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ABSTRACT

An analytical model of one dimensional flow in the channel
section of a gasified-coal, magnetohydrodynamic, electric power
generator is a set of hyperbolic partial differential equations. It
consists of three coupled, nonlinear, first-order partial
differential equations in local balance equation form with nonzero
production/absorption terms.

Conventional application of the Method of Lines to n fixed,
discrete points, uniformly distributed along the channel, produces
5n coupled, temporal, nonlinear, first~order ordinary differential
equations. The numerical results for the dynamic simulation of the
MHD model show, if a centered finite difference formula is used to
replace the spatial derivatives, are numerically stable but severely
distorted. If ©biased formulas are wused, the solutions are
numerically unstable.

Application of the method of Pseudocharacteristics produces
stable solutions but increases the system stiffness. The
.Pseudocharacteristic equations for the time derivative terms can be
obtained either by solving +the 1linear system without matrix
inversion or by matrix transformation without solving the 1linear

system.

The Jacobian maps and the eigenvalues of the Jacobian matrices

show the system stiffness and stability.



1. MHD Channel Model

The mathematical formulation of the +transient processes in
lorge magnetohydrodynamic generator flow trains was described by
Oliver, Crouse, Moxwell and Demetriades [2]. In that paper, the flow
trains were assumed to consist of a combustor, nozzle,
magnetohydrodynamic power generation channel and a diffuser. For the

purpose of this study, only the channel section is considered.

C 15.859m. ]

Nozzle Niffuser

—m—
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Figure 1. Dimensions of a Hypothetical Channel
As shown in Figure 1, x is the axial coordinate in the flow
direction, y, 2z are cross-sectional coordinates. 2z is aiigned with
the magnetic field. Time is denoted by t. For homogeneous flow, the
element mass fraction equation (1) in [2] is ignored. The
conservation laws in the quasi-one-dimensional approximate model

yield:



conservation of total muass equution

(1)
2 (FA) + 3 (FUA) = Sp
ot °x
conservation of linear momentum equation
2 (PUA) + B (fUPA) = -A(gp - <JxB>)- TP + 5, (2)
3t 3x ox
and conservation of energy equation
%[’)’(E*ng)A] + %(fUho A) = CJ.E> A + q.P + 5 . (3)
2]

S. are functions describing the sources of mass,

The terms Sf, Su’ ¢

momentum and energy due to mass addition and absorption within the
flow truin. They are determined by the mass injection 1locations
within the various sections of the flow train, particularly for the
combustor, so these three terms are neglected in the channel secticn
model.

Also, assuming the fluid behaves like an ideal gas, p = RIf.
The average shear stress over the cross-section T@ ~ 0, and the
average heat flux qw'~ Upgd*

The radative flux - S is represented as
Qrad = Géb(ngs - EgT4)'
thermodynamic relations are

Stagnation enthalpy h, = n + U2/2
internal energy E =h - p/¥

3



The local electric field and current density within the cross-
section of +the duct at any axial station x are _g(x,y,z,t) and
J(x,y,z,t).

Lorentz force in the axial direction

<JxB>x = f

JxB(Jy><}3>

and lorentz power

<J.E)x = f <dJ ><Ey>

J.E'Vy
where fJxB and fJ.E are electrical form factors.
By some substitutions &nd manipulations, the simplified,

analytical model which «consists of a hyperbolic set of three

coupled, first-order, nonlinear partisl differential equations is

obtained
2 (fa) + 3 (fua) =0 (4)
ot ox
2 (PU) + 3 (FUPA) = -A(gp - £5,5<0,><B>) (5)
a3t ox ox
2 ] = +
_E:’a_t[f(&u Aj + %(fUhoA) = £, I CEOA ¢ q P (6)

The three dependent variables selected are the mass density {,
the axial {low velocity U and the temperature T. The MHD model in

matrix form is



; 2
_ (ep-R)T+U 2up (ey-R)§ T,
ru f o [ 7
| [
- U2Ry 2u¢ R iU o=
‘ NIENE 1@ : | o
| cpUru?/2 e PT+3U%f /2 pfU | L T
BIED
' A 3x
1
|~ PU2 3A + £ <J ><B> (7)
—_ JxB*'y
| A ax
l
| 3
| e fur pu3d aa q,P
| - + __ 15 pCIpKE 4 .
[ T =& 2k 3x A
which can be written in local balance equation form
E(Q)_t + _12(3)__x =dQ) , (8)

Wwhere gt and 9« are the time derivative and the spatial derivative
vectors of the dependent variable vector, Q. The vector of

dependent variables is

f(x,t)

Q= U(x,t)
|
[T(x,t)



and the MHD specific terms appear in d, the vector of production/
absorption terms.

In general, equation (8) is a nonlinear, nonhomogeneous,
coupled hyperbolic system of partial differential equations, e.g.,
the equations describing cne-dimensional compressible flow.

Premultiplication by _9'1 simplifies equation (8) to

Qp +AQ =1 (9)

where A = C 'Dand f = C d.



2. Conventional Application of Numerical Me%hod of Lines

The Numerical Method of Lines is a discretization technique for
solving partial differential equations. The Numerical Method of
Lines can be applied to equation (9) by using finite-difference
replacements for the spatial derivatives. Thus +the partial
differential equations are converted to a set of coupled ordinary
differential equations in time derivatives only.

The Method of Lines comprises the spatial derivative algorithms
and the numerical integrators for integration of ordinary
differential equations. The Method of lines has been applied
successfully to partial differential equations for both stiff
systems and nonstiff systems. see Johnson and Hindmarsh [3] for a
stiff system application.

