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ABSTRACT 

Following, reduction of arteriolar flow, tissue 

oxygen concentration decreases and anoxic tissue develops 

if the blood flow rate is small enough. _. , Anoxia,, if it 

develops, first appears in the region most distal to the 

capillary at the venous end, then spreads through the 
i 

tissue until a final steady state is reached. In this 

thesis, the changing oxygen concentration, from the time 

blood flow changes until the anoxic tissue is fully 

developed, is examined mathematically. The equations 

governing oxygen concentration transport to tissue are 

solved by reducing them to a  first order nonlinear 

-par-tiai—d-i^ferential^trrtegTal equation.  The solution is 

valid until anoxia first appears. After anoxia develops, 

it is necessary to solve a moving boundary problem.  This 

is  done  usiflg  the  method  of  matched  asymptotic 

expansions. ' 
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1. INTRODUCTION 

Following partial arteriolar occlusion^ the level of 

oxygen concentration in tissue begins to decrease, and 

anoxic tissue will develop provided that the capillary 

blood flow rate is small enough. Anoxia first appears in 

the tissue most distal to the capillary at the venous 

end, and the anoxic region grows and spreads toward the 

arterial end until it reaches a new steady state. During 

the initial period following occlusion, before anoxia 

appears, th^Ls process can be analyzed as an unsteady 

oxygen transport problem in a Krogh cylinder. An exact 

solution to the governing equations has been obtained by 

using a numerical solution to a non-linear first order 

partial differential-integral equation, and is presented 

"in thrts thesis. Eventually, theoxygen concentration 

fallsto zero, anoxicregionsappearinthe tissue, and 

the solution obtained is no longer valid. A steady state 

analysis was recently presented that shows the extent of 

the anoxic region in the tissue .during various stages of 

hypoxia (Salathe and Beaudet, [4]). Another study, by 

Salathe and Wang, discusses anoxia development following 

total occlusion. 
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The analysis of the qxygen tranaport process after 

anoxia develops reduces to the solution of a moving 

boundary   problem.      Because   of   the   non-linear 

oxyhemoglobin dissociation relationship and: the thr.ee 

dimensional geometry, exact solutions are impossible. 

However, When oxygen levels have dropped to a 

sufficiently low level that anoxic tissue appears, the 

nature of oxyhemoglobin dissociation is such that it is 

possible, as ,a first approximation, to neglect the time 

derivative term in the oxygen concentration equation for 

tissue. Although a corresponding simplification does not 

apply to the oxygen concentration equation for the blood, 

the reduction achieved is sufficient to permit the 

analysis to be carried out.   Using the methods of 

_a.symp-totic ana-lysis-, eompiete sol u Lions have- beerT 

obtained thatpermitan accuratedescriptionofthe 

evolution of the oxygen concentration in the capillary 

and tissue, from the time blood flow is reduced until the 

final steady state is attained. 

v •    . 

In the next section the analysis is described for 

the time from reduction of blood flow until the first 

appearance  of  anoxic - tissue.    The  analysis  of  the 

development of anoxic tissue is given in the subsequent 
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section.  Results are presented for the analysis before 

anoxia develops. 

-N 
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2. CONCENTRATION PROFILES FOLLOWING PARTIAL OCCLUSION 

The Krogh model consists of a single capillary of 

length L'  and radius R^  surrounded by a  concentric 

cylinder of tissue having radius R£. Oxygen transported 

Jsy the blood diffuses from the capillary into the tissue, 

where it is consumed at constant rate M. Let z' denote 

distance along the capillary axis,  0<$ z' •£ L", and r* 

distance  normal  to  the  axis,  (X r*^ R^..    If  axial 

diffusion in the capillary and tissue are ignored, the 

governing equations for steady state oxygen transport to 

tissue are (see, for example, Salathe, et al., [5]) 

q.-5-lr F' [C] = 27rR«D; ldZ       sJ       <- - sJ      c 3r 
R1 
G 

c» = C' , r' = R» ;  ac'/3r' = 0 ,  r« = R' 
s    s        c      s-    - ■ - ' t   ~~ 

' C = C  ,  z« = 0 
s    A ' 

F'[C'J = C + N'S1[C'J . 

Where 6g = Cs(r',z') and Cs(z') are the steady state 

oxygen concentrations in the tissue and in the capillary, 

respectively. Here D is the tissue oxygen diffusivity, 

^i  the  initial  volume  blood  flow rate,  S'(C')  the 
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oxyhemoglobin dissociation relationship, N' the oxygen 

capacity of blood at 100% saturation, and CA the oxygen 

concentration  in  arterial  blood.    The  oxyhemoglobin 

dissociation relationship will be assumed to be given by 
- - - ■■■■  " -, 

the empirical formula S'(C') = K'C'n/(l+K'C,n), for 

suitable choice of the constants K' and n. 

