Development and design of a power monitor circuit.

Takashi Tsuda

Follow this and additional works at: http:/ / preserve.lehigh.edu/etd
Part of the Electrical and Computer Engineering Commons

Recommended Citation

Tsuda, Takashi, "Development and design of a power monitor circuit." (1982). Theses and Dissertations. Paper 2375.

DEVELOPMENT AND DESIGN OF

A POWER MDNITOR CIRCUIT

bv
Takashe Tsuda

A Thesis
Presented to the Gradiate cominttee
of Iehigh Iniversity in Eandidacy for the Degree of Master of Scfence
$1 n$
Electrical Engineering

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest EP76651
Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

This thesis 1.5 accepted and approver in partial fulfillment of the requirements for the degree of Master of Science.

Decemith 10,1952 (date)

Acknowlergements

The author gratefilly acknowledaes the helpful advice, ald ant motivation nrovited by Dre C. S. Holzinger in completing this work.

Table of Contents
Abstract 1

1. Introduction 2
2. Power Distribution Systems and Power Measurement 4
2.1 Common Cower Distribution Systems 4
2.2 Pover feasurement 7
3. Transformers 16
3.1 Transformer Kquivalent: Circult 16
3.2 Iransfer Eharacteristics of Current Transformers 2.5
4. Power Monitor Circuit Overview 4.
4.1 こirciit Specification 42
4.2 Basic Eircuit Diagram 45
4.3 Transfer Characteristios of the Basic Circuit 49
Diagran
4.4 Consideration of. Current Transformer Monlinear 55 Transeer Characteristirs
5. Hardware Construction 70
5.1 Voltage and Current Measirement Circuit 70
5.2 Power Computation Circuit. 74
5.3 Current leevel Detector 77
5.4 Digital Computation and control Clrcuit 80
5.5 Disolay Circuit 90
6. Microcomputer Program 92
7. 1 Program Outline 02
6.2. Hinary to SED Algorithm 97
8. Circuit Performance 104
7.1 Theoretical Ferformance 104
7.2 Test of こircuit Performance 107
9. Conclusion 120
References 122
Appendix A 123
Vita $\quad 128$

List of Fiqures

Figure	2-1:	120 V, sing̣lemphase, 2-wire system	5
Figure	2-2:	120/2.40 V, single-ohase, 3-wire system	5
Figure	2-3:	120/208 V, 3-nhase, 4-wire system	6
Figure	2-4:	277/480 V, 3-phase, 4-wire system	6
Figure	2-5;	240/416 V, 3-phase, 4-wire systern	8
Figure	2-6:	120/208/240 v, 3-phase, 4-wire delta system	8
Figure	2-7:	Measurement for the total power calculation	14
Figure	3-1:	circuit representation of an ideal transformer	17
Figure	3-2:	Equivalent circiit of Figure 3-1	7
Figure	3-3:	Tnstrument transforiners in the power distrinution system	19
Figure	3-4:	Current transformer	9
Figure	3-5:	Euluivalent circuits of a real	22
Figure	3-6:	Equivalent rifcuit of a current transformer	28
Figure	3-7:	circuit used to determine the excitation imperance and the secondary leakage reactance of the $C T$	31
Figure	3-8:	Test circuit used to measure the CT's transfer chararteristics	35
Figure	3-9:	Gain of the sagnenmi CT	37
Figure	3-10:	Phase shift of the SAGOEN-1 CT	38
Figure	3-11:	Gain of the SAGOEM-1 CT	40
Figure	3-12:	Phase stifft of the SAGOEN-1 CT	1
Figure	4-1:	Basic block dianram of the nower monitor circuit	46
Figure	4-2:	Block dingram of the transfer characteristics of the analog part	51
Figure	4-3:	Block diadram of the transfer characteristics nf the analng part with the phase shifter	59
Figure	4-4:	Error callsed hy the CT for the circuit with the bhase shifter	61
Figure	4-5:	firror caused by the ET for the circuit with the phasn shifter	62
Figure	4-6:	Error caused hy the ET for the circuit with the phase shifter and the current	65
Figure	4-7:	level detector Firror caused by the ct for the circujt with the phase shifter and the current level detector	66
Figure	4-8:	Block djagran of the pover monitor circuit	67

Figure	5-1:	Voltare and rurrent measurement circuit	71
Flgure	5-2:	Poser computation circujt	5
Figure	5-3:	Gurrent leval retector	9
Figure	5-4:	oiuital conmutation and control	1.
Figure	5-5:	Pransfer curve of the $1 / 0$ converter	82
Figure	5-6:	Tining and control sequence of the A / D converter	4
Figure	5-7:	Sonfiguration of. T / d pins of the R05!.	86
Figure	5-8:	Disolay circuit.	1
Figure	6-1:	Gutijne of the projram	3
Figure	6-2:	Ainary to HCO algorithon	103
Figure	7-1:	dotifled power manitor circuit	108
Figure	7-2:	rest circuit and a part of the modieied powne monitor circuit	112
Figure	7-3:	Dutput indications of the power monitor circifit when $\varphi_{60}-\theta=0$	115
Figure	7-4:	Dutput indications of the power nonitor circuit when $\varphi_{60}-\theta=20^{\circ}$	116
Figure	7-5:	Dutput indications of the power manitor circilit whan $\varphi_{60}-\theta=40^{\circ}$	117
Figure	7-6:	Dutput indicatinns of the power monitor cirenit when $\varphi_{60}-\theta=-20^{\circ}$	18
Figure	7-7:	Dutput indications of the power nonitor eircilt when $\varphi_{60}-\theta=-40^{\circ}$	19
Figure	A-1:	Phasor diagram of the circuit in Figure 3-7	124
Figure	A-2:	Phasor diagram of the circuit in Figure 3-6	126

List of Tahles

rable 4-1: Weight. of one hit of the output of the 69A/D converterTable 5-1: \quad / 0 pin assignment of the 805187Table 6-1: Destination nf the SYSTEM BRANCH block 95and tine to calculate the total power
Table 7-1: Tutput errar of the power monitor 106circuit

Abstract

The object of this work is to develop and desion a microprocessor based power monitor circuit for use in ofeice, commercial or lig̣ht industrial bullifings.

Voltage and current transformers with capabil.ities up to $277 V$ and 230 A respoctively are used to assure ease of installation and accurate measurement.

After surveying the oxisting mower distribution systens currentiy in use, $\exists \mathrm{n}$ d studying in detail the characteristies of the requirfol instrument transformers, a circuit based on the lntol most inicrocompiter and the Exar Integrated system xR-2.0n8 operation multiplier is teveloged.

A detailed study of the pffocts of harmonics in the measured current waveforms and flow charts for the microconputer program are fncluded.

Botn a detailed mathomatical error analysis and an experimental stuay show that nower measurements of 1.9% accuracy are provided at powers up to 23 l k .

1. Introduction

This work presents the development and design of a micropdocessor based power monjtaring circuit for use in offlee, commercial or light industrial bulldings. With the ever rising energy costs it is becominy very important to institute allomatic control of the energy usaje in such buildings. An verv important component of any serlous energy management system is the ability to accurately measure the flns of electrical power into the building.

There are several fentures which are required in such a poser monjtor. first, the output. of the power monitor circuit should he in dicital form in order to easily interface with the remaining parts of the control system. Seconi, easy fnstallation of the metering device is lmportant. However, orifnary power meters have to be inslalled in the power lines. That is, the pover lines have to be cut. This is quite inconvenient. Transformers can solve this problem and are employed for the voltacge and current measurament of the power monitor circuit. Because of the importance of the transforiners thejr characteristics are analyzed in detail later on.

There are several kinas of poper distribution systems commoniy used in office, commercial or light industrial buildings. Therefore, for the thitd fegture
the poaer monitor circuit is designed to have the elexiollity to measure power in different kinds of power distribution system.
2. Power Distribution Systems and Power Measurement
2.1 Common Power Distribution Systems

There are several power distribution systems commonly used in office, commercial and light industrial buildings [1, 2]. The frequency of all the systems is 60 Hz in most cases. Thesp systems are:
(1) 120 V, single-phase, $2-w i r e$ system (see figure 2-1): This is used for the smallest of facilities such as small residences, out-hilidings and isolated small loads. This is also the arrangoment of the usual branch circuit.
(2) $120 / 240 \mathrm{~V}$, single-phase, 3-wire system (see Figure 2-2): This is a commonly used system in many resiaences, simall apartments and commercial buildings. The single phase transformer is center-tapped to establish a neutral. The neutral connection is always grolunde:
(3) $120 / 203 \mathrm{~V}, 3$-phase, 4 -wire system (see fialure 2-3): This system is the most wirely used 3-phase arrangenent for melfum sized facjlities. The neutral connection is connected to the svstem ground.
(4) 277/189 V, 3-phase, 4-wire system (see Figure 2-4): This system Is lifealy suited for mulistory office builfings and large single-level or multilevel

Line A

Figure 2-1: 120 V , single-phase, 2-wire system

Figure 2-2: $120 / 240 \mathrm{~V}$, single-phase, 3-wire system

Figure 2-3: $120 / 208 \mathrm{~V}, 3$-phase, 4-wire system

Line C

Figure 2-4: $277 / 480 \mathrm{~V}, 3$-phase, 4-wire system

Industrial bididings. Many filuorescent lamps are designed to work off 277 v . This is identical in conflguration to the $120 / 208 \mathrm{~V}$ spstem.
 2-5): This is used only in very large commercial or industrial buildings. This sustem is again identical in coneloguration to the $120 / 208 \mathrm{~V}$ system.
(6) $120 / 208 / 240 \mathrm{~V}, 3$-phase, $4-w i r e$ telta system (see Figure 2-6): This system is used where the motor load represents a large part of the total load. One of the transformers is center-tapped to establish a neutral which is connected to the system ground.

In this paper all wires, except the neutral, may be called jines and each line lis dasignated as fine A, Line B or hine C. Sometimes the configuration of a system is expressed by using the number of lines. For example, 3phase, f-wire systen may be called 3-phase, 3-line system or just 3-line systen.

2.2 Power Measurement

Power is defined to be the time rate of flow of eneriy. The pouer in a one port circuit at any instant, Called the instantaneous power $p(t)$, equals the product. of the instantaneous current., $i(t)$, In the circuit and the instantaneous voltage, $v(t)$, across its terminal at

Figure 2-5: $240 / 416 \mathrm{~V}, 3$-phase, 4-wire system

Figure 2-6: 120/208/240 V, 3-phase, 4-wire delta system
that monent; that is,

$$
\begin{equation*}
p(t)=v(t) 1(t) \tag{2-1}
\end{equation*}
$$

The average power p, often fust called power, is the time average of the instantanenus power in the circuit. If steady-state conditions exist, the power is given by

$$
\begin{equation*}
P=\frac{1}{T} \int_{0}^{T} \rho(t) d t \tag{2-2}
\end{equation*}
$$

where T is the period of the instantaneous power.
since toe voltage waveform of normal power distribution systems is 60 Hz sinusoidal, only this voltage waveform is considered for the analysis of power in this work. Thus, the instantaneous voltage of a system is expressed as

$$
\begin{equation*}
v(t)=v_{m} \cos \left(\omega_{0} t+\theta\right), \tag{2-3}
\end{equation*}
$$

or

$$
\begin{equation*}
v(t)=\sqrt{2} v \cos \left(\omega_{0} t+\theta\right) \tag{2-4}
\end{equation*}
$$

where V_{m}, V and θ are the pear value, the root-meansquare (rms) value and thn phase angle of the voltage of the system respectively and $\omega_{0}=$? $\boldsymbol{m}_{\text {on }}$. Usilady the current in power distribution systoms can ne assumed to be stable for some short duration becaliso the current in such
sustens is not continually changiad. foreover, for this stable furation, the current. in the systems can be assumed to be periodic with a period that is the same as that of the voltage of the systoms. Thus, the statile periodic current for some duration is used for the calculation of the power for that duration. In this case the instantaneous poxer is also stable.

The simplest case is one in winich the current in a system is 60 iz sinusoidal. the instantaneous current is expressed as

$$
\begin{equation*}
I(t)=I_{m} \cos \left(\omega_{0} t+\varphi\right) \tag{2-5}
\end{equation*}
$$

$3 r$

$$
\begin{equation*}
i(t)=\sqrt{2} I \cos \left(\omega_{0} t+\varphi\right), \tag{2-6}
\end{equation*}
$$

where $I_{m},[$ and φ are the peak value, the rms value and the phase angle of the current. The power is calculated by using equations 2-1 and $2-2$. The result of the calculation is given by

$$
\begin{equation*}
p=\frac{1}{2} V_{m} I_{m} \cos (\varphi-\theta) \tag{2-7}
\end{equation*}
$$

or

$$
\begin{equation*}
F=V I \cos (\varphi-\theta) \tag{2-8}
\end{equation*}
$$

In this case the power is determined by $V\left(V_{m}\right)$, I (I_{m})
and the phase angle difference between the voltage and the current of the system.

