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ABSTRACT

~

Following. reduction of arteriolar flow, tissue

oxygen concentration decreases and ano;ic tissue develops
if the blood flow rate is small enough. Anoxia, if it
develops, firgt appears in the regibn most distal to the
capillary at the venousv end, then spreads through the
tissue until é final steady state is reached.j In this
thesis, the changing oxygen concentration, from £he time
blood flow changes until the anoxic tissue is‘ fully
developed, 1is examined mathematically. The equations
governing oxygen concentration transport to tissue are

-+

solved by reducing them to a first order nonlinear

paf%iaf—differentiai=integré1 equation. The solution is

valid until anoxia first appears. After anoxia develops,

& R .«
it is necessary to solve a moving boundary problem. This

is done using the method of matched asymptotic

’

expansions.



1. INTRODUCTION

Following partial arteriolar occlusion, the level of

oxygen concentration in tissue begins to decrease, and

anoxic tissue will develop prqyi@edrphgpwphgﬁgggil}g;xmww

blood fiow rate is smali enbugh} Ano#ia first appears in
the tissue most distal té the capillary at the venous
end; and the anoxic region grows and spreads toward the
arterial end until it reaches a new‘steady state. During
the initial period following occlusion, before anoxia
appears«\ this pfocess can be aﬁalyzed as an unsteady
oxygenbtransport problem in a Krogh cylindéf. An exact
solution to the governing equations has been obtained by

using a numerical solution to a non-linear first order

partial differential-integral equation, and is presented

in—this thesis. Eventually, the oxygen concentration

...falls. . to LZero,. - anox.ic.....reg.j_.ons... -appear - in -the -tissue; and

the solution obtained is no longer valid. A steady state

-analysis was recently presented that shows the extent of
the anoxic region iﬁ theAtissue.dhring various stages of:
hypoxia (Salathe and Beaudet, [4]).  Another study, by

Salathe and Wang, discusses anoxia developmen£ following

total occlusion.



The analysis of the oxygen tranaport process after
anoxia develops reduces to the solution of a moving
boundary problem. Because of "thé”‘undﬁQiinééf
~oxyhemoglobin dissociation relationghip _and' the .three  .—

“ dimensional geometry, exact solutions are impossible.
However, when 6xygen ievels have dropped to a
sufficiently low 1level that anoxic ﬁissue appeé;s, the
nature of oxyhemoglobin dissociation is such that it is
possible, as .a first approximation, to neglect the time
derivative term in the oxygen concentration equation for
tissue. Although.a corresponding simplification does not
apply to the oxygen concentration equation for the blood,

the reduction achieved is sufficient to permit the

analysis to be carried out. Using the methods of

__asymptotic —analysis,—complete—solutions —have  been

evolution of the oxygen concentration in the capiilary

"and tissue, from the time blood flow is reduced until the

final steady state is attained.

~ AS

N

In the next section the analysis is described for
the time from reduction of blood flow until the first
appearance of anoxic - tissue. The analysis of the

\ . . . . .
development of anoxic tissue is given in the subsequent

-3= .
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'section.” Results are presented for the analyéis before

anoxia develops.




2. CONCENTRATION PROFILES FOLLOWINGvPARTIAL-OCCLUSiON
Tpe Krogh model consists of a single éapillary of

length L' and radius R, surrounded by a concentric

cyllnder of tlssue hav1ng radlus Rt.roxygen transportedM,“_mwmm

by the blood dlffuses from the capillary into the tissue,
where it is consumed at constant rate M. Let z' denote
distance along ' the capillary axis, O<fz'<iL', angd r;
'éfgzance normal to the axis, O0< r'g Ry, If- axial
diffusion in the capillary and tissue are ignored, the

governing equations for steady state oxygen transport to

tissue are (see, for example, Salathe, et al., [5])

ac!
‘ 1 9 .
DT 3rrlr'zrol= M
3 dc
t ' = t
qiaz' F [Cs] 2"TRCI)—E).‘!C R! \>
c
c! =C! , r' =R'; 3¢ /3ar' =0 , r' = Rt
Cé = CA , 2' =0
Ft[‘cl] = Q' 4 N'S'[C'] .
Where éé = cé(r';z”) and Cé(z') are the steady state

oxygen concentrations in the tissue and in the capillary,
respectively. Here D is the tissue oxygen diffusivity,

9; the initial volume blood flow rate, S'(C') the



oxyhemoglobin dissociation relationship, N the oxygen
capacity of blood at 100% saturation, and Cp the oxygen

concentration in arterial Dblood. ‘The oxyhemoglobin

dissociation relationship will be assumed to be given.by .. . .
dissociation relationship ] |

the empirical formula sS'(c') = K'C'?/(1+k'c'®), for

suitable choice of the constants K' and n.

