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A QUANTUM MECHANICAL STUDY OF THE INITIAL 

DECOMPOSITION OF RDX 

.by 

Mehraet Ali Baran 

? 

ABSTRACT * 

RDX is the code designation of the compound cyclo^ 

trimethylene-trinitraminer^ C-^HgNgOg   ,   which is a well known 
t". • - 

explosive. It is also known as cyclonite arid has a melting 

o 
point of 205 C. An orthorqmbic symmetry is possessed by RDX, 

the plane defined by the three carbon atoms and the plane of 

approximate mirror symmetry being perpendicular to each 

other. The most probable space group is Pbca and the unit 

cell of this compound contains eight molecules. Available li- 

terature provides the reaction mechanisms and the coordinates 
■„ -. ■ r 
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A 
of the equivalent positions of eight molecules in the unit 

cell. 
-.    i>     ]     __   

-  —      There are "several quantum mechanical computational 

• techniques among- which Consistent Force' Field Method has an 

important place. The difficulty of applying this method to RDX 

is that the previous developments does not involve nitrogen 

compounds. Warsheli. and Levitt have written a program , 

(QCFF/PI) which is a quantum mechanical extension of consistent 

force field to pi electron systems. If the atomic potential pa- 

rameters are' available QCFF/PI program can calculate equilib- ■ 

rium configuration and vibrational normal modes of ground and 

pi excited states of large conjugated molecules and of the 

ground state of any other molecule. 

The first aim of the present study is, to extend Consis- 

tent Force Field Method to include molecules involving nitro- 

^gen such as RDX. The second aim is to examine the breakdown 

of BDX when activated by an external source. To do this a 

chemical path is chosen among the available reaction mechanisms. 

Finally, the chemical decomposition mechanism is combined with 

the.modified Consistent Force Field Method and estimates of 

the likelihood of the events made based on the molecular 

energy.     . 

As a result of first calculations, the heat of formation 

of RDX was found to be 390.53 kcal/gmole. It is concluded 

. - 2 -   * 



that the initial breakup of this moLecule would require the 

removal of an N0p group. There were two possibilities for the 

.separation of NO- group. One of the possibilities was the mo- 

vement of nitrogen -atom between the two oxygen atoms and the 

r second possibilty-involved the movement of N0_ group as a 

whole. Both possibilities were investigated dur'ing this study 

and it was seen that the amount of energy required to separate 

N0_ group as a whole (6/+. 1+7  kcal/gmole) is more than the 

eg^rgy required to move the nitrogen away between the two 

oxygen atoms (58.99 kcal/gmole). The conclusion as a result of 

these figures, was that the separation of NO can be achieved 

by   moving the-nitrogen atom between the two oxygen atoms 

and not by moving the N0? group as a whole. 

The numerical results of this work are obtained by 

using ,the CDC computer system of Lehigh University. 

- 3 - 



CHAPTER I 

INTRODUCTION 

Conjugated molecules containing nitrogen and oxygen he- 

teroatoms play an important role in the area of biological pro- 

cesses and explosives,. The field of interest of this study is 

one of the most powerful explosives known at the present time, 

namely, RDX. 

Many professionals tend to review the subject of explo- 

sives frow a purely military standpoint. Explosives are among 

the-most powerful servants of man. Large, engineering projects 

like, tunnels or dams would have taken hundreds of years if 

performed by hand and labor only. Mining of all kinds depends 

on blasting, as does cleaning of stumps and large boulders 

from land. Recent use of Controlled underwater explosives to 

shape metals.offers a steadily growing outlet and presents a 

new, and economical method for fabricated techniques. 

An explosive is a material which under the .influence 

of thermal or mechanical shock, decomposes rapidly and spon- 

taneously with the evolution of a great deal of heat and 

much gas. Only those of being controlled and having a high 

- 4 - 
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energy content are of importance commercially or in a military 

sense. 

RDX is among the military explosives and is used in a 

mixture with TNT and aluminum knov/n as Torpex, for mines, 

depth charges and torpedo warheads. It is also employed as an 

ingredient for explosives, for shells and bombs and it is de- 

sensitized"by.wax or oily materials. 

It is Very important and necessary to understand the 

reaction mechanisms of explosives. Semi empirical methods are 

used for such studies. The total energ-y of a molecule can be. 

calculated by using such methods for a given configuration. 

It is also possible to find txHe" minimum potential energy sur- 

faces around the molecule if the original configuration is 

deformed in various directions. One of the available quantum 

mechanical computational methods is Consistent Force Field 

Method. In this approach the empirical potential is deterrai- 

led by choosing parameters and functional forms such that 

the calculated values of molecular properties depending on 

the zeroth, first and second derivatives of the Taylor's 

expansion agree in a least squares sense with the correspon- 

ding experimental results. The method has been used previous- 

ly for alkanes, and in a somewhat approximate form, for other 

molecules that can be described in terms of localized bonds. 

The aim of this work is to apply this method- Consistent 

Force Field Method - to RDX molecule which is a complex con- 

■ - ' ■ - 5 - 



jugated molecule containing nitrogen and oxygen heteroatoms. 

