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ABSTRACT 

A gravity survey of the Chattolanee Gneiss Dome was 

conducted to allow the determination of detailed models 

of its subsurface structure. 425 gravity stations were 

occupied with a LaCoste and Romberg and/or a Vforden 

gravity meter in a net pattern over a 160 square 

kilometer area. Readings were taken at 2nd order 

benchmarks and elevations were accurate to +/- 0.08 m. 

A simple bouguer anomaly map (bouguer density =2.67 

g/cc) shows a 5 km. wide flat-bottomed qravity trough 

over the done with the axis of the trough dipping 

eastward. 

Trend surface analysis produced a second-order 

surface at a 94% correlation. The conclusions reached by 

this analysis were: 1) Local anomalies were superimposed 

on a large trough-shaped regional anomaly. Local 

anomalies were insignificant and unmappable. 2) The 

subsurface body that produced the regional signal was 

relatively simple in shape. 3) Residuals probably 

represent noise in the data rather than local events. 

The densities of 167 rock samples from 10 different 

lithologies were measured. The Baltimore Gneiss (2.683 

g/cc) is among the least dense of the Piedmont rocks. 

Gravity modeling of the data was accomplished using 

a two-dimensional Talwani-type computer routine.  Models 



suggest: 1) To the south of the done, the Baltimore Mafic 

Complex overthrusts the metasedimentary rocks of the dcme 

along  a  30 to 45 degree southward-dipping fault. 

Serpentine probably underlies the gabbroic rocks of the 

mafic complex.  2) To the east, the Ruxton Fault may be a 

high-angle normal fault which cuts across an older 

low-angle reverse fault.   The reverse  fault  dips 

eastward.   3) The east side of the dome is truncated by 

an eastward-dipping normal fault. 4) The Slaughterhouse 

Gneiss is apparently a thin unit (<200 m.).  5) The 

valley between the Chattolanee and Towson Domes is 

floored by metasedimentary rocks (<700 m. thick) which 

form an overturned sync line that plunges to the south. 

6) The Chattolanee Dome is underlain (at depths <2 kms.) 

by a wedge of higher density metasediments - presumably 

Wissahickon - which thicken westward. 7) The dcme's root 

zone may be below its eastern end. 

Modeling of a separate gravity traverse northward 

across the IRroenix Dcme indicates that the western region 

of the dcme is probably the bottom limb of a rootless 

nappe. 

The geophysical data suggest two possible 

deformational schemes for the Baltimore Gneiss Dome 

terrain. One sequence of deformational events could be: 

1)  Extreme ductile deformation, forming nappes; 2) 
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Thrusting of the Baltimore Mafic (implex frcm the south; 

3) Westward imbricate thrustinq of the whole package; 4) 

Late-stage normal faultinq. This scheme is one of 

increasingly shallower deformational styles. 

The preferred scheme of deformational events is 

based on the assumption that the wedge of dense material 

under the Chattolanee Dome is the bottom limb of a nappe, 

making folding, rather than faulting the predominant 

deformational style. In this model thrusting of the 

Baltimore Mafic Complex frcm the south is 

penecontemporaneous with napping of the Chattolanee and 

Ehoenix Domes. This is followed by late-stage normal 

faulting. 

The data suggest two possible structural 

relationships between the Chattolanee and Ehoenix Domes: 

1) The Chattolanee Dome may be the root zone for the 

Ehoenix Nappe. 2) The two dcmes represent two different 

layers of a stack of nappes. 

This study proposes that the dcmes were emplaced by 

tectonic shortening rather than true diapiric doming. 

This may have been caused by a continental-continental 

collision in laconic time. 



1. INTRXUCTION 

The Maryland .Piedmont is one of the most intensely 

studied areas of the Piedmont Province.   In order to 

better delineate the geology of this structurally complex 

region, a detailed gravity survey of the Chattolanee Dome 

was conducted.   The Chattolanee Dome is one of seven 
'/. 

gneiss bodies cropping out in the Maryland Piedmont (Fig. 
1 

1-1).  Parts of the Phoenix Dome and the Towson Dome 

were also studied, but in less detail. The study area 

involves the following U. S. Geological Survey 7 1/2 

minute quadrangles: 

- Cockeysville (all) 

- Baltimore Vfest (northern section) 

- Reisterstown (all) 

- Ellicott City (northeast corner) 

- Hereford (central section) 

The Chattolanee Dome is an elongate, oval-shaped 

gneiss body in map view (Fig. 1-1). Its long axis trends 

east - west and the dome is approximately 12.5 km. east - 

1 
These gneiss bodies have been called domes. While 

this study demonstrated that at least three of the gneiss 
bodies may not be true structural domes, the term 'dome' 
will continue to be used throughout this report, unless 
otherwise stated. 



west by 6 "km. north - south. 



1.1 Objectives 

The main objective of this study vas to determine 

the overall subsurface structure of the Chattolanee Dome 

and its structural relationship with adjoining domes. 

Specific questions about the structure were: 

1. Is the Chattolanee Dome allocthonous or 
autocthonous? 

2. What is the relationship between the 
Slaughterhouse Gneiss and the Baltimore 
Gneiss? 

3. A major fault (Ruxton Fault) truncates the 
western end of the Tbwson Done. What is the 
attitude of this fault? 

4. What is the nature of the Baltimore Mafic 
Complex - metasedimentary terrain contact on 
the southern edge of the Chattolanee Dome? 

5. What is the subsurface structure of the 
Hroenix Dome? 



1.2 General Geology and Previous Work 

Many important concepts have been developed during 

the geological investigation of the Maryland Piedmont. 

Williams [1891] from Johns ttopkins University pioneered 

the first application of petrographic methods used to 

solve geologic problems in America. Williams used 

petrologic methods learned in Germany to interpret 

Piedmont geology. 

Eskola [1949] visited the Baltimore area in 1946 and 

developed his now classic theory concerning- the origin of 

mantled gneiss domes based upon the geology of this 

region. 



Figure 1-1: Index Map of the Baltimore Gneiss Danes 
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The general structure of the Piedmont near Baltimore was 

first studied by Williams [18921. The work of Williams, 

his students, and other workers is reviewed by Higgins 

[1972]. Table 1-1 lists the most important 

contributions. 

The mantling of metasediments over gneiss into dome-like 

structures near Baltimore was first noted by Mathews 

[1904] and Mathews and Miller [1905]. Reconnaissance 

mapping of the area was completed by Mathews [1925] and 

by Knopf and Jonas I"1925, 1929]. Broedel [1937] was the 

first to perform structural analysis on the gneiss domes. 

These first generation workers determined: 

1. The gneiss that cores each dome (Baltimore 
Gneiss) is the oldest rock in the 
stratigraphic seguence [Williams, 1892]. 

2. A quartzite (the Setters Formation) 
unconformably overlies the gneiss rWilliams, 
1892]. 

3. The general structure of the gneiss is 
anticlinal [Mathews, 1904; Broedel, 1937]. 

4. Marble (the Cbckeysville Formation) 
conformably overlies the guartzite [Mathews 
and Miller, 1905]. 

5. Schists conformably overlie the marble 
TMathews and Miller, 1905]. 

6. These schists may be the same schists 
(Wissahickon) that outcrop in the Philadelphia 

10 



GENERAL GEOLOGY 

Reconnaissance Mappinq 

Detailed Mapping 

General Petrology 

Age Dating 

Geophysics 

Williams, 1892 
Mathews, 1904 
Mathews, 1933 
Knopf and Jonas, 
Mathews, 1925 
Knopf and Jonas, 
Broedel, 1937 
Cleaves and others, 
Crowley, 1976a 
Crowley, 1976b 

1925 

1929 

1968 

Crowley and Cleaves, 1974 
Crowley and others, 1975 
Crowley and others, 1976 
Crowley, 1977 
Crowley and Reinhardt, 1979 
Crowley and Reinhardt, 1980 
Muller, in prep. 

Williams, 1891 
Hdpson, 1964 

Tilton and others, 1958 
Tilton and others, 1959 
Wetherill and others, 1966 
Wetherill and others, 1968 
Tilton and others, 1970 
Higgins, 1972 

Bromery, 1967a 
Bromery, 1967b 
Bromery, 1967c 
Brcmery, 1968 
Higgins and others, 1973 
Higgins and others, 1974a 
Hansen, 1974 
Higgins and others, 1974b 
Zietz and others, 1978 
Edwards and Hansen, 1979 
Fisher and others, 1979 
Zietz and others, 1980 
Daniels, in prep. 

Table 1-1: Summary of Previous Work 
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Stratiqraphic Nomenclature Knopf and Jonas, 1923 
Fisher, 1963 
Southwick and Fisher, 1967 
Crowley and others, 1971 
Higgins and Fisher, 1971 
Higgins, 1972 
Crowley, 1976a 
Fisher and others, 1979 

INDIVIDUAL ROCK UNITS 

Baltimore Gneiss 01sen, 1972 
Wagner and Crawford, 1975 
01sen, 1977 

Setters Formation Fisher, 1971 

Cockeysville Formation Mathews and Miller, 1905 
Miller, 1905 
Choquette, 1957 
Choquette, 1960 

Wissahickon Group Knopf and Jonas, 1923 
Cloos and Anderson, 1950 
Reed and Jolly, 1963 
Fisher, 1963 
Southwick, 1969 
Fisher, 1970 
Fisher, 1971 
Fisher, 1978 

Baltimore Mafic Complex Williams, 1886 
Cohen, 1937 
Herz, 1950 
Herz, 1951 

Table 1-1, continued 
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area [Knopf and Jonas, 1923, 1925, 1929]. 

7. A terrain of gabbroic rocks (the Baltimore 
Mafic Complex) exists southeast of the 
metasedimentary terrain. 

8. The western side of the Tbwson Dome is 
trunsated by the Fuxton Fault [Mathews and 
Miller, 1905; Broedel, 19371. 

The petrology and structure of the Maryland Piedmont 

has been updated and synthesized by Hopson [1964]. 

Ffopson agreed with all these major conclusions. 

Recent work involves more detailed geologic mapping 

of the Maryland Piedmont. The Maryland Geological Survey 

has undertaken an extensive 7 1/2 minute geologic mapping 

program in the Baltimore area. This mapping project 

[Crowley 1977; Crowley and Cleaves, 1974; Crowley and 

Peinhardt, 1979, 1980; Crowley and others, 1975, 1976; 

Muller, in prep.] has provided new insights as to the 

geology of the Piedmont. 

1.2.1 Previous Geophysical Work 

Gravity and magnetic studies of this area was first 

undertaken by Bromery [1967a; 1967bV 1967c; 1968]. These 

studies involved areal mapping of gravity and magnetic 

anomalies. The gravity map had a station spacing of 

approximately 1 km. and was not dense enough to study 

local structures smaller than about 0.5 km. 

Bromery' s aercmagnetic maps were used by Fisher and 

13 



others T1979] to study larqe scale Piedmont structures 

and, in particular, the Baltimore Gneiss Done Terrain. 

14 



1.3 Stratigraphic Nomenclature and Rack Descriptions 

Stratigraphic nomenclature has been subject to much 

debate, particularly concerning subdivision of the 

Glenarm Series. All workers agree that there are six 

major crystalline rock units in the study area. Ihey 

are: l) Baltimore Gneiss; 2) Setters Formation; 3) 

Cockeysville Formation; 4) Wissahickon Group; 5) 

Baltimore Mafic Complex; 6) Late-stage granitic 

intrusives (not examined in this study). 

The stratigraphy for this study (Table 1-2) 

generally follows Fisher and others T1979] because the 

units have identifiable geophysical characteristics. 

Genetic names used by Fisher, Higgins, and Zietz T1979] 

have been dropped in favor of locality names used by 

Crowley T197 6a"]. 

1.3.1 Baltimore Gneiss 

The Baltimore Gneiss is a mineralogically uniform 

granitic gneiss with layered, migmatized, or augen 

facies. 

The Baltimore Gneiss has geophysical properties that 

are uniform throughout the study area regardless of 

facies. It has a low, relatively uniform density (2.683 

g/cc  -  see  Fig.  1-3) and a very low magnetic 

15 



This Report 
Fisher and 
others, 1979 Crowley, 1976 

-Wissahickon Group -Wissahickon Group -Wissahickon Group 
of Crowley (1976) 

— (not —Diamictite 
encountered)     (und iff.) 

—Oella Rn. 
 (included with 

the Baltimore 
Mafic Complex) 

— (not 
encountered) 

— (not 
encountered) 

—Loch Raven 
Schist 
(undiff.) 

-Cockeysville 
Em. 
(undiff.) 

-Setters Rn. 
—garnet schist 
mem. 
(undiff.) 

—Metagreywacke 
(undiff.) 

—Sykesville Rn. 
 gneiss mem. 
 schist mem. 
—Oella Rn. 
 Sweathouse 

Anphibolite Mem. 

—Metagreywacke   —Piney Run Rn. 

—Quartzose 
Schist 

—Pelitic Schist 
(undiff.) 

-Cockeysville 
Marble 
(undiff.) 

-Setters Rn. 
—garnet schist 
mem. 
(undiff.) 

—Pleasant Grove 
Schist 

—Loch Raven 
Schist 
 Hydes Marble 

Mem. 
 Rush Brook Mem. 
-Cockeysville 
Marble 
—massive meta- 
dolostone mem. 

—massive meta- 
limestone mem. 

—layered meta- 
limestone mem. 

—layered meta- 
dolostone mem. 

—layered marble 
mem. 

—phlogopitic 
meta-1 imestone 
mem. 

-Setters Rn. 
—garnet schist 
mem. 

—quartzite mem. 
 schist lens 
 conglomerate 

lens 
—gneiss mem. 
 quartzite lens 

Table 1-2: Comparison of Stratigraphic Nomenclature 

16 



-Baltimore Gneiss 
(undiff.) 

-Baltimore Qneiss 
(undiff.) 

-Slaughterhouse 
Gneiss 
-Baltimore Mafic 
Complex 
—Amphibolite 
(undiff.) 

-Baltimore Gneiss 
—hornblende 
qneiss mem. 

—streaked-auqen 
qneiss mem. 

—augen qneiss mem. 
—layered qneiss 
mem. 

-Slaughterhouse 
Gneiss 

-Metaiqneous rocks -Baltimore Mafic 

-(not defined) 

(undiff.) 

