant approach [9, 23]. This type of approach is based on the use of decision functions for comparison of the pattern being considered and a model or sample set of patterns. A diagram for this method is shown in figure 4-3.

Figure 4-3: Decision-Theoretic Morel [7]

For decision making, a set. of features must be selected to construct a column feature vector $\vec{x}[23]$. Tins is of the form

$$
\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{N}\right)
$$

th
where \vec{x} represents the 1 feature descriptor of a given 1 object. x_{1} could be any of a number of things like the
sum of the angles, the lenaths of the edges, or the number of edges. The more uniauely the features chosen for the vector identify the object the better the system. It is optinal to find features which provide necessary and sufficient conditions for the objects being identified.

It is not always possible or practical to inciude every little feature in the vector. Because certain features are more important toward identification, they can be given reights. There is a veight vector as follows

$$
\vec{W}=\left(N_{1}, N_{2}, \ldots, N_{N}\right)^{T}
$$

associated with each pattern class. The features and their weights can be used in confuction with each other to establish ifentification.

Once features have heen chosen the problem involves extracting those features from the object under consideration and applyina decision functions. If M classes are being considered, there will be M decision functions $d_{1}(\vec{x}), d_{2}(\vec{x}) \ldots . . d_{M}(\vec{x})$ refined so that
 where each $\overrightarrow{1}$ is the weight vector associated

$$
\text { with the } i^{\text {th }} \text { pattern class. }
$$

(These are linear decision functions. Other types of decision functions involve $d(\vec{x})$ which are of polynomial form. The number of terns needed to describe such functions increases rapidly with the degree of the poynomial but the discussion here is restricted to the linear form. The linear form can be expanded to deal with the more complicated cases.)

Class membership is determined by application of the decision functions. If the classes are c, \ldots, c an object belongs to cf

```
di}(\vec{x})>\mp@subsup{a}{j}{}(\vec{x})\quad\mathrm{ for all 1<>j [9]
```

The selection of a weight vector $1 s$ made so that the definition of class membership above holds. The process of assigning weight vectors and thus establishing decision functions involves initializing the weight vectors at something, say ($0,0, \ldots, 0$). Adjustments are mare to the vectors until the weight vectors are such that the rule for the decision functions is satisfied. For example, suppose the procedure for establishing weight vectors is in the k step of adjustment in determining a pattern $\vec{x}(k)$ as belonging to pattern class 1. If

$$
d_{i}(\vec{x}(k))<=d_{j}(\vec{x}(k)) \text { for some }, 1<>j
$$

then the weight vectors must be adjusted. To do this the following rule is used [23].

```
\(\vec{w}(k+1)=\vec{w}(k)+c \vec{x}(k)\)
\(\vec{w}^{1}(k+1)=\vec{w}^{1}(k)+\vec{c}(k)\)
    \(\mathrm{f}_{\mathrm{H}}(k+1) \stackrel{1}{=} \overrightarrow{\mathrm{r}}(k)\)
    for all \(1<>1,1<>1,1=1,2, \ldots, M\)
        and \(d(\vec{x}(k))>d(\vec{x}(k))\)
                            11
        where \(k+1\) indicates one more step.
```

What all this means is that it the decision function does not satisfy the rule for some 1 with respect to every j, I<>i, those weight vectors where the rule is not satisfied are adjusted. For any j, $j<>1$, where the rule is satisfied, the weight vectors are left unaltered. The process is completed when for every $f, f=1,2, \ldots, M$ and j<>1,

$$
d_{1}(\vec{x}(k))>d_{j}(\vec{x}(k))
$$

When classification using decision functions is implemented the main problem is in determining the coefficients for those functions. When samples from each class of pattern being considered are available the process of recognition is said to be supervised learning
or training. This process uses a classified set of training classes or patterns and a learning procedure like the weight vector adfustment where the \vec{x} being considered is a training pattern. In this way the coefficients for the decision functions can be calculated. A training sample matrix for K ciasses is shown in table 4-1. It is possible nowever that the samples avallable have unknown classifications. The process of recognition in this case is said to be unsupervised. The system now has the problem of learning what classes are present so all objects may be clasified. This involves the idea of clustering together those things which have similar pattern vectors. With the clustering, mathematical calculations are required to establish coefficients for the decision functions mich will classify those items with similar pattern vectors in the same class. Fuzzy set theory nas oeen proposed as a possible method to be used in cases such as this. The neeurrence of unsupervised classification in industrial use of this technique is rare. The polyhedral worlt is specitic enough that the classes involved are able to be identified.