The primary objective of using such techniques is to obtain 

accurate and reliable molecular properties in particular areas 

of chemistry where experimental data are lacking or....whe.r.e_cur-- 

rent experimental procedures fail. It is necessary to keep the 

cost of calculations' within bounds'while developing and using , 

such methods. -*» 

In the present approach a new configuration is sought 

each time the potential energy of the proposed configuration 

exceeded the activation energy. It must be noted that it is 

questionable whether the results will be meaningful or not 

since the other members of the crystal lattice are not consi- 

dered by the potential surface. 

In this manuscript, chapter II is used to describe the 

chemistry of RDX both below and above its melting point. The 

reaction mechanisms available in the literature are listed 

and a chemical path is chosen from available literature. Also, 

the properties and coordinates of equivalent positions of RDX 

molecules in the unit cell are given in this Ghapter. 

Consistent Force Field,Method is described briefly in 

the beginning of chapter III. The program developed by Warshel 
*        .. *■ 

2 ' and Levitt Can be used for conjugated hydrocarbons without 

any. difficulty. The problem of applying this method to RDX is 

"that it has not been previously used with nitrogen compounds. 

Therefore,, several problems were encountered v/ith the, use of 

■*■-   :;' --6-- 
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Warshel and Levitt'program which required the modification of 

the available program. Lappricirella and Warshel*^ discussed 

the possibilities of -extending QCFF/PI program to heteroatom 

conjugated molecules. Under the light of their approach some 

modifications and changes were done in the available program. 

The basis of these modifications are also discussed in this 

chapter. Then the basic ideas behind using a chemical formula 

to express the connectivity of RDX molecule are listed. 

Finally, chapter IV serves to summarize and discuss the 

results obtained from combining the chemical decomposition, mec- 

hanism of chapter. II with the Consistent Force Field Method, 

presented 'in chapter III. — 

■      V 

-v? - 



•CHAPTER  II 

CHEMISTRY OF RDX 

V, 

y    The compound cyclotrimethylene-trinitramine, 

C„H,N-0,,also known as cyclonite, or by the code 
3 6 6 '6 J *-   ■    J v 

designation RDX, is a well known explosive. The 

molecule consists of alternate CH2 and N-NO„ groups 

in a puckered ring. The environment of the carbon 

atoms are essentially tetrahedral; and the N-NO- 

groups are planar. The molecule possesses a plane of 

approximate mirror symmetry perpendicular to the 

plane defined by three carbon atoms. The melting 

point of the '-molecule is 205 C. The compound crystal- 

lizes in the orthorombic space group P,   with the 

unit cell dimensions a = 13.182 A ; b = 11.574 8.; 

c - 10.709 X. The unit cell contains eight molecules, 

4 Choi and Prince . 

The coordinates of equivalent positions of 

the eight molecules in the unit cell are „given by: 

vy 

- 8 - 
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1,1 
x, y, z; j. + x, j - y, z; 

x, 2" + y, j - z;    J ~ x' 7* I      z; 

---'-.  1 "  1 
x, y, z ;       - - x, j + y, z: 

-  1-- — i"-'" ■ r - "' " '■' i ; "      
x>2~yt2'J'y'2~Z' 

4 
Choi and Prince  provides the general x,y,z 

coordinates of an RDX molecule. The locations of-the 

ol:her seven molecules forming the' unit cell are 

calculated using the above information available for 

P,   space group. - bca 

Thermal Decomaosition of RDX Below Its Melting Point 

Cosgrove and Owen '  obtained the pressure- 

time curve for the thermal decomposition of RDX below 

'its melting point. The results have been interpreted 

as a slow solid reaction leading to a product which 

liquifies the reactant at the temperature of the 

experiment and accelerates its decomposition. The 

ratio of the rates of the, decomposition in the 

liquid and solid phases is said to be approximately 

10:1. The decomposition has been studied and it has 

been concluded that the initial reaction occurs in 

the gas phase and not in the solid state. It was 

further concluded that at 195 C RDX does not decompose 

- 9 - 



in the solid state to any significant extent. Finally, 

the rate of reaction in the gas phase is at least 

equal to that in the liquid phase. 

Hydroxymethyl formamide and polymeric 

materials formed from hydroxymethyl formamide have 

been shown to be the major products. These comparati- 

vely low molecular weight materials are higjhly 

hydrogen bonded liquids of low volatility which 

subsequently act as a solvent for RDX. Nitrogen, duje 
— ,  \ 

to its effect on the rate of diffusion of RDX vapor 

away from the crystal surface, is shown to have an 

inhibiting effect. At 195 C the products of decompo- 

sition which were isolated and identified were 

nitrogen, nitric oxide* nitrous oxide, carbon dioxide, 

carbon monoxide, water, methylol formamide, and 

similar compounds formaldehyde, hydrogen cyanide, a 

nitrate and a n-itrile. At this temperature ^formal- 

dehyde reacts vigorously with.NO^; 

5CH20+7N0 '= 3C0 + 2C00+ 7N0+5H_0       (1) 

At 195 C different initial steps in the 

mechanisms are • indicated for feJt^e gaseous and solution 

phase decompositions. The first step in the decompo- 

sition of RDX in the gaseous phase is the . elimination ' 

- 10 - 



of nitrogen dioxide. 