—Serpentine 

Complex 
—Mt. Washington 
Amphibolite 

—Holofield 
Layered 
Ultramafite 

T —Sweathouse 
Amphibolite] 

— (miscellaneous 
other mafic 
units) 

—Serpentine 

table 1-2, continued 

17 



Average 95% 
No. of     Density   Confidence   Standard 

Rack Unit Samples     g/cc Interval     Deviation 

Cockeysville 31 2.845       2.820-2.870      0.069 

ftnchibolite 30 2.996      2.952-3.040      0.118 

Serpentine 10 2.639      2.613-2.665      0.037 

Baltimore Gneiss 40 2.683      2.672-2.694      0.035 

Oella Fra. 15 2.750      2.717-2.783      0.060 

Loch Riven 16 2.912       2.869-2.955      0.081 
Schist 

Wissahickon 31 2.834      2.794-2.874      0.108 
(combined) 

Setters Bm. 10 2.628      2.612-2.644      0.022 
(undivided) 

Slaughterhouse 5 2.606      2.593-2.619      0.011 
Gneiss 

Silicified 8 2.606      2.550-2.662      0.067 
Breccias 

Vein Quartz 2 2.666                                    0.003 

T&ble 1-3: Measured Whole Rock Densities 

18 



susceptibility [Bromery, 1968; Fisher and others, 1979]. 

1.3.2 Setters Formation 

The Setters Formation forms a thin unit directly 

overlyinq the Baltimore Gneiss. It consists of micaceous 

quartzites interlayered with feldspathic schists and 

qneisses. Three members and three lenses are defined by 

Crowley [1976a]. The quartzites form ridqes and 

therefore, the formation's structural trend is fairly 

well known. 

Because the Setters Formation contains abundant 

quartz, a low density mineral (2.667 q/cc - see Table 

1-3), it has a neqative density contrast with respect to 

the Baltimore Gneiss (Setters density = 2.628 q/cc, 

Baltimore Gneiss density = 2.683 q/cc, density contrast 

is -0.055 q/cc). However, because the Setters Formation 

is a thin unit and its density is close to that of the 

Baltimore Gneiss, it is difficult to differentiate with 

qravity methods. Subdividinq it for this qeophysical 

investiqation is unnecessary. 

1.3.3 Gockeysville Formation 

The Gockeysville Formation consists of impure, 

massive and layered marbles and meta-dolostones which 

have been divided into 4 members by Crowley r 1976a], The 

members      of      the    Gockeysville    Formation    can    not   be 

19 



distinguished by gravity and the Oockeysville was not 

divided for this investigation. 

It is a dense rock with a fairly uniform density at 

about 2.845 g/cc. The Oockeysville serves as a good 

gravity marker, as it has a large density contrast with 

respect to the Baltimore Gneiss (0.162 g/cc) and it has a 

fairly large areal extent. 

1.3.4 Wissahickon Groip 

The Wissahickon Group rocks in this area consist of 

amphibolite-grade pelitic and .(psammitic schists and 

gneisses. Because of its great lithologic variability, 

the Wissahickon is very difficult to study using gravity 

modeling techniques. Its density ranges frcm 2.995 for 

pelitic schists to 2.717 for psammitic gneisses. 

The end-member units in the Wissahickon are the 

Cella Formation (psammitic schists and gneisses) and loch 

F&ven Schist (pelitic schists). Most of the lower 

Wissahickon in the study area is gradational between 

these two units. 

1.3.5 Baltimore Mafic Complex 

The Baltimore .Mafic Complex consists mostly of 

layered amphibolites with lesser amounts of metamorphosed 

ultramafic rocks. The amphibolites have a uniformly high 

density (2.996 g/cc).   Associated serpentinite bodies 

20 



have a very low density (2.639 g/cc). This larqe density 

difference is fairly easy to model using gravity. 

Crowley's H1976a] Sweathouse flmphibolite Member of 

the Oella Formation has been included in the Baltimore 

Mafic Complex. Wherever Crowley has mapped this unit, it 

is always juxtaposed to amphibolites of the mafic 

complex. Crowley C 1976a] defined the Sweathouse Member 

on the basis that it had some schist interlayered with 

the amphibolite. It was suggested by Muller Tpersonal 

canm.] that this represents a tectonic melange that marks 

the fault zone between the mafic complex and the Oella 

Formation. The Sweathouse Member contains mostly 

amphibolites of identical compositions as the 

amphibolites of the Baltimore Mafic Complex. The 

Sweathouse has geophysical properties indistinguishable 

frcm the mafic complex and was included as part of the 

mafic complex in this study. 

1.3.6 Slaughterhouse Gneiss 

The Slaughterhouse Gneiss is a very uniform and 

massive quartz-rich gneiss. It is the least dense of all 

the rocks studied (2.606 g/cc), and it has a negative 

density contrast with respect to the Baltimore Gneiss 

(-0.077 g/cc). This results in an observable negative 

gravity anomaly at the surface. 
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1.4 Field Relations 

Poor exposure prevented observation of most geoloqic 

contacts. The Baltimore Gneiss - Setters Formation 

contact is seen most often. The foliation of the gneiss 

is parallel to the layering in the Setters. The contact 

is often marked by an intense zone of cataclasis in the 

gneiss and feldspathization of the Setters [Muller, 

personal ccmm.]. While it is generally agreed by most 

workers that this contact marks an unconformity, field 

evidence suggests some movement has occurred at the 

contact zone. 

As far as can be determined, the Setters Formation - 

Cockeysville Formation contact has never been observed in 

outcrop. However, the Cockeysville Formation - 

Wissahickon Group contact has been exposed in the Arundel 

Corp. Greenspring Avenue quarry. Ihe contact is a 

gradational zone Where layers of the Cockeysville become 

more micaceous and feldspathic as one gets nearer to the 

contact. Carbonate beds appear intermittently in the 

Wissahickon a short distance above the contact. At this 

exposure, it is clear that the contact is not a fault, 

but a conformable facies change. 

The Slaughterhouse Gneiss - Baltimore Gneiss contact 

has been observed in saprolite at a construction site at 

Greenspring Avenue and Slaughterhouse Run. The contact 
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is gradational, the Slaughterhouse Qieiss becoming more 

micaceous and more banded as it grades into layered 

Baltimore Qieiss. 

The Baltimore Mafic Complex - Wissahickon contact 

(see page 21) is marked locally by Crowley's [1976a] 

Sweathouse Member which is probably a tectonic melange. 

Within  the  mafic  complex, the amphibolite - 

serpentine boundary has been observed in at least two 

instances.   Along Falls Road at Copper Hill R3. in the 

Bare Hills area, the contact is marked by a zone of talc 
2 

schist . A drill core made during the Baltimore subway 

construction also was marked with a zone of talc schist 

at the contact [Muller, personal ccmmO. 

2 
This was mapped by Crowley [1975 and 1976b] as Oella 

Formation. 
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2.  METBODS 

2.1 The CScivity Method 

By measuring minute lateral changes in the earth's 

gravitational field, anomalously dense rocks can be 

located in the subsurface. The earth's gravitational 

field can be mathematically described in terms of 

equipotential surfaces - a family of surfaces Which tend 

to parallel the earth's topography. Every point on an 

equipotential surface has the same gravitational 

potential. In the gravity method, the gradient of this 

potential - the acceleration due to gravity - is measured 

and interpreted. 

The    gravity    equipotential    surface that intersects 

the ocean-atmosphere interface is   known    as    the   geoid. 

Because    the    oceans    are    fluid,    they   conform    to    the 

gravitational pull exerted upon them and to    the    effects 

of    the    earth's    rotation.      Therefore, sea level is the 

geoid.    All deviations frcm the geoid are due    to    either 

the   distance the observer is away frcm the center of the 
3 

earth    (i.e. topography and    the    overall    shape    of    the 

earth)    or    lateral    inhomogeneities in the earth's mass. 

3 
according to Newton's laws, gravitational force varies 

inversely to the square of the distance 
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By comparing the theoretical model of the earth' s 

gravitational field calculated frcm a laterally 

homoqeneous earth to the observed gravity value at a 

given point corrected to sea level (i.e. the geoid), any 

differences are directly attributable to lateral density 

variations in the subsurface. 

Corrections of the observed values are collectively 

termed gravity reductions and include instrument drift, 

reference field, earth tides, free-air, bouguer, and 

terrain corrections. 

2.1.1 Instrument Drift 

Ntodern portable gravity meters are subject to 

instrument drift over time. The instrument drift is 

determined by repeated measurements at the same location. 

A large number of repeated station occupations produces 

more accurate instrument drift determinations. 

Instrument drift is considered to be a linear function 

between each measurement with respect to time [Nettleton, 

1976]. 

2.1.2 Gravity Rsference Field 

The earth is not a true sphere but rather an oblate 

spheroid. Its shape deviates somewhat frcm the shape of 

the geoid. Both the shape of the earth and the geoid 

vary proportionally with latitude. This is due to a 
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systematic increase in the centrifugal acceleration as 

the distance frcm the earth's spin axis to the earth's 

surface increases frcm the poles to the equator. On the 

average, the acceleration at the equator is about 5300 
4 

mgal larqer than at the poles [Dobrin, 1976]. 

The Gravity Reference Field is a mathematical 

formula that predicts the earth's gravitional force at 

sea level (on the geoid) assuming a laterally homogeneous 

earth. It consists of two terms. The first term 

represents the gravity value of any point on the geoid, 

assuming a uniformly dense, non-spinning earth. The 

second term is a complex correction term which relates 

the earth's spin, the latitude of the observation, and 

the flattening of the poles. 

After correcting for instrument drift and 

calibrating to points of known gravity (see Appendix A), 

the Gravity Reference Field is subtracted frcm the raw 

gravity values. In this study, the IGSN 7f formula 

Cvfcollard, 1979] was used to calculate the Gravity 

Reference Field. 

4 
A milligal is the commonly used unit to express small 

values of acceleration. One mgal is equal to 0.00001 
m/sec/sec. 
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2.1.3 Earth Tides 

The earth yields plastically to tidal forces in much 

the same way as the oceans, though on a smaller scale. 

Earth tides are minute cyclical changes in the elevation 

of the earth due to this tidal attraction. These changes 

result in time related differences in the distance 

between the observer (i.e. gravity station) and the 

center of the earth [Melchior, 1978]. In the study area, 

earth tides resulted in as much as a 0.2 mgal difference 

in gravity values of a single station over the course of 

a day. 

longitude, time of day, and date are critical 

factors which are used to calculate earth tides as they 

are in ocean tide calculations. Earth tides are 

calculated by using Cartwright's methods [Cartwright and 

Tayler, 1971; Cartwright and Edden, 1973] . 

2.1.4 Free-air Cbrrection 

Subtracting the Gravity Reference Field and the 

affects of earth tides frcm the raw gravity values yields 

data with variations due to topography and lateral 

density inhomogeneities. lb remove the effect of 

elevation, an adjustment known as the free-air correction 

is made. Gravity decreases with increasing distance frcm 

the center of the earth. This means that a correction 

must be added to the gravity value observed at an 
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elevation above sea level. The correction factor is 

0.3086 mgal/m. Accurate elevation control is essential 

for this correction. 

2.1.5 Bouguer Correction 

While the free-air correction removes the effect of 

elevation, it does not take into account the 

gravitational attraction of the rock between the 

observation point and sea level (hence the name 

'free-air'). This gravitational attraction is removed by 

subtracting the bouguer correction. The bouguer 

correction is made by assuming a horizontal slab of 

infinite extent exists between the observer and sea 

level. The two factors reguired of this correction are: 

1) the elevation, and 2) a density value for the slab. 

The latter factor is a matter of some concern. The 

bouguer density should be matched closely to the average 

density of the rocks that may exist between the 

observation elevation and sea level. Most workers use 

2.67 g/oc for their bouguer density. This is the average 

density of the earth's continental crust as a whole and 

it closely approximates the average density of granite. 

This value is well suited for this study because the 

crystalline rocks are mostly granitic in gross mineralogy 

[Hopson, 1964]. 

It is important to point out that the bouguer 
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anomalies that result frcm the bouguer correction may be 

caused by two effects: 1) deviations betvreen the 

densities of rocks that actually exist in the slab and 

the assumed bouquer density; 2) all rocks below the slab 

[Ervin, 1977].  This point cannot be overemphasized. 

In this study, qravity values were reduced to sea 

level. The qravity effects of the anomalous densities 

within the bouquer slab were removed in the modelinq 

routines. Gravity modelinq will only be for anomalous 

densities below sea level. This technique avoids the 

aforementioned problems of the bouguer slab [Nettleton, 

1976]. 

The bouguer correction with a bouguer density of 

2.67 is 0.1119 mgal/m. 

2.1.6 Terrain Cbrrection 

The bouguer correction assumes a flat slab. Cn the 

whole, this is a good approximation of the earth's 

topography. However, in moderate relief terrains, this 

t 

approximation is no longer valid. Deep valleys or high 

mountains will exert some influence upon the observed 

qravity and cause deviations frcm the assumed bouquer 

slab. To correct for this affect/a variety of methods 

can be used. One of the most widely used methods is the 

Hammer Charts [Hammer, 1939]. 

Bouguer corrections used in conjuction with terrain 
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corrections produce complete bouguer anomalies; without 

the terrain corrections, simple bouguer anomalies are 

produced. 

In this study the relief was low. The maximum 

elevation was about 210 meters and the minumun elevation 

was about 60 meters above sea level. The maximum relief 

encountered was in the vicinity of Brodklandville where 

there was a 14 degree slope in a distance of 600 meters. 

This would amount, to a maximum terrain correction of 

about 0.1 mgal. The maximum slope encountered on or 

adjacent to any of the roads in the study area was 5 

degrees at Ealls Road and Seminary Avenue. A terrain 

correction in this case would be negligible. Because all 

gravity stations were occupied along roads and, in the 

case of maximum relief, the terrain correction would have 

amounted to less than 1% of the total amplitude of the 

regional gravity, it was felt that the relief was low 

enough in the study area not to warrant this correction. 
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2.2 Fieldwork 

2.2.1 Elevation Control 

Because elevation is such a critical component in 

gravity reductions, accurate elevation data were 

essential for this investigation. Fortunately such data 

(second-order benchmarks) were available from the 

Baltimore City and Baltimore County Dept. of Public Works 

at an accuracy of +/- 0.08 meters. The public works 

departments use these data for the accurate location of 

sewage and water pipelines in this urban area. Survey 

field crews operate year-round to collect or update the 

elevation data collections. Most of these pipelines lie 

buried beneath major roads and thus most elevation 

benchmarks were along these roads. In general, these 

data became sparse further frcm the Baltimore City limits 

particularly to the north and west of the study area. 

In Baltimore City, most elevation points were marked 

with a brass screw driven into the concrete of a curb or 

sidewalk. Other points were marked with benchmark disks. 

All were easy to find. Elevation points were often about 

250 meters apart and were generally located near road 

intersections. 

Baltimore County elevation points were far more 

diverse both in location and in type of benchmark. Many 

bridges and  headwalls  contained  benchmarks  which 
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consisted of squares or crosses chiseled in the concrete. 

Seme locations had benchmark disks.   In many cases, 
5 

USC&G benchmarks and azimuth stations were used.   In 

general, though, most elevation markers consisted of some 

type of metal spike either driven into road macadam or 

driven into the ground.  The metal spikes were quite 

difficult to locate since they were often buried under 

soil or asphalt. The areal density of elevation points 

was more variable than for Baltimore City points, but 

benchmarks ware usually about 250 to 400 meters apart. 

