
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1983

A software quality assurance plan for a 'special'
manufacturing environment.
David Henry Taylor

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Taylor, David Henry, "A software quality assurance plan for a 'special' manufacturing environment." (1983). Theses and Dissertations.
Paper 2362.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2362&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2362&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2362&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=preserve.lehigh.edu%2Fetd%2F2362&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2362?utm_source=preserve.lehigh.edu%2Fetd%2F2362&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

A SOFTWARE QUALITY ASSURANCE PLAN

FOR A 'SPECIAL' MANUFACTURING ENVIRONMENT

by

David Henry Taylor

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Computer Science

Lehigh University

1983

ProQuest Number: EP76638

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest

ProQuest EP76638

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

This thesis is accepted and approved in partial
fulfillment of the requirements for the degree of
Master of Science.

a c/ A? s?1& ^r or in Charge

Chairman of 'DepVrtnfent

li

TABLE OF CONTENTS

Abstract 1
1. Introduction 3
1.1 Scope 5
1.2 Outline 13

2. Software Quality Assurance 14
2.1 Some Questions 15
2.2 What is Quality Software? 30
2.3 Software Quality vs. Traditional Quality Control 40
2.4 Software Quality and Reuseable Software 44

3. The Software Quality Assurance Process 45
3.1 An Overall Approach 46
3.2 The Need for Standards 57
3.3 The Software Quality Assurance Life Cycle 59
3.4 Independent Verification 91
3.5 Summary 92

4. A Software Quality Assurance Plan 93
4.1 Purpose 95
4.2 Reference Documents 95
4.3 Management 97
4.4 Documentation 104
4.5 Standards, Practices, and Conventions 110
4.6 Reviews and Audits 112
4.7 Configuration Management 118
4.8 Problem Reporting and Corrective Action 120
4.9 Tools, Techniques, and Methodologies 121
4.10 Code Control 123
4.11 Media Control 124
4.12 Supplier Control 124
4.13 Records 125

5. Plan Implementation 126
5.1 Plan Acceptance 127
5.2 Logistics of Implementation 130
5.3 Growth 132
5.4 Conclusion 133

6. Conclusion 134

Bibliography 136

Vita 141

Hi

ABSTRACT

This thesis develops a software quality assurance plan

for a defined environment. The environment involves a

small manufacturing facility producing custom designed

machinery. The machinery is controlled by real-time,

process control software executing on a microprocessor

based computer.

The need for a software quality assurance process in

the environment is justified based on both error liability

costs and software development costs. The concept of

reuseable software in the defined environment and its affect

on these costs is described.

Desired software attributes are defined and are ranked

in importance in the given environment. The affect of

various phases of the software development process on these

attributes is discussed.

The software quality assurance process is defined to

be an organized, systematic application of design, develop-

ment, and verification approaches which build in software

quality as well as test out software error. Various soft-

ware design, development and verification techniques are

reviewed.

A quality assurance plan for the defined environment

is presented in an IEEE standard format. The plan includes

specific requirements definition, design, code, and test

review procedures. It also incorporates a design philo-

sophy based on top-down, functionally organized decomposi-

tion approaches which include information hiding concepts,

The problems of start-up implementation of the plan

are discussed. The growth potential of the plan is also

analyzed.

1. INTRODUCTION

Software quality assurance is the process by which

computer programs are developed to ensure a level of per-

formance which is acceptable based on reasonable engineering

and managerial criteria. This thesis will examine the need

for and process of software quality assurance in a small

manufacturing environment.

Standard quality assurance plans as described in the

literature apply to large scale (in both time and personnel)

development. Based on the lack of literature on the sub-

ject, the problem of quality assurance in "small" systems

development would seem to be insignificant. In the case of

the environment to be examined, this is not so. The

environment involves a small manufacturing facility which

develops embedded computer systems to control the real-

time process operation of the manufactured product. The

problems solved in software by the real-time process con-

trol program are far from trivial. Likewise the impact of

failure of the program may be significant in terms of

public safety or economics. As a result, the programs

developed need to be of "good" quality.

In developing the proposed quality assurance process,

the question of what is "quality" software is examined, and

current software quality assurance techniques are studied.

Appropriate techniques are then organized into a software

1. INTRODUCTION

Software quality assurance is the process by which

computer programs are developed to ensure a level of per-

formance which is acceptable based on reasonable engineering

and managerial criteria. This thesis will examine the need

for and process of software quality assurance in a small

manufacturing environment.

Standard quality assurance plans as described in the

literature apply to large scale (in both time and personnel)

development. Based on the lack of literature on the sub-

ject, the problem of quality assurance in "small" systems

development would seem to be insignificant. In the case of

the environment to be examined, this is not so. The

environment involves a small manufacturing facility which

develops embedded computer systems to control the real-

time process operation of the manufactured product. The

problems solved in software by the real-time process con-

trol program are far from trivial. Likewise the impact of

failure of the program may be significant in terms of

public safety or economics. As a result, the programs

developed need to be of "good" quality.

In developing the proposed quality assurance process,

the question of what is "quality" software is examined, and

current software quality assurance techniques are studied.

Appropriate techniques are then organized into a software

quality assurance plan for the given environment. The plan

is presented in a format compatible with software quality

assurance plan standards which are reviewed.

1.1 SCOPE

In the given environment, the current quality assur-

ance process is of an ad hoc nature. No consistent,

implemented plan for program quality exists. This thesis,

then, attempts to develop a quality assurance process which

will meet the objectives of productively producing func-

tional, reliable software in the "small."