The MHD model is a nonstiff system. The spatial derivatives are
replaced by the finite difference subroutines, DSS5002 for a three-
point centered difference formula, DSSO12 for a two-point upwind
difference formula and DSS018 for a four-point biased wupwind
difference formula, see Dissinger, Schiesser and Johnson [4]. All
the temporal integrations are performed by a suitably powerful ODE
system solver - LSODE [5].

For the first one meter of the MHD channel , the conventional
application of the Numerical Method of Lines to 11 fixed, discrete
points equally spaced along the channel, produces a set of 33
coupled, temporal, nonlinear, first-order, initial value, ordinary

differential egquations.



The numerical results from the application of the Method of
Lines with upwind (DSS012) and biased upwind (DSS018) approximations
exhibit unstable solutions during the time O. to 0.002 seconds .

For +the three-point centered finite difference formula
replacement used, the solution is numerically stable, but severely
distorted. Table 1. presents the eleven-point soclutions for
conservation of mass, linear momentum and total energy equations at
time = 0.002 sec. and at time = 0.01 sec., when using a centered
finite-difference formula to replace the spatial derivatives. The
solution shows severe ripple at time = 0.01 sec.

These solutions may be compared with the solutions from the
method of Pseudocharacteristics, see Table 2. At time = 0.002 sec.,
the solution is close to the solution of the Pseudocharacteristic
method, but the longer the simulation runs, the more distorted the
solution obtained by the conventional application of the Method of
Lines becomes.

The difficulty of applying the Method of Lines to the MHD model
is mainly that discontinuities can propagate in both downstream and
upstream directions. 1In general, hyperbolic problems can be
successfully solved by the Method of Lines with upwind or biased
finite difference formulas to replace the spatial derivatives. But
the spatial derivatives replacements used must be biased in the

directions of propagation.



Density Velocity Temperature

kg/m3 m/s °K

Time=0.002 sec.

x=0.0m .57139 782.73 2697.3
x=0.1m .59637 740. 40 2711.0
x=0.2m «57440 T71.57 2703.9
x=0.3m 57535 766.%4 2706.8
x=0.4m .56794 T74.12 2706. 1
x=0.5m .56280 T77.91% 2706.8
x=0.6m 55708 T82. 42 2707.3
x=0.Tm .55148 786.66 2707.7
x=0.8m 54600 790.79 2707.4
x=0.9m 54041 794.73 2707.4
x=1.0m . 5%472 798. 49 2708.0
NST=48 NFE=T79 NEJ=0 STEP S1ZE=

2.863%E~5

Pime=0.01 sec.

x=0.0m 57139 T782.73% 2697.73%
x=0.1m .66898 603%.00 2747.3%
x=0.2m .56259 789.18 2698.6
x=0.%m 64157 63%9.82 2740.3%
x=0. 4m .55101 798. 31 2699.1
x=0.5m . 60956 684.07 2731.1
x=0.6m .5%646 812. 41 2697.9
x=0.Tm .57068 740. 37 2718.6
x=0,8m 51374 838,55 2693%.4
x=0.9m .51925 819.89 2699.7
x=1.0m . 48193 882.97 2684.0
NST=209, NFE=3%47, NEJ=0 STEP S1ZE=

9.564E-5

Table 1. The 11-Point Solutions from the Conventional
Numerical Method of Lines



3. The Background of Numerical Methods of Charactericteristics

Hyperbolic equations have distinct real eigenvalues which
represent the directions of propagation. For the solution of
problems in which eigenvalues of both signs exist, misaligned
biasing will induce instability. As a8 result of this directional
nature of hyperbolic equations, the numerical methods of
Characteristics for decoupling sets of one-dimensional hyperbolic
partial differential equations have been developed.

Methods may be either of two kinds. One employs differencing
along the characteristic curves, the other employs differencing on a
fixed grid. The former includes the method of differences along a
curvilinear net , see Courant, Isaacson and Rees [6], and the method
of wave tracing, see Hancox and Banerjee [7]. The latter includes
the method of differences on a rectangular net by Courant et al,[6],
and the characteristic finite-difference (CFD) procedure of Hancox
and Mcdonald [8].

In the method of differences along a curvilinear net, a set of

first-order hyperbolic partial differential equations is discretized

into
Subiei v At Q) =1, =1, (10)
i=1
where
A? = dx (1)
dt

10



are the jth characteristic directions.
For each equation of (10), the variables Q' are differentiated in

the characteristic direction Aﬁ, that is
d4Q = Q3 + AJQg (12)
dt

and by substitution of (12) into (10),

M

utd agt = 1* . (13)
Tt

]

i=1

The derivatives in equation (10) are directly replaced along the
characteristic directions by first-order finite differences.

The wave tracing method has been applied to the hyperbolic
purtial differential equations in the form of equation (9).The
method involves transforming equation (9) along the characteristic
directions that are the eigenvectors of matrix A. The two sets of
ordinary differential equations are defined by

the characteristic equations

dx = (14)
dt

and the compatibility equations which result from the transfomation

of equation (9)

Md

©Z

=L (15)

o
ct

where E_aud é.are the coefficient vectors.

The characteristic equations and the compatibility equations

"



along those characteristics are solved recursively based on a first-
order finite difference approximation.

The basis of the methods of differencing along the
characteristic directions is that the soluticn is defined by initial
and boupdary conditions, and two sets of ordinary differential
equations, the characteristic equations and +the compatibility
equations, such as equations (11) and (13), in methods of
differencing along a curvilinear net, and equations (14) and (15) in
the method of wave tracing.