During the survey, the baseplate for the gravity 

meter stood within 0.05 meters of the elevation point. A 

baseplate was used at every station. 

Sections of the Etaoenix Dome traverse had to be 

surveyed because inadequate elevation control existed. A 

Berger Transit and a level rod were used to accurately 

determine these elevations. 

2.2.2 Gravity Station Occupation 

Data collection was organized in the following 

manner. Each  field day represented a complete loop. 

5 
United    States    Coast    &   Geodetic    Survey   -    now the 

Isfetional Geodetic Survey 
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6 
Specifically, the Baltimore Base  was measured as the 

first and the last station of the day.   LaCoste and 

Romberg Gravity Meter No. G-lll and Texas Instruments 

Wbrden Gravity Meter, Educator Model No. 476  (one or 

both) were used to measure the gravity value of each 

station. The time of day was noted at every gravity 

reading and was accurate to within 5 minutes. 

6 
See Appendix A for specifics on this station. 
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2.3 Density Measurements 

Whole rock densities of 167 representative samples 

frcm 10 different lithologies were measured in order to 

establish constraints on gravity models. Samples were, 

cut into cubes of approximately 15 cubic centimeters and 

were then washed thoroughly with water.   After the 

samples were  dry,  they  were  soaked  in  carbon 

tetrachloride and ultrasonically cleaned. Following this 

preparation,  each  sample  was  measured using two 
7 

Kraus-Jolly Balances . The liquid medium used was carbon 
8 

tetrachloride . Carbon tetrachloride was used because: 

1) it is not reactive with the rocks; 2) it is a 

non-polar substance that has a low surface tension, thus 

it can easily penetrate the pores of the sample; 3) it 

evaporates quickly, thus speeding the time of sample 

measurement.    Air  was driven out of rock pores 

ultrasonically. Measurements were accurate to within 5%. 

The porosity of the rock will not affect the density 

obtained by this method because liquid fills the rock 

interstices. This is a good approximation of gross rock 

7 
See Hurlbut and Klein [1977] for a more complete 

description of whole rock density measuring techniques 
using the Kraus-Jolly Balance. 

8 
density of which is 1.545 g/cc 
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density for rocks in the study area because rock porosity 

in metamorphic terrains is generally less than 1% 

rDingman and others, 1954; Ellis, 1909; Uhl, 1979]. This 

vould make porosity less than the error in the 

measurement. Table 1-3 lists the results frcm the 

density measurements. 
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2.4 Computer Analysis 

2.4.1 Gravity Reductions 

All gravity reductions were completed using \a 

complex computer program at the National Geodetic Survey 

in Rockville, Maryland. Raw gravity meter readings (in 

instrument dial units without the drift removed), the 

date, time of day, latitude, longitude, and elevation for 

each station were entered into the program. The program 

isolated traverse loops and removed instrument drift. 

Instrument dial units were converted to milligal units 

based upon a scale factor for each gravity meter and upon 

a known absolute gravity base station. The scale factors 

could either be entered into the program or determined by 

the program. 

In this study, the LaCbste-Romberg gravimeter G-lll 
.» 

was known to have a history of high reliability. Its 
9 

scale factor was well established . The scale factor of 

the Vforden gravimeter was determined by comparison with 

the LaCbste-Romberg gravimeter. 

Once instrument dial units were  converted  to 

milligals, a weighting factor was entered into the 

9 
The National Geodetic Survey keeps history files on 

all gravity meters run through this computer program. 

36 



program. The IaOoste-Rcmberg gravimeter had an estimated 

reading error of +/- 0.005 mgal as compared to the 

estimated reading error of +/- 0.05 mgal for the Wbrden 

gravimeter.  Because the laCbste-Romberg gravimeter is a 

more precise instrument both in its low reading error and 

its history of high reliability, it was weighted more 

heavily in.all subsequent calculations.  In a sense, when 

both meters were used at a single station occupation, the 

LaGoste-Romberg gravity meter was the major contributing 
10 

meter and the Wbrden meter was used as a check upon it 

The data  reduction  was  completed  with  the 

calculation of the absolute gravity, free-air anomaly, 

and simple bouguer anomaly values (Appendix B). 

2.4.2 Description of IMQRAM and Modeling Methods 

Gravity modeling was achieved using an interactive 

two-dimensional potential fields modeling program 

developed exclusively for this study. Because the 

program models two-dimensional profiles, gravity points 

which lie on a line (linear traverses) were isolated frcm 

the data set. The linear distance of each station from 

10 
The calculated error for each station measurement was 

approximately 0.030 mgal when both meters occupied the 
station, 0.032 mgal when the laCbste-Romberg meter alone 
occupied the station, and 0.070 mgal when the Wbrden 
meter alone occupied the station. 
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an arbitrary point of oriqin was measured along a 

traverse. locations of geologic contacts were measured. 

These data were entered into the program in preparation 

for modeling. 

It must be noted that any potential field method 

will produce a nonunique model [Dobrin, 1976; Nettleton, 

1976]. 

Figure 2-1 demonstrates the various gravity profiles 

produced by simple models. Model A in Figure 2-1 was 

used in Figure 2-2 to demonstrate modeling ambiguities. 

Figures 2-2A and 2-2B show two different circumstances - 

three bodies are at one depth but have different 

densities and three bodies are at different depths but 

have the same density. These two circumstances generate 

the same set of gravity profiles. Theoretically, greater 

depth bodies of the same density will produce profiles 

with both a longer wavelength and a lower amplitude while 

bodies of decreasing density at the same depth will 

produce profiles with the same wavelength but a lower 

amplitude. Usually, however, it is not possible to make 

distinctions based on wavelength unless the body's 

density is accurately known. Figure 2-2C demonstrates 

that infinite combinations of depth and shape can produce 

the same gravity profile. Tbgether, Figures 2-1 and 2-2 

illustrate that a modeled body has three attributes, 
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density, shape, and depth. 

Geologic constraints help select particular density, 

shape, and depth attributes for a model. Important 

constraints needed for gravity modeling are: 

- Surface geologic contact control; 

- Accurate subsurface density control; 

- Strike and dip control; 

- Subsurface geologic contact control (e.g. drill 
holes). 

Of these, density may be the most difficult to determine 

because of variations of density within one lithology. 

The ideal case for gravity modeling would be individual 

rock units with a uniform density distribution and large 

density contrasts. In reality, this is seldom the case. 

Facies changes and inhomogeneities in rock densities may 

present obstacles to modeling. 

The computer program used in gravity modeling was 

named IMGRAM which is an acronym for Interactive 

Magnetics and Gravity Reduction And Modeling. 

IMGRAM was written in the BASIC programming language 

and is fully documented. In its present configuration, 

the program can be implemented on either a EEC 20 

computer or a PDP 11 computer. 

IMGRAM uses a forward-type method to create gravity 

models of the subsurface. It incorporates many different 
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polygon modeling technigues HTalwani and others, 1959; 

Talwani,  1965; Nagy,  1966; McGrath and Hood,  1970; 

Nabighian,  1972; Nabighian,  1974; Bhattacharyya, 1978; 

Murthy and Rao, 1979].  In the modeling procedure, the 

shape of a subsurface body is approximated by an n-sided 

polygon. A density is assigned to the polygon.   By 

entering the vertices of the polygon, a gravity profile 

is calculated. It is ccmpared with the observed gravity 

profile and the shape of polygon can be altered to 

improve the fit between the observed data and the profile 

calculated from the polygon. 

An important assumption is made in two-dimensional 

modeling calculations: A polygon represents a tabular 

three-dimensional body that extends infinitely 

perpendicular to the plane of the profile. In most cases 

this is a realistic approximation. 

2.4.3 Three-Dimensional Techniques 

Two techniques were developed to calculate 

three-dimensional models of the subsurface: automatic 

3-D gravity modeling and anomaly map interpretation. 

2.4.3.1 Three-Dimensional Gravity Madeling 

Various methods have been devised to produce 

three-dimensional gravity models [Talwani and Etoing, 

1960; Cordell and Henderson,  1968; Bhattacharyya and 
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Figure 2-1: Gravity Effects of Various Bodies 

Gravity anomaly profiles calculated frcm simple 

two-dimensional polygonal bodies with a positive density 

contrast. A) A square; B) An infinite slab (gravity 

profile generated is a step function); and C) An 

infinite wedge.   Note that the gravity effects of all 

these bodies were calculated assuming the bodies extend 
) 

infinitely perpendicular to the page. 
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Figure 2-2: Gravity Interpretation Ambiguities 

Interpretation ambiguities in the gravity ancmaly 

profiles that result frcm different ways of modeling 

two-dimensional polygonal bodies with positive density 

contrasts. A) Varying the density contrast will produce 

differing gravity profiles frcm the same body. B) 

Varying the depth of the body while keeping the density 

and the shape constant will produce differing gravity 

profiles. C) Varying the shape and the depth of a body 

while keeping the density constant could generate the 

same gravity profiles. Note that all these gravity 

profiles were calculated assuming the bodies extend 

infinitely, in a tabular fashion, in the third dimension. 
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Navolio, 1975; Gerald and Debeglia, 1975]. Of these, the 

lalwani and Etoing [I960] is a forward-type routine, the 

others are inverse-type. 

The Tal\*ani and EWing [I960] method requires that a 

model be entered into the program by first slicing the 

model into horizonal sheets and then by entering the 

vertices of the polygons defined on the horizontal 

surfaces. The thicknesses each sheet are then entered. 

A synthetic gravity map is calculated from the model. 

This method can only operate on one body at a time. 

Further, it is a very tedious process to enter the shape 

of the model. For these reasons, the Talwani and Swing 

[1960] approach vas judged inappropriate for this 

investigation. 

The other three-dimensional modeling methods 

[Cordell and Henderson, 1968; Bhattacharyya and Navolio, 

1975; and Gerald and Debeglia, 1975] require that an 

observed gravity map be entered into the program and 

models of the subsurface are produced by iterative 

processes. Oordell and Henderson [1968] and Gerald and 

Debeglia [1975] use iterative techniques that generate 

models until a least-squares fit of a given correlation 

occurs. Bhattacharyya and Navolio [1975] use fourier 

transforms and deconvolution methods to calculate models 

that  fit  the observed gravity.   The above three 
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inverse-type modeling methods produce models that consist 

of vertical prisms floating on some type of surface at 

depth (analogous to various size blocks of wood floating 

in water). 

The Cordell and Henderson [1968] method was 

attempted for the Chattolanee Dome gravity    data. This 

method did not produce realistic geological results 

because only two lithologies could be represented in the 

model and the surface used to float the prisms could not 

be constrained for the Chattolanee Dane due to lack of 

subsurface data. 

It was decided that three-dimensional subsurface 

structure in the study area could best be determined by 

utilizing two-dimensional profiles. 

2.4.3.2 Anomaly Map Interpretation 

The simple bouguer anomaly map for the Chattolanee 

Dome (Fig. 5-2) was used to interpret the subsurface 

structure. In    this    study, trend surface analysis was 

applied to the simple bouguer ancmaly map for anomaly 

separation in order to isolate the sources of the gravity 

anomalies.    [Davis,  1973; Till,  1974; Nettleton,  1976]. 

Trend surface analysis is a statistical method used 

to fit polynomial equation surfaces to the observed 

(Surface by a least-squares inversion. The more terms 

that are in the polynomial equation, the more complicated 
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the trend surface is. A first-order trend surface is a 

flat plane, a second-order trend surface is a parabolic 

surface, and higher orders produce more complex trend 

surfaces. The object of the analysis is to discover the 

lowest order, statistically significant, trend surface 

that fits the mapped data. 

The data that do not fit the trend surface (the 

residuals) are then examined separately. Presumably, the 

trend surface represents the regional, large scale 

signals in the data while the residuals represent local 

phenomena. 
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3. AWUXSIS CF EATA 

3.1 General Crjiment on Linear Traverses 

Gravity models of the subsurface are nonunique, 

therefore a special effort must be made to constrain the 

geophysics with the geology. The general philosophy used 

in all the models was to keep each model simple. The 

simple-shaped bodies that produced good profile matches 

were preferred over more complex-shaped bodies. This 

philosophy was used because complex models loose their 

significance due to the error limits of the gravity and 

density values, and the structural control. All traverse 

models were initiated using quadrilateral bodies and were 

systematically refined to produce the models which 

follow. Many of the models were extended beyond the 

length of the traverse in order to eliminate edge 

effects. 

In general, at depths greater than 2500 meters, loss 

of resolution in the modeling method permits only the 

vaguest understanding of the structure. This limit 

depends upon many factors, particularly the density 

contrasts involved, the structural complexity, and the 

fact that the gravitational force decreases with the 

square of the distance. 
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3.2 Chattolanee Dane 

3.2.1 Bouguer Gravity Map 

During the summer of 1980, 431 gravity stations were 

occupied in the field area. Of these, 6 station values 

were discarded as erroneous (due to either misreading of 

instruments or inaccurately surveyed elevations), the 

values of 368 stations in a net pattern over a 160 square 

Icilcmeter area were contoured to make the bouguer anomaly 

map over the Chattolanee Dome (Fig. 5-2), and 57 values 

ccme frcm a traverse over the Itooenix Dome. A listing of 

the 425 stations values is found in Appendix B. 

The bouguer ancmaly map displays the same trends 

that Bromery [ 1967b,  1968] reported.   Hawever, the 

station density in this study was far greater and thus 
11 

the gravity map shows more detail 

In general, the bouguer ancmaly map (Fig. 5-2) 

indicates a trough-like depression in the gravity field 

which has an axis that trends about N80W.   Closer 

inspection of the map reveals that there is a linear 

'wrinkle' on or near the trough axis that  trends 

11 
At any given location that was occupied both in this 

study and by Bromery, ancmaly values differ by a few 
mgals. This is probably due to the Gravity Reference 
Field used in each study. Bromery used the now obsolete 
1930 International Gravity Formula. 
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approximately N70W. This gravity lineament was even more 

intriguing since it trends through several local 

structural features noted by Crowley [1976b; 1977; and 

others, 1975]. 

A small fault was mapped by Crowley [ 1976b; and 

others, 1975] in the vicinity of the small town of 

Chattolanee in the north central part of the Chattolanee 

Dome. The trend of this fault was assumed to be N10W. A 

field check of this feature revealed that there is a 

small (unmapped) silicified breccia zone associated with 

the fault and this outcrop trends about N70W. 

Along this N70W trend to the southwest, a slight 

topographic high occurs between the fault at Chattolanee 

and a fault mapped at the intersection of Old Court Road 

and Greenspring Avenue. A field check of this fault 

revealed the existence of another silicified breccia zone 

striking approximately N70W. Silicified breccia appears 

to grade into a quartz vein as the fault trends into the 

Baltimore Gneiss to the northwest (this may be one of the 

breccia zones noted by Broedel [1937]). Perhaps the 

topographic high between the two faults is caused by a 

vein of quartz that links the two faults. 

