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ABSTRACT 

Limited theory and experimental test results exist concern­

ing the behavior of stiffened steel panels with rectangular window 

cut-outs used as building shear walls. Due to these uncertainties, 

a test program was developed by a group of panel designers and was 

executed by the Fritz Engineering Laboratory at Lehigh University 

in December 1981. 

The test program consisted of loading a three-story panel 

in compression along the diagonal to simulate shear loading. Measure­

ments taken during testing included racking deformations and out-of­

plane deflections in addition to strain readings at selected points 

on the specimen. 

Test results indicate that analytical models can be used to 

predict the behavior of this type of structure within reasonable 

limits. Methods of predicting stresses, deformations, buckling and 

weld performance are outlined in this paper and compared to actual 

test values. The author provides interpretations of the test 

results and theory so that the behavior of steel shear walls may be 

better understood. 
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1. INTRODUCTION 

The concept of providing stiffness for lateral loading in 

tall buildings through the use of steel shear walls is fairly new. 

In general, there are four ways to laterally stiffen buildings: 

1. Moment resisting beam-~o-column connections. 

2. Diagonally braced frames. 

3. Shear walls between columns. 

4. Stiffened central core. 

\~en shear walls are selected as the medium for providing 

added stiffness to a building, reinforced concrete walls are 

generally provided. The most recent development in the design of 

shear walls has been the selection of steel panels instead of rein­

forced concrete walls as the structural member used to provide 

lateral stiffness. 

There are five advantages in selecting steel shear walls as 

opposed to reinforced concrete shear walls: 

1. Decreased wall thickness. 

2. Prevention of concrete construction pacing 

steel construction 

3. Avoidance of complex concrete reinforcement. 

4. Reduction in the total amount of steel needed 

in the structure (as much as 50%). 
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5. Reduction in the total weight of the structure. 

This in turn reduces the size of the seismic 

force that the structure will need to resist 

since the seismic force is directly proportional 

to the mass of the building. 

These distinct advantages have caused structural designers 

to lean more towards steel panel shear walls within the last five 

years, as evidenced by the construction of the following 

buildings.
1

'
2 

1. Hyatt Regency Hotel (Dallas, 1978)- Stiffened 

steel shear walls (without window openings) were 

provided in the short direction of the structure 

and varied from a 13 mm (1/2 in.) thickness to a 

29 mm (1-1/8 in.) thickness. 

2. Los Angeles Olive View Hospital (Los Angeles, 

1978) - The four-story structure contains both 

16 mm (5/8 in.) and 19 mm (3/4 in.) thick steel 

plate shear walls. 

3. H. C. Moffitt Hospital (San Francisco, 1978) -

Steel shear walls were used to stiffen the 34 m 

(110 ft.) by 61 m (200 ft.) tower in the 

hospital structure. 
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As a further extension of the steel shear wall concept, 

the Welton Becket Associates, an architectural firm, devised a 

plan for the design of the Dravo Tower (Pittsburgh, PA.) for the 

United States Steel Corporation that incorporated structural steel 

shear walls as the architectural building facade. This meant that 

windows would need to be cut from the steel plate that t-1ould make 

the load bearing panel acceptable from an aesthetic viewpoint - a 

"first" in the design of steel shear walls. 

The problem facing the project's structural engineers, 

Lev Zetlin Associates, was the unique problem of designing steel 

shear walls with window cut-outs that would adequately carry lateral 

wind loads with an ·appropriate safety factor and an acceptable 

amount of distortion. 

-4-



2. BACKGROUND 

A ten-step design procedure was developed by Lev Zetlin 

Associates for the design of the Dravo Tower panels and included the 

follm.,ring items: 
3 

1. Finite element analyses using plane stress 

elements. 

2. Development of stress contour maps. 

3. A computer program written to choose panel 

thickness' and stiffener locations. 

4. Modeling an equivalent thickness panel to take 

into consideration the window openings. 

5. Buckling analyses using the NASTRAN program. 

Several approximations (e.g. the modeling of the panel-to-

frame connections) were made in these analyses and some degree of 

uncertainty existed concerning the conservativeness of the approxi­

mations. The desire to confirm analytical results for strength, 

stiffness, and stability under shear loading of the designed panels 

led to the formation of a test program. 

-5-



3. TEST PROGRAM 

Lev Zetlin Associates devised a test program with the 

purpose of comparing actual results with analytical results obtained 

from theory relative to the strength, stiffness and stability of 

4 
steel shear walls for the Dravo Tower. The intent of the program 

was to use one typical panel design that could be specially fabricated 

for testing (and therefore could be loaded to failure) and perform a 

full-scale test on the specimen. Consequently, a test panel was 

selected from a group of varying size panels that had already been 

designed for the project. 

The test panel selected was a three story stiffened plate 

structure measuring 11m x 3 m x 6.35 mm (36 ft. x 10 ft. x 1/4 in.) 

fabricated entirely from ASTM A36 structural steel. Longitudinal 

and transverse stiffeners were welded to the interior side of the 

panel as shown in Figs. 1 and 2. Six windows, each measuring 

2.14 m x 0.72 m (7ft. x 2.4 ft.), were cut from the panel at United 

States Steel Corporation's fabrication shop. The plate was attached 

to a loading frame that consisted of W27 x 178 perimeter members 

with offset Wl4 x 90 spandrel beams at the ends and third points. 

Panel connections to the test frame existed primarily at the top, 

bottom and window areas of the panel and consisted of ASTM A490 

high strength bolts as shown in Fig. 3. Additional panel connections 

were located above and below each window using channel sections 

that spanned the test frame columns. 
-6-



The panel was to be loaded on its diagonal to simulate 

a racking or shear load that would be introduced to the panel along 

all four edges via the loading frame. For this purpose, two 

conditions were specified: 

1. The loaded test frame corners had been bevelled 

and supplied with a bearing plate to provide the 

correct angle of loading at each corner as depicted 

in Fig. 4. 

2. The test frame was to be laterally supported at 

each spandrel beam to prevent instability of the 

perimeter members. 

In order to compare actual results with theory, the 

following measurements were required: 

1. Out-of-plane deflections 

2. Racking deflections. 

3. Panel strains. 

4. Stiffener strains. 

5. Loading frame strains. 

The methods of obtaining these measurements will be 

described in detail in Chapter 4. 

In addition, the following changes or modifications were 

made to the test program by Fritz Engineering Laboratory in order to 

improve test result accuracy and to reduce the overall cost of 

testing: 

-7-



1. One-half of the panel was completely instrumented, 

thereby taking advantage of symmetry of the structure. 

2. Stiffening of certain sub-panel regions after 

buckling, a requirement in the original test 

program, was deleted. 

3. The A490 bolts which connected the panel to the test 

frame were checked for proper preload to insure the 

behavior of friction-type connections. 
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4. TESTING 

Prior to loading the test panel, several steps were required 

so that accurate measurements could be obtained. 

First, electrical resistance strain gages were applied 

to both surfaces of the panel as sho~~ in Figs. 5 and 6. Three-gage 

rectangular rosettes were used so that principal stresses could be 

readily computed. In addition, strain gages were placed on two 

stiffeners and at two locations on the test frame as shown in Fig. 7. 

Second, the panel was "whitewashed" with a lime and water 

solution so that yielding of structural steel components during 

testing could be detected by eye by noting the locations of "flaking" 

of the whitewash. A grid was then created on the whitewashed surface 

using chalk lines shown in Fig. 8. 

Third, three windows were fitted with rods on their dia­

gonals, which were connected to Linear Variable Differential Trans 

ducers. This would allow the measurement of the changes in window 

diagonal lengths as detailed in Figs. 9 and 10. 

Last, initial plate contours were established using the 

following procedure: 

1. Initial column straightness and alignment \vere 

measured using an engineer's transit with the panel 

lying on its side. 
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2. A "ladder" of dial gages was then run across the 

face of the panel and supported on its ends by the 

frame columns as illustrated in Figs. 11 and 12. 

Grid point contours were measured to the nearest 

0.025 mm (0.001 inches). 

3. A computer program was written to establish rela~ive 

contour values for the unloaded panel, taking into 

account loading frame column misalignment and 

warping in addition to initial out-of-plane 

deformations due to fabrication. 

For the purpose of testing, the panel was lifted into the 

vertical position and placed in the compression loading space of 

Lehigh University's 22.25 MN (5,000,000 lb.) Baldwin hydraulic 

testing machine as exhibited in Figs. 13 and 14. The remaining 

requirements of the test program were subsequently executed and the 

panel was readied for testing. 

Testing of the panel took place on December 10 and 11, 1981. 

On the first day of testing, the panel was successfully loaded to a 

vertical load of 2.45 MN (550 kips). At this load, lateral deforma-

tion of the panel was evident but disappeared as the load was reduced 

at the end of the day, exhibiting elastic behavior. During the 

second day of testing the panel was loaded to 3.34 MN (750 kips), at 

which time failure of welds occurred and the load on the panel 
. 

dropped by approximately 668 kN (150 kips). 
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During the conduct of the test, measurements were taken at 

selected intervals in the following manner: 

1. All strain gage and LVDT readings were printed by 

an ·electronic data acquisition system and simultaneously 

punched on paper tape. 

2. Racking deflections of the panel edges and corners 

were measured using plumb bobs and adjustable­

elevation lab tables as presented in Figs. 15 and 16. 

3. Out-of-plane deformations were obtained by running a 

dial gage ladder across the whitewashed face of the 

panel starting at the bottom of the panel and pro­

gressing upwards to a level just above the second 

story windows. 

4. Out-of-plane deformations of the loading frame were 

monitored using an engineer's transit. 

Subsequent to the failure of welds, the panel was unloaded 

and testing was considered to have been completed. 
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5. SUNHARY OF TEST RESULTS 

The ultimate vertical load of 3.34 }lli (750 kips) that the 

panel withstood represented a design factor of safety of 3.33. In 

general, the panel behavior followed predicted values; the panel 

design itself can be viewed as being conservative. 5 

A computer program was written to reduce the strain gage 

readings for the panel rosette gages to principal stresses, maximum 

shear stress, and stresses relative to a coordinate axis established 

by the panel geomet~· (crx' cry and ~ ) These values are tabulated 
xy • 

in Appendix A. 

In-plane deformations that were measured are described in 

Figs. 17 and 18 and tabulated in Appendices B and C. 

Another computer program was written to reduce the measured 

out-of-plane contours to relative contour values considering the mis-

alignment of the test frame columns and the initial out-of-plane 

contours due to fabrication. The program then utilized another 

computer program which was available on permanent file for plotting 

contour maps of the panel using the relative contour values. The 

initial panel contour map under no load is shown in Fig. 19. This 

map was developed from contour values obtained while the panel was 

lying on its side. Figure 20 shows the panel contours obtained due 

to a vertical "holding" load of 107 kN (24 kips). Panel contours 
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relative to the 107 kN load map are shown in Figs. 21 and 22 cor­

responding to vertical loads of 1.34 MN and 2.45 ~rn (300 kips and 

550 kips), respectively. 

In add~tion to the measurements taken above, the following 

significant results were obtained during testing: 

1. At a vertical load of 1.11 ~· (250 kips) the panel 

produced a loud noise similar to that produced by 

bolted plates undergoing an initial slip under load. 

2. At a vertical load of 1.89 ~ (425 kips) a slip of 

the long bolted joints connecting the panel to the 

test frame caused a noticeable drop in load. 

3. At a load of 3.34 ~ (750 kips) weld· failures occurred. 

Upon closer examination of the unloaded panel, four 

longitudinal stiffeners sustained weld failure at 

the continuity weld connecting the longitudinal 

stiffener to the horizontal stiffener. The location 

of weld failures are indicated in Fig. 7 and shown in 

detail in Figs. 23 and 24. 

4. The sub-panels that were predicted to undergo elastic 

buckling first experienced the greatest amount of 

out-of-plane deformation. These sub-panels are noted 

in Fig. 1, noticeable in Figs. 21 and 22, and shown 

in detail in Fig. 25. 
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Subsequent to unloading very slight permanent deformations 

remained in those panel areas that experienced the greatest out-of­

plane deformation. This permanent set can be attributed to changes 

in the bolted joint forces and residual stress patterns rather than 

from gross yielding of the panel plate material. 

Mechanical testing of the panel plate material revealed a 

yield strength of 296 ~Wa (42.9 ksi) as opposed to the nominal value 

of 248 ~Wa (36 .o ksi) required by ASTM A36. 

-14-



6. THEORETICAL ANALYSES AND CONSIDERATIONS 

Theore~ical analysis of the test panel by the structural 

engineer, in conjunction with current steel and building design 

codes, prescribed a design shear load of 267 kN (60 kips) or a 

vertical testing machine load of 1001 kN (225 kips). The panel, 

when tested, exhibited a linear behavior to loads well in excess of 

the design load. 

This section will present various analysis methods which 

were considered by the author for analyzing the complex structure 

of the panel. The validity and accuracy of these methods will be 

discussed in the next chapter. 