A A 

N02 \        J N02 

The radicle then breaks down possibly Recording" to the 

scheme given below: 

/ \ / \2 

NO£-N  m 
CH_  ,CHD 

(2) 

I    * NO -N.    NH -f N  "f CH.O      (3) 
.CHD       ^      |     2      2       v-" 

CHO 

N 

I 
Nitrogen dioxide and formaldehyde react rapidly at 

o 
195 C; the reaction being first order with respect to each 

reactant. This reaction is represented by : 
■ •        • . '        •* 

5CH20+7N02 =-3C0+2C02+7N0+5H20 . ' /   (l) 

It is suggested that the .CHOH.NH.CHO. radical would be 

stabilized by delocalization of electrons and hydrogen 

bonding. Subsequent reaction with a proton 

- 11 - 



would lead to hydroxymethyl formamide or alternatively 

the radical could dimerise. 

Hydroxymethyl formamide decomposes slowly at 

reaction temperature to give methylene diformamide, 

C0_, formaldehyde, trimethylamine, and water 

according to the equations: 

* .      ■ " \  .    -■ 

2CH200H.NH.HC0 = CH (NH.HCO)2+H20+CH20 (4) 

y 

CH20H.NH.HC0+3CH20 =  (CH3)3N+2C02+H20 -   • (5) 

It is possible that the amine nitrate observed in the 

decomposition of RDX is trimethylamine nitrate. The 

pyrolysis of hydroxymethylformamide is retarded the 

presence of nitric acid.. Under acid conditions, there" 

is a greater tendency for the formation of a liquid 

product which is believed to be a polymer of hydroxy- 

methyl   formamide   e.g. 

(6) 

The activation energy for the separation of the NO 

group was found to be 48.7 kcal/kgmole. 

It will be assumed for the present purposes 

that once the ring is broken, then the remaining 

- 12 - 
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steps in the reaction will occur very rapidly. 

Thermal Decomposition of RDX Above the Melting Point 

The earliestjwork done was the study of 

Robertson . It was suggested that the .primary step 

involved is the transfer of an oxygen atom from the 

nitroamino group to a neighboring carbon followed by 

the elimination of CEL and N„0, possibly through an 

oxadiazole intermediate. 

N02-N 

/• 
N 

CH, 

-N02      N0-2-* 

CH. 

(7) 

0 

CH2 -^-CH20+N20,   etc. 

N-iN'ffJ 

\ 
Activation energy = 47.5 kcal/kgmole. 

8 Later on Ranch and Fanelli  concluded that at 

temperatures above the melting point decomposition 

occurs simultaneously in the gas phase and in the 

liqui'd phase, and further that the mechanism of*the 

gas phase decomposition is not the same as that for 

liquid, the former almost certainly, involving 

- 13 - 
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r.upture   of   the   nitroamine  N-N   bond,    and   formation 

of   N02»   whereas   the   latter   does   not. 

The   rapid   initial   production   of  NOA   suggests 

that  the   first   step   in   the   gas   phase   decomposition 

mechanism   is   the   homolytic   rupture  of   the   nitroamino" 

N-N   bond   in   a   unimolecul'er  process. 

CH 

N02-N 

CH, 

N-NO, 

CH, 

NO   -N 

CH 

•*■  N02 + 
CH, 

*. 

:R. 
etc. 

'N' 

<$ 
NO, NO, 

(2.) 

It   is   interesting   to  note,' however,   that with 

small   enough   initial  weights   and  very   large   reactors, 

it   should  be  possible,   in  principle,    to   isolate   the 

gas   phase   decomposition.   The   gas   phase   decomposition 

makes   a   negligible   contribution   to   the   overall   rate 

under most   condition. 

^J 

-   14   - 
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CHAPTER III 

• A QUANTUM MECHANICAL ...COMPUTATIONAL METHOD 

- .  CONSISTENT FORCE FIELD METHOD 

(       This method had not been previously developed 

sufficiently for use with nitrogen compounds. The 

major advantage with this approach is that the 

calculations do not require either as much time or 

computer storage per molecule as Molecular Orbital 

techniques. Thus it was possible to undertake an 

extensive analysis with this system. 

2 The program Warshell and Levitt  (QCFF/PI) 

is a quantum mechanical extension of the consistent 

force field to pi electron systems which calculates 

equilibrium configurations and vibrational normal 

modes of ground and pi excited states of large 

conjugated molecules as well as of the ground state 

of any other molecule for which the potential para- 

meters are available. 

.   - 15 -     .-.'*. 



This method is based on a formal separation of 

sigma and pi electrons with the former represented by 

analytical  representation of semi-empirical model 

of the Pariser-Parr-Pople type (corrected for orbital 

overlap). - ; 

.The potential surfaces are provided in terms 

of 3n cartesian coordinates of the molecule used'. 

3n coordinates are chosen as the basis set of 

independent coordinates to treat all possible 

molecular degrees of freedom in an efficient way. 