The above equations can be readily solved to yield 
•r 

Cs = Cs(z*) + M[(r'2-R^2)/2-R^2£nCrVr^)]/2D    (2.1) 

Cs + N'S'(CS) = F'(Cs) (2.2) 

= F'(C.) + 7rMtR,2-R!2)z/q. • 
A C    A     ^1 

The latter equation gives z' explicitly in terms of C' 

and can easily be inverted numerically to yield C'(z'). 

Solutions of this type were obtained and discussed Jby... 

Kety [1]. 

Upon partial occlusion, blood flow is reduced to q^. 

Oxygen is still supplied to the tissue from the 

capillary, but the concentration in both the tissue and 

capillary decreases with time. Until the oxygen level 

falls to zero at the outer edge of the Krogh cylinder, 

the  concentration  at  any  location  z'  satisfies  the 
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equations 

3c' 
3t 

3c' 
3r' 

r,l    3  r  i 3C* n P" 3P"Lr 3p"J " M , t'^0 , R'^r^R' 
C      "C 

= o 
^ 

K.  t' > o 

C = C , r' = Rc, t'> 0 

C = cs , f = 0 , R^  r  R£^ 

;^Rc23^ + qfatr]FMO = 2^-0^ 

C = C^ , t' = 0 . 0 <? z'<? L  - 

R» c 

(2 .3) 

(2, .4) 

(2, .5) 

(2. .6) 

(2. .7) 

(2. 8) 

where c' = c'(t,,r,,z') and C = C*(t',z') are the tissue 

and capillary oxygen concentrations, respectively. 

Beforeproceedingfurther,weintroduce 

dimensionless variables 

Cs = CS/CA , Cs = CS/CA , c = c'/CA , C = C'/CA , 

N = N'/CA , K = K'(CA)
n , F(C) = F'(C')/CA , 

r  = r'/R^ , Rc = Rc/R£ , z = z'/L' 

t  =   t'/tc   ,   v  =  qf/q±   ,   tc  =  TTR^2L7qf. 

Then eqs.(2.1) , (2.2) become 
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Cs ~=  Cs  +  A0[r2   -   R2 -  21n(r/R_)]/4 (2.9) 

F(CS)   =  p(i)   _     vEo2 (2.10) 

and  eqs.(2.3)   to   (2.8)   become 

R B   at CO 

3c    =   1   3        3c 
r  37^^]   + AQ   ,     t£ 0 

3c 
3r a7   -  0   ,   r =  l   ,   t> 0 

(2.11) 

(2.12) 

c =  C,r =  Rt>,0 

c =  cs   •   Rn^ r^: 1 

c 

[ft    +    y^O      "Bglf 
R 

C  ~ cs   '   t  =  0   ,   04 z^ 1 

C  =  1   ,   z =  0 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

Introducing  the  trans format ion j^Xt^r^)__g_j^.(jb_,-r-^z-)—±- 

C(t,z)     -    Cs(z)    +    cs    reduces    eqs.(2.11)-(2.14)    to    the 

following  equations   for  v: 

2       L-j. I 3v    rSv, R„B_   9r       r  3r   Lr3P c   o 
2        3C 

R  B      3t c   o 

X 
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£=0,  r = l 

v = 0 ,  r = R 
o    c 

v = 0 ,  t = 0 . 

The solution to these equations can be obtained as an 

eigenfunction expansion (^ee Appendix I for details), so 

that 

c - C(t,z) + cs(r>z) . Cg(z) +f  T.(tfZ)w.(r)  (2>18) 

where 

"i<r>   = JO(H5__>Y0_(_H?c)   ~  J0^iRc)YoUir| (2.19) 

are eigenfunctions and X^  are the roots of 

J0(XRc)Y1(ARt) - J1(XRt)Y0(ARc) = 0  . (2.20) 

Here Jn and Yn are the n'th order Bessel functions of the 

first and second kind, respectively.  The eigenvalues X* 

-9-. 



have been calculated and tabulated by Wang [6] for 

choices of Rt and Rc of physiological interest. The 

functions T±(tfz) are given by 

..- --  —21,. - --' -— - - -  ---  
Ti(t,z) = —i.{C(t,z) - exp[-y t]C (z) (2.21) 

i 

ft 

-' y.    C(T,z)exp[-y. (t-x)]dx • 

Where L, = (-2/ir^+W? (l)/2) 1   ,  y. = R B A?/2 1 11 1     c o 1 

Substituting this solution into eq.(2.15), we obtain 

a non-linear partial differential-integral equation for 

the capillary oxygen concentration: 

3      a 4B      00   L • 

[ft + !i]F(c) .--5T-iJiTftc.«^«'t^it]    <2-22' 
TT R        A . 

C        1 

- C(t,z) + ■ \i C(T/z)exp[-yi (t-T)]dt} - EQ • 

This equation can be integrated numerically. 