The decision-theoretic adoroach to recognition has its applications and its drawbacks. It is used industrially in areas of medicine, manufacturing, and

TRAINING SAMPLE [11]

```
classci: \(\quad x_{1}, x_{2}, \ldots, x_{L 1}\)
classce: \(x_{L 1+1}{ }^{x} x_{1+2} \cdots x_{1,1+L 2}\)
    :
    :
```


Table 4-1: Training Table for K Supervised Classes
archaeology. In industrial applications the method of natching the feature vector x with a feature vector of an ooject under consideration is used. The approach is nathematically sound but problems arise when the features being considered are not independent enough. It may become difficult to make an accurate classification. This is where the structural or syntactic aporoach can be applied.

4.4 The Syntactic or Structural Approach

The previous adproach lacks structural considerations in a formal sense. It is dependent on the knowledge of what features are present or absent as opposed to any relationships between the features. To handle structural and relational characteristics in the scene being analyzed the syntactic approach is used. This sems much more natural in polynedral world. A diagram of the syntactic recoanition system can be seen infigure 4-4. When usina this approach a scene is jenerally represented by string, tree, or graph structures made up of its primitives. primitives in scene analysis could be faces, edges, or corners. Because the basic concept behind the syntactic approach is construction of a scene from sub-objects, the process is analogous to parsing a lanquage. Therefore much about appropriate grammar analysis ean be used.

The conposition of acene can be represented in a natural way which is much like that in a lanquade produced by a formal arammar. The syntax of an expression in a language like pascal can be illustrated with a tree as shown in figure $4-5$. The leaves of the tree are terminals in the language. In much the same form, a scene can be representer as shown in figure 4-6. In the case of the scene the leaves represent the

Figure 4-4: Syntactic Recognition System [7]
prinitives from which the scene ls built. The tree may De interpreted either top dorn or bottom idp. Top down processing involves starting with the biqqest unit (the scene) and spiltting it into its elementary parts. A oottom up interpretation involves staring with the primitives (sidei,side2,side3) and thinking of them as Deing part of, and thus replaced by, a laraer unit (a triangle). In this way it is nossible to develop a set of productions. with these productions, a form of parsing can be used to identify objects much like recognition of a sentence in a language.

The first question which needs to be considerer is exactiy what terminals(orimitives) and nonterminals(subobjects) neet to be included in the recognition grammar. Fu [7] says the choice of

Figure 4-6: Tree Representation of a Simple Scene primitives should satisfy the following requirements:

1. The primitives should be small basic pattern elements which provide an adequate description of the data in terms of the specified structural relations (es., the concatenation relation)
2. The primitives should be easily extracted or identified by existing nonsyntactic methods, since they are consifered to be simple patterns and their structural information is not inportant.

As an example, for recognizing rectangles the following primitives might be set up.
[8]

e

f

In terms of these primitives a rectangle could be sald to m n m n be any object of the form a $h c \pi$ where m and n are integers. It would be possinle to reduce the number of prinitives for the rectanale hy defining -a as <--- . A rectangle could then take the form $a^{m} b^{n}(-a)^{m}(-b)^{n}$. A triangle could be represented using the above primitives n n n as $e^{n} f^{n}$. In dealing with orojection of polynedral scenes these unit vectors in various directions suffice as primitives since polygons are all concatenations of such things. However since these polyọons are positioned at any of an infinite nimber of angles finding all such prinitives for this kind of method is not quite as easy as it may first seem and a different kind of primitive
may be found more useful.
Once the primitives are decided upon they are used to identify sub-objects. These sub-objects then become pieces mich combine to create the objects in the scene. They are used to construct a relational tree as 1llustrated in figure 4-7. Aaain decisions must be made here about what relational oroderties and sub-objects best identify an object. In the polyhedral world polygonal regions and their attachment to each other should be considered. In addition various measurements wish can be arrived at may be employed. To make the best use of this the syntactic approach alone is not enougn.