In the cartesian space the kinetic energy matrix is 

diagonal and the potential energy is defined even 

for cyclic molecules, without the use of redundant 

conditions. This helps when dealing with cyclic 

molecules such as RDX. Also, the complete set of 

analytical second derivatives of the potential with 

respect to cartesian coordinates can be evaluated 

efficiently'for any molecule and any potential. But, 

for example, to evaluate the second derivatives with 

respect to 3n-6 independent .internal coordinates 

for cyclic molecules is almost impossible. The 

availability of the cartesian second derivative 

matrix and the diagonal ""nature of the kinetic energy 

matrix allows for a straight forward normal mode 

'- 16 - . 



analysis for any type of potential. 

The pi integrals . for hydrocarbons and the 

Consistent Force Field (CFF) parameters of the 

potential".""functions are included in the program. An 

approximation can be used to get the set of para- 

meters for other molecules. The potential surface 

and its first and second derivatives with respect to 

the cartesian coordinates are given in an analytical 

form. The molecular energy is minimized efficiently 

by the modified Newton-Raphson method, and by 

evaluation of•the vibrational frequencies by 

diagonalization of the matrix of mass scaled second 

derivative. 

An essential element in the effectiveness of 

the procedure is the availability of analytical 

expressions for the potential energy and the required 

derivatives. The sigma-electron energy'and its 

derivatives can be evaluated directly at each point 

in the coordinate space without the excessive use 

of computer time. However, the pi-electron energy 

was estimated by a more simplified procedure. For 

the steepest descent method employed in the initial 

stages of finding the minimum energy_/configuration, 

the first derivatives of the potential energy are 

:■'■■''''.' ■'■ -  17 --..'.'.'" ' * 



required. The bond orders are calculated at the 

beginning of each step and then change in energy is 

determined as a function of coordinates. For the 

modified Newton-Raphson me t h o^^hje_^_e_co_nd_d„e.rJjw:aJt iv-es - 

of the potential energy with re-spect to the system 

coordinates must be^ obtained. During these iteration 

procedures the cartesian coordinates of the molecule 

arechanged, and the new coordinates are used in 

calculations. However,.the final results show that, 

for RDX, tb/4 coordinates after the relaxation of 

the molecule differ on the average by 0.1 of an 

angstrom, with a maximum of 0.419, from the initial 

coordinates of the molecule. The potential parameters 

and the parameters in. the pi integrals used in this 

program must be provided as input. 

This method has been developed and used 

successfully for conjugated hydrocarbons. It has not 

previously been used with nitrogen compounds. Consi- 

derable progress has been made by Lapricirella and 

3 Warshel  to extend thxs method to heteroatom 

conjugated molecules. The basic problem with 

conjugated molecules containing oxygen and nitrogen 

heteroatoms is that the sigma electrons may be 

strongly polarized and this will aiter corresponding 

•- 18 - 



pi-electron core potentials. Thus the sigma-electron 

core is no longer constant and the changes of the 

sigma charges strongly change the local potentials 

of £ he pi-el e c tro.n.s.. In o r de r - to re t ain t h-e -  ---  

advantages of QCFF/PI approximation the sigma-pi 

separability approach must be formulated. This 

formulation has been studied by Lappricirel^la and 

3 
Warshell , where the pi-electron treatment is 

reformulated. The interaction with the sigma- 

e-lectrons is incorporated while retaining the sigma- 

pi separalfllity assumption. It is necessary to 

undertake some modifications basically in the 

diagonal elements of the Fock matrix F, while the 

off-diagonal elements of this matrix remain unchang- 

ed. Also in the original discussions the elements of 

the core hamiltonian matrix H, are defined as: 

nLi  = W° ,      i= 1,2,.., 6 (8) 

where 6 is the number of pi atoms for RDX molecule, 

and these pi atoms .are pyridine type nitrogens. They 

are referred to as M throughout this study. W 's 

are oneof the empirical constants for alpha integrals 

and they are available in the input of the program 

for every pi atom. Alpha integrals are among the poten- 

tial functions. 

- 19 



The above equation (8) is modified to: 

H.• = W° + QaY zn% 
ii        yM'MM (9) 

In equation (9) Q.. is the net sigma charge on the pi 

atom and is assumed to be constant. 

Q^ = -°-21 CIO) 

T  is the empirical analytical gamma function. 

Constants for this function are defined in input of 

the program, , . , 

The modifications on the diagonal elements"of 

the core Hamiltonian matrix H, are made for pi atoms 

only. 

Another modification is made by changing Z 

to 

■ \      ; z . z + Q£      ; (ID 

wb^ere. the original values of Z are defined in the 

original program. 

Normally, separated-atom configuration of the 
x. 

pyridine type nitrogen is given by the following 

equation: 

2 -* -;* 2P1 Is  2s  2p„ 2p„ (12) 

- 20 - 



But, actually in a molecule, the charge distribution 

'' . .9 
of pyridine type nitrogen is given by Clementi  as 

fo Hows : 

 r 2 ,,-,1.51.2.70  -vl.01-      '   -■-» ,'"'". Is  2s     2p0     2p^ (.13) 

As a result of this configuration the pyridine type 

nitrogen is negatively charged by 0.22 electrons.;In 

other words, the net charge on nitrogen atom is 

-0.22. Each nitrogen in the molecule has gained 0.22 

of an electron. This gain is the sum of two effects: 

a gain of 0.21 of an electron from the sigma Orbital 

and a gain of 0.01 of an electron from the pi-Orbital. 

