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ABSTRACT 

An analytical model of one dimensional flow in the channel 

section of a gasified-coal, magnetohydrodynamic, electric power 

generator is a set of hyperbolic partial differential equations. It 

consists of three coupled, nonlinear, first-order partial 

differential equations in local balance equation form with nonzero 

production/absorption terms. 

Conventional application of the Method of Lines to n fixed, 

discrete points, uniformly distributed along the channel, produces 

5n coupled, temporal, nonlinear, first-order ordinary differential 

equations. The numerical results for the dynamic simulation of the 

MHD model show, if a centered finite difference formula is used to 

replace the spatial derivatives, are numerically stable but severely 

distorted. If biased formulas are used, the solutions are 

numerically unstable. 

Application of the method of Pseudocharacteristics produces 

stable solutions but increases the system stiffness. The 

Pseudocharacteristic equations for the time derivative terms can be 

obtained either by solving the linear system without matrix 

inversion or by matrix transformation without solving the linear 

system. 

The Jacobian maps and the eigenvalues of the Jacobian matrices 

show the system stiffness and stability. 



1. MHD Channel Model 

The mathematical formulation of the transient processes in 

lnrge magnetohydrodynamic generator flow trains was described by 

Oliver, Crouse, Maxwell and Demetriades [2]. In that paper, the flow 

trains were assumed to consist of a combustor, nozzle, 

magnetohydrodynamic power generation channel and a diffuser. For the 

purpose of this study, only the channel section is considered. 

15_«85.9.m 

Diffuser 

1.36lm _ 

Figure 1. Dimensions of a Hypothetical Channel 

As shown in Figure 1 , x is the axia] coordinate in the flow 

direction, y, z are cross-sectional coordinates, z is aligned with 

the magnetic field. Time is denoted by t. For homogeneous flow, the 

element mass fraction equation (1) in [2] is ignored. The 

conservation laws in the quasi-one-dimensional approximate model 

yield: 



conservation of total muss equation 

(D 
2_(fA) + i_(fUA) = Sf  , 
3t      dx 

conservation of linear momentum equation 

9_(fUA) + _S_(fU2A) = -A(9£ - <JxB>x)- Twp + Su   , (2) 
3t       9x dx 

and conservation of energy equation 

3_[f(£+U2)A] + 3_(fUh0 A) = <J.E>XA + qwP + S£  . (3) 
at        ex 

The terms So, S , Sf are functions describing the sources of mass, 

momentum and energy due to mass addition and absorption within the 

flow train. They are determined by the mass injection locations 

within the various sections of the flow train, particularly for the 

combustor, so these three terms are neglected in the channel section 

moael. 

Also, assuming the fluid behaves like an ideal gas, p = RTj*. 

The average shear stress over the cross-section "C  ~ 0, and the 

average heat flux qw ~ qrad• 

The radative flux qrad is represented as 

qrad =<rSb(Vw - V4)- 

thermodynamic relations are 

Stagnation enthalpy h = h + U /2 

internal energy     £  = h - p/f  , 

3 



The local electric field and current density within the cross- 

section of the duct at any axial station x are E(x,y,z,t) and 

_j(x,y,z, t). 

Lorentz force in the axial direction 

<JxB>x - fJxB<Jy><B> 

and Lorentz power 

<J-E>x - fJ.E<Jy><Ey> 

where f, - and f, p are electrical form factors. 

By some substitutions and manipulations, the simplified, 

analytical model which consists of a hyperbolic set of three 

coupled, first-order, nonlinear partial differential equations is 

obtained 

J_(fA) + 3_(fUA) = 0  , (4) 
3t      dx 

3_(fUA)  +  eJflTA)  =  -A(ap -  fJxB<JYXB>)     , (5) 
at 9x 3X J 

_a_[f(£+U2)AJ +  3_(fUh0A)  = f,   E<JXEL>A  +  qwP     . (6) 
at        ax J 

The three dependent variables selected are the mass density -P, 

the axial flow velocity U and the temperature T. The MHD model in 

matrix form is 
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"1 

u 

:   (c  -H)T+U2 
L. P 

0 

f 

2Uf 

0 V 
0 ut 
(VR)?. -Tt_ 

U2+RT 

c UT+U^/2 

f 
2Uf 

cpfT+3U2j>/2 

0 

cp?U 

fx 
U„ 

r-£u 9A 
!  A  ax 

A   ax 
- JEJ£l 3L +  fJxB<JyXB> 

I      cpfUT      fU3 8A p 
! _( + )__ + fj P<JVXE > +    w 

L A 2A    3X J-E    y      y        ___ 
A   J 

which can be written in local balan ce equation form 

(7) 

C(Q)Qt + D(Q)QX - d(Q)  , 

where Q+ and Qv are the time derivati 

vectors of the dependent variabl 

dependent variables is 

(8) 

ve and the spatial derivative 

e vector, Q.   The vector of 

?(x,t) 

U(x,t) 

LT(x,t) 



and the MHD specific terms appear in d_, the vector of production/ 

absorption terms. 

in general, equation (8) is a nonlinear, nonhoraogeneous, 

coupled hyperbolic system of partial differential equations, e.g., 

the equations describing one-dimensional compressible flow. 

Premultiplication by C_  simplifies equation (8) to 

9.t + iix 
= 1 (9) 

where A = C D and f = C d. 



2. Conventional Application of Numerical Method of Lines 

The Numerical Method of Lines is a discretization technique for 

solving partial differential equations. The Numerical Method of 

Lines can be applied to equation (9) by using finite-difference 

replacements for the spatial derivatives. Thus the partial 

differential equations are converted to a set of coupled ordinary 

differential equations in time derivatives only. 

The Method of Lines comprises the spatial derivative algorithms 

and the numerical integrators for integration of ordinary 

differential equations. The Method of lines has been applied 

successfully to partial differential equations for both stiff 

systems and nonstiff systems. see Johnson and Hindmarsh [3] for a 

stiff system application. 

The MHD model is a nonstiff system. The spatial derivatives are 

replaced by the finite difference subroutines, DSS002 for a three- 

point centered difference formula, DSS012 for a two-point upwind 

difference formula and DSS018 for a four-point biased upwind 

difference formula, see Dissinger, Schiesser and Johnson [4J. All 

the temporal integrations are performed by a suitably powerful ODE 

system solver - LSODE [5]. 

For the first one meter of the MHD channel , the conventional 

application of the Numerical Method of Lines to 11 fixed, discrete 

points equally spaced along the channel, produces a set of 33 

coupled, temporal, nonlinear, first-order, initial value, ordinary 

differential equations. 
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The numerical results from the application of the Method of 

Lines with upwind (DSS012) and biased upwind (DSS018) approximations 

exhibit unstable solutions during the time 0. to 0.002 seconds . 