6.1 Finite Element Method 

The finite element method is clearly the best way to model 

and analyze a structure consisting of plates, stiffeners and 

rectangular holes. Many computer programs are currently available 

and economically feasible to use in performing an analysis of this 

type. As previously noted, the structural engineer for the Dravo 

Tower project made extensive use of FEM programs in designing the 

shear walls. However, repetitive and iterative uses of FEH programs 

in the preliminary design phase may become both cost prohibitive 

and inefficient. It is the intent of this report, therefore, to 

simply mention the possible use of FEM programs and their evident 
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success in analyses of this type; simpler and less expensive 

analysis techniques will instead be presented and discussed. The 

latter methods would be best-suited for arriving at a preliminary 

panel design which could then be refined, using finite element 

techniques for the final design. 

6.2 Vierendeel Truss Analogy 

The panel can be perceived as a modified Vierendeel truss, 

supported at its two unloaded corners by moment-free pins as shown 

in Fig. 26. A truss of this type requires moment-resisting con­

nections and an involved analysis. 6 Before performing this type of 

analysis, however, two key factors must be considered: 

1. l,~at are the member sizes and properties to be used 

in the analysis and what are their effective sizes 

and properties? 

2. How is the load transmitted from the building or 

test frame to the panel? 

6.2.1 Effective Width Considerations 

The effective width of a structural component can be 

defined as that portion of the component that can be considered in 

design for resisting the applied loads. The concept is illustrated 

in Fig. 27. Two methods can be used in determining effective 

widths: 

1. Select member effective widths using a reference 

manual such as AISI's COLD-FORMED STEEL MANUAL, or 
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2. Develop effective widths from mathematical 

models. 

The test panel possessed three stiffener sizes: 

1. 102 rnrn x 13 rnrn (4 in. x 1/2 in.) 

2. 127 rnm x 13 rnrn (5 in. x 1/2 in.) 

3. 152 rnrn x 10 rnrn (6 in. x 3/8 in.) 

These stiffeners were intermittently welded to the panel 

plate as shown in Fig. 2. Using the panel geometry as a basis for 

determining various members of a Vierendeel truss, flat width-

thickness ratios can be obtained from Fig. 26: 

Member w/t 

Edge Columns 56 

Center Column 136 

Edge Beams 116 

Center Beams 256 

Using the COLD-FORMED STEEL MANUAL as a guide, the following 

equations yield effective b/t ratios: 7 

For w/t > 171 ~ = 253 [l _ 55.3 ] 
y'f ' t y'f (w/t) y'f 

(1) 

and 
be ___ b _ 

for w/t > 60, t t 0.10 [w/t - 60] (2) 
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Using f, the actual stress in the member, as approximately 

152 ~~a (22 ksi) and substituting the effective width, b , for each e 

stiffener in each member is equal to 127 mm (5 inches). It is 

important to note that the effective width is the same for each 

stiffener regardless of the size of the stiffener. 

The second method by which effective widths may be deter-

mined makes use of the Airy stress function which satisfies equilib-

8 rium and compatability equations for plane stress problems: 

where 

= 1' 
xy 

Using several assumptions, the most significant being 

(3) 

(4) 

(5) 

(6) 

infinite stiffener spacing, an expression can be developed for the 

effective width: 

r.l:.. 
.Nxyi sin Cti X 

Ct. (3 -v)(l + v) I + 4h/a. (S2 + r2) ~ 

2 
r ~ 

b = 
e 3 +v N sin a. x. 

E 
xyi ~ 

(3 - v)(l + v) I + 4h/a. (S2 + r2) 
r ~ 

(7) 
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N is the unifo·rm shear load applied to a member and must xy 

be approximated using a Fourier series approximation for use in this 

equation. Using a three non-zero term series expansion, effective 

widths can be determined at mid-length (s = L/2) for a given member: 

Stiffener Size (mm) 

102 X 13 

127 X 13 

152 X 10 

b at x = L/2 (mm) e 

1245 

1118 

1092 

The effective width for these members varies sinusoidally 

along the length; an average effective width can be determined by 

integration, realizing that the maximum b occurs at midlength e 

( x = L/ 2) : 

Stiffener Size (mm) 

102 X 13 

127 X 13 

152 X 10 

Average b (mm) e 

787 

711 

686 

Last, a reduction factor for b must be used to consider e 

finite stiffener spacings. Use of reduction factors based on c/L 

9 ratios yields the following b 's: 
e 

Stiffener Size (mm) 

102 X 13 

127 X 13 

152 X 10 

-19-
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By comparison, the analytical method for determining b 
e 

considers stiffener size and arrives at much larger effective width 

sizes than what would be used if other guidelines were incorporated. 

For this particular problem, the analytical method shows that full 

"member" sizes can be used in design and analysis in the Vierendeel 

truss model, whereas other guidelines suggest a reduction in member 

properties. The former method will be used, therefore, for the 

analysis of this problem because it does account for varying sizes 

of stiffeners. 

6.2.2 Panel Loading 

The idealized panel loading is that of a uniformly distri­

buted shear load along the four edges of the rectangular structure. 

In actuality, however, a uniquely different loading system exists 

due to the presence of long bolted joints along the edges of the 

panel. Joint behavior can be predicted to a certain extent based 

on theory, but needs refinement for the problem at hand. 

Up to the slip load of a bolted joint, a triangular stress 

distribution can be assumed to exist in the bolts and joint member 

due to strain variations through the joint. 10 After slip of the 

joint, a triangular stress distribution can again be assumed to 

exist in the components of the joint which is now in bearing. This 

stress distribution results in the "unbuttoning effect" at ultimate 

load which can be referenced in the literature. At this point it is 

important to realize that most slip load data and joint behavior is 

based on research which was concerned with typical structural 
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connections, i.e., bolt spacings of 76 to 102 mm (3 to 4 inches) 

and maximum joint length of 1.42 m (56 inches). For the test panel 

the six bolted connections that were located at the window openings 

were 1.42 m (56 .inches) long and had bolt spacings of 102 and 203 mm 

(4 and 8 inches); the two connections at the top and bottom of the 

panel were 1.78 m (70 inches) long with bolt spacings of 127 and 

254 mm (5 and 10 inches); see Fig. 3. Therefore it is hard to 

predict the structural joint behavior for this problem due to the 

lack of research in the area of very long bolted joints and large 

bolt spacings; however, two methods of predicting the load trans­

fer from the test frame to the panel can be identified. 

First, a uniform distribution of load can be assumed. This 

assumption is based on the notion that the panel is nearly completely 

attached to the test frame along all four edges and therefore 

receives a uniformly distributed shear loading from the frame. 

Second, a type of triangular load distribution can be 

assumed. This assumption is based on the previously mentioned 

research and will more objectively be defined in the next chapter. 

Both of the above assumptions will be used in the analysis 

of this problem in this paper. An attempt at precisely determining 

the manner and distribution of panel loading will be considered to 

be beyond the scope of this thesis. 
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6.3 Plane Stress Behavior 

Another method for predicting panel stresses using plate 

theory is available through the use of the Airy stress function, 

Equations 3 through 6, which was previously used for effective width 

d 
. . 8 

eterm~nat~on. The two major pitfalls that occur as a result of 

applying this method to the problem at hand are: (1) inability to 

take the window openings into account, and (2) inability to consider 

the stiffness contribution of the stiffeners. This analysis, 

therefore, will merely consider a flat plate of uniform thickness 

loaded by a distributed shear load along all four edges. Also~ the 

method of finite differences will be used to solve the differential 

equation in Eq. 3. 

The variable 0 in Eq. 3 can be obtained at desired points 

on the panel by using the method of finite differences in conjunction 

with the "Frame Analogy" as described in Ref. 8. Once 0 is known, 

the stresses at the corresponding points can be computed by using 

the finite difference approximations in differential equations 

4 through 6. 

This method will be used in this report as a way of obtaining 

nominal stresses in those portions of the panel which are not 

affected by the assumptions made in the analysis; i.e. those portions 

of the panel that are a considerable distance away from window 

openings and stiffeners. For the purpose of the analysis, a grid 

spacing of 0.61 m (2 feet) will be used for solving for the unknown 

0 using the method of finite differences. 
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6. 4 \-lindow Deformation 

Perhaps the most critical in-plane deformation associated 

with a load-bearing building facade is the window deformation. 

Several past incidents of problems with building windows cracking, 

falling out and not fitting properly can be attributed to lack of 

knowledge regarding window opening displacements. There are two 

methods by which the change in length of the window diagonals can 

be predicted. 

First, the window can be assumed to be a flat steel plate 

loaded by a uniformly distributed shear load. This, of course, 

assumes that the window opening is sufficiently stiffened by the 

stiffeners that lie within 51 rnm (2 inches) of its edges so that the 

opening actually behaves as a solid panel. With the original 

window diagonal measuring 2.15 m (84.55 inches), the corresponding 

change in length per 445 kN (100 kips) of vertical load would be 

0.051 rnm (0.002 inches). 11 

Second, the deformations of the entire panel associated with 

the Vierendeel truss analogy can be incorporated into the prediction 

of the change in length of window diagonals. ny computing the 

diagonal change of the whole panel modeled as a Vierendeel truss~ 

the same percentage change can be applied to the window openings. 

It will be shown in the next chapter that the corresponding change 

in diagonal lengths per 445 kN (100 kips) of load as predicted by 

this method yields values that are seven times greater than the 

values obtained in the first method. 
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It is expected that the second method would yield better 

predictions of panel window behavior since the assumption made in 

the first method has no substantiated theoretical basis. Therefore, 

the Vierendeel truss analogy will be used in this paper for pre-

dieting window diagonal deformations. 

6.5 Buckling 

The finite element analysis used by Lev Zetlin Associates 

predicted elastic buckling to begin at the two sub-panel regions 

shown in Fig. 1. Predicting the buckling of these same panels 

using other techniques can be accomplished using the following 

methods. 

Reference 8 provides an equation for the determination of 

a critical shear stress for a rectangular plate: 

where 

and 

Ks = 5 (1 + 12) 
a 

1 K 
(b/h)2 s 

(8) 

(9) 

(10) 

For the two sub-panel sizes in question, each measuring 

0.84 x 1.53 m (33 x 60 inches), T equals 69.7 ~Wa (10.1 ksi). 
xycr 
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Although the panel itself is subjected to a loading of 

pure shear, the sub-panels are subjected to a different type of 

loading primarily due to the presence of the window openings. 

Therefore the likely possibility of normal or direct stress must be 

considered. 

Using equations similar to Eq. 8 but using a K value of 

6.25 (representing the maximum buckling coefficient for simply 

supported edges), critical normal stress values of 20.3 MPa (2.94 

ksi) and 67.1 MPa (9.73 ksi) can be obtained for the long and short 

directions, respectively, of the sub-panel plate region. 

For the case of combined shear and direct stress, Ref. 12 

provides an interaction formula which, when satisfied, indicates a 

critical stress combination: 

R 2 +R = 1 s X 
(11) 

where 

R = T/T s cr (12) 

and 
R = cr/cr 

X cr (13) 

This report will use the stresses predicted by both the 

Vierendeel truss analogy and the plane stress method in conjunction 

with Eqs. 11 through 13 to predict the buckling condition for the 

subpanel regions in question. 
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6.6 Weld Behavior 

Testing of the three-story shear wall was terminated when 

fracture of stiffener welds occurred. It is important, therefore, 

to be able to properly identify the strength and behavior of the 

panel's structural welds so that the overall panel performance will 

meet expectations. Research data is readily available and can be 

used to determine the behavior of the \velded details in the test 

panel. 

The integrity of the welds connecting the panel to the 

stiffeners and the latter to other intersecting stiffeners plays an 

important role in the panel's behavior. All the welds were designed 

as fillet welds and were apparently intended to develop the full 

strength of the connected parts. It is also important to note that, 

although the direction of loading of a welded detail is not a con-

sideration in the design strength of the weld, significant behavioral 

differences exist between longitudinally and transversely loaded 

weld groups. 

Reference 13 notes that the ultimate load of transversely 

loaded welded joints connected using E70 electrodes is 1-1/2 times 

that of longitudinally loaded joints, whereas the deformation at 

ultimate load of the latter is four times that of the former. 

These results are verified in Ref. 14 where tests on 6.4 mm (1/4 

inch) E60 welds exhibited an ultimate load of 2.72 kN/mm (15.5 kips/ 

· h) h 1 d d 1 of 90°. ~nc w en oa e at a transverse ang e This information 

can be used to verify the compatability of the weld design with the 
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joined members; it is of particular interest to examine the pre-

dieted behavior of the connection containing the intersection of a 

152 mm (6 inch) horizontal stiffener with a 127 mm (5 inch) 

interrrupted ve~tical stiffener. 

Knowing that the ultimate shear stress of a transverse 

fillet weld is 1-1/2 times that of longitudinal fillet welds or 

0.8 - 1.3 times the nominal electrode tensile strength, the ultimate 

load for the 127 mm (5 inch) stiffener connection can be computed to 

15 be 498 to 712 kN (112 to 160 kips). The corresponding ultimate 

load of the stiffener base metal material is a nominal load of 

645 kN (145 kips). The weld design and component strength are 

compatible and the detail can be expected, therefore, to develop the 

full strength of the structure in question. 

