
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1981

File maintenance by using AVL trees (an
implementation of payroll system).
Alice Ming-Mei Chen

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Chen, Alice Ming-Mei, "File maintenance by using AVL trees (an implementation of payroll system)." (1981). Theses and Dissertations.
Paper 2407.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228651771?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2407&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2407&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2407&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=preserve.lehigh.edu%2Fetd%2F2407&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2407?utm_source=preserve.lehigh.edu%2Fetd%2F2407&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

FILE MAINTENANCE BY USING AVL TREES

(AN IMPLEMENTATION OF PAYROLL SYSTEM)

by

Alice Ming-Mei Chen

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Computer Science

Division of Computing and Information Science

Mathematics Department

Lehigh University

1981

ProQuest Number: EP76683

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest

ProQuest EP76683

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

This thesis is accepted and approved in partial
fulfillment of the requirements tor the degree of
Master of Science.

* (date) '

Professor in Charge

Head of Division

11

Acknowledgements

The author thanks Professor Samuel L. Gulden for
his comments and suggestions, thus making possible the
results of this thesis. Thanks are also due to her
husband and mother for their love and encouragement.

111

Table of Contents

Page

Acknowledgements iii

Table of Contents iv

List of Figures v

List of Tables vi

Abstract 1

1. Introduction 3
2. Definitions 6

2.1 Root, Node, Level of Node, Path Length,
Height 6

2 . 2 AVL Trees 7
2 .3 Mintrees of N Items 6

3. AVL Trees Algorithms 11

3 .1 AVL Trees Insertion 12
3 .2 AVL Trees Deletion 19

4. User's Manual 24

4.1 Introduction 24
4 .2 How to run AVL. pa s 24
4.3 Results 25

4.3.1 The Output ' 25
4.3.2 Analysis 25

4.4 Conclusions 25

References 38

Vita 40

iv

List of Figures

Page

Figure 2-1: AVL trees £

Figure 3-1: Flowchart of AVL trees insertion 14

Figure 3-2: Insertions in balanced tree 18

Figure 3-3: The Flowchart of Deletion 21

Figure 3-4: Deletions in balanced tree 23

Figure 4-1: The Flowchart of Payroll System 27

v

List of Tables

Page

Table 2-1: Maximum and minimum number of items
storable in AVL tree of length n 10

Table 4-1: The Transaction file of batch,
and on-line process 28

Table 4-2: The Output of Payroll Record 1... 29

Table 4-3: The Output of Payroll Record 2 30

Table 4-4: The Output of Payroll Record 3 31

Table 4-5: The Output of General Information 32

Table 4-6: The Output of Average Wage of each
divisions 33

Table 4-7: The Output of Exployees' paychecks 34

Table 4-8: The Output of New Master file 1 35

Table 4-9: The Output of New Master file 2 36

Table 4-10: The Output of New Master file 3 37

VI

Abstract

File Maintenance by Using AVL Trees
(An Implementation of Payroll System)

by Alice Ming-Mei Chen

Binary search tree are in competition with other

methods for organization files, such as : hash-coding or

scatter storage techniques; linear lists, either

sequentially allocated,or chained; other kinds of trees,

such as : "tries", or multiway trees of various kinds

and methods that are based on a combination of such

techniques as indexed-sequential file organization.

Binary search trees are one of the most flexible and

best understood techniques for organizing large files.

Because of this, they have received a great deal of

attention in recent years, and their properties are now

better understood than those of most other file

organization methods. Their practical importance comes

mainly from the fact that they perfom with reasonable

efficiency all of the common operations on files: random

and sequential processing of a file, insertion and

deletion of records, and restructuring of the file. And

they can be allocated in reasonable ways In back-up

storage devices with restricted access. In addition to

their practical importance, they are of theoretical

interest because they generate mathematical problems

which arise in many other areas of information processing

: sorting, coding and information theory, and others.

This thesis present a method of designing an payroll

system by using AVL trees and file structure. A

noteworthy aspect of the tree algorithm is the use of

recursion and concept of a virtual root.

processes(batch, and on-line) are dicussed, modeled,

and programmed.

1. Introduction

Although trees have been long used for the storage

and retrieval of information, unfortunately there is a

tradeoff between storage (construction) time and

retrieval time. To keep retrieval time at a minimum, the

tree must be balanced; but posting a new item under this

constraint can require a complete reorganization of the

tree. Conversely, if the tree is allowed to grow without

restriction on its structure, the average number of

probes (that is, references to main memory) required for

retrieval can approach N/2, depending on the arrival of

the items.

If insertion and subsequent queries are the main

operations of interest, AVL trees present the overall

best qualities.

Binary search represents an important technique for

handling structures such as files and directories,

dictionaries, and symbol tables. The random growth of a

binary search tree can lead in the worst case to a

(linked) linear list. Hence several algorithms have been

devised to balance or restructure the tree while it is

being built, i.e., to keep it close to its optimal form.

The three methods for doing this - height balanced,

Weight balanced, and total restructuring - in particular.

We show that a height-balance technique, the AVL tree

construction, is the most efficient when the main

operations on trees are insertion and queries.