For the three-point centered finite difference formula 

replacement used, the solution is numerically stable, but severely 

distorted. Table 1. presents the eleven-point solutions for 

conservation of mass, linear momentum and total energy equations at 

time = 0.002 sec. and at time = 0.01 sec, when using a centered 

finite-difference formula to replace the spatial derivatives. The 

solution shows severe ripple at time = 0.01 sec. 

These solutions may be compared with the solutions from the 

method of Pseudocharacteristics, see Table 2. At time = 0.002 sec, 

the solution is close to the solution of the Pseudocharacteristic 

method, but the longer the simulation runs, the more distorted the 

solution obtained by the conventional application of the Method of 

Lines becomes. 

The difficulty of applying the Method of Lines to the MHD model 

is mainly that discontinuities can propagate in both downstream and 

upstream directions. In general, hyperbolic problems can be 

successfully solved by the Method of Lines with upwind or biased 

finite difference formulas to replace the spatial derivatives. But 

the spatial derivatives replacements used must be biased in the 

directions of propagation. 

8 



Density 
kg/m* 

Velocity 
m/s 

Temperature 

Time=0.002 sec. 

x=O.Om 
x=0.1m 

.57139 
•59637 

782.73 
740.40 

2697-3 
2711.0 

x=0.2m 
x=0.3m 

.57440 

.57535 
771.57 
766.34 

2703-9 
2706.8 

x=0.4m 
x=0.5m 

.56794 

.56280 
774.12 
777.91 

2706.1 
2706.8 

x=0.6m 
x=0.7m 

.55708 

.55148 
782.42 
786.66 

2707.3 
2707.7 

x=0.8m 
x=0.9m 

.54600 
• 54041 

790.79 
794.73 

2707.4 
2707-4 

x=1.Om • 53472 798.49 2708.0 

NST=48 NFE=79 NEJ=0 STEP SIZE= 
2.863E-5 

Time=0.01   sec • 

x=0.0m -57139 782.73 2697-3 
x=0.1m .66898 603-00 2747-3 
x=0.2m •56259 789.18 2698.6 
x=0.3m .64157 639-82 2740.3 
x=0.4m .55101 798.31 2699-1 
x=0.5m .60956 684-07 2731.1 
x=0.6m .53646 812.41 2697-9 
x=0.7m .57068 740.37 2718.6 
x=0.8m .51374 838.55 2693-4 
x=0.9m .51925 819-89 2699-7 
x=1.Om • 48193 882.97 2684-0 

NST=209, NFE=347, NEJ=0 STEP SIZE' 
9-564E-5 

Table  1. The  11-Point Solutions from the Conventional 
Numerical Method of Lines 



3. The Background of Numerical Methods of Charactericteristi.es 

Hyperbolic equations have distinct real eigenvalues which 

represent the directions of propagation. For the solution of 

problems in which eigenvalues of both signs exist, misaligned 

biasing will induce instability. As a result of this directional 

nature of hyperbolic equations, the numerical methods of 

Characteristics for decoupling sets of one-dimensional hyperbolic 

partial differential equations have been developed. 

Methods may be either of two kinds. One employs differencing 

along the characteristic curves, the other employs differencing on a 

fixed grid. The former includes the method of differences along a 

curvilinear net , see Courant, Isaacson and Rees [6], and the method 

of wave tracing, see Hancox and Banerjee [7]. The latter includes 

the method of differences on a rectangular net by Courant et al,[6], 

and the characteristic finite-difference (CFD) procedure of Hancox 

and Mcdonald [8J. 

In the method of differences along a curvilinear net, a set of 

first-order hyperbolic partial differential equations is discretized 

into 

£ M^CQJ + Aj Q*) = L1 ,  j = 1, ..., n (10) 
i=1 

where 

AJ = dx (11) 
dt 

10 



are the j  characteristic directions. 

For each equation of (10), the variables Q1 are differentiated in 

the characteristic direction A > that is 

dQ = Qj + \JQJ (12) 
dt 

and by substitution of (12) into (10), 

f Mid dQ1 = L1   . (13) 
i=1   dt 

The derivatives in equation (10) are directly replaced along the 

characteristic directions by first-order finite differences. 

The wave tracing method has been applied to the hyperbolic 

partial differential equations in the form of equation (9)-The 

method involves transforming equation (9) along the characteristic 

directions that are the eigenvectors of matrix A^ The two sets of 

ordinary differential equations are defined by 

the characteristic equations 

dx = A (14) 
dt 

and the compatibility equations which result from the transfomation 

of equation (9) 

M dQ = L (15) 
dt 

where M and L  are the coefficient vectors. 

The characteristic equations and the compatibility equations 

1 1 



along those characteristics are solved recursively based on a first- 

order finite difference approximation. 

The basis of the methods of differencing along the 

characteristic directions is that the solution is defined by initial 

and boundary conditions, and two sets of ordinary differential 

equations, the characteristic equations and the compatibility 

equations, such as equations (11 ) and (13), in methods of 

differencing along a curvilinear net, and equations (14) and (15) in 

the method of wave tracing. 

The wave tracing method has been applied to the one-dimensional 

flow-boiling problem, see Hancox and McDonald [8J. 

X 

X    = 

'A A 
j 

A3 
85 L3 

x = 

M2Q 

A2 

= L2 

Figure 2. Wave Tracing Algorithm to Advance 
Solution along the Characteristics 

As shown in Figure 2, six of the required ten equations can be 

12 



obtained from first-order finite difference approxmations to the 

characteristic and compatibility equations, and between points a and 

b there are four equations obtained from linear interpolations along 

the adjacent characteristics A^' Therefore the solution involves 

linear interpolation and iterative solution of a total of ten 

algebraic equations. At a discontinuous phase transition, twenty 

nonlinear algebraic equations have to be matched by iteration. 

However, the wave tracing method allows discontinuities to propagate 

without diffusion and the numerical solutions obtained can 

approximate exact solutions closely. But the method is complicated 

to program, expensive to execute and difficult to apply to any 

except the simplest geometries. See Hancox and Banerjee [7] for a 

third-order application and Ferch [9] for a similar fifth-order 

application. 

In the methods of characteristics on a fixed grid, i.e., the 

method on the rectangular net and the characteristic finite- 

difference procedure, the basis is the transformation of the 

original set of equations (9) into the following a set of canonical 

equations of form (16) with separated and known propagation 

directions which permit appropriate biasing, that is, 

BQt + ABQx - B f (16) 

where A is the diagonal matrix of eigenvalues of _A and B   is the 

transformation matrix obtained from : 

13 



BAB"1 = A  . (17) 

The methods are based on replacing derivatives by first-order 

finite-differences  in  time  and  space.  The  following  finite 

difference algorithm may be written at point k: 

if  . is positive 

Bjjjl + \  Bik   
k-1 - B.kfk  , (18) 

dt        xk-xk_1 

and if  . is negative 

dQk Qk+1~Qk 
Bik_j + Xj Bik 

k = B.kfk    . (19) 
dt xk+r

xk 

The characteristic finite difference procedure has been applied 

to a one dimensional flow-boiling problem, see Hancox and Banerjee 

[6]. The method produces stable solutions and low cost computation, 

but introduces numerical diffusion. 