An example of a system used involvina a strictiy syntactic approach with ohfects as strings of primitives is the Pleture Description Lanauage (PDL) of A.C. Shaw [8, 6] - Shaw used directer line segments as primitives and labelled each one with a head and a tall. Primitives could be joined under four concatenation operations $+, *,-, x$ by the rules in figure 4-8. The remaining two operators were \sim and /. ~ is anary operator indicating the head-tall reversal. / is used along with labelifing to indicate multiple occurrences of a primitive. An example of a string representation of a given structure can be seen in figure 4-9. The correlation between
formal grammar work and syntactic representations of objects is evident here. poL can be used to generate a tree representation of a picture using the substructures and relational operators such as "left of".

Figure 4-7: Relational Tree

This language has been used in processing pictures involved in the study of particles in physics.

The syntactic approach can be viewed as an extension of language parsing. A string of primitives can be recognized by parsing top down or bottom up. This system is alright if all that is to be considered is the construction of the object from its parts. It seems much no re appropriate to extend this to include the known

a $\times b$
$a \neq b$

Figure 4-8: PDG Operations [8]

$$
\begin{aligned}
& \left(\left((a * ((d ^ { 1 } + a) + (\sim ^ { j }))) * \left(\left(\left(\left(1 d^{1}\right)\right.\right.\right.\right.\right. \\
& \left.+b)+\left(\left(a *\left((\sim d)+\left(a^{k}+d\right)\right)\right)+(\sim b)\right)\right)+ \\
& \left.\left.\left.\left(\sim\left(/ d^{j}\right)\right)\right)\right) *\left(\left(b+\left(/ a^{k}\right)\right)+(\sim b)\right)\right)
\end{aligned}
$$

3.

Figure 4-9: Strings in PDL [6]
attributes in certain pattern classes. The more information in use the more reliable the parsing will be. An important approach which applies these ideas is that of attributed grammars.

4.5 Attributed Grammars

The method of attribited grammars $[24,21$ is an extension of the syntactic methods discussed above. These grammars include two basic elements. One of these elements is a token from the scene arammar such as an line segment or a triangle. Snme of these tokens will be terininais or primitives while others will be nonterminals or sub~objects. The second element in the gramars is a list of attributes associated with each token. These attributes may include things like a measurement such as lenath or alationship such as right-of. These two components can then be used along With a graph structure to better represent the objects in a scene.

It is important to give some basic definitions here. An attributed grammar consists of a $4-t u p l e r=(V, V, P, S)$ [24]. V is the set of non-terminals. V is the set of $n \quad t$ terminals. S is an element of V and the start symbol. P is the set of productions. In the polyhedral =onsiderations "side" might be a member of V, "TRIANGLE" night be a nember of V, nsene" could be the start synbol, and a production miaht look something like this

TRIANGLE ----> (side)(side)(side).

What makes an attributed arammar different from the
usual formal grammar is that associated with each instance of an element of V and V is a set of attributes. The set may be infinite or finite. There are two kinds of attributes those which are inherited, and those wich are synthesized. Inherited attributes are those a sub-object obtains simply because one of its parts was characterized by it. For example a cube nas a height of 2 inches because one of its sides is 2 inches. Synthesized attributes are those a sub-object obtains by calculating some function of the attributes of its parts. 4 tryangle has a perimeter of 12 inches because its sides have lengths of 3 inches, 4 inches, and 5 inches. Because of these attributes productions for this arammar consist of two parts: a semantic part and a syntactic part. The syntactic part of the production is what could be considered the usual form of a production: for example,

```
TRIANGLE ----> (side)(side)(side).
```

The semantic rule of the production involves using the attributes discussed before. The attribute part of a production might look like:

```
TRIANGLE <--=- (side2.1ength)
```