Because of nonlinear joads on power distribution systens the current in the systems is aenerally a distorted ave. Because of perindicity the current can be expressed by the fourler series,

$$
\begin{equation*}
I(t)=I_{0}+\sum_{n=1}^{\infty} I_{n} \cos \left(n \omega_{0} t+\varphi_{n}\right) \tag{2-9}
\end{equation*}
$$

where I_{0} is the magnitude of the te component and I_{n} and φ_{n} are the peak value and the phase angle of the nth harmonic of the current. The instantaneous power is given by

$$
\begin{aligned}
\rho(t)= & V_{m}=0 \operatorname{s}\left(\omega_{0} t+\theta\right)\left\{T_{0}+\sum_{n=1}^{\infty} I_{n} \cos \left(n \omega_{0} t+\varphi_{n}\right)\right\} \\
= & V_{m} r_{0} \cos \left(\omega_{0} t+\theta\right) \\
& +\sum_{n=1}^{\infty} V_{m} I_{n} \cos \left(\omega_{0} t+\theta\right) \cos \left(n \omega_{0} t+\varphi_{n}\right) \\
= & V_{m} I_{0} \cos \left(\omega_{0} t+\theta\right) \\
& +\frac{1}{2} V_{m} I_{1}\left\{\cos \left(\varphi_{1}-\theta\right)+\cos \left(2 \omega_{0} t+\varphi_{1}+\theta\right)\right\} \\
& +\frac{1}{2} V_{m} I_{2}\left\{\cos \left(\omega_{0} t+\varphi_{2}-\theta\right)+\cos \left(3 \omega_{0} t+\varphi_{2}+\theta\right)\right\} \\
& +\quad-\quad-\quad \\
& +\frac{1}{2} V_{m} \tau_{n}\left\{\cos \left((n-1) \omega_{0} t+\varphi_{n}-\theta\right)\right. \\
& \left.+\cos \left((n+1) \omega_{0} t+\varphi_{n}+\theta\right)\right\}
\end{aligned}
$$

+ - - - -

Tne power is calculater by integrating the instantaneous power for the one period nf $60 \mathrm{~Hz}, \mathrm{~T}_{0}$, to yleld

$$
\begin{align*}
& P=\frac{1}{T_{0}} \int_{0}^{T_{0}} p(t) d t \\
& =\frac{1}{T_{0}}\left[\int_{0}^{T_{0}} V_{m} r_{0} \cos \left(\omega_{0} t+\theta\right) d t\right. \\
& +\frac{1}{2} \int_{0}^{T_{0}} V_{m} T_{1} \cos \left(\varphi_{1}-\theta\right) d t \\
& +\frac{1}{2} \int_{0}^{T_{0}} V_{m} I_{1} \cos \left(2 \omega_{0} t+\varphi_{1}+\theta\right) d t \\
& +\frac{1}{2} \int_{0}^{T_{0}} V_{m} T_{2} \cos \left(\omega_{0} t+\varphi_{2}-\theta\right) d t \\
& +\frac{1}{2} \int_{0}^{T_{0}} v_{m} r_{2} \cos \left(3 \omega_{0} t+\varphi_{2}+\theta\right) d t \\
& +\frac{1}{2} \int_{0}^{T_{0}} v_{m} T_{n} \cos \left((n-1) \omega_{0} t+\varphi_{n}-\theta\right) d t \\
& +\frac{1}{2} \int_{n}^{T_{0}} v_{m} r_{n} \cos \left((n+1) \omega_{0} t+\varphi_{n}+\theta\right) d t \\
& +\quad-\quad- \\
& =\frac{1}{2 T_{0}} \int_{0}^{T_{0}} V_{m} T_{1} \cos \left(\varphi_{1}-\theta\right) \text { it } \\
& =\frac{1}{2} V_{m} I_{1} \cos \left(\varphi_{1}-\theta\right) \tag{2-11}
\end{align*}
$$

where $\int_{0}^{T_{0}} \cos \left(n \omega_{0} t+\alpha\right) d t=0$ is used. This equation shows the same result as the 60 Hz sinusoidal current case, equation $2-7$; that $1 s$, the power in power aistribution systems is determined hy onl. the voltage waveform and the 60 Hz component of the current waveform of the systems. Horeover, comparing equations 2-10 and 2-11 theponer in poner alstribution systens ls exactly the sameAs the de conponent of the instantaneous power.For \rightarrow systen with more than two wirese there aremany ways to connect loads. Ancording to the discussionup $: 0$ now, it seems that it may he troublesome to measurethe total pover of such a sustem. rhus, a convenient.thejrem of poner measuroment of a multiconductor orpolyphase noner distributinn sustem is next introduced."Bjondel's Theorem: The total power deliveredto a load system by means nf n conductors $1 s$Jiven by the alopbrafe sum of the indications of॥ *attmeters so inserter that each of the n wirescotalns one wattmeter currentmooll, its potentialcoil being connected between that wire and somepoint of the system in common with all the otherpotentizl coils; if that common function of thepotential jeads is on onn ne the n wires, thetotal pover is obtidnabie fron the indications ofn-l wattaeter elements. [3]"
In other Nords, the total nower ran be calculated Eromvoltages between lines and the neutral (common) and thecurrents in the lines. Applications to the single-phese,3-wire systen and the 3-phase, 1 -ixire system are shown inFijure 2-7. The total power of these systems arecalculated by

(a) single-phase, 3-wire system case

(b) 3-phase, 4-wire system case

Figure 2-7: Measurement for the total power calculation
(a) single-phase, 3-wire system case

$$
\begin{equation*}
p=\frac{1}{T_{0}} \int_{0}^{T_{0}} v_{A} i_{A} d t+\frac{1}{T_{0}} \int_{0}^{T_{0}} v_{B} i_{B} d t \text {, or } \tag{2-12}
\end{equation*}
$$

(b) 3-phase, 4-wire sustem case

$$
\begin{aligned}
P=\frac{1}{T_{0}} \int_{0}^{T_{0}} v_{A} i_{A} d t & +\frac{1}{T_{0}} \int_{0}^{T_{0}} v_{B} i_{B} d t \\
& +\frac{1}{T_{0}} \int_{n}^{T_{0}} v_{C} i_{c} d t \quad
\end{aligned}
$$

3. Transformers

3.1 Transformer Equivalent Circuit

The poner monitor circuit uses transformers for voltaje and current measurment of power distribution systems. There are sevoral advantages of the use of transformers. llowever, the characteristics of real transforners differ from these of ideal ones and are Guite important factors for the nower measurement. In this chapter the characteristics, especially transfer chartcteristics, are discussed.

Before real transformers are discussed ideal transformers $\exists r e$ considered. The circuit representation of an ideal tiansformer is shoon in figure $3-1$. There are two lossless windings, the prinary with N_{p} turns, and the secondary with iss turns, and an ideaj core whose hypotnetical material has a linear $B-H$ curve with infinlte permeability. Unfer these conditions no leakage flux escapes from the core, and the total fiux is proportional to the net magnetomotive force. The voltage and current relationships between the primary and the secondary are

$$
\begin{equation*}
v_{s}=\left(N_{s} / N_{p}\right) v_{p}=N v_{p} \tag{3-1}
\end{equation*}
$$

and

Figure 3-2: Equivalent circuit of Figure 3-1

$$
\begin{equation*}
I_{p}=\left(\|_{s} / H_{p}\right) 1_{s}=i i_{s} \tag{3-2}
\end{equation*}
$$

where $\quad v_{p}, \quad v_{S}, i_{p}$ and $i s$ are the prinary voltage, the secondary voltage, the primary current and the secondary current. respectively, and n is the secondary-to-primary turns ratio,

$$
\begin{equation*}
N \triangleq U_{s} / V_{p} \tag{3-3}
\end{equation*}
$$

Using these relationships the various circuit elements zan be referred to either as the prinary or secondary by maltiplying or dividdng by the square of the secondary-to-primary turns ratio, H^{2}. For instance, the equivalent =ircilt of figure $3-1$ viewer from the primary circuit is shown Ln Flgure 3-2.

Sesause of equations 3-1 and 3-2. the voltage or current of power distribution systems can be measured using fiteal transformers. When the primary winding is connected between a line and the neutaral, the voltage of tne line is sensed by measuring the serondary voltage (see figure 3-3). In this case the transformer is called an finstrunent voltage transforner or fust a voltage transformer, (VT). When the primary winding ls inserted in a line the current in the fine is sensed by measuring the secondary current (ser figure 3-3). Note that the secondary load in this case should be resistive. A

Figure 3-3: Instrument transformers in the power distribution system

Figure 3-4: Current transformer
transfor ier for this use is cajped an instrument current transformer or just a current transformer, (CT). In many Eases an iron core with a secondary winding is used so that a wire in the systen is encircled by this iron core and becones the primary ifinalng of a CT (see figure 3-4). lhe primary winding of this CT is one, and the wire does not. have to de cut. Insertion of a transformer affects voltage and current of the power distribution system since the secondary load of the transformer is also the load of the system. Therefore, the secondary load and N are cnosen carefully so that the effect of transformer insertion is reduced.

There are several advantagns to using transformers in the power distribution system. These are:

- VT's pernit low-voltage measurement of nighm voltage systems.
- Cr's provide a means for reducing large values of current to lower valines of current or voltaide across the secnniary loan resistance.
- Transformers supply the ansulation between poner distribution systems and the power monitor circuit. Thornforn, the power monitor clrcuit can be emplound safely.
- Transforaers provide a high degree of

Abstract

flexibility in locating the porer monitor circuit.

A real transformer diffors from an iteal one in several respects. The iron core is nonlinear, with finite permeability and hysteresis, and the windings have some resistance. Jot all the flux linking the windings goes through the core. The approxinate linear equivalent circuit is shown in figure 3-5(a). Secause of the iron core's nonlinearity each element in the equivalent Ejrcult changes when frequnncy, voltage or current of the primary circuit changes. The resistances Rwp and Rws represent copper losses of the primary and secondary winding. The resistance P_{c} accounts for core losses caused by eddy currents ant hystoresis. The reactances Xip and $X_{\text {ts }}$ represent the leakage reactances of the primary and secondary winding. The magnetizing reactance X_{m} is causet by the magnetizing current. Both the leakage and the maunetizing roactance reflect the iron core's finite permeablilty. The transformer in the equivalent circuft is an ideal one. Figures 3-5(b) and (c) show the eiflivalent circuits with secondary or primary elements referred to on the opposit. side.

The behavior of a real transformer at a certain frequency, voltage and current. f f predictable from its

(a) equivalent circuit of a real transformer

(b) equivalent circuit with secondary elements referred to the primary

Figure 3-5: Equivalent circuit of a real transformer (1 of 2)

(c) equivalent circuit with primary elements referred to the secondary

Figure 3-5: Equivalent circuit of a real transformer (2 of 2)
equivalent circult. when a certain frequency and magnitude of voltage (curront) is applied to the prinary windind, and a certain resistance load is connocted to the secontary winding, the folloning charactertstics can be notej:

- The secondary voltage (current) is less than that of the ideal transformer case.
- The secondary voltaye (current) waveform might be phase shifters a small amount from the primary voltage (current) waveform.

Thus, unlike the ideal transformer case, it is difficult to calculate the primary voltare or current of the real transforger by measuring the secondary voltage or current.

Consider the case in which real transformers are used to measare the voltage or current of a power distribution system. first, fot mill be assumed that the insertion of the liransermer which is used for measuring the voltage or the current does not have any effect on the system. This is a gond assumption berause the load of the systen is usually a much more dominant factor of the voltare and the current of the system than that of the transformer. Thereforn, the primary voltage or current of the transformer is the same as that of the
system without this transformer.
Because the voltage of a power distribution system Is a steady 60 Hz sinusold, one equlvalent circuit is sufficient to describe the behavior of the vt. Thus, the voltage of the system can be sensed by measuring the secondary voltage. The current of a system is generally a aistorted azve and varries wffely in magntude. since a transformer has different transfer charactorfstics for different erequency compnnents, or ditferent current levels, the secondary currant waveform of a CT can fiffer fron the current waveform of the system. It is imposslble to precisely determine the current of the system by neasuring the sernndary current of a cr. some compensation circuit of the $C T^{\circ}$ s transfer characteristics may be needed in order th omploy the ct for the current measurement.

3.2 Transfer Characteristics of Current Transformers

In this section the transfer characteristics of a ct are analyzed and experimentally verified. This work is requiren because current mozsurements of a power distribution systen deperis critically on the transfer characteristies of the C. When the current of a system 15 measuret by a ct the curront of the system should be the input of the CT, that 15 , the primary current of the

CT. The output of the Cr is usually taken as the voltage across a load resistance connocted across the secondary Windinge Normally the primary is one turn. Thus, the transfer function, gain G and phase shift. α, between the primary current and the secondary voltage of the ct with one primary turn is consifered. When the phase shift α is expressed by the time delay ta the transfer function is given by Ge ${ }^{-s t_{\alpha}}$. An Amprobe Tnstrument Model SAbofriml Cr is used for this analysis. The maln features of this CTare as follows,

- nominal primary currant range: 0 - 300 A (with one primary turio,
- maximum secondary nutput: 90 ma continuous duty),
- secondary turns: 2325,
- recommendet secondary load: 30Ω reslstor.