It appears that the gravity lineament may indicate a 

high-angle west-northwest striking fault. 
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3.2.2 Geologic Map 

Based upon data obtained in this investigation, a 

revised geologic map (Fig. 5-1) and a geologic column 

(Fig. 3-1) of the Chattolanee Dane were produced. The 

map represents a new interpretation of the geology based 

upon the geophysics. 

A different stratigraphic grouping was used for 

modeling purposes (Table 1-2). Crowley's Sveathouse 

Amphibolite Member of the Oella Formation was included 

with the amphibolites of the Baltimore Mafic Cbmplex (see 

page 21 for further explanation). Because of this new 

grouping, the southern contact of the Bare Hills 

serpentinite body is considered part of the Baltimore 

Mafic Complex as well (see page 23). 

The eastern extent of the Chattolanee Dane is fault 

bounded based upon gravity models (see page 69). 

The Greenspring Ave. - Old Court Rd. Fault and the 

fault at Chattolanee were reoriented parallel to the 

linear trends in the gravity along which occur the 

silicified fault breccias. The fault near the 

intersection of Old Court R3. and Lightfoot Drive 

(southwest of the Greenspring Ave.- Old Court Rd. fault) 

was also reoriented to N70W based upon aerial 

photographic evidence. 

The reentrant of Cockeysville Marble at Cwings Mills 
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was eliminated based upon a borinq drilled near 

Reisterstown Rd. and Painters Mill Rd. in Ctoings Mills. 

The boring revealed schist bedrock TMuller, personal 

ccmm.] rather than Cbckeysville TCrowley, 1976b and 

1977]. 

The Wissahickon contacts at the southwestern section 

of the Chattolanee Dome (near Mount Wilson) ware 

modified, based upon new reconnaissance mapping. 
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Figure 3-1: Generalized Geologic Column 
of the rock units in the 

vicinity of the Chattolanee Dame 

53 



sz silicified breccia] 
zone* 

m amphibolite 
Baltimore 

Mafic 
Complex 

urn serpentine 

Loch Raven 
Schist 

Oella   Fm. 

w 

Wissahickon 
Supergroup 

Cockeysville   Fm. 

Setters   Fm. 

s|        Slaughterhouse Gneiss 

p€b    Baltimore Gneiss 

•OCCURS THROUGHOUT THE COLUMN 

54 



3.2.3 Trend Surface Analysis 

A trend surface map was produced from the gravity 

data (Fig. 5-3). The best fit surface was obtained at 

94% correlation between the observed map values and the 

calculated trend surface, using a second-order polynomial 

(a quadratic equation). The surface, in essence, was a 

smoothed gravity anomaly map. A low order trend surface 

at a high correlation indicates that the gravity 

anomalies were caused by a large, regional mass which has 

a gravity anomaly that overwhelms any smaller, more local 

variations in density inhomogeneities. It also suggests 

that the large regional event represents a relatively 

simple body. Residuals from this trend surface were 

small (averaging about 0.6 mgals) and were unmappable. 

These residuals probably represent random errors in the 

data rather than local events. 

Examination of the 2nd order trend surface map 

revealed the following: 

1. The shape of the trend surface matches closely 
the shape of the bouguer gravity. This is to 
be expected. 

2. The trend surface forms a trough with the 
trough axis roughly parallel to the long axis 
of the Chattolanee Dome in the east and angles 
northward in the west. 

3. The shape of the trend surface indicates that 
there is a wedge of high density material 
thickening westward under the dome. This is 
evidenced by the dip of the trough axis. 
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4. The trough, itself, is probably due to the low 
density material that makes up the core of the 
Chattolanee Dome (i.e. Baltimore Gneiss). 
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3.2.4 North-South Gravity Traverses 

Three north-south gravity traverses - the 

Reisterstown Road Traverse, the Stevenson Road Traverse, 

and the Greensprinq Avenue Traverse - are rouqhly 

parallel to each other and are approximately 

perpendicular to the long axis (east to west) of the 

Chattolanee Dome (Fig. 5-4). The Reisterstown Road 

Traverse was the westernmost model completed for the 

Chattolanee Dome. It runs southeast to northwest and it 

crosses the dome axis at about a 45 degree angle. The 

Stevenson Road Traverse crosses the Chattolanee Dome 

directly perpendicular to the long axis of the dome. The 

Greensprinq Avenue Traverse is roughly parallel and east 

of the Stevenson Road Traverse. All three traverses 

cross the same general structure and lithologies, 

however, on the southern side of the Chattolanee Dome, 

the Cockeysville Formation is locally absent. The 

Slaughterhouse Gneiss is crossed only by the Greensprinq 

Avenue Traverse. 

The models for these three traverses (Figs. 3-2, 

3-3, and 3-4) were calculated. As indicated by the trend 

surface analysis (page 55), a wedge of higher density 

rock occurs underneath the done. Models calculated 

without the higher density rock beneath the dome produced 

profiles with lower gravity values than observed.   Two 
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major ambiguities exist when this wedge of rock is 

modeled: 1) The lithology (i.e. the density) of the 

wedge is uncertain. The wedge was assumed to contain 

Wissahickon lithologies because the Wissahickon is the 

most extensive high density rock unit in the study area. 

2) The shape, depth, and thickness of the wedge cannot be 

determined (see Fig. 2-2C). This is because no surface 

or subsurface control exists. The wedge appears to thin 

to the east. This is apparent from the bouguer gravity 

map (Fig. 5-2) and the 2nd order trend surface map (Fig. 

5-3) of the Chattolanee Dome. These two maps show a 

regional trough that dips to the east. 

The three models across the done indicate that the 

Baltimore Mafic Complex overthrusts the Wissahickon on a 

surface that dips about 45 degrees to the south. This is 

very clear frcm the model calculations and it is well 

constrained since the density contrast between the 

Baltimore Mafic Complex amphibolites and the Wissahickon 

rocks is large (0.084 to 0.246 g/cc). Structures under 

the mafic complex are less clear, especially to the south 

where the complex thickens. The steep observed gravity 

gradient over the mafic complex overwhelms signals frcm 

structures below the complex. 

The Setters Fm., the Gockeysville Fm., and the 

Wissahickon Group rocks all appear to  mantle  the 
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Baltimore Gneiss at a rather steep dip. The dip 

(apparent dip) is shallower north of the dome in the 

Reisterstown Road Traverse (Fig. 3-2). 

Based on the modeling, the Slaughterhouse Gneiss 

(Fig. 3-4) cannot be any thicker than 200 meters, due to 

its large negative density contrast with respect to the 

Baltimore Gneiss (-0.077 g/cc). 

3.2.5 Falls Road I Traverse 

The Falls Road I Traverse runs northward frcm Mount 

Washington to Brooklandville in the valley that separates 

the Chattolanee Dome frcm the Tbwson Dome (see Fig. 5-4). 

According to the model (Fig. 3-5), the valley is 

floored by a thin sequence of metasediments (no thicker 

than 700 meters). The Loch Raven and Oella rocks thicken 

and dip to the south. This is in accord with the 

geologic control which indicates that a syncline with a 

plunge axis to the south occurs in the valley CMathews 

and Miller, 1905; Crowley and others, 1975] 

The mafic complex overthrust contact (at about a 30 

degree angle) can be clearly delineated in this model. 

The Bare Hills serpentinite body is clearly related to 

the Baltimore Mafic Gomplex and it seems to lie along the 

overthrust. The density contrast between serpentine and 

amphibolite is very large (0.358 g/cc) resulting in a 

high confidence for this relationship. 
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Figure 3-2: Gravity Model of the Reisterstown Rd, 
Traverse 
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Figure 3-3:  Gravity Nfodel of the Stevenson Pd. 
Traverse 
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Figure 3-4: Gravity Ntodel of the Greenspring Ave. 
Traverse 

64 





Figure 3-5: Gravity Model of the Balls R3. 
Traverse 
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3.2.6 Keyser Boad  Traverse 

The Keyser Road Traverse trends east-west and is 

approximately parallel to the lonq axis of the 

Chattolanee Dome. This traverse crosses from the 

Chattolanee dome into the valley between the Chattolanee 

and the Towson Domes (Fiq. 5-4). 

The qradient of the observed gravity (Fiq. 3-6) is 

similar to the gravity effects of a wedge (Fiq. 2-1C). 

This is further verification that a westward-thickening 

wedge of hiqh density rock underlies the Chattolanee 

Dome. Hswever, the shape, density, and deoth of the 

wedge cannot be constrained for reasons previously 

discussed (see page 58). In this model, a Wissahickon 

lithology (density) is assumed. 

Again, the Slaughterhouse Gneiss cannot be modeled 

any thicker than 200 meters because of its large negative 

density contrast with the Baltimore Gneiss. The 

Slaughterhouse Gneiss appears to form only a thin sheet 

in the Baltimore Gneiss. 

The valley between the Chattolanee and Towson Domes 

can be modeled as a syclinal structure, in accordance 

with the structural control. 

Crowley's map rCrowley, 1976b? Crowley and others, 

1975] shows the eastern end of the Chattolanee Dome 

truncated by an unconformity.  While there is no good 
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exposure of this contact, it could also be interpreted as 

a fault since a relatively thick section of Setters 

appears to be missing and the contact is suspiciously 

linear. 

The model indicates that the latter interpretation 

may be correct. 

3.2.7 Ruxton Fault Traverse 

The Ruxton Fault was first recognized by Mathews and 

Miller [1905] as a N-S fault which truncates the western 

end of the Tbwson Dome. They suggested that the fault 

was a low-angle thrust fault with a dip to the east. 

Mathews and Miller do not provide a clear explanation why 

they interpret the fault as eastward dipping. Broedel 

[1937] believed that the Ruxton Fault was a high-angle 

normal fault. This was based upon the attitude of the 

silicified breccias near lake Roland. A traverse was 

made across the fault to attempt to determine its 

attitude (Fig. 5-4). 

Despite the apparent deviations between the observed 

gravity and the gravity calculated frcm the model of this 

traverse, the two gravity profiles are in close agreement 

(Fig. 3-7). The apparent deviations are due to an 

enlargement of the gravity scale. 

The eastern section of the Ruxton Fault Traverse 

which is over the Tbwson Dome displays  the  same 
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Figure 3-6: Gravity Model of the Keyser FA. 
Traverse 
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relationship as in Fig. 2-lC. The model, therefore, must 

have a wedge of higher density rock underlying the Tbwson 

Dome. / This hiqh density rock is probably Gockeysville 

since this is the same rock that underlies the valley 

between the Chattolanee and the Tbwson Domes. The Ruxton 

Fault is best modeled as a vertical fault which truncates 

the Cbckeysville wedge. An alternative approach would be 

to model the upper surface of the Cbckeysville wedge 

under the Tbwson Dome reaching the surface as the Ruxton 

Fault, however a poor match results between the observed 

data and the calculated values in this case. Ihe upper 

surface of the Cbckeysville wedge must occur deeper than 

100 meters below sea level. 

Nfodels of the Ruxton Fault may have difficulties due 

to rock bodies outside the plane of the traverse 

affecting the observed gravity, however, geological 

arguments also support a high angle fault. Ihe Ruxton 

Fault in map view remains a linear feature as it crosses 

variations in the topography. If it were a low angle 

fault, its trace would be more irregular. 

As demonstrated in the Falls Road I Traverse and the 

Keyser Road Traverse, the valley between the Chattolanee 

and Tbwson Dcmes is floored by metasedimentary rocks no 

thicker than 700 meters. Furthermore, the Ruxton Fault 

Traverse model clearly displays the synclinal structure 
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of  the valley.   It appears that the syncline is 

overturned to the east. 

Except for the thin metasedimentary cover in the 

valley between the two denies, Baltimore Gieiss (or any 

other granitic rock with a similar density) can be 

modeled as extending downward infinitely. Realistically, 

however, structures at depths greater than about 6 km. 

cannot be distinguished in this model. 

3.2.8 Miscellaneous Traverses 

Other traverses were modeled but are not presented 

because they did not compare in guality to the above 

traverses. In general, they either had 1) irresolvable 

ambiguities, 2) bodies frcm out of the plane of the 

profile affecting the observed gravity, or 3) could not 

be modeled with simple or geologically reasonable bodies. 

These miscellaneous traverses were: 

Two traverses along Falls Rd. which connected 
the Jails Rd. I Traverse to the south with the 
Phoenix Dame Traverse in the north: These 
could not be modeled due to poor subsurface 
contact control and due to bodies out of the 
plane of the profile affecting the observed 
gravity. 

A. traverse along Lyons Mill Rd. frcm Deer Park 
Rd. to Painters Mill Rd.: This traverse 
crossed the western nose of the Chattolanee 
Dome. It simply did not produce geologically 
meaningful results. This was probably due to 
bodies out of the plane of the profile. 

A traverse along Painters Mill Rd. from Winands 

73 



Figure 3-7: Gravity Nbdel of the Fuxton Fault 
Traverse 
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Rd. to Reisterstown Rd.: This traverse was 
approximately north-south at the west end of 
the dame. The traverse did not produce 
meaningful results probably due to bodies out 
of the plane of the profile and due to poor 
subsurface contact control. 

In general, traverses in the western half of the 

Ghattolanee Dome were of poorer quality than those of the 

eastern half. This was because there was better station 

density and geologic controls in the eastern section. 
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3.3 Rroenix Cone Traverse 

The Rroenix Dome is approximately 10 kilometers 

north of the Chattolanee Dome. The structure of the 

Fhoenix Dome has been interpreted as a rooted dome 

[Broedel, 1937] and the bottom limb of a rootless nappe 

[Crowley, 1976a and b; Fisher and others, 1979], 

Remapping of the Ehoenix Dome is currently in progress 

[Muller, in prep.]. 

The gravity traverse was made along Falls Rd. from 

Miller Rd. to Ooopersville. The geology in the area is 

quite complicated (Fig. 5-5). The rocks along the 

traverse all dip to the north at a fairly steep angle. 

Exceptions to this trend are the rocks at the southern 

side of the dome in Wbrthington Valley which dip steeply 

to the south [Muller, personal ccmm.]. Another exception 

to this trend occurs east of Falls Rd. just south of 

Butler. The rocks dip to this south locally in this 

area, probably because they are locally overturned 

[Muller, personal comm.]. The Cbckeysville Formation is 

repeated four times along Falls Road northward from 

Shawan to Ooopersville. Further complications arise due 

to lithologic changes along strike of the Setters 

Formation [Fisher, 1971]. 

A simplified version of Muller' s geologic map of the 

Hereford Quadrangle [in prep.]  contains  the  most 
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up-to-date structural control for this traverse (Fiq. 

5-5). Four different interpretations of the subsurface 

structure of the Etooenix Dome can be derived based upon 

these data (Fiq. 3-8). These four interpretations assume 

that folding (rather than faulting) is the chief 

large-scale style of deformation. Faulting appears 

insignificant in this section of the Rroenix Dame; field 

evidence for large faults is lacking and where faults do 

occur on a local scale, displacements seem small. 