The wave tracing method has been applied to the one-dimensional

flow-boiling problem, see Hancox and McDonald [8].

X

Figure 2. Wave Tracing Algorithm to Advance
Solution along the Characteristics

As shown in Figure 2, six of the required ten equations can be

12



obtained from first-order finite difference approxmétions to the
characteristic and compatibility equations, and between points a and
b there are four equations obtained from linear interpolations along
the adjacent characteristics A,. Therefore the solution involves
linear interpolation and iterative solution of a total of ten
algebraic equations. At a discontinuous phase transition, twenty
nonlinear algebraic equations have to be matched by iteration.
However, the wave tracing method allows discontinuities to propagate
without diffusion and +the numerical solutions obtained can
approximate exact solutions closely. But the method is complicated
to program, expensive to execute and difficult to apply to any
except the simplest geometries. See Hancox and Banerjee [7] for a
third-order application and Ferch [9] for a similar fifth-order
application.

In the methods of characteristics on a fixed grid, i.e., the
method on the rectangular net and the characteristic finite-
difference procedure, the basis is the transformation of the
original set of equations (9) into the following a set of canonical
equations of form (16) with separated and known propagation

directions which permit appropriate biasing, that is,

BQy + ABQ, = B £ (16)

where A is the diagonal matrix of eigenvalues of A and B is the

transformation matrix obtained from :

13



BAB!'=A . (17)

The methods are based on replacing derivatives by first-order
finite-differences in time and space. The following finite
difference algorithm may be written at point k:

if i is positive

@y Q-1

the— M P T Bufk (18)
Xk Xk-1

B

and if i is negative

aQ, Uer1 =%

Bika—t—- YAy By = Byt (19)

The characteristic finite difference procedure has been applied
to a one dimensional flow-boiling problem, see Hancox and Banerjee
[6]. The method produces stable solutions and low cost computation,
but introduces numerical diffusion.

The reason diffusion is introduced is that the finite
difference algorithm using a fixed rectangular grid of points
violates the domain of dependence requirements. The domain of
dependence is the region bounded by Ay and A3 characteristic curves,
see Figure 2. In the wave tracing method, solution point c is at the
intersection of the characteristic curves dx/dt= As (i=1,2,3) that
originate from previously determined solution points a and b. It is
affected only by information contained within the domain of
dependence, while, in the finite difference on a fixed grid method,

14



the values of the dependent variables at grid points outside the
domain of dependence will inevitably enter the difference equations,
then accurate finite difference approximation solutions only could
be produced in the 1limit as time and space discretizations approach

Zerao.

15



4. The Pseudocharacteristic Numerical Method of Lines

The method of Pseudocharacteristics with discretization by the
Method of Lines extends the characteristic finite difference concept
to a canonical form, which combines accomodation of the directional
properties of the hyperbolic equations with higher-order
discretization approximations in time and space. The propagation
directions are separated and directional biasing can be applied
appropriately.

The Pseudocharacteristic equations for the temporal ordinary
differential equations can be obtained either by solving the linear
system, see Carver [1], or by matrix transformation.

(1) Obtain the ordinary differential equations by solving the
linear system.

The scalar equation in (12) can be written as
B 4Qyq*By pQup+By 5Qp 5= = Ay (ByQy4 4B, 5Q,5*B; 5Q, )
+ (Bi1f1+B12f2+Bi3f3) (20)

The spatial derivatives Q Qx? and Qx3 can be replaced by higher-

x1?
order biased approximations according to the sign of the eigenvalues
Aj+ The Pseudocharacteristic equations may be obtained by solving
the i®M linear system equations (19) for the time derivatives Qt1'
Qo and QtS in explicit form without matrix inversion. The method
has been applied to several sets of first-order hyperbolic

equations.

16



Kolev and Katkovsky [11], obtained comparable performance from
the method of characteristics on a fixed grid using a two-step Lax-
Wendroff technique and the method of Pseudocharacteristics using the
GEAR softwuare package for temporal integration and a four-point
upwind biased finite difference approximation for the spatial
derivatives. The results from the method of Pseudocharacteristics
exhibited good accuracy, less numerical diffusion and less computer
time for execution.

(2) Obtain the ordinary differential equations by matrix
transformation.

The DPseudocharacteristic equation form is ©based on the
transformation of equation (16) to a canonical form which is

Et+ W =g . (21)
where W = B Q
The scalar equation in (21) can be written as
Wy

i+7kixi=gi1 i=1,2, 3 (22)

where the superscript indicates which eigenvalue is wused to
establish the direction of biasing.

In terms of original state variables
i _ i i i L - -
Wei = BiqQuq*BioQuo*BisQyy » 1= 1,2,3 . (23)

Therefore equation (16) transforms into the decoupled form

*

Bay v Q= & (24)

17



*

which gx

can be repreasented in vector form

By [29)) ¢ Byp295 * By 20
0 xl)’w 12(8)(2})\‘ 13 "j}’w
*
Qx = | B21{29)  * By ?32) + By Eﬁ)
( x}xz (ax » 5( )(3)‘2
B.,(2Q + B, (2Q. + B -3_~)
1[3){1))\ 52 \7(5?2)}\,. Jp(axp'\j
Define A" = B™'A = 4B~ , then
* %
o+ Aey -1 . (25)

Fquation (25) is the set of ordinary differential equations in
matrix form obtained by inverting transformstion matrix B without
solving the linear system of equations. The Meihod of Lines is used
to discretize this set of partial differential equations with the
stipulation that each spatial derivative must be biased according to
the sign of the associated eigenvalue and weighted by the elements

of the transformation matrix. This is a basic difference from

equation (9) obtained by the conventional application of the Method

of Lines.