1.1.1 ENVIRONMENTAL TERMINOLOGY

In describing the environment, certain terms will be

used repeatedly. These terms need to be defined in the

context in which they are being used.

1.1.1.1 DEVELOPMENT IN THE "SMALL"

The concept of "small" versus "large" program develop-

ment is not one that is well defined in the literature.

Yourdon [1] describes five levels of programs based on

size, manpower, and complexity of function. A paper by

DeRemer and Kron [2] discusses "small" versus "large" in

the context of the scope of program logic being designed

as the program is developed. For the purpose of this thesis,

"small" development refers to a program development envi-

ronment in which: (a) the full range of program documenta-

tion is not normally produced; (b) program development

usually lasts less than six months; and (c) the program is

usually developed by one person.

1.1.1.2 "EMBEDDED"

The term "embedded" is used in a dual context. First,

it is used to describe an "E-program" type as defined by

Lehman [3]. That is, an embedded program "...has become a

part of the world it models...conceptually at least the

program as a model contains elements that model itself, the

consequences of its execution." In other words, the

program must recognize its own interaction with the envi-

ronment as part of its logic. Secondly, embedded is used

in the sense of something which is hidden. The program is

not ostensibly a part of the delivered product. It is

there, the customer pays for it, but it is not the primary

reason for purchase of the product.

1.1.1.3 "REUSEABLE" OR "COMPONENT" SOFTWARE

The phrases "reuseable software" and "component soft-

ware" seem inherently to promise something good. The idea

of getting "code" for "free" to be used in a new system has

Meier M. Lehman, "Programs, Life Cycles, and Laws of Soft-
ware Evolution," Proceedings of the IEEE, Sept. 1980,
p-1063.

obvious value. Unfortunately in most systems, the idea has

questionable practicality given current software technology.

In the environment under study, however, the concept has

both merit and practicality. In fact, the idea of reuse-

ability begins to extend to that discussed by Freeman [4].

In particular, the product for which the software is devel-

oped is of a component nature. This should allow reuse of

design, code and test materials. In current application

the code, at least, is reused. Several "generic" programs

have been developed which configure themselves to a

particular application based on input parameters. In

addition, the same basic machine control process code has

been used on machines which were radically different in

both appearance and function. The intent, then, of this

thesis is to use a meaning of "reuseability" which is in

between that defined by Freeman and one which implies only

reuse of code.

1.1.1.4 REAL-TIME PROCESS CONTROL SOFTWARE

The type of software being developed in the environ-

ment is given the generic name "real-time process control

software." This type of program is intended to be a con-

tinuously executing process, examining input data, gener-

ating output controls, monitoring response, and displaying

status. The program has response and recognition time

requirements. The program as a result of its execution is

controlling some external, physical process. Typical

examples of this type of program usage are missile guidance

systems, air traffic control systems, and nuclear power

plant control systems.

1.1.2 THE ENVIRONMENT

As stated before, the environment being analyzed is a

small manufacturing facility. This facility presents a

specific atmosphere in which program development takes

place. In addition, .the programs being developed and the

development process itself are relevant data to the quality

assurance analysis. The facility and the program develop-

ment process are described in the following paragraphs.

1.1.2.1 THE FACILITY

The facility is first and foremost a manufacturing

plant. There is a hardware, production orientation to all

aspects of work. The monthly production figures are "the

bottom line."

The product being produced is a device in which several

general purpose component functions are joined in a custom-

ized fashion. In addition to these component functions a

significant percentage of the customers desire functions

which are unique to their operation. These functions are

integrated into the standard operations. Also, as the

market requires, new components are developed and added to

the available options. The facility thus mass produces

"specials." The end result from an engineering viewpoint

is one of constantly designing and shipping "prototypes."

Software is developed for the device which allows

real-time control and implementation of the desired func-

tions. The software executes on a custom designed micro-

computer which becomes part of the shipped product.

Device control has been an evolving process from individ-

ually designed logic circuit control cards, through a 4 bit

microcomputer programmed in assembly language, to a 16 bit

microcomputer being programmed in a dialect of the program-

ming language Pascal. It is this last evolution that will

be examined in developing the quality assurance plan.

The engineering staff is small in number and is

applications oriented. Each engineer is expected to work

with 2-4 machines per month. The engineer does both hard-

ware and software design and is responsible for the quality

of both. The staff size combined with increasing production

requirements has led to a need to produce more software

that consumes less time for checkout. This has been the

prime motivation for changing from assembly language devel-

opment to Pascal development.

1.1.2.2 SOFTWARE DEVELOPMENT

The program development effort can be broken down into

three categories reflecting the product produced. The

first category consists of using totally pre-generated

software and selecting required options via control para-

meters. The second involves using a majority of reuseable

software and adding customer required special functions.

The last category is the development of component code for

a new function or product line.

The majority of programs developed fall into the

second category. This category consumes 80-90 percent of

the development effort.

The normal development sequence consists of the receipt

of an informal functional specification which serves as a

performance requirement for hardware, software, and pro-

duction checkout. The program is generated by selecting an

appropriate base standard package, adjusting the parameters

for the functions required, designing any customer required

special functions, and coding the designed functions. New

component functions tend to be treated as a large size

customer "special." The collected code is then translated

by a program development system into machine format. The

machine format data is transmitted into program memory

chips. These chips are loaded into the custom microcom-

puter. The computer is inserted into the machine for

10

verification. The machine is checked out by production

personnel, and any errors in machine performance due to the

program are "debugged" by the engineer. A final checkout

is performed, and the machine is shipped.