The general strategy used in determining the 

subsurface structure of the Etaoenix Dome was to input 

each of the four different models to see which model 

produced the best fit with the observed gravity. High 

resolution modeling was not attempted since it was felt 

that not enough constraints were available, particularly 

density control. 

3.3.1 Model 1 

Model 1 is that of a rooted dome with a syncline on 

the roof of the dome. This model produced a very poor 

match (Fig. 3-9). The main problem with this model is 

that there is too much low density Baltimore Gneiss 

present in the core of the dome. This produces a gravity 

profile that is lower than the observed profile. 

Increasing the density of the Baltimore Gneiss within the 

density error limits did not significantly improve the 

78 



Figure 3-8: Diagram of Possible Structures 
of the Phoenix Dome 
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Figure 3-9:  Gravity Model of the H-oenix Efcme 
Traverse-Model 1 

i . 
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fit. 

3.3.2 Model 2 

Model 2 is a rooted, overturned nappe. It produces 

another poor match between the calculated and observed 

data for precisely the same reasons as was the case in 

Model 1 (Fig. 3-10). A better match vas achieved, 

however, over the inlier zone. The low density mass 

Baltimore Gneiss in the southern end of the traverse 

again causes a much lower gravity than was observed. 

The structure of the HToenix Dome does not appear to be 

rooted, as demonstrated by the poor fit of the gravity 

data to profiles calculated from Models 1 and 2. For 

this reason, rootless structures (Models 3 and 4) were 

tried. Rootless structures imply that a body of higher 

density material exists under the low density Baltimore 

Gneiss. This high density mass was assumed to be one of 

the Wissahickon units, specifically the Loch Raven 

Schist. This assumption is based upon Bromery's T 1967a 

and 1968] data that suggest that a material with a high 

magnetic susceptibility exists beneath the dame. The 

Loch Raven Schist fits both these density and the 

magnetic constraints. 
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Figure 3-10:  Gravity Model of the Phoenix Dome 
Traverse-Model 2 
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3.3.3 Model 3 

Model 3 represents the top limb of a rootless nappe. 

The gravity profile produced fits the observed gravity 

fairly vrell. The bottom limb of this structure has to 

occur rather deep so that Baltimore Gneiss can completely 

surround the inlier. This results in a lack of mass (too 

much Baltimore Gneiss) at the southern end of the 

traverse and a large excess of mass (too much Loch Raven 

Schist) at the northern end of the traverse. Even if the 

bottom limb of the structure is brought up to a depth of 

1.5 km. - the shallowest it can be made and still fit the 

geological constraints - the situation remains the same. 

3.3.4 Model 4 

Model 4 represents a bottom limb of a rootless 

nappe. It produced the best fit among all the models 

(Fig. 3-12). This model demonstrates that the v*sstern 

end of the Rroenix Dome is best interpreted as a rootless 

structure. 
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Figure 3-11:  Gravity Model of the Rroenix Done 
Traverse-Model 3 
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Figure 3-12: Gravity Model of the Phoenix Dome 
Traverse-Model 4 
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4. DISCUSSION 

Seme specific conclusions can be drawn concerning 

the subsurface structure of the Chattolanee Dome, the 

Phoenix Dome, and the Tbwson Dome. 

The Phoenix Dome appears to be a nappe-like 

structure. Assuming no major faults are present, the 

structure in the western end of the dome is probably that 

of a bottom limb of a rootless nappe. The long axis of 

the Phoenix Dome trends approximately N70E. The nappe 

movement was most likely perpendicular to this trend and 

the gravity models indicate a root zone to the south. 

The location of the root zone for the Pnoenix Dome 

may be the Chattolanee Dome. If this is the case then 

the kidney-shaped outcrop of Cockeysville north of the 

Chattolanee Dome (known as "The Caves"; see Fig. 5-1) is 

not an anticline as Crowley [1976a; 1977; and others, 

1975] suggests but rather a syncline comprising of a thin 

sliver of marble frcm the overturned bottom limb of the 

Phoenix Ifeppe (Fig. 4-1M. 

It is also possible that there is no structural tie 

between the Phoenix Dome and the Chattolanee Dome. In 

this case (Fig. 4-IB), the Phoenix Dome may be rooted to 

the south under the Chattolanee Dome and the Chattolanee 

Dome is stacked on top of the Fhoenix tfeppe. 

Unfortunately, neither Fig. 4-1A. nor,Fig. 4-1B can be 

91 



resolved with the geophysical data because of poor 

reftilts along Falls Itoad (see paqe 73). Structural data 

is also ambiguous and can support many interpretations 

[Muller, oersonal ccmm.]. The Chattolanee Dome is indeed 

anticlinal at or near the surface. It appears to be 

rooted to the east with the root zone beneath the valley 

between the Chattolanee Dome and the Tbwson Dome. The 

western end of the Chattolanee Dome is underlain by a 

wedge of metasediments. This wedge could be either fold 

related or fault related (Fig. 4-2). The geophysical 

evidence is inconclusive. It seems that other thrust 

faults would be parallel to the wedge if indeed the wedge 

is due to faulting. The westward thickening wedge of 

Cockeysville underlying the Ibwson Dome may signify a 

parallel, imbricate fault. 

If an episode of large-scale, low-angle imbricate 

faulting has occurred in the Baltimore Gneiss Dome 

terrain, some of these faults must intersect the surface 

and should be seen in the geology. In the case of the 

Chattolanee Dome, a fault trace should occur in 

Wissahickon rocks at the western end of the dome if this 

theory is correct. Field work in the southwestern end of 

the Chattolanee Dome near Mount Wilson located no faults 

however, exposure is very limited. 

Another explanation for the wedge-shaped bodies 
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Figure 4-1: Hypothetical Southeast-Northwest 
Profile Through the Chattolanee 

and Phoenix Dames 
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under the Chattolanee and the Tbwson Domes is that the 

bodies represent overturned limbs of nappes (see Fig. 

4-2B).   Bromery [1968] noted that the Baltimore Gneiss 

Domes, and in particular the Chattolanee and Tbwson 

Domes,  are associated with flat, negative magnetic 

anomalies. Fisher and others [1979] determined that the 

magnetic anomalies could not be explained in terms of the 

magnetic  properties of the Baltimore Gneiss.   The 

Baltimore Gneiss has a very low magnetic susceptibility 

and a random normal remanent magnetization. Further, the 

Setters and Cockeysville Formations have similarly low 

magnetic susceptibilities.   Wissahickon rocks have a 

relatively high susceptibility and are associated with 

nearly all the magnetic anomalies in the study area.   A 

possible explanation for the negative magnetic anomaly 

over the Chattolanee Dome is that overturned Wissahickon 

rocks underlie the Baltimore Gneiss at depth. This would 

tend to support the interpretation seen in Fig. 4-2B. 

The Baltimore Mafic Complex overthrust may have been 

the mechanism responsible for napping. Ihe mafic complex 

seems to be thrust northwestward. Perhaps it bulldozed 

the more plastic Baltimore Gneiss and Glenarm 

metasediments ahead of the thrust causing the nappes. 

Relatively hot high density mafic rocks on top of low 

density pelitic and psammitic metasedimentary rocks could 
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have heated the metasedimentary rocks and caused them to 

deform plastically. The metasedimentary rocks will want 

to rise diapirically because of the gravitational 

instability in this inverted density relationship. 

A summary interpretation of the subsurface structure 

of the Chattolanee Dame can be seen in Fiqure 4-3. 
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Figure 4-2:  Hypothetical East-West Profile Through 
The Chattolanee Dome 
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Figure 4-3: Block Diagram of the Chattolanee Dome 
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4.1 Tectonic Scheme 

It seems clear frcm the geophysical evidence that 

the structure of the Baltimore gneiss Domes, more 

specifically the Chattolanee, Towson, and Ehoenix Domes, 

are not as simple as Eskola T19491 believed. Eskola 

thought that the gneiss dcmes form frcm mobilization and 

migmatization due to diapiric rising. He reasoned that 

the basement gneisses reach some critical depth at very 

high temperature and the gneiss vas migmatized and 

behaved as a fluid with no strength. Because the gneiss 

is a low density rock, it rises diapirically. This is 

similar to diapiric salt dcming. The structural history 

based on the large-scale imbricate faulting hypothesis is 

deduced as: 

1. Extreme ductile deformation forming nappes. 

2. Imbricate thrusting of the whole package. 

3. Thrusting of the Baltimore Mafic Complex. 

4. late-stage normal faulting (isostatic rebound 
?). These faults were fairly shallow since 
fault breccias are still preserved. 

The structural history based  on  the  folding 

hypothesis is deduced as: 

1. Thrusting of the Baltimore Mafic Complex 
accompanied by extreme ductile deformation, 
forming nappes. 

2. Late-stage normal faulting. 
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The second scenario is preferred over the first since it 

had a build-in mechanism for napping. The overall 

mechanism that formed the Baltimore Gneiss Domes was 

probably a complex type of crustal shortening. This 

crustal shortening event was possibly a 

continental-continental collision, perhaps laconic in 

age, as age dates of the latest metamorphism suggests 

[Higgins, 1972]. 
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4.2 Recommendations for Rarther Work 

1. More detailed subsurface data is necessary in 
order to verify these interpretations. Drill 
corinq and seismic profiles "would be highly 
valuable. 

2. Palecmagnetic vrork, particularly on the 
meta-iqneous rocks, may provide information 
such as delineation of various tectonic blocks 
and paleolatitudes. 

3. This high-density gravity survey could be 
extended to provide more information 
concerning the other dcmes adjacent to the 
Chattolanee Dcme. 

4. Petrofabric analysis of the silicified 
breccias may provide a clue as to the fault 
movements. 

5. More fold analysis is necessary in order to 
determine different fold styles and 
orientations. This type of analysis may 
provide new data concerning stress directions. 
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APPENDIX A: Gravity Base Station Descriptions 

Explanation: Since portable gravity meters can 

measure only relative differences in the earth's 

qravitational field, they must be calibrated to stations 

which have accurately determined absolute gravity. These 

stations are collectively known as gravity base stations. 

Most gravity base stations are established by ties with 

other previously established base stations using portable 

gravity meters. All gravity base stations are ultimately 

tied to stations where the absolute gravity was 

determined by an accelercmeter. These stations are known 

as first-order gravity stations. 

The following is a descriptive listing of base 

stations used in this study. These stations are on file 

with the Gravity and Astronomy Division of the National 

Geodetic Survey (a branch of the National Ocean Survey - 

NOAA). 
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Existing Stations Used 

=> NBS-2 
location: 

Description: 

Latitude: 
Longitude: 
Elevation: 

Established >, 

Room 129,  Bldg.  202 National Bureau of 
Standards Gaithersburg, Maryland 
The station is a brass plate set in the 
southwest corner of manhole slab, near 
the door to corridor.   This  is  a 
first-order station. 
39 07.85 N 
77 13.20 W 
131 m. (approx.) 
980101.37 mgals 
Nov. 1965 !"Tate, 1966], revised 1979 

=> Barrisburg 
Location: 
Description: 

Latitude: 
Longitude: 
Elevation: 
g: 
Established: 

Harrisburg, Pennsylvania 
The  station is at the Capital City 
Airport. It is at the southwest corner 
of the Smith Aircraft Corp. hangar, the 
hangar west of the building closest to 
the control tower. The site is below the 
"Office Entrance" sign. A USC&GS BM disk 
is on the south face of the building at 
the same corner. 
40 13.3 N 
76 51.3 W 
102.570 m. 
980119.72 mgals 
Nov.   1967 

=> Pottsville 
Location: 
Description: 

Latitude: 
Longitude: 
Elevation: 
g: 
Established: 

Pottsville,  Pennsylvania 
Ihe station is located    in    the    town    of 
Pottsville,     at the Civil Vfeir Monument on 
Market Street.    It is on a concrete   base 
on    the    south side of the west monument. 
A USC&GS disk is    0.6    meters    above    the 
site. 
40 41.0 N 
76 11.9 W 
200.318 m. 
980133.13 mgals 
Nov.  1967 
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=> Scranton 
Location: 
Description: 

Latitude: 
Longitude: 
Elevation: 

Established: 

Scranton, Pennsylvania 
The  station  is  at the Scranton - 
Wilkes-Barre Airport.   It is at the 
terminal building,  3 meters east of the 
southeast corner, on the ground in a 
corner formed by the intersection of two 
fences. 
41 20.5 N 
75 43.5 W 
280.0 m. 
980209.86 mgals 
NDV. 1967 

Stations Established for this Survey 

=> Baltimore 
Location: 
Description: 

Latitude: 
Longitude: 
Elevation: 
g: 
Established: 

Base 
Baltimore, Maryland 
Ihe station is located  in  Glenmar, 
Maryland, 1 "km.   south of Stevenson, 
Maryland and 1 1cm. north of Exit 21 of 
Interstate 695.  It consists of a brass 
plate set in concrete marked "Gravity 
Base Station".  The station monument is 
adjacent to the concrete curb on the 
south side of Elm Hollow Court. 
39 24.02 N 
76 42.68 W 
162.80 m. 
980090.148 mgals 
Aug. 1980 
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=> Lehigh Base 
location: 
Description: 

latitude: 
longitude: 
Elevation: 

Established: 

Bethlehem,  Pennsylvania 
The    station    is at Williams Hall,  Lehigh 
Uiy.versity.     It is at the    east    entrance 
to the building.    A brass screw is driven 
into      the      southwest      corner      of    the 
concrete,  at the outside entranceway. 
40 36.40 N 
75  21.92 W 
107.85 m. 
980137.769 mgals 
Sept.  1980 
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APPENDIX B: Measured Gravity Station Values 

Explanation: The fbllowinq is a list of qravity 

station values measured from May to September 1980. The 

headings are as follows: 

Stat. 
lat. 

Long. 

Elev. 

Absol. g 

F. A. 
B. A. 

Godenumber for the gravity station 
The    latitude of the station in degrees 
and minutes (north of the Equator) 
The longitude of the station in degrees 
and minutes (west of the Prime Meridian 
l^\e    elevation of the station in meters 
above sea level 
The gravitational acceleration at the 
station in mgals 
The free-air anomaly in mgals 
The bouguer anomaly in mgals 

Stat.      Lat. long.    Elev.      Absol. g    F. A.    B. A. 

