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Abstract 

Interconnection cables and connectors between 

modern fast diqita] circuitry often exhibit reflec- 

tions due to discontinuities as well as crosstalk 

between adjacent lines, causinq the system to mal- 

function.  Time Domain Reflectometry can be used to 

detect and characterize these effects.  Unfortunately, 

for useful interpretation of test data so far, the 

risetime of the test pulses had to correspond to the 

risetime of the digital circuitry in question. 

In this paper a theoretical model is proposed 

and experimentally verified, that will permit to 

interpret data taken at fast risetimes in such a way 

as to predict reflections and crosstalk at any slower 

risetime. 

The necessary mathematics is developed to allow 

the application of the Fast Fourier Transform algor- 

ithm to aperiodic waveforms.  A computer based simula- 

tion procedure is developed.  Predictions are computed 

from measurements made with a single 130 picosecond 

risetime pulse.  Experimental verification is pre- 

sented for both voltage reflection and crosstalk. 



Wiener filtering is applied to reduce noise.  The 

improvement after Wiener filtering is contrasted with 

the unfiltered signal.  Finally, the industrial ap- 

plication of this simulation process is discussed. 



J.   Introduction 

Modern diqital circuitry contains many switching 

devices, the outputs of which are typically pulse 

trains exhibiting transitions from near zero volts to 

near five volts.  The outputs of these switching 

devices are connected to a system of conductors in 

order to carry the signals to the inputs of other 

switching devices.  The conductor systems are typi- 

cally microstrip lines if internal to the digital 

system.  Interconnections to other systems are typi- 

cally made with flat ribbon cables.  These cables are 

connected to the digital systems by mass termination 

connectors.  Such a connection might include fifty 

different signal lines. 

Solid state technological advances, such as wide- 

spread use of Schottky barrier diodes and the intro- 

duction of mid band-gap recombination sites, are caus- 

ing the switching speeds of transistors to increase [±2L 

With the non-saturating emitter coupled logic family, 

switching speeds of near 400 picoseconds are available. 

Using the approximation that the risetime bandwidth prod- 

uct is .35, one finds that a 400 picosecond risetime 

corresponds to a 3dB bandwidth of nearly 1 gigahertz. 

This causes the interconnection circuitry to behave 

as a distributed transmission line.  Discontinuities 



alonq the line give rise to reflected waves as well 

as reduced transmission. 

Another important aspect of the transmission 

line interconnection schemes is crosstalk, which can 

lead to false triqqerinq of adjacent qates.  The 

crosstalk problem is compounded now that solid state 

advances allow switchinq to occur with minimal energy, 

so small extraneous siqnals can cause false triggering. 

In order to measure the voltage reflections and 

crosstalk in a system, Time Domain Reflectometry tech- 

niques arc utilized.  This basically involves exciting 

the system with a fast rising step of voltage and us- 

ing a samplinq oscilloscope to display the reflected 

voltaqes and crosstalk voltaqes.  Because the frequency 

content of the voltage step is directly dependent on 

the risetime, and voltage reflections and crosstalk 

are dependent on the frequencies existing in the sys- 

tem, the voltage reflections and crosstalk depend on 

the risetime of the step. 

A typical Time Domain Reflectometry unit might 

have a step risetime of 100 picoseconds.  A manufac- 

turer of digital interconnection systems will test a 

connector at this fast risetime and typically it will 

display severe reflections and high crosstalk levels. 

If a customer wishes to use this connector in a 



system with a risetime of 2.75 nanoseconds, the manu- 

facturer has no way ot tellinq the user'  how  the 

connector wi11 perform.  The manufacturers of Time 

Iiomain Kef lecLonictry equipment have attempted to as- 

sist in this problem by makinq available risetime 

reducers which low pass filter the fast step.  However, 

these are only available with a few selected rise- 

times.  This places a severe limitation on the ability 

to specify a system's performance at nonstandard rise- 

times.  Also, when a risetime converter is used, the 

typically Gaussian-shaped rise will be the signal pre- 

sented in the system specifications.  It would be de- 

sirable to  know the interconnection system's response 

when excited by other waveforms.  For example, the 

response to an exponential rise or a linear rise might 

be desired.  Furthermore, the testing of a system with 

risetime converters must be done by highly trained 

engineers, and the Time Domain Reflectometry equip- 

ment must be available.  Therefore, this project was 

initiated to develop a simulation procedure that would 

predict the voltage reflections and crosstalk at an 

arbitrary risetime from data taken at a fast risetime. 



2 .   Then retic.i 1 Backg ro u n d 

2. 1  Microstrip Transmission Lines 

The most common method of intorconnectinq diqital 

systems is the microstrip transmission line.  Micro- 

strip is preferred because it can be batch-fabricated 

usinq standard circuit board materials and processincj. 

Double sided circuit board material is utilized.  On 

one side parallel conductors are formed by standard 

etchinq techniques.  The other side remains a solid 

((round plane.  A typical microstrip line is shown in 

Fiqure 1 : 

,— signal 
/   conductor 

i l  t l t •> l I  i I l l i  i i i >  •   i   i r i 

iiiiiiiiiiiiiiii)/ i-r-r 

t   I I 1 1 I I » / 1   I    1    I I I 1 I  I  I I T-l 

f   1   ,   1   t    ,   •   t   ,   t    1    t    t  t    I    ,     ,    ,   I   t T- 

•   •   •   • •  r   •   <   I   I   •  •   •   •    I -■ 

ground 
plane 

Figure 1   Typical microstrip transmission line. 

Signals are introduced between the parallel conductors 

and the ground plane.  The microstrip line driven in 



this manner presents a characteristic impedance Z . 

The computation of ttiis impedance is qreatly compli- 

cated by the fact that the conductors are immersed in 

a mixed dielectric system.  The electric field between 

the siqnal conductor and qround plane does not exist 

totally in the dielectric material because the width 

w of the siqnal conductor is approximately the same 

as the thickness of the dielectric.  The character- 

istic impedance has been obtained by Wheeler [19 1 

throuqh field mappinq techniques as: 

Z 
47 

60      fn/5'98h) 
5f..  + .67   |^8w + t) 

( i: 

The value of Z  is found to be most sensitive to the 
c 

ratio r I 5 Standard circuit boards  vary in 

h from  .25 to 1.3   millimeters.   In addition, 

etchinq  considerations  limit the minimum value 

of w to .125 millimeters.  System density considera- 

tions normally limit the maximum value of w to 1.3 

millimeters [ 8 '].  These factors cause the value of 

Z  to be between 50 and 150 ohms.  In fact, most micro- 
c 

strip lines used in this project had characteristic 

impedances of 75 ohms. 



2.2  Reflections on l'ulse Excited Transmission Eines 

A typical microstrip system miqht be as indicated 

in Fiquie 2, where the resistive terminations indicate 

a loqic qate with resistive input impedance. 

coaxial connector 

n 

I  i   t  i   i   i  i   i i  i  t   i i   l   i   i   i   i   i—r-r 

Y=j W'—,u i i i i i 11 i i i i i i i i i i i i a. 

<" i i • i 11 i ' i i ' i i ' i ' i i ' -n- 

• i i i i i i i  i i i i i i i i i i i i i 

symbolizes 
connection 
to microstrip 
qround plane 

microstrip 
Z R 

A7~7 

Fiqure 2   Idealized uniform impedance microstrip 
line. 