Where side2.length is the lenath of the side on the base
of the triangle.
The relational properties such as the distance between two parts can be accounted for by usina attributed graphs. An attributed graph is defined as a $5-t u p l e g=(N, E, \lambda, \alpha, \beta)[2] . N$ are nodes made of elements from V and V above. E is the set of edaes representing the $\begin{gathered}n \\ \text { connections between the nodes. } \\ \lambda\end{gathered}$ the node labelifng function. α is a function which associates a set of node attributes with each node. These are the sets and attributes described above. β is a set of functions associating attributes with edges. An example of a scene and its associated graph is shown in figure 4-10 and 4-11. The types of nodes contained in the example are $\{W, D G E, C O L U M Y, B O A R D\}$. The edges of the graph consist of the relations \{RIGHT-DF,BELJW\}. The only node attrinute is height so $\alpha(n)=\{H E I G H T\}$ for each note n. A given node may have other attributes such as color or widh, but they are not considered necessary for recoanition in this example and therefore not used. Distance is the only edge attribute so $\beta(e)=\{D I S T A N C E\}$ for each edae e. The araph can be used with bottom up parsina where under the guidance of the productions pieces of the subgraph can be grouped and replaced by bigger units.

A diagram for recoanition involving attributed

solidilness BELOW: doteer ilnes \Rightarrow RIGHT-OF

Figure 4-11: Attributed Grammar Graph [2]

Frammars is shown in fiaure 4-i2. Primitives and attributes are extracted from the plcture. The next step Is to take the picture and represent it as a tree or Jraph by establishing proriuctions involving the primitives and sub-objects. The graph may be constructed and analyzed syntactically to bulld the sub-patterns or sub-objects. While these sub-objects are being constructed the semantic oart of the production is used
to obtain attributes of the sub-objects. The relational attributes for the sub-objects can be obtained from the attribute graph which can now be constructed from the sub-objects found and references back to the original input data or descriptions. The process can be completed by considering as part of the productions not only functions on the node attributes but also functions on the edge attributes contained in the attributed graph. The final step comes in decidina if there is a match between a known pattern and that extracted from the picture.

Figure 4-12: Usina Attributed Grammars [24]

4.6 RECOGNIZE: An Attributed Grammar:

It is possible to construct an attributed grammar for recognition of objects in a polyhedral scene. The author has developed an examole of an attributed grammar found in the following paqes. The grammar can be used to recognize six kinds of polyhedra from a qeneral viewing angle: cube, rectangular solid, hexaqonal solid, trapezoidal solid, pyramid, and wedge. It is assumed that faces are rectangles, triangles, hexagons or trapezoids. In conjunction with this grammar the author wrote a program called RECOGNIZE which uses the productions in the grammar to make identifications. If this method of recoanition is to be used the partitioning part of the analysis must pass forward a specific set of information. The information passed forward will contain detalls as to which reaions belong together in one object. if a visible surface is partially blocked, those lines which are not completely visible will be completed before passing the information. In figure $4-13$, object A is not uniquely fetermined by its visible parts. This oroblem is handied in the partitioning process with the use of some accepted rule for completing lines and is not the concern of RECDGNIZE. Both Clowes and Sugihara discussed a process for doing this. The partitioning process must pass the length and
slope of each line of each reaion. Information passed to the recognition section also includes the number of regions visible and the number of sides bounding each region. For the program RECOGNIZE this information will be contained in a record, one record per obfect.

Figure 4-13: Blocked objects

The attributed grammar beina considered is based on a set of assumptions that the viewing point is in general position, and that all obfects are on alat surface. As a result of this, views of polynedra accepted by RECOGNIZE are illustrated in figure 4-14. Only those attributes needed for recoanition are considered in the gramar. The productions themselves are based on the possible combinations of visible surfaces necessary for recognition of an object. Along these lines, a pyramid is restricted to a trianaular, hexagonal, or rectanqular base. The example attrinuted orammar used has the following elements:

```
v (non-terminals) =
    N
            {SCENE,SQUARE,RECTANGLE,TRIANGLE,
                TRAPEZOID,HEXAGON,
                CUBE, PEC_SOLID,HEX_SOLID,TRAP_SOLID,
                PYRAMID,WEDGE}
```

```
v (terminal) =
```