This is just one detail that can be evaluated and designed 

based on past research and existing codes. Other details for longi-

tudinally loaded welds can be evaluated in a similar manner. The 

general behavior of the welds in the panel will be examined in the 

next chapter, where a comparison of theory to actual results will be 

presented and discussed. 
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7. CO~WARISON OF THEORETICAL ANALYSES WITH EXPERIMENTAL RESULTS 

The purpose of this chapter is to compare and discuss the 

correlation between theoretical analyses, as presented in Chapter 

6, with experimental test results so that an understanding of the 

accuracy and applicability of theory can be better understood. 

7.1 Vierendeel Truss Analogy and Plane Stress Behavior 

An existing structural analysis computer program (utilizing 

the direct stiffness method) was used to obtain normal and shearing 

stresses at the strain gage locations. Full member sizes were used 

as indicated in Fig. 26 and cross-sectional properties were computed. 

A uniform shear load was applied to the structure to simulate loading 

frame conditions. The results of this analysis appear in Tables 1 

through 11. 

A computer program was written to solve for the unknown 0 

in the plane stress problem using finite differences. Again, a 

uniform shear loading was applied to the structure. Normal and 

shearing stresses at strain gage locations were then computed 

using Eqs. 4 through 6. The results of this analysis also appear 

in Tables 1 through 11. 
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A comparison of these two differing theories with experi­

mental results can best be made by examining each individual stress 

location and discussing particular trends or observations that occur 

there. General conclusions can then be made by noting the accuracy 

of the correlations at each particular gage location. 

Gages 1-3 

Front-to-back correlation of actual panel stresses is 

not good and indicates out-of-plane bending at this gage 

location. The truss analogy yields normal stresses only 

in the x-direction (since a beam member was used) and gives 

values within 40% of the actual values. Shearing stress is 

best approximated by the plane stress analogy but is approx­

imately 65% low at all load levels; much of this low value 

can be explained by the corresponding "missing" steel plate 

area due to the windows. Since the panel has 37% less area 

due to the window cutouts, the stresses predicted by the 

plane stress method should be amplified by the inverse of 

0.63 or 1.59. 

Since this gage is in a "solid plate" area that is a 

finite distance away from window openings and stiffeners, 

low normal stresses exist as predicted by the plane stress 

analogy. Shear stresses are 1.65 times that expected by 

this method. There is no effect due to slip of the bolted 

connections in the stress measurements at this location. 
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Gages 4-6 

a and T correlate well from front-to-hack. The y xy 

truss analogy yields values of a that are 1.50 to 1.95 
y 

higher than actual; shear stress values are 20% lower than 

results. Normal stress in the x-direction is low as is 

required by the boundary conditions provided by the window. 

In general, this location 1 s stress field is best appr-

oximated by the truss analogy. The strain gage is next to 

a window and therefore only longitudinal stresses can be 

transferred due to lack of constraint in the x-direction. 

This gage does not show any joint-slip effects. 

Gages 7-9 

Normal and shearing stresses correlate well on both 

sides of the panel. The values of a and T correlate y xy 

within 15% and 10%, respectively, with actual test results. 

Transverse normal stresses are near zero as assumed in the 

truss analogy and as necessitated by the window effects. 

Gages 10-12 

Lack of correlation between front and back readings 

indicates out-of-plane bending at this gage. Average a and 
X 

a results yield low stresses as predicted by the plane 
y 

stress method. Shearing stresses as expected from the plane 

stress method are half of corresponding test results. 
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·Overall, normal stresses at this location are closely 

approximated by the plane stress method; shearing stresses 

are amplified by a factor of 2.00 (gages 1-3 contained a 

factor.of 1.65) due to the window cut-outs. This gage can 

also be considered to be located in a "solid ·plate" region. 

Gages 13-15 

This gage possessed readings that did not correlate 

well from one side to the other. Stress reversal from the 

first to second loading and, in particular, the shear 

stress on the back during the first loading between 1.78 

and 2.23 MN indicate stress changes due to slip of a 

bolted joint. The truss analogy closely approximates cr 
X 

and Txy up to the point of slip. The longitudinal stress, 

cry' reads near zero as it should since this gage is directly 

above a window. 

Gages 16-18 

Normal and shearing stresses are in very good agreement 

on both sides of the panel. The truss analogy predicts 

and T as 70% higher and 20% lower than results, cry xy 

respectively. This gage is also near a window and is best 

approximated by the Vierendeel truss analogy. 
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Gages 19-21 

Out-of-plane bending is indicated by stress sign 

reversal from front-to-back. The horizontal normal 

stress, crx, is low as it should be at this gage location. 

However, the truss analogy yields compressive cr stresses 
y 

whereas the gage reads tensile stresses. Shearing stresses 

are best approximated by the plane stress analogy but are 

40-70% high. 

This gage is difficult to approximate because: (1) it 

is located near the inflection point in the column (near 

the center of the window) and therefo~e low positive or 

negative stresses can be encountered within a short distance 

of the gage, and (2) the gage is within 19 mm of a welded 

stiffener. 

Gages 22-24 

Poor correlation of stresses from front-to-back 

indicates combined bending and direct stress. Stress re-

versal in the second day of loading indicates effects of 

joint slippage. The average normal stress values are low 

and correlate very well with the plane stress analogy; 

shear stresses as predicted by this method agree within 

15-40%. This gage is in a solid plate region and is best 

approximated by the plane stress analogy. 
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Gages 25-27 

Good correlation exists between the gages on the front 

and back sides of the panel. The transverse normal stresses 

(cr ) are not low since the gage location is far enough 
X 

from a window so that constraint is developed in this 

direction. The truss analogy approximates cr and T y xy 

within 25%. 

Gages 28-30 

Bending of the panel prevents good correlation of gage 

results from one side to the other. Bolted joint slip 

effects are quite evident as indicated by stress reversals 

from loading one to loading two. The Vierendeel truss 

analogy agrees with actual test results within 10% up to 

the slip load. Longitudinal stresses are low as governed 

by the window boundary conditions. Shearing stress values 

are approximated best by the plane stress method but are 

still off the mark by 50-100%. 

Gages 31-33 

The front gage gives irrational results during both the 

first and second days of loading. Using the back gage as a 

reference, cr correlates with the truss analogy within 20%; 
y 

cr develops due to constraint, and shearing stresses cor­x 
relate best with the plane stress analogy (amplification 

factor= 1.43). 

-33-



shear loading, a semi-triangular shaped loading was applied 

to the model using a shear distribution of 49%, 42% and 9% 

at the first, second and third floor levels, respectively. 

The results of this analysis do not yield better results 

overall. First floor gages experience greater stresses with 

this loading method than before and consequently better agree 

with test results. Second floor gages are also predicted 

to have higher stresses when in fact the test results show 

stresses that are not as high. Third floor level stresses 

are not dramatically changed. 

The panel loading distribution is not uniform, and it 

is not as greatly concentrated at the two loading points as 

the column gages indicate; rather, the true load distribu­

tion can be expected to be somewhere between these extremes. 

Error in the readings of the column strain gages may occur 

due to bending of the column since strain gages were applied 

to only one side of the web. Further indications of load 

distributions are exhibited by the window diagonal deform-

ations. 

7. 2 '-lindow Deformation 

Using the same structural analysis program that was used in 

the Vierendeel truss analogy, overall panel corner displacements were 

obtained as shown in Fig. 28. The panel diagonal measurement changed 

by 0.0166% due to the uniform shear loading applied. This same per­

centage of change, as applied to the window diagonals, yields a 0.356 
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rnm (0.014 inches) change per 445 kN of vertical load. As previously 

noted, this value is seven times greater than the predicted value for 

a "steel plate window" under shear loading. 

A table of test results and predicted measurements is pre­

sented in Tables 13 and 14. The two major diagonals of three windows 

were monitored and their respective length changes are shown in the 

table. Since the diagonal shortening and lengthening deformations 

should theoretically be equal, an average absolute deformation value 

is also tabulated to account for anti-symmetric distortion. The last 

column in the table represents the percentage of total window deform­

ation for each particular window. Each window would receive 33-1/3% 

of the total window deformation under a uniformly distributed shear 

loading. This, however, does not occur due to the long bolted joints 

connecting the test frame to the panel. 

The first loading results indicate that the third floor 

window received 25% of the total distortion, whereas the second and 

first floor windows received 55% and 49%, respectively, of the same 

phenomena. Since these numbers total 129%, it can be stated that a 

29% error exists between predicted and actual measurements. 

The second loading results indicate percentages of total de­

formation of 39%, 38% and 34% for the third, second and first floor 

windows, respectively. The percentage error between theoretical and 

experimental results is now reduced to 11%, and a much more even load 

distribution is apparent. The window deformation results, therefore, 

provide yet another indication of the load distribution on the steel 
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7.3 Buckling and Out-of-Plane Deflections 

In this section, a detailed discussion of the contour maps 

will be presented; subsequently, the use of the Vierendeel truss 

analogy combined with the plane stress analogy will be used to 

establish predicted instability conditions. 

The contour map of the panel under no load shows initial 

out-of-plane deformations to be as great as 38 mm (1.5 inches) as 

shown in Fig. 19. This amount of eccentricity is tremendous when 

compared with the panel thickness of 6.4 mm. The various "hills 

and valleys" that are evident in this contour map help to explain 

the out-of-plane bending behavior noted at certain gage locations. 

The "steep" contours around the window openings are to be ignored 

in this figure because they result from the impossibility to obtain 

dial gage readings inside the perimeter of each window. 

The 107 kN contour map, illustrated in Fig. 20, shows 

virtually the same general contour pattern as the unloaded panel 

contour - as it should. The exact amounts of out-of-plane distortion 

in these two contour maps do not check because the maximum and 

minimum peak contour levels occur at the top of the panel; these 

readings were not obtainable for the 107 kN map because the panel 

was in the standing position and its top story was inaccessible. 

The 1.34 }lli contour map shows values relative to the 107 kN 

map. Out-of-plane distortions were not measured at either loading 

above the second floor and therefore appear blank on this map. It 
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is of particular interest to note the development of buckling in the 

sub-panel region between the first and second floors. Out-of-plane 

deformations at this location equalled 1.52 mrn at a load of 1.34 MN. 

The shape of the buckled sub-panel is noticeably rectangular in form 

and outlines the pattern of the panel stiffeners. 

The 2.45 ~rn contour map also shows distortions relative to 

the 107 kN map. Several of the smaller magnitude out-of-plane dis­

tortions disappeared or remained the same size in going from a load 

of 1.34 to 2.45 ~rn, but the sub-panel region distortion between 

windows increased five-fold as the load increased 83%, measuring 

7.62 mrn at the first day's maximum loading condition. Again, the 

sub-panel bulging is shown to be confined fairly well to the area 

defined by the stiffeners. 

Figures 29 and 30 show load versus lateral deformation 

plots for two grid points in the critical sub-panel region. Both 

grid points show ultimate buckling loads occurring at loads between 

2.00 MN and 2.23 MN under initial loading conditions. However, the 

phenomena observed in these figures of linear second day loading 

up to 3.12 }ffi requires explanation. 

There are three phenomena which can possibly explain the 

graphs shown in Figs. 29 and 30: (1) buckling of a structural 

component possessing initial out-of-straightness or load eccentricity, 

(2) residual stress effec~s, and (3) behavioral effects due to slip 

of the bolted joints. 
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'fuen a structural member possesses initial imperfections 

and is loaded in compression, the phenomenon of bifurcation will 

not occur. Rather, nearly linear lateral deformation will occur up 

to an ultimate load - a load which is somewhat smaller in magnitude 

than the theoretical bifurcation load. 16 The two figures under 

examination exhibit this type of behavior on the first day of 

loading. The second day's loading behavior, however, is difficult 

to explain using this theory. There is no reason to believe that 

those initial out-of-plane flaws and load eccentricities that caused 

an ultimate load to be observed on the first loading would disappear 

and allow a higher ultimate load upon undergoing a second loading. 

This theory, therefore, explains the observed ultimate load of 2.00 

to 2.23 MN, but fails to explain the complete hysteresis. 

Residual stresses cause "early" yielding of structural 

steel components and usually possess values near the base material's 

yi~ld stress in welded structures. Initial loading effects due to 

residual stresses yield non-linear behavior of the loaded member 

due to gradual yielding of the member cross-section; this effect is 

observed in the first day's loading. Upon unloading the structure 

and repeating the loading process, linear behavior should be observed 

up to the maximum load obtained on the first loading; then, non-linear 

behavior will again occur. This predicted behavior, based on 

knowledge of residual stress effects, does not occur during the 

second loading -- linear behavior exists beyond the first day's 

maximum load of 2.45 MN and continues up to an ultimate load of 
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3.34 ~rn. Residual stress effects, therefore, do not fully explain 

the figures in question. 