We divide t into h equal intervals, say t = nA . Then 

the integral .  ^ 
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V± C(t/z.)exp[-y (t-T)]dr 

can be written ai 

1 j=i J C(T,z)exp[-y (t-T)]dx . 
i-l)A 1 
(j-D 

Assuming the variation of C( T ,Z4   is small compared 

to expCy^^A] in each interval C(j-l)A,jA], we then obtain 

(l-exp[-y.A]) Z  C(jA,z)exp[-y (n-j)A] . 
1   j=l x 

Substituting this result into eq.(2.22), we have 

 g ~ 4B L -  
{Jt+T£)F^   *=^-iI1.^T

{CB(2)exp[-y1nA]    (2.23) 
c      i 

- C(nA,z) + (l-expt-y.AJJ^C (jA, z)exp[-y . (n-j)] } 

- E • 
o 

or 

-11- 
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ri_ + i_i c = (dF)-ir4Bo  ? 
L
I 

LTTR  1=1 A^ 

{Cs(Z)exp[-y.nA] + (1-exp -y A]) Z  C(jA,z)exp 

[-y±.(n-j)A] -^(nA/z)exp[-yiA]} - E 1. 

If we let Az = At = A and z = mA , then eq.(2.23) becomes 

~—{C([n+l]A/[m+l]AJ -C(nA,mA)} •2A 

- t§E.\-i-t?*o        «?  Li  ' 
ldC;  hF2~ A ~2   iCs(mA)exp[-u ni] 

••  -t\       A , 
(2.24) 

+ (l-exp[-y.A])n|^ C(jA,mA)exp[-y.(n-j)A] J 

- C(nA,mA)exp[-y.A]} - E   . 1       °J 

Now eq.(2.24) is changed into a form which is suitable 

for numerical computation: 

C(Cn+l]A,[m+l]A) = C(nA,mA) + /2A (dF/dC)"1    (2.25) 

r4B0   co  L. 
ITT2R J^ ^2 

{n{l'n'm) + I2(i,n,m) + I3(i,n,m)} 
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where 

1 MA.» n'- ™l = ?s exp[ -yLinA X, 

I2(i,n,m)   = 
n-1 

{1   -  expC-u^Al}   Z   cCnAfmAjexpC-U-^n-jJA] 

I3(i,n,m)   = -  C(nA',mAJexpC-y.jA] . 

The folloing recursive formulas are also easy to derive 

Il(i,n+l,m) = iKi.r^nOexpC-y^] 

I2(i,n+l,m) = 

I2(i,n,m)exp[-yiA]   -   (l   -  expOy.^] )I3 (i,n,m) 

I3(i,n+l,m)   =  -  Cb( [n+lHA^AJexpE-UiA] 

and 

Il(i,l,m)   = CgdnAJexpO^A] 

I2(i,l,m)   =  a> 
n 

I3(i,l,m) = - CtA^mAJexpC-yj^A] . 

Using the same principle, we can approximate Tj^tfZ) 

by 

T±(n ,m ) = - ±  -i-[Il(i,n,m) + I2(i,n,m) 

-13- 
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+ I3ii,n,m)] , 

Substituting  eq.(2.26)  into  eq.(2.18),  we  obtain  a 

computational formula for c(t,r,z): 

c(nA,r,mA) = C(nA,mA)-A0[r
2-R2-2ln(r/Rc)]      (2.27) 

" ? ill 4 w.(r).[IlCi/n/m) 
A . 
1 

+ I2(i,n,m) + I3(i/n/m)]. 

Both eq.(2.25) and eq.(2.27) are used in Ehe numerical 

calculation for capillary and tissue oxygen concentration 

before anoxia develops. 

The solution obtained in this section is valid at 

and location z only until the time t (z) at which c=0 at 

r=l.  Regions of anoxia then develop in—the—tissue—and- 

grow with increasing time. The analysis of the oxygen 

concentration profiles and the determination of the 

growth of these anoxic regions will be carried out in the 

next section. 

-14- 



3. THE DEVELOPMENT OF ANOXIA 

At any axial location z, the solution obtained in 

the previous section determines the time t*(z) following 

occlusion at which the oxygen concentration..-.falls to ...zero. 

at the outer edge of the Krogh cylinder. For larger 

values of time, those solutions are no longer valid, and 

a completely different type of analysis must be given. 

Anoxic tissue first devlops at the venous end, z=l, at 

time t (1). With increasing time, this region grows, 

moving toward the capillary, as well as toward the 

arterial end of the Krogh cylinder. Eventually, 

concentration profiles will reach a new steady state. 

At any location z, a new time t~ = t - t*(z) will be 

2dT~mesreursa forffi" the" time- at which-the oxygen 

concentrationfalls to zero at r=l.   The governing 

equation for t~   0 are 

_2 t = 1^3_  t 
R B  3r   r 3r r3r     o 13.1) 
c o 

9Gt ct *    3F~     =0 at  r=H(t~,z)    (3.2) 

ct = Cb    at   r = Rc ,     t~ >,    0 (3.3) 

[3/3t~+3/3z)F(C ) =*=B 3c/3r|R     , t~ >,      0   (3.4) 
D       O   "t       C 
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H(t~,z) = 1, Cb = cL   , ct = c^^z) at t~ = 0   (3.5) 

where ct and C^ are the tissue and blood oxygen 

concentrations, respectively, and ci(r,z) , Cj^z) are the 

solutions for tissue and blood obtained from the last 

section at t = t (z) . 

