
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1981

The implementation of a multi-user facility for
microprocessor software development.
Charles Hagel Kercsmar

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Kercsmar, Charles Hagel, "The implementation of a multi-user facility for microprocessor software development." (1981). Theses and
Dissertations. Paper 2381.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228651633?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2381&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2381&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2381&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=preserve.lehigh.edu%2Fetd%2F2381&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2381?utm_source=preserve.lehigh.edu%2Fetd%2F2381&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

THE IHPLEHENTATION OF A HOLTI-OSER FACILITY

FOB HICHOPBOCESSOR SOFTWARE DEVELOPHEHT

by

Charles Hagel Kercsaar

A Thesis

Presented to the Graduate Coanittee

of Lehigh Oniversity

in Candidacy for the Degree of

Master of Science

in

Computing Science

Lehigh University

1981

ProQuest Number: EP76657

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest

ProQuest EP76657

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

This thesis is accepted and approved in partial
fulfillment of the requirements for the degree of Master of
Science.

u^ s~
date'

Head of Division

ii

ACKNOWLEDGEMENTS

The author wishes to acknowledge the beneficial advice

provided by Mr. Gary D. Crouse, Bethlehem Steel

Corporation Research Department, daring numerous

discussions concerning microprocessor implementation

methodology.

A further acknowledgement is made to the Bethlehem Steel

Corporation Research Department for permitting use of

microprocessor development facilities where a substantial

portion of the work described in this thesis was

performed-

iii

TABLE OF CONTBNTS

Abstract 1

Introduction 3

Hardware Description 6

DECS1STEH-20 Functional and Hardware Description 6

Intel iSBC 544 Intelligent Communications

Controller Board Functional and Hardware

Description 8

Terminal Equipment Functional and Hardware

Description 9

Hodem Device Functional and Hardware Description 10

Software Description 12

HAC80 Cross-assembler Functional Description ... 13

HAC80 Cross-assembler General Characteristics 14

8AC80 Input-Output File Descriptions 16

HAC80 Assembler Error Processing Description - . 21

flicffoprocessor Development Executive Functional

Description 22

xv

System Console Commands Description 24

Common Service Routines Description 25

A Typical Scenerio of Hicroprocessor Program

Development27

Source Code Entry and Assembly 27

Logging On the DECSTSTEa-20 From the iSBC 544

Computer 29

Loading the Object Program into the iSBC 544

Computer 30

Executing and Debuging the Downloaded Program ... 31

Reestablishaent of Interactive Mode 32

References 33

ABSTRACT

The economic advantages associated with large scale

integration of semi-ccndactor electronic devices have

introduced opportunities for wide-spread application of

microprocessor computer systems- It is essential that

Computer Science students be familiar with microprocessor

organization and capabilities, and be able to design and

implement software systems for microprocessor

application. This thesis describes efforts made by the

author to provide microprocessor tools which might

enhance the learning experience of a student by allowing

pragmatic, haads-on exercises in a user-friendly

environment. Two major achievements were accomplished

during this work. The first area of effort was to

install a cross-assembler for a microprocessor source

language. This cross-assembler was installed on the

Lehigh DECSYSTEH-20 computer. Since most students would

probably have prior exposure to the DEC-20 before

undertaking a microprocessor course, the learning curve

for using the cross-assembler is expected to be

minimized. The second major achievement was to design

and implement a communications interface between a

microprocessor computer and the DECSYSTEH-20 for the

purpose of providing an interactive capability from a

terminal attached to the microprocessor. The interface is

designed to work in two modes. In a purely interactive

mode, all key entries are passed through the

microprocessor to the DEC-20 and all communication from

the DEC-20 is output to the terminal. When the

microprocessor is not in the interactive mode but the

communications link is established, the user may request

microprocessor object files to be transmitted from the

DEC-20 to the microprocessor at which point the

microprocessor software loads the user programs into

random access storage (RAM). The user programs may then

be requested to run via terminal input. A number of

service routines are also available within the

microprocessor software to facilitate ease of use.