Two ditferent methods are lased to deterinine the transfer characteristics nf this CT. One is based upon difect testing and the other upon calculations using the equivalent. circuit. Although direct testing is sufficient to determine the transfer characteristics of a particular ct, predicting the transer characteristics using the equivalent circuit can be helpful for direct
testing.
In the laboratory it is difficult to obtain $0-300$ A currents (the nominal primarv current range of the ©T) over the freguency ranap which is needed to test. the cir directiv. For conventence, the primary turns of the CT can be increased in order to decrease the secondary-to-prinary turns ratio. With this approach smaller prinary currents are required to test the Cr.

Before the effect of changing the primary turns on the transer characteristios of a $こ T$ is discussed the equivalent circuit of a CT is introduced [4]. The equivalent circuit whose load is resistive is showin in Figure $3 \sim 6$. This circuit is obtainer from the one in figure 3-5(c) whose parillel cireult of focz and $X_{m z}$ are changed to series form. The voltage and current are denoted in phasor form whose magnituries are rms values. In this paper the capital letter of voltage or current with bar denoted the phasor and the capital letter Without a bar denotes the rms values. Moreover, the small jetter denotes the instantaneous value. Tnese notations are understood unless otherwise stated. for instance, the primary eurrent $\bar{\tau}_{p}$ ls expresser as $\bar{I}_{p}=I_{p}{ }^{j{ }^{\varphi}}$.

Since the transformer in the equivalent circuit is 1deal, the primary current \bar{I}_{p} is transformed perfectiy,

\bar{I}_{p} : primary current
\bar{I}_{S} : secondary current
\bar{I}_{1} : primary current referred to the secondary
\bar{I}_{e} : secondary excitation current
$\overline{\mathrm{V}}_{\mathrm{RL}}$: secondary voltage
$\overline{\mathrm{E}}_{\mathrm{e}}$: secondary excitation voltage
N: secondary-to-primary turns ratio
$R_{w p}+j X_{L_{p}}$: primary winding impedance
$R_{w s}+j X_{L s}$: secondary winding impedance
Ref oe: secondary excitation impedance
R_{L} : load resistance

Figure 3-6: Equivalent circuit of a current transformer
witn no ratio or phase error, to the current. \bar{I}_{1}, the prinary current referred to the secondary,

$$
\begin{equation*}
\bar{I}_{1}=\bar{I}_{p} / N \tag{3-4}
\end{equation*}
$$

The secondary current \bar{I}_{s}, and the secondary exciting current \bar{I}_{e}, are Aetermined by \bar{I}_{1} and the circuit elements, irrespective of the values of the primary winding inpedance, Rwp and $x_{\text {Lp }}$. That is, the relation between the primary current and the secondary current does not depend on the primary inding imperance. The number of the primary turns affects only the secondarym to-primary turns ratio N and the impedance inserted into the primary circult by the CT. This, decreasing N can make it possible to test. the CT with smaller primary currents than the nominal primary current, all with no effect on the transfer characteristics.

Next, the calculation of the ct's transfer characteristias from the ergivalent circuit is discussed. In the equivalent circuit T_{1} floxs into the secondary exciting impedance, Re and $X e$; this current is cilled the secondary excitation current, \bar{T}_{S}. It is evident that the secontary excitation voltage $\bar{E} e l s$ a function of \bar{T}_{e}, Re andi X_{e}. Also, \bar{I}_{s} is a function of $\overline{\text { Fee }}$ and the secondary winding impedance, Rws and $X_{l s}$, ant load

determinet $\bar{I}_{p}\left(\bar{I}_{1}\right)$ and \bar{T}_{s} can bn calculated and therefore the transfer characterlstios hetween \bar{I}_{p} and $\overline{\mathrm{I}}_{s}$. can be seterninea. Becamse of Cros nonifnearity Re and de are functions of $\bar{\tau}_{e}$, and E_{ws} and $\mathrm{X}_{\text {Ls }}$ are functions of \bar{I}_{s}.

Using tonis equivalent circuit the transer characteristles at various current levels of 6y hz are determinet. These transfer characteristics of the ct are important. for the power measurement of the poxer distribution systeni. The reason is given later. First, several. assumptions are mate to facilitate calculation and measurenent. One is that liws is a constant for any reasonable current levels of operation. Moreover, Pws at 50 Hz . 15 assuned to be the same as the dc resistance of Rws. Because of the skin affect of conductors Rws is a function of frequency. Howevar, Rws at 69 Hz does not much differ fron the ac resistance of Rws. Therefore, usint the de resistance of ofs in circuits operated at fo az does not introduce sagnificant error. $X_{\text {ls }}$ is also assuned to de a constant for any reasonable current levels because $X_{1 s}$ is smaller and more linear than $x e$. rhus, measurement of Pe and X_{e} vs. \bar{T}_{e} arm $X_{\text {Ls }}$ at 60 ita can letermine the Girs transfer characteristics at bo Hz. The circuit. used to determine fe, $X e$ and $X_{\text {ls }}$ is shoin in figure 3-7, where the primary is left open and a 6i) Hz. sinusoidal voltagn source \bar{E} is connected to the

Figure 3-7: Circuit used to determine the excitation impedance and
the secondary leakage reactance of the CT
secondary. Because tho primary is open, \bar{I}_{1} is zero, $\bar{\tau}_{s}$ equals \bar{I}_{e}, and $\overline{\mathrm{V}}_{1}$ eguals \bar{E}_{e} / H. In this circuit voltajes $\bar{E}, \bar{V}_{R 2}, \bar{V}_{2}$ and \bar{V}_{1} ran be measured. R_{2} and the dc resistance of Rws is moasured directiy. R_{2} is not. necessarily equal to the secondary load resistance RL. Fron these measurements $T e, R e, X_{e}$ and $X_{\text {is }}$ are calculated as follows:

$$
\begin{aligned}
& I_{e}=V_{R 2} / R_{2} \\
& R_{e}=\left(V_{2} / I_{e}\right) \cos \left[\sin ^{-1}\left\{\left(E / V_{2}\right) \sin \zeta\right)\right]-R \\
& x_{e}=\sqrt{\left(N^{2} V_{1}^{2} / T_{e}\right)-R_{e}} \\
& x_{L s}=(3-5) \\
& (3-6) \operatorname{tin} \zeta-x_{e},
\end{aligned}
$$

where ζ is the phase angle difference between \bar{E} and $\bar{V}_{R 2}$. l'ne details of these ralculations are given in Appendix A. Using these calculated values the equivalent circuit for a certain secondary excitation current level is determined. The currents \bar{T}_{1} and $\bar{I} \bar{s}$ can also be determined as follows:

$$
\begin{align*}
& I_{s}=I_{e} \sqrt{R_{e}^{2}+X_{e}^{2}} / \sqrt{\left(R_{L}+P_{w s}\right)^{2}+X_{L s}^{2}} \\
& I_{1}=\sqrt{\left\{I_{e} \cos (\xi-\nu)+I_{s}\right)^{2}+\left\{I_{e} \sin (\xi-\nu)\right\}^{2}} \\
& \alpha=\sin ^{-1}\left(\left(I_{0} / I_{1}\right) \sin (\xi-\nu)\right\}
\end{align*}
$$

where α is the phase angle difforence between \bar{T}_{s} and \bar{I}_{1}, and

$$
\begin{aligned}
& D=\tan ^{-1}\left\{x_{L s} /\left(H_{w s}+R_{L}\right)\right\} \quad \text { And } \\
& \xi=\tan ^{-1}\left(x_{e} / K_{e}\right)
\end{aligned}
$$

The positive α neans that. $\overline{T_{s}}$ leads $\overline{T_{1}}$. The details of these calculations are again given in nppendix A. Then the prinary current of the riont.n one primary turn, $\bar{I} p l$. is given by

$$
\begin{equation*}
\bar{\Gamma}_{p 1}=N_{s} \bar{I}_{1} \tag{3-12}
\end{equation*}
$$

The relation between the primary current $\bar{\tau}_{p 1}$ and the secondary voltage $\bar{V}_{R L}$ can be calculated. The recommended secontary load for the Amprobe SAGOEN-1 CT is a 30Ω resistor. Thus, the follonjng work will assume this value loat. The gain G is given by

$$
\begin{equation*}
G=30 \mathrm{I} / \mathrm{I}_{\mathrm{p}} \tag{3-13}
\end{equation*}
$$

l'he phase shift equals α because $\bar{V}_{R t}$ and \bar{I}_{s} are in phase. The positive α means that $\bar{V}_{R L}$ lead $\bar{I}_{P I}$.

The transeer characteristics at various current levels of 60 ' 2 z were determined by the method stater above. For the test circuit. a 150.3Ω resistor was used as i_{2} and a $60 \mathrm{~Hz}, 120$ v power line run through a stepduwn transformer was usad as the sinusnidal voltage source in the secondary circuit. The prinary turns was set at 200, yieliing $N=11.625$. The secondary winding
resistance, izw, was measured to be 174.5Ω, which ls the de resistance value. The noninal secondary leakage reactance, $x_{t s}$, at 60 Hz was determined to be 180Ω by averaging the calculated values at varions current levels. The resulting transfor rharacteristic curves of Gain G vs. the primary current Tpl, and phase shift α vs. the primary current Ipl, are shown in Figures 3-11 and 3-12 respectively. These transfer characteristic curves wlll be discussed later.

Finally, the transfer characteristics of the CT were tested directiy. The test circuit is shown in Figure 3-8. To permit the use of small primary currents this is done by making the primary turns equal to N_{p} instead of only one. Tne primary curront of the CT with one primary turn, $\bar{I}_{p l}$, can be inferred from the measurement of \bar{v}_{R}; that is,

$$
\begin{equation*}
I_{P} 1=N_{P} V_{R 1} / R_{1} \tag{3-14}
\end{equation*}
$$

-

and the phase angle of $\bar{\tau}_{p l}$ equals that of $\bar{V}_{R 1}$. The secondary voltage, with a load nf $30 \Omega, V_{\text {RL }}=30$ is given by

$$
V_{R L=30}=30 \quad V_{R L} / R_{L} \quad(3-15)
$$

and the phase angle of $\bar{V}_{R L=30}$ equals that. of $\bar{V}_{R L}$. The gain Gis then

Figure 3-8: Test circuit used to measure the CT's transfer characteristics

$$
G=V_{R L=30} / I_{P 1} \quad \text {. }(3-16)
$$

The phase shift α equals that betmeen $\bar{V}_{R 1}$ and $\bar{V}_{R L}$. When. $\bar{V}_{R L}$ Leads $\bar{T}_{P 1}, \alpha$ is positive.

The transfer characteristics at various frequencies were determined by direct restinge pesistors of 3. 8Ω and 31.6Ω vere used as R_{1} and R_{L} respectively. A sinusoldal waye jenerntor and a power amplifier were used as the poxer supply in the primary circuit. The primary turis was fixes at 200. The resulting transfer characteristics, gain G vr. frequency, f, and phase sifit α vse Erequency, are shown in figures 3-9 arnt 3-10 respectively. In each figure there are shown two curves snowing the characteristlc at a different primary current level Lpi Gain G and phase shift α are seen to be nonlinear functions of frequency f and current leved Ipi. When the primary current is a distorted sinusoidal wave this cre can not transform the primary waveform to the seconiary circuft perfertly. In this case it is impossible to determine the primary current precisely fron the seconnary voltagn.

The transer characteristjes at various current. levels at 60 Hz were also measured. Here resistors of 5.1Ω and 31.6Ω were used $75 R_{1}$ and R_{L} respectively. The fo $\mathrm{Hz}, 120 \mathrm{~V}$ power 1 ine and a step-down transforiner

gain G vs. frequency f

Figure 3-9: Gain of the SA60EN-1 CT

phase shift α vs. frequency f

Figure 3-10: Phase shift of the SA60EN-1 CT
were uset as the voltage supplv in the primary circuit. Four different primary turns, 20n, 10!, 50 and 20, were used to test the CT. Pasting at sinall current levels, using fewer primary turns, gives more reliable transer characteristics of the cto rine resulting transfer characterjstiss, fain G vs. the primary current Ipl and phase shift α vs. the primary current Ipi, are shown in Floures 3-11 3nd 3-17 respectively. phase shite α is shown only for the $H_{p}=900$ eqse since ilentical results are dotalned for the lesser turns used. Thus, only phase shift α, when tp equals 2 nn, is shown these figures also show the calculated characteristics as determined Erom the equjvalent. circuit. The directiy measured characteristics and the caleulated ones shon good ajreement. Therefore, the mensurenent is considered to be reasonable. An analysis of the effect of these transfer characteristics on the current measurement isill oe mone in section 4.3.

Althouth different rem of the same model usually have slightly alfferent characteristics, any er of this nodel is assumed to liave exactiv the same characterjatics for convendence sake.

gain G vs. primary current $I_{p \prime}$
Figure 3-11: Gain of the SA60EN-1 CT

phase shift α vs. primary current $I_{p l}$

Figure 3-12: Phase shift of the SA60EN-1 CT

4. Power Monitor Circuit nvervien

4.1 Circuit Specification

A few target power distribution systems were selected as the first step fn the desian of the power monitor circust. fhe power monitor fill be able to measure power in any of the followind four systems:

- 120 v, sinqle~phase, 2-wira system,
- 120/240 v, single-fhase, 3-nire system,
- 120/208 $v, 3-p h a s e, ~ 4-w i r e ~ s y s t e m, ~$
- 277/430 v, 3-phase, 4-wire system.