The above equations can be readily solved to yield

~t
-

cy = cilz') + M[(r'®-R'®)/2-R!%tn(x'/r!) /2D (2.1)
Cy + N's'(CS) = F'(cy) | | (2.2)
= F'(CA) + wM{RéE-RAQ)z/qi .

fal

The latter equation gives z' explicitly in terms of Cgo

and can easily be inverted numerically to yield csl(z').

Solutions of this type were obtained . and. discussed by . . .

Kety [1].

Upon'partial occlusion, blood flow is réduced to gg¢.
Oxygen is sti;l - supplied to‘ the tissue from .the
capillary,.butthé concentration in both the tissue and
capiliary decreases with time. Until the oxygen' level
falls to zero at tﬁe.outer edge of the Krdgh cfliqder,

the concentration at any location z' satisfies the



equations

oc' _ 1 9 (oc!

a - Dr| 3]:" [r —"—r'] M
,ac' = R o . e ;"
arl - O [ r ;'Rt' t
cl = C' , r'_ - R(':' tl >/ O
C' — cé ’ tl - 0 , Ré r

P 2 T SRR
//{fRé 5eT * g iFt(C
c' =¢! , £ =0, 0«

S

)

t'>0 , R;srsR
o -
Ry o
[ |
ZTTR'DAET
c or R
(o]
L -

(2.3)

(2.4}

(2.5f
(2.6)

(2.7)

(2.8)

where c¢' = ¢'(t',r',2') and C' = C'(t',z') are the tissue

and capillary oxygen concentrations, respectively.

: BefQ{?wmwMPFQQ??Qi29 mefH£ﬁh§§LWmmmwemmmwintroducewmwwmmwmww
dimensionless variables

Cg = Cg/Cp , Cg = Cy/Cp » © = c'/Cp , C = c'/cp

N =N'/Cp, K=K'(C)", F(C) = F'(C')/C, ,

r=r'/R{ , R, = RY/Ry , z = z' /L'

t = t'/tc , V= qf/qi  to = ﬂRézL'/qf.
Then eqgs.(2.1) , (2.2) become
I& _ -

-] - A



cg = Cg + Ao[r2 - Rg - 21n(r/Rc)]/4‘ - (2.9)

FlCg) = F(1) - VE,z o - (2.10)

and egs.(2.3) to (2.8) become

2__ 3¢ - 13 . 3c, © (2.11)
RB, 8t  r orlfaz] + Ao, t30 (2.11)
ac _
or S0 T=1.t20 (2.12)
¢c=C, r=R,, t20 ‘ ' (2.13)
c=ds , Rc\< r<l ‘ (2.14)
) 3 ac ,
3¢ + 33]F(C) = Bz == . (2.15)
~ c N
C=C,, t=0, 0g zg 1 ' (2.16)
C=1,2z=0 ) (2.17)
Introducing the transformation c(t,r,z) = v(t,r,z) +
c(t,z) - Cglz) + .Cs reduces eqs.(2.11)-(2.14) to the
following equations for v:
2_3 .1l r¥y - _2__ aC
R B 3r r Jr or R B ot .

c o c o



N_—y

- The solution to these equations can be obtained as an
eigenfunction expansion (see Appendix I for details),  so
e \

that

c =C(t,z) + Cg(r,z) - Cg(z) +.§1Ti(t,z)wi(r) (2.18).
l=

b . ) . ‘ )

where —

R

. are eigenfunctions and Aj are the roots of
Jo(ARL)Y; (ARy) - J1(AR)Yo(AR.) = 0 G.zo).

Here Jn and'Yh are the n'th order Bessel functions of the

first and second kind, respectively. The eigenvalues Ay



Ed

have been calculated andg tabulated by Wang [6] for

choices of ﬁt and. R, of physiological interest. The

functions T;(t,z) are given‘by

,V.2L N s s . e e e e es e g e e

,Ti(t.z) = ;I%{C(t,z) - exp[—uit]cs(z) (2f21)

1

t
-’ My J C(t, z) exp [—ui (t-Tt)]ar -
(o] .

L o (ny 2.2, 2 -1 _ 2
Where L; = (-2/7¢ Ai+Wi(l)/2) oMy = RCBOAi/Z

Substituting this solution into eq.(2.15), we obtain

a non-linear partial differential-intégral equation for

the capillary oxygen concentration:

[i_ + E_JF(C) = 4B° i Ei{c (z) ex [—A t] (2.22)
at | 3z - geg if1 jat s tEexelmuy el
c i

' t . '
- C(t,2) +-ui j C(T,z)exp[—ui(t—T)]dT} - EO .
(o)

This equation can be integrated numerically.