AVL trees (named after their inventors, the two

Russian mathematicians Adel'son-Vel'skiy and Landis) and

their extensions are built according to a height-balance

algorithm. Several algorithms such as height-balance

(i.e. AVL), weight-balance (i.e. BB and WB)and total

restructuring for building balanced binary search are

compared. The AVL construction presents less overhead

when one is interested in insertion and subsequent

queries .

An average of approximately LogjtN + 1) probes is

required to find an item if it is present in an AVL tree.

The average number of probes required to post a new item

on an AVL tree is given by the sum of the probes required

to find the vacancy, to generate the new node, to retrace

the tree, and either to restructure the tree and the

retrace; this is given by Log2(N + 1) + 4.75 for N ~

2000. This leads, on the average to about 11 probes for

retrieval and about 16 probes for posting a new item.

For example, consider a computer with a 16-word

0.1-microsecond scratch pad to keep the pushdown list in,

a 2-microsecond main core and an appropriate instruction

set. Insertion in a 2000-item tree will require, about ^^

33-microseconds and retrieving, about 22 microsecond.

1—

/

2. Definitions

2.1 Node, Root, Level of node, Height, Path Length

Node : A binary tree is a finite set of nodes

either empty, in which case we call it a nil node or a

nil tree, or the tree T(TR, R, Ty), where R is a special

node called the root and TR and T, are respectively, the

right and left subtrees of R. Each node S, except a nil

node, is the father of its right and left sons. In a

binary tree each node has at most two subtrees. If both

subtrees are present, they are called the left and right

subtree in a binary trees. The subtrees are not

interchangeable.

Root : The top node is commonly called root. The

root of a tree is defined to be at level 1.

Level of node : A node y which is directly below

node x is called a descendant of x; if x is at level i,

then y is said to be at a level i + 1. inversely node x

is said to be the ancestor of y. The root of a tree is

defined to be at level 1.

Height : The maximun level of any element of a tree

J>

is said to be its height. if an element has no

descendants, it is called a leaf; and an element which is

not terminal is an interior node. The number of

descendants of an interior node is called its degree .>,The

maximum degree over all nodes is the degree of the tree.

Path Length : The number of branches or edges which

have to be traversed in order to proceed from the root to

a node x is called the path length of x. The root has

path length 1, its direct descendants have path length 2,

etc. In general, a node at level i has path length i. The

path length of a tree is defined as the sum of the path

lengths of all its components. It is also called its

internal path length.

2.2 AVL tree8

We begin the discussion of AVL trees with the

following definitions.

1. A tree is balanced if and only if for every
node the heights of its two subtrees differ by
at most 1.

2. The length of a tree or a subtree is
determined by the number of nodes in the
longest path within that tree or subtree.

3. A complete, balanced tree of d levels, B" , is
structured so that all the dependent subtrees
from any node all have exactly the same
length. An incomplete, balanced tree is
similar to a complete balanced tree, but may

have vacancies occurring on the lowest level.
Landauer calls this a "balanced tree."

4. An AVL tree of N items, N, is structured so
that, for every node of the tree, the lengths
of the two subtrees dependent from that node
differ at most by one from each other.
Balanced trees are, therefore, a special case
of AVL trees .

5. An unbalanced tree is none of the above trees.

The Figure 2-1 shows some AVL trees and one which is not

6 l

height constraint
is violeted

Figure 2-1: AVL trees

2.3 Mintrees of N items

To set an upper limit on the probes required for

retrieval, we wish to know the longest path that may

exist in an AVL tree of N items. This is done by

determining the least number of items required to

construct an AVL tree of n levels. Such a tree is called

a mintree and is simbolized by Mn. A niintree of n levels

may be constructed by taking one item as the root of the

tree and placing a mintree of length n - 1 dependent from

the root on one side. This step gives the required length

of the tree; but to keep it AVL, the other branch from

the root must no shorter than n - 2. Let that branch be a

mintree of length n - 2.

Table 2-1 show the maximum and minimum number of

items that can be stored in an AVL tree of length n,

where the maximum is given by 2n - 1; and the minimum N. n

= Nn+1 + Nn-2 + 1'

Storable number of items
Tree length, n maximum Minimum

1 11

2 3 2

3 7 4

4 15 7

5 31 12

6 63 20

7 127 33

8 255 54

9 511 88

10 1,023 143

11 2,047 232

12 4,095 376

13 8,191 609

14 16,383 986

15 32,767 1,596

16 65,535 2,583

17 131,071 4,180

18 262,143 6,764

19 524,287 10,945

20 1,048,575 17,710

Table 2-1: Maximum and minimum number of items storable
in AVL tree of lenght n.

10

3. AVL trees Algorithms

The height constraint prevents these trees from

being too far away from a completely balanced tree -

indeed, figure 2-1 shows the three "most unbalanced"

height balanced trees relative to their respectively

number of nodes.

Despite the fact that AVL trees look sparse, the

search time they require is only moderately longer than

in completely balanced trees as shown in Table 2-1. Thus

height-balanced trees satisfy the requirement of short

search time.