The nitrogen atom acts as a sigma and pi acceptor 

with the 'n$fc result of a gain of 0.22 of an electron. 

This value may di-ffer slightly for eaclv hitr„ogen atom 

in the molecule, but in this study it is assumed that 

every nitrogen is charged negatively by 0.22 electrons. 

Similarly, every carbon atom in the molecule is 

assumed to be negatively charged by -0.25 electrons, 

and oxygens are assumed to be positively charged by 

0.25 electrons. This kind of procedure ejads up with 

a total charge of -0.57 electrons on the molecule. 

In order to equate the total charge on the molecule 

to zero, using the discussions, in  '  , it is assum- 

ed that the excess charge is obtained equally by 6 

- 21..-  



hydrogen atoms in the molecule. Therefore, each 

hydrogen atom is positively charged by 0.095 electrons. 

The hydrogen's and oxygens are sigma donors, while 

the carbon atoms are s igma accepters. IH the original 

program the net charges on atoms are chosen to be 

zero. For the case of RDX molecule the atomic 

charges of carbon, nitrogen, hydrogen, and oxygen 

atoms are modified to be -0.25, -0.22, +0.095, +0.25 

respectively using the discussions by Clementi. 

Finally, a refined set of data for constants used 

to evaluate the empirical analytical integrals 

including the data for atoms such as nitrogen and 

A ' '    '    3 oxygen are given by Lappricirella and Warshel . These 

data are used wherever applicable. For the cases 

where the nitrogen bond characteristics are still 

unknown, the carbon bond strengths are used AS—atr 

approximation. However it isa believed that 'the error 

for these approximations may only be a factor of 2 

or 3 in the absolute values and the relative changes 

with bond stretching may be' less. 

^ 

The hydrocarbon parameters are contained 

within the program. The corresponding atomic codes 

3 3 
are C for Sp . (CIU) carbon, B for Sp  methyl carbon, 

' > '■       '•■■"■' 2 
H, for hydrogen, (D for Deutrium), and A for Sp 

> 
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carbon atom. The codes 0, N and M are reserved for 

ketone oxygen, for.pyrole nitrogen and for pyridine 

nitrogen (all these are pi atoms). All other codes 

a (Q» R» T» X»X, Z, Wj can be usejd for any other atom. 

In case of RDX molecule, the carbon atoms 

3 form CH„ groups. l\r other words they are Sp  carbons 

and Che corresponding atomic code is C. The oxygens 

are given the^ code Q arbitrarily, since they are not 

ketone oxygen. Finally pyridine type nitrogens are 

coded by the letter M. The ring nitrogens are 

labelled M, „ and the nitrogens in the NO2 groups 

are M, , . Oxygen atoms Q-._? are associated with M, , 

'QO_A with Mr etc. •'■'<• 

One of the important steps in running the 

program is using a chemical formula to express the 

connectivity of the molecule. As explained above 

the atoms are represented by the letters (HONCABDM^ 

QRTXYZW). The connectivity is defined by the order 
V 

of the atomic symbols and a few special symbols. The 

atoms in the molecule are classified in two groups 

as "side atoms" and "chain atoms". Side atoms are 

connected to only one atom In the molecule,, while 

the chain atoms can have connections with! more than 

one atom. For the case of RDX molecule hydrogens are 
^-i     ■ 

■ ''.■--  ..  • 
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^ 

connected to carbons, and the oxygens are connected 

to nitrogens only, hence H and,Q are side at. 

(Figure 1) . 

:oms 

The symbolic- notation can be used most 

efficiently by following steps: ^ 

"•is 

(a) The molecule is drawn in two dimensions 

(Figure 1) using the appropriate symbols for atoms 

and connecting the bonded atoms with straight lines. 

M5 - M2 

H3 - C2-H4 

- M4 

- H6 

Figure  1 

RDX Molecule in Two Dimensions 

Q2 

Ql 

(b) If there are clo 

ie ring is chosen and 

an .unrecognized symbol such as (*) is written befor 

sed rings of atoms as in 

the case of RDX "any bond in the 
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the symbol of each of the two atoms forming the bond. 

(Figure 1). The atoms chosen arbitrarily in this case 

are Ml and C3. Now the line indicating the bond can 

be removed because the connection between.. the bonded 

atoms is implied by the pair of unrecognized symbols 

(*). If the molecule contains more" than one ring this 

procedure is repeated for all\rings and finally a 

simply connected network of __a 11 atoms is obtained. 