As stated before, the entire process was being done

using assembly language programming and limited develop-

mental aids. The development effort is now switching to

Pascal with additional aids such as a syntax checking editor

and a development system logic debugging package.

Typical assembly language programs' size were 4-6

thousand source lines of code (not including comment

headers) with an average of 10-15 percent new code per

program. Pascal programs are expected to be in the 1-3

thousand lines of source code (not including comments) and

again include 10-15 percent new code.

1.1.2.3 THE ENVIRONMENTAL IMPACT ON DEVELOPMENT

In the manufacturing environment the software is not

viewed as a produced product. Rather, the programs are

only necessary components which are added on at the proper

point in the manufacturing process.

Traditional software concepts of functional specifica-

tions, design documentation, and user's manuals are not

considered useful or necessary.

11

What is of interest, in this environment, is product-

ivity, functionality, and reliability. These properties

reflect the desired properties of any other component of

the manufactured product. The components must be available

when in use at the customer facility. Also like other

component parts, the customer should not need to know any

operating instructions for the part.

12

1.2 OUTLINE

The thesis is organized according to the following

general outline.

Chapter Two takes both a philosophical and practical

look at software quality. What are the problems in program

development, what constitutes "good" software, what is so

tough about producing "good" software, and what is the

impact of the specified environment on general software

quality?

Chapter Three examines the software quality assurance

process in a general development scheme. The reasoning

behind an overall approach, the need for development stan-

dards, and the activities during various phases of a

standard program "life cycle" are examined.

Chapter Four presents the specific software quality

assurance plan for the given environment. The plan is

presented in a standard format following a brief discus-

sion of various format standards that have been developed.

Chapter Five analyzes part of the process of implement-

ing the software quality assurance plan presented. This

includes the need for a phased-in approach and an educa-

tional process dealing with the need for and implementation

of software quality practices.

Chapter Six provides a summary of the thesis with

respect to the goals outlined.

13

2. SOFTWARE QUALITY ASSURANCE

* This chapter analyzes the concept of quality assurance

for software. It examines the need for quality assurance

in the environment, analyzes the concept of software design,

looks at software quality "metrics," compares traditional

quality assurance to software quality assurance, and dis-

cusses the special needs of the defined environment.

14

2.1 SOME QUESTIONS

This section examines the overall need for and basis

of software quality assurance in the defined environment.

It asks questions about the justification of a quality

assurance plan and examines the nature of software failures,

2.1.1 WHY WORRY ABOUT QUALITY ASSURANCE IN THE DEFINED
ENVIRONMENT?

The software being developed is embedded software (see

Section 1.1.1.2). The implication for the product environ-

ment is that the software is the product. If the software

does not work, the manufactured product is useless. If

the software only partially works, the manufactured product

has both short and long term performance liabilities. These

liabilities are demonstrated to the manufacturer in a

variety of ways.

Customer complaints are received on the performance of

the product. Either the product does not perform as well

as the customer expected, creates errors in the processing

the customer desired, or does not perform the process the

customer desired in the first place.

Poor software performance is reflected in the relia-

bility of the product. The product may perform exactly as

the customer desires except for an occasional "hiccup" that

15

is traceable to an occurence of a specific set of condi-

tions. This set of conditions may occur infrequently

leading the customer to question the overall reliability of

the product. As another example, the product may perform

well but have speed limitations which are lower than

expected. These limitations may vary for various parts of

the process. This again leads to inconsistent performance.

Poor software quality is reflected in the repairability

of the product. Problems reported to the service organi-

zation may be difficult to trace to a root cause. Problems

generated by a single software error may result in several

vastly different physical symptoms causing the serviceman

to think he has multiple problems. It is often difficult

to isolate hardware problems from software problems thus

requiring several skilled personnel to troubleshoot prob-

lems. Once found software errors that have to be fixed in

the "field" can lead to even more problems. The "fix" may

not be able to be tested at the factory. Thus the fix

itself may have further errors. These errors may or may

not be discovered when the software is changed.

Poor software may result in manufacturer product

liabilities. Since the software is actually controlling

a physical process, human safety may be imperiled. In

addition, poor software/product performance can result in

lost time, sales, or production for a customer who may then

sue the manufacturer for the resultant financial losses.

16

Thus poor software quality in an embedded system can

be expensive. It costs in marketability as customer com-

plaints begin to be heard. It costs in potential liabil-

ity suits over injuries or financial losses. It costs in

maintenance costs for field repairs and updates.

Poor software quality, however, costs in a more

direct fashion. Actual manufacturing costs increase. Poor

software requires more time, and therefore cost, in the

development process due to increased testing and rework.

Errors, which must be corrected, cause delays in produc-

tion while the "fix" is being designed and coded. Further

delays occur as the product is now retested. This retest

must be done not only for the previous error, but also to

verify that the fix has not affected any other part of the

software. In severe cases, hardware may have to be

remanufactured to replace damaged equipment due to the

failed program. Finally, these delays may result in a

late shipment which often entails other financial penalties.

In summary, you worry about software quality assur-

ance because good engineering and good management demand

it. Poor quality embedded software is expensive through all

phases of a product's life. To minimize these costs you

need a quality assurance process.

17

2.1.2 WHAT IS WRONG WITH AN AD HOC APPROACH?

This question really asks what is wrong with what is

currently being done in the environment under study? Do

you really have to plan and work at quality assurance or

can you just depend on "good" engineers and "good" managers

and "good" production people?