We divide t into n equal intervals, .say t = nA . Then

the integral . -2

flo-



" |
My j C(t,z)exp[—ui(t—T)]dT
o

can be written as

[ )]
. I J C(t,z)exp[-u. (t-1)]drt .
IR U (-1)a * -

Assuming the variation of C(t ,2) is small compared
to eip[uiA] in each interval [(3j-1)A,3A], we then obtain

(l—exp[—uiA])_g C(ja,z)exp[-u, (n-j)A] .
J=1 1

-~

Substituting this result into eq.(2.22), we have

o 4B U, :
(%E +'%E)F(C) == 22_ 151 ;%{Cs(z)exp[—uinA] (2.23)
TR 1=l
c i

- C(nA,z) + (l—exp[—uiA])jglC (jA,z)exp[—ui(n—j)]}
i ' ° ‘ ff\\\\
or — .

I ~11-



T

A ‘ n-=1 \
{Cs(z)exp[-uinA] f (l-exp —uiA])jEl C(jA,z)?f?
h [-u; (n-3)4] ‘/C(nA:Z)eXP[‘UiA]} -,Ei]

ol -

I

If we let Az = At = A and z = mA, then eq.(2.23) becomes

;i__{c([n+1]A,[m+l]A)_- C(nA,mA) }
V2N -

ar, -1[4B, o Ly '
= (EE) [EE—— iEl - {CS(mA)eXp[-uinA]
R A
c i (2.24)

+ (l—exp[-uiA])gg C(jA,mA)exP[—ui(n—j)A}

- C(nA,mA)eXp[—uiA]} - Eo] .

Now eq.(2.24) is changed into a form which is suitable

for numerical computation:

- .
C([n+1]4,[m+1]1A) = C(nA,ma) + VZA (aF/dc)-1 (2.25) ]
.
4B w L.
[ °~ ¥ L {11(i,n,m) + I2(i,n,m) + I3(i,n,m)}
T 1=1 2
R J A , .
c 1
) N
s P
2 .

— S g R



- Eo]

where

- Illi,n,m) = Coexp[-ksnAl . .

I2(i,n,m) =

n-1 - :
{1 - expl-u;41} I C(nA,mA)expl-i; (n-3)A]

I3(i,n,m) = - C(n ;mA)exp[-uiA].

b\,,

—

The folloing recursive formulas are also easy to derive :

I1(i,n+l,m) = Il(i,ﬂ,m)exp[—uiA]

I2(i,n+l,m) =

_

I2(i.n,m)exp[—uiA] - (1 - exp[-1;A1)13(i,n,m)

I3(i,n+1,m) = - Cb([n+1]A,mA)exp[-uiA]

and

11(i,1,m) = cg(mA)exp[-uiA]

I12(i,1,m) = O

I3(i,1,m)

- C(A.mA)exp[-uiA] .

Using the same principle, we can abproximate Ti(t,z)

by

Ti(n ,m ) h= -

N

£

>
H o)

[Il(i,n,m) + I2(i,n,m)

-13-

g

/J

(2.26)



+ I3{i,n,m)] .

)

Substituting eq.(2.26) into eq.(2.18), we obtain a

computational formula for c(t,r,z)¥

A S S L o s S s s S e

c(nA,r,mp) = C(nA,mA)4Ao[r2—Rg—2ln(r/Rc)] (2.27)
2 @ by
- i§1 ;5 wi(r)-[Il(l,n,m)
i

+ I2(i,n,m) + I3(i,n,m)].

Both eq.(2.25) and eq.(2.27) are used in ‘fthe numerical
‘calculation for capillary and tissue oxygen concentration
before anoxia develops.

The solution obtained in thiS'sectionwis_valiQ;at

and location z only until the time t*(z) at which c=0 at

r=1. Regions of anoxia then develop in the tissue and

grow with increasing time. The analysis of the oxygen
concentration profiles and the determination of the
growth of these anoxic regions will be carrieéd out in the

next section.

-14-



3. THE DEVELOPMENT OF ANOXIA
At any axial location z, the solution obtained in
the previous section determineéfthe‘Eihégf*(i)'fblloﬁing

occlusion at which the oXxygen concentration falls to zero . . ..

R : N
at - the outer edge of the Krogh cylinder. For 1larger

values of time, those solutions are no longer valid, and

a completely different type of analyéis must be given.

Anoxic tissue first devlops at tbe venous end, z=1, at

‘time t*(l). with increasing time, this region ‘grows,

moving toward the ’capillary, as well as towafd tﬁe
~

arterial end of the Krogh cylinder. Eventually,

concentration'profiles will reach a new steady state.

At any lovation z, a new time t~ = t - t*(z)_will be

———introduced; measured  form- €He  €ifie Ef"ﬁhiEﬁ-Yﬁéwﬁiygéﬁﬂﬁ

‘

contentration falls ‘to zero at r=1.  The governing

equation for t~ 0 are

' dc, dc
2 t_ 19 t
, RB_3r _roarfir VA (3.1)
c O
'c)ct :
Cy = Fra =0 at r=H(t™,z) (3.2)
cy = Cp at r = R , tY > 0 (3.3)
[3/3t™+3/3Z) F(C,) =B_sc, /3r|R L tT3 0 (3.4)
ot ¢ o
N -15-



H(t~lz) = 1' Cb = Cl ’ Ct = ci(r,z).at t~ = 0 (3-5) v

where ¢, and C, are the tissue and blood oxygen
concentrations, respectively, and ci(r,z) ' Ci(z) are the

S b o e e g s B I LT

solutions for tissue and blood obtained from the last

. *
section at t = t (z).