INTRODUCTION

This thesis describes an integrated complement of

coaputer hardware and software which was configured to

provide a aicroprocessor development system for stadent

use. A major objective was to use existing facilities

and software where possible and to supplement and modify

these facilities as necessary for the enhancement of a

user-friendly environment. The work proceeded in two

major phases. During the first phase, it was necessary

to select a microprocessor which would be appropriate for

such a project. The Intel 8080-8085 microprocessor was

chosen as a result of two major considerations. First,

the Intel 8080 has received wide acceptance within the

user community. On this basis, knowledge of the 8080

would be more universally applicable than any other

potential candidate. Secondly, in order to provide a

development facility, a cross-assembler for the selected

microprocessor source language was required. Lehigh had

previously acquired a cross-assembler for the Intel

8080-8085 Assembly Language, and had the assembler

installed on the Control Data Corporation (CDC) 6400

coaputer system. Selection of the 8080 then precluded

the need for purchasing any additional cross-assembler

software.

Once the Intel 8080 had been identified as the target

nicroprocessor for the development system, the first

phase of the project continued with the installation of

the cross-assembler on the DECSYSTEM-20 computer and the

establishment of procedures for its use.

The second phase of the project was initiated with the

identification of an Intel 8080-8085 based single board

computer which would provide exercising hardware for user

programs. Requisites for the computer included adeguate

on-board programmable read only memory (PHOfl) , adeguate

random access memory (RAM) and a minimum of two serial

input-output ports. The Intel iSBC 544 Intelligent

Commanicatians Controller Board was chosen as the most

cost-effective alternative which met the above

requirements. Executive software installed on the Intel

544 computer includes a repertoire of user utilities and

service routines as well as a communications interface to

the DECSYSTEH-20 computer system. A description of the

microprocessor development system hardware and software

characteristics and a discussion of system use is

presented in the following sections-

HARDWARE DESCRIPTION

The hardware configuration required for the

microprocessor development system consists of four key

elements, namely the DECSYSTEM-20 computer system

including attached peripherals, the Intel iSBC 544

Communications Controller Single Board Computer with

power supplies, a terminal device capable of interfacing

to the Intel 544 board, and a modem which is compatible

with those attached to the DECSYSTEa-20. A description

of each element and the functional role it performs

within the context of the microprocessor development

system follows.

DECSYSTEa-20 FPNCTIONAL AND HARDWARE DESCRIPTION

The DECSYSTEM_20 serves as the host hardware for

microprocessor source code preparation and assembly.

The multi-user interactive aspects of the DECSYSTEH-20

* See references. Page 33

^

(1)* makes it particularly suitable for a large

population of users, thus avoiding a common problem of

system access frequently encountered with single user

microprocessor development systems.

The complement of hardware which comprises the

DECS7STEM-20 includes:

o DEC 2040 Central processor unit, 256K 36 bit words

o Line printer, 230 lines per minute

o Tape drive, 9-track, 800{NHZI) 5 1600(PE) densitiy

o Disk drives (2), 1003 characters each

o Terminal ports (4 8), 1200 and 110/300 baud

Microprocessor source code preparation is performed

using the DECSYSTEH-20 text editor- The interactive

features available on the DECSTSTEM-20 afford the

conveniences of editing ease and file storage and

management to the user- The Intel 8080-8085

cross-assembler is also resident on the DEC-20. The

preparation of an error-free microprocessor program

would typically involve several iterations of source

code editing and assembly to produce an object file

which is capable of being loaded into and exercised on

the microprocessor hardware.

INTEL ISBC 544 INTELLIGENT COHiWNICATIONS CONTBOLLEB

BOARD FONCTIONAL AND HARDgARE DESCRIPTION

The iSBC 544 Intelligent Communications Controller (2)*

is a member of the Intel line of single board

computers. It is capable of operating as an

intelligent slave within a distributed processing

network but in this project was configured and used as

a stand-alone master communicating with the

DECSYSTEM-20 via a 300 baud modem over a dial-up phone

line. The processor on the iSBC 544 board is an 8085A

CPU. Also included on the 544 board is 16K bytes of

dynamic random access memory, 8K bytes of programmable

read-only memory, 4 serial synchronous/asynchronous

input/output ports, and 1 parallel input/output port.