The more interesting aspect of a scheme for

organizing a highly dynamic file is the requirement that

insertions and deletions can be performed easily while

maintaining the tree within the desired class .

Insertion in AVL trees requires at most one rotation

or double rotation. Deletion, on the other hand, may

require as many as h/2 transformations (where h is the

height of the tree), but on the average (over all AVL

trees) the number each transformation requires an amount

of work which is independent of tree size(i.e., adjusting

11

a few pointers), the amount of work required to update

AVL tree is indeed samll.

In general one rotation is invoked for approximately

every two insertions, one is required for every five

deletions only. Deletion in AVL trees if therefore about

as easy - or as complicated - as insertion.

3.1 AVL trees Insertion

The basic for AVL tree insertion is algorithm as

Figure 3-1 and Example 1. We suppose initially that the

tree is AVL and that a new item is added to the tree in

some previously vacant spot. The path through the tree

that leads to this new item is now singled out for

examination.

Consider any arbitrary node on this path and assume

that the new item is to be posted on its left subtree.

(By symmetry the same arguments will apply if the new

item were inserted on the right subtree). Three possible

conditions could have obtained at this node before the

new item was added :

1. Lengths of the left and right subtrees froh.
„:.is node were equal.

2. Right subtree was longer by one than the left.

12

3. Left subtree was longer by one than the right

Program AVL(master,trans); (*Example 1*)
type

ref = Aword;
spell = record

str : alfa;
len : integer;

end;
person = record

name : spell;
sex : char;
division: spell;
wage : real;
dependant : integer;
overhours: integer;
taxpay : real;
netpay : real ;

end ;
word = record

key : person;
left, right : ref;

end;

Procdure search(x : person; var p : ref);
begin

if p = nil
then

begin (*not in treejinsert it*)
new(P);
with p^ do

begin
key := x;
left := nil;
right := nil;

end
end

else
if x < pA.key

then
search(x,p~.left)

else
if x > p*.key

then
search(x,p~.right)

else
p~ .key := x

end;

13

Open fll> .'

L
Rertd master

or transaction
code of ' I' '

0 Close file

alter
the
record

insert to
the left
subtree

y»»
Insert to

the right
subtree

insert to

node

JL.
ccmpute netpcr'
add 1 to the
of employees

y>»

LR double
rotation RR single

■H rotation

* ;

Figure 3-1: Flowchart of AVL trees insertion
14

After adding the new item, we must examine the tree

to see if it is still AVL. The begining step is to

examine the node from which the new item is dependent.

This node may have had no subtrees at all (Condition 1);

or it may have had a right subtree consisting of just one

node (Condition 2). If condition 1 obtained, then adding

the new item will lengthen the path (generate an

"excess"); hence the next prior node on the path must be

examined to discover the effects of this excess. If

Condition 2 obtained, then adding the new item will not

change the length of any subtree of which this node is a

member; hence, the potential excess is absorbed, and the

process of inserting the new item is completed.

In the event of an unabsorbed excess, we examine the

prior node on the singled out path where any one of the

three possible conditions might have existed. Again

Condition 2 leads to absorption of the excess and

termination of the inserting process Condition 1 makes it

neessary to back up one more node where the examination

is repeated. If this process leads eventually back up to

the root, the tree is still AVL; hence, no changes are

required, since only nodes on the singled -out path can

be effected by the addition of the new item, and all

15

these nodes have been examined and found to be AVL.

If, however, we come upon Condition 3 in the process

of retracing the path, the retracing must stop. A change

procedure must stop. A change procedure must then be

invoked since Condition 3 implies an attempt to lengthen

the subtree that is already the longer of the two

dependents from this node. The node at which Condition 3

is found is called the "critical" node; it is assumed to

have two subtrees of original length, X and X - 1.

The process of node insertion consists essentially

of the following three consecutive parts:

1. Follow the search path until it is verified
that the key is not already in the tree.

2. Insert the new node and determine the
resulting balance factor.

3. Retreat along the search path and check the
balance factor at each node.

The procedure in program example 1 describes the search

operation needed at each single node, and because of its

recursive formulation it can easily accommodate an

additional operation "on the way back along the search

path." At each step, information must be passed as to

whether or not the height of the subtree had increased.

16

We therefore extended the procedure's parameter list by

the Boolean h with the meaning "the subtree height has

increased." h must denote a variable parameter since it

is used to transmit a result.

The working principle is shown by Figure 3-2.

Consider the binary tree which consists of two nodes

only. Insertion of key 7 first results in an unbalanced

tree (i.e., a linear list). Its balancing involves a PR

single rotation, resulting in the perfectly balanced

tree(b). further insertion of nodes 2 and 1 result in an

imbalance of the subtree with root 4. This subtree is

balanced by an LL single rotation(d) . The subsequent

insertion of key 3 immediately offsets the balanced

criterion at the root node 5. Balance is thereafter

re-established by the more complicated LP double

rotation; the outcome is tree(s). The only candidate for

loosing balance after a next insertion is node 5. Indeed,

insertion of node 6 must invoke the forth case of

rebalancing outlined in programexaple 1. the PL double

rotation. The final tree is shown in Figure 3-2.