The system of Fiqure 2 is idealized since the 

coaxial line has a characteristic impedance of R , 
o 

the terminations are assumed to be resistors of value 

R , and the microstrip is assumed to have a character- 

istic impedance R .  In addition, all connections are 

assumed to be ideal.  Under these assumptions, the 

impedance looking into the coaxial connector will be 

R  and the reflection coefficient will be zero, 
o 



In practice, such an idea] system will not exist 

There can be an imperfect impedance match alonq a 

transmission line.  For example, a microstrip line 

with characteristic impedance Z  miqht be fed from a 
c 

qenerator of impedance Z  and terminated in impedance 

Z .  The method of analysis for studying such a situ- 

ation is best illustrated by an example.  Consider 

l-'iqure 3 where a 100 ohm source drives a length of 

100 ohm line that is then connected into a terminated 

lenqth of 75 ohm microstrip line. 

v2 (t) 

Z  = 7 5^ 
c 

lOOi 

Fiqure 3   An impedance mismatch and assumed 
excitation voltage e(t). 

The section of 100 ohm line is assumed to have a 

propagation time T , and the 7 5 ohm section a propaga- 

tion time T .  We seek to determine the voltage V, (t) . 



For time less than zero the voltaye V (t) is zero. 

For times  0 ■  t • 2T , the effect of the discontinuity 

at terminals 2-2'wiJl not be felt, and the voltage 

V (t) is qiven by the voltaqe divider theorem as ye(t) . 

For time t  ■ 2T , the effect of the mismatch at ter- 

minals 2-2' is felt.  The reflection coefficient is 

qiven by [ 11 | : 

Z 
L 

Z 

ZT + Z 
L    o 

75 - 100 
75 + 100 

143   ( 2) 

The reflection coefficient is not affected by the 

method in which the 75U   section is terminated, because 

we are considering an advancing pulse that by its 

causal nature cannot see what impedances lie ahead. 

The incident amplitude at terminals 2-2' is A, so the 

reflected amplitude is -.143A.  The voltage V (t) is, 

as shown in Figure 4, the algebraic sum of the drive 

voltaqe and the reflected voltaqe. 

A .1 143A 

2T   2T 4t 
1    1 LR 

Figure 4   The resultant voltage V,(t) 

10 



The example presented was a resistive discontinuity. 

This can often exist in practice because of an in- 

ability to match standard ribbon cable or coaxial 

cable impedances to microstrip impedances. 

There are frequently more complex discontinuities 

along dicjital transmission lines.  These often occur 

when the conductor qeometry is distorted, which occurs 

at connections and taps.  A distortion of conductor 

qeometry can result in reactive discontinuities. 

These may be inductive or capacitivo effects, and the 

maqnitude of the reflections is found to depend on the 

risetime of the diqital pulses.  It can be correctly 

concluded that any variation of uniform conductor 

qeometry will qive rise to reflections; however, it is 

much more difficult to predict the amplitude of these 

reflections. 

2.3  Crosstalk Fundamentals 

In addition to the problem of voltage reflections, 

this project will deal with crosstalk levels.  While 

the project is concerned with predicting slower rise- 

time crosstalk levels from measured fast risetime 

data, the basic theory and idealized results of cross- 

talk will be reviewed. 

11 



We consider a symmetrical system of paralleJ 

conductors over a qround plane and assume a mixed 

dielectric system.  This describes a microstrip line. 

The two lines are schematically illustrated in Figure 

5.  The assumed drive line excitation V.  (t) is also 
in 

shown. 

Figure 5   The terminology relating to the 
crosstalk problem. 

Forward crosstalk is measured at the far end of the 

quiet line; backward crosstalk is measured at the 

near end of the quiet line.  The drive line and quiet 

line are coupled via their mutual capacitance and in- 

ductance.  A standard method of mathematical analysis 

in this type of crosstalk problem is to consider two 

modes existing simultaneously ( 2 ]■ These modes are 



properly considered to propaqate independently.  The 

two modes are termed even and odd, and are illustrated 

in F i gu re i> : 

= 0   i    =r> r r 

<ffK       ,^>>. 

even   mode 

m 111 r 11 /11111 /1 11 un 
odd   mode 

Figure (>        Mixed dielectric and two modes of 
propaqation. 

It can be visualized with the aid of Figure 6 

that the odd mode propagates a larger percentage of 

its energy in the air than does the even mode.  There- 

fore, the odd mode propagates faster.  This effect is 

partially responsible for the following results. 

The following results are not obvious nor intu- 

itive.  The curious reader may wish to consult several 

references [5,6 I. A backward crosstalk pulse is theo- 

retically predicted as indicated in Figure 7: 

13 



,. V2(t ,x-0) 

'igure 7   The back crosstalk pulse 

With reference to Fiqure 7, the time T  is the prop- 

agation time for the line.  Generally T  is propor- 

tional to the line length.  Providing the line is a 

"long line", that is the two way transit time 2T  is 

greater than t , the scale factor k  is a constant. 
R B 

It depends on the conductor spacing and dielectric 

constants, but not on the risetime t .  In the case 
K 

of a "short line", that is a line with 2T  < t , the 
D     H 

factor k  becomes dependent on the time derivative of 

V . (t) .  Finally, it is noted that the back crosstalk 
in 

pulse would be present even if the dielectric sur- 

rounding the conductors were homogeneous. 

14 



We now consider the forward crosstalk at location 

x = f in Fiqure rj. A forward crosstalk pulse is theo- 

retically predicted as indicated in Fiqure 8: 

1 v2(t,x=n 

kr,V. 

"iqure 8   The theoretical forward crosstalk 
pulse. 

The amplitude scale factor k  is directly dependent 

on the risetime t  of the drive line voltage.  In ad- 

dition, the pulse  width is theoretically predicted 

to be equal to the risetime t .  Lastly, it is pointed 

out that the forward crosstalk pulse would not be pre- 

sent if the conductors were in a homogeneous dielectric. 

A convenient method of demonstrating this is to take a 

microstrip line with epoxy based circuit board mate- 

rial and coat the conductors with epoxy glue.  This 

immerses the conductors in a near homogeneous dielec- 

tric.  Measurements then indicate back crosstalk 



remains at the same order of maqnitude, while forward 

crosstalk is reduced many orders of maqnitude. 

3.   Time Domain Re fleetometry 

3.1  Shortcominqs of Continuous Wave Testinq 

With the realization that various digital inter- 

connection systems will have to be tested for voltage 

reflections and crosstalk level, we consider the selec- 

tion of test equipment.  The swept frequency method 

of testing involves exciting the system under test 

with a cw signal and using network analyzers to mea- 

sure the reflected voltage.  This method suffers from 

two shortcomings.  First, the net reflected voltage 

is the aggregate effect of all the discontinuities 

along the line.  This makes it impossible to determine 

what part of the line is causing the problem.  Alter- 

nately, if there are several reflections along the 

line, it is impossible to assess relative severity of 

the discontinuities.  Secondly, the swept frequency 

method must be extended to accumulate data at frequen- 

cies from several megahertz to several gigahertz. 

These data must then be mathematically processed to 

provide information about the system's response to 

pulse type waveforms. 

16 



3.2  Set-up for VolLaqe Reflection Measurements 

A superior method of testinq such diqital inter- 

connection systems is Time Domain Ref1ectomctry (TDR) 

TUR is a direct method of testimi in that it involve; 

launch!nq a step of voltaqe wave down the intercon- 

nection system.  A block diaqram of the TDR voltaqe 

reflection test set-up is qiven in Fiqure 9  [ 7 ] . 

samplinq 
osci1loscope 

control and 
triqqer siqnals 

risetime 
converter 

tunnel 
diode 
step 
generator 

r" 
i    i 

i LPF |~ 

"" J 

XV 
plotter 

»Ki +Ki 

directional coupler 

50 i;   airline 
 *_ E 

RG187/U   

system under te 

Fiqure 9   The TDR system set-up for reflection 
measurements. 
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A trigger circuit initiates the TDR cycle.  The 

step qeneratoi produces a fast rising voltaqe step 

from a 50 ohm source.  Followinq the qenerator is an 

optional low pass filter.  Actually this is a rise- 

time converter, several of which are available, that 

serves to slow clown the risetimc of the voltaqe step. 