The reason diffusion is introduced is that the finite 

difference algorithm using a fixed rectangular grid of points 

violates the domain of dependence requirements. The domain of 

dependence is the region bounded by \^ and 7W characteristic curves, 

see Figure 2. In the wave tracing method, solution point c is at the 

intersection of the characteristic curves dx/dt= A^ (i=1,2,3) that 

originate from previously determined solution points a and b. It is 

affected only by information contained within the domain of 

dependence, while, in the finite difference on a fixed grid method, 

14 



the values of the dependent variables at grid points outside the 

domain of dependence will inevitably enter the difference equations, 

then accurate finite difference approximation solutions only could 

be produced in the limit as time and space discretizations approach 

zero. 

15 



4. The Paeudocharacteristic Numerical Method of Lines 

The method of Pseudocharacteristics with discretization by the 

Method of Lines extends the characteristic finite difference concept 

to a canonical form, which combines accomodation of the directional 

properties of the hyperbolic equations with higher-order 

discretization approximations in time and space. The propagation 

directions are separated and directional biasing can be applied 

appropriately. 

The Pseudocharacteristic equations for the temporal ordinary 

differential equations can be obtained either by solving the linear 

system, see Carver [1], or by matrix transformation. 

(1 ) Obtain the ordinary differential equations by solving the 

linear system. 

The scalar equation in (12) can be written as 

Bi1Qt1+Bi2Qt2
+Bi3Qt3= " MBi1Qx1+Bi2Qx2+Bi3Qx5> 

+ (Bi1f1+Bi2f2+Bi3f5) (20) 

i = 1, 2, 3- 

The spatial derivatives Q ., Qx2 and Q ■* can be replaced by higher- 

order biased approximations according to the sign of the eigenvalues 

X^. The Pseudocharacteristic equations may be obtained by solving 

the i linear system equations (19) for the time derivatives Q-fj » 

Qt2 
and Qt3 i-n explicit form without matrix inversion. The method 

has been applied to several sets of first-order hyperbolic 

equations. 

16 



Kolev and Katkovsky [ll], obtained comparable performance from 

the method of characteristics on a fixed grid using a two-step Lax- 

Wendroff technique and the method of Pseudocharacteristics using the 

GEAR software package for temporal integration and a four-point 

upwind biased finite difference approximation for the spatial 

derivatives. The results from the method of Pseudocharacteristics 

exhibited good accuracy, less numerical diffusion and less computer 

time for execution. 

(2) Obtain the ordinary differential equations by matrix 

transformation. 

The Pseudocharacteristic equation form is based on the 

transformation of equation (16) to a canonical form which is 

Wt 
+ Wx = &    . (21 ) 

where W = B Q 

The scalar equation in (21) can be written as 

Wti + MWxi = ^ .  i - 1. 2, 3. (22) 

where  the  superscript  indicates which eigenvalue  is used  to 

establish the direction of biasing. 

In terms of original state variables 

Wxi = Bi1«x1+Bi2Qx2
+Bi3^ ' i- 1.2.3  • (23) 

Therefore equation (16) transforms into the decoupled form 

BQt + Hi  ° & (24) 

17 



which 0^ can be repreasented in vector form 

«x 

11 
^x IK, 

*I 

B10/3Q 
ax «A, 

i2i-2L + Bi3(H\ 
32l(lQlj       +  B22 flS2l     +  B23fifi3| {h 3x />, 

Slflfill  + B52'^2)  + B3333] 
^l3xV    ^IdxL   ^(577x, 

Define A* = B"1A = AB"1 , th en 

* * 
Q+ + A Q„ = f (25) tt ' i ^x  -i- 

Equation (25) is the set of ordinary differential equations in 

matrix form obtained by inverting transformation matrix B without 

solving the linear system of equations. The Method of Lines is used 

to discretize this set of partial differential equations with the 

stipulation that each spatial derivative must be biased according to 

the sign of the associated eigenvalue and weighted by the elements 

of the transformation matrix. This is a basic difference from 

equation (9) obtained by the conventional application of the Method 

of Lines. 

To apply the Pseudocharacteristic method to the MHD model of 

the channel section, the transformation matrix B can be any 

nontrivial solution of equation (17). We define the transformation 

matrix as 

B11   B12   1 

B21   B22 

B31   B32 

1 8 



the Pseudocharacteristic form of equation (16) is 

|"B11   B12  1] V "*1 0      0 
— 

B11   B12  1 If1 
X
 i 

; B21   B22   1   j utl- - 0 A2    0 B21   B22   1 Ux 

[B31   B32  1 j -\ 
0 

L 
o xi: _B31   B32  1 T    j 

L XJ 

B11     B12     1]!'fll 

B21     B22    1 (26) 

L 
B31    B32    1j [f3J    " 

To obtain the ordinary differential equations by solving the 

linear system, equation (26) can be written in expanded form with 

spatial derivatives biased according to the sign of eigenvalues, 

which is 

B1lVB12Ut+Tt " - VB1lPx+
+B12Ux+

+Tx+> 

B2lft+B22Ut+Tt 

+ B11f1+B12f2+f3 

" MWxO+B22UxO+TxO> 

+ B21f1+B22f2+f3 

B3lft+B32Ut+Tt " ~ ^BV?x-+B22\-+Tx-) 

+B31f1+B32f2+f3 

(27) 

(28) 

(29) 

The subscripts "+", "-" and "0" indicate the signs of 

eigenvalues. The replacement of spatial derivatives with the signs 

"0" and " + " is governed by the positive eigenvalue and "-" by the 

negative eigenvalue. In case the eigenvalue is equal to zero, the 

spatial derivative is replaced by the centered finite difference 

19 



+ 

formula. 

Thus the ordinary differential equations in terms of ., U. and 

T. are obtained by solving linear system equations (27), (28) and 

(29) simultaneously. This requires more manipulations than the 

matrix transformation procedure. 