Baud rates, data formats, and interrupt priorities are

individually selectable for each port on the board.

Other features available on the iSBC 544 include

programmable interval timers and a programmable

interrupt controller.

* See references. Page 33

The iSBC 544 is designed to interface with the standard

Intel backplane, comnonly referred to as the multibus.

The 544 can operate without the backplane, however,

provided power requirements of *5v, *12v, and -12v are

available.

TERMINAL EQUIPMENT FUNCTIONAL AND HARDWARE DESCRIPTION

The terminal equipment which attaches to the iSBC 544

computer must conform in spirit to the EIA RS232

standard. Many terminals are available which would be

suitable for use, including both CRT and printing

varieties. The terminal equipment used during the

development of this project was a Texas Instruments

Silent 700 series device. The interface to the iSBC 544

was operated at 300 baud, 1 stop bit, parity disabled,

8 bit character transfer. If a particular terminal

device could not supcort these parameters, however, the

interface characteristics could easily be modified in

software to handle any conflicts. The transfer rate of

300 baud was retained to prevent the thermal printer of

the terminal from being overdriven- If a CRT or faster

printing terminal had been implemented as the system

console, the baud rate could have been increased.

The terminal provides input/output capability for user

data entry and display to both the iSBC 544 and,

provided communications are established, to the DEC-20.

The description of available user entered commands are

presented in subsequent sections of this document.

HOPES DEVICE FtTNCTIONAI AND HARDffABE DESCRIPTION

The modem equipment required for the microprocessor

development system must be compatible with those

attached to the DECS7STEH-20. During the course of

this project, all communications to the DEC-20 was

performed over dial-up lines at 300 baud- This

communications medium was chosen in order to preclude

any delay which might have resulted from awaiting

permission to attach the iSBC 544 to the DEC-20 via a

dedicated line over a short haul modem. This later

configuration would be more desirable should the

microprocessor development system be put to heavy use.

10

The system would be fully compatible with this

enhancement and would allow large data transfer to

proceed at 1200 baud-

The modem used for the development work was

manufactured by Digicom Data Products. It is a 300

baud acoustically coupled data set, with an BIA BS232

interface for connection to the iSBC 514 computer- The

modem operates at 115 7 AC power. An indicator light

on the modem signals when the carrier from the DEC-20

is detected as valid. A second indicator light can be

observed to detect data transmission in either

direction on the communications line.

11

SOFTWARE DESCRIPTION

Two major software components are included as components

of the microprocessor development system. The first of

these is the Intel 8080-8085 Assembly Language

cross-assembler (3)* . The cross-assembler is designed

to be hosted on any general-parpose digital computer with

sufficient memory and an integer size of 30 bits or raore-

The cross-assembler was developed by Intel and dubbed

MAC80. The source language of the assembler is ANSI

Standard FORTRAN (1966), and therefore is guite

transportable to most machines with a minimum number of

reguired changes, usually only arising from input and

output peculiarities. The assembler is designed to

transform Intel Assembly Language (4)* source programs

into ASCII code hexidecimal machine language object

modules.

The second software component is the Microprocessor

Development Executive. This program provides the

supervisory control logic for the iSBC 544 computer.

* See references. Page 33 .

12

This executive was cloned from another executive, IMUX

(5)* , which was designed by Gary D. Crouse (6)* of the

Bethlehem Steel Corporation Research Department-

Significant modifications were made to the interrupt

structure of RflOX to incorporate interrupt driven input

and output from the system console and the DEC-20

interface. Also included in the executive is the DEC-20

communications logic and numerous user service routines

which can be invoked both by user programs and from the

system console- A discussion of these two software

components follows.

HAC80 CROSS-ASSEMBLER FUHCTIONAL DESCRIPTION

The HAC80 flacro Assembler (3) * translates a symbolic

representation of 8080-8085 microcomputer instructions

and data into a form which is an ASCII code

representation of the machine instructions executable

by the 8080 or 8085 microcomputer. The input to the

HAC80 cross-assembler is in the form of macro

* See references. Page 33 -

13

definitions, instruction mneumonics, and symbolic

definitions and references. The output is in object

code form, including starting memory location, byte

count, hexidecimal machine code, and checksum.