Equation (3.1) assumes that the tissue consumes 

oxygen at a constant rate AQ (M) as long as the 

concentration is greater than zero, but falls to zero 

discontinuously when the concentration vanishes. The 

significance  of  this  assumption  has  been  discussed 

> 
previously (Salathe and Beaudet, [4]). 

The determination of ct and C^ involves the analysis 

of a moving boundary problem, characterizedby the fact 

that  the  domain  of  definition  of  equation  (3.1), 

-Rc< r-<—&( t~ , z)-; ts—not—known—a—priori^—but—must be~ 

determined as part of the solution. Such problems are 

extremely complex, even in their most simple form. The 

present problem is further complicated by the 

axisymmeteric geometry and the coupling of the tissue and 

capillary concentrations through eqs. (3.3) and (3.4). 

In addition,  the nonlinear oxyhemoglobin dissociation 

-16- 



realtionship makes the analysis virtually intractable, 

either by analytic or numerical methods.. However, the 

form of the oxyhemmoglobin dissociation relation makes 

possible an approximate method of soluton by means of 

perturbation techniques that provides sufficiently 

accurate results under a wide range of physiological 

conditions. 

Under  normal  physiological  conditions,  capillary 

oxygen  concentration  is  sufficiently  high  that  it 

corresponds to the flat portion of the oxyhemoglobin 

dissociation  relationship.     Therefore,   immediately 

following occlusion,  the concentration drops rapidly, 

with relatively little bound oxygen released^ Bythe time 

anoxic tissue begins to develop, the oxygen concentration 

in the* capillary has fallen to values correspondingto 

the steep portion,, of the dissociation relationship. The 

hemoglobin then supplies relatively ^laxoe amounts of— 

oxygen  to  the  tissue  with  much  smaller  changes  in 

concentration.     Mathematically,  this  follows  from 

equ.t~3.4),   which   can  be  written   in   the   form 

(3/3t~ + 3/3z)Cb = 3ct/3r|R/[l+NS' (Cb)]. Clearly, 3Cb/3-t~ 

is small when S'(Cb) is large, and from eq.(3.3),  3(c/3t~ 

should also be small.   It follows that the dominant 

-17- 



r behavior during this period can be described by using a 

quasi-steady approximation for tissue concentration, 

achieved by neglecting the 9ct/9t~ term ineq.(3.1). 

The effect of this term can be ascertained, and^the 

accuracy of the* solution improVed, by obtaining the next 

term in a perturbation or iteration scheme. 

The dominant approximations to ct, cb and H(t~,z), 

denoted by cQ, CQ and HQ, respectively, satisfy the 

equations 

19 8 
r  9r"[r  8F co3  = AQ     t~   $,    0,   Rc  <     r ^    HQ        (3.6) 

cQ =   aco/9r    =0 at  r  = HQ;   cQ = cQ  at  r =  Rc(3.7) 

0/3t~  +   3/9Z)F(C0)   = B0.aco/3r|Rc . (3.8) 

Fromeqs.(3.6),   (3.7)   it  followsthat 

■2_„2 cQ = A0[r^-H^  -  2H2l^r/H02J/4_  ,     (3.9) 

C_   =  AQR2[2(H  /R   )2-£n(H  /R   )-(H  /R   ) 2   +   l]/4      (3.10) *-" ^   *- o      c ay   c o      c 

9co/9r|Rc   = AoRc[l-(Ho/Rc)
2]/2  . (3.11) 

Substituting  these  results  into  eq.(3.8)   gives 

(9/3t~  +   9/9z     )F(Cn)   =   -A B  R   [ (H /R  ) 2-'l']/2     (3.12) 
<J OOCOC J ' . 

-18- 



'In order to solve eq.(3.12), we introduce new dependent - 

and independent variables: 

rT= t~ 

a = z - t~ 

Uo(n,a) = 
HQ(t~,z) 

R 

Then eq.(3.12) becomes 

8U 
3n 

2B U -1 
o 

R   InU  F1[C ] * (3.13) coo 

With the initial condition UQ = R~
2 at n = 0, eq.(3.13) 

can readily be integrated numerically -to give UQ, and 

therefore HQ in a parametric form. 

At t~ - 0, HQ= i and eqs.(3.9) and (3.10) give 

co = A0[r
2-l+21n(r)]/4 

Co = A0[R2_1+21n(Rp)]/4 . 

Clearly, co=0 at r=HQ, as required. However, these 

solutions are not in agreement with the solutions 

obtained in the previous section, at the time t* at which 

-19- 



oxygen concentration falls to zero at r=l. The reason is 

that the expansion used in this section is singular, and 

is not applicable at t~=0.The assumption that the 9c/3t 

term is negilible in eq.(3.1) breaks, down at t t , when 

the transition between the two types of solutions occurs. 