Equation (3.1) assumes ‘that the tissue consumes
oxygen at a constant rate Ao (M) as long as the
concent?ation is greater than zero, but falls to =zero
discontinuously when the concentration vanishes. The

significance of this assumption has been discussed

previously (Salathe and Beaudgﬁ,)[4]).

The determination of c; and Cp invalvesﬁthe analysis

- of a moving - boundary. problem, characterized by the fact ... .
that the domain of definition. of equation (3.1),
———f_——;——L~—RE<—E<—H+t17297—-is-ﬁét——knewn—~a——pfibri7——but——must—*b¢~——-~——”“
determined as»part oé the solution. Such problems are
extremely complex, even in their most simple fqrm. The ~
present problem is 'fﬁrther ‘complicated by ghe
axisymmeteric geometry and the coupling of the tissue and

s

capillary concentrations through eqgs. (3.3) and (3.4).
. ] ~
In addition, the nonlinear oxyhemoglobin dissociatiqn

=-16-



realtionship makes the .analysis virtually intractable,.
either by analytic or numerical ﬁethods.‘ However, the
form of the oxyhemmoglobin'dissociation relation makes

pos51ble an approxlmate method of soluton by means of

[ T O

77perturbat10n B technlques that prov1des sufficiently
accurate results under a wide range of. physiological

I8
conditions.

Under normal physiological conditions, capillary
oxygen EOhcentration is sufficiently high that it
eorrespends to the flat portion of the oxyhemoglobin
dissociation relationship. Therefore, immediately
following occlusion, the concentration .drops "rapidly,
with relatively little bound oxygen releaseds By the time

anoxic tissue beglns to develop, the oxygen concentratlon

ﬁmln the. caplllary has fallen _to values corresponding to .

the steep portion. of the dlssoc1at10n relationship. The

hemoglobln then supplies relatively large amounts. _of

oxygen to the tissue with much smaller changes in
concentration. - Mathematically, this follows from

equ.t3.4), which can be written in the form

(3/3t~ + 3/3z)cy = 9¢ /37 |R /[1+NS' (Cp)]. Clearly, 8C, /¥t™

" is small when §'(Cy) is large, and from eq.(3.3), dlc/at~

should also be small. It follows that the dominant

-17-
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behavior during this period can be described by using a
quasi-steady approximation for tissue concentration,
achieved by neglecting the 30‘/3t~" term in eq.(3.1).

The effect of this term ~can be ascertalned , and the

e i AT

s e it

accuracy of thé solution 1mproVéd by obtaining the next
term in a perturbation or iteration scheme.
The dominant approximations to Ct, Cp and H(t~,z),

denoted by Co éo and Hy, respectively, satisfy the

equations
13 1,2 =A, t~ > 0, R. < H (3.6)
r3rt 3r ol = A tT > 0, Ro < rs H '
Co = aco/ar = 0 at r = Hy; cg = Co at r = R.(3.7)

(9/9t™ + a/az)F(co) = B, aco/arlnc . (3.8)

0
]

o = Aslr?-82 - 282In(r/H_)1/4 L (3.9)

0
I

—' 2 2 1 2
A R . - 3.10
o o c[2(HO/Rc) Ln(H c) (HO/RC) f 1]/4 ( )
= xi 2
aco/arch = AORc[l (HO/RC) 172 . (3.11)
Substituting these results into eq.(3.8) gives

(3/3t™ + 8/3z )F(c,) = -A B, R.[(H /R )2-1]/2 (3.12)

=18~

From eqs.(3.6), (3.7) it £0llows that - o



¢

In order to solve eq.(3.12), we introduce new dependent -

and'independentVVariables:

i
g =2z -t~
H (£7,2)]% -

UO (TIIG) R

o]

Then eq.(3.12) becomes
ﬂ]_ — - 2BO Uo—l . (3’113)
= ; .

an .Rc KnUOF [COT |

With the initial condition U, = R;2 at n= o, eq.(3.13)
can readily ©be integraﬁed numerically to give U,, and
therefore Ho in a parametric form.

At t~ = 0, Ho= 1 and eqs.(3.9) and (3.10) give

0
i

Ao[r2—1+2ln(r)]/4

c = BAolR2-1421n(R.)1/4 .

Clearly, c =0 at r=H,, as required. However, these

.solutions are not in agreement with: the solutions "

obtained in the previous section, at the time t*_at which

C ~ -19-
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o

oxygen concentration falls to zero at r=1. The reason is

~

that the expansion used in this section is singular, and

~ is not applicable at t7=0. .The assumption -that the 3dc/3t

term is negilible in eq.(3.1) breaks down at t t*, when

—_ e e b g
e g g s e

Y the transition between the two types of solutions occurs.