One of the problems with this ad hoc concept is that

you never know how .good or how bad you are doing. This

lack of knowledge prevents any possibility of management

or engineering approaches to control or even monitor quality.

This lack of observability and controllability, given the

costs described in the previous section, is unacceptable.

In the ad hoc approach, quality becomes subjective

and not objective. Concrete data is replaced with individ-

ual judgment. This lack of objectivity can lead to another

problem. In cases of manufacturer liability on product

safety, one issue examined is conformance to industry

"standards." The ad hoc approach gives no data to prove a

valid, on-going quality process.

A third problem with the ad hoc approach is that it

has a bias towards failure. The ad hoc approach relies on

individuals rather than on a process. This leads to

several failure modes. First, people make mistakes and

dependence on individuals alone means that when they fail,

the product fails. Second, the required people are not

18

always available (they get sick, are on vacation, or quit).

Third, people tend to use "intuitive" approaches to testing

and, as reported by DeMillo et. al. [50] this can lead to

a very poor choice of testing techniques.

Another problem is the inherent inconsistency of

product delivered by the ad hoc approach. When left to

"do it themselves" individuals will make different choices.

All may be valid, but in an environment where reuseable

software is a primary goal, inconsistencies are counter-

productive.

In addition, the ad hoc approach can have problems in

dealing with the complex nature of the environment. One

of the reasons to use a planned and organized approach is

to ensure adequate and complete coverage in testing. Ad

hoc approaches tend to be incomplete and shallow.

Lastly, the ad hoc approach to software quality does

not enhance future quality. Knowledge gained by individ-

uals has no defined vehicle to be transmitted to others.

Thus the same mistakes can be made over and over again.

This creates recurring costs which are definitely avoidable.

2.1.3 WHAT CAN GO WRONG THAT'S SO BAD?

Given that you have to worry about software quality

because of cost, and given that you need something more

19

than an ad hoc approach, what is the nature of the problem

that needs to be solved? What things can go wrong in soft-

ware development?

In their classic paper, Goodenough and Gerhart [6]

classify two basic types of errors. They define "perfor-

mance" errors as errors in which the software fails to

produce results in the allowed time or memory space. They

define "logic" errors as errors in which incorrect results

are produced independent of time and space. They further

break down "logic" errors into requirements, design, speci-

fication, and construction subtypes. Requirements errors

occur when the system fails to satisfy a real requirement

of the user. A design error occurs when the system fails

to accomplish a known user requirement. A specification

error exists when the written specification fails to meet

the design. A construction error occurs when the program

fails to meet the written specification.

From a software development standpoint, and for the

purpose of discussion, these error categories will be some-

what rearranged and an additional error type recognized.

The earliest error that can occur, and usually the

costliest, is a failure to understand the true requirements

of the user. For a variety of reasons, it is possible to

misunderstand or not know of a real customer requirement.

This failure can be catastrophic. It can perpetuate itself

20

from the development group to the end product. When inade-

quate user review exists through the development phases,

this error lies undiscovered until delivery. The costs at

that time are potentially very large. Customer rejection,

product remanufacture, and customer lawsuits to recover

financial loss are among the many expensive results of these

errors.

The second type of error again involves a misunder-

standing. In this case the program designer does not

understand the known customer requirements. As a result,

the design is faulty. These errors may be found if an

independent test is done by a group other than the design

group. If not, the results can be very similar to those of

the previous error.

Also in the design phase, the designer may develop an

incorrect program design. This includes algorithms that do

not give the proper response, improper handling of out-of-

range input data, algorithms that require too much time or

space, and program structural designs which are inadequate

or difficult to understand. Some of these errors may be

found during testing.

The last type of error is one in which the previous

errors are not found. Inadequate testing due to lack of

time, understanding, or material can lead to disastrous

results at the customer site.

21

In addition to the above "errors," there is an addi-

tional problem that must be considered to be reflection of

poor software quality assurance. The problem is one of the

"schedule nightmare." In this nightmare, a program can be

ninety percent complete for a very long time. Schedule

dates come and go and the program still is not ready.

Brooks [7] describes the problem as one of "milestones"

versus "millstones." Indeed, part of the quality equation

must include the availability of the program when it is

needed.

All of the above types of errors will be discussed

further and typical examples presented in the next chapter.

To summarize, almost anything can go wrong.

2.1.4 WHAT CAUSES THESE PROBLEMS?

Why do all these, and other problems exist? Why does

software especially seem to be such a problem? There are

several basic reasons which this section will explore.

Among these are human frailty, the complexity of the problem

being solved, the concept of "soffware development, and

the problem of changes.

As the saying goes, "nobody's perfect." Human beings

make mistakes. The problem, as Brooks [7] points out, is

that computers demand perfection. The computer does not

22

understand what the programmer meant to type, it only knows

what it actually read and performs accordingly.

Human errors can come from a wide variety of sources.

Lack of training, lack of experience, lack of information,

weariness, and lack of time to name a few. Errors also come

from a source that may best be termed "blind spots." As

noted by Yourdon [1], these blind spots are reflected by

similar errors occurring repeatedly in a program. It may be

as simple as confusing two similar instructions in the

assembly language or always mistyping a given word in the

language. These blind spots can be recognized and avoided,

but they do exist.