A completely new type of expansion is required during the 

brief period in which the soluions at t=t  evolve to the 

* solution obtained here for t > t .   This assertion is 

verified and a brief description of the nature of the 

solution in this transition layer is given in Appendix 

III. 

It can be seen that the dominant solution depends 

only on ri , so that the concentration profiles evolve in 

an identical manner in r\ once anoxia begins to develop, 

at least to this approximation. 

The solution obtained above can be improved upon by 

obtaining the next iteration, C1# c1# Hx, in which the 

neglected term in eq(3.1) is approximated by 

This approximation satisfies the equations 

3c 

F hlt h °i] -   Ao + BV 3^* *~> °        <3-14> o c 

cr = 9Cl/3r  = 0 , r = Hx ; cx = Cx , r = Rc   (3.15) 

-20- 



3c, 
t^+f^PtC,)   =   Bo^ 

R 
(3.16) 

From.(3.9),   it   is  easyLJto -show, .that 

9C A 9U 

oil 4 o   3ri 

I,t    can   be    shown    (see   Appendix   II)    from    (3.14),     (3.15) 

that 

cx =   [C(Uo,2)+2M(Uo)^nRc][(r/Rc)
2-U:LJ   + 

2 [ S (UQ , 2) -2M (UQ) -CnuJ u^n (H^r)   + 

M(UQ)(U^lnE1-r
2lnr)/2 

(3.17) 

\ 

-farlBT 

Where 

°1   -   (Hi/R^ 

M(u  )   = 
AO(I-U:L) 

o (l-dt*/dz)^nU F'(c  ) o o 
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C(Uo,a)   = R^ [AO+M(UQ) Un\JQ+a-2lnRc)]/4 

G(Uo'V   =   [5(Uo,2)   -  R^M(Uo)£nUo/4]u,£nU 

Substituting these results into (3.16) gives an equation 

for ulf which, after some manipulation, can be put into 

the form 

3U. 

<=["W;,|VVl/ (3.l9) 

L S(VV 
where 

^VV   = R
C[^U0,D   +.U(U0)U1ln\J1] 

'ML: ^ u-u^JV^ 
3G(U0,u\) 

o'   1 3U, C,[UQ,4)    . 

With the provision of an initial condition for Uj at 

n =0, this equation can be readily integrated numerically 

to provide U±.  Substituting Ux into (3.17) and (3.18) 
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then provides the solution for the concentration c1, C1. 

It is not possible to satisfy, at t~ = 0, both the 

initial condition U^ - R~2 and the requirement that C-, 

should equal the value given by the earlier solution 

(for t ^ t ) at t = t*. As pointed out earlier, the two 

solutions (for t * t* and t > t*) do not match at t = t*, 

and a transition layer in which the 3c/9t term in (2.3) 

is not negligible must be constructed to join the two 

solutions. It can be shown (Appendix III) that the 

correct initial condition on U, at t~ = 0 is Ui = (1 - 

X )/R~, where X is chosen so that C^ at t" = 0 has the 

same value as that given by the earlier solution at t=t*. 

Denoting this value of Cb by Cb, and reconginzing X as a 

small perturbation quantity (Appendix III), it follows 
   — -—4- 

from eq.(3.18) that 

.2 

X - 
(^^VR^l]+2£nRc.?o)' 

2(l+£nR )£   ~  ~' * (3.20) 

where 

CQ = X(l/R2
cf2) 

M = M(l/R2) 
o        c 

Co = ^o/Rc+Mo^WRc/2J . 
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4. NUMERICAL RESULTS 

Numerical results will be presented for the data 

shown in Table 1. These results apply before the time 

that anoxic tissue develops. /Figure 1 illustrates , ther 

variation in blood oxygen concentration along the 

capillary at various times. Itsshows that there is an 

intensive variation of concentration profile in the 

capillary during the first second. Figure 2 is the 

variation in oxygen concentration along the outer edge of 

the Krogh cylinder. The time t (z) as a function of z is 

shown in Figure 3. From Figure 3 it can be seen that the 

new steady state is reached as t goes to infinity for 

certain z, so that anoxia will not develop any further. 
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Appendix I: Properties of eigenfunction w^r) 

The solution obtained in eq.(2.18) can be derived by 

representing v(t,r,z) as an eigenfuhction expansion in 
00 

the form v " iJ1 T^(tf z)wi(r) .__ The eigenfunctions.^,. 

defined in eq.(2.19), have the orthogonality property 

•1 
rw   (r)w   (r)dr =  6. Jl/7r2Af+wfTl)/2j =  STVLT

1
        (i.l) 

c 

where ^ij = 0 , i^j ; 6 ±j = 1 , i-j # ; and the 

eigenvalues are defined in eq.(2.20). It therefore 

follows that 

T.(t,z) = L. J  rw.vdr . (1.2) 
Rc 

Differentiating T± with respect to t, integrating by 

parts, making use of the equation and boundary conditions 

satisfied by v and the__prpperties of the eigenf unction 

such as, 

oo  2L. 
1 = -  2  —i w (r) 