* * 

. - ,, ,.,,.,, »-*-"*** 

* '  Chattolanee Dome Net * * * 

1G1 39 25.20 76 41.40 100.52 980107.133 20.750 9.501 
1G3 39 25.40 76 40.80 106.92 980106.283 21.580 9.615 
1G4 39 25.40 76 4.1.20 104.86 980107.438 22.098 10.364 
1G5 39 25.50 76 41.50 111.47 980106.625 23.177 10.703 
1G6 39 25.90 76 41.90 171.52 980097.281 31.773 12.579 
1G8 39 25.40 76 41.80 115.92 980105.638 23.711 10.740 
1G9 39 25.10 76 41.40 102.60 980105.642 20.048 8.567 
1G10 39 24.90 76 41.40 90.82 980106.902 17.968 7.806 
1G11 39 24.80 76 41.30 97.03 980102.901 16.031 5.174 
1G12 39 24.60 76 41.20 121.41 980096.926 17.875 4.290 
1G13 39 24.50 76 41.20 131.68 980094.385 18.652 3.917 
2G1 39 25.10 76 40.20 89.45 980106.924 17.273 7.263 
2G2 39 25.20 76 40.20 93.28 980107.238 18.619 8.182 
2G3 39 25.30 76 40.50 97.13 980106.955 19.379 8.509 
2G4 39 25.50 76 40.30 99.23 980106.535 19.308 8.205 
2G5 39 25.60 76 40.30 109.14 980106.678 22.362 10.149 
2G6 39 25.90 76 40.50 156.68 980099.879 29.792 12.259 
2G8 39 26.10 76 40.90 172.02 980097.928 32.279 13.030 
2G9 39 26.00 76 42.60 165.48 980098.225 30.704 12.187 
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Stat.      Iat. long.    ELev.      Absol. g    F. A.    B. A. 

2G10 39 25.30 76 42.60 107.42  980107.885 23.482  11.462 
2G11 39 25.20 76 42.70 105.12 980107.874 22.911  11.148 
2G12 39 25.00 76 42.70 105.16 980107.394 22.739 10.972 
2G13 39 25.00 76 42.90 109.98 980106.547 23.379 11.072 
2G14 39 24.70 76 42.90    99.83  980106.211  20.353    9.182 
2G15 39 24.60 76 42.80 104.15 980103.886 19.509    7.855 
2G16 39 24.60 76 42.80 111.97  980101.701 19.738    7.209 
2G17 39 24.50 76 42.70 140.62 980095.944 22.969    7.234 
3G1 39 24.80 76 43.30 110.68 980105.775 23.117 10.732 
3G2 39 24.90 76 43.10 111.26 980106.344 23.718 11.268 
3G3 39 26.20 76 40.90 168.44 980099.468 32.566 13.718 
3G4 39 26.50 76 41.00 180.71  980097.430 33.872 13.650 
3G5 39 26.70 76 41.10 178.62 980098.319 33.818 13.831 
3G6 39 26.80 76 41.10 188.37 980097.100 35.461 14.382 
3G7 39 26.90 76 41.50 189.16 980097.008 35.466 14.298 
3G8 39 26.80 76 42.10 183.45 980098.872 35.713 15.185 
3G9 39 26.80 76 42.50 189.89 980097.423 36.253 15.004 
3G10 39 26.70 76 42.80 185.79 980097.948 35.660 14.870 
3G11 39 26.70 76 43.10 197.70 980095.625 37.014 14.891 
3G12 39 26.80 76 43.20 191.53 980096.749 36.084 14.652 
3G13 39 26.50 76 42.90 200.83 980094.249 36.900 14.426 
3G14 39 26.20 76 42.60 192.47 980095.301 35.813 14.276 
3G15 39 26.10 76 42.40 179.90 980096.973 33.756 13.625 
3G16 39 26.90 76 43.40 191.44 980097.411 36.571 15.149 
3G17 39 26.50 76 43.80 145.30 980103.854 29.368 13.108 
3G18 39 26.30 76 44.00 137.42 980105.711 29.088 13.711 
3G19 39 26.20 76 44.10 136.76 980104.898 28.220 12.916 
4G1 39 25.00 76 40.10    88.31  980105.783 15.926    6.045 
4G2 39 24.90 76 40.10    84.33 980104.238 13.300    3.864 
4G3 39 24.70 76 40.10    88.93  980101.598 12.378    2.426 
4G4 39 24.50 76 40.10    97.29 980098.309 11.964    1.077 
4G5 39 24.30 76 40.10 101.57 980098.374 13.645    2.279 
4G6 39 24.10 76 40.10    92.68 980099.762 12.585    2.214 
4G7 39 24.00 76 40.00    80.53 980102.120 11.343    2.331 
4G8 39 23.90 76 40.00    78.27 980102.502 11.173    2.415 
4G9 39 23.80 76 39.80    76.75 980103.524 11.874    3.286 
4G10 39 23.60 76 39.80    74.87 980104.153 1^.221    3.842 
4G11 39 23.50 76 39.70    72.77 980104.498 12.065    3.922 
4G12 39 23.30 76 39.60    76.18 980103.160 12.074    3.549 
4G13 39 23.10 76 39.60    89.15 980099.054 12.265    2.290 
4G14 39 23.10 76 39.90 100.84 980098.060 14.880    3.596 
4G15 39 22.80 76 39.10    90.01 980098.464 12.387    2.314 
4G16 39 22.60 76 39.10    65.87 980103.315 10.083    2.712 
4G17 39 22.40 76 39.00    68.81  980103.251 11.221    3.522 
4G18 39 23.90 76 40.10    80.09 980101.921 11.156    2.193 
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4G19 39 24.10 76 39.60 97.84 980099.280 13.695 2.747 
5G1 39 23.40 76 42.80 167.26 980089.082  25.955 7.239 
5G2 39 23.50 76 42.80 167.27 980089.508 26.236 7.519 
5G3 39 23.60 76 42.70 165.12 980089.669 25.587 7.110 
5G4 39 23.70 76 42.80 158.36 980091.023 24.706 6.986 
5G5 39 23.90 76 42.80 163.12 980090.493  25.350 7.097 
5G6 39 24.10 76 42.80 156.84 980091.561 24.184 6.634 
5G7 39 24.40 76 42.70 143.74 980094.977 23.114 7.029 
5G8 39 24.30 76 42.50 147.73 980093.436 22.951 6.420 
5G9 39 24.30 76 42.30 151.88 980091.753 22.550 5.555 
5G10 39 24.30 76 41.90 156.11 980090.394 22.497 5.028 
5G11 39 24.20 76 41.80 156.32 980089.581  21.897 4.404 
5G12 39 24.10 76 41.10 120.68 980095.349 16.813 3.309 
6G1 39 24.00 76 41.20 117.64 980096.269 16.944 3.779 
6G2 39 23.80 76 41.30 124.34 980094.996 18.033 4.120 
6G3 39 23.20 76 41.30 133.72 980092.895 19.714 4.751 
6G4 39 23.80 76 41.50 138.41 980092.362 19.742 4.254 
6G6 39 23.70 76 43.30 150.03 980094.359 25.488 8.694 
6G7 39 23.70 76 42.90 166.43 980089.774 25.948 7.324 
6G8 39 23.90 76 42.40 148.51 980092.714 23.062 6.444 
6G9 39 24.00 76 42.30 146.57 980092.487 22.089 5.687 
6G10 39 24.10 76 42.50 157.08 980090.744 23.441 5.864 
6G11 39 24.10 76 42.00 149.55 980091.147 21.520 4.785 
6G12 39 24.00 76 41.70 150.70 980090.621 21.498 4.634 
6G13 39 23.90 76 41.80 138.15 980093.209 20.360 4.901 
6G14 39 23.70 76 41.20 143.10 980090.118 19.092 3.079 
6G15 39 23.60 76 41.40 154.03 980088.360 20.855 3.619 
6G16 39 23.50 76 41.60 156.75 980088.336 21.817 4.277 
6G17 39 23.20 76 42.30 159.47 980089.321 24.087 6.242 
6G18 39 23.10 76 42.40 145.03 980092.424 22.883 6.653 
6G19 39 23.00 76 42.40 138.20 980093.499 21.996 6.531 
6G20 39 22.90 76 42.70 150.03 980092.099 24.394 7.605 
6G21 39 22.80 76 42.90 156.02 980091.291 25.584 8.125 
6G22 39 23.00 76 42.90 159.41 980090.629 25.671 7.833 
7G1 39 24.00 76 42.10 147.42 980091.867 21.731 5.234 
7G2 39 23.50 76 41.10 124.23 980093.877 17.324 3.422 
7G3 39 23.40 76 41.10 112.36 980095.737 15.668 3.095 
7G4 39 23.30 76 41.20 111.22 980095.755 15.483 3.037 
7G5 39 23.20 76 41.10 103.22 980098.359 15.767 4.216 
7G6 39 23.10 76 41.20 106.79 980098.334 16.991 5.041 
7G7 39 22.90 76 41.20 117.33 980096.445 18.649 5.520 
7G8 39 22.80 76 40.50 130.31 980095.650 22.010 7.427 
7G9 39 22.90 76 40.50 130.09 980094.747 20.890 6.332 
7G10 39 23.00 76 40.50 121.08 980095.866 19.079 5.531 
7G11 39 23.10 76 40.30 112.58 980097.122 17.566 4.968 
7G12 39 23.00 76 40.70 104.45 980098.557 16.638 4.951 
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7G13 39 23.70 76 40.80 153.45 980087.451  19.620 2.448. 
7G14 39 23.80 76 40.70 139.28 980089.898 17.545 1.960 
7G15 39 23.80 76 40.60 130.39 980091.423 16.326 1.736 
7G16 39 23.90 76 40.50 117.74 980093.957 14.811 1.635 
7G17 39 23.80 76 40.40 97.75 980097.177 12.009 1.071 
7G18 39 24.00 76 41.00 109.44 980097.021  15.164 2.918 
8G1 39 22.70 76 40.60 134.42 980096.221 23.995 8.954 
8G2 39 22.50 76 40.70 130.00 980098.064 24.771 10.224 
8G3 39 22.50 76 41.00 128.36 980098.212 24.411 10.048 
8G4 39 22.70 76 41.10 136.68 980094.324 22.795 7.500 
8G5 39 22.60 76 41.30 131.99 980096.725 23.896 9.127 
8G6 39 22.60 76 41.50 137.14 980095.730 24.492 9.146 
8G7 39 22.70 76 41.60 141.97 980094.139 24.243 8.357 
8G8 39 22.80 76 41.60 122.99 980096.669 20.769 7.006 
8G9 39 22.80 76 41.80 127.10 980096.127 21.495 7.272 
8G10 39 22.80 76 42.00 129.02 980095.584 21.545 7.107 
SG11 39 22.70 76 42.20 139.99 980094.444 23.938 8.273 
8G12 39 22.10 76 41.70 147.01 980093.402 25.948 9.498 
8G13 39 22.60 76 42.00 146.03 980094.790 26.294 9.953 
8G14 39 22.50 76 42.30 145.19 980095.308 26.701 10.454 
8G15 39 22.50 76 42.40 147.76 980095.223 27.410 10.875 
9G1 39 22.30 76 39.20 65.84 980104.276 11.477 4.110 
9G2 39 22.00 76 39.10 60.48 980104.165 10.157 3.389 
9G3 39 21.70 76 39.30 97.47 980099.793 17.642 6.735 
9G4 39 21.90 76 39.40 100.88 980099.858 18.464 7.176 
9G5 39 22.00 76 39.60 75.80 980106.752 17.472 8.989 
9G6 39 22.30 76 39.60 87.23 980102.858 16.659 6.899 
10G1 39 21.30 76 39.80 117.37 980101.209 25.790 12.657 
10G2 39 21.60 76 39.60 115.80 980099.255 22.910 9.952 
10G3 39 22.00 76 39.30 65.31 980105.892 13.373 6.065 
10G4 39 22.20 76 39.90 109.63 980101.094 21.956 9.689 
10G5 39 22.00 76 40.00 82.32 980106.970 19.700 10.489 
10G6 39 21.80 76 39.90 111.33.980101.873 23.852 11.394 
10G7 39 21.60 76 39.80 123.84 980099.647 25.782 11.924 
10G8 39 21.50 76 39.80 134.49 980097.642 27.212 12.163 
10G9 39 21.70 76 40.10 122.77 980101.109 26.767 13.028 
10G10 39 21.90 76 40.50 103.73 980106.100 25.587 13.979 
10G11 39 22.20 76 40.70 119.57 980102.190 26.121 12.741 
10G12 39 22.20 76 40.10 107.68 980102.654 22.917 10.867 
11G1 39 22.00 76 39.00 92.51 980102.313 18.187 7.835 
11G2 39 21.80 76 40.40 97.24 980107.009 24.640 13.759 
11G3 39 21.80 76 40.50 99.62 980107.050 25.415 14.268 
11G4 39 21.70 76 40.30 123.24 980101.832 27.633 13.843 
11G5 39 20.40 76 40.20 136.39 980098.814 30.595 15.333 
11G6 39 22.00 76 40.80 117.45 980103.796 27.368 14.225 
11G7 39 22.30 76 40.70 116.82  980101.902 24.836 11.763 
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11G8 39 22.30 76 40.60 119.57 980101.190 24.972 11.592 
11G9 39 22.30 76 40.90 121.26 980101.492 25.795 12.227 
11G10 39 22.00 76 40.10 133.89 980101.972 30.617 15.635 
11G11 39 21.90 76 40.80 128.34 980102.608 29.690 15.328 
11G12 39 21.80 76 41.10 123.04 980104.918 30.511  16.742 
11G13 39 21.60 76 41.40 125.71  980105.770 32.481  18.414 
11G14 39 21.40 76 41.50 138.28 980103.843 34.731  19.257 
11G15 39 21.40 76 41.10 133.06 980105.211 34.487 19.598 
11G16 39 21.60 76 41.20 122.23 980106.156 31.793  18.116 
11G17 39 21.70 76 40.80 103.22 980107.723 27.346 15.796 
11G18 39 21.50 76 40.80 117.05 980105.384 29.570 16.473 
11G19 39 21.30 76 41.10 136.03 980103.764 34.106 18.883 
11G20 39 21.30 76 40.50 136.18 980100.147 30.534 15.295 
12G1 39 21.90 76 40.10 118.80 980101.369 25.505 12.211 
12G2 39 21.90 76 41.40 117.63 980106.787 30.564 17.400 
12G3 39 21.60 76 41.60 136.97 980104.347 34.535 19.208 
12G4 39 21.40 76 42.20 136.78 980105.306 35.731  20.425 
12G5 39 21.20 76 42.40 135.14 980107.095 37.309 22.186 
12G6 39 21.60 76 42.30 142.04 980103.641 35.392  19.498 
12G7 39 21.60 76 42.40 144.27 980103.906 36.345 20.202 
12G8 39 21.70 76 42.20 138.20 980104.437 34.856 19.391 
12G9 39 21.80 76 42.50 145.13 980103.044 35.454 19.214 
12G11 39 21.80 76 42.10 133.34 980104.954 33.725 18.804 
12G12 39 21.60 76 41.80 134.46 980105.525 34.937 19.891 
12G13 39 21.70 76 41.80 133.55 980104.836 33.819 18.875 
12G14 39 21.90 76 41.60 122.76 980105.633 30.990 17.254 
14G1 39 22.30 76 41.60 136.48 980098.989 27.990 12.718 
14G2 39 22.20 76 41.10 127.53 980101.092 27.478 13.207 
14G3 39 22.20 76 41.20 129.79 980100.999 28.084 13.560 
14G4 39 22.20 76 41.40 135.17 980100.799 29.543 14.418 
14G5 39 22.20 76 41.70 136.18 980101.143 30.199 14.961 
14G6 39 22.00 76 41.90 132.17 980103.001 31.116 16.326 
14G7 39 22.20 76 41.90 136.28 980101.257 30.346 15.095 
14G8 39 22.10 76 42.00 136.50 980102.143 31.445 16.171 
14G9 39 22.00 76 42.10 130.79 980105.104 32.791  18.156 
14G10 39 22.10 76 42.40 136.40 980102.502 31.773 16.510 
14G11 39 22.10 76 42.50 139.64 980102.180 32.451 16.825 
14G12 39 22.00 76 42.40 137.53 980103.360 33.128 17.738 
18G1 39 24.20 76 42.80 151.80 980092.772 23.692    6.705 
18G2 39 24.30 76 42.70 157.30 980091.766 24.234    6.633 
18G3 39 24.30 76 42.10 147.71  980092.066 21.576    5.047 
1834 39 24.10 76 41.50 148.98 980090.611 20.808    4.137 
18G5 39 24.40 76 41.10 146.22 980091.052 19.954    3.592 
18G6 39 24.20 76 41.20 111.41 980099.739 18.195    5.728 
1837 39 25.40 76 42.40 119.36 980105.695 24.830 11.473 
1838 39 25.40 76 41.00 105.89 980106.829 21.807    9.958 
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18G9 39 25.50 76 40.30 110.13 980105.605 21.745 9.421 
18G10 39 25.70 76 40.40 119.05 980104.606 23.201 9.880 
18G11 39 26.00 76 40.60 167.85 980097.768 30.980 12.197 
18G12 39 26.80 76 41.80 186.28 980097.953 35.670 14.824 
18313 39 26.10 76 42.20 168.03 980098.851 31.971 13.168 
18314 39 23.80 76 42.70 157.43 980091.102 24.350 6.734 
18G15 39 23.60 76 42.30 152.33 980090.878 22.849 5.803 
18316 39 23.70 76 42.20 148.18 980091.749 22.290 5.709 
19G1 39 23.30 76 42.80 161.35 980090.287 25.483 7.428 
19G2 39 23.30 76 42.60 161.11 980090.005 25.129 7.101 
19G3 39 23.10 76 42.50 152.42 980091.393 24.130 7.074 
19G4 39 23.30 76 42.10 166.12 980087.457 24.126 5.537 
19G5 39 23.50 76 41.70 160.84 980087.787 22.533 4.534 
19G6 39 23.90 76 40.80 130.22 980091.955 16.659 2.087 
19G7 39 24.00 76 40.80 115.12 980095.265 15.160 2.278 
19G8 39 23.90 76 40.20 83.31 980100.467 10.696 1.373 
19G9 39 23.60 76 41.20 141.64 980090.650 19.322 3.473 
19G10 39 23.10 76 41.00 111.99 980096.923 17.183 4.652 
19G11 39 23.20 76 40.70 119.53 980095.141 17.581 4.206 
19G12 39 23.20 76 40.50 133.41 980092.782 19.507 4.578 
20G1 39 23.30 76 43.30 159.37 980091.152 25.738 7.905 
20G2 39 23.00 76 43.10 153.42 980092.230 25.424 8.256 
20G3 39 22.80 76 41.10 124.41 980095.979 20.515 6.594 
20G4 39 23.00 76 39.40 108.90 980094.155 13.610 1.424 
20G5 39 23.00 76 39.50 103.87 980095.113 13.017 1.394 
20G6 39 24.10 76 39.20 84.38 980102.202 12.462 3.021 
20G7 39 24.10 76 39.20 77.69 980103.505 11.702 3.009 
20G8 39 24.10 76 39.00 73.52 980103.747 10.658 2.431 
20G9 39 24.00 76 38.90 72.30 980104.094 10.775 2.685 
20G10 39 24.10 76 38.70 80.18 980101.697 10.664 1.692 
20G11 39 24.10 76 38.50 86.71 980100.491 11.473 1.770 
20G12 39 24.10 76 38.50 90.13 980099.727 11.765 1.679 
20G13 39 24.20 76 38.40 96.92 980098.606 12.590 1.745 
20G14 39 24.20 76 38.20 112.67 980095.313 14.158 1.550 
20G15 39 24.20 76 38.10 109.20 980095.710 13.483 1.264 
21G1 39 22.40 76 42.60 141.25 980099.085 29.412 13.605 
21G2 39 22.20 76 43.00 144.39 980101.141 32.729 16.573 
21G3 39 22.00 76 43.00 147.75 980101.792 34.716 18.182 
21G4 39 22.00 76 42.90 147.05 980102.228 34.934 18.479 
21G5 39 22.10 76 42.80 149.96 980100.532 33.989 17.208 
21G6 39 22.00 76 42.70 148.46 980101.525 34.667 18.054 
21G7 39 21.90 76 42.80 147.70 980104.113 37.168 20.640 
21G8 39 21.90 76 43.00 148.40 980103.318 36.589 19.983 
21G9 39 21.70 76 43.20 143.67 980105.651 37.758 21.681 
21G10 39 21.50 76 43.10 147.60 980105.452 39.067 22.551 
21G11 39 21.40 76 43.00 139.36 980106.976 38.197 22.602 
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21G12 39 21.40 76 42.80 135.61  980107.058 37.121  21.946 
21G13 39 22.00 76 43.30 146.59 980103.796 36.361  19.957 
21G14 39 21.90 76 43.20 143.75 980105.127 36.964 20.878 
22G1    39 23.40 76 43.30  165.33 980089.891  26.168    7.668 
22G2    39 23.60 76 43.50 150.83 980094.007 25.515    8.637 
22G3    39 23.70 76 43.60 141.94 980096.038 24.653    8.770 
22G4    39 23.90 76 43.60 132.62 980098.122 23.567    8.726 
22G5    39 24.00 76 43.70 130.01 980099.818 24.309    9.761 
22G6    39 24.20 76 43.70 117.11 980101.533 21.747    8.643 
22G7    39 24.40 76 43.80 111.20 980103.373 21.469    9.026 
22G8    39 26.50 76 43.70 157.99 980102.117 31.544 13.866 
22G9    39 22.60 76 43.20 151.95 980094.485 27.817 10.814 
22G10 39 22.50 76 43.30 157.42 980095.081  30.247 12.632 
23G1    39 22.70 76 43.40 157.17 980091.515 26.311    8.723 
23G2    39 22.30 76 43.80 149.86 980099.323 32.452 15.683 
23G3    39 22.30 76 43.70 148.00 980100.039 32.594 16.033 
23G4    39 22.20 76 43.60 147.92 980100.943 33.623 17.070 
23G5    39 24.70 76 43.50 113.32 980105.463 23.768 11.088 
23G6    39 24.70 76 43.80 120.05 980104.382 24.765 11.331 
23G7    39 24.50 76 44.60 121.63 980103.384 24.549 10.939 
23G8    39 24.40 76 44.60 123.98 980102.245 24.284 10.411 
23G9    39 24.30 76 44.60 132.05 980100.954 25.633 10.856 
23G10 39 24.30 76 44.80 134.36 980100.177 25.566 10.531 
23G11 39 24.30 76 44.90 136.35 980099.937 25.940 10.683 
23G12 39 24.40 76 45.30 132.61 980102.279 26.981  12.142 
23G13 39 25.10 76 45.60 166.19 980097.864 31.895 13.298 
23G14 39 25.20 76 45.30 181.44 980094.972 33.561 13.258 
23G15 39 25.40 76 45.00 189.78 980094.106 34.972 13.735 
23G16 39 25.50 76 44.80 192.20 980094.001 35.465 13.958 
23G17 39 25.70 76 44.60 191.99 980094.474 35.577 14.093 
23G18 39 25.80 76 44.50 184.57 980096.043 34.709 14.056 
23G19 39 25.80 76 44.30 181.10 980096.761  34.356 14.091 
23G20 39 26.00 76 44.20 181.88 980096.472 34.013 13.661 
24G1    39 26.50 76 44.30 144.93 980105.592  30.992 14.773 
24G2    39 26.80 76 44.80 155.07 980104.167 32.253 14.900 
24G3    39 26.90 76 45.50 192.74 980098.921  38.482 16.914 
24G4    39 26.50 76 46.10 208.94 980094.264 39.416 16.036 
24G5    39 26.30 76 46.20 185.94 980098.022 36.374 15.567 
24G6    39 26.20 76 46.10 178.62 980098.906 35.145 15.157 
24G7    39 26.00 76 46.10 174.35 980098.963 34.181  14.671 
24G8    39 25.60 76 45.90 174.54 980097.834 33.702 14.170 
24G9    39 25.20 76 45.90 190.55 980093.968 35.366 14.044 
24G10 39 25.00 76 46.20 160.29 980099.501 31.859 13.922 
24G11 39 24.80 76 46.30 153.39 980100.498 31.022 13.857 
24G12 39 24.80 76 46.30 159.71  980098.800 31.273 13.402 
24G13 39 24.60 76 46.00 152.64 980098.471  29.058 11.978 
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24G14 39 24.40 76 45.70 137.31 980101.570 27.723 12.358 
24G15 39 24.30 76 45.60 136.17 980100.684 26.632 11.395 
24G16 39 24.20 76 45.40 144.74 980097.838 26.580 10.383 
24G17 39 24.00 76 45.20 157.13 980096.051 28.911 11.328 
24G.18 39 24.00 76 45.10 155.51 980096.182 28.543 11.141 
25G1 39 23.70 76 44.80 165.73 980093.402 29.360 10.814 
25G2 39 23.50 76 44.60 160.51 980093.923 28.565 10.604 
25G3 39 23.30 76 44.30 165.84 980092.303 28.886 10.329 
25G4 39 23.40 76 44.70 149.21 980096.506 27.811 11.114 
25G5 39 23.30 76 44.80 163.36 980094.059 29.877 11.597 
25G6 39 23.30 76 45.10 151.06 980097.077 29.099 12.196 
25G7 39 23.10 76 45.20 136.19 980100.124 27.853 12.614 
25G8 39 23.00 76 45.40 128.30 980104.306 29.749 15.392 
25G9 39 23.00 76 45.60 126.56 980104.081  28.986 14.824 
25G10 39 22.90 76 45.70 137.26 980103.282 31.635 16.276 
25G11 39 22.90 76 45.80 152.89 980101.286 34.464 17.356 
26G1 39 23.70 76 45.20 160.09 980095.439 29.656 11.742 
26G2 39 23.60 76 45.60 156.17 980097.016 30.172 12.696 
26G3 39 23.50 76 45.70 148.71 980098.568 29.569 12.928 
26G4 39 23.50 76 45.80 141.26 980100.195 28.896 13.089 
26G5 39 23.50 76 46.10 136.57 980101.885 29.140 13.858 
26G6 39 23.50 76 46.40 136.69 980102.751 30.042 14.747 
26G7 39 23.40 76 46.70 138.95 980102.968 31.104 15.556 
26G8 39 23.50 76 47.20 162.67 980098.365 33.676 15.472 
26G9 39 23.30 76 47.20 144.67 980102.105 32.156 15.967 
26G10 39 22.90 76 47.40 180.03 980098.627 40.179 20.034 
26G11 39 22.80 76 47.00 172.91 980100.214 39.719 20.370 
26G12 39 23.50 76 47.30 176.71 980095.538 35.181 15.407 
26G13 39 23.70 76 47.40 169.38 980097.332 34.415 15.462 
2GG14 39 23.90 76 47.20 158.55 980098.773 32.220 14.478 
27G1 39 24.10 76 47.10 153.13 980099.769 31.246 14.112 
27G2 39 24.10 76 47.00 142.00 980101.298 29.340 13.451 
27G3 39 24.30 76 46.70 135.50 980101.436 27.178 12.015 
27G4 39 24.50 76 46.70 136.11 980102.270 27.905 12.674 
27G5 39 24.80 76 46.50 142.29 980102.457 29.554 13.632 
27G6 39 24.90 76 46.50 151.74 980101.560 31.425 14.446 
27G7 39 25.00 76 46.60 158.91 980100.380 32.312 14.530 
27G8 39 25.20 76 46.90 151.32 980101.930 31.223 14.291 
27G9 39 25.40 76 47.10 151.99 980102.589 31.793 14.786 
27G10 39 25.60 76 47.50 178.25 980098.105 35.117 15.170 
27G11 39 25.90 76 47.70 180.18 980099.462 36.627 16.465 
27G12 39 25.70 76 47.80 200.29 980094.695 38.360 15.948 
27G13 39 25.70 76 48.00 204.22 980093.879 38.758 15.905 
27G14 39 25.70 76 48.20 213.04 980092.692 40.291 16.452 
27G15 39 25.70 76 48.40 203.00 980094.883 39.383 16.668 
28G1 39 23.60 76 47.70 174.56 980096.295 35.126 15.593 
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Stat.      Lat. Long.    ELev.      Absol. g    F. A.    B. A. 