To apply the Pseudocharacteristic method to the MHD model of

the channel section, the transformation matrix B can be any

nontrivial solution of equation (17). We define the transformation

matrix as

Byy  Byp
B =18y By .
By By, 1.



the Pseudocharacteristic form of equation (16) is

B, 1 N o o|[B,, By, 11 !
| Bir Bia ?tl 1 fx;
) ! i i ;
;321 Byz 1| ut.- -0 A, 0 321 322 S
‘B ! | | o |
L 5 532 ’_j TtJ 0 o0 A{J Byy Bsy 1 LTXJ

B B

if11

11 By V1
f b
t

i
! i '

To obtain the ordinary differential equations by solving the
linear system, equation (26) can be written in expanded form with

spatial derivatives biased according to the sign of eigenvalues,

which is
By1Py*ByoUp*Ty = = AN (Byy £ *ByoUy 4Ty L)
+ By f+Bpfp*fs (27)
Boy Py Boply Ty = = No(BpyPyo*BaolUio*Tyg)
* Byyfy+Bypfy*fy (28)
By Py *BgpUptly = = Ng(Boyy P *+BooUy +T. )
+ By £y #Bgofotly o (29)
The subscripts "+", "-" and "0" indicate the signs of

eigenvalues. The replacement of spatial derivatives with the signs
“0" and "+" is governed by the positive eigenvalue and "-" by the
negative eigenvalue. In case the eigenvalue is equal to zero, the
spatial derivative is replaced by the centered finite difference

19



formula.

Thus the ordinary differential equations in terms of £ Ut and
T, are obtained by solving linear system equations (27), (28) and
(29) simultaneously. This requires more manipulations than the
matrix transformation procedure.

The following is a portion of the computer program for solving

the linear system:

FIND THE ELEMENTS OF B

B12=(A(1,2)*A(3,1)+A(3,2)*(EGVAL1-A(1,1)))/

+ ({(EGVAL1-A(1,1)¥(EGVALI-A(2,2))

+ "A(1v2)*A(271))
B22=(A(1,2)*A(3,1)+A(3,2)*(EGVAL2-A(1,1)))/

+ ((EGVAL2-A(1,1))*(EGVAL2-A(2,2))

* —A(1y2)*A(271))
Bs2=(A(1,2)*%A(5,1)+A(3,2)*(EGVAL3~A(1,1)))/

+ ((EGVAL%-A(1,1))*(EGVAL3-4(2,2))

+ 'A(1y2)*A(211))
B11=(A(%5,1)+B12%A(2,1))/(EGVAL1-A(1,1))
B21=(A(3,1)+B22%A(2,1))/(EGVAL2-A(1,1))
B31=(A(%,1)+B32%A(2,1))/(EGVAL3-A(1,1))

DENOM=B11¥B22+B12*B%1 +B21¥B32-B12¥B21-B11*¥B32~B22¥B31
CALCULATE RIGHTHAND SIDES OF EQUATIONS 27-29

REQ27=-EGVAL1*(B11*RHOX1+B12*¥UX1+TX1)
+ +B11¥F1+B12¥F2+F3
REQ28=-EGVAL2*(B21 *RHOX2+B22*¥UX2+TX2)
+ +B21 ¥F1+B22*¥F2+F3
REQ29=-EGVAL3*(B31 ¥RHOX3+B32¥UX3+TX%)
+ +B31 ¥F1+B%2*F2+F3

OBTAIN A SET OF TEMPORAL ODES BY
SOLVING EQUATIONS 27-29

RHOT(I)=((B22-B%2)*REQ27+(B21~B22 )*REQ29

+ +(B%2-B12 )*REQ28 )/ DENOM
TP (I)=((B22%B%1 -B21*B%2 )*REQ27+(B12%B21-B22%B11)
+ ¥REQ29 +(B11%B%2-B12*B3%1 )*REQ2¢ )/DENOM

UT(I)=(B21*RHOT(1)~TT(I)+REQ28)/B22

20



To obtain +the ordinary differential equations by matrix

transformation without solving the linear system equations, equation

(25) can written as
Q = - B ABQ + £, (30)
or in explicit form

-1

i—ft "Byy Byp )\1(B11?x++B12ux++Tx+ﬂ:+rf1
1Ug|= - Bay By 1 A (Baq £0*Baallo*Txo) * | £ (51)
LTt B31 B32 1 AB(B31 fx_+B32Ux_+Tx_)J+ f3

See the details of the MHD model computer program coding below.
The program provides a way, in general, to solve a set of first-
order, nonlinear partial differential equations in time and space by

the method of Pseudocharacteristics.