1=1 TTA
2
  

x . 
I 

it can shown that 

3T./9t + y.T. = 2L./7rA2 3Cb/3t . (1.3) 

Applying the initial condition v=0 at t=0 to eq.(1.2) 

gives . Ti'(Ofz)' = 0. The solution to eq. (1.3) subject to 
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u 

the  i„itial  oondition  giyes  the  resuit  shQwn  ^ 

eq.(2.21). , 

_L 
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Appendix II: Intermediate result used in section 3 

In section 2 eqs.(3.14) , (3.15).can be written in 

the following-simplified form :  "„ 

'* Hr^4F"^^"^-'li^^^7rr "' 7 "^ ~"~ : "7ii7i)" 

 c_=_3_c/ar = 0  at r = H  --.--    — 

Integrating once and applying boundary condition,  it 

follows that 

If - [t + f] <*-£♦ f £<«<!> -r*„«f-).    (II.2) 
c 

t 

Integrating again, it can be shown that 

A+B  2 ?    1 
C = -4"[r-H ] + j[(2A+B) - B^w(H/Rj]H2£n(H/r) (II.3) 

B TT2 2, + x H"£n(H/R ) - r*£w(r/R ) . c 

Letting r = Rc , the expression for C is readily obtained 

C = A±B-[R2-H
2
]+ i[2(A+B)-2B£w(H/Rc)]H

2£n(H/Rc) .   (II.4) 

With eq.(II.3), (II.4), the derivation of eq.(3.17) and 

(3.18) can be easily obtained. 
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Appendix III: Perturbation analysis 

When tissue oxygen concentration reaches zero at the 

outer edge of the Krogh cylinder and anoxia begins to 

develop, there is a brief period during which a 

perturbation expansion with the quasi-steady solution as 

the dominant term is not applicable. In this appendix, a 

simplified two-dimensional model which has the essential 

features of the original problem will be examined, and it 

will be shown how the solutions for t ct* and for t>t* 

are properly joined at t=t*. This will be done by 

assuming that the 9c/9t term is small for all t, so that 

both the solution fox t^t and—t>t—ean-*be—obtainedas 

asymptotic expansions. A boundary layer in the 

neighborhood of t=t will then be constructed and joined 

to these solutions using the method of matched asymptotic 

expansions. 

Consider a 7simp±iried two-dimensional tissue and 

capillary system. The non-linear oxyhemogoblin 

dissociation relation will riot be considered in the 

present case, and the time rate of change in tissue is 

assumed to be small compared to other terms. Therefore 

the dimensionless steady concentration profile satisfies 
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p 
9 C ^ 

, 9C 
!_ v s 
V 9z 

8c -, 
 s_ 
9x 

x=0 

Cs = 1 ,  2 = 1 

9C 
b 

5J" = O ,   X = 1 ;   cs = Cs , 

This system can be solved and gives 

x = 0 

C = 1 - vMz 
S 

"  Cs = Cs + M<x /2-x) . 

If the capillary flow rate is reduced to 1, both the 

oxygen concentration in the ti ssue and in the capillary 

decrease with increasing time.  Befo re anoxia develops, 

the  concentration  at  any  locationz  satisfies  the 

equations 

8c   3^c 
9t _axi 

0 <<: x ^ 1 
(III.l) 

(2- + £-)c = i£ 9t   9x 9x 
x=0 

ct = cb at x=0 ; 9c/9x = 0 

^ = Cc = 1 - v Hz 

at x = 1   for t < t 

(111.2) 

* 

(111.3) 

(111.4) 

C4-  = t=cs=l-vMz+ M(x2 _ 2x)/2 (III.5) 
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Cb = 1   at z= o 

where ct, cb are the concentration in the ti 

(III.6) 

ssue and 

capillary, respectively. 

After partial occlusion there are two kinds of blood 

<that have to be considered: 

1. Blood that is in the capillary when occlusion 
occurs. 

2. Blood   that   enters   the  capillay  after 
occlusion. 

These two kinds of blood give different boundary 

condition lor eq.(lii.2).They are eqV7lII.5) and 

(III.6). 

Writing ct = c0 + ec1# Cb = CQ + eClf where it is 

assumedthate<<l,It caneasilybeshownthatfor t > 

z everything is ^teady. m this case, one has to 

consider only the part for t < z « L, for which the 

solutions are 

CQ = CQ + M(x
2/2-x) 

CQ = 1 - M(vz+(l-v)t] . 
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Clearly, at t = 0, this solution satisfies the initial 

condition. Also, cQ = 0 at x = 1 at t = tQ =(l/M - v'z - 

1/2)/(1 - v), which is the first approximation to t*. 

The next term in the perturbation expansion for 

t ^t  is gxven by 

c±  = C1 - M(l-V)[x
2/2-x] 

C1 = M(l-V) [gi(z-t)+t] . 