Tnis selection till cover the systems in the typical offlce, comercial or light industrial bujuldig.

The current range of these target systems is now discussed. The range depends on the device used for current measurement., l.p. the ©T. An Amprobe SAGOEN-1 Cr, whose transfer chararteristics are determined in section 3.2, is emnloyed. Tha specification of this CT shoxis that the maximum recondary current is $90 \mathrm{~mA}-$ continuous duty. the current in power alstribution systems is often steady for some short period. Therefore, 90 ma is rensitared to he the maximum secondary current. Ismax. A 30Ω resistor is used as the secondary loat, F_{L}. The rosultinn maximum secondary
voltage, $V_{R L \max }$, is compitan as $V_{R L \max }=R_{L} I_{\text {smax }}={ }^{\prime}$. 7 [V]. Considting the gain curve in Figure 3-11 shows that the dain G, at the hion current level, is o.01163. Thus, the maxinum prinary current, Iplmax, minch induces Vrimax, is computed as Ipimax $=V_{\text {RLmax }} / 0.01163=230$ [A]. Instead of the noninal prinary current range of the $C T$, the current range 0 - 230 A ds ardonter as the primary current rancie. Therefore, the current range of the target systems is $0-2304$.

The range 0-230 A restricts only the rins value of the current. Since the rms value does not have information about the geat value one more restriction on the current of the taraft systers is made for corvenience. The peak value of the current is limited to 325 A , which is the peat: valle of the 230 A sinusoldal current.

The voltage of power alstribution systems varies sligntly from the nominal value. Therefore, $\pm 10 \%$ of the nominal voltage is considerer as a variable in the input of the circult. The change of the voltage may cause a change in the current. Thus, a $\pm 10 \%$ current is also consideret variable in the infit of the circuit.

Next, outputs of the power monltor circuit are conslideref. The circult displays total poner of the power alstrioution system. The pover of each line in the
systen, unich is useful in ascertaining the balance ot the systen, is also displayer. The measured power is disolayed in decimal format for easy reading. The range
 the total power in the 277/480 $v, 3-p h a s e, ~ f-\operatorname{mine}$ system wita voltage of 10% above the nominal value and current. of 10 z above the maximin vajue. Because of the wide range three significant digits witn a floating decimal point are displayed. This notput indication shows the power in units of kt. The number of significant digits displayed depends on the measurement accuracy. 'rhis number of digits will be decided after the measurement accuracy is further studind. Isually three simificant digits of pover are sufflefent for most power distribution systems.

Selection for the sproffic power distribution system being measured is done by manul switches. That is, the manual switches select the number of the lines and the voltige of the systefi Moroover, the manual suftches select which power option is to be displayed; that is, total power or power of lijne n, fine A or fine C. It may nappen that the selectod line uhose power is to be displayed is not a part of the sustem under measurement. In this case, no-line-jndication is displayed.

4.2 Basic Circuit Diagram

The basic olock diagram of the onwer monitor circuit is shoon in figure $4-1$. This diggrail is not the complete one because the transformores transfer characteristics have not been considered. The romplete blnck diauram is shown after consideratlon of the transformer's transfer chatacteristics. Explanations of the building blocks of this diagran are now presented.
(A) Voltaje and current measurement circuit: This circuit measures voltage ant current of the power distribution system. Thare are, at most, three lines in the power djstrinution system. According to the discussion in section 2.? at most three pairs of voltage and current are needed to measirn the total power in the systfin. $A \quad V \quad$ whose maximum primary voltage is areater than 277 V can be used to measure voltages of 277 V and 120 V on the line. Thoreforo, three pairs of $\mathrm{VT}^{\circ} \mathrm{s}$ and ET's are employed. This confiouration can also measure power in the $2-w i r e$ and 3 mirn sustem.

The multiplier constants K_{v} and K_{I} are used for voltage trimming of the V and $C T$ outputs to match the input of the following power rombutation circuit. The constant. Kv is controlled hv tha manual suitches hecause tne voltafe of the line $1 s 120$ v or 277 V.

The porer nonitor circuit masases power in one line

Basic block diagram of the power monitor circuit

Figure 4-1: Basic block diagram of the power monitor circuit
at a time. Three palrs of andog switches select one Ilne at a tine in which the power is measured. since instantaneous power in the lines is stable for some Auration, power in the lines remains constant for this suration. The "on" time of these switches should be shorter than this duration. These switches are controlled by the micrammputer, uhich is explained lat.er.
(3) Power computatinn circuit: This circuit. multiplies the input voltages, \bar{V}_{v} and \bar{V}_{I}, and extracts the ic component from thas product. The constant M adjusts the output voltage of tinis circult to match the voltage of the jonput of the following digital computation and control circuit.

According to the discissinn in section 2.2 , the power \quad in poner distribution systems equais the de component of the instantaneous nower of the system, which furtnermore $1 s$ deterinined nnly by the voltacie raveform and the 60 Hz component of the current waveforin of the systen. Therefore, the ourout of this circuit, V_{p}, is proportional to the nower in the system if inouts of this circuit satisfy the followint conditions:

- \bar{V}_{v} is proportional to the voltage waveforin of the system,
- the on ilz component of \bar{v}_{I} is proportional to that. of the current waveform in the systein,
- the phase antle difforence hetween \bar{v}_{v} and the 60 Hz component of $\bar{V}_{I}, 1.0 . \delta$, are the same as toit of the voltage waveforn and the 60 Hz component of the cirrent waveform of the systern.

However, the outputs of the voltage and current neasurenent circuit do not precisely satisfy the conaltions above becanse of the transfer characteristics of the transformers. Adaitjonal cjrcuits are neejed to compensate for the transfer characteristics of the transermers. These additional rircuits are discussed in section 4.4.
(C) Digital computation and control circuit: In order to display the measured porer in decimal format the output of the power computation circuit must he converted to digital form. Then the resulting digital data is conaged to the appropriate form for the following display circuit. There are several methods for this conversion. An Analos to digital (A/D) convorter and a microcomputer are emplosed. The microenmputer also controls the other circults. line operation of the microcomputer is controlled by the manual softchos.
(D) Display circuit: This circuit displays the neasured poner in decimal. format. That is, three significant digits ant a fioating decimal point. The nom line-inalication is also displayed.
4.3 Transfer Characteristics of the Basic Circuit Diagram The block diagram in section $4-2$ does not include circuitry to correct for the transer characteristics of the transformers. The effegt, and compensation thereof, of the transformers are discussed from the point of measurement accuracy in the next section. Although the circuit block diamram is not a complete one the transfer Enaracteristics of this circuit block is now determined in orter to facilitate the niscussion in the next section. The final transfar characteristics of the circait will be given after tho complete circuit block Hiagram is determined at the end of the next section.

First, the block $\operatorname{dingram}$ in figure $4-1$ is divided Into two parts, the analon mart and the flaital part. Let A be the transfer function of the analng part, and B tne transfer function of the digital part; that is

$$
\begin{equation*}
V_{P}=A F \quad, \tag{4-1}
\end{equation*}
$$

$a n \cdot$

$$
\begin{equation*}
p^{\prime}=f V_{p d} \tag{1-2}
\end{equation*}
$$

Abstract

where p is the power in the poner distribution system, ρ^{\prime} is the outgut display of the power monitor circuit, and V pd $1 s$ the diuital representation of V_{p}. In order to reduce the neasurement arror B shoulo be close to the Inverse of A. However, A inclumes the monlinear transfer characteristics of the r. The \quad therm is constant unless additionsl circuits are lised to inform the microcomputer of the overall current levej in the power distrinution systen. That is, B is calculated from the inverse of A OY assuming constant gain and nhase shif. of the ctes transfer characteristics. Tn this section only a is Jiscussed. Sonsideration of R is left to the next section.

The features of some cirrults in the djagram have to oe selected ln ofder to determine the transfer anaracteristics. The \quad To converter converts a ingut range of the poser calculation circuit is 0-10 V and the output range is also $0-10$ V. All other analog sircuits also work over the voltaqe range $0-10 \mathrm{~V}$.

I'ne block diagran of the transfer characteristics of the anglo:1 part is stown fn fionure 4-2. Tn this diagram the V is represented ty the transeer function Hesta, where il is the diln and to is the time delay which causes the phase shift from the primary voltare waveform to the

Figure 4-2: Block diagram of the transfer characteristics
of the analog part
secondary voltage waveform, β. since the voltage waveform of the power distribution system 1560 Hz sinusoidal, H and β are the values $t \mathrm{t}$ 60 Hz . According to the discussion in sections 2.2 and 4.2, V_{p} is determined only by the voltage waveform and the 60 kz component of the current mayoform of. the system. Therefore, only the fo 1% component. of the current Haveform $\bar{I}_{A 60}$ and $\bar{V}_{\text {I GO }}$ are considered. The transfer characteristics of the \quad or are also those at 60 Hz . Althollgh the diagram shows only the case of line $f_{\text {, }}$, exactly the same argument con be used for the other lInes.

$$
\begin{align*}
& \text { In this block diagram } V_{V} \text { and } V_{I 60} \text { are expressed by } \\
& V_{V}=H K_{V} V_{A} \quad . \tag{4-3}
\end{align*}
$$

and

$$
\begin{equation*}
V_{I 60}=G K_{I} I_{A 60} \tag{4-4}
\end{equation*}
$$

According to the discussion in section 4.2 the output of the power computation circuit, v_{p}, is given by

$$
\begin{equation*}
V_{P}=\| V_{V} V_{I 60} \cos \delta \tag{4-5}
\end{equation*}
$$

were δ is the phase angle difference between \bar{V}_{V} and \bar{V}_{160}. Using equations 4-3, 4-1 and 4-5, Vp is expressed as a function of $V_{A}, I_{A G 0}$ and δ, ide.

$$
\begin{equation*}
V_{P}=\left(H K_{V} V_{A}\right)\left(G K_{I} J_{A G 0}\right) M \cos \delta \tag{4-6}
\end{equation*}
$$

Since δ is not the phase difference at the input of the circuit, equation 4-6 is not the complete expression for the transfer characteristics of the analog portion. The relation between δ and the phase anode difference of \bar{V}_{A} and $\bar{I}_{A 60}$ will he consiferad and complete transfer characteristics isl be given in the next section.

Next, the constants in equation $4-\overline{6}$ are discussed. First, Kv is selected. The value of. V_{A} is allowed to vary ± 10 ? from the nominal valise, and the peak voltage of V_{v} is 10 V . Thus, the following two relations are derived from equation 4-3;

$$
120 * 1.1 * \sqrt{2} * H K_{V} l_{120}=10 \quad .
$$

and
$277 * 1.1 * \sqrt{2} * \mathrm{HK}_{V} \mathrm{I}_{277}=10 \quad$,
where $H K_{V} l_{120}$ and $H K_{V} l_{277}$ are the values of $H K_{V}$ with $120 \vee$ and 277 V systems. Therefore, Hov is set to

$$
\begin{equation*}
H K_{v} l_{120}=0.05357 \tag{4-7}
\end{equation*}
$$

or

$$
\begin{equation*}
\| K . v l_{277}=0.0237 .1 \tag{4-8}
\end{equation*}
$$

anen V_{A} is the nominal valime in moth cases V_{V} is given by

$$
\begin{equation*}
\psi_{v}=6.428 \tag{4-9}
\end{equation*}
$$

The GKI in equation $4-f$ ls calculated in the same nanner. When $I_{\text {ago }}$ is the maximun allowable value of $230+1.1$, i.e. 253 A, then

$$
G K_{I}=0.02795
$$

The G eguals 0.01163 for the maximum allowable value of $l_{\text {a }}$ (see Figure 3-11). Therefore, K_{I} is glven by

$$
K_{I}=2.4
$$

$$
(4-10)
$$

Next, the constant $1:$ is selecter. The maximum v_{p} is 10 V . Thils happens when hoth v_{v} and V_{160} are maximum and δ is zero in equation 4-5. necause the largest peak voltages of V_{V} and V_{1} a arp $i n v$ the following relation is derived from equation $4-5$;

$$
(10 / \sqrt{2})(10 / \sqrt{2}) N \cos 0=10
$$

Therefore,

$$
4=0.2
$$

However,

$$
\begin{equation*}
A=0.1967 \tag{4-11}
\end{equation*}
$$

1s adopted instead of 0.2. This value of M is selected to reduce the error of dioital calculation since the nicrocomputer cin only deal with a finite number of digits of dat.a. Detalls of this argument can be found in the next section. In this cise vp still satisfies the outout range of the porer computation circuit.

Using equations 4-6, 4-7, 4-8, 4-10 and 4-11 the next tro equations are ohtained. For the 170 V system

$$
\begin{equation*}
V_{P}=0.02529 G V_{A} J_{A 60} \cos \delta \tag{4-12}
\end{equation*}
$$

For the 2.77 V sustem

$$
\begin{equation*}
V_{P}=0.01036 G V_{A} I_{A 60} \cos \delta \tag{4-13}
\end{equation*}
$$

In both cases V_{p} with the nominal V_{A} is given by

$$
\begin{equation*}
V_{P}=3.035 i I_{A 60} \cos \delta \tag{4-14}
\end{equation*}
$$

where equation $i=0$ was uspi.