Slip of the bolted joints under load causes stress rever­

sal upon unloading. This statement is confirmed by several strain 

gages as previously noted. Loading the structure a second time 

will result in a shift of the initial "zero stress" level. The 

phenomenon is also evident in the strain gage readings and seems to 

occur between the loads of 890 and 1335 kN (200 and 300 kips). This 

means that the panel returns to its initial unloaded stress field at 

loads of 890 to 1335 kN and proceeds to behave as before upon 

further loading. The maximum load of 2.45 }ffi (550 kips) achieved on 

the first day of loading would thereby be equivalent to a load of 

3.34 to 3.79 MN (750 to 850 kips) for the second day's loading. 

It can be concluded that initial out-of-plane deformations 

and load eccentricities preclude the phenomenon of bifurcation from 

occurring and that residual stresses cause non-linear effects on the 

first loading of the panel. Non-linearity is erased during the 

second loading and an ultimate load is achieved which is considerably 

elevated due to stress reversals caused by slip of the bolted joints. 

Therefore, the ultimate panel load can be considered to be approxi­

mately 2.45 MN (550 kips). 

Predicting the ultimate load of the panel can be accomplished 

by interpolating the results from the Vierendeel truss analogy and 

the plane stress method. These methods predict the following stresses 

at a load of 2.45 MN: 
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Vierendeel Truss Plane Stress 

a (MPa) - 121.1 0.0 
X 

a (HPa) 0.0 0.0 y 

1' (MPa) 68.7 33.0 xy 

Note that the Vierendeel truss stresses apply to panel 

locations near the windows and that the plane stress method is 

applicable to plate regions that are far removed from the windows 

and stiffeners. Therefore, by interpolating or averaging these 

results over the sub-panel region in consideration, 

a = - 60.6 MPa (8.8 ksi) x ave. 

and 
1'xy = 50.9 MPa (7.4 ksi). ave. 

Use of Eqs. 11 through 13 yields a value of 1.44 for the right side 

of Eq. 11, representing a 44% error in comparison to the actual 

ultimate loading condition. This method indicates a lower instability 

load and would thus be conservative in view of the experimental 

results. 

7.4 Held Behavior 

One of the two stiffeners that were strain-gaged provides 

information that can be used to identify the strength of the welds 

at stiffener intersections. The strain gage locations are shown in 

Fig. 7; test results are tabulated in Table 15. 
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The test results show that the stiffener carried a tensile 

load of approximately 196 kN (44.1 kips) prior to failure of the 

weld connecting the 127 mm (5 inch) longitudinal stiffener to the 

152 mm (6 inch) ·transverse stiffener. This load is, at best, only 

39% of the predicted ultimate load for this connection. Three other 

similar welds were found to have failed in the same manner. The 

0 failure of these welds, which were loaded at an angle of 90 to the 

weld length, prompts several comments. 

Close examination of the joint shown in Figs. 23 and 24 

reveals the presence of welds from two different processes. Welds 

on one side of the joint were made using the manual shielded arc-

welding process, while the other welds in the joint appeared to have 

been made using a semi-automatic continuous wire feed process. The 

differing processes yielded ·two different results: (1) the heat 

input and consequently the fusion created by the processes are 

considerably different, and (2) the weld leg sizes resulting from the 

processes also differed. The manual stick-welding process yielded 

inferior results in both cases: lack of fusion is evident in the 

manual welds, and the legs in these welds rang~d from 4.8 - 8.1 mm 

(0.19 - 0.32 inches) compared with the design weld leg dimension 

of 6.4 mm (0.25 inch). The weld theoretically should fail in the 

throat; failure of a short-legged weld along the fusion line 

indicates faulty fabrication and consequently causes premature 

failure. 
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Welds loaded in a transverse manner exhibit greater 

strength and less ductility, as previously explained. Slight weld 

defects such as porosity, fit-up gaps and inclusions drastically 

reduce the strength of this type of weld. Gaps between welded com­

ponents of up to 25% of the weld leg sizes are noticeable in Fig. 24 

and further reduce the strength of the welds. 

Finally, the failure of four longitudinal continuity welds 

prompts the question: "Why not provide continuous longitudinal stif­

feners and interrupt the continuity of the shorter transverse stif­

feners"? Although this question seems to point to the solution of 

the given problem, it may in fact simply shift the problem from the 

welds of the longitudinal stiffeners to those of the transverse 

stiffeners. Considerable normal stresses in both the panel plate 

material and stiffeners occur in both directions near the window 

openings, depending upon the location of the point in question. 

Since equal stiffener loads are expected and shown to exist in both 

vertical and horizontal stiffeners, the question of stiffener con­

tinuity priority is not pertinent; the quality of the designed 

welds is the controlling factor for the development of panel 

integrity. 
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8. SUMMARY AND CONCLUSIONS 

It can.be concluded that the design factor of safety for 

the tested steel shear wall equals 2.44. This number reflects the 

ultimate panel load achieved on the first day of loading and also 

the ultimate load achieved on the second day of loading> taking 

into account the shift in the "zero stress" level caused by slip of 

the bolted joints. 

The analytical models used in this paper are accurate within 

50% of actual test values. The Vierendeel truss analogy used the 

concept of shear lag and effective widths to obtain predicted stresses 

along the window perimeters. The effective widths used in this 

analysis were larger than those that would be selected from a 

reference handbook because of the relatively large cross-sectional 

stiffener sizes used in the panel design. An amplification factor 

of 1.59 used in conjunction with the plane stress analogy accurately 

predicts stresses for the remainder of the panel plate regions. 

This amplification factor is solely based upon the missing plate 

areas due to the presence of windows. 

It has been shown that, although the actual shear distri­

bution on the panel edges lies somewhere between a uniform and 

triangular distribution, the assumption of uniform shear loading 

yields acceptable stress results. A method of forecasting window 
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deformations has been presented and is accurate within 30%. Actual 

window deformation results show that a uniform shear loading can 

also be assumed in the analysis of panel in-plane deformations. 

A method of predicting sub-panel elastic buckling was 

presented and yielded conservative results that were accurate within 

44%. Panel contour maps showed large initial eccentricities due to 

fabrication which precluded the phenomenon of bifurcation from 

occurring. The maps also showed the confinement of the buckled 

zones to the sub-panel areas as defined by the stiffener grid 

pattern. 

Finally, the weld failures that caused the failure of the 

panel were investigated. Differing weld processes and minor flaws 

combined to reduce weld strength by as much as 61%. The question 

of directional stiffener continuity was subverted and the quality 

of the welds was instead emphasized. 
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TABLE 1 RESULTS VERSUS ANALYSIS - GAGES 1-3 AND 34-36 

RESULTS ANALYSIS 
FRONT BAGK VIERENDEEL TRUSS PLANE snmss 

Day Load a a T a a T a . cry T a a T 
X y xy X y xy X xy X y xy 

(kN) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) 

1 445 - 2.2 - 6.1 12.6 0.8 - 5.5 13.4 1.6 7.0 13. 7' 7.0 9.1 

890 - 5.8 -12.3 28.4 0.5 -12.3 30.6 - 3.2 14.0 27.4 14.0 18.2 

1335 - 5.5 -13.7 44.9 - 0.9 -18.9 47.4 - 4.8 21.0 41.1 21.0 27.3 

1780 16.4 66.4 33.9 - 3.2 -25.2 65.0 - 6.4 28.0 54.8 28.0 36.4 

I 2225 2.9 16.0 69.0 - 5.8 -32.0 82.1 - 8.0 35.0 68.5 35.0 45.4 
.!:--

"' I 
2 445 0.2 26.8 11.2 - 7.7 - 3.8 18.6 - 1.6 7.0 13.7 7.0 9.1 

890 - 0.6 21.3 27.0 - 7.2 -11.1 35.2 - 3.2 14.0 27.4 14.0 18.2 

1335 - 1.5 16.6 42.0 - 6.6 -17.9 50.7 - 4.8 21.0 41.1 21.0 27.3 

1780 - 1. 7 12.4 57.8 - 6.4 -25.5 66.9 - 6.l• 28.0 54.8 28.0 36.4 

2225 - 1.8 8.3 7'•· 5 - 7.9 -3l •. 1 83.5 - 8.0 35.0 68.5 35.0 45.5 

2670 - 0.3 9.2 91.1 -11.4 -43.3 100.7 - 9.6 42.0 82.2 42.0 54.6 

3115 5.2 - '•.6 117.3 -30.4 -68.1 118.7 -11.2 49.0 95.9 49.0 63.7 



TABLE 2 RESULTS VERSUS ANALYSIS - GAGES 4-6 AND 37-39 

RESULTS ANALYSIS . FRONT BACK PLANE STRESS 

Day Load a a 1' a a 1' a a 1' a a 1' 
X y xy X y xy X y xy X y xy 

(kN) (MPa) (MPa) (MPa) (MPa) (HPa) (HPa) (MPa) (MPa) (HPa) (MPa) (NPa) (HPa) 

1 445 - 0.6 -10.4 10.4 0.8 - 9.9 10.8 - 18.5 9.7 2.8 3.8 7.3 

890 0.0 -22.8 21.4 0.2 -22.7 24.7 - 37.0 19.4 5.6 7.6 14.6 

1335 1.6 -34.1 34.7 0.4 -34.4 38.0 55.5 29.1 8.4 11.4 21.9 

1780 4.4 -49.4 44.1 - 1.5 -51.1 50.8 - 74.0 38.8 11.2 15.2 29.2 
I 

.1:'-
2225 8.3 -60.4 71.8 - 3.0 -63.8 64.5 - 92.5 48.5 14.0 19.0 36.5 -...! 

I 

2 445 3.3 - 8.3 12.4 0.6 - 9.2 12.8 - 18.5 9.7 2.8 3.8 7.3 

890 3.7 -22.3 25.3 0.3 -23.3 26.4 - 37.0 19.4 5.6 7.6 14.6 

1335 5.0 -35.1 37.6 - 0.7 -36.8 39.5 - 55.5 29.1 8.4 11.4 21.9 

1780 6. 7. -48.1 50.3 - 2.0 -50.7 52.9 - 74.0 38.8 11.2 15.2 29.2 

2225 9.5 -60.7 63.1 - 4.1 -6'•. 8 66.3 - 92.5 '•8. 5 14.0 19.0 36.5 

2670 13.6 -71.1 75.9 - 7.3 -77.3 80.0 -111.0 58.2 16.8 22.8 43.8 

3115 21.9 -72.5 88.3 -14.7 -83.5 34.6 -129.5 67.9 19.6 26.6 51.1 



TABLE 3 RESULTS VERSUS ANALYSIS - GAGES 7-9 AND l10-l,2 

RESULTS ANALYSIS 

FRONT BACK VIERENDEEL TRUSS PLANE STRESS 

Day Load a a T a a T a a T a a T 
X y xy X y xy X y xy X y xy 

(kN) (HPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (HPa) (HPa) (MPa)_ 

1 445 - 2.7 - 25.7 9.9 0.3 - 24.6 7.9 - 23.7 9.7 - 1.6 1.9 5.7 

890 - 4.8 - 53.8 20.6 1.1 - 54.3 17.7 - 47.4 19.4 - 3.2 3.8 11.4 

1335 -527.2 -238.7 21''· 6 2.2 - 83.5 27.0 - 71.1 29.1 - '•.8 5.7 17.1 

1780 - 14.7 -115.9 47.3 6.0 -113. 2 34.2 - 94.8 38.8 - 6.4 7.6 22.8 

I 2225 - 13.7 -143.5 61.5 8·.1 -141.5 43.5 -118.5 48.5 - 8.0 9.5 28.5 
.p-
OJ 
I 

2 445 - 6.1 - 20.8 12.5 2.2 - 23.8 9.2 - 23.7 9.7 - 1.6 1.9 5.7 

890 - 6.6 - 52.3 24.4 3.5 - 54.4 18.3 - 47.4 19.4 - 3.2 3.8 11.4 

1335 - 10.1 - 82.8 36.8 4.9 - 83.5 27.3 - 71.1 29.1 - 4.8 5.7 17.1 

1780 - 13.7 -113.2 49.7 6.3 -113.2 36.1 - 94.8 38.8 - 6.4 7.6 22.8 

2225 - 23.2 -145.6 65.2 7.9 -142.8 44.5 -118.5 48.5 -·8.0 9.5 28.5 

2670 -22.1 -169.7 77.3 9.7 -168.4 53.4 -142.2 58.2 - 9.6 11.4 34.2 

3115 -27.9 -188.4 102.1 12.6 -193.2 70.4 -165.9 67.9 -11.2 13.3 39.9 



TABLE 4 RESULTS VERSUS ANALYSIS - GAGES 10-12 AND 43-45 

RESULTS ANALYSIS 

FRONT BACK . TRUSS PLANE STRESS 

Day Load a a L' a a L' a 0 L' a a L' 
X y xy X y xy X y xy X y xy 

(kN) (MPa) (HPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (HPa) (MPa) (HPa) (HPa) 