HAC3Q Cross-assembler General Characteristics

The MAC80 cross-assembler (3)* is a stand-alone

program designed to be hosted on most general purpose

digital computer systems. It can be run in a batch

mode or interactively. A source file containing

Intel 8080-8085 Assembly language (4)* statements

must be prepared prior to invoking the

cross-assembler. During execution, the

cross-assembler produces a listing file containing

the source statements and the resulting generated

hexidecimal machine code. Error messages are

annotated on the listing to identify those source

statements which have been flagged by the

cross-assembler- A symbolic reference list may be

* See references. Page 33 .

14

optionally appended to the listing file. Also

generated during execution is an object code file.

The object code file is in a form suitable for

loading into the 8080-8085 based microcompouter.

The MAC80 cross-assembler is written in ANSI Standard

FORTRAN IV, so that it night easily be transported

from one host computer to another. In some

instances, speed of execution was sacrificed to meet

the above feature. Close examination of the source

code may identify potential areas for speed

improvement if reguired. A symbol table within MAC80

is dimensioned to 1000 integer words, with each

symbol requiring two words. This table can expanded,

memory permitting, by a minor programming change

within MAC80, should the need arise. Source listings

of BAC80 in both machine readable and printed form

are available from the Computing and Information

Science Department.

15

HAC80 Input-Output File Descriptions

Fiye files are referenced during the execution of the

HAC80 cross-assembler- These files include the

interactive terninal interface, the source assembler

code file, the object code output file, the listing

output file, and the HAC80 environment control file-

A description of the content and format of each of

the files is presented in the following sections.

MAC80 Interactive Terminal File Description

The MAC80 Interactive Terminal file presents

real-time status of the assembly process to the

user. When the execution of HAC80 is envoked by

user entry of the run command, the user is assured

of execution commencement by receipt of the JIAC80

version banner and "BEGIN" message. At the

completion of HAC80 execution, a summary error

count is presented to the user together with an

"BUT" message. The Interactive Terminal file is

defined as logical unit 5 within the HAC80

cross-assembler program.

16

BAC80 Source Assembly Language Code Pile

Description

The (UC80 source file contains the 8080-8085

Assembly Language source statements which are to be

compiled by the cross-assembler. The source file

is defined as logical unit 20 vithin the HAC80

program, and is referenced as file FOR20.DAT within

the DECSYSTEPI-20 environment- The source file must

be created using the DECSYSTES-20 editor prior to

envoking the SAC80 cross-assembler- Each line of

the file contains a single source code statement,

with each statement being either an assemblable

statement or a comment statement. The fields of an

assemblable statement are free format with a fixed

order of occurrance.

The ordering of fields, which must be adhered to,

is as follows:

1- Label (optional)
2. Operation code
3. Operand(s)
4. Comments (optional)

The label field is terminated with a colon.

Comments commence with a semi-colon. All fields

17

are delimited with either one or more blanks, a

colon, or a semi-colon. A comment statement is one

which a semi-colon appears as the first non-blank

character.

HACBQ Listing Pile Description

The HAC80 Listing file is created during HAC80

execution and is formatted with standard control

characters to be output to a printer device. The

listing file is written to logical device 21 which

corresponds to file F0B21.DAT in the DECSISTEH-20

environment.

The listing file format is fixed and contains the

following information:

o Assembler error code
o Program location counter value
o Nesting level for IF-EHDIF and macros
o Generated object code
o Macro expansion flag
o Source assembly statement

18

MAC80 Object File Description

The MAC80 Object file is created during execation

and is written to logical device 22, or FOR22.DAT

within the DEC-20 system. The format of the object

file is user selectable via control switch input to

HAC80. However, for the microprocessor development

system purposes, the hexidecimal object code format

is required- In this format, the records are an

ASCII representation of program memory with

additional fields for start of record indicator,

starting address, byte count, and checksum.