4.4 Consideration of Current Transformer Nonifear

Transfer Characteristics

The circuit block dianram in Eigure $t=1$ is valio when \bar{V}_{V} and \bar{V}_{I} satisfy tha conditlons which are discussed In section 4.7. However, \bar{V}_{V} 子nd \bar{V}_{I} can not precisely satisfy tinese conditions herause of the transfurmers
transfer characteristics. The transformers intronluce reasurenent errors. the voltage of the power Astribution system is normaly a stearly sinusolad wave. lnerefore, the error callsed by the V t $1 s$ easily removed by additional circuits berallse arin and phase shift are constant. However, the $n \boldsymbol{n}$. component of the current of the systen takes on different magniture levels. The transer characteristics of the $C T$ vs. the various primary current levels are nonlinear. Therefore, the error caused by the ct can not he removed perfectly. In order to reduce the error additional circuits, which componsate the effect: of the nonlinear transfer characteristics of the CT, are discussed.

Althouth elfinination of error is desirable, it is impossible to completely elfmate the error causer by the C'T. 10 a criterion of maximum allowable error is needed, rtie error causor by analog devices in the clrcuit, lacluaing the C.T, is converted to the bit error of the difital data by the $1 / 7$ converter. The output error of the power monitor circuit reflects this bit error. geciuse of quantization hy the A / D converter, the error by analou devices lofs not necessarily cause the bit error. Conversely, rolativoly small errors caused by analog devices miaht callse the oft errors. It is neaninyful to express the maximim allowable error canset
by analoy devices in torms of the bit error of the dijllal data.
at most one least significant bit (fini) of error of the digital data 15 allowed to he callsed by the CT. This error causes at most one povel orror of the output of the eireuit. lne input. rancie of the A / D converter is $0-10.2+V$ wille the outnot $1 s$ R-bit data. Therefore, the error of V_{p} caused hy the CT may at onost be 40 mV , the weight of the lise.

The folloning methor is used to determine the measurement error of the desinned circuit as caused by the er. First, the transfer characteristics of the desfone circuit is determinar. In this case the analog part of the circuit is reitarier as the ideal one with the exception of the nonlinear transfer characteristics of the ©T. The transfer function of the diaital part is the inverse of that of trie analog oart with constant gain G and phase suift α of the CT. Tho output error of this cfrcult is caused only by the transfer characteristics of the CT. Now, one mora circuit, the ideal circuit. is assumed. The transfer function of the digital part of this circuit is exactiy thn same as that of the desiqnen clrcult. hovever, the transfer function of the andioa part of this circuit is the inverse of that of the digital part. Therefore, the olltout of this circuj.t is
an error eree version of the power in the power distribution systein. If the designet and the ideal. eircuits were connected to the same power fistribution system the difeerence hetmeen the output of the analog part of the two circuits volld cause the measurement error of the designed efrenit. Therefore, this difference represents the orror caused by the CT and shoula be less than the mayfmum allowable error.

An adjitional circuit which compensates for the phase shift of the $V T$ and the $C T$ is desianed to reduce errors. In the block aliagram in figure 4-2 the phase snifl of the $V T, i$ e. β, is constant. The phase shift of the $C T$, i.e. α, is a function of the orimary current level, which is shown in figure z-12. However, at high current levels α is constant. at 4.3°. How an arditional clrcuit, a ghase shifter, is emoloyed following the CT. rhis circilit shifts phase by $-4.3^{\circ}+\beta$. The block diagram is snown in figure 4-3. Therafore, δ in equations 4-12, 4-13 or 4-1 it is given by

$$
\begin{equation*}
\delta=\varphi_{A 60}-\theta_{A}+\alpha-4.3^{\circ} \tag{4-15}
\end{equation*}
$$

where θ_{A} and $\mathscr{S}_{\text {abo }}$ are the phase angles of the voltage waveform and the folla componant of the current waveform of Lilne A respectively. The valtage of the line of the power distritution system is 120 V or 2.77 V . Recause

Figure 4-3: Block diagram of the transfer characteristics of the analog part with the phase shifter
fifferent prinary volitaros of the v'r callse different phase shifts this rhase shifter can compensate two difterent phase shifts rhich are controlled hy the manual sivitches.

Ho4 the error of the rircilt with the phase shifter caused by the cre \quad combited. The transfer characteristics of the analog part of thls circuit is given by

$$
\begin{equation*}
V_{P}=3.035 G I_{A 60} \cos \left(\varphi_{A 60}-\theta_{A}+\alpha-4.3^{\circ}\right) \tag{4-16}
\end{equation*}
$$

where equations 4-14 and 1-15 are used. The transfer function of the digjtal part of this circuit uses 0.01163 and 4.3° as G and α, which are appropriate for the flat part of the CT transfer charactoristic curves. These znoices rill eliminate errors caused by the CT at high zurrent Jevels. rherefore, the transfer characteristics of the andua part of the frafl circuit is aiven by

$$
\begin{equation*}
V_{p r}=0.03530 \mathrm{I}_{\mathrm{A} 60} \cos \left(\varphi_{A 60}-\theta_{A}\right) \tag{1-1.7}
\end{equation*}
$$

where $V_{p I}$ is the output of the analog part of the ideal ejrcuit. Figures a-t and $1-5$ show the error of this circuit causer by the CT, $V_{p}-{ }^{\prime \prime} p I$ vs. IA60 and $V_{p}=V_{p I}$ vs. $\varphi_{A 60}-\theta_{A}$. Usually the power factor angle of the power aistribution system is mot greater than 60°. lherefore, values of $\mathscr{S}_{A 60} 0_{A}$ greater than $6 n^{\circ}$ are not. calculated.

$$
V_{P}-V_{P I} \text { vs. } I_{A}
$$

Figure 4-4: Error caused by the CT for the circuit with the phase shifter

$$
V_{P}-V_{P I} \quad \text { vs. } \quad \varphi_{A 60}-\theta_{A}
$$

Figure 4-5: Error caused by the CT for the circuit with the phase shifter

Finese curves show that the CT of this circuit causes ertors greater than the maximum allowable errore However, at the current pevel guove 50 A the error does not exceod the maxjmum allowahle error. The gain fall off of the ET at the f ow current levels would be the cause of most errors.

One more circilit is nos adref. This circuit is tesigned for compensation of the gain drop of the ct at the lon current level. This circuit detects the current levels less than 50 i in the nower distribution system. Therefore, the nicrocomputer can use a different dafin constant for the CT at low current levels. In other worts, the error at low current levels in firures 4-4 and $4-5$ can be reducen. This arditional circuit is called the current level detector.

The transfer chararteristics of the analog portion of the circuit aith the phase shifter and the current levei detector are also aiven by equation folf. The transfer function of the digital part of this circuit uses 0.01130 as the gain at the low current level. Therefore, the next equation, $1-1$, glves the transfer characteristics of the analor nart of the idemp circuit in the event that the curpont level fis lower than 50 A.

$$
V_{P I}=0.03130 I_{A 60} \cos \left(\varphi_{A 60}-\theta_{A}\right) \quad . \quad(4-18)
$$

For current levels hithar than 50 A the transef enaracteristics of the fofoal cfrcuit is the same as given by efation 4-17. Figures A-h and 4-7 show the error of this circult causen by the ct, d.e. $\mathrm{V}_{\mathrm{p}}-\mathrm{V}_{\mathrm{p}} \mathrm{c}$ vs. $\mathrm{I}_{\mathrm{A} G 0}$ and $V_{p}-\ddot{v} p \mathrm{~V}$ v. $\varphi_{A 60}-\theta_{A}$. These figures show that the error caused by the $こ T$ never exconcis the maximim allowathe error of 40 mV .

For the conplete block diarram of the nower monitor clrcuit the phase shifter and the current level detector are adred to the basic circilit hlock diagram. Figure $4-8$ shoas this conplete circuit hlock diaciram. The transfer characteristics of the analna part of this diagran are IVven by equation $4-16$. This is also rearlten as the foll\%ing:

- for the 120 V system

$$
\begin{equation*}
v_{P}=0.02 .5 \% 9\left(5 v_{A} T_{A 60} \cos \left(\varphi_{A 60}-\theta_{A}+\alpha-4.3^{\circ}\right),\right. \tag{4-19}
\end{equation*}
$$

- Eor the 277 y system

$$
\begin{equation*}
V_{P}=0.01096 G V_{A} T_{A 60} \cos \left(\varphi_{A 60}-\theta_{A}+\alpha-4.3^{\circ}\right), \tag{4-20}
\end{equation*}
$$

where equations t-12, $4-17$ and 4-l5 are used. The transfer characterjstics of the Alfital part are easily obtained by modifying and invertind equations $4-17$ and

$$
V_{p}-V_{p I} \text { vs. } I_{A}
$$

Figure 4-6: Error caused by the CT for the circuit with the phase shifter and the current level detector

Figure 4-7: Error caused by the CT for the circuit with the phase shifter and the current level detector

Figure 4-8: Block diagram of the power monitor circuit

Figure 4-8: Block diagram of the power monitor circuit
$4-18$
Now the sefont of one bit of the A / D converter output is fererminei. First, the welght of one bit for
 fiquatilon 4-17 is tewritten as

$$
\begin{aligned}
V_{P I} & =0.0002858 \quad V_{A} \quad \tau_{A 60} \cos \left(\varphi_{A 60}-\theta_{A}\right) \\
& =0.0002858 \mathrm{~F}
\end{aligned}
$$

$$
(4-21)
$$

line transfer function of the djoftal part is ohtainer by inverting the transfer function in the equation $4-21$. Iherefore,

$$
\Gamma^{\prime}=(1 / 0.0002858) v_{p}
$$

Since 40 fiV of the $V p$ is ronverting one bit, the dicital representation of V_{p}, $V_{p d}$, equals $V_{p} / 0.04$. Thus,

$$
\begin{aligned}
F^{\prime} & =(0.04 / 0.0002858)\left(v_{p} / 0.04\right) \\
& =140 \mathrm{~V} \mathrm{Vd}
\end{aligned}
$$

rhe constant 110 is the waight of one bit in this case. the weifits of one hit in other cases are easily obtained in the satne manner. Thn welghts of one blt for other situations are given in table 1-1.

Sline voltaje	$\begin{aligned} & \text { Curront jevel } \\ & \text { lnu: T < } 50 \text { i } \\ & \text { hinh: } 250 \text { A } \end{aligned}$	Weight
1.20 V	1.nw	140 N
	nimh	136%
277 v	10\%	323 W
	hion	314 y

Table 4-1: Weloht nf ons bit of the outout of the $1 / n$ converter

5. Hardware Construction

5.1 Voltage and Current Measurement Circuit

The schematic of the voltage and current measurement circuit is shon in figure 5-1. The eircuits for wine B and z are the same configuration as that of line A.
^ vT unose maximur frimary voltacge is areater than 277 V is used for the voltage measurement. In ahblition, the peak secondary voltage of this vi is greater than 10 V when the primary voltarn $1 . s 120 \mathrm{~V}$. When the voltacte of the line 15277 V the suiteh \exists_{1} is closed. When the voltarge of the line is 120 v the switch bi is closer. In ooth cases the potentiometers are adjusted to make the Deak voltage nf V_{v} erjial. to 9.00 V when the 60 Hz sinusoldal noninal. voltage vaveforins are andlied to the promary alndfnge These anfustmants set the proder values of tine constant k_{v}; that. is, the peak voltace of v_{v} is 10 v when the valtame of the system is 10% zoove the nominal value.

An Anprooe sagofint cit and a 30Ω secondary load resistor are usea for the current measurenent. An active first order $10 \times$ pass filter (Lrf) is employed after the こl as the amplifier and the nhase shlfter. Reramse the input part of the Lpf affects the secondary loat resistance of the CT a voltage follower js used before

Figure 5-1: Voltage and current measurement circuit

Figure 5-1: Voltage and current measurement circuit
t. ne hirf.
becanse the hPF is enolnved the hisher fremuency conoonents of the input fthe current in the power distribution system) are famood and pliase shifted more. Yowever, the power can be acrurately measured when the gain and phase shift at fo "z are accurate known. When the voltage of the line $1 s 277 v$ the sitches a_{2}, a_{3} and 7_{4} are $=10 s e l$. when the voltane of the line is 120 V the siiteries o_{2}, b_{3} and h_{4} are riosed. In both cases the afin at 60 ! 17 from the font of the voltage follower to "I is adjustef to a K_{1} of ?. 1 . This adjustment should be made hy connecting the poner computation circult because the input part of the power comoutation circuit affects this dafn adlustinent. The ohase difference between the outputs of the hPF and the v'r is adfusted to zero when nore than 100 a of the fin 17 sinusoldal current and the nominal voltace, which is in phase with the current, are apalied to the CT and the VT, A current of more than 100 A guarantees that the rit is operated at the flat nart of its phase shift characteristic curve. The volucte offset and input blas current ofesft adfustments are provited to nullify the outant voltaige far gero input.

Mational senlconductar bri3?02 analon siltches are eaployed as the suitches for the jine selection. These hevices can operate with $\pm 10 v$ analog sjonal levels. The
dightal inout of this revice is designed to accept TTu jevels. these suitchos are controlled by the microconouter.

5.2 Power Computation Circuit

Tise porer computatinn circuit consists of an Exar Lntegrated system xfazzoge nneration multiplier. This device contalns an analon milfiplaer and an operational faplifler.