(c) A chain atom at the end of one chain is 

selected to be given the index number 1. (In this 

case C3) A left paranthesis is written and this left 

paranthesis is followed by the atomic symbol of the 

chosen" chain atom. If the chain atom has an 

unrecognized symbol next to it, this symbol must be 

written down before the chain atom symbol.- Next, the 

symbols of the side atoms connected to the proceeding 

chain atom are written down using the multiplicity 

symbols 2 or 3 to indicate the side atoms of the 

same type. 2 hydrogens are connected to the chain 

atom C3. Continuing this way a branch point is" 

reached. The chain atom M3 is connected to more than 

2 chain atoms-. It has a bond with C3, M6 and C2 chain 

atoms. Such a point is called a branch point. The 

branch containing M6 is a new chain. After writing 
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down the symbol of the chain atom M3 a left parant- 

hesis is opened to point the beginning of a new chain 

and this paranthesis is followed by the first chain 

atom ofthe new chain which is M6. Following this, 

all other atoms of the new chain (Q5 and Q6) are 

written and the end of this subchain is marked with 

a right paranthesis. The next step is to return to 

^ previous chain (C2). At the end of the last chain a 

right paranth-esis is written to enclose the whole 

formula. 

In the light of the above discussion the 

symbolic formula for an RDX molecule can be written 

as follows:    . * 

(*CH2M(MQ2)CH2M(MQ2)CH2*M(MQ2)) 

■ **\ 

An unrecognized symbol such as (*) &an be 

used only for one bond. 
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CHAPTER IV 

. . '  RESULTS AND CONCLUSIONS 

As it was mentioned earlier, the crystal structure of 

RDX was determined by Choi and Prince-. The general x, y, z 

cartesian coordinates are provided, in.. Table3.The heat of for- 

mation of RDX was calculated using the program developed by 

Warshel and Levitt and it was found out to Jae 390.53 kcal/ 

graole. The program gives the x, y, z cartesian coordinates of 

all the atoms in their finalrreleased.states.These figures 

corresponding to general cartesian coordinates of Table 3 are 

also listed in Table 3« The program also provides diagonal core, 

bond, non-bond, (repulsive, theta, phi and sublimation energy 

contributions to the total energy of the molecule; first deri- 

vatives with respect to x, y, z cdordinates, bond lengths of 

the atoms involved, theta angles between three adjacent atoms, 

phi angles between four atoms, eigenvalues and eigenvectors 

for the initial and released states of the molecule; vibra- 

tional freqencies, vibrational enthalpy at room temperature, 

and zero point energy for the released state of the molecule. 

A single run of the program uses around 157 system seconds of 
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\ 1 CDC computer system of Lehigh University. 

As an initial step-it was assumed that the initial 

breakup of this molecule would require the removal of an NO 

group depending on Equation (2). There were two possibilities 

for the separation of N0_ group. One of the possibilities v/as 
■ ' ■■    -  •     .       V 

the movement of nitrogen atom between the two oxygen atoms and 

the second possibility involved the movement of N0~ group as 

a whole. 

The first possibility involved the movement of nitrogen 

atom away from 0_ group as a result of which theHRO group 

would be turned inside out, Sufficient movement of nitrogen 

atom would end up with the separation of this group. At this 

stage one of the three NO_groups had to be chosen to be removed, 

Two of the N02 groups are very similar, but the third one is 

quite different in the sense that N-N bond is shorter and the 

NO2 group is at a smaller angle to the plane defined by three 

carbon atoms. Similar calculations which were proceeded ear- 

lier involved the removal of this group. During this study 

same group was chosen in order to compare the results easily. 

Using atom references from Figure 1, atom M6 was moved towards 

atom M3 and the heat of formation was calculated. First of all, 

the general x, y, z cartesian coordinates given in Table 3 are 

converted in such a way that"the nitrogen atom M3 is located 

at the origin and .y, z coordinates of M6 were zero. A movement 

of 0.15 A of M6 towards M3 increased the heat of formation to 
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413*5 kcal/gmole. Then atom M6 was moved away from M3 while the 

positions of all other atoms in the molecule were fixed. The 

calculated values of the heat of formation are shown in Table 1 

ana-'-Fi-gure 2.-   --  '"   " " "" ""'" J 

.Initially, the crystal sturucture of RDX exerted a for- 

ce on the molecule, and therefore a decrease in the heat of 

formation was observed. Later on, when M6 passed between the 

oxygen atoms Q5 and"Q6 at about 2.1 A displacement in x direc- 

tion, the heat of formation was found out to be 433»03 kcal/ 

gmole- higher compared to 390.53 kcal/gmole which is the heat 

of £oj?mation of RDX molecule in it's original state. The energy 

continued to increase to a value of 445«21 kcal/gmole until 

point A of Figure 2 was reached at 2.3 .1. The difference bet- 

ween the energy at A and the initial state of RDX was 58«99 

kcal/gmole. The energy then started to decrease with further 

outward movement of M6. A value of 390.11 kcal/gmole was ob- 

tained' at a displacement of 2.5 A. After this point, the heat 

of formation increased again since other atomic orbitals star- 

ted to effect the calculations. 