17

^

(a) ©

©
(d)

6 ©<£ e
(e) (f)

Figure 3-2: Insertions in balanced tree

18

3.2 AVL trees Deletion

The basic for AVL tree deletion is algorithm as

Figure 3-3 and Example 2.

19

Procedure delete(xrspell; var p : ref);
var q : ref;
procedure del (var r: ref);

begin
if r" .right <> nil

then
del(r" .right)
begin

q^ .key := r*.key;
q := r^;
r := r~.left

end
end ;

begin (*delete*)
if p = nil

then
writeln(tty, 'record not found') ;

else
if x < pA.key

then delete(x,p*.left)
else

if x > pA.key
then

delete(x,p~.right)
else

begin
q :=^p;
if q~.right = nil

then p := q~.left
else

if q*.left = nil
then

p := q~.right
else del(q~.left);

end
end;

The easy cases are terminal nodes and nodes with only a

single descendant. If the node to be deleted has two

subtrees, we will again replace it by the rightmost node

of its left subtree. A boolean variable parameter h is

added with the meaning "the height of the subtree has

been reduced." Rebalancing has to be considered only when

20

(, Cp«n fU«)

rat
ftstatim

^L
\2^

V *"" ' 1 <

C\ DDubla KL
Roeatlcn w _ I Y*» u. \"7 Y

LR / s \ ' :J
Figure 3-3: The Flowchart of Deletion

21

h is true, h is assigned the value true upon finding and

deleting a node or if rebalancing itself reduces the

height of a subtree. Balancel is applied when the left,

balance2 after the right branch had been reduced in

height.

The operation of the procedure is illustrated in

Figure3-4 Given the balanced tree (a), sucessive deletion

of the nodes with keys 4, 6, 6, 5, 2, 1, and 7 results in

the tree (b) .. (h) /

The deletion of key 4 is simple in itself since it

represents a terminal node. However, it results in an

unbalanced node 3. Its rebalancing operation involves an

LL single rotation. Rebalancing becomes again necessary

after the deletion of node 6. This time the right subtree

of the root(7) is rebalanced by an RR single rotation.

Deletion of node 2, althourgh in itself straight-forward

since it has only a single descendant, calls for a

complicated RL double rotation. The fourth case, an LR

double rotation, is finally invoked after the removal of

node 7, which at first was replaced by the rightmost

element of its left subtree, i.e., by the node with key

3.

22

0©

Figure 3-4: Deletions in balanced tree

23

4. User's Manual

4.1 Introduction

AVL.pas is a PASCAL program aimed at designing the

general purpose of Payroll System for ABC Company, by AVL

tree and file structure. This system can contain any

number of records, computes the netpay, taxpay of each

employee, computes the average salary of each division

and print the record you request interactively.

4.2 How to run AVL.pas

1. Execute AVL.pas, type TS if run by batch after
the 'Trans', otherwise type TR if run by
on-line after the 'Trans'.

2. Type 'B' or '0' after the requestion "which
way are you going to update ?", in which *B'
stand for Batch, '0' for on-line.

3. Begining to update by typing 'A', 'D', 'I',
'L', 'E', in which stand for alter, delete,
insert, list, and end respectively.

4. After a series of request on-line, type 'Y' or
■E' to see the general information, new
report, paychecks.

5. After execution there are five files as : nl,
n2, ne, re, ch, for the general information,
newfile after update, new payroll report, and
paychecks respectively.

6. Next month use the newfile as a master file to
update the future's transaction file.

24

4.3 Results

4.3.1 The Output

1. Table 4-1 shows the transaction file.

2. Table 4-2, 4-3, 4-4 shows the new payroll
record after update.

3. Table 4-5 shows that hows many employees in
each division after update.

4. Table 4-6 shows that the average salary of
each divisions after update.

5. Table 4-7 shows the paychecks of ABC
Company's.

6. Table 4-8, 4-9, 4-10 shows the new master file
after update.

4.3.2 Analysis

The program has process 20 transactions (batch or

on-line; process): 4 transactions were listed(for on-line

only), 10 transactions were deleted, 4 transactions were

inserted, 6 transactions were altered. Old master file

had 102 records, New masterr file had 96 records.

4.4 Conclusions

After checking the output against copies of

transaction file, old master file, new master file,

notel, and note2, we can see that this program is

precisely able to do the desired batch or on-line

updating process.

25

In response to the requirements of Payroll system as

Figure 4-1, the analysis and design has been made and

presented with well designed system and program structure

for the Payroll system. The analysis has been fully

explained and the writer feels the proposed system meets

all of the company's immediate needs as well as future

expansion.

26

f Master

file

7

1
\r

AVL tree
search and
insert

Transaction
file

7

1

±.

} update

/"

V.

New

Master
file

±-
Hotel

Average uage
cd each divi.

Payroll
record

iii.