The schematic of thjs cirroit appears in figure 5-2. fhe multiplier output V o, 1.0 , the voltage rifierence between oins 1 and $2,1 s$ the product of two input voltajes: V_{V} and V_{I}, anci a gain constant. The onerational amplifiser part porforms the function of a differentiql anplifier shose input is Vo. The arin of the multiplifer and the differential amplifier results in a gain constant iof 0.1967. the 6.5 $\mu \mathrm{F}$ and $0.2 .4 \mu \mathrm{~F}$ cadacitors operate as A brf whjch cuts off alj high frequency ac conponents. The rain constant if is adjusted oy the gain control notentinmeter. the X offset and Y offset adjustinents compensate for the output voltaue for a zero finut and the output offset adjustment nullifies the outout voltaise for a forn innut simultancously on the x an 1 inputs.

The frp is destoned thextract the dc component from

Figure 5-2: Power computation circuit
t.he instantaneous pover. However, the ac components of the lustantaneous power can oass through the tipf while sustilning sone attenuation berallse the lupF is not icieal. The ac ripole at the nutnot of this circuit can caluse neasurenent errors. Sinco fin liz could be the lnwest. of the ac components of the instantaneons power, the cut off Ereruency of the bop is dostonea to be 2.02 H7. The adin at bo liz is then -58.0 ah. The maọnitude of the Go Hz ripole $1 . s$ determined by tho $1 ? 0 \mathrm{~Hz}$ comonnent of the current in the wower distribution system because the ci canmot: pass the de component (sen section 2.2). Thus, theoretically the greatest matnitude of the 60 liz component hanpens when the curpent in trie line is 230 A , 170 ! F Fiven in this rase the ripule att V is 22.3 mV peak to peak. This ribple causes, at most, l bit error at the output of the A / n converter. This ripple can be reduces oy changlng the lire characteristics. However, reducing the ripule causns a lnma response time which is discussed next.

The stef response of the thef determines the minimum "on" tiue of the line selpotion switches. the "on" time of these guitaries should he suhatiantially longer than the settlju' tine of the output of the lapt, Vp. The settilna thme, zero to 95% of the final vilue, is 0.38 sec. A time $n i$ one secoril is substantially longer than this
settilng tire and is selecter to be the "on" time of the line selection switches. Tn this case V_{p} reaches 99.996 of the finti voltare. The "on" time of the switch shouly be shorter than the duration in which the current in the dine can he onnsidered unchanged. one second is normally short anourh for this duration. The gower of each line is minasuret once every three seconcs since there are, at most, throe lines.

After construction, the lupf was tested to experimentally measure noth the qain at 60 in and the settilng the. The galne at fon hz mas -5t.4 di and the settillig tine was 0.31 sec. These results are still acceptable.

5.3 Current Level Detector

The current level detector measures the peak voltage of the V_{I} 's 60 liz component and then compares this nessured voltage with a threshold voltage. This threshold voltage correspnaris to the neak value of a $50 \mathrm{n}, 60 \mathrm{~Hz}$ sinusoldal current on the line. if the neasured voltage is less than the threshola voltage the output of this circuit is at. the hign level of the aicrocotiputer input volfane: 1.e. it is about 5 V. atherwise, the output ls ahnut $0 V$. This circuit conslits of three narts: a band pass filtor (hPF), a
rectifier and sinoothjng circiit., and a comnaratore The schenatic diairan of this rifruit is shown in Fioure 5-3.

The BFP extractis the fo liz comoonent of VI. The Eenter frequency of this popf is 60 ily and the bandialith is 12 ize ibecouse the innut imnodance of the brfe could load the V_{I} source a voltage follower is usen tiefore the RPF. The ofeset arjustment nullifies the output voltage of the BPf to zero for $V_{I}=n$.

Tne rectifier and smoothing circuit chanimes the npF outout to de voltare whose mannitude equals the Deak voitage of the RPF outnut. The rischarging current of the 0.1 fF capacitor is extremelv sinall. Therefore, the responss of the output of this circuit is very slow when the fonput changes from hinh voltaqe to low voltadge. In order to improve the resmonsf time a 3 V zenner diode is onoloyef in the rectifier. This zenner filore confines the input voltage of this circult so that the ingut cannot exceed 3 V. by isfing this zenner dione the curient level setector resnonds to the change of V sithin one socorid, the "on" tine of the line selsction suitches.

The conparator portinn comnares the outnut of the rectifler and smoothlim cirenit. with the threshold voltage. Hecause the nutplit of the rectieier and smonthin: circult ras a rinnle the comparator is desianed

Band pass filter

> Rectifier
> and smoothing circuit

Comparator

Figure 5-3: Current level detector
to be \rightarrow sannith triguer tyne. When V_{I} is $1.37 \mathrm{~V}, 60 \mathrm{~Hz}$ sinusoldil the threshod voltafe control potentiometer is adjusted so that the output of the current level detector is at the transition betwoen the hiọh level and low level voltage. This threshold voltane corresbonits to a 50 A, 50 fi_{2} sinusoifal current in tho line. The output of this circult is then fert to microcomputer. Therefore, the $4.7 V$ zenner diode and the rip nate, 7417, are used for the outpot part of the comriarator.
5.4 Digital Computation and Control Circuit

The digital computation an' control circuit is shomn in figure j-t. This cireuft is divided into two parts, the a/D converter and the merncompoter.

The $A / 0$ converter converts the ontmut of the power computation circuit., v_{p}, intn g-bit. binary data. An Analoy Devices AD570 g-bit. A/r converter is employed. ras luput range of tho converter is 0-10.24 V. Therefore, the reluht of one bit. is 40 mv . The code transitions are betmeen the bit weiahts shown in figure 5-5. The two potentiometers control the bit weiants and corle transtions.

The data oitfut circuit of the A/t converter is a tri-state conflauration. When the A / n converter is in tne stand-by state the data output pins are in the

Figure 5-4: Digital computation and control circuit

Figure 5-5: Transfer curve of the A / D converter
hign-impedzace (high-z) stato. lolding the Rlaik and ETVERT (B/E) oin high brincs tho $A / 0$ converter into the hith-7. state. In this state the MATA RFADY ($\overline{\mathrm{OR}}$) oin is nugu. wnen the B / \bar{E} pin is nrought low the conversion starts; but the $\overline{\square \beta}$ and data output pins do not change states. when the conversinn is comnlete, in typically 25 sec, the $\overline{O R}$ pin goes low and within 50 nsec the data output oins become active with the new rata. When the B/C oin is driven high adain the $A / 0$ converter enters the high-z state *ithin ahout: $1.5 \mu \sec$. This control sequence is performed by the microcomputer. The diaqram of the serfence apperss in Figure 5-5.

The microcomputer comontes the power using the π / D converter nutput. Then, tho mieroconputer transiates the power which $j s$ to be displaupd into $3-d i a l t$ hinary-codeddecjnal. (Sc!) data xith a floating decimal point. This 320 data is the input of the display circuit. Tn orier to perfor: this computation the microcomputer must have knoblempe of mich type pomer sustem confluuration one is teallog with. The manual switches inform the nicrocomputer of this configuration and which pover ontion is to ne ilsplayer. The current level detector is Hspe to inform the mieroronnuter whether the C is carring large or small curronts. Jhe microcomuter also controls the life sploction swiches and the A / D

Figure 5-6: Timing and control sequence of the A / D converter
converter. Detalls of the comnutation are discussed in cnapter 6.
in intej 8051 single-commonent fiobit microcomouter is employed. this mirgocomniter has 4096 bytes of orofram menory and 128 bytos of fata memory on the chlp. The instruction cyole is one ricrosecond when using a 12. 4 Hz crystal. this mlcrocomnuter can perform hardware nultiples and divides in $4 \mu s e c$. More information is provided by the user's llanilal fal.
there are 32 I/n Dins coneigured as four pabit. ports, port 0, Fort 1, part ? and port 3. Fach pin can be individually and independent.jv promramed as an input or output. Each J/O uin has a D flipflop and an output driver as shom in Fidures 5.7(a) and (b). The input operation can be performat ho the followind: First, one uses an instraction wiidch writes a "one" to an I / o pin. This forces the dilipflno to store the value on the $I / 0$ oin whlen is applied ry extornal device. Then, one reads the \cap flipelop output. The output operation can be performe: simply by uritine n "one" or "zero" to an $1 / 0$ pin. Because of the 0 flinfinns the last value written on tine fifoflop is retalrind on the I / n pin.
 role of Port 0 is to control other circuits. Port 1 is the inout port from the A / n converter and manual

(a) I/O pin in Port 0

(b) I/0 pin in Port 1,2 or 3

Figure 5-7: Configuration of $1 / 0$ pin of the 8051

port	y10	function
Port 0	Pn.0	lnout from the current level detector H: low current. level L: hioh current level
	P0. 1	Lnout from nil of the A / D converter H: data is not ready Is: detat is peacy
	P0. 2	-
	PO. 3	-
	$\begin{aligned} & \text { Po. } 1 \\ & \text { PO. } 5 \end{aligned}$	
	80.6	control of $\operatorname{B/C}$ of the A / D converter H: तo not convert I.: convert
	P0. 7	```control. of the buffers of the manual switchues H: bion innormance state L: act!vestate```
Port 1	$\int_{01.7}^{21.0}$	input from hit outputs of the A / D converter P1.7: •ASA P1.0: LASH
	P1.0	ingut from the manllal switch indicating 2minte system
	P1. 1	inout from the manual switch jndicating 3-vire system
	P1. 2	input from the manual soitch indleating 4-wire systam

Table 5-1: $1 / 0$ pin assimament of the 8051
$(1$ of 2$)$

nort	Pin	function
Fort 1	01.3	input from the manual switch indicatima the voltagn of the system 11: 277 Y $1: 170 \mathrm{~V}$
	01.1	input from the manual switch jndicatinn thent the outbilt is the total nower
	P1.5	input froin the manual saitch indicating that the outnut is the power of tine A
	21.	input from the manilal sisitch inuleating that tone outont is the power of line f
	P1.7	infit trom the manual switch indicatina that the outout. is the power of fine C
Port 2		output of the nen low-digit P2.3: usn P2.0: LsB
	$\begin{gathered} \mathrm{P} 2.1 \\ \mathrm{P} 2.7 \end{gathered}$	output of the $B C D$ mediun-dialt P2.7: "54 P2.4: LSB
gort 3	$5_{03.3}^{03.0}$	output of the ren bigh-didit み3.3: "sn P3.0: lSS
	P3.4	position of the fecimal point when the data ju areater than 10 k
	P.3.5	position of the ireinal point when the rata is mreater than $1 \mathrm{k} \mathrm{k}^{\mathrm{N}}$
	03.6	position of the focimal point when the data is smaller than 1 kty
	03.7	no-line-indication

Table 5-1: \quad / Pin assigninent of the 8051
(2 of 2)
soltehes. ?orts 2 and 3 are the output oorts to the disilay circuit. since tho manual sithehes use the same port. as the M / D converter 71125 TTL tri-state biffer Jates are emplofer. These huffer ates are controlled by oin Po. $7 . \quad$ The output cirenjt of the A / n converter is a tri-state configuration. The [/f] pins, po.f and Po.1, are connecte: to the B / \vec{C} oin and the $\overrightarrow{D P}$ bin of the A / O converter, and control the $1 / \cap$ converter. pins po. 5 and Po.t control the line selection sivtehes. TTL 7408's and 7404's are employed to convort codes on P0. 5 and po. 4 to the control signal of the line selection sixitehes. The T/J pin Po.D is the jnunt nin from the current level. detector. because the minimum inout low voltage of the nicrocompister is -0.5 V the out.nit part of the current level detector uses a 7417 Trt ante.
rine instruction cyole is ne microsecond. the pin $\overline{E A} / V D D$ is held at a Tri hian level hecause the nicrocompinter has no external memory. In orifer to reset the infcrocomputer at: Fowering up the rist/VPD pin is comnected to rhe +5 V porier sumnig.

5.5 Display Circuit

The display circuit disolays the measured Dower on fhree seven-seqment fibo's. The infur of this circuit is a 3-Ajajt BこD data mort and the position of the decimal point. rinis circuit also shows the no-line-indication. Fhe schenatic of this circuit is shom in figure 5-R.

In order to control the seven-seqment Len's 7447 rets ACD-t.o-seven-segnent decorders/trivers are used. The output configuration of these devices is an opencollector conejtmration. Therffore, 220Ω resistors and common-anode seven-segment Lrin's are used. The 7417 TTH open-collector buffers are emplo\%ed to control decimal points of the seven-sement tedos. The no-lineindication circuit uses the same configuration as the decinal point control.

6.1 Program Outifne

The prograin of the microcomouter is discussed in this chaoter. inis program comntites the oower in the power distribution system $7 n \rightarrow$ translates the combited Dower to the 3aよ form. This nroaram also controls other circuits; that is, the ifne selection switches, the $1 / 0$ converter ana so on. Tnformatinn aonut the Intel a0st nicroconputer can be fount in tho user's mianurl f.5, 61.

The outline of the proaram fas shown in the flow chart in figure f-1. A lonp in the flow chart takes one second wnlen is controlled bu the internal timmer, timer D. This microcomputer is reset at powering un time and then the execution begins. Now, each block of the flow chart ls explained.