It is of paramount importance that the risetime at 

which TDR testinq is done correspond to the risetime 

at which the system under test is to be utilized.  The 

directional coupler [31 allows the signal E.' to prop- 

agate down the 50 ohm airline and then down the sys- 

tem under test.  As a result of this advancing wave, 

reflected voltage waves will originate at any discon- 

tinuities along the line.  They will each propagate 

back along the system under test, through the airline, 

and reach the directional coupler.  The directional 

coupler is such that it will cause the voltage wave 

in the line to the sampling oscilloscope to be the 

algebraic sum of the functions E.' and E .  The sampling 

oscilloscope takes voltage samples at discrete points 

along many input waveforms, and subsequently plots the 

results as a series of dots on the oscilloscope.  Often 

the dot density is so high that the display is almost 

continuous. 



The utility of this test method is that the re- 

flected voltages isolate in time the chanqes in imped- 

ance alonu the line.  The position of the reflected 

waveform plotted as a function of time on the display 

indicates the physical location of the reflection 

causing condition.  The exact shape and amplitude of 

the reflected voltaqe can be analyzed to determine if 

the discontinuity is resistive, inductive, or  capac- 

itive.  The relative amplitudes of all discontinuities 

show which must be corrected and which are acceptable^ ] 

i.  5  Examples of Idealized Voltage Reflection Plots 

SeveraJ simple examples will now serve to illus- 

trate the TDK measurements.  Consider an ideal 50 ohm 

line of lenqth I'   terminated in an open circuit.  The 

voltage reflection coefficient  p is defined by the 

ratio E^/E', where E ' is the amplitude of the incident 
R  1 x ^ 

voltage wave and E  is the amplitude of the reflected 

voltage wave.  Considering a transmission line of 

characteristic impedance Z  terminated in a load ZT, ^        o L 

the reflection coefficeint p is given by [11.] 

(» ZT + z 
L    o 

In the case of an open circuit termination, Equation 

(3)predicts that p equals +1.  Therefore, the reflected 

19 



waveform is equal in amplitude to the incident wave- 

form, and of the same polarity.  The reflected wave- 

form will reach the directional coupler after a delay 

time equal to the transit time down and back the line 

under test.  The one way transit time is termed T . 

The resultant voltage rcachinq the oscilloscope is 

therefore qiven in Fiqure 10. 

Fiqure 10   Idealized TDR plot for an open- 
circuited line. 

If the line had been terminated in a short, similar 

anaylsis would have qiven a voltaqe plot as shown in 

Fiqure 11: 

20 



-n-:. 

2T, 

Figure 11   Idealized TDK plot Cor a shorted 
line. 

It is also instructive to consider a uniform 

50 ohm line terminated in a capacitor C .  As with 

other terminations, we will just see the excitation 

voltage step existing for time 2T .  Following time 

2T , we will see the sum of the incident step and the 

reflected voltage.  When the incident pulse initially 

reaches the capacitor, it wi11 behave as a short cir- 

cuit.  After the capacitor charges, it will present an 

open circuit.  The transition wilJ be exponential [ J 8 J 

with a time constant i -   50',,: *C .  Kecal 1 ing Figures 10 

and 11, we can construct the TDK plot for   the capacitive 

load.  In a like manner, the TDK voltage reflection plot 

for an inductive load L can be determined. 

21 



Those are presented in Fiquro J2 

U2V 

Figure 12   TDK voltaqo reflection plots for 
capacitive and inductive loads. 

In practice, the? occurrence of spikes like those in 

Fiqure 12 is common.  The direction (up or down) is 

used to determine if the discontinuity is largely 

inductive or capacitive. 

3.4  Set-up for Crosstalk Measurements 

In addition to voltaqe reflection studies, the 

TDK equipment can also be used to measure crosstalk. 

The equipment must be connected differently, and de- 

tails of this are indicated in Figure 13. 

22 



samplinq 
osci1 . 

tunnel 
diode 
step 
qenerator 

XY 
pj otter 

RG2 2 3/U 
coax 

Fiyure 13   Crosstalk measurement with TDR 
equipment. 

The tunnel diode pulse generator is used to apply the 

voltage drive to the drive line.  The optional rise- 

time converter can be installed to slow down the vol- 

tage step.  One leg of the directional coupler is 

terminated in its characteristic impedance (50ft), so 

23 



the samplincj oscilloscope wil] record just the voltaqe 

on the quiet line.  As illustrated, the system mea- 

sures back crosstalk; forward crosstalk is measured 

by placinq the sampling oscilloscope pick-up at the 

far end and the termination Z  at the near end of 
o 

the quiet 1ine. 

It should be noted that if the system under test 

has a characteristic impedance Z , and Z  is not ! o       o 

50 ohms, the crosstalk pulses will experience reflec- 

tion at the junction from the quiet line to the 50 ohm 

airline.  This reflection is important if the actual 

amplitude of the crosstalk pulses is needed.  If this 

is needed, one can apply a mathematical correction 

factor.  Alternatively, it may be more accurate to 

proceed as follows:  connect the 50 ohm airline  and 

quiet line system into a TDR voltage reflection set- 

up.  This will result in an oscilloscope display of 

the 50 ohm level and a different level corresponding 

to the Z  impedance level.  Next, note the amplitude 
o 

of the Z  level and adjust the vertical vernier so 
o 

the 50 ohm level assumes this amplitude.  Now the TDR 

unit may be used for crosstalk measurements and no 

further correction is necessary. 

24 



^- Theory and Computer Simulation 

4-1  Preliminary Investiqations 

Consider an arbitrary transmission system, that 

is one that might include sections of microstrip, 

coaxial line, and connectors.  There will, in qeneral, 

be a linear dielectric material sepnratinq the con- 

ductors.  Epoxy based circuit board material is pre- 

dominant in a microstrip system; various plastics are 

used in connectors.  Regardless of the conductor ge- 

ometry, the fields will be described by solutions of 

Maxwell's curl and divergence equations.  In linear 

media, these equations have the property that solu- 

tions remain solutions under linear operations.  There- 

fore, it should be possible to consider the overall 

transmission system from the standpoint of linear sys- 

tem analysis.  The standard method of linear system 

analysis is illustrated in Figure 14: 

25 



! (t ) 

;> 

— r(t: 

F(,„) 

if'1 

H ((,-,) =F((1)) II U) 

Figure 14   The notation of linear system 
analysis. 

A two port linear system with transfer function H(u>) 

is shown with input siynal f (t) .  The symbol ^denotes 

Fourier transformation;^   denotes an inverse Fourier 

transformation.  The heavy line weight arrows indicate 

the steps involved in the frequency domain approach 

to calculatinq r(t).  The transfer function H(ui) can 

be found from the ratio of the Fourier transforms of 

an arbitrary excitation function and corresponding 

response. 

The method of linear system anaylsis is applied 

to the TDR testing problem by considering the input 

port to be at the location of E.' in Figure 9.  The 

26 



output port is taken to bo the oscilloscope screen. 

The input function corresponding to f(t) in Fiqure 14 

is taken to be V..' (t) ; the output function, correspond- 

ing to r(t), is taken to be the oscilloscope trace. 

The oscilloscope trace can be recorded on any X-Y 

plotter. 