The following is a portion of the computer program for solving 

the linear system: 

FIND THE ELEMENTS OF B 

B12=(A(1,2)*A(3,1 ) + A(3,2)*(EGVAL1-A(l,D))/ 
+   ((EGVAL1-A(1,1)*(EGVAL1-A(2,2)) 

-A(1,2)*A(2,0) 
B22=(A(lf2)*A(3,l)+A(3,2)*(EGVAL2-A(l,l)))/ 

((EGVAL2-A(1,1))*(EGVAL2-A(2,2)) 
-A(1,2)*A(2,1 )) 

B32=(A(lf
,2)*A(3!l)+A(3,2)*(EGVAL3-A(1,l)))/ 

+   ((EGVAL3-A(1,1))*(EGVAL3-A(2,2)) 
-A(1,2)*A(2,1)) 

B11=(A(3,1 )+B12*A(2,1))/(EGVAL1-A(l,1)) 
B21=(A(3,1)+B22*A(2,1) )/(EGVAL2-A(l, 1 )) 
B31=(A(3,1)+B32*A(2,1))/(EGVAL3-A(1,1)) 

DEN0M=B11*B22+B12*B31 +B21*B32-B12*B21 -B11 *B32-B22*B31 

CALCULATE RIGHTHAND SIDES OF  EQUATIONS  27-29 

REQ27=-EGVAL1*(B11*RH0X1+B12*UX1+TX1) 
+ +B11*F1+B12*F2+F3 

REQ28=-EGVAL2*(B21*RH0X2+B22*UX2+TX2) 
+ +B21*F1+B22*F2+F3 

REQ29=-EGVAL3*(B31*RHOX3+B32*UX3+TX3) 
+ +B31*F1+B32*F2+F3 

OBTAIN A SET OF TEMPORAL ODES BY 
SOLVING  EQUATIONS  27-29 

RHOT(I)=((B22-B32)*REQ27+(B21-B22)*REQ29 
+ +(B32-B12)*REQ28)/DEN0M 
TT(I)=((B22*B31-B21*B32)*REQ27+(B12*B21-B22*B11 ) 

+ *REQ29 +(B11*B32-B12*B31)*REQ28)/DEN0M 
UT(I)=(B21*RH0T(1)-TT(I)+REQ28)/B22 
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To obtain the ordinary differential equations by matrix 

transformation without solving the linear system equations, equation 

(25) can written as 

Qt - - Jf
1ABQx + f , (30) 

or in explicit form 

ft 
Ut 

-1 

~B11   B12    1irMBlA+
+B12V+Tx+K

f1~ 
B21   B22    1 

B31   B32    1 

MB2lPxO+B22UxO+Tx0) (31) 

X3(
B3irx-+B32Ux-+Tx-)_ 

See the details of the MHD model computer program coding below. 

The program provides a way, in general, to solve a set of first- 

order, nonlinear partial differential equations in time and space by 

the method of Pseudocharacteristics. 

FIND THE ELEMENTS OF B 

B12=(A(1,2)*EGVAL1-A(1 
+   (A(1,3)*EGVAL1+A(1 
B22=(A(1,2)*EGVAL2-A(1 

+   (A(1,3)*EGVAL2+A(1 
B32=(A(1,2)*EGVAL3-A(1 

(A(1,3)*EGVAL3+A(1 
B11=(A(2,1)*EGVAL1-A(2 

+   (A(2,3)*EGVAL1-A(1 
B21»(A(2,1)*EGVAL2-A(2 

+   (A(2,3)*EGVAL2-A(1 
B31=(A(2,1)*EGVAL3-A(2 

+   (A(2,3)*EGVAL3-A(1 

2)*A(3, 
2)*A(2, 
2)*A(3, 
2)*A(2, 
2)*A(3, 
2)*A(2, 
D*A(3, 
1 )*A(2, 
1)*A(3, 
D*A(2, 
D*A(3, 
1)*A(2, 

3)+A(1 
3)-A(2 
3)+A(1 
3)-A(2 
3)+A(l 
3)-A(2 
3)+A(2 
3)+A(2 
3)+A(2 
3)+A(2 
3)+A(2 
3)+A(2 

,3)*A(3,2))/ 

,2)*A(1,3)) 
,3)*A(3,2))/ 
,2)*A(1,3)) 
,3)*A(3.2))/ 
,2)»A(1,3)) 
,3)*A(3,D)/ 
,D*A(1,3)) 
,3)*A(3,D)/ 
,1)*A(1,3)) 
,3)*A(3,1))/ 
,1)*A(1,3)) 

FIND THE INVERSE OF B 

DEN0M=B11*B22*B33-B21*B32*B13+B12*B23*B31 
+ -B13*B22*B31 -B12*B21*B33-B23*B32*B11 

BI11=EGVAL1*(B22*B33-B23*B32)/DEN0M 
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BI12=EGVAL2*(B13*B32-B12*B33)/DEN0M 
BI13=EGVAL3*(B12*B23-B13*B22)/DEN0M 
BI21=ECVAL1*(B23*B31-B21*B33)/DEN0M 
B122=EGVAL2*(B11*B33-B13*B31)/DENOM 
BI23=EGVAL5*(B13*B21-B11*B23)/DEN0M 
BI31=EGVAL1*(B21*B32-B22*B31)/DENOM 
BI32=EGVAL2*(B12*B31-B11*B32)/DEN0M 
BI33=EGVAL3*(B11*B22-B12*B21 )/DENOM 

A SET OF TEMPORAL ODES 

RHOT(l)=-B11*(B11*RHOX1+B12*UX1+B13*TX1) 
-B12*(B21*RHOX2+B22*UX2+B23*TX2) 
-B13*(B31*RHOX3+B32*UX3+B33*TX3) 

UT(I)    =-B21*(B11*RHOX1+B12*UX1+B13*TX1 ) 
+ -B22*(B21*RHOX2+B22*UX2+B23*TX2) 
+ -B23*(B31*RHOX3+B32*UX3+B33*TX3) 
T(I) =-B31*(B11*RHOX1+B12*UX1+B13*TX1) 

+ -B32*(B21*RH0X2+B22*UX2+B23*TX2) 
+ -B33*(B31*RHOX3+B32*UX3+B33*TX3) 

The numerical results from the two ways (1 ) and (2) are 

identical. 