The format layout is as follows:

COLUMN {S) DESCRIPTION

1 Colon start of record indicator
2-3 Hexidecimal record length
ft - 7 Hexidecimal memory address
8-9 Record type (not implemented)

10 - N-1 {*) Data
N - N«-1{*) Checksum

* N = 10 ♦ (2 x record length)

The record length is the count of actual data bytes

in the record. The checksum is the negative of the

sum of all 8-bit bytes in the record, evaluated

modulo 256. The sum of all bytes in the record,

including the checksum should be zero.

19

HAC80 Environment Control File Description

The MAC80 Environment Control file is cead from

logical device 23 during the initialization phase

of cross-assembler execution. The file is

referenced as FOR23.DAT in the DEC-20 system.

Control commands are used to specify

charactersitics of the source input file and to

select available options on the type and extent of

assembler output files- In addition to the control

commands read from this file, control commands may

be imbedded in the source file for dynamic

respecification.

Selectable options include the following:

o Object file format
o Assembler internals dump selection
o Listing page ejection
o Input device selection
o Input source format definition
o Haero definition listing
o Output device selection
o Output suppression

For a more detailed description of function and use

for the control commands available with HAC80

* See references. Page 33

20

please reference the External Reference

Specification (3)* prepared by Intel, which has

been filed with the Computing and Information

Science Department.

BAC80 Assembler Error Processing Description

Errors detected in the source code during MAC80

execution are flagged with a single letter error

indication on the output listing. If multiple errors

exist on the same line of source code, only the first

error is indicated. The assembler performs

fundamental recovery when errors are encountered, by

replacing defective expressions with one or more

bytes of zeros. A complete list of error codes can

be found in the External Reference Specification (3)*

prepared by Intel, which has been filed with the

Computing and Information Science Departnent-

* See references. Page 3 3

21

3ICBOPROCE5S0R DEVELOPMENT EXECUTIVE FONCTIOW&L

DESCRIPTION

The Microprocessor Development Executive was developed

from another Intel 8030 based executive, RMOX, which

was designed by Gary D. Crouse of the Bethlehem Steel

Corporation Beasearch Department- RHTJX (5)* is a real

time multitasking executive intended for control

applications. Many of the real time aspects of the

executive were stripped out since they were not

required for the microprocessor development system-

The executive was transformed from a time driven

system, where the primary system stimulus was a 50

millisecond clock interrupt, to an event driven system

responding to interrupts from the system console device

and the DECSYSTEH-2 0 input-output port. The executive

acts as a monitor of user activities, and provides

console communication between the user and the DEC-20,

the executive debug facilities, and user developed

programs. The executive includes logic to support a

communications interface with the DECSTSrEH-20

computer. This interface permits two modes of

commonication. In the interactive mode, all key

22

entries from the users console are passed through the

microprocessor and sent directly to the DEC-20. Since

the DEC-20 supports half-duplex communication, the

entered keys are echoed back to the microprocessor.

Opon receipt of input from the DEC-20, the executive

examines semaphores and, after verifying interactive

mode, displays the received data on the system console

device- The second mode of communications with the

DECSYSTEH-20 is the download mode- This mode permits

the user to request that microprocessor programs

resident in the DEC-20 in object code format be loaded

into the user area of the microprocessor memory for

subsequent execution. Logic included in the executive

issues a request to the DEC-20 for the user specified

file, and loads the code into the microprocessor memory

as it is received from the DEC-20.

A repertoire of system console commands is included in

the executive program. These commands enhance the debug

environment by permitting the user to modify and

selectively execute portions of a downloaded program-

Also included in the executive is a group of common

service routine for performing utility functions- The

common service routines can be referenced from user

23

programs. Descriptions of the system console commands

and the common service routines available within the

Microprocessor Development Executive are presented in

the following sections. Source listings of the

executive in both machine readable and printed form are

available from the Computing and Information Science

Department.

System Console Commands Description

System console commands may be entered from the

system console whenever no solicited input requests

(input requested from a user program) are

outstanding. A single prompt character, ">",

indicates that no solicited input is active. Input

completion is signaled by a carriage return- Entered

commands are directed to specific routines within the

executive where parameters are verified for

correctness. Erroneous input results in the display

of a question mark, at the console and the function is

terminated. Command parameters are delimited by

commas and blanks.