Also related to the concept of human error is the

nature of "soft"ware development. As observed by Myers [8],

software development is really an information translating

process. This process involves the mind analyzing data in

one format (the problem to be solved) and, through a series

of transformations, developing another format of informa-

tion (a code program solving the problem). Software errors

are the result of mistakes made in this transformation

process. As pointed out by Myers, these translation errors

occur for several reasons. First, there is the mind's

ability to "read between the lines." We look at a problem

or specification and make assumptions about what it really

means. What we create is based on our interpretation of

23

what was requested. Second, there is a problem of lack of

comprehension of complex problems. The mind has limitations

on the amount of information and relationships that it can

understand. The way the individual breaks down the com-

plexities of the problem affects the resultant transfor-

mation. Thus the way a person thinks about a problem can

affect the performance of the program. Another problem is

one of natural forgetfulness. The mind, in the process of

translating, does not always remember everything relevant

to the problem solution. As a result, some portion of the

transformation is not performed, and the program has a lost

function. A last problem in this area is one of communi-

cation skills. Just as the mind "reads between the lines,"

so it often assumes the ability of others to do so cor-

rectly. Actual written or verbal communication regarding

the program may be vague leading to further errors by the

user of the data.

Myers [8] presents another cause for software problems

as the complexity of software development itself. The

amount of input data provided for a software development

project is, in general, much larger than most hardware

projects. Beyond the problem to be solved, there are the

vast number of options in program language selection,

language feature utilization, and design scheme selection

and usage. To prove his point, Myers compares the

24

documentation required for the hardware of a computer to

the documentation required for the operating system which

executes on that hardware.

As a final cause, there is the problem of change.

Change is inevitable, but in software projects it seems to

flourish with greater vigor. Something about the idea of

"it's only software" versus "we've already got the proto-

type built" allows change to be more acceptable in programs

than in hardware.

None of these reasons, or others that could be

presented, justify poor software quality. However, they do

explain why problems will occur and help provide clues as

to how to detect and minimize errors.

2.1.5 WHAT ABOUT THE DEFINED ENVIRONMENT?

What about the defined environment? Are there any

special problems presented in embedded process control

systems that can add to the problem of developing good soft-

ware? Are there any special needs created by the reusing

of software on new machines? The answer to both of the

last two questions is "yes."

First of all, embedded control systems are faced with

the problem of the environment in which they work. Time

constraints exist on the speed at which they must recog-

nize changes to the physical environment. This may require

25

the use of special hardware in the systems computer. This

hardware allows the processing being performed to be inter-

rupted by the external environment. The software must

then respond to the change in a way which does not corrupt

any non-related functions that are being performed. Like-

wise, the returned to functions must not override the

actions performed by the interrupt. If interrupts are not

available, the software must be written so that it can poll

the inputs fast enough to meet the recognition criteria.

In addition to the recognition speed requirement, there

is often a response time requirement. The software may have

to meet a need to present a result within a given time frame

from when the external change occurred. This can place

restrictions on the algorithms which are developed or on

the way in which those algorithms are implemented.

The software may be required to meet a "window" during

which an action must be performed. Testing of certain data

or implementation of a control function may only be valid

during that window. Again this affects the style and

nature of program design and evaluation.

Most embedded systems have a human interaction require-

ment. The program must present information to an operator.

The operator must be allowed to enter data and control

overall operation. These requirements place further speed

and processing demands on the software. Data displays must

26

be updated at a reasonable rate. Display devices tend to

require that the data be modified to a specific format

prior to transmission to the device. The operator expects

a reasonable recognition rate on entered data. Input

switches may have to be debounced to prevent normal mechan-

ical switch action from causing multiple responses to a

single entry. Problems such as keyboard "rollover" and

track-ball granularity must be analyzed and proper action

taken in the software.

All of these interaction requirements reflect into the

nature and style of the software. The operating executive

of the program must be capable of meeting the demands placed

on it by the environment. Processing routines need to be

concerned about proper..interaction with each other, the

data base, and the outside world.

Besides these embedded systems problems, the attempt

to reuse software by developing component functions, joining

the required functions into a base program, modifying these

functions as required, and adding new software to meet a

special need presents further problems. Component functions

may interact in unforseen ways unless proper design

approaches are used. Coding techniques and language pro-

cessors must be chosen to prevent confusion over the same

name being used in two different components which are now

being joined into one program. Conflicting formats or

27

sequence of data transfer transfers among components must

be avoided by design and coding approaches which recognize

these problems and prevent them.

Finally, there is the challenge of constant revision.

Customers change their minds about what functions are

required; budget cutting requires a modification in what

is purchased; invalid information is corrected; and exper-

ience gained as development progresses requires a modifi-

cation to be made. These changes can cause errors.

Original design constraints are violated as the reasons for

a particular structure or algorithm (which weren't written

down because "everybody" knew them or there wasn't time)

are forgotten. As an example, it was an obscure change to

a program early in the development phase which caused the

problem in launching the first orbital shuttle flight. In

reporting on that "bug," Garman [9] discusses the problems

of change, reuseable software and embedded systems. He

provides a summary for his paper and for this section:

The lesson from "the bug" that I plea
is directed to the academic and soft-
ware engineering community; help us to
find ways to reliably modify software
with minimum impact in time and cost.
Not perfect reliability, because pro-
jects will always back off to trade
for time and cost. Maintaining soft-
ware systems in the field, absorbing
large changes or additions in the middle
of development cycles, and recon-
figuring software systems to "fit"

28

never-quite-identical vehicles or
missions are our real problems
today. It's easy to say "don't
break the rules." It's impossible
not to without inverting the rela-
tive position of software in
embedded systems - and that *s
wrong! Software may be the "soul"
in most complex systems, but it
is still just part of the sup-
porting cast... a very flexible
part.2

2
John P. Garman, "The "Bug" Heard 'Round-the World,"
Software Engineering Notes, October 1981, p-10.

29

2.2 WHAT IS QUALITY SOFTWARE?

Knowing that there is a need for quality software,

how do you know when you have it? What are some of the

parameters of "good" software? What parameters are most

important? Can you measure software quality?