Paychecks

i

Nbte2
General
information

Figure 4^-1: The Flowchart of Payroll Syst

71

em

D BILL
D YOUNG
D MARK
D SEVILLA
D KOCH
D SEEB
D NIZAP
D QUEEN
D VON
D WEISS
I LIANG F EXPORT 29000 1 10
I HUANG F CONTROL 26000 2 10
I JENNIFER F EXPORT 23000 1 10
I HIGH M EXPORT 32000 0 0
A TRACY M SALES 23000 3 10
A ZIMMERS M CONTROL 36000 3 0
A ALI M ACCOUNTING 46000 2 10
A KING M SALES 46000 0 10
A WAYE M DATA 25000 2 20
A LEIGHT F ACCOUNTING 30600 2 0

Table 4-1: The Transaction file of batch,
and on-line process

28

ABC COMPANY
PAYROLL RECORr

PAGE 1
NAME SEX DIVISION WAGE DEP HOUR TAXPAY NETPAY

ALI M ACCOUNTING 46000 2 10 726.67 3106.67
BOSCC M SALES 34000 3 10 486.67 2346.67
CANARY F DATA 31000 0 0 516.67 2066.67
CARTER M ACCOUNTING 35000 2 10 543.33 2373.33
CHANG M PERSONNEL 32000 0 20 613.33 2053.33
CHILL M PERSONNEL 23000 2 10 343.33 1573.33
COHEN F CONTROL 35000 0 0 583.33 2333.33
COX F ACCOUNTING 34500 3 0 455.00 2420.00
CRISTOPH M ACCOUNTING 33000 2 10 510.00 2240.00
DAVY F EXPORT 31000 0 0 516.67 2066.67
DILL M EXPORT 38000 0 10 673.33 2493.33
DIVID F ACCOUNTING 21000 0 0 350.00 1400.00
EDWARD M PERSONNEL 32000 1 20 573.33 2093.33
EDWIN F DATA 31000 1 20 556.67 2026.67
EUIN M ACCOUNTING 32000 1 20 573.33 2093.33
FILLER M EXPORT 23000 0 0 383.33 1533.33
FISH M DATA 24500 0 0 508.33 1633.33
FISHER M CONTROL 23000 0 0 383.33 1533.33
FLY F PERSONNEL 23000 2 10 343.33 1573.33
FORD M EXPORT 29000 1 20 523.33 1893.33
FRISBI F EXPORT 34000 1 20 606.67 2226.67
FRY F EXPORT 24000 0 0 400.00 1600.00
FULLER M DATA 34000 3 0 446.67 2386.67
GALLERY M SALES 35000 0 25 683.33 2233.33
GEBERT M EXPORT 21000 2 0 270.00 1480.00
GHOSH M DATA 32000 4 31 497.33 2169.33
GILL M CONTROL 23000 0 0 383.33 1533.33
GILMORE F DATA 31000 2 10 476.67 2106.67
GOOD M DATA 28560 0 0 476.00 1904.00
GORMAN F ACCOUNTING 24000 1 0 360.00 1640.00
GOTTLE M PERSONNEL 28000 2 10 426.67 1906.67
GULDEN M DATA 32000 3 21 497.33 2169.33

Table 4-2: The output of Payroll Record 1

29

ABC COMPANY
PAYROLL RECORD

PAGE 2
NAME SEX DIVISION WAGE DEP HOUR TAXPAY NETPAY

HAMMER M ACCOUNTING 23000 2 20 383.33 1533.33
HAMPTON M SALES 34000 1 12 574.67 2258.67
HERPEN M PERSONNEL 21000 2 10 310.00 1440.00
HIGH M EXPORT 32000 0 0 533.33 2133.33
HILLMAN F ACCOUNTING 31000 2 10 476.67 2106.67
HOOLY M DATA 28700 3 10 398.33 1993.33
HUANG F CONTROL 26000 2 10 393.33 1773.33
JACKSON F CONTROL 20000 2 10 293.33 1373.33
JACOB M DATA 41000 2 0 603.33 2813.33
JENNIFER F EXPORT 23000 1 10 383.33 1533.33
JONATHAN M DATA 23000 2 10 343.33 1573.33
JOSEPH M ACCOUNTING 24000 0 0 400.00 1600.00
KENNEDY M SALES 23000 2 10 343.33 1573.33
KING M SALES 46000 0 10 806.67 3026.67
LASSER M SALES 28000 2 0 386.67 1946.67
LEE M CONTROL 34000 0 10 606.67 2226.67
LEIGHT F ACCOUNTING 30600 2 0 430.00 2120.00
LEWAZ M ACCOUNTING 25000 0 0 416.67 1666.67
LIANG F EXPORT 29000 1 10 483.33 1933.33
LITZ M SALES 25000 3 10 336.67 1746.67
LONG M SALES 29800 2 10 456.67 2026.67
MARVIN M ACCOUNTING 34000 2 10 526.67 2306.67
MCDONALD M SALES 29000 0 0 483.33 1933.33
MILLER M CONTROL 30000 0 0 500.00 2000.00
NEMO M SALES 23000 2 10 343.33 1573.33
NOMI M SALES 29000 2 10 443.33 1973.33
ONASIS M CONTROL 23000 2 10 343.33 1573.33
PETER M EXPORT 23000 1 40 503.33 1413.33
PHILLIPS M PERSONNEL 32000 2 0 453.33 2213.33
REAGAN F SALES 31000 4 30 476.67 2106.67
ROHMAN F ACCOUNTING 32000 2 10 493.33 2173.33
SEAGLE M ACCOUNTING 31000 1 10 516.67 2066.67