v (terminal) =
T
T
{SIDE}
{SIDE}
S (start symbol) = {SCENF.}
Attributes of }\mp@subsup{V}{T}{}\mathrm{ and }\mp@subsup{V}{N}{}\mathrm{ :
A(SQUARE) = (HEIGHT)
A(REETANGLE) = {HEIGHT,LENGTH}
A(TRIANGIEE) = (LHEIGHT,RHETGHT,BASF.}
A(TRAPEZOTD) = {LSLANT,RSLIANT,TOP,BOTTOM}
A(HEXACON) = {WIDTH}
A(CIBE) = {HEIGHT}
A(REC_SDLID) = {HETCHT,WTDTH,LENGTH}
A(HEX_SOLID) = {HFITGHT}
A(TRAP_SOLID) = {SLANTHEIGHT}
A(PYRAMID) = {SLANTHF,IGHT}
A(WEDGE) = {HEIGHT,WIDTH,LENGTH}

```

In the syntactic nroductions the notation has the following interpretation: () around a terminal or non-terminal means the item occurs exactiy once, [] means the iten occurs once or not at all, and 1\(\}\) means the item occurs any number of times inciudina zero. The / means that a profuction may result in several different alternatives. These productions are based on the acceptable flgures as shown in figure 4-14.
```

Production : Syntactic =ञ>
SCENE -- { {CIJBE}{REC_SSOPID}{HEX_SOLID}
{TRAP_SOLID}{DYRAMID}{WEDCE}
CURE - - (SQUARE)(SQUARF)(SQUARE)
REC_SOLID m-> (RF.CTANGLF.)(RECTANGLE)
(RECTANGLE)
HEX_SOLID m-> (RECTANGPFP)(RECTANGLE)
(RECTANGF,F)(HEXAGON)
TRAP_SOLID --> (TRAPFZOTD)(TRAPEZOID)
(PECTANST,E)/(TRAPEZOID)
(TRADEZOTD) (TRAPFZOIN)
[TRAPFZOTD](RECTANGLE)/
(RECTANGIEE)
PYRAMID - ((TRIANGLF) (TRIANGLE)[TRIANGLE]/
(RECTANCLF)/(HEXAGON)
NEDGE m-> [RECTANGIFI(TRIANGLF)(RFCTANGLE)/
(RECTANGLE)(TRIANGLE.)
SQUARE - (SIDE)(SIDE)(SINE)(SIDE)
RECTANGLE --> (SIDE)(SINE)(SIDF)(SIDE)
HEXAGON =-> (SIDF)(STOE)(SIDE)(SIDE)(SIDE)
(SIDF)
TRAPEZOID - > (SIDF)(SIDE)(SIDF)(SIDE)
TRIANGLF, -> (SIDF)(SIDF.)(SIDE)

```

In the senantic productions it should be noted both faces and edges are numberet in order starting at the far left and going around counter-clockwlse. If the left-most face or vertex is not obvious because of the slant of a line, then the uoder left-most part is used to begin numbering. The productions are stralaht forward except there is a problem if. in the hex-solid the hexaqon 1s face 1. In this instance the heiaht will be considered to be undefiner. In further development trigononetry could be used to calculate such a height but that is not a point of ennsiferation at this time. It should be noted that though a oyramid or nex-solid may be
seen from the base alone, RECOGNTZE does not handle these cases.
```