At 2.8 A displacement of M6 the oxygen atoms Q5 and 

Q6 were also started to move outward from the rest of the mo- 

lecule. If this was not the case, the energy might have exceed- 

ed the activation energy. While doing this, the relative dis- 

placement between the oxygen atoms were maintained. As the 

oxygen atoms started te move the«gnergy increased first and 
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then started to decrease. After point C of Figure 2, another 

rapid increase of energy was prevented by moving the hydrogejf 

atom H3. According to Equation (3) this hydrogen atom had to 

replace nitrpge_n_.atom_,M$.„Ther^.£ore^^-af^er~3«0~A ^ispl-acement^;^-- 

of M6, H3 was moved towards the place to occupy the position of 
* 

M6. An increase of energy was observed until point D was reac- 

hed at 3.20 1 displacement of M6 and after this point Qi* was 

also moved towards the position it would occupy if it replaced 

H3 as suggested by Equation (3)• 

■ - -" ■'..-.. A 

The calculations were stopped at 3*30 A displacement, 
,:■    -        ' -     & 

of M6 in the x direction. It may be interesting to go on with 

the similar type of calculations" after this point to see the 

influence of other molecules of the crystal lattice, but there 

was not enough time to do this during this study. 

The second possibility involved the movement of NO 

group as a whole. In this case the maximum amount of energy 

observed .was 453.81 kcal/gmole at 2.70 A* displacement of M6 

atom in x direction.This means that the activation energy of 

V 6k»k7  kcal/gmole was observed at 1.2 A displacement of NO 

group from its initial position. The results obtained by moving 

the N02 group as a whole are given in Table 3 and Figure 3• 

The energy started to decrease after this point. The calcula- 

tions were stopped at 3^0 A displacement of M6 from M3. 

Figure if shows the comparison between the values ob-. 

tained by moving M6 from M3 and the values obtained by moving 
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N0_ from the rest of the molecule. 

It can be seen that the amount of energy required to 

separate N0_ group as a whole (64.^7 kcal/gmole) is more than 

the energy required- to move nitrogen away between the two oxy- 

gen atoms (58»99 kcal/gmole). The conclusion as§ result of these 

two figures is that the separation of NO can be achieved by 

moving the nitrogen between the tv/o oxygen atoms, and*not by 

moving the NO- group as a whole. 

The initial steps of the minimization procedure of 

WarsheJ3Land Levitt program involves the Steepest Descent Met- 

hod. After some steps of iteration by this method, the power- 

ful Modified Newton-faphson Method is applied. During this study 

it was not possible to obtain the convergence of Newton-Raph- 

son Method. This problem.was tackled by increasing the number 

of iterations of the Steepest Descent Method from the default 

value of 20 to 70. After 70 steps of iteration it was observed 

that the energy found remained unchanged for every calculation. 

It must be noted that during this study only the remo- 

val, of NOp group was observed. It is only the initial step in 

the reaction mechanism, of RDX. The scope of this work can be 

extended to study the breaking down of the radicle according 

to Equation (3)» Also other reaction mechanisms can be studied. 

Also, as an another step, the influence of other mole- 

cules in the crystal structure of RDX can be studied. 
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TABLE 2 

Heat of Formation^ Function of RDX Configurations 
wnen N02 Group Moves" as a Whole 

a. Atom v. v ..: r.   CnnT>di rifltps   —   A                   - Heatr    of- 
Formation 

1                         '       _~" ~:_ "x v.. »L^__T_=J=^_=--=«.'--'=--=- '-""    --      ' '    ' 
^         1 

M6 ,     'Q5 Q6 Kcal/graole 

1 1.35,0.00, 0.00 2.14,1.15,;0.01 2.10,-1.17,0.01 
413.51 2 1.32,0,23 ,-0.12 1.95 1.48 ,  0.02 2.17,-0.89-,JO^O5 

1 1.40,0.00 ,  0.00 2.14 ,1.15 ,  0.01 2.10,-1.17,0.01 404.01 2 1.33,0.-23 ,-0.12 1.95 ,1.48 ,   0.01 2.17,-0.89,0.05 
1 Ii50j0.00 

U3J,0.22 
,  0.00 2.14 ,1.15 ,   0.01 2.10,-1.17,0.01 390.53 2 ,-0.11 1.96 ,1.47 , 0.03 2.18,-0.90,0.04 

1 1.60,0.00 ,  0.00 2.24 1.15 0.01 2.20,-1.17,0.01 398.22 2 1.34,0.22 -0.11 1.98 1.47 0.04 2.19,-0.90,0.03 
« 

1 
2 

1.70,0.00 
1.37,0.22 

,  0.00 
,-0.12 

2.34 
2.00 

,1.15 
1.47 

,. o.pi 
-0.01 

2.30,-1.17,0.01 
2.21,-0.90,0.04 

407.00 
1 1.80,0.00; '■ 0.00 2.44 1.15 0.01 2.40,-1.17,0.01 413.12 2 1.39,0.22 ,-0.11 2.03 1.46 -0.02 2.22,-0.91,0.04 
1 1.90,0,00 ,  0.00 2.54 1.15 ,   0.01 2.50,-1.17,0.01 424. ^ 2 1.40,0.22 ,-0.12 2.05 I.46 ,-0.02 2.25,-0.91,0.04 
1 2.00,0.00 0.00 2.64 .1.15 0.-O1 