Table 4-3: The output of Payroll Record 2

30

ABC COMPANY
PAYROLL RECORD

PAGE 3
NAME SEX DIVISION WAGE DEP HOUR TAXPAY NETPAY

SEMPLE F PERSONNEL 27000 2 10 410.00 1840.00
SEWIZ M PERSONNEL 34000 0 0 566.67 2266.67
SHERIF M CONTROL 21000 2 10 310.00 1440.00
SINGVOR M ACCOUNTING 21000 2 10 310.00 1440.00
SMITH M CONTROL 31000 1 10 516.67 2066.67
SNEER M SALES 23000 2 0 303.33 1613.33
SNYDER M SALES 25000 3 0 296.67 1786.67
SOOMER F ACCOUNTING 29000 1 20 523.33 1893.33
SPIZIKS M CONTROL 32000 2 10 493.33 2173.33
STENG^JE M CONTROL 30000 2 20 500.00 2000.00
STURTWARD M PERSONNEL 23000 0 10 423.33 1493.33
SUMMER M PERSONNEL 23000 2 0 303.33 1613.33
SUNSHINE M ACCOUNTING 25000 0 0 416.67 1666.67
SWAN M CONTROL 31000 0 0 516.67 2066.67
SWENSEN M CONTROL 21000 0 0 350.00 1400.00
SWING F CONTROL 23000 1 0 343.33 1573.33
TAYLOR M EXPORT 31000 0 10 556.67 2026.67
TRACY M SALES 23000 3 10 303.33 1613.33
TRAN M EXPORT 25000 3 10 336.67 1746.67
TSAI F CONTROL 23000 2 0 303.33 1613.33
VOGEL M EXPORT 23000 2 20 383.33 1533.33
WANG F DATA 31000 1 0 476.67 2106.67
WARNER F PERSONNEL 30000 2 0 420.00 2080.00
WATTS F DATA 34000 0 0 566.67 2266.67
WAYE M DATA 25000 2 20 416.67 1666.67
WAYNE F DATA 29800 2 20 496.67 1986.67
WERNER F EXPORT 26500 1 12 449.67 1758.67
WHISKY F EXPORT 26400 0 0 440.00 1760.00
WHITNEY M DATA 32000 0 10 573.33 2093.33
WILSON M CONTROL 35000 0 0 583.33 2333.33
WOOD F EXPORT 32000 3 10 453.33 2213.33
ZIMMERS M CONTROL 36000 3 0 480.00 2520.00

TOTAL : 96 $43853.33$185593.30

Table 4-4: The Output of Payroll Record 3.

31

BEFORE UPDATE THERE ARE
102 EMPLOYEES,
31 FEMALE EMPLOYEES,
71 MALE EMPLOYEES ,
20 EMPLOYEES IN ACCOUNTING DIVISION,
20 EMPLOYEES IN CONTROL DIVISION,
18 EMPLOYEES IN DATA DIVISION,
16 EMPLOYEES IN EXPORT DIVISION,
13 EMPLOYEES IN PERSONNEL DIVISION,
15 EMPLOYEES IN SALES DIVISION.

FTE R UPDATE THERE ARE
96 EMPLOYEES,
30 FEMALE EMPLOYEES,
66 MALE EMPLOYEES ,
18 EMPLOYEES IN ACCOUNTING DIVISION,
18 EMPLOYEES IN CONTROL DIVISION,
16 EMPLOYEES IN DATA DIVISION,
17 EMPLOYEES IN EXPORT DIVISION,
12 EMPLOYEES IN PERSONNEL DIVISION,
15 EMPLOYEES IN SALES DIVISION.

Table 4-5: The output of General information

32

BEFORE UPDATE

THE AVERAGE WAGE OF ACCOUNTING DIVISION IS $ 28055.00
THE AVERAGE WAGE OF CONTROL DIVISION IS $ 29100.00
THE AVERAGE WAGE OF DATA DIVISION IS $ 31031.11
THE AVERAGE WAGE OF EXPORT DIVISION IS $ 2 7556.25
THE AVERAGE WAGE OF PERSONNEL DIVISION IS $ 27384.62
THE AVERAGE WAGE OF SALES DIVISION IS $ 29120.00

AFTER UPDATE

ACCOUNTING DIVISION IS $ 28172.22
CONTROL DIVISION IS $ 28111.11
DATA DIVISION IS $ 31160.00
EXPORT DIVISION IS $ 27700.00
PERSONNEL DIVISION IS $ 27333.33

THE AVERAGE WAGE OF
THE AVERAGE WAGE OF
THE AVERAGE WAGE OF
THE AVERAGE WAGE OF
THE AVERAGE WAGE OF
THE AVERAGE WAGE OF SALES DIVISION IS $ 29120.00

Table 4-6: The output of Average Wage of each divisions

33

* *

* ABC COMPANY NO. 1 *
* BETHLEHEM,PA 18015 JUNE 1, 1981 *
* *

* PAY TO THE *
* ORDER OF ALI $ 3106.67 *
* *

* *

* FIRST NATIONAL BANK *
* ALLENTOWN,PA 18101 SIGNATURE *
* 01230234286 543910 *
* *

* *

* ABC COMPANY NO. 2 *
* BETHLEHEM,PA 18015 JUNE 1, 1981 *
* *

* PAY TO THE *
* ORDER OF BOSCO $ 2346.67 *
* *

* *

* FIRST NATIONAL BANK *
* ALLENTOWN,PA 18101 SIGNATURE *
* 01230234286 543910 *
* *

Table 4-7: The output of Employees' paychecks.