A completely new type of expansion is required during the
brief perioa in which the soluions at t=t* evolve to the
solution. obtained here for t> t*. This asseftion is
verified and a brief description of the nature of‘tﬁe

solution in this transition ‘layer is given in Appendix

III.

It can be seen that the dominant solution depends
only on 1, so that the concentration profiles e§olve in
an identical manner in n once anoxia begins to develop,
at least to this approximation.

The solution obtained above can be improved upon by '

obtaining the next . iteration, Cyo c1, H;, in which the

neglected term in eq(3.1) is approximated by - .

A |
This approximation satisfies the equations
24
' a9c
19 .9 = 2_ O L~ 5 :
r Br[r or cl] Ag + B_R_ 3t ' t™ >0 (3.14)
Cy = Bcl/ay =0, r=Hy ; ¢ =C; , r=Rg '(3.15)



oC

5 .9 _ 1 - |
(EE:-+ 5E)F(Cl) = Bo 3T o (3.16)
c

aC A oU _

o _ o o
an - T U, 3y

It can be shown (see Appendix II) from (3.14), (3.15)

. From (3.9), it is easy to _show.that. ... ... .

R

that
ey = (8, 2+2MO LR 11 (x/R D201+ (3.17)
2[5, ,2)-2M (U ) £nU, ] U Ln (H, /x) + N
M(Uo)kﬂfzhnl—rzznr)/z
c;_=;4u6F2L41:u14ﬂ+'c<uo,Ui> ; (3-18)

Uy = (H;/R,)?

Ao(l—Ul)
(l—dt*/dz)ZnUoF'(CoY

M(Uo)

~21-



C(Uo,a) = RC[AO+M(UO)(£nUO+a 2£ch)]/4

B — o— o

e
G(U ,U)) = [2(U_,2) - ROM(U ) £nU_/4]U,Lnu_ .

N
Substituting these results into (3.16) gives an equation

for U;, which, after some manipulation, can be put into

the form
- 39U, :
TR = [w(ub,Ul) - @(Uo,Ul)]/ (3.19)
L emonﬁ)
where
/

¥(@U_,u)) = R [Z(u_,1) + M(U_)U £nU, ]

9z (U _,2) 3G (U ’Ul) BUO

[o]
°(0,/01) = —55 (1-U,) + —5 5%
(o] (o]
. 3G(U_,U))
0w, ) = g w2
-1 /4

'With the provision of an initial condition for U; at
n =0, this equation can be readily integrated numerically

to provide U;. Substituting U; into (3.17) and (3.18)
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then provides the solution for the concentration ¢y, Cy.
It is not possible to satisfy, at t™ = 0, both the

initial condition Ul = R =2 and the requlrement that C1

- [ RO

R . R — s

Mshould equal the value given by the earlier solution
(for t <t¥) at t = t*. As pointed out earlier, the two
solutions (for t < t* and t > t*) do not ﬁLtch at t = t*,
and a transition layer in which the 23c/dt term in (2.3)
is not négligible must be constructed to join the two
solutions. It can be shown (Appendix IiI) . that the
correct initial condition on U; at t~ = 0 is u, = (1 -
A)/R ., where A is chosen so that C; at t¥ = 0 has the
same value as that given by the earl%er solution at t=t*

Denoting this value of Cy by C;, and reconginzing A as a

: ‘
small perturbation quantity (Appendix III), it follows

from eq.(3.18) that

A= (c;-c;Eiﬁg:}’:ﬂmc‘&o)" “ \ (3.20)
where

z, =;c(1/R§,2) ’

My = M(L/RD)

g = [;0/R5+Moznkc/é] .
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4. NUMERICAL RESULTS

Numerical results will be presented for the data

shown in Table 1. These resulti apply before the time

that anoxic tissue develops. ' Figure 1 illustrates.the- ...

variation in Dblood oxygen concentration along the
capillary at various times. Itsshows  that there~is~an;
intensive variation of concentration profile in the
.capillary during the first second. Figure 2 is  the
variation inonygen concentration along the out%; édge of
the Krogh cyliﬁder. The time t*(z) as a function of z is
sﬁown in Figure 3. From Figure 3 it can be seen that the
new steady state is reached as t* goes to infinity for

certain z, so that anoxia will not develop any further.
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Appendix I: Properties of eigenfunction w; (r) e

/

The solution obtained in eq;(2.18) can be derived by

-representing v(t,r,z) as an eigenfunction ‘expansion in

ST

defined in eq.(2.19), have the orthogonality property

jR Tw; (B)wy (r)dr = s, [1/7 Aptwi (/2] = s Ly (I.1)
c .