Production: Semantic =r>
CUBE.HEIGHT <-= SIDEI.IIENGTH
REC_SOLID.HEIGHT <-\infty FACE1.LENGTH
REC_SOLID.WIDTH <-- FACFI.HIDTH
REC_SOLID.LENGTH <-- FACE2.HIOTH
TRAP_SOLID.LSLANT <-\infty FACE1.LSLANT
TRAP_SOLID.WIDTH <-\infty FACEI.BOTTOM
HEX_SOLID.HEIGHT <-\infty FACEI.HEIGHT
PYRAMID.SLANTHEIGHT <-\infty FACEL.LHEIGHT
NEDGE.HEIGHT <-= FACE.(TRIANGLE).LHEIGHT
WEDGE.WIDTH <\omega= FACE(RECTANGLE).WTDTH
WEDGE.LENGTH <-\infty FACF.(TRIANGLE).BASE.
SQUARE.HETGHT <-- SIDFI.HEIGHT
PEこTANGLE.WIDTH <-\infty SIDF2.LENGTH
RECTANGLE.LENGTH <-\infty STDEL.LENGTH
TRAPEZOID.LSIANT <-- STDE1.LENGTH
TRAPEZOID.RSLANT <-= SIDE3.LENGTH
TRAPEZOID.TOP <-- STDF.4.LENGTH
TRAPEZOID.BOTTOM <-= SIDE2.LENGTH
HEXAGON.WIDTH <-- SIDF.I.LENGTH
TRIANGLE.BASE<-\infty STOF.\.LENGTH
TRIANGPE..LHEIGHT <-- STNEI.LENGTH
TRIANGLE.RHEIGHT <-- SINE3.LENGTH

```

RECDGNIZE can be tount on file in the Division of Computing and Information Science at Lehiah University. It works with one object at a time. The information passed from the pre-processina contains a record for each object. The record gives the number of visible regions in the object and details about eacin reqion and its parts. It uses both the suntactic productions and fefinitions of specific reqions to establish what those regions are. The attributes that are associated with the regions are formulated by way of the semantic


Figure 4-14: Accepted views of Polyhedra
productions. Once the reqions have been identified, the same process is used to define an object from the regions it contains. A bottom up parsina method is used in the sense that any time the riaht side of a production is found it is replaced by the left side. RECOGNIZE was run on a sample seene shown in fiqure 4-15. The input handed to RECOGNIZE for the scene is aiven in table 4-2 and is the kind of information that would be passer from the partitioning section of a recoanition system. The first number is the number of reainns a body contains. Each
line then gives the number of sides for each region and the length and slope of each side. The identifications made from the input are contained in table 4-3.


Figure 4-15: Scene lied for RECOGNIZE

This is an important current method of recognition in pattern analysis. It combines the qualities from both a syntactic and quantitative approach. Extension of this method can lead to more complete and thorough recognition with regard both to the polyhedral world and to more complex environments.
```