The first block, ivittatton, readies the special tunction registers, the user-riefined flags and the status bytes, $1 / 0$ port:s and memories. The special function registers $\exists \mathrm{re}$ set so that. timar 0 , and the timer 0 Interrunt, are enabled. The oxplanations of the userdefined flats and status hutes are given in section 6.3. Port 0 is initiated so that thr $A / 0$ converter is in the standmb sitution and Line a is connecter to the power sonoutation ejrcuit. Ports 2 and 3 are set to display

Figure 6-1: nutime of the proarall

```
zero. All the memoriss for megsured power are set ot.
zero.
```

The fatr block halts the execution until one second nas passed since the last time the exectition of the loop begsue Jne seconci is the chosen interval for the nower newsurements.

The PREPMAE FETCHIPr thork sets the usermaefined flafs and satus bytes in orenaration for fetching the output of the A / D converter. Inis block examines the manufl suitches anti riecimes the memory location which is to be adiressed witen the nower is to be displayed. This olock also fecides whethor tho nomline-indicetion is needed or not.

Deonending uoon the configuration of the power aistribution system, the numher of the lines is Aifferent. \quad ecduse power of eacin line is ineasured every Lnree seconis the microcomnuter does not have to measure oower every second for the onp or two line systen. The SYSCEM GRAiAH block necleses whether or not to read the A/D converter or walt until it. is time to do so. Table 6-1 shows the criteria of bronohina.

The FETEH DA「A block rontrols the A/D converter and fetanes the output of the A/n converter. This block also exanines the output or the current level detectore the memory location for measuret nownr is also selerted.

system	destination of SYSTEM BRANCH			time to calculate the total power
	1st second *	2nd second *	3rd second *	
1-line system	FETCH DATA	NO-LINEINDICATION?	NO-LINE- INDICATION?	1 st second *
2-line system	FETCH DATA	FETCH DATA	NO-LINEINDICATION?	2nd second *
3-line system	FETCH DATA	FETCH DATA	FETCH DATA	3rd second \%

> * NOTE: The overall cycle of time of the program is 3 seconds. 1st second, 2nd second and 3 rd second mean the 1 st, the 2nd and the 3rd second of this cycle time respectively.

system	destination of SYSTEM BRANCH			time to calculate the total power
	1st second $*$	2nd second $*$	3rd second *	
1-line system	FETCH DATA	NO-LINEINDICATION?	$\begin{aligned} & \text { NO-IINE- } \\ & \text { INDICATION? } \end{aligned}$	1st second *
2-line system	FETCH DATA	FETCH DATA	$\begin{aligned} & \text { NO-LINE- } \\ & \text { INDICATION? } \end{aligned}$	2nd second *
3-line system	FETCH DATA	FETCH DATA	FETCH DATA	3 rd second *

* NOTE: The overall cycle of time of the program is 3 seconds. 1 st second, 2nd second and 3 rd second mean the 1 st, the 2nd and the 3 rd second of this cycle time respectively.

```
Table 6-1: Destination of the SYSTEM BRANCH block
    and time to calculate the total power
```

In orter to prepare for the next nefsurement the
 swiches to connect the linn whosf wower is to he measured next.

Accorijng to the discussinn in section 4.4 the oower In a line is the product of the fetched binary data and the weligt of a bit. The CALCMIATF: Drivir block calculates this proouct, f.e. the oower of a line, using the weisht listed in Tarle 4-?. The calculated oower is stored in memory ahose loration was decided in the ferch DACA ologk. rhe total power is calculated every three seconds. If it is time for calculating the total power the total power is also dotermined. The time for the total power is decided accordinn to Panle fi-1.
ljp to no'N the pronran eqleulates power in binary
 is considerei. First, the no-ilne-indication is consldered. if the no-linn-indication is needed then the display of poxer is not nemer. therfore, in this case it 1 s derider to display the no-linemindication and skip the blocks anich display onofer. ntherise it is decided to do to the following blacks anich disnlav nower. Thjes

The power to he alsplayen is stored in the memory
shose location mas gecidea in tho prapalaF fFrchtug block. This fata 15 in binary fort. since the output of the microcommater is in BCD form a hinary-icl conversion is needed. This conversion is nerformed fin the RTiNARY-BCD Envitaston block. in this nroaram a special scheme is enployed to perform this convarsion. This is exnlained in the next section.

The output of the inderocomnuter is in a three-diait aEn code with a floatinn fecimal point at the kW unit. The wolficatros for iutont binck selects the proner three, out of six, significant. flults and the rosition of the decimal point.

Finally, the DTsPlay block sends the output to the display circuit. After this block the excution returns to the intr hlock.
6.2 Binary to BCD Algorithm

The alaorithn which is user in the BIAARY-BCD Bowvorstoin block in figurn fit is exolainer next. this aljorithat is aesigned for that hlock alone. That is, the B051 microcomputer instruction set is used and the Jengths of the ninary ama the Ben rata are restricted by the use of that haock.
flest, the length of the binary and the bCu data are constitered. fhe binary data is the nroiuct of the
fetches tata and the veloht of a bit. Therefore, the laraest binary rorl occurs in a z-phase system when the fetcoes data is at. a maymum and the refogh is also a naxinum. The laraest binary wart is then
$3 * 250 * 323=242250$.
rnis is an 19-oit data worf in hinary representation. An H051 memory is only one bute long (R-bits). Therefore, the largest binary unrd uses 3 bytes. The BCD representation of this data 15 onviously 6 dinits long. Inerefore, tae aloorjthm shond he able to convert $18 n \mathrm{fit}$ (3-b)te) binary data into fintaft BCn data. This alyorithin amplovs a number of multiplication and division instructions. These instructions can nanioulate 1 oyte long binary data. demorles are also only one oyto long. Thernfore, it is convenient to treat dinary data dy one byte inerements. Let BT, RM and irt be the decimal represcntation of the low byte, the medium oyte and the high inyte of the ninary data. Thus, the integer representation of the hinary data is given by
$8!1+2^{16}+B!+2^{8}+B L$
(G-1)
where $0 \leq f H \leq 3, ~ n \leq M A<2^{8}$ and $0 \leq A L<?^{8}$. Now, let no, Di, D2, 03, i) ヨnit DS ne thf digits af the ficu representation of this binary lata where 0 n is the least slanificant diadt
and 05 is the most sionfficant figit. Therefore, the integer representation of rhis data is aiso qiven thy

$$
05 * 10^{5}+0.4+10^{4}+03 * 10^{3}+112 * 10^{2}+01 * 10+00
$$

05

$$
((((05 * 10+04) * 10+53) * 1 n+n 2) *(0+i) 1) * 10+00 \quad . \quad(10-2)
$$

ri.rst, the besic ineq of this alqorithon is introduces. Fron expressions 6-1 and 6-2 the next. equation is ontalned.

$$
\begin{aligned}
& 811 * 2^{16}+144 * 2^{8}+61 \\
& =((((05+10+004) * 10+03) * 10+02) * 10+01) * 10+100
\end{aligned}
$$

Then woth sides are divider by 10 one has

$$
\begin{aligned}
& \left(A 1 * 2^{16}+3 \cdot 142^{8}+51\right) / 10 \\
& =(((05 * 10+04) *(0+03) * 10+n 2) * 10+01+00 / 10
\end{aligned}
$$

$$
(5-3)
$$

The retafader of this elivisinn is on. when the guotient of this division is divifon bu 10 the remainder is Di. In the sane manner 02, n.3, ny and 05 are calculated.

A Problen arises xhen this aloprlthm ls executed by the zosi microcompater Instructinn set. The divitenis of the divisions in this almorithm are, at most, 3 bytes long. However, the divisinn instruction of rosi can only feal witn 1 byte lom; data. Theretore, a special
calculation is neerted in nrier to berform these divisions.

The right hand side of palation $5-3$ is chanced as the tollowing;

$$
\begin{aligned}
& \left(184+2^{16}+34+2^{8}+541\right) / 10 \\
& =8.1755530 / 10+8 H * 256 / 10+H H_{1} \\
& =64 *(5553+3 / 5)+150 *(25+3 / 5)+41 / 10
\end{aligned}
$$

 oyte longe rherefore, the nosi can execute thase divisions directily. Since $3 H$ is smaller than 4 the quatlent of Bii/5 is zero and the remainder is BH. Thus, gH/5 ages not have to be inne.

Let 04 and E^{\prime} be the gimotient and the remainder of
 lnerefore,

$$
0: 4 / 5=04+50 / 5
$$

3 n 1

$$
B A / 10=010+R 1 / 10
$$

,
 an: equations fi-5 and fin the next exuression is oot.alned.
 fherefore, it is nne byte lona and the division is performed ezsily.

When 0 and p an ronresent. the quotient and the reninder of the division in exneession $5-7$ this division is expressed oy

$$
\begin{equation*}
(B H * 6+R M * \sigma+R L) / 10=C O+Q R / 10 \tag{6-B}
\end{equation*}
$$

*nere 0 Ris5 and RRS?. Then pxorassion 6-7 is changed as the followiny;

$$
\begin{aligned}
& \left(6 H * 2^{16}+8+1 * 2^{8}+81 .\right) / 10 \\
& =5 H+6553+39 * 25+0.1 * 3+01+00+R 2 / 10
\end{aligned}
$$

$$
(6-9)
$$

According to equation $6-3$, the remainder of expression 5-9 is equal to no. Therafore, no is calculated using equation $5-8 . \quad$ In order to \quad determine the hiaher aigits, ni, oz, …, the integer nart of expression goo is
 emation $\{-3$ is used.

The multipicition biffisit in expression 6-9 con not. oe exesuted by the 1 -byta long multipication instruction

$$
\begin{aligned}
& \left(811+2^{16}+819+2^{8}+1213\right) / 10 \\
& =64 * 6553+(184 / 5) * 3+R * * 25+(0 M+0!/ 5) * 3+01 .+R L / 10
\end{aligned}
$$

```
easjly. Honever, this is nasllv executed by the addition
```



``` 3051 microcomputer instructions can easily convert binary data into iso data using rhis algoritho. The flow chart of this aliofithm is shown in Figite 6-2.
```


Figure 6-2: Rinarv to fic! algorithin

7. Eircuit Performance

7.1 Theoretical Performance

Trie ineasurenent acrirace repends on the following four fectors:

- the nonlinear transfor characteristics of the こT。
- nonifnearity of the miltipifer,
- conversion accuracy of the A / D converter,
- dhantization error of n / n ronversion.
lnese four factors can not ton trimmed oit by external neans. The ripple at the outnit of the power computation eirenit is also factor in the measurement accuracy. However, the 120 liz componont of the current in the power Alstribution system, shion reternifes the magnitude of the ou hz ripple (see sections 2.2 and 5.2), is not Jenerally simificant. Therffore, the ripole is not apmerally simificant and is not fitured in the analvsis In tinis section. The following analysis is to determine the zccuracy of the power monitor circuit for the maximum possible error.

The Amorobe sifonen-1 ct oanses, at most, 1 bit error at the output of the n / n converter according to the discussion ja section 1.4. The exar Intearated sustem

Xf-2.20sc malitiplier has a maydmum irreducible output. etror of 1.0% of full scalog or 100 mV. This error causes 2.5 oits of error at the outhut of the A / D converter. rine conversion accuracy of the Analon Devices A0s70 $4 / 0$ converter 15 within 0.5 bits difference. Since the reconstraction level of the quantization is the nitidle of the tecision levels the maximum quantization error is 0.5 bits. Therefore, the total error caused by these four factors is, at most, 1.5 bits at the output of the $A / 0$ converter.
vote that more than malf the amount of this error is zaused by the nonlinearjty of the multiplier. Therefore, the measurenent accuracy of the circuit is easily improved uy pmploying a miltifoller with smajaer nonlinearity errors.

Fine maximun output error of the power monitor circuit ls deterained by using the maximum hit error and the seight of one bit. Thn rosult is shorin in table 7-1. In this table the maximum nower in each case is when the voltaye is 10% above the nominal value and the current is 1) : fbove the maximum yalin.

The naximum output error is 1.89% of the maximum value. Therefore, the nitont aisplay of the three significant digits is considereq to be menningeul.

power distribution system	current level	output error	(\% of the maximum power)
		power of a Iine	total power for 3-line system
120 V line	Iow	$630 \mathrm{~W}(1.89 \%)$	1890 W (1.89\%)
	high	$612 \mathrm{~W}(1.83 \%)$	1836 W (1.83%)
277 V line	Iow	1453.5 W (1.89\%)	$4360.5 \mathrm{~W}(1.89 \%)$
	high	1413 W (1.83%)	4239 W (1.83%)

Table 7-1: Output error of the power monitor circuit

power distribution system	current level	output error	(\% of the maximum power)
	power of a line	total power for 3-line system	
	high	$630 \mathrm{~W}(1.89 \%)$	$1890 \mathrm{~W}(1.89 \%)$
277 V line	low	$1453.5 \mathrm{~W}(1.89 \%)$	$4360.5 \mathrm{~W}(1.89 \%)$
	high	$1413 \mathrm{~W}(1.83 \%)$	$4239 \mathrm{~W}(1.83 \%)$

Table 7-1: Output error of the power monitor circuit

7.2 Test of Circuit Performance

Phe measurement accuracy was experimentally tester. The accuracy of power measurpmont on a $120 \mathrm{~V}, \mathrm{~d}$ - line system xias usect. such a tost is sufficjent hecause the neasurement accuracy depents only on the four factors mentioned before. Sorenver, only the case of various nagniture devel.s and phase anales of the 60 Hz sinusolad current siveform sias tested since the power in the specific power diftribution systam is a function of these current saveforis.