There are, at present, no objective measures of soft-

ware quality. There are no tests to which you may submit a

program which will say that it is 3.4 times better than the

average. There are, however, a lot of desirable "qualities"

which have been defined. A program may be subjectively

judged against these qualities. Program development schemes

may be used to enhance a program with respect to these

qualities.

The choice of which of these qualities is most impor-

tant is dependent upon the given environment. The resul-

tant prioritized qualities can and should impact the

quality assurance process.

2.2.1 "QUALITIES"

This section presents various "qualities" as they have

been described in a variety of references.

30

2.2.1.1 "CORRECTNESS" VS. "WORKING" VS. "VALIDITY"

Correctness is the extent to which a program fulfills

its intended function. The problem with this definition

is knowing the intended function. Most often this quality

therefore relates only to the intended function as defined

by the program specification. A program is thus defined

to be correct if it completely addresses its specification.

Clearly a program may therefore be "correct" and still not

do what is really required.

A program is defined as "working" if it meets the real

operational requirements of the user. A program may be

objectively tested for correctness but only subjectively

tested for working if the program specification is incorrect.

The goal, obviously, is to develop programs in a

fashion such that these two terms are synonymous, i.e., to

ensure the specification completely and truly reflects the

user needs and the program is "correct." The measure of

how closely the two terms are to being identical is the

"validity" of the program.

2.2.1.2 RELIABILITY

Reliability, in the general sense, is the extent to

which a program can be expected to perform its intended

functions without a detactable error. Again there is the

31

question of defining the."intended functions" and the

desireability of convergence between "correctness" and

"working." A somewhat more restrictive and better defini-

tion is given by Myers [8] in which he defines reliability

as the probability that the program will run for a given

period of time without failing weighted by the cost of a

given failure to the user.

2.2.1.3 EFFICIENCY

The efficiency of a program deals with how well the

program utilizes the resources needed to perform its required

functions. These resources include a variety of memory

types and the processing time used. Efficiency of programs

can be compared since memory usage and processing time

requirements are usually measurable quantities. 'This

quality can, however, be misleading since its basis inter-

acts with other qualities.

2.2.1.4 INTEGRITY OR SECURITY

Integrity is defined to be the extent to which access

to program code or data is protected. This quality is most

often related to multi-user operating systems where it is

desireable to protect one user's data from access by another

32

user. The term may be extended to include how well pro-

tected the software is from unauthorized copying.

2.2.1.5 USEABILITY OR USER CLARITY

This quality examines the "user friendly" nature of

the program human interface. How much effort is required

to learn how to operate controls, input data, and interpret

results? Are the input and output data in a natural lan-

guage format? Are operational sequences intuitive or

naturally prompted? Is "help" information readily avail-

able? Are error messages clear and do they prompt

appropriate action?

2.2.1.6 MAINTAINABILITY OR SERVICEABILITY

These involve the amount of effort required to locate

and fix an error in the operational program. To what extent

have debugging or diagnostic aids been built into the

program? This measure is in a sense the "mean time to

repair" of traditional quality assurance measures. This

quality is also directly related to the next quality -

clarity.

33

2.2.1.7 CLARITY

Clarity is a measure of the effort required to under-

stand the logic and data of the program itself. How

difficult is it for another programmer to figure out what

the program is doing and why? Program documentation plays

a major role in determining clarity. Also involved are the

type of logic and data structures used in the construction

of the program, the quality and quantity of comments

included in the code, naming conventions for routines and

data, and consistency of format and logic approaches through

the program.

2.2.1.8 TESTABILITY

Testability examines the ease with which the program

may be tested. It involves whether or not all aspects of

the program structure and function are both controllable

and observable. It accounts for the effort required to

exercise the controllability and monitor the observability.

2.2.1.9 FLEXIBILITY, EXTENSIBILITY, PORTABILITY,
REUSABILITY, CONFIGURABILITY, AND GENERALITY

These concepts are closely related and deal with the

ease with which the program may be changed from its present

usage to another usage. Flexibility is looked upon as the

34

ability to modify an operational program to perform slightly

different functions. Extensibility examines the ability

to add to the current operations being performed in a given

environment. Portability is the effort required to trans-

fer the program from one software or hardware environment

to another. Reuseability has been discussed earlier, but

to reiterate, it deals with the extent to which a program

may be used in other applications. Configurability reflects

the ease with which multiple uses within a single program

may be selected. Generality implies that the program was

either written to handle the general case of the problem

being solved (rather than a specific subset) or is easily

extended to the general case.

2.2.1.10 INTEROPERABILITY

This factor examines the effort required to integrate

one system with another. This quality would be most impor-

tant in areas such as computer centers or weapons control

systems where multiple hardware and software suites interact,

2.2.1.11 ROBUSTNESS, RECOVERABILITY, STRESS RESISITANCE,
AND VOLUME TOLERANCE

These concepts analyze the performance of the program

at and beyond its defined limits. Robustness implies that

35

the program is capable of receiving unacceptable or incon-

sistent input without detrimental results. Recoverability

examines the ease with which the program recovers from

hardware or software failures. Stress resistance implies

the ability of the program to handle overload processing

demands over a given short period of time. .Volume tolerance

is the ability of the program to handle maximum or near

maximum loading over an extended period of time.