An example of the application of linear analysis 

to TDK is now presented.  The considered  circuit may 

be representative of a real  situation I 16 I.  Addi- 

tionally, it will give the reader a better feeling 

for the novel analysis that lies ahead. 

Consider a uniform 50 ohm coaxial line termi- 

nated in a capacitive load C .  Details are given in 

Figure 15: 

30cm 

s 
RG2 3 3/U - 5OS 

Figure 15   The capacitively loaded transmission 
line . 
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The TDK transfer function for this system can be ob- 

tained in closed form by a simple argument.  Envision 

the previous system to be installed in a TDR system 

that has an ideal step of voltage as the excitation 

function.  The TDR voltage reflection response of a 

capaci tively loaded line when excited by an ideal 

step was given in Figure 12, and is repeated here for 

convenience: 

Ei ' (t)+ER(t) 

2 - 

1 

- t 
—  2T, 

t=0 
D 

Figure 16   The idealized TDR voltage reflection 
plot from the system of Figure 15. 

Next, by defining r(t) = Ef(t) + E (t), we can express 

r(t) as 

r(t) = u(t) - u(t-2TD) + 

-(L-2T )/i 
2(l-e      u   iJ)u(t-2T 

D 
( 4) 



The Laplace transform of r(t) is found to be 

-2Ts       -2T s   i 
H(s) = l/s(l-e      ) + IQ T L.,.  >   ( 5) 

1 + s i   # 
s t, 

The Laplace transform of the input E.'(t) , which was 

assumed to be u(t), is qiven by 

E .' ( s) = - ( 6 ) 
1       s . 

The TDR transfer function is obtained by division of 

R(s) by K f(s) , which yields 

-2T   s             -2Tsj 
H(s)   =   1   -   e        u+2e <^—; — )       (   7) i1  + STJ 

Notice II (s) has been obtained effectively by inspec- 

tion of the system.  Remembering that this present 

problem is an idealized situation in which the trans- 

fer function was obtained in a closed form, we will 

make another assumption.  We assume the slower steps 

(as will be provided by the risetime converters) can 

be approximated by exponentials.  This is not the best 

approximating function, as can be seen in Appendix 1. 

However, the exponential function will make the mathe- 

matics tractable.  Therefore, the slower input steps 

are assumed to be of the form 

E: I   =    (l-e_t/l)u(t) ( 8) 
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The response to these slower steps has been derived 

usinq standard linear system analysis.  The mathe- 

matics is lenqthy; therefore, the analysis is pre- 

sented in Appendix 2.  The response to a step of the 

form of Kquation (8)  is found to be 

r (t) - (1-e l/  l)u(t) 4 ( 9) 

(t-2TD)/CLZo 

1 H  CT Z  - 1 
L o 

i -» CT Z    -(t-2T )/i 
L o D 
  • e cT z I. o 

u(t-2TD). 

where i is the ail important risetime parameter. 

Typical plots of this response are qiven in Figure 17 

•- t 

Predicted TDR plots for the system 
of Figure 15 tested by a slower than 
ideal step of voltage. 
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liquation (9) predicts a chanqinq response as i varies. 

In the limitinq case that i tends to zero, Equation 

(9) predicts the same response as shown in Figure 16. 

As i increases, Equation (9) predicts an increasing 

value of t  and increasing value of r . 
o min 

At this point we have arrived at a closed form 

expression for the response through the use of a TDR 

transfer function.  To test the validity of the pre- 

dictions, the transmission system illustrated in Figure 

]5 was connected into the TDR system and the response 

to various speed steps was recorded.  Specifically, 

risetimes of 130 picoseconds, .5 nanosecond,  1 nano- 

second, 2 nanoseconds, and 5 nanoseconds were used. 

The 130 picosecond step is the unslowed output from 

the HP 1415A TDR unit.  The slower risetimes were ob- 

tained by installing Hewlett Packard risetime conver- 

ters . 

With data collected at 5 risetimes, Equation (9) 

will be used to make corresponding predictions.  Be- 

cause of the characteristics of an exponential rise, 

a  least squares analysis indicates that defining 

risetime from 20 percent to 80 percent points is bet- 

ter than from 10 percent to 90 percent points.  Using 

this assumption, it can be shown that the relationship 

31 



between t  and i is qiven by: 

tR  =  1.39- 10) 

This equation is used in preparing Table 1.  The most 

interestinq aspect is the value of e 
min 

The minimum 

point e ■  can be determined from Equation (9) by 
^      nun M 

differentiation, resulting in 

e .  = 2 + - 
min       T 

2 CT Z L o 
- CTZ L o 

2T 
T + CT z L o 

cz 
L o 

CTZ L o 

T + CT Z  L o 
CT Z  - T 
L o 

2T 

T + CT Z L o 

T - CT Z L o 

(11) 

The comparison between measured data and predicted 

data is now made.  These results are given in Table 1. 

TABLE 1 

Experiment 
Risetime 

Experimental 
Value E . min 

Prediction Time 
Constant (per (10)) 

Predicted 

yalu^>n (per (11)) 

130 psec .2 93.5 psec .12 

.5 nsec .3 . 36  nsec .29 

1 nsec .4 .719 nsec .42 

2 nsec .58 1.44 nsec .56 

5 nsec .75 3.6  nsec .74 
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The agreement is qood.  In addition, comparison of 

the complete plots of experimental and predicted 

responses was made and qood agreement found. 

The results of this example have qiven great 

support to the use of   a transfer function approach. 

This approach must now be extended to cases where the 

transfer function must be obtained from samples of 

the fast input step and correspondinq response.  In 

addition, the transforms of the slower input steps will 

come from sampled siqnals. 

4.2  Modification of Discrete Fourier Transform 

Since we will be attempting to form the Fourier 

transform of a sampled signal, the discrete Fourier 

transform (DFT) will be employed.  Numerous authors 

develop [ 1 1 and discuss [15 1 the DFT.  Here the es- 

sential aspects are repeated.  Given a bandlimited 

periodic signal f(t) with period T and positive fre- 

quency bandwidth w, it can be exactly represented by 

sampling at the Nyquist rate oo  = 2w.  Assuming there 

are N samples, N being given by the ratio of to  to 

w = 27i/T, we have a sampled data array 

f(n) = f(n — )    n = 0 ,1 , 2 , . . . ,N-l   (12) 
(0 
s 
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Now N DFT coefficients (N/2 being unique for rea] 

f (n)) can ho obtained from 

N-J       4 
(k) - i  [   f(n)W 

n=0 

nk 
(13) 

where W = e   ' '    .      The N DFT coefficients F(k) cor- 

respond to frequencies ku .  In addition, if sampjinq 

is done at or above the Nyquist rate, the DFT coef- 

ficients F(k) will equal the true Fourier coefficients 

of f(t). 

Realizinq that most TDK waveforms are step-like, 

the DFT will have to be modified.  A step-like waveform 

starts at zero, undergoes a transient excursion to a 

new constant level A, and remains there for a long 

time.  This is illustrated in Figure 18: 

Figure 18   This illustrates a step-like waveform. 
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Note the waveform is aperiodic. If one attempts to 

apply the standard DFT to f(t), a rectangular window 

is applied to determine the interval over which sam- 

ples are taken. As a practical matter, if one is to 

obtain a sufficient number of samples of f(t) in the 

reqion [o,t 1 so the Nquist condition is realized or 

aliasing [14] is at a tolerable level, it is impossible 

to extend the window much beyond [_o,t J.  Assuming one 

chooses a window (o,t '] , the standard DFT alqorithm 
w ^ 

will be assuming the signal is periodic, and the signal 

that gets transformed is shown in Figure 19: 

Figure 19   The standard DFT assumes periodicity 
of the sampled signal. 