FIND THE ELEMENTS OF B

B12=(A(1,2)*EGVAL1-A(1,2)*A(3, 3)+A(1,3)%A(3,2))/
+ (A(1,3)*EGVALI +A(1,2)*A(2,3)-A(2,2)*A(1,3))
B22=(A(1,2)*EGVAL2-A(1,2)*A(3, 3)+A(1,3)*A(3,2))/
+ (A(1 ] 3)*EGVAL2+A(1 ’2)*A(2v 3)'A(202)*A(1 » 3))
B32=(A(1,2)¥EGVAL3-A(1,2)*A(3,3)+A(1,3)*A(3,2))/
(A(1,3)*EGVAL3+A(1,2)*A(2,3)-A(2,2)*A(1,3))
B11=(A(2,1 )*EGVAL1-A(2,1)*A(3,3)+*A(2,3)*A(3,1))/
+ (A(2,3)*EGVAL1-A(1,1)*A(2,%)+A(2,1)*A(1,3))
B21=(A(2,1)*EGVAL2-A(2,1)*A(3,3)+A(2,3)*A(3,1))/
+ (A(2,3)*EGVAL2-A(1,1)*A(2,3)+A(2,1)*A(1,3))
B31=(A(2,1 )¥EGVAL3-A(2,1)*A(3, 3)+A(2,3)*A(3,1))/
+ (A(2,3)%EGVAL3-A(1,1)*A(2,3)+A(2,1)*A(1,3))

FIND THE INVERSE OF B

DENOM=B11%¥B22¥B%3-B21%¥B32%B13+B12¥B25*B31
+ ~-B13*B22%B%1 -B12%B21¥B35-B2%*B452¥B11

BI11=EGVAL1%*(B22%B5%-B23*B32)/DENOM
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BI12=EGVAL2%*(B13%*B%2-B12%B3%)/DENOM
BI1%=EGVAL%%*(B12%B2%~B15%B22 )/ DENOM
BI21=EGVAL1*(B23*B%1-B21%B%%)/DENOM
BI22=EGVAL2%(B11¥B3%~B1%*B3! )/ DENOM
BI23=EGVAL3¥*(B1%*B21-B11%B23)/DENOM
BI%1=EGVAL1*(B21*¥B32-B22%B31 )/ DENOM
BI32=EGVAL2*(B12*B%1 -B11*B32)/DENOM
BI33=EGVAL3*(B11%B22-B12%B21 )/ DENOM

A SET OF TEMPORAL ODES

RHOT (I )=-B11%(B11*RHOX1+B12*UX1+B13*TX1 )
-B12%( B21 ¥RHOX2+B22*UX2+B23%TX2 )
~B13%( B31 *RHOX 3+B32*UX 3+B35*TX% )

UT(I) =-B21%(B11*¥RHOX1+B12*UX1+B13*TX1)

+ -B22*(B21*RHOX2+B22*UX2+B23*TX2 )
+ ~B23%%( B3 *RHOX3+B32*UX 3+B35*1X3 )
T(I)  =-B%t*(B11%*RHOX1+B12%UX1+B13*TX1 )
+ -B32%( B21 ¥RHOX2+B22*UX2+B23*TX2 )
+ -B33%(B31*RHOX 5+B32*UX 3+B35*TX3)

The numerical results from the two ways (1) and (2) are
identical.

If equation (9) is solved by the Method of Lines and equation
(25) is solved by the method of Pseudocharacteristics with the same
tfinite difference replacement for spatial derivatives, e.g., by a
centered finite-difference {formula, the numerical solutions are
identical, that means equation (25) reverts to equation (9). This is
a distinction of the Pseudocharacteristic method, that more
accurate, stable solutions of hyperbolic partial differential
equations can be obtained by the Pseudocharacteristic method without

any additional impact on the solutions..

22



Density Velocity Temperature
kg/m? m/s °K

Time=0.002 sec.

x=0.0m « 57139 782.7% 2697.3%
x=0.1n . 58955 750.96 2708.0
x=0.2m 57798 765. 61 2705.5
x=0.3m 57486 768, 31 2706.3%
x=0. 4n .56817% T773. 38 2706.5
x=0.5m 56263 T77.87 2706.8
x=0.6m + 55706 782.29 2707.1
x=0.Tm 55144 786.53 2707.4
x=0.8m - 54581 790.61 2707.8
x=0.9m 54018 794.57 2708.1
x=1.0m 53456 798. 40 2708.5
NST=60 NFE=105 NJE=0 STEP SIZE=
2.65B-5

Time=0.01 sec.

x=0.0m « 571739 182.73% 2697.%
x=0.1m .6%294 685.62 2727.1
x=0.2m . 60089 730.55 2715.5
x=0. 3m . 60200 725.08 2718.17
x=0. 4m .59148 1357.25 2716.17
x=0.5m . 58491 T4%.15 2716.5
x=0.6m .57684 751.29 2715.6
x=0.7m .5690% 758.86 2714.8
x=0.8m 56070 767.04 2713.9
x=0.9m .55194 775.83 2712.8
x=1.0m 54274 785.90 2711.4
NST=233% NFE=431 NJE=0 STEP S1%E=
6. 45E-5

Table 2. The 11-Points Solutions of the Pseudo-
characteristic Method.
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5. Computer Program for MHD Model

The application of the method of Pseudocharacteristics with the
Method of Lines to n fixed, discrete points, uniformly distributed
along the channel, with the spatial derivatives replaced by fourth-
order biased finite difference formulas produces a set of %n coupled
nonlinear, first-order ordinary differential equations which can be
solved by the numerical integrator LSODE [5]. ISODE is a
convenient, flexible and portable integrator which has many options
and capabilities.

The program for the MHD model which calls LSODE is written as

the follows:

1. Set initial conditions
and parameters

[

2. Set arguments for first
call to LSODE

!
DERIV__DERV
5. Call LSODE—{ _

JAC

l

4. Print out message of
integration performance
and numerical results

Block 1 is executed by a subroutine INITAL that supplies the
initial conditions and sets system parameters. The property data for
the MHD channel section are approximated by polynomial functions
which are obtained from curve regression and the errors are less
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than 10%.

Block

2 supplies the following input arguments on the

call to LSODE.