If equation (9) is solved by the Method of Lines and equation 

(25) is solved by the method of Pseudocharacteristics with the same 

finite difference replacement for spatial derivatives, e.g., by a 

centered finite-difference formula, the numerical solutions are 

identical, that means equation (25) reverts to equation (9). This is 

a distinction of the Pseudocharacteristic method, that more 

accurate, stable solutions of hyperbolic partial differential 

equations can be obtained by the Pseudocharacteristic method without 

any additional impact on the solutions.. 
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Density 
kg/m* 

Velocity 
m/s 

Temperature 
°K 

Time=0.002 sec. 

x=0.0m 
x=0.1m 
x=0.2m 
x=0.3m 
x=0.4m 
x=0.5m 
x=0.6m 
x=0.7m 
x=0.8m 
x=0.9m 
x=1.Om 

NST=60 

• 57139 
•58955 
.57798 
.57386 
.56813 
.56263 
•55706 
• 55144 
•54581 
•54018 
•53456 

NFE=105 

782.73 
750.96 
765.61 
768.31 
773-38 
777.87 
782.29 
786.53 
790.61 
794.57 
798.40 

NJE=0 

2697-3 
2708.0 
2705.5 
2706.3 
2706.5 
2706.8 
2707.1 
2707.4 
2707-8 
2708.1 

2708.5 

STEP SIZE= 
2.65E-5 

Time=0.01 sec • 

x=0.0m . 571 39 
x=0.1m .63294 
x=0.2m .60089 
x=0.3m .60200 
x=0.4m • 59148 
x=0.5ia .58491 
x=0.6m •57684 
x=0.7m •56903 
x=0.8m .56070 
x=0.9m •55194 
x=1.Om •54274 

NST=233 NFE=431 

782.73 
685.62 
730.55 
725-08 
737.25 
743.15 
751-29 
758.86 
767.04 
775-83 
785-90 

NJE=0 

2697.3 
2727-1 
2715-5 
2718.7 
2716.7 
2716.5 
2715.6 
2714.8 
2713-9 
2712.8 
2711.4 

STEP SIZE= 
6.45E-5 

Table 2. The 11-Points Solutions of the Pseudo- 
characteristic Method. 

23 



5. Computer Program for MHD Model 

The application of the method of Pseudocharacteristics with the 

Method of Lines to n fixed, discrete points, uniformly distributed 

along the channel, with the spatial derivatives replaced by fourth- 

order biased finite difference formulas produces a set of 2n coupled 

nonlinear, first-order ordinary differential equations which can be 

solved by the numerical integrator LSODE [5]. LSODE is a 

convenient, flexible and portable integrator which has many options 

and capabilities. 

The program for the MHD model which calls LSODE is written as 

the follows: 

1. Set initial conditions 
and parameters 

2. Set arguments for first 
call to LSODE 

DEKIV DERV 
5. Call LSODE—I 

JAC 

4. Print out message of 
integration performance 
and numerical results 

Block 1 is executed by a subroutine INITAL that supplies the 

initial conditions and sets system parameters. The property data for 

the MHD channel section are approximated by polynomial functions 

which are obtained from curve regression and the errors are less 
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than 10$. 

Block 2 supplies the following input arguments on the first 

call to LSODE. 

HEQ  = Number of first-order ordinary 
differential equations. 

Y   = The vector of dependent variables. 

TOUT = First point where output is desired. 

ITOL = An indicator for the type of error 
control. 

RTOL = Relative tolerance parameter. 

ATOL = Absolute tolerance parameter. 

RW0RK= Real work array of length (=20+16*NEQ). 

IW0RK= Integer work array. 

LIW = Declared length of IWORK. 

LRW = Declared length of RWORK. 

ISTATE=An index used for input and output 
to specify the state of calculation. 

1TASK= An index specifying the task 
to be performed. 

IOPT = An integer flag. 

MF  = The method flag. 

Block 3 is ready to call LSODE: 

CALL LSODE (DIRVE.NEQ,Y,TIME,TOUT,ITOL,RTOL,ATOL, 
ITASK.ISTATE,IOPT,RWORK,LRW,IWORK,LIW,JAC,MF) 

Block 4 will print out the numerical result and the messages 

from integrator LSODE. Some of the messages are: 
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NST = The number of steps taken 
for the problem so far. 

NFE = The number of dQ/dt evaluations 
for the problem so far. 

NEJ = The number of Jacobian evaluations 
for the problem so far. 

The integrator performance can be diagnosed from these 

messages. 

LSODE requires two external subroutines, DERIV and JAC. 

Subroutine JAC computes the Jacobian matrix for stiff systems. The 

MHD model system is not stiff, therefore JAC is not used and the 

program passes a dummy name. Subroutine DERIV followed by 

subroutine DERV define the ordinary differential equation system, 

i.e., d()/dt. Subroutine DERV is the most important part of the 

application of the method of Pseudocharacteristics. Subroutine DERV 

is formulated as follows: 
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Call DSS018 for spatial derivative 
replacements for both downwind and 
upwind directions. 

' 
Calculate dependent parameters. 

Transform the PDEs to a canonical 
form   Qt=-AQ^+f. 

Find the eigenvalues of matrix A. 

Calculate the inverse of the 
transformation matrix. 

The spatial derivatives biased with 
the sign of eigenvalues. 
Eigenvalue > 0, Qx = Qx+ 
Eigenvalue < 0, Q  = Q 

Obtain a set of. d_iscretized ODEs : 

fit = - A Qx 
+ 1 

Continue for next spatial point 
calculation 

Keraain the boundary conditions 
for three dependent variables. 
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Computer execution is efficient for the method of 

Pseudocharacteristics. The time to run for the Method of Lines with 

a three-point centered finite difference formula is 13.1 seconds and 

the time to run for the method of Psedocharacteristics with the 

four-point biased formula is 13.6 seconds. 

The advantages of the method of Pseudocharacteristics are the 

ease of formulation, flexibility of selection of spatial derivative 

replacements and compatibility with general-purpose software like 

LSODE, which is a reliable, high-order, error controlled, 

integration package. 
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6. System Jacobian Maps and Eigenvalues 

There are some comparisons that can be made between the 

conventional Method of Lines and the method of Pseudocharacteristics 

using Jacobian maps and the eigenvalues of the Jacobian matrices for 

the discretized ordinary differential equation systems. 

If the Method of Lines is used to discretize the simplified MHD 

model in the form of equation (9) and centered, three-point finite 

difference approximations are used to replace the spatial 

derivatives, a set of initial-value ODEs result suitable for 

integration by LSODE. If eleven solution points are distributed 

uniformly along the first one meter of the channel and the 

integration is run long enough for the solution to approach steady 

state, the Jacobian map of the ODE system will be as shown in Figure 

3- If the MHD model is analytically converted to the form of 

equation (25), and a four-point upwind biased finite difference 

approximation used in the discretization, the steady state Jacobian 

map is as shown in Figure 4. 

In Figure 3 and Figure 4, Rows 1 through 11 represent the 

discretized density equations, Rows 12 through 22 represent the 

discretized velocity equations and Rows 23 through 33 represent the 

discretized temperature equations.  The entries in the Jacobian map 

(in--) indicate the magnitudes of the nonzero elements in the 
■^ J 

Jacobian (J-y) according to IJ-HI ~ 10**(mij-5)«  See Dissinger, 

Schiesser and Johnson [4J« 

The upper right block of nonzero elements in Figure 4 is not 
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present in Figure 'j, and the block bandwidths in Figure 4 are bigger 

than in Figure 3. In general, transformation to the 

Pseudocharacteristic form decreases the number of empty blocks with 

the sequential equation Jacobian map, and increases the block 

bandwidths. The bandwidth is increased by the likelihood of both a 

left-biased finite difference algorithm plus a right-biased finite 

difference algorithm, since CL in equation (25) contains both. The 

number of diagonals within the banded blocks is determined by the 

spatial derivative replacements used and the magnitudes are 

determined by the original problem. The production/absorption terms 

affect the main diagonals of the blocks only. 