24

The command repertoire is presented in the following

list. A document defining command syntax is

available from the Computing and Information Science

Department.

o abort the currently executing user task
o Begin execution from specified address
o Begin execution with breakpoint installed
D Display memory contents
o Fill memory with hexidecimal data
o Hove memory contents
o Single step execution
o Inspect and change memory location(s)
o Examine and change registers
o Download a program from the DEC-20

Common Service Routines Description

The Hicroprocessor Development Executive contains a

group of user callable common service routines which

provide utility functions- These routines offer

frequently used conversion facilities as well as a

software input-output interface to the system

console. The common service routines may be

referenced in user source programs through use of the

assembler BQCT statement to define the routine

absolute address. Parameter descriptions and absolute

25

location addresses for the set of common service

routines is available from the Computing and

Information Science Department.

The types of utilities available are:

o Write contents of HL register pair to console
o Convert ASCII hexidecimal to binary value
o Convert BCD digits to binary
o Compare HL register pair to DE register pair
o Hove a number of bytes in memory
o Write an ASCII string to the console

with or without soliciting input
o Convert binary to ASCII character

26

A TYPICAL SCEHERIO OF , BICROPROCESSOR PROGRAM DEVELOPHSWT

The following scenecio describes a noraal procedure for

developing microprocessor code using the Hicroprocessor

Development System. The scenerio assumes that a design

for the program has been completed and that a first draft

of the assembly language code has been completed and is

available for reference.

SOURCE COPE ENTRY AHD ASSEHBLY

The user must enter the prepared source code into the

DECSYSTE3-20 computer- For this purpose, the user logs

on to the DEC-20 from any convenient terminal. It is

usually advantageous to be connected to a 1200 baud

port for this step of the development. After logging

on to the DEC-20, the user envokes the editor for the

purpose of creating a file containing the source code.

The suggested file name for the source code is

FOR20.DAT . This name may be subsequently changed but

initially, POH20.DAT will be more convenient since it

27

is the default input file referenced by the MAC80

Cross-asseabler. After the source code has been

entered, the file should be saved by specifying the

unnumbered option, ECT, when exiting the editor. After

file creation is coaplete, the user envokes the J1AC80

assembler by issuing a "BON SAC80X" command. The

cross-assembler will respond with the MAC80 version

banner and a "BEGIN" signal. When assembly is

coaplete, the number of assembly errors and "EXIT"

prompt is presented at the terminal. If errors are

present, the source code should be edited and

reassembled, until all source errors have been

eliminated. Once the assembly is error-free, a hard

copy of the assembly listing, file F0B22.DAT should be

printed. At this point, the user has completed initial

object file preparation, and may log off from the

terminal and proceed to the Intel iSBC 544 system for

program testing and debug.

28

LOGGING ON THE DECSYSTE3-2 0 FBOH THE ISBC 544 COMPUTER

Once an error free object file has been prepared on the

DECSrSTEH-20, the user must move to the iSBC 544

computer in order to exercise the microprocessor

program. The Sicroprocessor Development Executive,

resident in PROM memory in the iSBC 544, goes through

an initialization process following power-up of the

computer. The system console and the acoustic modem

must be attached to the iSBC 544 on serial input/output

ports 0 and 1, respectively. A message acknowledging

system initailization will be presented on the system

console following initialization. The user must now

dial up to the DEC-20 system in order for the

communications link to be established. After verifying

the carrier tone is present in the telephone headset,

the user should place the headset into the modem

cradle. Immediately after placing the phone in the

modem, the user must alter the executive

communications mode to interactive. This is

accomplished by entering a "CNTL X" from the system

console. Once interactive mode is established, a

carriage return entry initiates a transmission to the

29

D2C-20 which results in the log-on prompt to be

returned. The log-on procedure at this point is

identical to that at any terminal, and successful

completion of the log-on sequence establishes the

communications session. All interactive DEC-20

commands are supported from the system console when in

this mode.