34

ALI M
BOSCO
CANARY
CARTER
CHANG
CHILL
COHEN
COX F

ACCOUNTING 46000.00 :
M SALES 34000.00 3
F DATA 31000.00 0
M ACCOUNTING 35000.00

M PERSONNEL 32000.00
M PERSONNEL 23000.00
F CONTROL 35000.00 0

10

ACCOUNTING 34500.00
CRISTOPH M ACCOUNTING 33000
DAVY F EXPORT 31000.00 0
DILL M EXPORT 38000.00 0
DIVID F ACCOUNTING 21000.00
EDWAFT I .^f.SCNNEL 32000.00
EDWIN F DATA 31000.00 1
EUIN M ACCOUNTING 32000.00
FILLER M EXPORT 23000.00 0
FISH M DATA 24500.00 0
FISHER M CONTROL 23000.00
FLY F PERSONNEL 23000.00 2
FORD M EXPORT 29000.00 1
FRISBI F EXPORT 34000.00 1
FRY F EXPORT 24000.00 0
FULLER M DATA 34000.00 3
GALLERY M SALES 35000.00 0
GEBERT M EXPORT 21000.00 2
GHOSH M DATA 32000.00 4
GILL M CONTROL 23000.00 0
GILMORE F DATA 31000.00 2
GOOD M DATA 28560.00 0 0
GORMAN F ACCOUNTING 24000.00
GOTTLE M PERSONNEL 2 8000.00
GULDEN M DATA 32000.00 3

10
0

0
2

3
00

0
10
0
1

20
1

0
0

»

20

10

0

20
10

I

0
2

0
20

20
0

0
10

20
0
0
25
0

31
0

10

2
21

10

0
10

Table 4-8: The output of New Master file 1

35

HAMMER,LEI M ACCOUNTING 23000.00
HAMPTON M SALES 34000.00 1 12
HERPEN M PERSONNEL 21000.00 2
HIGH M EXPORT 32000.00 0 0,

20

10

HILLMAN
HOOLY M
HUANG F
JACKSON
JACOB M
JENNIFER
JONATHAN
JOSEPH M

F ACCOUNTING 31000.00
DATA 28700.00 3 10
CONTROL 26000.00 2
F CONTROL 20000.00 2
DATA 41000.00 2 0
F EXPORT 23000.00 1
M DATA 23000.00 2
ACCOUNTING 24000.00

10

10
10

10
10
0
10

0

KENNEDY M SALES 23000.00 2
KING M SALES 46000.00 0 10
LASSER M SALES 28000.00 2
LEE M CONTROL 34000.00 0 10
LEIGHT F ACCOUNTING 30600.00 2
LEWAZ M ACCOUNTING 2 5000.00 0
LIANG F EXPORT 29000.00 1 10
LITZ M SALES 25000.00 3 10
LONG M SALES 29800.00 2 10
MARVIN M ACCOUNTING 34000.00 2
MCDONALD M SALES 29000.00 0
MILLER M CONTROL 30000.00 0
NEMO M SALES 23000.00 2 10
NOMI M SALES 29000.00 2 10
ONASIS M CONTROL 23000.00 2 10

0
0

0

0
0

10

Table 4-9: The output of New Master file 2

36

PETER M EXPORT 23000.00 1 40

PHILLIPS M PERSONNEL 32000.00 2
REAGAN F SALES 31000.00 4 30

ROHMAN F ACCOUNTING 32000.00 2
SEAGJ: M ACCOUNTING 31000.00 1
SEMPLE F PERSONNEL 27000.00 2
SEWIZ M PERSONNEL 34000.00 0
SHERIF M CONTROL 21000.00

SINGVOR M ACCOUNTING 21000

0

10
10

10
0

SMITH M CONTROL 31000.00
SNEER M SALES 23000.00 2
SNYDER M SALES 25000.00 3
SOOMER F ACCOUNTING 29000.00

2
00
1

10
2 10

0
10

i

0
1 20

SPIZIKS M CONTROL 32000.00
STENG._E M CONTROL 30000.00
STURTWARD M PERSONNEL 23000
SUMMER M PERSONNEL 23000.00
SUNSHINE M ACCOUNTING 25000
SWAN M CONTROL 31000.00 0
SWENSEN M CONTROL 21000.00
SWING F CONTROL 23000.00
TAYLOR M EXPORT 31000.00
TRACY M SALES 23000.00 3
TRAN M EXPORT 25000.00 3
TSAI F CONTROL 23000.00 2
VOGEL M EXPORT 23000.00 2
WANG F DATA 31000.00 1
WARNER F PERSONNEL 30000.00
WATTS
WAYE
WAYNE