NEQ =

Y =

TOUT =

1

ITOL

RTOL =

]

ATOL

RWORK=

IWORK=

LIW

IRW =

ISTATE=

ITABK=

il

IOPT

MF =

Block

Number of first-order ordinary
differential equations.

The vector of dependent variables.
First point where output is desired.

An indicator for the type of error
control.

Relative tolerance parameter.

Absolute tolerance parameter.

Real work array of length (=20+16*NEQ).
Integer work array.

Declared length of IWORK.

Declared length of RWORK.

An index used for input and output
to specify the state of calculation.

An index specifying the task
to be performed.

An integer flag.

The method flag.

% is ready to call LSODE:

CALL LSODE (DIRVE,NEQ,Y,TIME,TOUT, ITOL,RTOL, ATOL,
ITASK, ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC,MF)

first

Block 4 will print out the numerical result and the messages

from integrator LSODE. Some of the messages are:
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NST

The number of steps taken
for the problem so far.

NFE = The number of dQ/dt evaluations
for the problem so far.
NEJ = The number of Jacobian evaluations

for the problem so far.

The integrator performance can be diagnosed from these
messuges.

LSODE requires two external subroutines, DERIV and JAC.
Subroutine JAC computes the Jacobian matrix for stiff systems. The
MHD model system is not stit'f, therefore JAC is not used and the
program passes a dummy name. Subroutine DERIV followed by
subroutine DERV define the ordinary differential equation system,
i.e., dQ/dt. Subroutine DIRV is the most important part of the

application of the method of Pseudocharacteristics. Subroutine DERV

is formulated as follows:
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Call DSS018 for sputial derivative
replacements for both downwind and

upwind directions.

Calculate dependent parumeters.

Transform the PDEs to a canonical
form Qtz-ﬁgxﬁi‘

Find the eigenvalues of matrix A.

Calculate the inverse of the
transformation matrix.

The spatial derivatives biased with

the sign of eigenvalues.
Eigenvalue > 0, Q, = Q.
Eigenvalue < 0, Q = Q _

Obtain a set of giscretized ODEs
Q-tz‘.f‘.gx"_i:

Continue for next spatial point
calculation

Remain the boundary conditions
for three dependent variables.
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Computer execution is efficient for the method of
Pseudocharacteristics. The time to run for the Method of Lines with
a three-point centered finite difference formula is 13.1 seconds and
the time to run for the method of Psedocharacteristics with the
four-point biased formula is 13%.6 seconds.

The advantages of the method of Pseudocharacteristics are the
ease of formulation, flexibility of selection of spatial derivative
replacements and compatibility with general-purpose software like
LSODE, which is a reliable, high-order, error controlled,

integration package.
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6. System Jacobian Maps and Eigenvalues

There are some comparisons that can be made between the
conventional Method of Lines and the method of Pseudocharacteristics
using Jacobian maps and the eigenvalues of the Jacobian matrices for
the discretized ordinary differential equation systems.

If the Method of Lines is used to discretize the simplified MHD
model in the form of equation (9) and centered, three-point finite
difference approximations are used to replace the spatial
derivatives, a set of initial-value ODEs result suitable for
integration by LSODE. If eleven solution points are distributed
uniformly along the first one meter of +the channel and the
integration is run long enough for the solution to approach steady
state, the Jucobian map of the ODE system will be as shown in Figure
% If the MHD model 1s analytically converted {o the form of
equation (25), and a four-point upwind biased finite difference
approximation used in the discretization, the steady state Jacobian
- map is as shown in Figure 4.

In Figure 3 and Figure 4, Rows 1 through 11 represent the
discretized density equations, Rows 12 thfough 22 represent the
discretized velocity equations and Rows 23 through 3% represent the
discretized temperature equations. 'The entries in the Jacobian map
(mij) indicate the magnitudes of the nonzero elements in the
Jacobian (Jij) according to }Jiji ~ 10**(mij-5). See Dissinger,
Schiesser and Johnson [4].

The upper right block of nonzero elements in Figure 4 is not
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presenf in Figure J, and the block bundwidths in Figure 4 are bigger
'than in Figure 9. In general, transformation to the
Pseudocharacteristic form decreases the number of empty blocks with
the sequential equation Juacobian map, and increases the block
bandwidths. The bandwidth is increased by the likelihood of both a
left-biased finite difference algorithm plus a4 right-biased finite
difference algorithm, since g: in equation (25) contains both. The
number of diagonals within the banded blocks is determined by the
spatial derivative replacements used and the magnitudes are
determined by the original problem. The production/absorption terms
affect the main diagonals of the blocks only.

The ordinary differential equations can be reordered to reduce
the Jacobian bandwidth. Figure 5 shows a reordered Jacobian map for
the discretized standurd form, i.e., equation (9) of the MHD model.
Figure 6 is the reordered Jacobian map for the discretized
Pseudocharacteristic form, i.e., equation (25) of the MHD model.
Figure 6 shows a Jacobian map similar to Figure 5, but with a
alightly greater bandwidth.

Table (%a) is the 1list of eigenvalues of the Jacobian of
discretized equation (9). Table (3b) is the list of eigenvalues of
the Jacobian of discretized equation (25) at steady state.