IQADIHG THE OBJECT PROGBA?! INTO THE ISBC 544 COHPOTEB

Once the communications session with the DECSYSTEfl-20

has been established, the user may exit the interactive

mode again by entering a "CNTL X" from the system

console. This entering and leaving the interactive

mode may be performed any number of times during a

communications session. Opon leaving the interactive

mode, normal executive console commands are again

available, including the LOAD command which performs

the downloading of microprocessor object code. By

entering the command, nL,FQR2'\n , the user will

initiate the program download from the object file

F0H21.DAT resident on the DEC-20 and cause the program

30

to be stored into the users area of random access

memory. Completion of the program download is signaled

at the system console by the "DOWNLOAD COMPLETE"

message.

EXECUTING AND DEBOGING THE DOWNLOADED PBOGaAH

After downloading the program into the users random

access memory, the program may be inspected by use of

system console commands. After verifying that the

program appears correct, the "GO" command may be

envoked to transfer control to the downloaded program.

Breakpoints may be specified along with the "GO"

command to trace program execution and the execution

may be performed in single instruction steps with

register inspection and memory inspection available

after each step. If an instruction is detected to be

in error, the code may be modified in memory and

reexecuted. Hodifications to the program should be

noted on the hard copy of the program listing to permit

subsequent source code correction on the DEC-20.

31

BE ESTABLISHMENT OF INTEBACTIVE MODE

Once all detectable errors have been identified, the

user nay return to the interactive mode and make

corrections to the source assembly language file. If

the corrections are minor in nature and the user wishes

to edit and recompile the source file via the

Hicroprocessor Development System communications

interface, this may be done. If extensive errors are

identified and the user wishes to terminate the

interactive session, this is also possible. The user

must reenter the interactive mode via "CNTL I" entry.

At this point the logoff or editor facilities are

available, and the user may continue with the

development procedure-

32

REFERENCES

(1) "Lehigh University Computing Center DECSTSTEM-20
Ose^s Guide", Lehigh Oniversity, Bethlehem, Pa, 1979

(2) iSBC 544 Intelligent Communications Controller Board
Hardware Reference Manual, Intel Corporation, Santa
Clara, Ca, 1978

(3) External Reference Specification, 8080 Macro
Assembler MAC80, Version 2, Intel Corporation, Santa
Clara, Ca, 1974

(4) Intel 8080-8085 Assembly Language Manual, Intel
Corporation, Santa Clara, Ca, 1974

(5) Crouse, Gary, "HMOX - Real Time Multitasking
Executive Functional Description {Preliminary)", Internal
Bethlehem Steel Corporation Research Department Document,
Bethlehem, Pa, 1980

(6) Bethlehem Steel Corporation Research Department,
Bethlehem, Pa, Humerous Discussions with Gary D. Crouse,
Research Engineer, September, 1980 through April, 1981

33

V I T A

Charles Hagel Kercsmar was born in Fountain Hill,

Pennsylvania on November 30, 194 3 of parents Louis

Kercsaar and Alyce Caroline Kercsmar nee Hagel. After

serving in the armed forces, Hr- Kercsaar attended

several institutions as a part-time student in pursuit of

an undergraduate degree while remaining fully employed.

These institutions include Lehigh University, the

University of Vermont, Delaware Valley College;, and

Thomas A. Edison College. Hr. Kercsmar received a

Bachelor of Science degree in Business Administration

from Thomas A. Edison College in 1978-

Hr. Kercsmar is presently employed with the Bethlehem

Steel Corporation as a Research Engineer. Prior to

joining Bethlehem Steel, Hr. Kercsmar was a Staff

Programmer with IBM Corporation Federal systems Division.

Hr. Kercsmar is married to Kathleen A- Kercsmar and

together they have three children, a daughter Melissa,

and two sons, Hichael and Geoffrey.

3i*

	Lehigh University
	Lehigh Preserve
	1-1-1981

	The implementation of a multi-user facility for microprocessor software development.
	Charles Hagel Kercsmar
	Recommended Citation

	tmp.1451580486.pdf.iKxSy