1 445 - 3.6 - 9.2 8.7 6.1 - 1.1 17.0 3.0 10.0 - 0.1 0.0 6.0 

890 - 6.5 -18.1 18.7 12.6 - 4.1 38.8 6.2 20.0 - 0.2 o.o 12.9 

1335 - 5.8 -22.0 28.0 16.0 - 9.5 61.3 9.3 30.0 - 0.3 0.0 18.0 

1780 - 3.2 -22.3 35.8 15.1 -17.2 81.4 12.4 ltO. 0 - 0.4 o.o 24.0 

2225 9.0 -12.8 40.0 4.5 -32.0 103.5 15.5 50.0 - 0.5 o.o 30.0 
I 

.!:'-
\.0 
I 2 445 - 5.7 0.4 4.8 2.2 lt.O 23.0 3.1 10.0 - 0.1 0.0 6.0 

890 - 6.0 - 7.0 15.0 7.5 - 1.3 43.1 6.2 20.0 - 0.2 o.o 12.0 

1335 - '•· 6 -11.9 24.0 10.4 - 8.3 62.5 9.3 30.0 - 0.3 0.0 18.0 

1780 0.9 -13.0 31.9 8.8 -19.1 83.5 12.4 40.0 - 0.4 0.0 2lt.O 

2225 12.2 - 8.3 37.5 0.7 -33.5 10lt. 2 15.5 50.0 - 0.5 0.0 30.0 

2670 29.9 4.6 40.4 -15.6 -52.1 123.5 18.6 60.0 - 0.6 0.0 36.0 

3115 26.0 - 0.3 36.2 -21.1 -47.5 133.2 21.7 70.0 - 0.7 0.0 42.0 



TABLE 5 RESULTS VERSUS ANALYSIS - GAGES 13-15 AND /46-48 

RESULTS ANALYSIS 

FRONT BACK VIERENDEEL TRUSS PLANE STRESS 

Day Load a a T a a T a a T a a T 
X y xy X y xy X y xy X y xy 

(kN) (NPa) (HPa) (MPa~ (NPa) (MPa) (HPa) (MPa) (MPa) (HPa) (HPa) (MPa) (HPa) 

1 445 27.0 2.9 7.9 19.3 0.6 6.1 28.2 10.0 - 0.3 0.1 6.1 

890 61.3 6.2 19.9 44.4 1.1 14.6 56.4 20.0 - 0.6 0.2 12.2 

1335 95.9 10.8 32.2 67.5 2.0 23.9 84.6 30.0 - 0.9 0.3 18.3 

1780 122.1 12.1 40.4 81.4 -1.9 3.9 112.8 40.0 - 1. 2 0.4 24.4 

2225 144.2 16.2 43.1 91.8 0.0 -57.5 141.0 50.0 - 1.5 0.5 30.5 
I 

lJI 
0 2 ''''5 1.0 - 5.5 - 3.4 - 4.8 I 1.9 -39.5 28.2 10.0 - 0.3 0.1 6.1 

890 35.4 - 1.4 7.1 19.2 2.4 -31.6 56.4 20.0 - 0.6 0.2 12.2 

1335 68.7 3.4 18.0 42.1 2.3 -24.7 84.6 30.0 - 0.9 0.3 18.3 

1780 102.8 8.6 29.6 64.9 1. 7. -18.8 112.8 40.0 - 1. 2 0.4 24.4 

2225 135.9 14.6 40.6 84.9 - 0.3. -14.6 141.0 50.0 - 1.5 0.5 30.5 

2670 160.0 18.0 46.8 98.0 - 1. 2 -20.1 169.2 60.0 - 1.8 0.6 36.6 

3115 120.0 40.0 27.0 55.1 14.4 11.2 197.4 70.0 - 2.1 0.7 42.7 



TAllLE 6 RESULTS VERSUS ANALYSIS - GAGES 16-18 AND 49-51 

RESULTS ANALYSIS 

FRONT DACK VIERENDEEL TRUSS PLANE STRESS 

Day Load 0 0 l 0 0 l 0 0 l 0 0 l 
X y xy X y xy X y xy X y xy 

(kN_L (NPa) (NPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) 

1 '•45 - 1. 7 -12.5 10.2 - 0.1 -12.0 10.9 - 23.3 10.1 0.0 0.0 6.1 

890 - 3.1 -27.7 22.4 1.0 -27.0 24.5 - 46.6 20.2 0.0 0.0 12.2 

1335 - 3.3 -42.0 35.6 1.7 -41.3 38.4 - 69.9 30.3 0.0 0.0 18.3 

1780 - 2.8 -56.1 49.3 1.5 -56.2 53.1 - 93.2 40.4 o.o o.o 24.4 

2225 - 0.7 -67.3 62.7 0.8 -67.9 66.9 -116.5 50.5 0.0 0.0 30.5 
I 

\.11 

7'2 445 2.6 - 6.5 11.7 - 3.6 - 8.6 14.9 - 23.3 10.1 0.0 0.0 6.1 

890 1.2 -22.8 24.6 - 2.9 -24.3 28.8 - 46.6 20.2 0.0 0.0 12.2 

1335 0.5 -37.7 37.1 - 2.4 -39.0 41.9 - 69.9 30.3 0.0 0.0 !8.3 

1780 - 0.2 -53.1 50.0 - 1.5 -53.5 55.1 - 93.2 40 ·'· 0.0 o.o 24.4 

2225 - 0.4 -67.6 63.1 - 1.6 -68.2 68.8 -116.5 50.5 0.0 0.0 30.5 

2670 0.7 -79.4 75.9 - 3.4 -78.7 82.8 -139.8 60.6 o.o 0.0 36.6 

3115 - 5.8 -78.7 92.5 - 5.6 -53.8 98.7 -163.1 70.7 0.0 0.0 42.7 



TABLE 7 RESULTS VERSUS ANALYSIS - GAGES 19-21 AND 52-54 

RESULTS ANALYSIS 

FRONT BACK VIERENDEEL TRUSS PLANE STRESS 
cr cr 1" cr cr 1" cr cr 1" cr cr 1" Day Load X y xy X y xy X y xy X y xy 

(kN) (HPa) (NPa) (NPa) (NPa) (HPa) (HPa) (NPa) (t-fi'a) (MPa) (NPa) (NPa) (MPa) 

1 445 - 1. 2 - 3.5 1.1 1.7 7.7 4.3 - 9.5 10.1 0.1 0.1 6.1 

890 - 3.8 - 7.7 2.9 5.3 19.8 9.5 -19.0 20.2 0.2 0.2 12.2 

1335 - 5.6 -11.2 4.7 7.2 32.4 15.3 -28.5 30.3 0.3 0.3 18.3 

1780 - 7.2 -13.5 6.2 9.1 46.2 22.1 -38.0 40.4 0.4 0.4 24.4 

·(, 2225 -10.2 -15.5 7.2 11.7 60.2 27.8 -47.5 50.5 0.5 0.5 30.5 
N 

I 2 445 - 6.8 - 1.2 3.1 5.1 14.8 8.8 - 9.5 10.1 0.1 0.1 6.1 

890 - 8.6 - 5.3 4.5 7.2 25.6 14.3 -19.0 20.2 0.2 0.2 12.2 

1335 -10.1 - 8.8 6.1 8.8 36.4 19.3 -28.5 30.3 0.3 0.3 :C8.3 

1780 -11.4 -12.6 6.9 10.4 48.2 24.4 -38.0 40.4 0.4 0.4 24.4 

2225 -13.2 -15.5 8.7 11.5 61.0 29.4 -47.5 50.5 0.5 0.5 30.5 

2670 -15.4 -16.8 10.1 12.3 73.1 35.3 -57.0 60.6 0.6 0.6 36.6 

3115 -14.1 - 8.6 8.8 - 3.3 58.7 62.0 -66.5 70.7 0. 7 0. 7 42.7 



TtillLE 8 RESULTS VERSUS ANALYSIS - GAGES 22-24 AND 55-57 

RESULTS ANALYSIS 

FRONT BACK VIERENDEEL TRUSS PLANE STRESS 

Load 
(J (J T (J (J T (J (J T (J (J T nay X y xy X y xy X y xy X y xy 

(kN) (HPu) (MPa) (HPa) (NPa) (HPa) (~IPa) (HPa) (NPa) (NPa) (HPa) (NPa) (HPa) 

1 445 - 1.5 1.8 7.7 0.1 - 3.1 -24.5 - 9.0 1.5 0.0 0.1 6.1 

890 - 2.7 4.2 17.3 1.5 -·5.3 -58.5 -18.0 3.0 0.0 0.2 12.2 

1335 - 3.3 7.5 27.5 1.2 - 7.1 -62.1 -27.0 4.5 0.0 0.3 18.3 

1780 - .1.8 10.6 38.2 2.2 - 7.8 -69.7 -36.0 6.0 0.0 0.4 24.4 

I 2225 - 0.4 13.7 49.0 3.5 - 8.3 -89.0 -45.0 7.5 0.0 0.5 30.5 \J1 
w 
I 

2 445 7.1 - 3.9 9.2 0.8 1.3 36.7 - 9.0 1.5 0.0 0.1 6.1 

890 5.5 - 0.4 19.2 - 6.0 -25.6 45.7 -18.0 3.0 0.0 0.2 12.2 

1335 4.4 3.0 29.0 2.4 - 3.8 37.7 -27.0 4.5 0.0 0.3 18.3 

1780 3.8 8.0 38.7 3.4 - 5.8 37.9 -36.0 6.0 0.0 0.4 21, ·'' 

2225 3.4 13.5 49.0 4.2 - 7.5 38.2 -45.0 7.5 0.0 0.5 30.5 

2670 4.7 18.4 59.4 5.3 - 7.1 37.7 -54.0 9.0 0.0 0.6 36.6 

3115 17.0 29.7 71.8 3.5 - 7.7 38.4 -63.0 10.5 0.0 0.7 42.7 



TABLE 9 RESULTS VERSUS ANALYSIS - GAGES 25-27 AND 58-60 

RESULTS ANALYSIS 

FRONT BACK VIERENDEEL TRUSS PLANE STRESS 

Load 
a a T a a T a a T a a T Day X y xy X y X}9 X y xy X y xy 

(kN) (HPa) (HPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (HPa) 

1 445 - 6.2 - 19.9 13.9 - 9.0 - 19.0 15.0 - 23.4 10.1 0. 2 . 0.1 6.1 

890 -11.5 - 44.6 30.9 -20.4 - 43.8 34.6 - 46.8 20.2 0.4 0.2 12.2 

1335 -16.8 - 68.4 48.2 -31.1 - 68.9 54.0 - 70.2 30.3 0.6 0.3 18.3 

1780 -22.3 -· 92.5 65.7 -39.1 - 95.2 72.5 - 93.6 40.4 . 0.8 0.4 24.4 

2225 -27.7 -111.8 82.8 -45 .. 9 -117.3 88.3 -117.0 50.5 1.0 0.5 30.5 
I 

V1 

f 2 445 0.8 - 14.1 13.1 0.9 - 22.5 10.4 - 23.4 10.1 0.2 0.1 6.1 

890 - 6.2 - 39.3 31.1 -11.2 - 47.9 30.2 - 46.8 20.2 0.4 . 0.2 12.2 

1335 -13.5 - 63.4 48.2 -22.4 - 71.8 49.1 - 70.2 30.3 0.6 0.3 18.3 

1780 -21.1 - 88.3 66.1 -33.5 - 95.9 68.8 - 93.6 40.4 0.8 0.4 24.4 

2225 -29.7 -113.2 84.2 -45.0 -120.1. 88.3 -117.0 50.5 1.0 0.5 30.5 

2670 -36.8 -133.9 100.7 -53.2 -142.1 105.6 -140.'• 60.6 1.2 0.6 36.6 

3115 -15.5 -126.3 103.5 -54.3 -185.6 107.0 -117.0 70.7 1.4 0.7 42.7 



TABLE 10 RESULTS VERSUS ANALYSIS - GAGES 28-30 AND 61-63 

RESULTS ANALYSIS 

FRONT BACK VIERENDEEL TRUSS PLANE STRESS 
a a T a a T a a T a a T Day Load X y xy X y xy X y xy X y xy 

(k.N) (HPa) (HPa) (HPa) (MPa) (MPa) (MPa) (NPa) (MPa) (HPa) (MPa) (MPa) (MPa) 