2.2.1.12 AVAILABILITY

As discussed earlier, the availability of the soft-

ware, when it is required, must be considered as part of

the quality equation.

2.2.2 QUALITIES FOR THE DEFINED ENVIRONMENT

Which of these qualities are relevant to the defined

environment? Are some more important than others? Why?

Of maximum importance is that the program works and

is available in time for shipment. As part of working, the

program must meet defined volume processing requirements

and handle customer initiated stress operation. This is

because customers inevitably try to overextend the machine

operation. Part of the historic marketability of the

given product is its ability to handle such operation.

36

Reuseability and clarity are related to the production

requirements. Without clarity, reuseability becomes diffi-

cult to achieve and without reuseability production needs

cannot be met. Finally, maintainability and reliability

are important because customer down-time and field main-

tenance are extremely expensive.

Efficiency is important to the extent that the program's

time or space requirements impact its working and to the

extent that space requirements affect costs of required

memory. Useability is of concern due to potential impact

on marketability. Testability is considered due to poten-

tial production time costs required to evaluate the soft-

ware. Flexibility, extensibility, and configurability are

of interest to the extent that they affect the overall

reuseability of the software. Robustness and recoverabil-

ity are of concern because of their potential impact on

customer acceptance and therefore on marketability of the

product.

Correctness and the associated validity are of interest

only to the level that they impact any of the other impor-

tant qualities. They are not given greater importance due

to the nature of "small" development as defined earlier.

Likewise generality is of concern only as it affects

reuseability.

37

Integrity is of interest only in the need to protect

the copyright interests of any proprietary software.

Portability and interoperability are not relevant

to the defined environment.

Table 2.2.2-1 provides a summary of the evaluation of

the relative importance of the various qualities in the

defined environment. As indicated, a rating of "5" implies

maximum importance and effort should be assigned to

achieving the associated quality. A "4" implies concern

for the quality, but not of an overriding nature, and an

effort should be made to achieve the quality. A "3" means

interest exists, and some effort may be expended to achieve

the goal. A "2" implies a passing interest but only minimal

effort should be used to achieve the quality. A "1" implies

no concern exists and no effort should be expended. The

evaluation of qualities, and the associated ratings, is

based on the author's experience and judgment.

38

QUALITY RATING QUALITY RATING

Correctness 3 Extensibility 4
Working 5 Portability 1
Validity 3 Reuseability 5
Reliability 5 Configurability 4
Efficiency 4 Generality 3
Integrity 2 Interoperability 1
Useability 4 Robustness 4
Maintainability 5 Recoverability 4
Clarity 5 Stress Resistance 5
Testability 4 Volume Tolerance 5
Flexibility 4 Availability 5

Note: 5 - Maximum Importance 1 - No Concern

TABLE 2.2.2-1: QUALITY IMPORTANCE EVALUATION

39

2.3 SOFTWARE QUALITY VS. TRADITIONAL QUALITY CONTROL

This section will compare the needs of software quality

control to the traditional approaches of hardware quality

control. In doing so, two areas will be examined. First,

a historical perspective on the growth and approach of

traditional quality control will be compared to a corres-

ponding growth in software quality assurance approaches.

Second, the features of hardware and software will be com-

pared from a quality control viewpoint.

2.3.1 A HISTORICAL PERSPECTIVE

As discussed by Dunn and Ullman [10], traditional

quality control has its roots in the craftsman examining

his handmade product prior to sale. In software, this

represents the individual programmer whose software quality

is dependent solely on his own ability and standards of

quality. Unfortunately this is a very poor approach. As

discussed by Yourdon [1] and Mizuno [12] , individual

programmer abilities vary greatly.

Dunn and Ullman describe the next phase of traditional

quality control as one involving the needs on mass produc-

tion. As factories began to develop, quality control

evolved into a final testing or checkout responsiblity.

This eventually expanded to parts inspection and stastically

40

based testing. In software growth, this phase represents

more involvement by individuals other than the programmer.

Members of the design group participate in design review.

Management becomes more involved in establishing standards

to be followed by the group in design, coding, documenta-

tion, and testing.

The last phase discussed by Dunn and Ullman involves

the establishment of a separate quality control function

within the corporate structure. This group, in both hard-

ware and software evolution, begins to reap the advantages

of independent verification and validation. Independent

individuals examine the entire production process from a

quality assurance viewpoint. Their responsibilities are to

ensure conformance to established standards and to develop

new standards which will improve overall quality.

2.3.2 HARDWARD VS. SOFTWARE FROM A QUALITY CONTROL POINT
OF VIEW

As discussed by Dunn and Ullman [10], there are feature

differences between the nature of hardware and software

which make different quality assurance approaches necessary.

These differences are discussed in the following paragraphs.

With respect to failure, hardware eventually degrades

and must be replaced, software can get better as errors are

found and corrected. Hardware tends to give warning

41

indications before failure (degrading of signal strength,

stress cracks, etc.), software usually gives no warning.

Repair of hardware consists of restoring it to its original

form (sometimes by replacement), software repair consists

of creating a new and different "baseline" program.

With respect to manufacturing concerns, hardware

quality testing consists of verifying that the average part

on the assembly line conforms to the original design, copied

software is always the same and copying software is not the

normal production mode - creating new software is the

problem. Hardware reliability for manufactured equipment

can be established based on the component parts reliability,

there are no guarantees on this being true in software.