Clearly the spectrum of g(t) will contain many high 

frequency components due to the step transition at 

t .  These high frequency components mask the much 
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smaller correspondinq components in the spectrum of 

f(t).  This problem is predicted [ 1 ] and was experi- 

mentally verified.  The resolution of this problem 

was an extremely important step in the project; there- 

fore, it will be discussed in detail.  Initially the 

discussion will deal with the Fourier transform.  The 

extension to the DFT follows. 

Consider attempting to form the Fourier trans- 

form of f(t) as depicted in Figure 18.  This transform 

is given by an integration over the infinite domain 

(0,- ) as 

F(w) f(t)"ja,tdt (14) 
o 

However, it is possible to obtain a large number of 

values of F(w) by integration over the finite domain 

[o,t '].  Consider the following auxiliary function 
w 

r(t), depicted in Figure 20: 

Figure 20 The ramp function r(t) serves an 
auxiliary role.  The level "A" 
corresponds to that of Figure 18, 

36 



The Fourier trnasform of r(t) is obtained as 

R(u>) = { 
•2Ae 

-jait /2 

i t in J  w 

"All A ((.) 

sin w^O    (15) 

all u> 

Next, form the sum of f(t)  (from Figure 18) and r(t). 

This result is sketched in Figure 21. 

f(t)+r(t) 

w 

Figure 21 This illustrates the sum f(t) + r (t) 
is nonzero only over the region 
[o,tw]. 

The key point is that f(t) + r(t) is no longer a step- 

like waveform, but has its nonzero values limited to 

a finite domain [o,t ].  Therefore, the Fourier trans- 
w 

form of f(t) + r(t) can be obtained by an integration 

over a finite domain as: 
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l--(u)      +  R(u;) [ f (t) + r (t) I e 
• JLOt 

dt 

(i6: 

Now the crucial step is to notice that R(u>) , as given 

in Equation (1 S ) , is zero for nonzero frequencies ku,    , 
o 

where u  = 2i;/t .  Therefore, the values of F(OJ) in 
o       w 

Equation (14) for ..■ - ko,  (k^O) can be obtained from 
o 

the finite integration in Equation (16).  The uncer- 

tainty of the DC term F(0) will not be a problem. 

Also, we must recognize that in actuality the signal 

f(t) contains frequency components at all frequencies. 

The above procedure allows one to obtain samples of 

the continuous transform. 

The above technique of adding in a ramp to force 

"The sum f (t) + r(t) to be zero at the endpoints 0 and 

t  will allow the application of the DFT without any 
w r J 

truncation error [13,17 ]. Since we will be adding f(t) 

to r(t), the DFT of the sum will be the sum of the 

corresponding DFT's.  Assuming sampling is done at 

the Nyquist rate, the DFT coefficients will equal the 

Fourier coefficients, and the above argument concern- 

ing frequencies koi  applies.  Taking N samples of 

r(t) in the interval [o,t ] gives the samples 

r(n) 
-An 

(17) 



The N I)FT coefficients can be obtained from 

K(k) 
-An 

- j 2 link 
N 

:i8) 
n=0 

This finite summation requires substantial effort to 

evaluate, and the result cannot be found in most 

tables, so it is presented here.  First we introduce 

W = e 
-j 2nk/N 

(19) 

and upon forminq an auxiliary function 

H(k) = R(k) - WR(k) (20) 

we find 

H(k) 
-A 

N-l N-l 
I      nWn  -  [   nW 

n=0        n=0 

n + 1 
(2i: 

Index manipulation easily yields 

H(k) = 
-A r N 

I      nW  - NW 

(22) 

n=l 
I       (n-l)Wn 

n=l 

Collecting terms under a common summation yields 

H(k) 
-_A 
,2 

r    n       I1 

[  W  - NW 
n=l 

123) 
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Next, we examine the summation Equation (23) by using 

the relation 

N-l 

I 
n=0 

.n   1 
.N 

al 1 X :24) 

o    N 
Since we know W  = W  from Equation (19), the summa- 

tion in Equation (23) is 

I    wr 
n=l 

N-l 
= I    wr 

n=0 
(25) 

Now, usincj Equation (24) on the right side of Equation 

(25) gives 

N-l 
I    wr 

n=0 

w N 
1 - W 

k fi   0 :26) 

N 
since W  = 1 from Equation (19).  Now the result 

emerges from Equations (20), (23), and (26) as 

H(k) 
A 
N 

k ^ 0 [27) 

Recalling the definition of H(k) in Equation (20), 

we have 

R(k) 
A 

N[1_e-D2,k/N 
k f   0 (28) 
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Therefore, we observe that when dealinq with a step- 

like waveform such as f(t) in Figure 18, the trunca- 

tion problem can be avoided and N - 1 samples of the 

true Fourier Transform (DC excluded) obtained if we 

first form the DFT of f(t) and then add to it R(k). 

Mathematically, we start with f(t) and form the ordi- 

nary DFT coefficients F(k) according to Equation (13) 

Next, we form 

F'(k) = F(k) + 
A 

N[1_e-:2TTk/N] 
k f   0  (29) 

which we regard as a modified DFT. 

As an example of the application of the ordinary 

DFT, Equation (13), and modified DFT, Equation (29), 

to a step-like waveform, consider the delayed unit 

step function shown in Figure 22: 

I u(t-t/2: w 

Figure 22 

It /2 
w 

A waveform used to illustrate both 
the necessity and the utility of 
the modified DFT. 
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The true Fourier transform of u(t-t /2) is obtained 
w 

from   Equation    (14)    as 

U(u.)    =   e 
■jw-j 

71 6 ( (U )     + 
JW 

(30) 

Next, we form a 32 point ordinary DFT and a 32 point 

modified DFT of u(t-t /2).  We will compare the raaqni- 
w 

tude spectrum of Equation (30) to the magnitude spec- 

trums of the modified DFT and ordinary DFT at the fre- 

quencies k2ii/t  = kii)  (k^O).  Results of this are shown 
wo 

in Figure 23, with the solid curve representing |u(co) | , 

solid dots representing the magnitude of the modified 

DFT coefficients |F'(k)|,  and circles representing 

the magnitude of ordinary DFT coefficients |F(k)|. 

Legend 

!U(OJ) 

o o o |F(k) | 

•  •  • IF' (k) 

o 
-♦—i—•- -9—9 9—9—9—f—<?—9- "I $—•_ w . __w 

2TT 

Figure 23   The true Fourier Transform is com- 
pared to the ordinary DFT and modi- 
fied DFT. 
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As our previous arguments indicated, the ordinary DFT 

assumes periodicity and computes the Fourier coef- 

ficients of a 50 percent duty cycle square wave of 

period t .  Hence, the error is qreat between the cir- 
w 

clos and solid curve of Fiqure 23.  The excellent 

aqreement between the solid dots and true transform 

curve ^-<f   Fiqure 23 constitutes verification of the 

validity of the modified DFT, Equation (29).  The 

small errors between the solid dots and the true trans- 

form curve evident at higher frequencies are not from 

approximate validity of the modified DFT, but are due 

to the fact that the signal u(t-t /2) is not bandlim- 
w 

ited.  Because of this, the 32 samples of u(t-t /2) 
w 

taken to form the DFT do not satisfy the Nyquist con- 

dition <i' ■ 2w I 101- In fact, it is only possible to 

approximately reach the Nyquist rate by taking larger 

numbers of samples (which increases the sampling fre- 

quency ai ) so that the spectrum of the sampled signal 

is approximately zero at u> . This problem is nothing 

new; every application of digital signal processing 

must deal with unrealizable ideal situations by ap- 

proximations . 
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4. 1  Computer Simulation Includinq Application of 

Wienei K i 1 te r i ncj 

At this point we have developed the tools neces- 

sary to implement a computer based simulation.  In 

initially implementinq this simulation, we will use 

measured data (lor both crosstalk and voltage reflec- 

tions) at a rise time of 130 picoseconds to qenerate 

the TDK transfer function.  We will use the slower 

steps, as obtained through the installation of Hewlett 

Packard risetime converters, and generate simulation 

predictions of the responses that should correspond to 

those slower steps.  Then we compare the simulation 

predictions to measured responses with risetime con- 

verters installed. 