N

where §ij = 0 , i%xj ; 6ij = 1 , i=j ; and the

eigenvalues are defined in eq.(2.20). It therefore
follows that
1

T, (t,2) = L, j rw.vdr | (I.2)

5 R
c

Differentiating T; with respect to t, integf;ting by
parts, making use of the equation and boundary conditions

satisfied by v qu_the_pmoperties of the eigenfunction

_ such as, e
o 2L,
l=- 1 = W, (r)
i=1 32 1
1

it can shown'that

?

_ 2 2
3T, /8t +- W T, = “Ly/mAT oc /ot . (1.3)

Applying the initial condition v=0 at t=0 to eq.(1.2)

'gives,Ti(O,z) = 0. The solution to eq.(I.3) subject to .

25—

@
the form v = : ElTlEt +2)wi(r). The eigenfunctions wy, . .



the initial condigfon gives the result shown in

eq.(2.21).

3
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Appendix II: Intermediate result used in section 3

In section 2 eqgs.(3.14) , (3.15) can be written in

- the. following-simplified form : . ' ' T

HFH

= Spltys €1="A BEn(r/R,) . (II.1)

C = 9¢c/3r =0 at r = H.

Integrating once and applying boundary condition, it

follows that

2

o¢C A B H B H H r
3 . [_ + Z] (r - + 3L ) - rﬂn(q) . (II.2)

¢
Integrating again, it can be shown that

o - AZB[r_H ]+ [(2A+B) = BLr(H/R)]H%En(H/x)  (1I.3)

B .2 2,
& + 7 H Zn(H/Rc) -»r Kn(r/Rc)-

Letting r = R. , the expression for C is readily obtained

C = A+B[R ~H? I+ . [2(A+B)—2Bde/Rc)]szn(H/Rc). (IT.4)

With eq.(II.3), (II.4), the derivation of eq.(3.17) and

(3.18) can be easily obtained.

~27-
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" 'perturbation

Appendix III: Perturbation analysis
When tissue oxygen concentration reaches zero at the
outer edge of the Krogh cylinder and anoxia begins to

develop, there is a brief period during which a

et e i e e i & g e o A i g e S g s s 2y

w

A;kpansion Qigg éﬁé é;asi—steady solution as
the dominant term is not applicable. In this gppepdix, a
simélifiéd two-diménsionaltﬁodel which has the essential
features of the original problem will be examined, and it
will be shown how the solutions for t <t ana for t>t*

are properly Jjoined at t=t", This will be done by

assuming that the 3c/%t term is small for all t, so that

both the solutignﬁfgnmi4tiwand_x1L:—ean4be_eb%aiaed as-— -7

aéymptotic expansions. A  boundary layer in the
neighborhood of t=t* will then be constructed and joined
to these solutions using the method of matched asymptotic

expansions.

Consider a simplified two-dimensional tissue and
capillary system. The . non-lineér oxyhemogoblin
dissociation relation will not be considered in the

present case, and the time rate of change in iissue is
assumed to be small compared to other terms. Therefore

the dimensionless steady concentration profiie satisfies
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5 =M, 0<sxg1, 0cg <1
ox
1 qgs Bcs—
L o 3
C =1, =z =1
S
BCb ]
> = 0, x=1; c, = CS r X =20.

This system can be solved and gives

C., =1 - vMz

f
Q
]

C_ + M(x%/2-x) .

If the capillary flow rate is reduced to 1, both the
OXygen concentration in the tissue and in the capillary
decrease with inéreasing time. Before anoxia develops,

the concentration at any location gz ~satisfies the

equations
acC 320 ' ’
E—t=_2 s xxg 1 (ITI.1)
AxX

(2 + 3—)0 = 3¢ - (IXI.2)

ot 0X X | o

¢ = Cp at x=0 ; 3c¢/3x = 0 at x =1 for t < t*
(III.3)

Cp = Cc=1-v Mz o (II1.4)

St = cg =1 -y Mz + M(x2 - 2x)/2 (III.5)

- =29~



Cb=1 at z = 0 - ‘ (III.G)

where C€¢» Cp are the concentration in the tissue and :

S S G, [ N

wwEéﬁiii;;Qrw;espectively.

After partial occlusion there are two kinds of blood
\gpat have to be considered:

1. Blood that is in the capillary when occlusion
occurs.

2. Blood that enters the capillay after
occlusion.

These two kinds of blood give different boundary

~condition for eq.(III.2) . They are eq.(III.5) and

(I111.6).

Writing C¢ = ¢cg + €ecy, Cp = Co + eCy, where it is
~assumea“fhaf““éii”11”it”ééﬁ“éaéiiymﬁé"éﬂé&ﬁ“tﬁa£m£6£'£m;mw"
z everything is ’§teady. In this case, one has to
consider only the part for t ¢ z g L, 4for which the

solutions are
— 2,
c = CO + M(x“/2-x)

O .

C =1- M(vz+(l-v)t] .
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\J/\/

Clearly, at t = 0, this solution satisfies the initial
condition. Also, Co = 0 at x =1 at t = tg =(1/M - vz -

1/2)/(1 = v), which is the first approximation to t*.

e e e e e e s e e

The next term in the perturbation expansion for

t.st* is given by

»l
c, = Cl - M(l—v)[x2/2;x]
Cl = M(l—v)[gl(z—t)+t].