For convenience the desloner power monitor circuit was llodified so that the mndification does not affect the measurenent accuracy. In niace of the bower distribution system a special test circutt was used to exanine the modified power monitor circuit since it is difeicult to ootaln $n-230$ A currents in the laboratory. The modifications of the nomer monitor circult and the test circuit are discussedfirst. Then, the result of the tests are shome.
'lhe power monjtor circuit for the test is shown in Figure 7-i. This circuit uses the sDK-51 (ics-5i system Desian xit [7]) as tho $\mathrm{Qn}_{\mathrm{a}} \mathrm{m}$ meroconputer In order to facilltate the proyraing. The use of the suk-5. changes the interface circuit of the microcomputer. However, the cnande of the interface rircuit does not affect the

(a) voltage and current measurement circuit

Figure 7-1: Modified power monitor circuit (1 of 3)

(c) interface circuit of SDK-51 Port 3

Figure 7-1: Modified power monitor circuit (3 of 3)
accuracy of the porer meanirement. The microcomputer profran is also chanced for this interface circult. In order to measibe the fower of the $1-1$ ine sustem only one voltage and current set noed be measured. Therefore, the voltage and current measurament circuit is modified and the line selection switchos are removed. The contiguration of the voltare and current measurement circuit is explained later herause it is related to the test. Circuit of thjs modjfief noner monitor sircuit.

The test circuit and a nart of the modified moser monitor circuit are shown in figure 7-2. Ihe voltage of the 120 v poxer dilstritution susten, \bar{v}_{120}, is fed to the V1. \bar{V}_{120} is also fed to the stepmiown transforiner. The secondary ninding of the stan-tom transformer is connected to the $C T$ thrnmon the resistor R_{1} in order to supply Eurrent to the r.tes nrinary winding. The secondary voltage of this step-rown transformer is controllable. Therefore, the inamitude of the cTos prinary current can be chancet by controlling the secondary voltage of the stan- $\begin{gathered}\text { onn } \\ \text { transformer. The }\end{gathered}$ najnitude of the C'is primarv current cin be determined by the voltage across $F_{1}, V_{R I}$. The primary turns of the =r ls 200. The eoulvalent nrimary current when the cios orimary turn is one, $\tau_{\text {pl }}$, is ohtained from

Figure 7-2: Test circuit and a part of the modified power monitor circuit

Figure 7-2: Test circuit and a part of the modified power monitor circuit

$$
I_{p l}=200 \psi_{R 1} / P_{1}
$$

Now this current, t pi, can ho assuned to be the maraniture of the current in tien power distribution system.
feeause of the sten-innot transformer and the secondary loais of inis transformer \bar{V}_{120} and $\bar{T}_{p i}$ have some刀nनse anile difeerence. lnnover, the pinase ancle
 mensured and founit to to constant. at the marnitude rancue
 varjous levels are obtainpA hv rontrolling the secondary voltate of the step-town transformer. However, the phase

nccoriding to the discussion in section 1.4 the vhase ancye fifferpnce between \bar{T}_{v} and $\bar{V}_{\text {IGo }}$ l.e. δ, of the iestane: poser monitor circuit onisals that betieen the voltaje anj the bo liz romonnent of the current of the syitem, $\varphi_{60}-\theta$, when the current. in the system is in the nigu levels. rhus, δ of thls circult can he assumed to equal $\mathscr{S}_{60}-\theta$ when 1 pl 15 in the high level. The δ of this cireilt can oe chancifd by the function of the Lep after
 varisus nozse th:fles of tho rurrent waveform in the power aistrinution system. Tho manniture of V_{V} and V_{I} can be qujustel to the oroper valnes ho the notentometers.

The two assumbtions about $I_{p i}$ and δ to not affect the neasurement accuracy nf thn circuit. Therefore, using this test circuit and the modifier oower monitor clecuit the accuracy of the nomer measurement of the fesimag porier aonitor rifelit can be determined. the power of the poater distrination system (imitative porer of the test circuit) ran ho calculated by usinc the relation 1201 picos δ. Figures 7-3 through 7-7 show the output indications of the nower monitor circuit vs. the najnitude of the current in tho system for different phase angles. The figuros alsn snox the fontative rower of the test circuit arid the maximum nossible error nentioned in the last section. Errors of all the output fudications of the power manitar circilit are less than t.he predicted maximim possible orror.

power in 120 V , single-phase, 2-wire system

Figure 7-4: Output indications
of the power monitor circuit when $\varphi_{60}-\theta=20^{\circ}\left(\delta=20^{\circ}\right)$

power in 120 V , single-phase, 2-wire system

Figure 7-5: Output indicasions of the power monitor circuit when $\varphi_{60}-\theta=40^{\circ} \quad\left(\delta=40^{\circ}\right)$

power in 120 V , single-phase, 2-wire system

Figure 7-6: Output indications of the power monitor circuit
when $\varphi_{60}-\theta=-20^{\circ} \quad\left(\delta=-20^{\circ}\right)$

8. Conclusion

Lo the poner monitor circuit C'fs are used for current ueasurement. In this 6asp the power measurement in the poner distribution suston must be based on the fact that the power in tho sustom is determiner by the voltade auveform and the 60 Hz component of the current Naveforin of the system. the reason is that it is fonossiole to measure tre oyact vaveform of the current oy a CT decause the cT's transfer characteristics depent upon frequency. Boreover, in arder to reduce the error coused by the $こ$ sone special circuits are needer to compensate for the CTos transfer characteristics for the various current levels. tro destan of the power monitor circuit is based on these frammonts and the error caused ny a particular er is helre ofthin 1 bit out of 2^{8} bit for the full. scale.

In thls nork the power monitor circult employs a ricroconputer for the fifital comoutation. Isually a pouer mondtor circuit works in a control system. Therefore, the microcnmnuter can be also used to commaricate lo the other eircuits in the control system. Becallse of the nowerful finction of the microcombuter severil lifferent efrcuits inciliting other pover monitor Eircuits can share the sanc microcomputer for calculation or control lises. foreover, the nicrocomouter can pasily
add nen functions to the nower monitor circult: e.q., enegiy and peak poxer veasuraments in the power distritation system. These atitional quantities are also useful to know in pomer distribution systens.

In tois work it is assumer that all other CTes of the same rodel have fxartily the sine transfer coaracteristics deterinines for one particular et. However, dfeferent C's of the same model usialily have sligntly different transfer characteristics. In other wores, the ijférence nf the transfer characterjstics anong Cr's in the same moripl has not been consifered in this work. However, this is as important as the consideration of the transfer characterlstics themselves necause well matcher rmes are important. further research could be done to consider this difference and chose ctas which cause the smalinst measurement error.
1, "ceartiand, J. F. Electrical systems onstinn. 2nd

3. Knowlton, A. B. Fiorteric Poner 'Ueterince New

Appendix A

Analysis of the figuynlent Eircult for a current Transporter

The quantities Te, Xe , $\mathrm{Re} \neq \mathrm{nd} \mathrm{R}_{\mathrm{ws}}$, as shown in figure 3-7, are now calculated. the phasor diagram of this circuit is shown in figure $A-1$. $A, R_{\text {ms }}$ and R_{2} are assumed known, whereas $\mathrm{F}, \mathrm{V}_{\mathrm{R} 2}, V_{2}, V_{1}$ ant ζ are assumed to he measure i amenities. Te is given by

$$
\begin{equation*}
I_{e}=V_{R 2} / R_{2}, \tag{3-5}
\end{equation*}
$$

where $\bar{V}_{R 2}$ is the voltage across R_{2}. The imaginary parts of \bar{V}_{2} and $\overline{\mathrm{V}}$ are equal

$$
v_{2} \sin \eta=E \sin \zeta
$$

andre η is the phase angle difference between \bar{V}_{2} and \bar{J} e rus, η is given ny

$$
\begin{equation*}
\eta=\sin ^{-1}\left\{\left(E_{1} / V_{2}\right) \sin \zeta\right\} \tag{A-1}
\end{equation*}
$$

roe real wart of \bar{V}_{2} is the voltage across the resistance Pes and Re,

$$
v_{2} \cos \eta=r_{e}\left(R_{w s}+r_{e}\right)
$$

Fy usill: equations A-1 and $A-2$ ne 4 s given by

Imaginary axis

Figure A-1: Phasor diagram of the circuit in Figure 3-7

$$
R_{e}=\left(V_{2} / I_{e}\right) \cos \left\{\sin ^{-1}\left\{\left\{F / V_{2}\right)-\{n \zeta\}\right\}-R_{w s} \quad . \quad(3-6)\right.
$$

Because the primary current is zara be is alden by

$$
F_{i e}=N V_{1}
$$

$$
(n-3)
$$

Le is the sum of the voltages across be and joe. Therefore,

$$
\begin{equation*}
a_{e}=\sqrt{1_{e}^{2} \mathrm{r}_{e}^{2}+\mathrm{r}_{\mathrm{e}}^{2} Y_{e}^{2}} \tag{A-4}
\end{equation*}
$$

Using equations A-3 and A-1 X is given by

$$
\begin{equation*}
x_{e}=\sqrt{\left(:^{2} v_{1}^{2} / I_{e}^{2}\right)-R_{e}^{2}} \tag{3-7}
\end{equation*}
$$

The imaginary part of \bar{F} ls the sum of the voltages across X_{e} and $X_{i s}$, Therefore,

$$
\mathrm{E} \sin \zeta=\mathrm{T}_{\mathrm{e}} \mathrm{~K}_{\mathrm{e}}+\mathrm{T}_{\mathrm{e}} \mathrm{~K}_{\mathrm{Ls}}
$$

rus, $\ddot{x}_{\imath s}$ is given by

$$
\left.x_{L s}=(e / L e) \sin \zeta-x_{e} \quad \text { (} 3-17\right)
$$

Using these calculate y values, Ie, He, X_{e} and $X_{l s}$, Is and I_{1} of the circuit in figure $3-5$ can be calculated. ra this circuit $H_{w s}$ arid Q_{b} are also known. The ohasor diafrar in the complex plane of this cirealt is shown in Figure $\operatorname{A-2}$ Fie is tho voltage across Re and joe when Ie flocs. Therefore, Fe ls given by

Figure A-2: Phasor diagram of the circuit in Figure 3-6

$$
\begin{equation*}
E_{e}=I_{e} \sqrt{1 i_{e}^{2}+x_{e}^{2}} \tag{A-5}
\end{equation*}
$$

When T_{s} flows the voltage areas $j X_{1 s}$, ifs and R_{L} is also Eec. Therefore,

$$
\begin{equation*}
\because e=r_{s} \sqrt{\left(R_{l}+R_{w S}\right)^{2}+x_{l s}^{2}} \tag{A-6}
\end{equation*}
$$

losing equations A-5 and $A-f_{\text {f }}$ is given by

$$
\begin{equation*}
I_{S}=L_{e} \sqrt{R_{e}^{2}+X_{e}^{2}} / \sqrt{\left(F_{L}+R_{W S}\right)^{2}+Y_{L S}^{2}} \tag{3-9}
\end{equation*}
$$

Now tho phase anlage difference between $\bar{i} s$ and $\overline{\operatorname{Be}}$ and the one between \bar{I}_{e} and $\overline{F i e}$ are denoted \mathcal{V} and ξ respectively. ν and ξ are given by

$$
\begin{aligned}
& D=\tan ^{-1}\left(x_{L s} /\left(\beta_{w S}+F_{L}\right)\right) \\
& \xi=\tan ^{-1}\left(X_{\mathrm{e}} / \mathrm{a}_{\mathrm{e}}\right)
\end{aligned}
$$

Recuse \bar{J}_{1} is the sum of \bar{Y}_{s} and $\bar{T}_{e} \tau_{1}$ is given by the following formula:

$$
\begin{equation*}
l_{1}=\sqrt{\left\{\left(e \cos (\xi-\nu)+I_{s}\right\}^{2}+\left\{T_{e} \sin (\xi-\nu)\right\}^{2}\right.} \tag{3-10}
\end{equation*}
$$

In the ghasor diadrain \bar{r}_{1} and $\overline{\Gamma_{e}}$ satisfy following relation:

$$
\tau_{1} \sin \alpha=l_{e} \sin (\xi-\nu)
$$

Then α is given by

$$
\begin{equation*}
\alpha=\sin ^{-1}\left\{\left(T_{e} / T_{1}\right) \sin (\xi-D)\right\} \tag{3-11}
\end{equation*}
$$

Vita

Takashi risula kias morn in ilsaka, Japan on July 26 , 1954. He 15 tiae son of lifonshi and toxato rsuda. He graduted fron thiversity of asaka prefecture in 1978 with a tegree of Bachelor nf fintineering in Electronjes. Since 1078 he has been emplavet by Watsushita Electric Norks, leta. in dsaka, Janan, where he joined several projects in hignting rivisinn untill 1980.