The stiffness ratio is calculated by dividing the largest real
part of an eigenvalue by the smallest real part of an eigenvalue,
see Dissinger, Schiesser and Johnson [4], which is expressed as:
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|max(Re)|
Stiffness Ratio =

Tmin(Re)T

The stiffness ratio for the ordinary differential equations
resulting from the standard Method of Lines discretization with
centered algorithm used to approximate the spatial derivatives is
65. The stiffness ratio for the ordinary differential equations
resulting from the method of Pseudocharacteristics with fourth-order
biased upwind algorithm is 101. Therefore, in this case, the method

of Pseudocharacteristics increases the stiffness.
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-548+j14830 -601%+316700
~548-3148%0 -6013%-316700
-1297+j12640 =7197+j16160
-1297-312640 -7197-316160
-10310 -8874+311960
=-234%+ 393592 ~-B874-j11960
-2343-39392 ~-10270+j6965
-363+Jj7301 -10270-j6965
=36%=37301 -10410+J1909
-681+3j6209 -10410-3j19090
-681-36209 -3617+38100
~3147+35323 -3617-38100
-3147-35%23 ~-2930+37853
-1200+j4690 -2930-37853%
-1200-34690 -4372+35902
-4062+ 3995 -4372-35902
-4062-3995 -5069+ 33450
-1464+32726 ~-5069- 33450
-1464-32726 -5196+j988
-159+31529 -5196- 3988
-159~j1529 -917+j1859
~13542 -917-j1859
-202+j1109 -805+31414
-202-3j1109 -805-31414
=253+3T17 -566+3852
-253=-3T7 -566-7j852
-515+3174 -1035+3493
-515-j1174 -10%-3493
-4353+3576 -184+j247
~43%-3576 -184-3247
(a) Eigenvalues for (b) Eigenvalues for
Equation 9 Equation 25
Stiffness ratioc = 10310 Stiffness ratio =10410
158.6 102.9
= 65 =101

Table 3. The Eigenvalues of Jacobian Matrix For
Three Equations Unconstrained System
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7. Reduced-order MHD Model

At the initiul state, i.e., time=0, the time derivatives for
the three discretized conservation equations have been calculated.
The normalized rate Pt/f for the mass conservation equation is about
70, the normalized rate Ut/U for the linear momentum equation is
about 50, and the normalized rate Tt/T for the energy equation is
about 10, so the mass conservation equation is comparatively faster
than the momentum equation and the energy equation. This perhaps
offers an opportunity to simplify the problem, in that, if the
behavior of the density is assumed to be pseudo-steady, the
conservation of mass partial differential equation may be reduced to
an ordinary differential equation in the spatial independent
variable only.

If this is done, equation (4) is reduced to

and equation (%2) is expanded to

UA 3P + A 2U + PU DA = O
9X ax 9x

or

af = - g - f (3%)
ox U ax A

¢

By substitution of equation (%3) into equations (5) and (6), the MHD

model reduces to a second-order model with the dependent variables
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velocity U and temperature T. The reduced-order model in matrix form

is

1
(@)

U-RT/U O

IR I R i
! Ut I ;

[E_A_ + (£, I/ ]
A !

i
t

g

|
'
|
|
[

2U c_~-R i

®

+

l S (34)
l(fJ.E<Jy><Ey> + qu/A)/fJ .

This is in the of form of equation (8).

Equation (33) and equation (34) are combined into a 1-0DE/2-PDE
system. Elimination of the <conservation of mass partial
differential equation imposes a constraint on the solution of the
remaining partial differential equations in the form of an implicit
integral equation which must be solved iteratively at every grid
point and every evaluation of the righthand sides of the discretized
set of temporal ODEs. The process must continue until a stringent
convergence criterion is met to prevent interaction between this
implicit calculation and the error estimation or the Jacobian
estimation by numerical first differences internal to LSODE.

If the resulting 1-0DE/2-PDE model is discretized in standard
form, i.e., equation (9), and Pseudocharacteristic form, i.e.,
equation (25), the Jacobian maps are shown in Figure 7 and Figure 8
for sequential equations. The Jacobians are block banded plus lower
triangular. Figure 9 and Figure 10 are Jacobian maps for equation
(9) and equation (25) with the discretized equations grouped by grid
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point (interleaved) instead of by PDE origin (sequential).

The eigenvalues of the Jacobian matrices are listed in Table 4.
It shows that the stiffness ratios of the reduced-order models are
reduced by a factor of four for Method of Lines and a4 factor of nine

for method of Pseudocharacteristics.

65 - 15 (standard form)

101 - 11 (pseudocharacteristic form)

and the number of ordinary differential equations is reduced.
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-245+j7576

~3736+38311

-243-37576 -37%6- 38311
-603+36427 -2941+37965
-603-36427 -2941-37965

-1155+34758 -4457+ 36052

-1155- 34758 -4457- 56052

3650 ~5161+33560

-1654+ 32674 -5161-33560

-1654-2674 -5354+31074

-2615 -5354-31074
-1 5+ 2521 -1825+ 33386
-313-32521 -1825- 33486
~%%3+31756 -160%+j2427
-3%3-31756 -1603- 32427

-1%20 -1213+ 31462
-448 -121%-31462
-444+3604 -526+j827
-444- 3604 -526- 3827
-381+31138 -451+3197
-381-j1138 -451-3197

(a) Eigenvalues for

(b) Eigenvalues for
Equation (9)

Equation (25)

Stiffiness ratio = %650 Stiffiness ratio = 5161
242.5 450.5

= 15 = 11

Pable 4. The BEigenvalues of the Jacobian
for Reduced-order Model
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By transformation of equation (3%4) to the standard form of
equation (9) and application of the Method of Lines to the reduced-
order model, if upwind or biased upwind approximations are used to
replace the spatial derivatives, the solutions are numerically
unstable. If the centered three-point approximation is wused to
replace the spatial derivatives, the solution 1is stable but
distorted as before.