Applying‘the initial condition Cob = Co + eC; = C, at t=0

s
gives gl(z-t) = 0. However Ct = ¢cg + €cy doesn't reduce
to cg at t=0 for any choice of g;(z-t). The solution
generated by this perturbation expansion is not

applicable near t=0 , and the initial conditions ,cannot

Rt et a an $iemy e e A A e e SRR € £ -eom iR e £ emn em e om £ e £ xea s e

be satisfied. It turns out that the dominant term does in 7

fact satisfy the initial conditions, given by the steady
state profile, since it is a quasi-steady solution.
However, when the higher order terms are ineluded, the
initial conditions cannot be satisfied. A boundary layer
exists at t=0 that satisfies the initial conditions and
joins them to the above solution. Therefore, it cahnot be
ih}erred that gl(z—f) = 0. Only thrbugh an anaiysis of

the boundary layer can this function be determined, and -
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the soluﬁion for t <t* completed.
Introducing the boundary layer varible T = :t/é”,‘
which has the property t+'0' as € 0, T fixed, the
'hgoverning equation for c“(r,T,z) =C¢(r,et,z) becomes Cp =
Cixx -~ M , while the equation for C~(T,z) = Cp( T,z) is
(3/3T + ¢ B/BZ)Cb = elac/axlx =0 . The boundary
conditions at x=0 and x=1, and the initial condition
remains the same. In order to obﬁaih:a boundary layer
solution that matches with the solution obtained above
for t bounded away form zero » it is necessary to examine
that solution as t-o0. Writing t=e¢T and expanding the

above solution in a series in € gives

Cp = Cq + eM(l—v)[gl(z) -T) +0 (€2)

~

. Q
2

x G F EM‘lfY).glKZ) f,T,t.x?/2,+ x--+ro(eg)\w3~

It therefore follows that the boundary layer expansion is

of the form

c. = c, + ew(x,z,T)

Q
I

C_ + €P(z,T)
where v and P JSatisfy the equation and boundary

-32-~



conditions
2. .2 . '
3%y - 3y . (III.8)
T 552 : . :
dP/dT = - m(1 - V)
y =0 P=0 at T =0
Y =P at x=0 ; %%-= 0 at x=1 ° /

The form of the expansion, eq.(1I11.7), also shows that as

t~0

’

P~ M(1 - v )lg;(z) - 1] (III.9)
b~ M(1 - v)[gy(z) - x2/2 + x] -

Equations (III.B) and (III.9) provide a complete set for
the determinatiqn of Yy and P. Equatipq_(I;;fg)“g;yg§wpmf““
-M(1 -v)T, éo that, from equation-TIII.Q), it follows
that g, (z-t) =v0. This provides the missing constant in
the solution for t bounded away from zero. The solution
for Yy and further investigation of the boundary layer
will not be persued here.
e : Ve
The time t = t* = tgp + et; at which ¢ = 0 at x =1

can be determined form this solution. The dominant term,



(

tO' has been given above" and t1 = tg + 1/2 . At time t =
’ b

t , it can be shown that the solut;ons are

Cp = M/2 - eM(1 -v)/2

¢ = M(x - 1)2[1 - 2(1- v )e]

For t » t*, the solution can be obtained as an
4a‘symptotic expansion, Cy = Cyp + €cy, Cp = Co + €Cy;
instead of by the iterative method used in the text, so
the matching of the solution for t 6'£* and t > t* can be
carried out. With H expanded in the series.H = Hy, +'€H1,

the dominent terms, Cor Cq. Hg, are,éiven by
2
c_ = M(Ho—x) /2
_ 2
C = MH0/2

H =1 - (1-v) (t-to) ‘ |

and the first order term can be shown to be

. _ B_/.l _ 2
_Cl = 6(l \))Ho + MHoHl
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Q
il

' $(1-v) (x-H_)® + MH (H_-x}

H, = (l—v)gz(z—t)

where gz(z—t) is to be determined.

These solution evaluated t = t* do not agree with
ﬁhe solution obt;ined ébove for t & t*, eq.(111.10), for
any choice of the function gz(z—t). The solutions are the
same only for the dominant term, but the order € terms do
not match. In order to.join the two solutions, and obt;in

the unknown function g,(z-t), it is necessary to analyze

the boundary layer at t = e, Defining T = (t - t*)/e,

which has the property t*‘t* as € >0, T~ fixed, the o

boundary layer equations are the same as those for the

boundary layer at t = 0, except that 3c /3x = 0 at x =1

is replaced by ¢ = 3¢ /3x = 0 at r = H" H(t*+ ™),

where H™(0) = 1. The boundary layer solution must be

constructed in such a way that it satisfies the initial

condition at T"=0. (given by the solution for t X t* at t

~

\
= t*, eq.(I11.10)) and matches with the solution obtained

N

-for t > t*  aAn expansion of the solution for t > t* gives



ﬂm,/<f/
hY

c, = M(1-x2) /2 + eM(l—v)[a—x)gz(z—t)-(l—X)lz(l—x)3/6]