A notation is now introduced.  The steps, which 

are recorded on an XY plotter and then sampled with a 

sample interval T , are denoted as s     (nT ) where 
^ s n.nnn   s 

n.nnn is the 10 percent to 90 percent risetime in 

nanoseconds.  Correspondingly the responses (voltage 

reflections or crosstalk) are denoted as r     (nT ). 
n.nnn   s 

When the above signals are transformed by the modi- 

fied DFT, they are denoted by capital letters as 

S     (k) and R     (k)-  Finally, the transfer func- 
n.nnn n.nnn 

tion values at kw  are denoted II (k) . 
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With the previous notation developed, a flowchart 

of the overall computer simulation process is presented 

in Fi (jure 24 . 

The system is illustrated predictinq the response 

r?   nn tn^'J ' and the fo.llowi.nq discussion is phrased 

accordinqly.  However, the discussion applies in gen- 

eral .  The rectanqular boxes represent Fortran com- 

puter programs.  The corresponding names are indicated 

inside the boxes.  The parenthesized quantities indi- 

cate what mode a particular program is operating in, 

as explained below. 

Program .SFFTB implements the standard Discrete 

Fourier Transform by the use of the Cooley-Tukey al- 

gorithm [4 1.  This forward Discrete Fourier Trans- 

form is indicated by the parenthesized "F".  Immedi- 

ately following program .SFFTB is program .SMODB, 

which implements the modification to the Discrete 

Fourier Transform.  It operates in the forward mode. 

Programs .SFFTB and .SMODB are always used in conjunc- 

tion, and the modes of operation correspond.  Their 

combined operation in the forward mode generates sam- 

ples in frequency of the true Fourier Transform. 

Alternatively, both these programs can operate in the 

inverse mode, indicated by parenthesized "I", and 
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their combined operation serves as an inverse Fourier 

Transform that qenerates samples in time of the signal 

Program .SCMDB provides multiplication (Mode "M") 

or division (Mode "D") of complex quantities.  The 

two inputs to this program will be complex sequences 

of length N, where N is the number of samples taken 

to represent the various time functions.  Correspond- 

ing elements of these sequences are multiplied or 

divided to form the corresponding element in the out- 

put sequence. 

The flow of operations in the computer based 

simulation process is now discussed.  First, the sam- 

pled fast step s ,,„(nT ) and the corresponding sam- 

pled response r , -,„ (nT ) are both Fourier transformed 
^       l .130s 

and their transforms divided in order to obtain the 

transfer function H(k).  This operation is indicated 

within the dashed line box, and is performed only 

once.  Next, samples of the step s~, „„ (nT ) are 

Fourier transformed to yield S^, nn(k).  Then in ac- 

cordance with standard linear system analysis, the 

transfer function H(k) is multiplied by S_ ..(k), and 

the result is the Fourier Transform of the simulation 

prediction.  This is now inverse Fourier transformed, 

and the samples of the prediction are obtained. 
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When this prediction is obtained, it is possible 

that it will contain noticeable noise.  Several fac- 

tors contribute to this noise.  First, the TDR system 

will exhibit shot noise from the resistors utilized 

in the circuitry.  This can be broad band noise. 

Secondly, environmental noise from nearby wirinq can 

contribute to system noise.  Thirdly, the TDR equip- 

ment characteristically suffers from jitter of the 

display.  This effect has the appearance of being 

caused by a loose connection, but attempts to locate 

it prove futile.  A better explanation of display jit- 

ter relies on the realization that the sampling oscil- 

loscope processes thousands of waveforms in order to 

display one trace.  If any one of these waveforms is 

corrupted, the entire trace will display jitter. 

Another important origin of noise are errors made 

in sampling the signals from the recorded XY plots. 

This simply means that if the signal value at time nT 

is f(nT ), the sample value is erroneously taken to be 

f(nT ) + A.   The error A results from graphical inter- 

polation which is not exact.  If this type of error 

occurs at each sample point, it is quite reasonable to 

expect the values of <S to be Gaussian distributed.  In 

addition, we expect them to be uncorrelated.  This type 
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of noise process is white noise  120 ]. 

In order to deal with the noise problem, it was 

felt that a qencral method of optimal filterinq should 

be incorporated into the simulation process.  This 

would a 1Jow its use at any future time when noise be- 

came a problem.  Given that we have the desired siqnal 

s(t) obscured by uncorrelated noise n(t), we introduce 

a linear filter 11 (i,d as indicated in Figure 25: w J 

s(t)+n (t: y(t) 

Figure 25   The Wiener filter H (w) is introduced. 
w 

Wiener' s theory I 9 "J prescribes that the mean square 

error between y(t) and s(t) be a minimum.  The func- 

tional form of H (w) can then be determined in terms 
w 

of the power density spectrums of s(t) and n(t).  De- 

noting the power density spectrums of s(t) by S (UJ) 
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and of n(t) by S (<,.) , it can be shown that | 9 ] 

S (u.) 

"w1-1 - siuyVs-ro (31) 
s       n 

Now we must introduce suitable approximations in order 

to apply Equation (31) to the TDR prediction problem. 

We shall follow the usual assumption that the noise is 

white.  This properly describes noise resultinq from 

sampling errors as well as noise in the system as a 

whole.  In addition, the assumption of white noise 

provides some mathematical simplicity.  White noise 

has a power density spectrum qiven by 

Sn(o)  =  j (32i 

In order to determine S (ai) , it was assumed that S (ui) = 
s s 

N 
K/w , and the unknown constant N determined by a least 

squares analysis with the power density spectrums of 

representative signals from this project.  This analy- 

sis indicated we should assume 

Ss(a>)  =  ^ <33> 
a) 

which yields 

II (u,)  =   ~ , (34) 
w        x +  aj_ 2 

w 
c 
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where the cutoff frequency is qiven by 

N (35: 

Equation ( i 5) is reasonable in that as the signal to 

noise ratio K/n increases, the cutoff frequency w 

moves further out. 

The filter has been designed as an analog filter, 

and if it were implemented in a truly analog situation 

the Fourier Transform of the noisy signal would be 

multiplied by the filter transfer function.  Since we 

have N samples of the Fourier Transform of the noisy 

signal, we will implement the multiplication at these 

points.  The N samples of the filter are given by 

■I (k)  = k = 0,l,2,...,N-l 
w          

1 +    o (36) 
a) 
c 

where UJ     =   2n/t .  The filter is realized in program o w c       r> 

.SFILT2, and the process flowchart of Figure 24 indi- 

cates how it is applied. 

The determination of the appropriate cut-off 

frequency w  is now illustrated.  The magnitude spec- 

trum of a typical noisy signal is depicted in Figure 

26: 
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/2TIK /(. 

I 1 I I I I I I I 

i 

I /Tin 

Figure 26   Relating to the estimation of the 
signal to noise ratio. 

As illustrated, the value of K is determined from fit- 

ting the lower frequency coefficients of the magnitude 

spectrum to a curve of the form /2TIK /UV which follows 

from Equation (33) through the relationship between 

the magnitude spectrum and power density spectrum L 9 ]. 