1 445 - 25.1 - 3.6 6.8 - 17.9 0.2 3.2 - 22.0 12.5 0.6 -0.2 6.0 

890 - 52.9 - 8.0 15.0 - 35.4 2,0 5.2 - 44.0 25.0 1.2 -0.4 12.0 

1335 - 76.6 -11.7 23.0 - 56.0 2.2 7.8 - 66.0 37.5 1.8 -0.6 18.0 

1780 - 96.6 -13.7 23.9 - 73.1 2.0 9.7 - 88.0 50.0 2.4 -0.8 24 .o 

·I 2225 -120.1 -14.9 16.2- 89.7 4.4 12.1 -110.0 62.5 3.0 -1.0 30.0 
1..11 
1..11 
I 

2 445 23.8 - 7.0 -14.1 14.9 11.7 -15.5 - 22.0 12.5 0.6 -0.2 6.0 

890 - 11.6 -10.3 - 4.8- 17.6 8.4 - 7.4 - 44.0 25.0 1.2 -o.t, 12.0 

1335 - 47.5 -12.8 3.8 - 49.3 5.3 0.7 - 66.0 37.5 1.8 -0.6 18.0-

1780 - 81.4 -1'1.1 8.6 - 78.0 3.2 8.4 - 88.0 50.0 2 .ll -0.8 2ll. 0 

2225 -117.3 -15.0 7.6 -118.7 - 1.4 21.6 -110.0 62.5 3.0 -1.0 30.0 

2670 -152.5 -18.0 - 4.5 -149.7 1.6 30.5 -132.0 75.0 3.6 -1.2 36.0 

3115 -198.7 -26.2 -28.8 -178.7 9.2 36.3 -154.0 87.5 4.2 -1.4 '•2. 0 



TABLE 12 LOADING FRAME COLUHN GAGE READINGS 

Percent Percent 
Theoretical of Total of Total 

Machine Column Load @ Column Column 
Day Load Load Gage 1169 Load Gage 1166 Load 

(kN) (kN) (kN) (%) (kN) (%) 

1 0 0 0 0 0 0 

223 214 53 25 0 0 

445 427 218 51 40 9 

668 645 338 52 53 8 

890 859 449 52 62 7 

1113 1072 574 54 107 10 

1335 1286 708 55 169 13 

1558 1500 828 55 200 13 

1780 1713 966 56 263 15 

2003 1931 1099 57 316 16 

2 445 427 n/a n/a 45 10 

890 859 n/a n/a 169 20 

1335 1286 n/a n/a 276 21 

1780 1713 n/a n/a 383 22 

2225 2140 n/a n/a 507 23 

2670 2568 n/a n/a 627 24 
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TABLE 13 WINDOW DIAGONAL ANALYSES AND RESULTS FOR FIRST LOADING 

Average Predicted 
Diagonal Diagonal Length Length Average Change 

X 33-1/3% Window Load Shortening Lengthening Change Change Predicted Chnnge 
(kN) (mm) (mm) (mm) (mm) (%) 

3rd 445 0.201 0.274 0.239 0.358 22 
Floor 890 0.193 0.838 0.516 o. 716 24 

1335 0.221 1.455 0.838 1.074 26 

1780 0.213 2.294 1.255 1.433 29 

25 Average 
I 

V1 
()) 2nd 445 0.386 0.505 0.447 0.358 41 I 

Floor 890 1.257 1.113 1.186 o. 716 55 

1335 1.961 1. 783 1.872 1.074 57 

1780 3.200 2.565 2.883 1.433 66 

55 Average 

1st 4ll5 0.442 0.1199 0.470 0.358 43 
Floor 890 1.049 1.112 1.082 o. 716 50 

1335 1.676 1. 728 1. 702 1.074 52 

1780 2.022 2.412 2.217 1.433 51 

49 Average 

129 Total 



TABLE 14 WINDOW DIAGONAL ANALYSES AND RESULTS FOR SECOND LOADING 

Average Predicted 
Diagonal Diagonal Length Length Average Change 

X 33-1/3% \Undow Load Shortening Lengthening Change Change Predicted Change 
(kN) (mm) (mm) (mm) (mm) (%) 

3rd 223 0.000 0.000 0.000 0.000 0 
Floor 445 0.175 0.315 0.246 0.358 23 

1335 1.519 1.402 1.461 1.074 45 

1780 2.174 2.002 2.088 1.433 48 

39 Average 

I 
V1 
\() 

2nd 223 0.000 0.000 0.000 0.000 0 J 

Floor 445 . 0.366 0.450 0 ·'•09 0.358 38 

1335 1.557 0.729 1.143 1. 074 35 

1780 2.215 1.321 1. 768 1.433 41 

38 Average 

1st 223 0.000 0.000 0.000 0.000 0 
Floor 445 0.269 n/a 0.269 0.358 25 

1335 1.306 1.128 1.217 1.074 37 

1780 1.839 1. 717 1. 778 1.433 41 

34 Average 

111 Total 



TABLE 15 TEST RESULTS OF STIFFENER GAGES 

Hachine Average Strain on Average Stiffener 
Load Vertical Gages Stress Load 
(kN) (micro-mm/rnm) (MPa) (kN) 

445 16 3.3 5.3 

890 27 5.6 8.9 

1335 36 7.5 12.0 

1780 42 8.7 14.2 

2225 47 9.7 15.6 

2670 56 11.6 18.7 

3115 588 121.7 196.2 

3338 . 496 102.7 165.5 
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Fig. 3 Top Panel-to-Frame Connection 
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Fig. 4 Top Panel-to-Frame Connection 
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Fig. 5 Typical Strain Gage Mounting 
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Fig. 8 Panel Grid Markings 

Fig. 9 Window Diagonal Rods and LVDT's 

-68 



Fig. 10 Typical ,LVDT Mounting 
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Fig. 11 Dial Gage Ladder 
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Fig. 12 Detai~ of Dial Gage Ladder and 

Grid Points 
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Fig. 13 Panel Lifting Arrangement 
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Fig. 13 Panel Lifting Arrangement 
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Fig. 14 Panel Positioned in Testing Machine 
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Fig. 15 Racking Deflection 

Measurement Devices 
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Fig. 16 Plumb Bob and Lab Table Detail 
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Applied Machine Load 

Fig. 17 In-plane Deformation Measurements 
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Applied Machine· Load 

t 
Fig. 18 .Hindow Diagonal Deformation Measurements 
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Fig. 23 Typical Weld Failure 

Fig. 24 Cross-section of Weld Failure 
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Fig. 25 Sub-panel Out-of-Plane Deformation 
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Fig. 26 Vierendeel· Truss Model Showing Full Member Widths 
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Fig. 27 Effective Width Concept; (a) Structure subjected to 
concentrated loading, (b) Ribbed cross-section, 
(c) Actual stress distribution, and (d) Stress 
distribution using the effective width concept. 
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NOMENCLATURE 

A stiffener area 

a longitudinal plate length 

b effective design width or transverse plate length 

be effective width 

c stiffener spacing 

E Young's modulus of elasticity 

f actual stress in a compression element computed on the 

basis of the effective design width 

h plate thickness 

I moment of inertia of a stiffener 
r 

i integer counter 

K buckling coefficient s 

L member length 

N uniform shear load 
xy 

r ~ 
S distance from plate centroid to stiffener centroid 

t plate thickness 

w/t flat-width-to-thickness ratio 

x distance in the direction of the member's length 

a aspect ratio, a/b 

Y shear strain 
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v Poisson's ratio 

~cr critical normal stress 

cr maximum principal stress; (+) means tensile p 

cr 
q 

cr 
X 

T 
xycr 

0 

stress; (-) means compressive stress 

minimum principal stress 

normal transverse stress in the x-direction 

normal longitudinal stress in the y-direction 

shearing stress in the x-y plane 

critical shear stress 

stress function 

angle from x-axis 

Laplace operator; 

to cr ; (+) means counter-clockwise 
2 P a2 a2 

'iJ =-+­ax2 ay2 
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APPENDICES 

APPENDIX A Principal and Orthogonal Stresses 

APPENDIX B In-Plane Deformations 

APPENDIX C Window Diagonal Deformations 

APPENDIX D Conversion Factors 
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APPENDIX A 

TABLE 1 TEST RESULTS: GAGES 1-3 

Day Load 
CJ CJ 0 CJ cr. T p q ·p X y xy 

(kN) (MPa) (MPa) (degrees) (HPa) (MPa) (MPa) 

1 445 8.6 - 16.8 40.7 - 2.2 6.1 12.6 

890 19.6 - 37.6 41.7 - 5.8 - 12.3 28.4 

1335 35.4 - 54.6 42.4 - 5.5 - 13.7 44.9 

1780 83.5 0.7 63.2 16.4 66.4 33.9 

2225 79.4 - 60.1 47.7 2.9 16.0 69.0 

2 445 30.8 3.9 69.9 0.2 26.8 11.2 

890 39.5 - 18.8 56.0 - 0.6 21.3 27.0 

1335 50.4 - 35.4 51.1 - 1.5 16.6 42.0 

1780 63.5 - 52.9 48.5 - 1.7 12.4 57.8 

2225 78.0 - 71.1 47.0 - 1.8 8.3 74.5 

2670 95.2 - 86.3 46.5 - 0.3 9.2 91.1 

3115 117.3 - 117.3 43.8 5.2 - 4.6 117.3 
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TABLE 2 TEST RESULTS: GAGES 4-6 

Day Load 
cr cr 0 cr cr T p q ·p X y xy 

(kN) (MPa) (MPa) (degrees) (MPa) (MPa) (MPa) 

1 445 6.0 - 17.0 32.5 - 0.6 - 10.4 10.4 

890 12.9 - 35.7 31.0 0.0 - 22.8 21.4 

1335 22.8 - 55.3 31.4 1.6 - 34.1 34.7 

1780 29.2 - 73.8 29.3 6.4 - 49.4 44.1 

2225 53.5 - 105.6 32.2 8.3 - 60.4 71.8 

2 445 11.1 - 16.1 32.4 3.3 - 8.3 12.4 

890 19.0 - 37.7 31.4 3.7 - 22.3 25.3 

1335 27.5 - 57.7 31.0 5.0 - 35.1 37.6 

1780 36.6 - 78.0 30.7 6.7 - 48.1 50.3 

2225 46.6 - 98.0 30.5 9.5 - 60.7 63.1 

2670 58.1 - 115.9 30.4 13.6 -71.1 75.9 

3115 74.5 - 125.6 30.9 21.9 - 72.5 88.3 
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TABLE 3 TEST RESULTS: GAGES 7-9 

Day Load 
cr cr 0 cr (). T p q ·p X y xy 

(kN) (MPa) (MPa) (degrees) (}1Pa) (MPa) (MPa) 

1 445 0.9 - 29.3 20.4 - 2.7 - 25.7 9.9 

890 2.7 - 61.3 20.0 - 4.8 - 53.8 20.6 

1335 -124.2 - 641.7 61.9 -527.2 - 238.7 214.6 

1780 3.9 - 134.6 21.5 - 1li. 7 - 115.9 47.3 

2225 10.8 - 168.4 21.7 - 13.7 - 143.5 61.5 

2 445 1.1 - 28.0 29.7 - 6.1 - ·20.8 12.5 

890 4.0 - 62.9 23.5 - 6.6 - 52.3 24.4 

1335 5.4 - 98.0 22.7 - 10.1 - 82.8 36.8 

1780 6.8 - 133.9 22.5 - 13.7 - 113.2 49.7 

2225 5.0 - 173.9 23.4 - 23.2 - 145.6 65.2 

2670 11.0 - 202.9 23.2 - 22.1 - 169.7 77.3 

3115 21.9 - 238.1 26.0 - 27.9 - 188.4 102.1 

-96-



TABLE 4 TEST RESULTS: GAGES 10-12 

Day Load a a ~p a a T p q X y xy 
(kN) (HPa) (HPa) (degrees) (MPa) (MPa) (MPa) 

1 445 2.8 - 15.5 36.1 - 3.6 - 9.2 8.7 

890 7.3 - 31.9 36.4 - 6.5 - 18.1 18.7 

1335 15.2 - 43.1 36.9 - 5.8 - 22.0 28.0 

1790 24.4 - 49.8 37.5 - 3.2 - 23.3 35.8 

2225 39.6 - 43.4 37.4 9.0 - 12.8 40.0 

2 445 3.0 - 8.3 61.2 - 5.7 0.4 4.8 

890 8.5 - 21.5 44.1 - 6.0 - 7.0 15.0 

1335 16.0 - 32.6 40.7 - 4.6 - 11.9 24.0 

1780 26.6 - 38.7 38.9 0.9 - 13.0 31.9 

2225 40.8 - 37.0 37.3 12.2 - 8.3 37.5 

2670 59.6 - 25.0 36.3 29.9 4.6 40.4 

3115 51.4 - 25.7 35.0 26.0 - 0.3 36.2 
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TABLE 5 TEST RESULTS: GAGES 13-15 

Day Load 
a a 0 a a. 'T p q ·p X y xy 

(kN) (NPa). (MPa) (degrees) (MPa) (MPa) (MPa) 

1 445 29.3 0.6 16.6 27.0 2.9 7.9 

890 67.7 - 0.3 17.9 61.3 6.2 19.9 

1335 107.0 0.1 18.5 95.9 10.8 32.2 

1780 135.2 - 1.1 18.2 122.1 12.1 40.4 

2225 157.3 3.1 17.0 144.2 16.2 43.1 

2 445 2.5 - 7.0 - 23.2 1.0 - 5.5 - 3.4 

890 36.7 - 2. 7 10.5 35.4 - 1.4 7.1 

1335 73.1 - 1. 2 14.4 68.7 3.4 18.0 

1780 111.1 0.1 16.1 102.8 8.6 29.6 

2225 148.4 2.3 16.9 135.9 14.6 40.6 

2670 173.9 4.0 16.7 160.0 18.0 46.8 

3115 128.3 31.7 17.0 120.0 40.0 27.0 
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TABLE 6 TEST RESULTS: GAGES 16-18 