The application of the method of Pseudocharacteristics to the
reduced-order model follows the same process as for the three
equation unconstrained MHD model, the Pseudocharacteristic form of
equatioﬁ (25) is obtained by finding the eigenvalues of matrix A in
equation (9) and obtaining the transformation matrix B from equation

(17). Matrix B is defined as
r
By f!

Tl

The Pseudocharacteristic form of the set of ordinary differential

equations, equation (30), is

-1
r =
U "B 1]
t _ 151
= - ! + . (35)
Ty Ba ‘J No(BpylUy * T, | | o)

A1(B11Ux++ Tx+) £

Stable solutions of the reduced-order model can be obtained by
use of higher-order biased upwind finite difference formulas to
replace the spatial derivatives. The numerical results do not agree

very well with the results of the three equation unconstrained
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model. It casts doubt on the pseudo-steady assumption. Besides the
fact thut the conservation of mass equation is not very much faster
than the momentum and energy equations, there is a better way to
determine if the system separates into different time-scale systems,
see Anderson [12]. For a system of coupled linear first-order
differential equations, i.e., é_= Ax, the n eigenvalues of matrix A
can be separated according to absolute value into nonempty sets S
and F. Set S contains n, nonzero eigenvalues and set F contains n,
nonzero eigenvalues, where n = n1+ n,. A gystem parameter used to

2

measure two-time-scale linear system separation is defined by

Is |
r= nt << 1 .
|1‘1 l
where Sn1 represents the largest absolute eigenvalue of set S and f1
represents the smallest absolute eigenvalue of set F.

In the MHD model, the absolute eigenvalues are calculated from

Table (%a) which represent the eigenvalues at steady state. They are

(1) 14840 (9) 4182
(2) 12706 (10) %094
(%) 10310 (11) 15%7
(4) 9680 (12) 1342
(5) 7310 (13) 1127
(6) 6246 (14) 760
(7) 6184 (15) 360
(8) 4841 (16) 573 .

These eigenvalues may be separated into two sets. It can be
shown that the eigenvalues (11) to (16) come from the density
equation. Let eigenvalues (11) to (16) belong to set S and the
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remainder belong to set F. The ratio r is 153%7/3094=0.5. In this
case r is not much less than 1, which indicates that the density
equation was not of a sufficiently different time scale from the
remainder of the model and therefore not a pseudo-steady phenomenon.

However, the steady state solutions do agree with those of the
three equation model and there may be instances when the reduced-
order model offers an economical means %o obtain steady state
solutions in comparison to use of the unconstrained model.

Also, for large system numerical simulation, the reduced order

model is very useful if the problem is a multi~time-scale system.
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8. Numerical Results

A 31 point grid and split boundary conditions were used to
obtain the sample results shown in Figure 11 for mass density,
Figure 12 for velocity and Figure 13 for temperature as three
dimensional plots. The temperature and pressure were specified at
the ftirst, or leftmost, gridpoint, and the pressure was gpecified at
the thirty-first, or right most, gridpoint. Direction of flow is
from left +to right. The disturbance is introduced by suddenly
raising the pressure, or density, at the righthand end. This is
unrealistically severe but it does introduce a prominent transient
and permit demonstration of the reflective properties of the
solution technique.

The same 31 point grid and split boundary conditions were used
to obtain the sample results for the constrained reduced-order model
shown in Figure 14. All the profiles are plotted under the same
conditions. The +three dimensional plots represent the transient
responses of one meter of MHD channel when the upstream temperature
and pressure are maintained at 269Y6.6 K and 422990. N/m2. Profiles
are plotted every 1 millisecond interval along the time coordinate t
and every 0.053m interval along the spatial coordinate x. The second
profiles along the x uxis are the profiles at 1.0ms at which time
the pressure at 1.0m was increased by 40000 N/m2 resulting in an
instantaneous increase in the density at 1,om. The third profiles
along x axis occurred at 2.0 ms and began to show the propagation of

the disturbance.
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Figure 12. Velocity Variation Resulting from a

Step Increase in Downstream Pressure
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9. Conclusion

This work presents an example of +the Pseudocharacteristic
method described by Carver [1].

The method of Pseudocharacteristics for hyperbolic PDEs is a
combination of the method of characteristics on a fixed grid and the
Numerical Method of Lines. It permits flexible application of a
wide variety of spatial derivative replacement algorithms. The
spatial derivative replacements used must be apporpriately biased
according to the signs of asscciated eigenvalues because of the
directional nature of hyperbolic equations. It permits application
of a powerful general-purpose integration software package which has
many options and diagonostic tools. It is convenient to control the
integrator performance. Therefore, more accurate and less diffused
numerical results can be achieved by the method of
Pseudocharcteristics.

The MHD channel simulation provided a set of nonlinear,
nonconservative PDEs which were solved successfully and rather
straightforwardly by the method of Pseudocharacteristics after a

standard Method of Lines formulation had failed to produce credible

results.
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Nomenclature

ot
1]

Time (s)

9 = Mass density (kg/m3)

U = Axial velocity (m/s)

T = Temperature (°K)

A = Local duct cross-sectional area (m2)
P = Local perimeter (m)

q,= Average heat flux (Kd/s)

cp= Heat capacity of gas (Kcal/kg®K)

R = Gus constant (KJ/kg°K)

p = Pressure (N/m?)

¢ = Internal energy (KJ/kg)

h_= Stagnation enthalpy (KJ/kg)

.= Averuge wall shear stress over the
cross-section (N/mé)

f <J_><B> = Lorentz force in the axial
JxB ™y . 3
direction (N/m”)

fJ.E<Jy><Ey>= Lorentz power (W/m3)
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