-oC.01 
2.60,-1.17,0.01 429.16 2 1.42,0.22 ,-0.12 2.06 1.46 2.26,-0.91,0.03 

1 2.10,0.00 0.00 '2.74 1.15 0.01 2.70,-1.17,0.01 433.37 2 1.45,0.22 ,-0.11 .2.08 1.47 -0.01 2.29,-0.90,0.03 
1 2.20,0.00 0.00 2.84 1.15 0.01 ^.80,^1.17,0.01 

436.83 2 1.46/0.21 -0.12 2.10 1.46, -0.014 2.30,-0.91,0.02 
1 2.30,0.00 0.00 2.94 "1.15 0.01 2.90,-1.17,0.01 

441.24 2 1.48,0.21 -0.12 2.12 1.45 -0.01 2.32,-0.92,0.02 
1 2.40,0.00 0.00 3.04 1.15 0.01 3.00,-1.17,0.01 

445.11 2 1.50,0.20 -0.11 '2.15, 1.45, -0.01 2.34,-0.92,0.02 
1 2.30,0.00 0.00 3.14 1.15 0.01 3.10,-1.17,0.01 449.12 2 r. 52,0.20 -0.12 2.16 1.45 -0.02 2.36,-0.92,0.01 
1 2.60,0.00, 0.00 3.24 1.15, 0.01 3.20,-1.17,0.01 

451.87 
■  ■    , 2 1.53,0*20, -0.12 2.19, 1.45, -0.02 2.38,-0.93,0.01 

1 2.70,0.00, 0.00 3.34, 1.15, 0.01 3.30,-1.17,0.01 453.81 2 1.56,0.20, -0.12 2.21, 1.44, -0.03 2.40,-0.93,0.01 
1 2.90,0.00, 0.00 3.54, 1.15, 0.01 3:50, -1.17,0. or 451.46 2 1.60,0.20, -0.11 2.26, 1.43, -0.03 2.43,-0.94,0.00 
1 3.00,0.00, 0.00 ̂ .64, 1.15, 0.01 3.60,-1.17,0.01 444.56 2 1.61,0.19, -0.11 2.28, 1.43-, -0.04 2.45,-0.95,0.00 
1 3.10,0.00, 0.00 3.74, 1.15, o.oi 3.70,-1.17,0.01 439.61 2 1.63,0.19, -0.11 2.30, 1.43, -0.04 2.47,-0.95,0.00 
i 3.20,0.00, 0.00 3.84, 1.15, o-.oi 3.80,-1.17,0.01 432.87 2 1.65,0.19, -0.11 2.32, 1.42, -0.04 2.48,-0.95,0.00 
1 3.30,0.00, 0.00 3.94, 1.15, 0.01 3.90,-1.17,0.01 

427.75 2 1.67,0.19, -0.10 2.32, 1.42, -0.04 2.50,-0.95,0.00 
1 3.40,0.00, 0.00 4.04, 1.15, 0.01 4.00,-1.17,6.01 

421.83 
- 211.69,0.19,-0.10 2.37, 1.42, r0.04 2.52,-0.96,0.00 
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\ TABLE 3 

General x, y, z Cartesian Coordinates of RDX 

Atom 

Atom x, y, z Coordinates - S. 

Initial State Released State 
x. y z ■y. z 

03 1.9602 4.4132 2.3121 1.9896 4.4247 2.2693 
H5 2.7049 3.6643 2.0529 2.6485 3.5919 1.9333 
H6 1.8982 5.1296 1.5.32 1.9847 5.1394 1.4279 
M3 0.7066 3.7291 2.4941 0.6004 3.8587 2.5022 
M6 -0.4396 4.4849 2.2253 -0.4765 4.3804, 2.0259 
05 -1.4777 4.0903 2.6815 -1.7566 3.9555 2.4328 
Q6 -0.3111 5.4294 1.4886 -0.4521 5.4576 1.1270 
C2 0.6631 2.8241 3.6357 0.6021 2.8883 3.6598 
H3 -0.3441 2.4502 3.7910 -6.3671 2.3808 3.7862 
Hif 1.3380 1.9999 3.4183 1.3218 2.0669 3.4313 
M2 .1.1561 3.4676 4.8587 1.0590 3.5886 4.9170 
M5 .0.2043 4.0798 5.6693 0.2497 3.9439 5.8532 
03 -0.9135 3:6366 5.6351 -1.0992 3.5362 5.8706 
04 0.5985 4.9433 6.4147 0.6316 4.8199 6.8803 
Cl 2.4242 4.1412 4.7119 2.4584 4.1541 4.7438 
HI • 3.1650 3.4074 4.5256 3.1642 3.2989 4.6395 
H2 2.6535 4.7083 5°. 6158 2.7817 4.6790 5.6597 
Ml "2.3214 5.0463 3.5661 2.6262 5.0484 3.5135 
MZf 2.9791 6.2257 3.5832 3.0891 6.2285 3.5558 
01 2.9923 6.8657 2.5373 3.1297 7.0698. 2.4238 
02* 3.4919 6.5821 4.6456 3.5865 6.8074 4.7430 

J 

J 

^ 

V. 
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