The ordinary differential equations can be reordered to reduce 

the Jacobian bandwidth. Figure 5 shows a reordered Jacobian map for 

the discretized standard form, i.e., equation (9) of the MHD model. 

Figure 6 is the reordered Jacobian map for the discretized 

Pseudocharacteristic form, i.e., equation (25) of the MHD model. 

Figure 6 shows a Jacobian map similar to Figure 5» but with a 

slightly greater bandwidth. 

Table (2a) is the list of eigenvalues of the Jacobian of 

discretized equation (9). Table (3b) is the list of eigenvalues of 

the Jacobian of discretized equation (25) at steady state. 

The stiffness ratio is calculated by dividing the largest real 

part of an eigenvalue by the smallest real part of an eigenvalue, 

see Dissinger, Schiesser and Johnson [4], which is expressed as: 
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Imax(Re) | 
Stiffness Ratio = 

|min(Re)| 

The stiffness ratio for the ordinary differential equations 

resulting from the standard Method of Lines discretization with 

centered algorithm used to approximate the spatial derivatives is 

65. The stiffness ratio for the ordinary differential equations 

resulting from the method of Pseudocharacteristics with fourth-order 

biased upwind algorithm is 101. Therefore, in this case, the method 

of Pseudocharacteristics increases the stiffness. 
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11111111112 222 22 2222 33 33 
123^567890123^5678 90123^567890123 

2 68 35 
3 878        5<»5 
f* 866        535 
5 878        5<t5 
6 868        535 
7 878        5*+5 
8 878        535 
9 878        5<*5 

10 878        5*»5 
11 899        555 
12 
13 99 68 68 
l<t 999 878 868 
15 999        868        868 
16 999        878        868 
17 999        868        868 
18 999        878        878 
19 999        878        868 
20 999        878        878 
21 999        878        868 
22 999        899        888 
23 
2^    99 57 58 
25 999        767        868 
26 989        767        868 
27 999        767        868 
28 979        666        868 
29 999        777 868 
30 999        767        868 
31 999        777        868 
32 999        767        868 
33 999        788        899 

Figure  3.   Jacobian Map of Discretized  Equation  (9) 
for an  11-point  Grid by Method of Lines 
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ilill1111122222222223333 
123456789 0123456789 012345 67090123 

2 8888       5555 
3 88807      45553      34443 
4 88887      45553      34443 
5 88887      45553      34443 
6 80887      45553      34443 
7 88887      45553      34443 
8 88887      45553      33433 
9 88887      45553      33433 

10 8888       4555 
11 8999       5565 
12 
13 9999       8886       7887 
14 99999      88087      78886 
15 99999      83887      78836 
16 99999      88887      78886 
17 99999      88887      78886 
18 99999      88837      78886 
19 99999      88807      78886 
20 99999      88887      78886 
21 9999       8888       7887 
22 9999       8999       7888 
23 
24 9999       6676       8888 
25 99999      67776      88886 
26 99999      67776      88886 
27 99999      67766      88886 
28 99999      67766      88886 
29 99999      67766      88886 
30 99999      67766      888H6 
31 99999      67766      88886 
32 9999       6777       8888 
33 9999       7788       8999 

Figure  4-   Jacobian Map of Diacrctized   Equation  (25) 
for an  11-point  Grid by Pseudocharacteristics 
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1111111111222222 22223333 
123456789012345678 901234567890123 

1 
2 
3 
4 63 85 
5 966988 
6 955978 
7 85 74 85 
8 988976988 
9 978966978 

10 85 63 85 
11 988966988 
12 978866978 
13 85 74 85 
14 988976988 
15 978966978 
16 85 63 85 
17 988966988 
18 968766968 
19 85 7k   65 
20 988977988 
21 978976978 
22 85 73 85 
23 988976988 
24 978966978 
25 85 74 85 
26 988977988 
27 978976978 
28 85  74  85 
29 988976988 
30 978966978 
31 85 95 95 
32 983998998 
33 978989989 

Figure 5. Jacobian Map of Di3cretized 
Equation (9) Interleaved 
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1111111111222222222 23 333 
1231*56 78901231*5 6789012 3^567390123 

1 
2 
3 
k        85   8 5   8 5   85 
5 987988988987 
6 968968978968 
7 8'»385<i85t*85fc733 
8 987988988983976 
9 968973978978966 

10 8<*385<t85<t35<*733 
11 987988988988976 
12 968978978978966 
13 3<»335<+35<*85<*733 
m                        987988988988976 
15 968978978963966 
16 8<t385<4357«85<*733 
1.7                                987988988988976 
18 96 897 8 97896fi966 
19 S<4385U85<«P.5<4733 
20 937988938980976 
21 968978978968966 
22 «'»365385^853733 
23 98 7988938988976 
ZU 968978973968966 
25 8<>385385'+S53733 
26 937988988988976 
27 968978978968966 
2 8 8'*   85   85   35 
29 987988988987 
30 968978978978 
31 8 5   95   9 6   95 
32 9879^8998998 
33 978979989989 

Figure 6. Jacobian Hap of Discretized 
Equation (25) Interleaved 
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-548+j14830 -601 3+j16700 
-548-j1 4830 -601>j16700 

-1297+J12640 -7197+J16160 
-1297-j12640 -7197-J16160 

-10J10 -8874+J11960 
-2343+J9392 -8874-jl1960 
-2343-J9392 -10270+j6965 

-363+J7301 -10270-J6965 
-363-J7301 -10410+J1909 
-681+J6209 -10410-j19090 
-681-J6209 -3617+J8100 

-3147+J5323 -3617-J8100 
-3147-J5323 -2930+J7853 
-1200+J4690 -2930-J7853 
-1200-J4690 -4372+J5902 
-4062+J995 -4372-J5902 
-4062-J995 -5069+J3450 
-1464+J2726 -5069-J3450 
-1464-J2726 -5196+J988 

-159+J1529 -5196-J988 
-159-J1529 -917+J1859 

-1342 -917-J1859 
-202+J1109 -805+J1414 
-202-J1109 -805-J1414 
-253+J717 -566+J852 
-253-J717 -566-J852 
-315+J174 -103+J493 
-315-J174 -103-J493 
-433+J376 -184+J247 
-433-j376 -184-J247 

(a)  Eigenvalues for (b)  Eigenvalues for 
Equation 9 Equation 25 

Stiffness ratio =  10310 Stiffness ratio =10410 
158.6 102.9 

=65 = 101 

Table 3. The Eigenvalues of Jacobian Matrix For 
Three Equations Unconstrained System 
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7. Reduced-order MHD Model 

At the initial state, i.e., time=0, the time derivatives for 

the three discretized conservation equations have been calculated. 