Likewise, n is determined by equating the apparent 

noise level to /n~n . 

The critical reader may recall the modification 

to the DFT will be incorrect for the DC term (k=0). 
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MathematicalJy, this difficulty arises because the 

true Fourier Transforms of s    (t) and r    (t) con- 

tai n impu]ses at 0.  This problem is avoided by 

realizincj that both s    (t) and r    (t) are step 

like waveforms that are zero for neqative times and 

each reach constant values s , _, „ (t ) anci r 1_.(t ) at 
.1 30  w       . ] 30  w 

time t , as indicated in Fiqure 27: 

r.130(t) S.130(t) 

f-—t 

S.130(tw' 

Figure 27   Typical reflection plot and voltage 
step plot. 

Since [o,t ] is a finite domain, and the signals are 
w 

assumed to exist at a constant level for all times 

beyond t , the ratio of the DC content of r ,,n(t) 

to the DC content of s    (t) will be given by [10 ]: 
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7nS(u,)r.130(tw) 

^r(w)s.130(tw) S.130(tw) 

(37) 

Therefore, we predict the DC content of r„   (t) to 

be 

s    (t ) 
2.00 l w' r.130(tw] 

s    (t ) 
.1301 w; 

A (a.) , 38) 

which determines the siqnal level rn nn(t ) to be the 
^ 2.00  w 

bracketed factor in Equation (38).  In addition to 

this new information, we also know all signals are 

causal, so r„ nf)(t) should be zero for negative times, 

Given these two facts, the inverse mode of program 

.SMODB is able to correctly extract a predicted wave- 

form. 

5.   Experimental Verification 

At this point we have developed the simulation 

process.  First we will deal with voltage reflection 

predictions.  A specimen is selected for testing, 

typically several feet of microstrip line with sev- 

eral discontinuities.  The driven end is fed from a 

solder connection to RG187/U coaxial line.  RG187/U 
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was selected because its characteristic impedance is 

75 ohms, which is close to typical microstrip impe- 

dance levels.  Of course, as far as voltaqe reflections 

are concerned, any mismatch between coaxial line and 

microstrip will be considered part of the system under 

test.  Another factor in the selection of RG187/U is 

its small size and flexibility.  The solder connection 

between the coaxial line and the microstrip becomes 

part of the system under test, and must not be changed 

durinq testinq.  The RG187/U coaxial line is fed from 

the directional coupler by a 50 ohm airline.  This air- 

line provides an impedance reference level on the vol- 

taqe reflection plots. 

Data are recorded on an XY plotter with the TDR 

unit in the record mode.  This mode produces a sweep 

time of nearly 60 seconds, during which time the sig- 

nal beincj plotted is averaged. 

Data were collected for the voltage reflection 

or impedance plot of a sample when excited by the un- 

slowed step output of the HP 1415 TDR unit.  This step 

has a 10 percent to 90 percent risetime of 130 pico- 

seconds.  Also, a 50 ohm load was installed in place 

of the sample and the TDR impedance plot recorded. 

This latter case will show no reflections, since the 

55 



step qenerator output impedance is also 50 ohms. Con- 

sequently, the TDR impedance plot will be a plot of 

the qenerated voltage step.  These two plots are used 

to generate the TDK transfer function.  Next, one of 

the risetime converters is installed and XY plots of 

the slower step and corresponding response are ob- 

tained.  The plot of the slower step is then used in 

conjunction with the TDR transfer function to predict 

the response.  This prediction is then compared with 

the measured response plot.  This prediction and com- 

parison is generally done for the .5 nanosecond, 1 nano- 

second, and 2 nanosecond risetime converters. 

We will now show the results of TDR voltage re- 

flection predictions.  The particular sample considered 

was a microstrip line, the dimensions of which are 

given in Figure 28: 

NOTE:  dimensions in nun 

Figure 28   The dimension specifications of the 
TDR sample. 
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The microstrip was fed from a solder connection to 

R(J187/ II.  In addition to the inevitable discontinu- 

ity at the soldered joint, additional discontinuities 

were placed alonq the microstrip, as Figure 29 depicts 

from a top view: 

RG18 7/U 

-I I I I I I I 

Vrrn/i 
zz I // 11 I I I I / I I 

7 Oil 

rn 

Figure 29   The details of the microstrip con- 
ductor discontinuities. 

The enlarged conductor area, or capacitive pad, might 

represent a midline high input impedance tap.  Some 

microstrip lines include these small capacitive pads 

for logic probe test points.  The lateral conductor 

diversion might represent the signal conductor having 

to avoid another conductor.  It is noted that while 

faster switching speeds and smaller devices encourage 

greater system packaging density, increasing system 

57 



density results in more conductor diversions beinq re- 

quired.  At the same time, the aforementioned faster 

switchinq speeds cause conductor diversions to create 

serious voltaqe reflections. 

The measured voltaqe reflection response from a 

130 picosecond  step is shown in Figure 30.  Figure 30 

shows the voltaqe step, then the 50 ohm airline, then 

70 ohm coaxial line, and finally the microstrip line. 

In this case the impedance of the microstrip is 

slightly greater than the coaxial line.  The relative- 

ly smooth transition (or lack of large reflection) 

from coax to microstrip indicates an unusually good 

solder joint.  Greater detail would be available from 

expansion of the vertical scale, but clearly the sol- 

der joint is not the most significant discontinuity 

along the line.  The capacitive pad and conductor di- 

version have produced a large reflection.  Unlike the 

resistive reflections (for example the reflection due 

to the change from 50 ohm airline to 70 ohm coax) which 

are frequency independent, the capacitive pad and con- 

ductor diversion create a reactive discontinuity that 

is frequency dependent. 

From 128 samples of the 130 picosecond step and 

corresponding voltage reflection response, the TDR 

process sequence generates the TDR transfer function 
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H(k).  If the transmission system were a uniform 

50 ohm system there would be no reflected waves and 

the TDR response would just be the input step.  This 

ideal situation would yield a TDR transfer function 

that was unity for all frequencies.  The TDR transfer 

function corresponding to the nonideal microstrip sys- 

tem under consideration is found to deviate from unity 

at most frequencies. 

The transfer function represents an intermediate 

mathematical step in the context of this project; how- 

ever, qreat interest has been expressed by design en- 

gineers wishing to extract design information from 

this voltage reflection transfer function and the 

forthcoming crosstalk transfer function. 

With the transfer function stored in computer 

memory, the TDR process sequence was used in conjunc- 

tion with 128 samples of the slower steps to make pre- 

dictions of the slower responses.  These predictions 

are then compared to measured responses.  These com- 

parisons are presented in Figures 31A-C, where the 

solid curve is the measured data and the dots are the 

128 sample points of the predicted waveform.  The pre- 

dictions are shown for the .5 nanosecond step, 1 nano- 

second step, and 2 nanosecond step.  Wiener filtering 
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is not required in these predictions.  The agreement 

between solid curve (measured data) and dots (simula- 

tion predictions) is seen to be excellent.  We will 

briefly present the results of another TDR prediction. 

The sample used for this second prediction was a 

microstrip line with 13 siqnal conductors and solid 

qround plane.  Each conductor has a .9cm long cylin- 

drical vertical pin soldered onto it, as indicated in 

Figure 32 : 

RG187/U 

i ' i i i  i  i '   i   i   i   i   i   i r»   i\i   i  i i  i i   i   i  i   i   i   i   r 

r~r 

I I I i i i i  i   i  i   i  i   i   7-n   in  i i i  i   i   i  i   i   i   i   i—r 

<r i i i i i i i  i i i i i  /-U  iw i i i i  i i  •  i i i   i /1- 

I I I I I  I  I  7 i  I  i   t   n\  i\i i i  i   i /   i   i  i   i   i  i  i 

i i i  i   i   i   i  i   i   i   i   i   /"   in i  i   i i   i   iii   i   i   i i ion 

m 

Figure 32   The microstrip sample used in the 
second TDR simulation. 