Applying the initial condition Cb = cQ + eC1   -  Cs at t=0 

gives g^Jz-t) = 0.  However c^ - cQ + ecx doesn't reduce 

to cg at t=0 for any choice of g1(z-t). The solution 

generated  by  this  perturbation  expansion  is  not 

applicable near t=0 , and the initial conditions ^cannot 

be satisfied. It turns out that the dominant term does in 

fact satisfy the initial conditions, given by the steady 

state profile,  since it is a quasi-steady  solution. 

However, when the higher order terms are included, the 

initial conditions cannot be satisfied. A boundary layer 

exists at t=0 that satisfies the initial conditions and 

joins them to the above solution. Therefore, it cahnot be 

inferred that g-j^z-t) = 0.  Only through an analysis of 

the boundary layer can this function be determined, and 
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the solution for t<t  completed. 

Introducing the boundary layer varible T = t/e , 

which has the property t->• 0 as e ->-0,  T  fixed,  the 

governing equation for c~(r,T,z) =ct(r,et,z) becomes CT = 

Cxx ~ M ' while the equation for C~(T,z) = Cb( T,z) is 

(8/8T + £ 9/9z)C  = e 9c/9x|x = 0 . :       The boundary 

conditions at x=0 and x=l, and the initial condition 

remains the same.  In order to obtain a boundary layer 

solution that matches with the solution obtained above 

for t bounded away form zero , it is necessary to examine 

that solution as t-^0.  Writing t=eT and expanding the 

above solution in a series in e gives 

Cb = cs ■+ eM(l-v) [g1(z) - T) + 0 (e2) 

c, ~ C + eM(l-v) g. (z) - T - x2/2 + x ■+ 0(e2). ~t s   l  

It therefore follows that the boundary layer expansion is 

of the form 

c~ = c    +  eifj (x,z,T) "OS 

C:" = C  + ePU,T) 
D      S 

where ty      and  P  satisfy  the  equation  and  boundary 
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*-v 

conditions 

ifi = ifi (in.8) 
9T  - 3x2 

dP/dT  =  - m(l   -   v  ) 

ip       =  0 P  =  0        at   T  =  0 

\li       =  P     at  x=0   ;      1^- =  0     at  x=l   • ^ 
dX 

The form of the expansion, eq.(III.7), also shows that as 

t^O 

P - M(l - v Kg^z) - T] (III.9) 

I/I - M(l - v)[g1(z) - x2/2 + x] • 

Equations (III.8) and (III.9) provide a complete set for 

the determination of, ^ and P. Equation (III.8) gives P = 

-M(l - v)T, so that, from equation (III.9), it follows 

that g^(z-t) = 0. This provides the missing constant in 

the solution for t bounded away from zero. The solution 

for I/J and further investigation of the boundary layer 

will not be persued here. 

The time t = t* = tQ + etx at which ct = 0 at x = 1 

can be determined form this solution. The dominant term, 
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tQ, has been given above and t1   = tQ + 1/2 . At time t = 

t , it can be shown that the solutions are 

Cb = M/2 - eM(l - v)/2 

ct = M(x - l)2[! _ 2(1- v )e] 

For t > t , the solution can be obtained as an 

asymptotic expansion, ct = cQ + ecp Cb = CQ + e C,  , 

instead of by the iterative method used in the text, so 

the matching of the solution for t «S t  and t > t  can be 

carried out. With H expanded in the series .H = HQ + EH,, 

the dominent terms, cQ, c0, H0, are given by 

c  = M(H -x)2/2 o      o 

C  = MH2/2 o     o' 

H  = 1 - (1-v)(t-t ) 

and the first order term can be shown to be 

C. = ^(1-V)H2  + MHH. 16      o      o 1 
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M ? 
C_ = ^-(1-v) (X-H )  + MHn (H -X), lb o       1  o 

E±  = (l-v)g2(z-t) 

where g2(z-t) is to be determined. 

These solution evaluated t = t  do not agree with 

* * * 
the solution obtained above for t ^ t , eq.(III.lO), for 

any choice of the function g2(z-t). The solutions are the 

same only for the dominant term, but the order *£ terms do 

not match. In order to join the two solutions, and obtain 

the unknown function g2(z-t), it is necessary to analyze 

the boundary layer at t = t . Defining T~ = (t - t )/e, 

which has the property t,-»■ t  as £ ^O,  T~ fixed, the 

boundary layer equations are the same as those for the 

boundary layer at t = 0, except that 3c""/8x = 0 at x = 1 

is replaced by c~ = 8c~/9x = 0 at r = H~ = H(t*+ T~), 

where H~(0) = 1. The boundary layer solution must be 

constructed in such a way that it satisfies the initial 

condition at T~=0 (given by the solution for t ^ t at t 

= t , eq.(111.10))■ and matches with the solution obtained 

for t > t . An expansion of the solution for t > t  gives 
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ct_= M(l-x
2)/2 + eM(l-v)[a-x)g2(2-t)-(l-x)|-(l-x)