Load cr cr ~p cr cr T Day p q X y xy 
(kN) (HPa) (MPa) (degrees) (MPa) (MPa) (MPa) 

1 445 4.4 18.6 31.0 - 1. 7 - 12.5 10.2 

890 10.2 41.0 30.7 - 3.1 - 27.7 22.4 

1335 17.9 63.1 30.7 - 3.3 - 42.0 35.6 

1780 26.6 - 85.6 30.8 - 2.8 - 56.1 49.3 

2225 37.0 - 104.9 31.0 - 0.7 - 67.3 62.7 

2 445 10.6 - 14.5 34.4 2.6 - 6.5 11.7 

890 16.6 - 38.2 32.0 1.2 - 22.8 24.6 

1335 23.1 - 60.4 31.4 0.5 - 37.7 37.1 

1780 29.9 - 83.5 31.1 - 0.2 - 53.1 50.0 

2225 37.5 - 105.6 31.0 - 0.4 - 67.6 63.1 

2670 46.5 - 124.9 31.1 0.7 - 79.4 75.9 

3115 57.5 - 141.5 34.3 - 5.8 - 78.7 92.5 
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TABLE 7 TEST RESULTS: GAGES 19-21 

Day Load cr cr 0 cr cr. T p q ·p X y xy 
(kN) (MPa) (MPa) (degrees) (HPa) (MPa) (MPa) 

1 445 - 0.8 - 3.9 22.5 - 1.2 - 3.5 1.1 

890 - 2. 2 - 9.3 28.0 - 3.8 - 7.7 2.9 

1335 - 3.0 - 13.9 29.7 - 5.6 - 11.2 4.7 

1780 - 3.4 - 17.3 31.4 - 7.2 - 13.5 6.2 

2225 - 5.2 - 20.6 35.0 - 10.2 - 15.5 7.2 

2 445 0.2 - 8.1 66.0 - 6.8 - 1.2 3.1 

890 - 2.1 - 11.8 55.1 - 8.6 - 5.3 4.5 

1335 - 3.4 - 15.5 48.0 - 10.1 - 8.8 6.1 

1780 - 5:o - 18.9 42.7 - 11.4 - 12.6 6.9 

2225 - 5.6 - 23.1 41.7 - 13.2 - 15.5 8.7 

2670 - 6.0 - 26.2 43.0 - 15.4 - 16.8 10.1 

3115 - 2.1 - 20.6 53.8 - 14.1 - 8.6 8.8 
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TABLE 8 TEST RESULTS: GAGES 22-24 

Day Load 
a a 0 a a T 

p q ·p X y xy 
(kN) (MPa) Cl-iP a) (degrees) (MPa) (MPa) (MPa) 

1 445 8.1 - 7.7 51.1 - 1. 5 1.8 7.7 

890 18.4 - 16.9 50.6 - 2.7 4.2 17.3 

1335 30.2 - 26.0 50.6 - 3.3 7.5 27.5 

1780 43.1 - 34.3 49.6 - 1. 8 10.6 38·. 2 

2225 56.1 - 42.8 49.1 - 0.4 13.7 49.0 

2 445 12.3 - 9.0 29.5 7.1 - 3.9 9.2 

890 21.9 - 16.9 40.6 5.5 - 0.4 19.2 

1335 32.8 - 25.4 44.3 4.4 3.0 29.0 

1780 44.6 - 32.8 46.5 3.8 8.0 38.7 

2225 57.6 - 40.8 47.9 3.4 13.5 49.0 

2670 71.1 - 48.2 48.3 4.7 18.4 59.4 

3115 95.2 - 48.7 47.5 17.0 29.7 71.8 
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TABLE 9 TEST RESULTS: GAGES 25-27 

Day Load 
cr cr ~p cr cr. 't p q X y xy 

(kN) (MPa). (MPa) (degrees) (MPa) (MPa) (MPa) 

1 445 2.4 - 28.5 31.8 - 6.2 - 19.9 13.9 

890 7.0 - 63.1 30.9 - 11.5 - 44.6 30.9 

1335 12.1 - 97.3 30.9 - 16.8 - 68.4 48.2 

1780 17.2 - 131.8 31.0 - 22.3 - 92.5 65.7 

2225 23.2 - 162.8 31.6 - 27.7 - 111.8 82.8 

2 445 8.4 - 21.7 30.3 0.8 - 14.1 13.1 

890 12.4 - 58.0 31.0 - 6.2 - 39.3 31.1 

1335 15.9 - 92.5 31.3 - 13.5 - 63.4 48.2 

1780 19.5 - 129.0 31.5 - 21.1 - 88.3 66.1 

2225 22.4 - 164.9 31.8 - 29.7 - 113.2 84.2 

2670 26.5 - 196.7 32.2 - 36.8 - 133.9 100.7 

3115 46.8 - 188.4 31.0 - 15.5 - 126.3 103.5 
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TABLE 10 TEST RESULTS: GAGES 28-30 

Day Load cr 0' 0 cr cr 1" p q ·p X y xy 
(kN) (NPa). (MPa) (degrees) (MPa) (MPa) (MPa) 

1 445 - 1.6 - 27.0 73.9 - 25.1 - 3.6 6.8 

890 - 3.5 - 57.4 73.2 - 52.9 - 8.0 15.0 

1335 - 4.3 - 84.2 72.4 - 76.6 - 11.7 23.0 

1780 - 7.2 - 102.8 75.0 - 96.6 - 13.7 23.9 

2225 - 12.4 - 122.1 81.4 - 120.1 - 14.9 16.2 

2 445 29.3 - 12.4 21.3 23.8 - 7.0 - 14.1 

890 - 6.1 - 15.7 - 48.8 - 11.6 - 10.3 - 4.8 

1335 - 12.4 - 48.0 83.8 - 47.5 - 12.8 3.8 

1780 - 13.0 - 82.8 82.9 - 81.4 - 14.1 8.6 

2225 - 14.5 - 118.0 85.8 - 117.3 - 15.0 7.6 

2670 - 17.9 - 152.5 - 88.1 - 152.5 - 18.0 - 4.5 

3115 - 21.5 - 203.6 - 80.8 - 198.7 - 26.2 28.8 
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TABLE 11 TEST RESULTS: GAGES 31-33 

Day Load 
cr cr 0 cr cr. T p q ·p X y xy 

(kN) (HPa). (MPa) (degrees) (MPa) (MPa) (MPa) 

1 445 - 12.4 - 12.4 62.6 - 17.6 - 13.7 2.7 

890 - 22.8 - 49.9 53.9 - 40.5 - 32.2 12.9 

1335 - 33.1 - 84.9 51.1 - 64.2 - 53.4 25.2 

1780 - 48.2 - 118.7 52.0 - 91.8 - 75.2 34.3 

2225 - 50.6 - 182.2 - 46.6 - 120.1 - 112.5- 65.7 

2 445 - 37.7 - 104.2 46.9 - 73.1 - 68.7 33.1 

890 - 47.5 - 131.1 48.3 - 93.8 - 84.9 41.5 

1335 - 56.7 - 156.6 49.2 - 113.9 - 99.4 49.5 

1780 - 66.2 - 184.2 50.2 - 135.9 - 114.5 58.0 

2225 - 75.9 - 213.2 51.1 - 158.7 - 129.7 66.9 

2670 - 135.9 - 494.0 59.7 - 403.0 - 227.0 155.9 
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TABLE 12 TEST RESULTS: GAGES 34-36 

Day Load 
0' 0' 0 0' 0' T p q ·p X y xy 

(kN) (MPa) (MPa) (degrees) (MPa) (MPa) (MPa) 

1 445 11.4 - 16.1 38.3 0.8 - 5.5 13.4 

890 25.3 - 37.1 39.1 0.5 - 12.3 30.6 

1335 38.3 - 58.1 39.6 - 0.9 - 18.9 47.4 

1780 51.7 - 80.0 40.2 - 3.2 - 25.2 65.0 

2225 64.0 - 102.1 40.5 - 5.9 - 32.0 82.1 

2 445 12.9 - 24.4 48.1 - 7.7 - 3.8 18.6 

890 26.1 - 44.4 43.4 - 7.2 - 11.1 35.2 

1335 38.8 - 63.3 41.8 - 6.6 - 17.9 50.7 

1780 51.6 - 83.5 40.9 - 6.4 - 25.5 66.9 

2225 63.6 - 105.6 40.6 - 7.9 - 34.1 83.5 

2670 74.5 - 129.7 40.5 - 11.4 - 43.3 100.7 

3115 71.1 - 169.1 40.5 - 30.4 - 68.1 118.7 
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TABLE 13 TEST RESULTS: GAGES 37-39 

Day Load 
a a 0 a a. T p q ·p X y xy 

(kN) (MPa) (MPa) (degrees) (HPa) (MPa) (MPa) 

1 445 7.4 - 16.6 31.8 0.8 - 9.9 10.8 

890 16.0 - 38.4 32.5 0.2 - 22.7 24.7 

1335 24.8 - 58.8 32.7 0.4 - 34.4 38.0 

1780 30.2 - 82.8 32.0 -. 1.5 - 51.1 50.8 

2225 37.9 - 104.9 32.4 3.0 - 63.8 64.5 

2 445 9.5 - 18.0 34.6 0.6 - 9.2 12.8 

890 17.4 - 40.5 33.0 0.3 - 23.3 26.4 

1335 24.7 - 62.3 32.7 -. o. 7 - 36.8 39.5 

1780 31.9 - 84.9 32.6 -. 2.0 - 50.7 52.9 

2225 38.5 - 107.6 32.7 - 4.1 - 64.8 66.3 

2670 44.9 - 129.7 33.2 - 7.3 - 77.3 80.0 

3115 - 0.3 - 98.0 22.6 - 14.7 - 83.5 34.6 
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TABLE 14 TEST RESULTS: GAGES 40-42 

Day Load 
a a 0 a a T p q ·p X y xy 

(kN) (MPa) (MPa) (degrees) (MPa) (MPa) (MPa) 

1 445 2.6 - 26.9 16.3 0.3 - 24.6 7.9 

890 6.3 - 59.5 16.3 1.1 - 54.3 17.7 

1335 10.0 - 91.8 16.1 2.2 - 83.5 27.0 

1780 15.0 - 122.1 14.9 6.0 - 113.2 34.2 

2225 19.8 - 153.2 15.1 8.1 - 141.5 43.5 

2 445 5.1 - 26.7 17.6 2.2 - 23.8 9.2 

890 8.8 - 59.7 16.1 3.5 - 54.4 18.3 

1335 12.6 - 91.1 15.8 4.9 - 83.5 27.3 

1780 16.3 - 122.8 15.6 6.3 - 113.2 36.1 

2225 20.1 - 154.6 15.3 7.9 - 142.8 44.5 

2670 24.5 - 183.5 15.5 9.7 - 168.4 53.4 

3115 34.3 - 215.3 17.2 12.6 - 193.2 70.4 
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TABLE 15 TEST RESULTS: GAGES 43-45 

Day Load 
C1 C1 0 C1 cr. 'T p q ·p X y >.:y 

(kN) (MPa). (MPa) (degrees) (MPa) (MPa) (MPa) 

1 445 19.9 - 14.8 39.0 - 6.1 - 1.1 17.0 

890 44.0 - 35.4 38.9 12.6 - 4.1 38.8 

1335 65.9 - 59.3 39.1 16.0 - 9.5 61.3 

1780 82.1 - 84.2 39.4 15.1 - 17.2 81.4 

2225 91.8 - 119.4 40.0 4.5 - 32.0 103.5 

2 445 26.2 - 19.9 46.1 2.2 - 4.0 23.0 

890 46.4 - 40.2 42.1 7.5 - 1.3 43.1 

1335 64;2 - 62.2 40.8 10.4 - 8.3 62.5 

1780 79.4 - 89.7 40.3 8.8 - 19.1 83.5 

2225 89.0 - 121.4 40.3 0.7 - 33.5 104.2 

2670 91.1 - 158.7 40.8 - 15.6 - 52.1 123.5 

3115 100.1 - 168.4 42.2 - 21.1 - 47.5 133.2 
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TABLE 16 TEST RESULTS: GAGES 46-48 

Day Load 
a a ~p a a T p q X y xy 

(kN) (MPa) (NPa) (degrees) (MPa) (MPa) (MPa) 

1 445 21.1 - 1.2 16.7 19.3 0.6 6.1 

890 48.9 - 3.4 17.0 44.4 1.1 14.6 

1335 75.2 - 5.8 18.1 67.5 2.0 23.9 

1780 81.4 - 2.0 2.7 81.4 - 1.9 3.9 

2225 119.4 - 27.7 - 25.7 91.8 0.0 - 57.5 

2 445 38.2 - 41.1 - 47.4 - 4.8 1.9 - 39.5 

890 43.5 - 21.9 - 37.6 19.2 2.4 - 31.6 

1335 53.9 - 9.5 - 25.6 42.1 2.3 - 24.7 

1780 70.4 - 3.5 - 15.4 64.9 1.7 - 18.8 

2225 87.6 - 2.7 - 9.4 84.9 - 0.3 - 14.6 

2670 102.1 - 5.1 - 11.0 98.0 - 1.2 - 20.1 

3115 58.0 11.5 14.5 55.1 14.4 11.2 
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TABLE 17 TEST RESULTS: GAGES 49-51 