2 3 9.6 1.5 4.1 -0.5 11.1 -3.0 3 111.1 -3.0
3.42 1.0 11.1 -0.33
34 3.7 99.99 10.2 0.0 3.7 99.99 10.2 0.0
4 3.7 99.99 12.4 0.8 3.7 99.99 12.4 0.8
4 12.4 0.8 10.2 0.0 12.4 0.8 10.2 0.0
2 3 5.3 99.99 5.4 0.0 7.54 -0.07
4 7.54 -0.97 0.9 1.2 7.54 -0.97 0.9 1.2
4 4 5.1 99.99 1.3 1.2 5.1 99.99 1.3-0.83
4 5.1 99.99 2.0 0.0 5.1 99.99 2.0 0.0
4 5.1 99.99 1.3 1.2 5.1 99.99 1.3 -0.83
6 1. 3-0.83 2.0 0.0 1.3 1.2 1.3 -0.83 2.0
0.0 1.3 1.2
34 7.81 99.99 7.81 0.0 7.81 99.99 7.81 0.0
47.81 99.997.81 1.4 7.81 99.99 7.81 1.4
4 7.81 1.4 7.81 0.0 7.81 1.4 7.81 0.0
3 4 1.89 1.0 2. 2 0.0 1.1 -4.9 0.5 0.0
4 1.1 -4.9 1.9 2.1 1.1 -n.8 0.9 2.1
4 0.9 2.1 0.5 0.0 0.9 2.1 0.5 0.0

```

Table 4-2: Input Data from Partitioning
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & PYRAYID & & & & 9.60 \\
\hline 2 & REC_SJUIO & 3.70 & 10.20 & 12.40 & \\
\hline 3 & NEDGE & 5.30 & 0.90 & 5.40 & \\
\hline 4 & HEX_SJLID & 5.10 & & & \\
\hline 5 & こUBE & 7.81 & & & \\
\hline 6 & TPAP_SJLID & & 2.20 & & 1.89 \\
\hline
\end{tabular}

Table 4-3: Results of RFCDGNIZE on fiaure 4-14

\subsection*{4.7 Conclusions Recognition}

Approaches to recognition have taken various forms. The major three have been the masking method, the decision-theoretic methor, and the syntactic method. Numerous variations of each of these have been researched and developed. The problem is that each has its strong points and its weak points. The decision-theoretic approach involves the use of vectors and its decisions are based on statistical closeness. Because of this it can handle nolsy patterns. It cannot hovever use, to any great extent, the information on relational structure. The syntactic approach on the other hand is characterized by the opposite situation. The one method which seems to nake the strongest attempt to enmbine the best qualities of each is the method involving attributed grammars. Through these grammars both the syntactic and semantic characteristics of scenes are considered and analyzed for recomition.

\section*{5. Conclusion}

The steps involved in recognition of objects in three-dinensional scenes from two-dimensional line drawings involve two primary objectives. The eirstis the partitioning of the drawina into sets of primitives and regions which belong to the same object. This requires using the input data arrived at by some pre-processing of the image. There have veen a variety of approzenes to this both qualitatively and quantitatively. Recently the use of linear algebra has played a contributing role. The second obfective is the actual recognition of the obtects themselves. The recognition can be done bu the masking approach, the decision-theoretic approzeh or the syntactic approach. The last two are the more widely used. Each has its advantages and disadvantaqes. Wallace [25] claims that a major disadvantage of the syntactic method is the lack of a method to create macine inferred grammars. presently gramnars must be man-made. An anoroach mich attempts to combine the advantages of each is that of attributed grammars.

The approaches to scene analysis discussed here have been with respect to a polvherral vorld. It is a well tefined domain in which to work and establish concepts. These concepts can then be extenced and applied to line
draxings of other domains. These other domains involve objects which are curved and not so well defined as those In the polyhedral world. With the enlargement of the domain comes an enlaraement. of approaches. These approaches become more hiohly structural and mathematical in order to deal with the wider domain involved in natening and analyzation. shapiro and haralick [20] discuss the use of relational homomorphisms to determine class matching. Davis and Hencerson [4] introduce what they call astratified grammar to deal with syntactic analysis. Eomputer vision and graphics are currently areas supporting much research. The automation in all areas of production and business lead to a strong desire to develop accurate and efficient techniques to hande such things. The basics discossed in this paper are an inportant backround from which current research may grow.

\section*{References}
［1］Brown，こ．M．and R．J．Podolestone．
Cases in Scene Analvsis．
In Bruce G．Batchelor（eritor），Ratrecn