28G2 39 23.60 
2833 39 23.60 
2834 39 23.40 
2835 39 23.40 
28G6 39 23.50 
2837 39 23.40 
2838 39 25.80 
2839 39 24.70 
28310 39 24.50 
28311 39 24.60 
29G1 39 24.80 
29G2 39 23.00 
29G3 39 22.00 
29G4 39 22.10 
29G5 39 22.00 
29G6 39 22.00 
29G7 39 22.10 
29G8 39 22.20 
29G9 39 22.20 
29G10 39 22.20 
29G11 39 22.40 
29G12 39 22.50 
29G13 39 22.60 
29G14 39 22.70 
30G1 39 21.70 
3032 39 21.60 
3033 39 21.60 

76 48.00 172.05 980096.706 34.763 15.510 
76 48.50 181.61 980094.740 35.748 15.425 
76 48.80 173.38 980096.899 35.661 16.260 
76 49.10 183.27 980096.537 38.352 17.844 
76 4^.40 187.51 980096.157 39.132 18.150 
76 49.60 191.10 980095.328 39.559 18.175 
76 48.50 193.78 980095.553 37.061 15.378 
76 48.70 157.41 980102.581 34.494 16.879 
76 49.00 161.45 980101.827 35.280 17.214 
76 48.10 153.33 980102.167 32.969 15.811 
76 46.90 140.33 980103.609 30.104 14.400' 
76 47.70 174.73 980099.872 39.644 20.091 
76 46.40 154.23 980106.979 41.902 24.643 
76 46.00 147.17 980109.202 41.799 25.330 
76 45.70 153.87 980106.153 40.963 23.746 
76 45.40 153.95 980104.314 39.149 21.922 
76 45.20 142.38 980106.088 37.205 21.273 
76 45.00 138.56 980106.038 35.829 20.324 
76 44.90 143.23 980104.777 36.009 19.982 
76 44.60 136.47 980107.110 36.257 20.986 
76 44.40 124.25 980106.710 31.788 17.885 
76 44.30 130.55 980102.118 28.994 14.385 
76 43.80 156.52 980094.281 29.023 11.509 
76 43.50 160.88 980091.522 27.460 9.458 
76 44.20 143.74 980108.536 40.666 24.581 
76 44.40 134.67 980110.469 39.946 24.876 
76 44.70 119.06 980114.268 38.928 25.605 

Base    39 24.00    76 42.70 162.80 980090.148 24.758    6.541 
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Stat. Lat. Long. ELev.      Absol. g    F. A.    B. A. 