Day Load 
C1 C1 0 C1 0· 1' p q ·p X y xy 

(kN) (MPa) (NPa) (degrees) (MPa) (MPa) (MPa) 

1 445 6.4 18.5 30.7 - 0.1 - 12.0 10.9 

890 15.2 41.3 30.1 1.0 - 27.0 24.5 

1335 24.2 63.8 30.4 1.7 - 41.3 38.4 

1780 33.1 87.6 30.7 1.5 - 56.2 53.1 

2225 41.7 - 109.0 31.4 0.8 - 67.9 66.9 

2 445 9.0 - 21.2 40.3 - 3.6 - 8.6 14.9 

890 17.1 - 44.4 34.8 - 2.9 - 24.3 28.8 

1335 25.0 - 66.4 33.2 - 2.4 - 39.0 41.9 

1780 33.4 - 88.3 32.4 - 1. 5 - 53.5 55.1 

2225 41.5 - 111.1 32.1 - 1. 6 - 68,2 68.8 

2670 49.6 - 131.8 . 32.7 - 3.4 - 78.7 82.8 

3115 71.8 - 131.1 38.1 - 5.6 - 53.8 98.7 
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TABLE 18 TEST RESULTS: GAGES 52-54 

Day Load 
a a 0 a a 'T p q ·p X y xy 

(kN) (HPa). (MPa) (degrees) (MPa) (MPa) (MPa) 

1 445 10.0 - 0.5 62.6 1.7 7.7 4.3 

890 24.5 0.6 63.7 5.3 19.8 9.5 

1335 39.6 0.0 64.7 7.2 32.4 15.3 

1780 56.4 - 1.2 65.0 9.1 46.2 22.1 

2225 73.1 - 1.0 65.6 11.7 60.2 27.8 

2 445 20.0 - 0.2 59.4 5.1 14.8 8.8 

890 33.3 - 0.5 61.4 7.2 25.6 14.3 

1335 46.4 - 1.1 62.7 8.8 36.4 19.3 

1780 60.2 - 1.6 63.9 10.4 48.2 24.4 

2225 74.5 - 2.2 65.1 11.5 61.0 29.4 

2670 89.7 - 3.9 65.4 12.3 73.1 35.3 

3115 97.3 41.7 58.3 - 3.3 58.7 62.0 
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TABLE 19 TEST RESULTS: GAGES 55-57 

Day Load 
0 0 0 0 o. T p q ·p X y xy 

(kN) (MPa) (MPa) (degrees) (MPa) (MPa) (MPa) 

1 445 23.1 - 26.1 - 43.1 0.1 - 3.1 - 24.5 

890 56.7 - 60.5 - 43.3 1.5 - 5.3 - 58.5 

1335 59.3 - 65.2 - 43.1 1.2 - 7.1 - 62.1 

1780 67.2 - 73.1 - 42.9 2.2 - 7.8 - 69.7 

2225 86.9 - 91.1 - 43.1 3.5 - 8.3 - 89.0 

2 445 37.7 - 35.7 45.2 0.8 1.3 36.7 

890 31.0 - 62.7 39.0 - 0.6 - 25.6 45.7 

1335 37.1 - 38.5 42.6 2.4 - 3.8 37.7 

1780 37.0 - 39.3 41.5 3.4 - 5.8 37.9 

2225 37.0 - 40.2 40.7 4.2 - 7.5 38.2 

2670 37.3 - 39.1 40.3 5.3 - 7.1 37.7 

3115 36.7 - 40.8 40.9 3.5 - 7.7 38.4 
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TABLE 20 TEST RESULTS: GAGES 58-60 

Day Load a a 0 a a 1' p q ·p X y xy 
(kN) (~iF a)_ (}iF a) (degrees) (l-iP a) (l-iP a) (l-iP a) 

1 445 1.8 . - 29.9 35.8 - 9.0 - 19.0 15.0 

890 4.5 - 68.7 35.7 - 20.4 - 43.8 34.6 

1335 7.2 - 107.0 35.3 - 31.1 - 68.9 54.0 

1780 10.9 - 144.9 34.5 - 39.1 - 95.2 72.5 

2225 14.0 - 176.6 34.1 - 45.9 - 117.3 88.3 

2 445 4.9 - 26.5 20.9 0.9 - 22.5 10.4 

890 5.8 - 64.9 29.4 - 11.2 - 47.9 30.2 

1335 7.9 - 102.1 31.6 - 22.4 - 71.8 49.1 

1780 10.8 - 140.1 32.8 - 33.5 - 95.9 68.8 

2225 13.5 - 178.7 33.5 - 45.0 - 120.1 88.3 

2670 16.6 - 211.8 33.5 - 53.2 - 142.1 105.6 

3115 5.3 - 245.6 29.2 - 54.3 - 185.6 107.0 
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TABLE 21 TEST RESULTS: GAGES 61-63 

Day Load 
0' 0' 0 0' 0'· T p q ·p X y xy 

(kN) (MPa). (MPa) (degrees) (MPa) (MPa) (MPa) 

1 445 0.7 18.5 80.3 - 17.9 0.2 3.2 

890 2.7 36.1 82.3 - 35.4 2.0 5.2 

1335 3.3 57.1 82.5 - 56.0 2.2 7.8 

1780 3.2 74.5 82.8 - 73.1 2.0 9.7 

2225 5.9 - 91.1 82.8 - 89.4 4.4 12.1 

2 445 28.8 2.2 - 42.1 14.9 11.7 - 15.5 

890 10.4 19.5 - 75.1 - 17.6 8.4 - 7.4 

1335 5.3 - 49.3 89.2 - 49.3 5.3 0.7 

1780 4.1 - 78.7 84.1 - 78.0 3.2 8.4 

2225 2.5 - 122.1 79.9 - 118.7 - 1.4 21.6 

2670 7.5 - 155.9 79.0 - 149.7 1.6 30.5 

3115 16.0 - 185.6 79.5 - 178.7 9.2 36.3 
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TABLE 22 TEST RESULTS: GAGES 64-66 

Day Load a a 0 a a T p q ·p X y xy 
(kN) (HPa) (MPa) (degrees) (MPa) (MPa) (MPa) 

1 445 31.9 14.8 5.3 31.5 14.4 4.3 

890 31.1 - 33.4 8.3 29.7 - 32.1 9.2 

1335 29.3 - 61.5 18.6 20.1 - 52.4 27.5 

1780 29.7 - 98.0 23.7 9.0 - 77.3 47.1 

2225 109.0 - 89.7 12.9 99.4 - 79.4 43.3 

2 445 - 5.7 - 24.4 24.2 - 8.9 - 21.3 7.0 

890 - 12.8 - 50.7 33.0 - 24.1 - 39.5 17.3 

1335 - 17.9 - 74.5 35.6 - 37.1 - 55.4 26.8 

1780 - 22.8 - 98.7 37.4 - 50.8 - 70.4 36.7 

2225 - 23.0 -116.6 36.7 - 56.5 - 83.5 45.0 

2670 - 6.1 -153.9 33.4 - 50.8 - 109.0 67.9 

3115 56.3 -182.9 27.7 4.5 - 131.1 98.7 
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APPENDIX B IN-PLANE DEFORMATIONS 

Load 1 2 3 4 5 6 7 8 9 

(kN) (mrn) (mrn) (nun) (mrn) (nun) (mm) (nun) ~ (mm) 

107 0.00 0.00 0.00 0.00 0.00 0.00 o.oo 0.00 0.00 

223 1.55 0.10 0.81 0.33 0.25 0.33 0.25 0.53 0.51 

445 2. 77 0.03 2.18 0.94 0.51 0.61 0.76 0.46 -1.02 

668 3.66 0.10 3.10 1.12 0.76 1.17 1.02 0.53 -1.52 

890 4.47 0.28 4.09 1.30 1.02 0.97 1.52 0.38 -1.78 

1113 5.16 0.43 5.05 1.42 1. 27 1.32 1. 78 0.58 -2.29 

1335 5.74 0.58 5.99 1. 60 1. 27 2.08 2.29 o. 71 -2.79 

1558 6.43 0.74 7.24 2.11 1.52 1. 70 2.54 0.97 -3.30 

1780 7.16 0.91 8.00 2.34 1. 78 1. 93 3.05 1. 04 -3.81 

2003 7.87 1.12 9.04 2.41 2.03 1. 93 3.30 1.22 -4.06 

2225 8.38 1. 30 10.01 2. 72 2.29 1.98 3.81 1.40 -4.57 

2448 9.53 1. 52 11.46 2.79 2.54 2.01 4.06 1.57 -5.08. 

2670 9.78 1. 65 12.27 3.25 2.39 i.80 

3115 15.88 2.36 15.75 3.73 2.72 2.39 

Note: Sign convention: (-) lengthening of given dimension 

-116-



APPENDIX C WINDm-1 DIAGONAL DEFORMATION 

Day Load 1 2 3 4 5 6 

(kN) (mm) (mm) (mm) (mm) (mm) (mm) 

1 0 0.000 0.000 0.000 0.000 0.000 0.000 

223 -0.216 0.086 -0.015 0.155 -0.071 0.103 

445 -0.201 0.274 -0.386 0.505 -0.442 0.499 

890 -0.193 0.838 -1.257 1.113 -1.049 1.112 

1113 -0.203 1.120 -1.577 1.420 -1.336 1.413 

1335 -0.221 1.455 -1.961 1. 783 -1.676 1.728 

1558 -0.191 1. 781 -2.774 2.385 -1.976 2.101 

1780 -0.213 2.294 -3.200 2.565 -2.022 2.412 

2003 -0.142 2.791 -3.701 2.898 -2.677 2. 775 

2448 -4.450 3.665 -4.478 3.922 -3.368 3.620 

2 223 -1.339 0.688 -1.273 1.641 -0.564 

445 -1.514 1. 003 -1.638 1.191 -0.833 1.047 

1335 -2.858 2.090 -2.830 2.370 -1.869 2.175 

1780 -3.513 2.690 -3.487 2.962 -2.403 2.764 

2670 -7.252 4.186 -5.080 4.402 -3.724 4.104 

3115 -6.050 6.045 -7.333 6.010 -5.288 5.430 

Note: Sign convention: (-) indicates diagonal shortening 
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APPENDIX D CONVERSION FACTORS 

1 inch = 2.54 centimeters = 25.4 millimeters 

1 foot = 0.305 meters 

1 kip = 4.45 kN 

1 ksi = 6.9 MPa 
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TABLE 11 RESULTS VERSUS ANALYSIS - GAGES 31-33 AND 64-66 

RESULTS ANALYSIS 

FRONT llACK VIERENDEEL TRUSS PLANE STRESS 
0 0 T 0 0 T 0 0 T 0 0 T Day Load X y xy X y xy X y xy X y xy 

(kNl (MPa) (HPa) (NPa) (MPa) (HPa) (MPa) (NPa)_ (MPa) (MPa) (MP~ (MPa) (HPa) 

1 445 17.6 13.7 2.7 31.5 14.4 - 4.3 15.0 2.1 0.0 0.0 6.1 

890 -· 40.5 - 32.2 12.9 29.7 - 32.1 9.2 - 30.0 4.2 0.0 0.0 12.2 

1335 - 64.2 - 53.4 25.2 20.1 - 52.4 27.5 - 45.0 6.3 0.0 0.0 18.3 

1780 - 91..8 - 75.2 34.3 9.0 - 77.3 47.1 - 60.0 8.4 0.0 0.0 24.4 

I 2225 -120.1 -112.5 - 65.7 99.4 - 79.4 43.3 75.0 10.5 0.0 0.0 30.5 Ln 

"' I 

2 445 - 73.1 - 68.7 33.1 - 8.9 - 21.3 7.0 - 15.0 2.1 0.0 0.0 6.1 

890 - 93.8 - 84.9 l~1. 5 - 24.1 - 39.5 17.3 -. 30.0 4.2 0.0 0.0 12.2 

1335 -113.9 - 99.4 49.5 - 37.1 - 55.4 26.8 -. 45.0 6.3 0.0 0.0 18.3 

1780 -135.9 -114.5 58.0 - 50.8 - 70.4 36.7 - 60.0 8.ll 0.0 0.0 24.4 

2225 -158.7 -129.7 66.9 - 56.5 - 83.5. 45.0 - 75.0 10.5 0.0 0.0 30.5 

2670 -251.2 -164.9 100.1 - 50.8 -109.0 67.9 - 90.0 12.6 0.0 0.0 36.6 

3115 -403.0 -227.0 155.9 4.5 -131.1 98.7 -105.0 14.6 0.0 0.0 42.7 


	Lehigh University
	Lehigh Preserve
	1-1-1983

	Structural testing of a three-story steel shear wall.
	William Deforrest Bast
	Recommended Citation


	tmp.1451580486.pdf.8iVQh