F DATA
M DATA
F DATA

34000.00
25000.00
29800.00

0

WERNER F EXPORT 26 500.00
WHISKY F EXPORT 26 400.00
WHITNEY M DATA 32000.00
WILSON M CONTROL 3 5000.00
WOOD F EXPORT 32000.00 3
ZIMMERS M CONTROL 36000.00

0

2
2

.00
2

.00
0

0
1 0
0 10

10
10

0
20

0
2

0
20
20

1 12
0 0

10
0
10
3

10
20
0

0
0

10

0

0

0

0

Table 4-10: The output of New Master file 3.

37

References

1. Grogono, Peter. Programming in PASCAL,(2nd
ed.), Addison Wesley Publishing Company, Inc.,
1978.

2. Jensen, Kathleen and Wirth, Niklaus. User
Manual and Report (2nd ed.) Soringer-Veriag,
N. Y. 1974.

3. Wirth, Niklaus. Algorithms + Data Structures =
Programs. Prentice- Hall, Inc., Englewood
Cliffs, New Jersey, 1976.

4. Elson, Mark. Data Structures, Science Research
Association, Inc., Chicago, Palo Alto,
Toronto.

5. Alagic, Saud and Arbib, A Michael. The Design
of Well-Structured and Correct Programs.
Springer-Verlag, N. Y. Heidelberg, Berlin.

6. Luccio, Fabrizio and Pagli, Linda.
"Correspondence on the Height- Balanced
Trees." IEEE Transactions on Computers, Jan.
1976. PP.87-91.

7. Luccio, Fabrizio and Pagli, Linda.
"Rebalancing Height-Balanced Trees." IEEE
Transactions on Computers, Vol.c-27, no. 5, May
1978, PP.386-396.

8. Nievergelt, J. and Reingold, E.M. "Binary
Search Trees of Bounded Balanced." Siam
J. Comput. Vol.2, no.l, March 1973. PP.33-43.

9. Foste, C.C. "A Generalization of AVL trees."
Communications of the ACM. Aug. 1973, Vol. 16,
no.8, PP.513-517.

10. Luccio, Fabrizio and Pagli, Linda. "Comment on
Genralized AVL Trees." Communications of the
ACM. July 1980, Vol. 23, no.7, PP.394-395.

11. Horowitz, Ellis and Zorat, Alessandro. "The
Binary Tree as an Interconnection Network :,An

38

Application to Multiprocessors Systems and
VLSI." IEEE Transactions on Computers. Vol.
c-30, no. A, Apr. 1981 PP.247-253.

12. Martin, W.A. and Ness, D.N. "Optimizing Binary
Trees Grown with a Sorting Algoithm."
Commuications of the ACM, Feb. 1972, Vol.15
no.2, PP. 88-93.

13. Samet, Hanan. "Deletion in Two-Dimensional
Quad Trees." Communications of the ACM. Dec.
1910, Vol. 23, no.12, PP.703-710.

14. Tan, K. C. "On Foster's Information Storage
and Retrieval Using AVL Trees." Communications
of the ACM, Sept. 1972, Vol. 15, no. 9 PP.843.

15. Foster, C. C. "Information Storage and
Retrieval Using AVL Trees." ACM 20th National
Conference/1965. PP.192-205.

16. Karlton, P. L., Fuller, S. H., Scroggs, R. E.,
and Kaehler, E. B. "Performance of
Height-Balanced Trees." Communications of The
ACM, Jan. 1976, Vol. 19, no. 1, PP. 23-28.

17. Nievergelt, J. "Bainary Search Trees and File
Organization." Computing Survey, Vol. 6, No.
3, Sept. 1974, PP.195-207.

18. Baer, J. L. and Schwab, B. "A Comparison of
Tree-Balancing Algorithm." Communications of
The ACM, May 1977, Vol. 20, no. 5, PP.322-330.

39

Vita

Alice Ming-Mei Chen was born on August 9,1945 in

Taoyuan, Taiwan, Republic of China. Her mother, Jung-May

Peng is living in Taipei and her husband, John Jung-Chung

Chen is studying in Industrial Engineering Department,

Lehigh University.

From 1963 to 1967, she attended the National

Cheng-Chi University in Taipei, Taiwan. After graduation

in June 1967, she had taught Algebra in Hsin-Chu Junior

Middle School for 5 months. In November 1967, she had

started working for Bank of Taiwan, Export Division, Data

Processing division, Service Division, Foreign Exchage

Division for more than 10 years. During September 1972

and January 1973, she attended the Montana State

University, Economics Department. In January 1979, she

enrolled in Lehigh University, Department of Mathematics,

Computer and Information science division.

40

	Lehigh University
	Lehigh Preserve
	1-1-1981

	File maintenance by using AVL trees (an implementation of payroll system).
	Alice Ming-Mei Chen
	Recommended Citation

	tmp.1451580486.pdf.TaeBM