* * * Phoenix Dome Traverse * * * 

17G8 39 26.90 76 41.10 186.99 980096.840 34.626 13.702 
17G7 39 27.10 76 41.20 170.86 980100.015 32.527 13.408 
17G6 39 27.30 76 41.40 149.34 980104.354 29.929 13.219 
17G5 39 27.40 76 41.50 132.29 980106.992 27.159 12.356 
17G4 39 27.40 76 41.70 142.65 980105.526 28.890 12.928 
17G3 39 27.60 76 41.90 180.02 980099.807 34.408 14.263 
17G2 39 27.70 76 42.00 174.18 980101.319 33.969 14.479 
17G1 39 27.9CT 76 42.00 185.21 980100.673 36.431 15.706 
13G1 39 28.10 76 42.10 178.98 980101.916 35.457 15.429 
13G2 39 28.20 76 42.10 182.59 980101.180 35.686 15.254 
13G3 39 28.30 76 42.20 190.26 980099.919 36.645 15.355 
13G4 39 28.40 76 42.30 196.35 980099.364 37.819 15.848 
13G5 39 28.50 76 42.40 194.59 980100.146 37.912 16.138 
13G6 39 28.60 76 42.50 204.22 980098.340 38.929 16.077 
13G7 39 28.70 76 42.50 200.29 980099.343 38.572 16.159 
13G8 39 28.90 76 42.50 193.25 980100.944 37.704 16.080 
13G9 39 29.10 76 42.50 180.01 980103.113 35.492  15.349 
13G10 39 29.40 76 42.50 176.98 980103.553 34.554 14.749 
13G11 39 29.50 76 42.60 159.36 980105.917 31.330 13.498 
13G12 39 29.60 76 42.60 150.15 980107.507 29.930 13.129 
13G13 39 29.60 76 42.50 133.86 980111.088 28.485 13.506 
13G14 39 29.70 76 42.50 134.45 980111.586 29.018 13.973 
13G15 39 29.80 76 42.50 135.69 980111.089 28.756 13.572 
13G16 39 30.10 76 42.70 157.44 980107.887 31.819 14.202 
13G17 39 30.30 76 42.70 173.04 980105.101 33.553 14.190 
15G18 39 30.50 76 42.80 157.46 980108.910 32.260 14.639 
15G19 39 30.60 76 42.90 155.85 980109.622 32.325 14.886 
15G20 39 30.70 76 42.90 145.73 980112.602 32.034 15.727 
15G21 39 30.80 76 42.90 131.46 980115.400 30.282 15.571 
15G22 39 30.90 76 43.00 119.64 980118.254 29.339 15.951 
15G23 39 31.00 76 43.10 114.03 980119.107 28.312 15.553 
15G24 39 31.10 76 43.10 113.68 980119.245 28.195 15.474 
15G25 39 31.10 76 43.20 113.95 980119.552 28.584 15.834 
15G26 39 31.20 76 43.20 123.23 980117.491 29.239 15.450 
15G27 39 31.40 76 43.30 109.85 980120.788 28.112 15.820 
15G28 39 31.50 76 43.30 118.77 980119.658 29.588 16.297 
15G29 39 31.60 76 43.40 114.87 980121.236 29.815 16.961 
15G30 39 31.70 76 43.50 98.25 980125.002 28.301 17.307 
15G31 39 31.90 76 43.60 103.04 980124.626 29.107 17.577 
15G32 39 32.00 76 43.70 109.18 980123.804 30.034 17.817 
16G33 39 32.20 76 43.70 102.64 980124.350 28.264 16.779 
16G34 39 32.30 76 43.90 105.39 980123.717 28.334 16.540 

126 



Stat.      Lat. long.    Elev.      Absol. g    F. A.    B. A. 

16G35 
16G36 
16337 
16G38 
16G39 
16340 
16G41 
16342 
16G44 
16345 
16346 
16347 
16348 
16349 
16350 

39 32.50 
39 32.60 
39 32.70 
39 32.80 
39 32.90 
39 33.00 
39 33.20 
39 33.30 
39 33". 50 
39 33.60 
39 33.70 
39 33.90 
39 34.00 
39 34.10 
39 34.30 

76 44 
76 44 
76 44 
76 44 
76 44 
76 44 
76 44 
76 44 
76 44 
76 44 
76 44 
76 45 
76 45 
76 45 
76 45 

00 109.66 
20 107.49 
30 120.24 

,40 131.37 
,50 127.25 
.60 134.96 
,70 139.60 
,70 142.41 
,80 149.45 
.80 167.23 
.90 178.81 
.00 190.71 
.00 187.89 
.20 163.55 
.20 149.43 

980123.872 
980123.866 
980122:604 
980122.133 
980123.711 
980123.848 
980125.377 
980125.823 
980124.342 
980119.201 
980115.562 
980114.019 
980114.305 
980118.936 
980121.216 

29.508 
28.685 
31.210 
34.026 
34.186 
36.552 
39.219 
40.382 
40.779 
40.976 
40.763 
42.596 
41.864 
38.837 
36.464 

17.238 
16.657 
17.755 
19.326 
19.946 
21.451 
23.597 
24.447 
24.055 
22.263 
20.754 
21.256 
20.839 
20.535 
19.742 
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APPENDIX C: Gravity Stations and their Hob Numbers 

Explanation: Hubs are reference nuribers used to 

locate surveyed elevation points. Documentation of these 

points are kept on file at the Baltimore County 

Department of Public Works Survey Office and at the 

Baltimore City Department of Public Works Field Section. 

In this list, Baltimore County hubs are not marked with 

asterisks while Baltimore City hubs are marked with a 

single asterisk (*). A double asterisk (**) indicates 

those hubs surveyed by the author. These elevation 

points are located by a brass screw with a galvanized cap 

driven into the road macadam. 

Stat. Hub Stat. Hob Stat. Hub Stat. Hob 
- * > 

1G1 11180 2G9 11208 3G10 8290 4G9 3121 
1G3 11220 2G10 13103A 3G11 4459 4G10 3922 
1G4 11218 2G11 13103B 3G12 4460 4G11 11992 
1G5 11213 2G12 13104 3G13 8314 4G12 3925 
1G6 11209 2G13 3204 3G14 11204 4G13 7009 
1G8 13098A 2G14 13147A 3G15 11205 4G14 7250 
1G9 11181 2G15 13148 3G16 8295 4G15 7003 
1G10 11182 2G16 1514A 3G17 8307A 4G16 12438 
1G11 11183 2G17 1512 3G18 8309 4G17 9337 
1G12 11185A 3G1 13109 3G19 8310 4G18 12033 
1G13 11186 3G2 13108 4G1 7153 4G19 4860A 
2G1 7154A 3G3 884 4G2 866B 5G1 5685 
2G2 7156 3G4 11231 4G3 866 5G2 7144 
2G3 11221 3G5 886 4G4 7151 5G3 5681 
2G4 7157 3G6 887 4G5 7150 5G4 9240 
2G5 11743 3G7 8279 4G6 7149A 5G5 9256 
2G6 11229 3G8 8283 4G7 7012 5G6 8436 
2G8 882 3G9 8286 4G8 7010 5G7 11420 
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Stat. Bab 

8242 

Stat. Hub 

1978A 

Stat. Bib 

*7878 

Stat. Bib 

5G8 8G1 11G12 18311 879 
5G9 8240 8G2 4740 11G13 *6005 18312 8280 
5G10 8236 8G3 4738A 11G14 *5864 18313 11207 
5G11 9254 8G4 4736 11G15 *5961 18314 9241 
5312 2483A 8G5 6939 11G16 *6002 18315 11487 
6G1 7128 8G6 6940 11G17 *7875 18316 11488C 
6G2 7130 8G7 12950 11G18 *7008 1931 8615 
633 8079 8G8 5439 11G19 *6999 1932 8616 
6G4 7134 8G9 12946A 11G20 *5940 1933 8617 
6G6 12225A 8G10 5437 12G1 *7256 1934 6930 
6G7 12223 8G11 12942A 12G2 *7871 1935 1378 
6G8 9244 8G12 12951A 12G3 *6110 1936 7120 
6G9 9246 8G13 6946A 12G4 *623 1937 7122 
6G10 11491 8G14 2272A 12G5 *7669 1938 7115 
6G11 9252 8G15 14035 12G6 *6842 1939 8081 
6G12 8442 9G1 *8123 12G7 *6828 19310 10612 
6G13 8441 9G2 *8298 12G8 *6839 19311 10613 
6G14 11235 9G3 *5943 12G9 *6844 19G12 10614 
6G15 1380 9G4 *602 12G11 *6837 20G1 4842 
6G16 1379 9G5 *5969 12G12 *7002 2032 4841 
6317 1373 936 *561 12G13 *6127 2033 8088 
6G18 1371 10G1 *7992 12G14 *7458 20G4 7055 
6G19 1369 10G2 *558 14G1 *7859 2035 7006 
6G20 1366 10G3 *8011 14G2 *7854 2036 4856A 
6G21 1364 10G4 *7053 14G3 *7843 2037 4856 
6G22 2266 10G5 *7045 14G4 *7842 2038 4855A 
7G1 8439 10G6 *5955 14G5 *7841 20G9 4853A 
7G2 8082 10G7 *5954 14G6 *6852 20G10 4446 
7G3 8083 10G8 *5942 14G7 *6853 20311 4444 
7G4 8084 10G9 *7257 14G8 *6851 20312 4443 
7G5 8085 10G10 *7850 14G9 *6850 20313 4442 
7G6 8086 10G11 *7857 14G10 *6855 20314 4439 
7G7 8087 10G12 *8001 14G11 *6835 20315 4438A 
7G8 7253 11G1 *5975 14G12 *5869 21G1 9939 
7G9 7254 11G2 *570 18G1 8437 21G2 9843A 
7G10 2004 11G3 *7870 1832 8244 21G3 991 IB 
7G11 2005A 11G4 *568 18G3 8238 21G4 6321 
7G12 1988A 11G5 *566 18G4 8231 21G5 12816 
7G13 12036 11G6 *7848 1835 11187A 21G6 12817 
7G14 1386 11G7 *7461 18G6 11184 21G7 9911 
7G15 12035 11G8 *7465 18G7 13101 21G8 9912 
7G16 7118A 11G9 *7846 1838 11219 21G9 9834A 
7G17 7116A 11G10 *7851 1839 11228 21G10 983 2 A 
7G18 7127 11G11 *5989 18310 11226 21G11 9829A 
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Stat. Bib 

9827A 

Stat. Bib 

12747A 

Stat. Bib 

12593B 

Stat. Bib 

21G12 24G12 27G13 13G6 10284 
21G13 9839A 24G13 12748A 27G14 12593 13G7 11417 
21G14 983 7k 24G14 8433 27G15 5548A 13G8 12811 
22G1 5900 24G15 2156B 28G1 6479A 13G9 11608A 
22G2 13158A 24G16 13127C 28G2 6482A 13G10 11610 
22G3 13157 24G17 2160A 28G3 6486A 13G11 11612 
22G4 13155 24G18 14010 28G4 12379 13G12 11613A 
22G5 13154 25G1 2166A 28G5 12378A 13G13 4936 
22G6 13151A 25G2 2167 28G6 6492 13G14 4470 
22G7 4842 25G3 2170 28G7 6494 13G15 12862 
22G8 8306 25G4 10S76A 28G8 5585A 13G16 12864 
22G9 10037 2535 10877 28G9 12595 13G17 12865 
22G10 10035 25G6 10888A 28G10 3334A 15G18 12867A 
23G1 8203A 25G7 10902 28G11 5593 15G19 12868 
23G2 10032 25G8 8649 29G1 9047 153 20 12869 
23G3 10033A 25G9 10905 29G2 11034B 15G21 12870 
23G4 2187 25G10 10906 29G3 3634 15G22 12871 
23G5 13110 25G11 10907 29G4 11040A 15G23 12872 
23G6 4848 2631 10966 29G5 8987 15324 12872A 
23G7 13123A 26G2 2274 29G6 3636A 15G25 12873 
23G8 13124A 26G3 10963 29G7 10971 15G26 12874 
23G9 13125 26G4 10962 29G8 5625 15G27 12875A 
23G10 13126 26G5 10961 29G9 5627 15G28 12876 
23G11 13127A 26G6 10960 29G10 5630 15G29 12878 
23G12 5389 26G7 10957 29G11 10026A 15G30 12879A 
23G13 8336 26G8 11027 29G12 8428 15G31 12880 
23G14 8334A 26G9 29955 29G13 8209 15G32 12881 
23G15 8330A 26G10 14019 29G14 8204A 16G33 12882A 
23G16 8328 26G11 7885A 30G1 5139 16334 13045 
23G1,7 8325 26G12 5298 3032 5138 16335 13044 
23G18 8323 26G13 6478 3033 5137 16336 ** 
23G19 8322 26G14 11631A 17G8 8277 16337 13042 
23G20 8321 27G1 11631B 17G7 ** 16G38 ** 
24G1 9542 27G2 11633A 17G6 ** 16G39 ** 
24G2 9547 27G3 11635A 17G5 ** 16G40 ** 
24G3 12665 27G4 11635B 17G4 ** 16341 ** 
24G4 5946 27G5 9050 17G3 ** 16G42 ** 
24G5 5943 27G6 8535 17G2 ** 16G44 ** 
24G6 5941 27G7 8534 17G1 ** 16G45 ** 
24G7 5939 27G8 8533 13G1 10289 16346 ** 
24G8 5937 27G9 14021 13G2 10288A 16G47 ** 
24G9 8477 27310 9023 13G3 10287 16G48 ** 
24G10 8481 27G11 2124B 13G4 10286 16349 ** 
24G11 11637 27G12 12593C 13G5 10283A 16G50 ** 
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APPENDIX D: Oversize Figures 
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Figure 5-1: Geologic Map of the Chattolanee Dome 
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Figure 5-2: Simple Bouguer Gravity r^ap of 
the Chattolanee Dome 
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Figure 5-3:  Second-order Gravity Trend Surface 
'    Map of the Chattolanee Dome 
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Figure 5-4: Index Map of Gravity Traverses 
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Figure 5-5: Geologic Map of the Froenix Eome 
Along Falls Road 
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