N
o M
et )

b + €M(l—v)[ge(zét)-T~—l/6]‘-

This demonstrates that the boundary layer expansion must

be of the form

cr =Y, eEM(1-v)Q(z,t™) }

. 2
e ~
' c” = %(l—x)2 + eM(l-v)a(x,z,T")
and that Q, qo satisfy the equations and boundary
conditions
90 _ 32a
oT 32x

Q
]
[ o

o = —-(x-lxa r at T'= 0
00 _ _
3T~ =~ 1
- -1 ~ _
Q = 5 at T =0

a >~ L(T",z,x) as T~ =+ o

Q -~ L(TIZIO)
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where H® = 1 + eh(T") iS the expansion for the anoxic
bo§der in this boundary layer, and L(T%,z,x) = {(1 -
x)gz(z-t) - (1 - x)r - (1 - x)3/é} . This provides a

. complete set of equations for the determination of o , Q

and h.

The equation and initial condition for Q give Q=
-1/2 - T~. The coefficient of T~ in this solution can be
shown to be the same as the coefficient of T% in
L(T",z;o). so that this solution can be made to satisfy
the matching condition at infinity if gz(iit) is properly
chosen. This completes the solution for t > t*, valid for
.the region bounded away from t = e*. It gives gz(z-t) =
-1/3. 1t can be shown that the value for g, so obtained
results in the capillary concentratioﬁs Co + €Cy for the

solution t- > t¥ , and the capillary concentration

obtained from the solution for t £* . being equal at t-

=" .

In conclusion, therefore. an analysis of the,

boundary layer separating the solutions for t < t* and

. * .
for £ > t* shows that the solution for t > t is

correctly and '~ uniquely determined by choosing the

capillary concentration at t = t* to be .equal to the

-37= .



capillary concentration given by the solution for t t*

*

at t t* . The tissue concentation profiles for the two

~solutions do not agree at t = e*. The transition between
these two solutions 1is given by the boundary layer

solution.

In the text an exact solution was obtained for t<

t*, since the perturbation method is hot generally
applicable during this pgriod. under most physiological

i conditions. An iteration procedure was used for t > t*,
rather than an asymptotic expansion. Thé two methods are
b'asically similar, and in fact the first iteration and

the first term in the expansion are identical. However,

. the iteration procedure has the advantage of not
expanding the function F(C) in a series, since in general
mw,mw_El(CLvismnotwsmallrmIt~aISOMavoids;expandiﬁg“thE”locatiOh“
of the anoxic border, H , in a series, but deterimines
its location as part of the solution. However, the
conclusions reached in this appendix aré appiicable to
the iteration‘solution, and justify the assertions made
_in the text regarding the joining of the éolutions at t =
t*. since the two solution agree to lowest order at t =

*

t , the statement that is a small perturbation is also

verified. Finally, eq.(III.10) shows that C_ , c, are

~38~
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[ _ : . o ;
independent of z at t = t » at least to order 2, so that

CI ( c.f., eq.(3.18)) is virtually independent of z, as

asserted.
i’
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Table 1: Value of Parameters Used in Examples

Parameter

»

Arterial blogd oxygen concentration
Cp (cm oz/cm blood)

Tissue diffusivity D (cm2/sec)

Oxygen capacity of thg blood at
100% saturation N (cm 02/cm blood)

Tissu oxyggn consumption rate
M (cm 02/cm tissue-sec)

Capillary length L (cm)
Capillary length R, (cm)
Tissue radius Ry (cm)

Volume blobd flow rate (cm3/sec)

Value
3 x 1073
N

1.1 x 107>

0.204
5 x 104

2.4 x 10”2
4 x 1074

4 x 1073

Initial .01 x 1078 |
 Final o 1.105-% 1078
Constant K in oxyhemoglobin 6.69 x 10°
dissociation relationship
Constant n in oxyhemogolobin 2.2
dissociation relationship
v“
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Table 2: The définition of dimensionless constant

MR'2
A = t
o} DCA
21MR DI,
C
B = —°%
\
7 (1-R®)R'2LM
E = c t
o qgC
f A
R B A2
= cC O 1
H 2
o (oo yn2,2, 2 -1
Li = (=2/7 Ai+wi(1)/2)
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z
Figure 1. Capillary oxygen concentration as a function

of axial location at various times. (All

. variables are dimensionless.)
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Figure 2. Tissue oxygen concentration at the outer
‘ edge of the tissue as a function of axial
position for various times.
~
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Figure 3. Time for- anoxic tissue .to develop at outer edge
of Krogh cylinder as a function of axial
location. .
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