The normalized rate P^./j> for the mass conservation equation is about 

70, the normalized rate b\/U for the linear momentum equation is 

about 50, and the normalized rate T./T for the energy equation is 

about 10, so the mass conservation equation is comparatively faster 

than the momentum equation and the energy equation. This perhaps 

offers an opportunity to simplify the problem, in that, if the 

behavior of the density is assumed to be pseudo-steady, the 

conservation of mass partial differential equation may be reduced to 

an ordinary differential equation in the spatial independent 

variable only. 

If this is done, equation (4) is reduced to 

3(fUA) = 0  , (32) 

and equation (32) is expanded to 

UA 3f + fA 3U + fU 3A = 0 
3x     dx Qx 

or 

3x    U ax  A 3x 

By substitution of equation (33) into equations (5) and (6), the MHD 

model reduces to a second-order model with the dependent variables 
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velocity U and temperature T. The reduced-order model in matrix form 

is 

r 
1 

2U Cp-K 

U-RT/U 

U2 

J 

1 
R 

c_U 

'-*!_* +  (fJxB<Jy><B>)/? 
n 

(34) 
A  x 

(fJ#E<JyXEy> + qwP/A)/f 

This is in the of form of equation (8). 

Equation (33) and equation (34) are combined into a 1-0DE/2-PDE 

system. Elimination of the conservation of mass partial 

differential equation imposes a constraint on the solution of the 

remaining partial differential equations in the form of an implicit 

integral equation which must be solved iteratively at every grid 

point and every evaluation of the righthand sides of the discretized 

set of temporal ODEs. The process must continue until a stringent 

convergence criterion is met to prevent interaction between this 

implicit calculation and the error estimation or the Jacobian 

estimation by numerical first differences internal to LSODE. 

If the resulting 1-0DE/2-PDE model is discretized in standard 

form, i.e., equation (9). and Pseudocharacteristic form, i.e., 

equation (25), the Jacobian maps are shown in Figure 7 and Figure 8 

for sequential equations. The Jacobians are block banded plus lower 

triangular. Figure 9 and Figure 10 are Jacobian maps for equation 

(9) and equation (25) with the discretized equations grouped by grid 
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point (interleaved) instead of by PDE origin (sequential). 

The eigenvalues of the Jacobian matrices are listed in Table 4. 

It shows that the stiffness ratios of the reduced-order models are 

reduced by a factor of four for Method of Lines and a factor of nine 

for method of Pseudocharacteristics. 

65-15 (standard form) 

101 - 11 (pseudocharacteristic form) 

and the number of ordinary differential equations is reduced. 
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1111111111222 
1234567390123456789U12 

1 
2 078        868 
3 6777        868 
4 66873        863 
5 666777        668 
6 6664878        868 
7 66644777        868 
8 666444777        868 
9 6664444676        868 

10 66644444777        868 
11 66644444708        888 
12 
13 868        868 
14 6878        868 
15 66868        868 
16 665878        868 
17 6653868        868 
18 66534878        868 
19 665343878        868 
20 6654434878        868 
21 66644343878        868 
22 66644444888        899 

Figure  7.   Jacobian Map for Reduced-order Model 
in form of Equation  (9) Sequential 

1111111111222 
12345 6789 0123456 78 9 012 

1 
2 8887       7887 
3 67887      78787 
4 677887      78787 
5 6667887      7Q7Q7 
6 66667887      78787 
7 666277887      78787 
8 6662277887      78787 
9 66622176887      78786 

10 66622227877       7887 
11 66622227887       7888 
12 
13 8887       8888 
14 78787      88886 
15 678787      83886 
16 6678787      88886 
17 66578787      88686 
18 665278787      88886 
19 6652278787      83386 
20 66522178786      38886 
21 66622117887       8888 
22 66622117888       8999 

Figure 8.   Jacobian Map for Reduced-order Model 
in form of  Equation  (25) Sequential 
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111111111122? 
12 3tt567 89 0123U5 67«9(]12 

1 
2 
3 887688 
<♦ 886688 
5 6 78 76 78 
6 6 387688 
7 6 6 887688 
8 6 6 8 8 .6688 
9 6 6 6 787678 

10 6 6 5 887688 
11 6 6 6 it   837688 
12 6 6 5 3   886688 
13 6 6 6 k   h   7 8767 8 
i*» 6 6 5 3   «f   887683 
15 6 6 6 <♦«*/♦   7 876 7 8 
16 6 6 c; 3   «♦   3   387588 
17 6 6 6 <f   '+   U   '4   687668 
18 6 6 5 ft   k   3   h   8 87 688 
19 6 6 6 t+   t+   /+   tt   r*   7 8767 8 
20 6 6 6 k   h   3   h   3    887688 
21 6 6 6 £»   «,   <t   4   <+   7 3 8 8 8 8 
22 6 6 6 ^   l>   h   /*   t*   088989 

Figure 9-   Jacobian Map for Reduced-order Model 
in form of Equation  (9)  Interleaved 

1111111111222 
l23^5 6789G123<t567 3 9012 

1 
2 
3        87888877 
<♦        88888878 
5 6770878877 
6 7888788876 
7 6 7778878877 
8 6 7388788876 
9 6 6 6778878877 

10 6 6 7888788876 
11 6 6 6 6778878877 
12 6 6 5 7888788876 
13 6 6 6 2 7778878877 
1<» 6 6 5 2 7888788876 
15 6 6 6 2 2 7778878877 
16 6 6 5 2 2 7888788876 
17 6 6 6 2 2 1 7768878876 
18 6 6 5 2 2 1 7880788866 
19 6662222   77887877 
20 6662211   78838378 
21 6662222   77880878 
22 6662211   78898989 

Figure  10.   Jacobian Map for Reduced-order Model 
in  form of  Equation  (25)   Interleaved 
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-243+07576 
-243-J7576 
-603+J6427 
-605-J6427 

-1155+04758 
-1155-04758 
-5650 
-1654+J2674 
-1654-J2674 
-2615 

-313+J2521 
-313-J2521 
-333+01756 
-333-01756 

-1320 
-448 
-444+J604 
-444-J604 
-381+J1138 
-381-jl 138 

-3736+J8311 
-3736-j8311 
-2941+J7965 
-2941-J7965 
-4457+J6052 
-4457-J6052 
-5161+J3560 
-5161-J3560 
-5354+j1074 
-5354-J1074 
-1825+j3386 
-1825-03386 
-16O3+02427 
-16O3-02427 
-1213+0H62 
-1213-0H62 
-526+J827 
-526-J827 
-451+0197 
-451-0197 

(a)  Eigenvalues for 
Equation  (9) 

(b)  Eigenvalues for 
Equation  (25) 

Stiffiness  ratio ■  3650 
242.5 

=    15 

Stiffiness  ratio = 5161 
450.5 

11 

Table 4. The Eigenvalues of the Jacobian 
for Reduced-order Model 
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By transformation of equation (34) to the standard form of 

equation (9) and application of the Method of Lines to the reduced- 

order model, if upwind or biased upwind approximations are used to 

replace the spatial derivatives, the solutions are numerically 

unstable. If the centered three-point approximation is used to 

replace the spatial derivatives, the solution is stable but 

distorted as before. 