3/6] 

_    M 
Cb = -2 + £M(1"V) [g2(z-t)-T'

v-i/6] # 

This demonstrates that the boundary layer expansion must 

be of the form 

C~ = | + eM(l-v)Q(z,t~)       * 

c~ = ^(1-x)  + eM(l-v)a(x,z,T ) 

and  that  Q, a   satisfy  the  equations  and  boundary 

conditions 
> 

3g   32a 
3T~ " 32x 

a = Q ,  x = 0 

a = 0 , 

g^ = - h(T ) ,  x = 1 

a = - (x-lX2 ,  at T~l= 0 

3Q 
3T~     1 

Q = - \    at T~ = 0 

a - L(T~,z,x)  as  T~ - oo 

Q - L(T,Z/0) 
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where H~ = 1 + eh(T~) is the expansion for the anoxic 

border in this boundary layer, and L(T~,z,x) = {(1 - 

x)g2(z-t) - (1 - x)T~ - (1 - x)3/6} . This provides a 

complete set of equations for the determination of a , Q 

and h. 

The equation and initial condition for Q give Q= 

-1/2 - T~. The coefficient of T~ in this solution can be 

shown to be the same as the coefficient of T~ in 

L(T~,z,0), so that this solution can be made to satisfy 

the matching condition at infinity if g2(z-t) is properly 

chosen. This completes the solution for t > t , valid for 

the region bounded away from t = t . It gives g2(z-t) = 

-1/3. It can be shown that the value for g2 so obtained 

results in the capillary concentrations CQ + ECi for the 

solution t"■ "">  t   ,  and the capillary concentration 

■it 
obtained from the solution for t >$ t  , being equal at t 

= t* . 

In  conclusion,  therefore.  an  analysis  of the, 

boundary layer separating the solut'ions for t < t and 

for t > t  shows that the solution for t > t xs 

correctly  and  uniquely  determined  by  choosing the 

capillary concentration at t = t  to be equal to the 

-37- 



capillary concentration given by the solution for t   t 

at t = t  .  The tissue concentation profiles for the two 

solutions do not agree at t = t . The transition between 

these two  solutions  is given by the boundary layer 

solution. 

In the text an exact solution was obtained for t< 

t , since the perturbation method is not generally 

applicable during this period under most physiological 

conditions. An iteration procedure was used for t > t , 

rather than an asymptotic expansion. The two methods are 

basically similar, and in fact the first iteration and 

the first term in the expansion are identical. However, 

the iteration procedure has the advantage of not 

expanding the function F(C) in a series, since in general 

E' (C), is not small. It also avoids; expanding the location 

of the anoxic border, H , in a series, but deterimines 

its location as part of the solution. However, the 

conclusions reached in this appendix are applicable to 

the iteration solution, and justify the assertions made 

in the text regarding the joining of the solutions at t = 

t . Since the two solution agr*ee to lowest order at t = 

t , the statement_that is a small perturbation is also 

verified. Finally, eq.(III.lO) shows that C^ , ct are 
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independent of z at t = t\ at least to order  2# so that 

C1    ( c.f.# eq.(3.18)) is virtually independent of z, as 

asserted. 
s 
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Table 1: Value of Parameters Used in Examples 

Parameter Value 

Arterial blood oxygen concentration 
C. (cra3o2/cni 3blood) 

Tissue diffusivity D (cm2/sec) 

Oxygen capacity of the blood at 
100% saturation N (cm302/cm

3blood) 

Tissue oxygen consumption rate 
M (cm 02/

cm tissue-sec) 

Capillary length L (cm) 

Capillary length R   (cm) 

Tissue radius R+ (cm) 

3 x 10 -3 

1.1 x 10 

0.204 

-5 

5 x 10 -4 

2.4 x 10 -2 

4 x 10 -4 

4 x 10 -3 

Volume blood flow rate (cm3/sec) 
mtial 

Final 
2-01 x 10 8 

1.105x 10 -8 

Constant K in oxyhemoglobin 
dissociation relationship 

6.69   x   10' 

Constant  n  in  oxyhemogolobin 
dissociation  relationship 

2.2 
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Table  2:   The  definition of  dimensionless  constant 

MR'2 

A     — t 
o DCA 

R      — 
27TR DL 

c 
gf 

E     - 
u(l-R2)R'2LM c      t 

o q c 
f  A 

y   = 
R B  A2 

c    O    1 
2 

2,2^, 2,,* /nN-l L.   =   (-2/TT^X>WJ(1)/2) 
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0.04 

Figure 1.  Capillary oxygen concentration as a function 
of axial location at various times.  (All 
variables are dimensionless.) 
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../ 

z (dimensionless) 

Figure 2.  Tissue oxygen concentration at the outer 
edge of the tissue as a function of axial 
position for various times. 
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Figure 3. 
^ . * 

Time for- anoxic tissue to develop at outer edge 
of Krogh cylinder as a function of axial 
location. 
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