Recagaltian Ideas in Rractice，pages 205－227．
Plenum Press．New York，1978．
［2］Bunke，Horst．
Attributed Programmed Graph Grammars and Their Application to Schematic Diagram Interpretation． IEEE Iransactions on Rattera analysis and Machine Iatelligence 4：574－582．1982．
［3］Clowes，A．B．
On Seeing Things．
Artificial Latelilgeace 2：79－116，1971．
［4］Davis ，Larry S．and Thomas 2. Henderson． Hierarchical Constraint Processes for Shape Analysis．
IEEE Transactlons an Rattern Analysis and Macbine Iatell1fance 3：265－277，1981．
［5］Draper，Stephen E．
The Use of Gradient and Dual Space in Line－Drawing Interpretation．
Actificial Latelligence 17：461－508，1981．
［6］Fu，K．S．
Syロよa＝tic Methads af Rattern Recagnition． Academic Press，New York， 1974.
［7］Fu，King＿Sun．
Pattern Recognition for Automatic Visual Inspection．
Earputer 15：34－39，1982．
［8］Gonzalez，Rafael and Michael Thomason． Syntaこtic Rattera Becagnitian：an Introductian． Addison－idesley，Readina，MA，1978．
［9］Gonzalez，Rafael and Reza safabakhsh． Computer Vision Techniaties for Industrial Applications and Robot Control．
Computer 15：17－28，1982．
［10］Guzman，Adolfo．
Camputer Recagnition of Incer－Dimensianal abjects Ln a Klsual Scene．
PnD thesis，MIT，196月．
［11］Hall，Ernest．
Computer Image Rracessing and Recagnition．
A＝adenic Press，New York， 1979.
［12］Huffman，David．
A Duality Concept for the Analysis of Polyhedral Scenes．
In E．i．Elock and D．Michie（editors），Machine Intelilgence 8，pages 475－492．Elils Horwood， こnichester，1977．
［13］Hufeman，David．
Inpossiole objects as Nonsense Sentences．
In B．Meltzer and D．Michie（editors），Machine Iatellizence 6，Dages 295－324．Edinburg Universlty Press，Filinburg， 1971.
［14］Huffinan，David．
Realizable Configurations of Lines in pictures of Polyhedra．
In E．N．Elock and D．Michie（editors），Machine Iatellifence 8，naqes 403－509．Ellis Horwood， こnichester， 1977.
［15］Kanade，Takeo．
A Theory of Origami world．
Actificial Intelilgence 13：279－311，1980．
［16］Kanade，Takeo．
Recovery of the Threenimensional Shape of an Joject from a sinale view．
axtificial Latelligence 17：409－460，1981．
［17］Mackworth，A．K．
How to See a Simple World：an Exegesis of Computer Programs for Scene Analysis．
In F．＇N．Elcock and n．Michie（editors），Machine Iatellizance 8 ，naqes 510－540．Elifs Horrood， Cnichester， 1977.
［18］Mackworth，A．K．
Interpreting pictures of Dolynedral Scenes．
Actificial Intelligence 4：121－137，1973．
[19] Newman, E.A.Scene Analysis: Some Basics.In Bruce G. Batchelor (eतtior), Rat上arn gecognifianIdeas in Reactica, paqes 429-462. Plenum Press,vew York, 1978.
[20] Shapiro, Linda G. and Rohert M. Haralick.Structural Descriptions and Inexact Matching.IEEE Iransactians an Rattern Maalysis and MachlaeIatelligeace 3:504-519, 1981.
[21] Shirai, Yoshiaki.Inafe processing for nata Capture.Sasputer 15:21-39, 1982.
[22] Sugihara, Kukichi.
Mathematical Structures of Line Drawings of Polyhedrons- Toward Man-Machine Communication by Means of Line Drarings. IEEE Lransactions an Dattera doaiysis and Hachine Iatelligeace 4:458-46R, 1982.
[23] Tous, J.T. and R.C. Conzalez. Rattera Recagaitian Rrinciples. Addison-wesiey, Readina, ma, 1974.
[24] Tsal, Wen-Hsiang ant Kina-Sun Fu.Attributed Grammar-A Tool for Combining Syntacticand Statlstical ADDroaches to PatternRecognition.IE트 Iransaction an systems, yan and Cybernetics10:873-884, 1980.
[25] Wallace, Timothy P. and nwen R. Mitchell and Keinosuke Fukunaga. Three Dinensional Shade Analysis Using Local Shape Descriptors.
IEEE Iraosactions an Rattera Malysis and Machine Latalligeace 3:310-322. 1981.
[26] Waltz, David. Artificial Intelligence. Sモieatific american 4:118-133, 1982.
vita
Linda was born June 20. 1954 in fort Meade, Maryland. Her parents are William A. and Eleanor B. Ludrigs. She attended Western Ililnois University from September 1972 through May 1976. In May of 1976 she received her B.S. in Mathematies graduating with nigh nonors. While at Western, Linda was member of Sigma Zeta, Kappa Mu Epsilon, ant Phi Kappa Phi nonoraries. From August 1976 through May 1981, Linda taught nigh school Yathenatics at Seeqer Memorial High School in West Lebanon, Indiana. In the summer of 1978 she attended graduate school part time at Purdue Jniversity. In August 1981 she began work on her Master of Science degree in Eomputer and Information Science at Lehigh University.```