The application of the method of Pseudocharacteristics to the 

reduced-order model follows the same process as for the three 

equation unconstrained MHD model, the Pseudocharacteristic form of 

equation (25) is obtained by finding the eigenvalues of matrix _A in 

equation (9) and obtaining the transformation matrix B from equation 

(17). Matrix B  is defined as 

B = 
11 

B21  1 

The Pseudocharacteristic form of the set of ordinary differential 

equations, equation (30), is 

i"„    'f 
B 21 1 

+ 
V 
.f2. 

(35) 
VB11Ux+

+Tx+> 

MB21Ux-+Tx->_ 

Stable solutions of the reduced-order model can be obtained by 

use of higher-order biased upwind finite difference formulas to 

replace the spatial derivatives. The numerical results do not agree 

very well with the results of the three equation unconstrained 
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model. It casts doubt on the pseudo-steady assumption. Besides the 

fact that the conservation of mass equation is not very much faster 

than the momentum and energy equations, there is a better way to 

determine if the system separates into different time-scale systems, 

see Anderson [12]. For a system of coupled linear first-order 

differential equations, i.e.', x = Ax, the n eigenvalues of matrix _A 

can be separated according to absolute value into nonempty sets S 

and F. Set S contains n, nonzero eigenvalues and set F contains np 

nonzero eigenvalues, where n = n.+ n„. A system parameter used to 

measure two-time-scale linear system separation is defined by 

Is | 
r =  n1  < < 1  . 

where S . represents the largest absolute eigenvalue of set S and f.. 

represents the smallest absolute eigenvalue of set F. 

In tne MHD model, the absolute eigenvalues are calculated from 

Table (5a) which represent the eigenvalues at steady state. They are 

(1 ) 14840 (9) 4182 
(2) 12706 (10) 3094 
(3) 10310 (11) 1537 
(4) 9680 (12) 1342 
(5) 7310 (13) 1127 
(6) 6246 (14) 760 
(7) 6184 (15) 360 
(8) 4841 (16) 573 • 

These eigenvalues may be separated into two sets. It can be 

shown that the eigenvalues (11) to (16) come from the density 

equation. Let eigenvalues (11) to (16) belong to set S and the 
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remainder belong to set F. The ratio r is 1537/3094=0.5- In this 

case r is not much less than 1 , which indicates that the density 

equation was not of a sufficiently different time scale from the 

remainder of the model and therefore not a pseudo-steady phenomenon. 

However, the steady state solutions do agree with those of the 

three equation model and there may be instances when the reduced- 

order model offers an economical means to obtain steady state 

solutions in comparison to use of the unconstrained model. 

Also, for large system numerical simulation, the reduced order 

model is very useful if the problem is a multi-time-scale system. 
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8. Numerical Results 

A 51 point grid and split boundary conditions were used to 

obtuin the sample results shown in Figure 11 for mass density, 

Figure 12 for velocity and Figure 13 for temperature as three 

dimensional plots. The temperature and pressure were specified at 

the first, or leftmost, gridpoint, and the pressure was specified at 

the thirty-first, or right most, gridpoint. Direction of flow is 

from left to right. The disturbance is introduced by suddenly 

raising the pressure, or density, at the righthand end. This is 

unrealistically severe but it does introduce a prominent transient 

and permit demonstration of the reflective properties of the 

solution technique. 

The same 31 point grid and split boundary conditions were used 

to obtain the sample results for the constrained reduced-order model 

shown in Figure 14- All the profiles are plotted under the same 

conditions. The three dimensional plots represent the transient 

responses of one meter of MHD channel when the upstream temperature 

and pressure are maintained at 2696.6 K and 422990. N/m . Profiles 

are plotted every 1 millisecond interval along the time coordinate t 

and every 0.053m interval along the spatial coordinate x. The second 

profiles along the x axis are the profiles at 1.0ms at which time 

the pressure at 1.0m was increased by 40000 N/m resulting in an 

instantaneous increase in the density at 1,om. The third profiles 

along x axis occurred at 2.0 ms and began to show the propagation of 

the disturbance. 
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U (m/s) 

Figure 12. Velocity Variation Resulting from a 
Step Increase in Downstream Pressure 
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T (°K) 

Figure 13^ Temperature Variation Resulting from a 
Step Increase in Downstream Pressure 
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RIIO (kc/m5) 

Figure 14. Reduced Order Model Transient Response 
for Density Variation 
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9. Conclusion 

This work presents an example of the Pseudocharacteristic 

method described by Carver [ij. 

The method of Pseudocharacteristics for hyperbolic PDEs is a 

combination of the method of characteristics on a fixed grid and the 

Numerical Method of Lines. It permits flexible application of a 

wide variety of spatial derivative replacement algorithms. The 

spatial derivative replacements used must be apporpriately biased 

according to the signs of associated eigenvalues because of the 

directional nature of hyperbolic equations. It permits application 

of a powerful general-purpose integration software package which has 

many options and diagonostic tools. It is convenient to control the 

integrator performance. Therefore, more accurate and less diffused 

numerical results can be achieved by the method of 

Pseudocharcteristics. 

The MHD channel simulation provided a set of nonlinear, 

nonconservative PDEs which were solved successfully and rather 

straightforwardly by the method of Pseudocharacteristics after a 

standard Method of Lines formulation had failed to produce credible 

results. 
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Nomenclature 

t = Time (s) 

J = Mass density (kg/nr) 

U = Axial velocity (m/s) 

T = Temperature (°K) 

A = Local duct cross-sectional area (m ) 

P = Local perimeter (m) 

q = Average heat flux (KJ/s) 

c = Heat capacity of gas (Kcal/kg°K) 

R = Gas constant (KJ/kg°K) 

p = Pressure (N/m ) 

8 = Internal energy (KJ/kg) 

h = Stagnation enthalpy (KJ/kg) 

T= Average wall shear stress over the 
cross-section (N/m^) 

fjxg<J ><B> = Lorentz force in the axial 
direction (N/m-^) 

fJ>E<J ><E >= Lorentz power (W/m^) 
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