These pins allow a push-on connector to attach a 25 

meter flat ribbon cable to the line.  The TDR signal 

was launched into line 9 by a solder junction to 

RG187/U coax.  The far end of line 9, both ends of 
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the remaininq 12 lines, and the far end of the flat 

ribbon cabJe were terminated in their characteristic 

impedance, which is near 7 0 ohms. 

The measured reflections resultinq from the 

130 picosecond step are presented in Fiqure 33. 

The characteristic impedance of the coax and 

microstrip are near 70^.  The largest reflection is 

cominq from the connector.  Comparison of the general 

shape of the reflection with Figure 11 indicates an 

inductive effect.  This occurs because the effective 

signal path and ground path become further separated 

when passing through the connector. 

The comparison between measured data and the 

predictions of the simulation process are given in 

Figures 34A-C. Again, Wiener filtering is not required. 

The agreement is excellent. 

The simulation procedure is also applicable to 

crosstalk.  A 30cm section of 3 conductor microstrip 

was tested for crosstalk levels, and the results of 

testing with a 130 picosecond step are given in Figure 

35. 
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The results are reasonable when comparison to 

Figures 7 and 8 is made.  The oscillatory behavior 

evident in the backward crosstalk pulse is actually 

forward crosstalk reflected from an imperfect ter- 

mination at the far end of the quiet line.  Its exis- 

tence will be a qood test for the TDR prediction pro- 

cess.  The same process as used for reflection pre- 

dictions was used for crosstalk predictions.  The need 

to modify the DFT for step like waveforms does not in 

general exist in crosstalk predictions because the sig- 

nals start and end at level zero.  This causes program 

.SMODB to implement Equation (29) by adding zeroes 

(since A = 0 in Equation (29)), and .SMODB is effec- 

tively inoperative.  Predictions were made for forward 

and backward crosstalk at .5, 1 and 2 nanoseconds. 

All the predictions exhibited some noise.  A repre- 

sentative example of this is the predicted 1 nanosec- 

ond forward crosstalk, shown in Figure 36: 
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Figure 36   The measured and predicted 1 nano- 
second forward crosstalk. 

The noise is due to the fact that the crosstalk 

signals, especially the forward crosstalk signals, 

are much higher frequency signals than the previously 

dealt with voltage reflection signals.  One method of 

realizing this is to examine the crosstalk transfer 

function H(k) which is an intermediate result of the 

crosstalk prediction process.  This transfer function 

is given in Figure 37, and is seen to be roughly high- 

pass.  This is expected since the coupling is largely 

capacitive. 
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.:   H (kli)  ) o 

.5 

.4 

.1 

12.5 GHz 

Figure 37   The transfer function for forward 
crosstalk. 

As pointed out earlier, the transfer function is 

an intermediate result, but tremendous interest has 

been expressed in particularly the crosstalk transfer 
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function beinq a desiqn aid.  The crosstalk transfer 

function qives the ratio of the frequency content of 

the quiet line crosstalk voltaqe to frequency content 

of the excitation voltaqe. 

In view of the noisy prediction shown in Figure 

36, we elected to implement the Wiener filtering pro- 

qram .SFILT2.  The results of this optimal filtering 

are shown in Figures 38 A-B.  Figure 38A shows the 1 

nanosecond forward crosstalk prediction after Wiener 

filtering.  The cutoff frequency to , determined by 

the method shown Figure 26, is given in Figure 38A. 

Figure 38A should be compared to Figure 36, and the 

improvement noted.  Additionally we have presented 

Figure 38B, which shows the prediction of 1 nanosecond 

back crosstalk.  Wiener filtering was also used in 

this prediction, and the corresponding value of to 

is given in the figure.  Note the simulation process 

correctly handled the reflected forward crosstalk that 

was evident in Figure 35. 
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6.   Conclusions 

The simulation procedure predictions show good 

agreement.  The small error can easily be shown to be 

within experimental limitations.  Optimal filtering 

has been successfully used to remove noise.  Excellent 

agreement in both the reflection studies and the cross- 

talk studies has established complete confidence in 

the TDR prediction process.  It is an extremely power- 

ful tool, since not only the major effects are cor- 

rectly predicted, but in addition, any higher order 

effect that is linear is also correctly predicted. 

For example, we saw that in the measurement of back 

crosstalk some reflected forward crosstalk appeared. 

The TDR prediction process handled this complication. 

In addition, the problem of multiple reflections due 

to non-ideal 50ft generator impedance is also correctly 

handled. 

The development and testing of the TDR prediction 

process is now complete.  An example of the process 

application in industry will now be given.  We con- 

sider a situation in which a customer expresses the 

desire to use a particular digital interconnection 

fixture.  He provides the fixture manufacturer with 

a plot of the waveform in his digital system.  The 

manufacturer has the transfer functions for both 
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reflection and crosstalk studies stored in computer 

memory.  Equipment exists that can automatically diqi- 

tize the customer's waveform, and then voltage reflec- 

tion and crosstalk predictions can be made.  The point 

is that these predictions are tailored specifically 

to the user's system. 
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Appendix ] 

Figures 39 A-D display the TDK voltage steps. 

The 130 picosecond step is obtained directly from the 

tunnel diode pulse generator.  The slower steps are 

obtained by installing the Hewlett Packard risetime 

converters. 
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Appendix 2 

The situation considered is a coaxial line with 

characteristic impedance Z  and propagation time T 

terminated in a capacitor C .  The TDR transfer func- 

tion was determined and given in Equation (7) as: 

-2T s     -2T s     ] 
H(s) = 1 - e      + 2e   u • ±   + ST    (39) 

where iT = Z C .  In this example we use the Laplace L    o L ^ c 

Transform and consequently the complex frequency s 

appears.  The analysis could be carried out with the 

Fourier Transform as well.  We have assumed the input 

steps are of the form 

En: T (t)  = (l-e~t/T) u(t) (40) 
1 , T 

The Laplace Transform of the function in Equation (40) 

is found in a table to be 

1,1 S( ST + 1) . 

Next, in correspondence with standard linear system 

analysis, (see Figure 14) the Laplace Transform of 

the TDR response is obtained by multiplication of 

H(s) by E'  (s).  Denoting this as R(s), we find 
1,1 
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|S(1+STL) (ST + 1) J 

1   ~2TDS     -2Tr 
R<s> =   s%T+l) 

+ 2e    <„„,.., w^s>   (42) 

The expression for R(s) can be simplified to 

-2T s -2T s 
D D (1-e     ) (1+s-i ) + 2-e 

R(s) =   r^ =  (43) 
i    T(s)(s+±- )(s+i) 
L        TL      I 

Equation (43) can be re-expressed in partial fraction 

form as 

(44) 

1 -2TDS 

R(s)    =   —~ r  +   e 
S(1+ST) 

(A   ^ B C      I 

-• + 7711-771} 

The constants A, B, and C can be found from residue 

evaluation as: 

A  =  1 (45) 

B  =  (46) 

CT Z L o 

i    + CT Z 

L o 

The time domain expression for r(t) can now easily be 

obtained from Equation (44) as 
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r (t) = (1-e t/' )u(t) + 

1 -t 

CT Z L o 

_ V° + e + 

(t-2T ) 
! + C, Z — 

L o        1 
e 

CT Z  - T 
L o 

u(t-2TD)   (48) 

which is the result given in Equation (9) 
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