Hardware being tested off a production line can usually be

examined over the total range of its intended use, in soft-

ware the possible combinations of input are generally so

large as to prevent this level of testing.

2.3.3 TESTING ANALYSIS

How then to test software to ensure quality? The

traditional approach of statistical testing of parts does

not make sense based on the differences discussed in the

last section.

The historical approach of end product checkout is too

expensive for a variety of reasons. Time spent correcting

42

errors is more costly in the end stages of production

because more manpower is wasted waiting on the corrections.

Errors found during testing can be more expensive since

they may involve changing a basic design constraint. This

can lead to analysis, design, code and debug effort which

must be performed before testing can continue. Lastly,

the cost of errors that slip by because the shipping date

is reached and the product is shipped without the thorough

testing required is staggering. Boehm [12] reports that

it costs 100 times more to fix an error in the field than

in the requirements phase of development.

The conclusion is that quality needs to be built in

and not tested out [8, 10, 11].

43

2.4 SOFTWARE QUALITY AND REUSEABLE SOFTWARE

As discussed in Section 2.2, there are a variety of

factors which can influence the quality reuseability.

Based on the last section, the approach required to achieve

reuseability (and control the factors that influence it)

consists of building reuseability in. How can this" be

achieved?

To assure reuseability and the other qualities

recognized as valuable in Section 2.2, an overall quality

assurance plan must be developed. This plan will address

the techniques required for use in the various stages of

the software development life cycle. The stages of this

life cycle and the relevant techniques are presented in the

next chapter. The quality assurance plan which integrates

the process is presented in the subsequent chapter.

44

3. THE SOFTWARE QUALITY ASSURANCE PROCESS

This chapter examines software quality assurance as it

affects program development. The "standard" software life

cycle is briefly presented. The influence of this life

cycle on the "qualities" presented in the previous chapter

is discussed. The rationale for a software quality

assurance process which builds in quality rather than

testing out inferiority is detailed, and the need for stan-

dards is discussed. The software life cycle is presented

a second time with a discussion of the problems that can

arise in each phase, the methods used to develop software

which minimizes these errors, and the techniques used to

verify the quality of efforts in the life cycle phase.

Finally a brief section on the merits of independent verifi-

cation and validation is presented.

45

3.1 AN OVERALL APPROACH

As discussed in the previous chapter, software quality

assurance must be viewed as inherently different from hard-

ware quality control.

The quality solution for computer soft-
ware rests on the foundation of those
technological and managerial techniques
and practices that support orderly, pre-
dictable, and controllable development
and maintenance... One cannot assure
the quality of software by adding
gussets to stiffen it, or by derating
its power dissipation, or by expediting
deliveries with a private messenger
service. The quality must be built in,
and the only way to do so is to ensure
that all phases of the development and
maintenance are organized to that end.

The problems of software development and quality measure-

ment are compounded by the fact that, unlike other engi-

neering disciplines, software is not derivable from the

natural sciences. As a result, the software product is

not realizable in the physical sense and therefore is not

physically observable. This lack of direct observability

forces software quality measurements to be qualitative and

derivable only to the extent that the software development

process is systematic [10].

3 . . Robert Dunn and Richard Ullman, Quality Assurance for
Computer Software, McGraw-Hill, 1982, p-81.

46

It appears that the particular choice of a systematic

development technique, from the many available, is less

important than the mere usage of any systematic technique

[10,13]. In other words, software quality is improved

anytime a systematic approach is followed rather than an

ad hoc approach. Moreover it is obvious that it is useful

within an organization to choose a single approach to ease

costs of training, documentation, development, and main-

tenance [13]. The problem with choosing an approach to

follow is that there are few complete methodologies in

existance and very little objective data to choose one as

best for a given environment [14]. Most of the methodolo-

gies that do exist are tied to a particular phase of the

"software life cycle."

In addition to promoting a systematic development

approach, the quality assurance process must incorporate

procedures which recognize the "qualities" chosen as

desirable and know what phases of the given development

cycle potentially affect these "qualities." The process

must then utilize those development and testing techniques

which enhance the desired qualities.

The process, through all phases of development, must

also provide measurable milestones of development quality

and monitor quality performance. This means defining and

implementing an evaluation process and error logging, error

47

analysis, and error follow-up procedures which are reli-

giously followed. Without this error feedback loop, no

permanent quality gains are possible for the organization.

3.1.1 THE SOFTWARE LIFE CYCLE

To enable further discussion of the varying techniques

and to provide a framework for analysis of how software

"qualities" (as defined in Section 2.2.1) are affected by

software development, this section discusses the "standard"

software life cycle. This life cycle, while used in most

references in one form or another, is not universally

accepted as valid or desirable [15, 16]. In addition, most

references point out that the phases described are not

totally discrete; that is, some feedback as well as look

ahead occurs as development progresses through the phases

and, as a result, in an actual programming project, the

phases overlap. With these considerations, the life cycle

consists of: (1) system requirements analysis and defini-

tion, (2) architectural and detailed design, (3) code

implementation and debug, (.4) testing and verification, and

(5) maintenance. A brief explanation of these phases is

presented in the following paragraphs. Greater detail on

the activities, errors, and techniques applied during these

phases is presented later in the chapter.

During system requirements analysis and definition, the

"what" of the software system is determined. User needs are

48

analyzed and a proposed functional system is developed and

documented via a system specification.

During the architectural and detailed design phase,

the "How" of the software system is developed. Based on

the system specification and other constraints (such as

machine size and speed), architectural design decides the

structure of the program that will be written. Detailed

design develops the algorithms required to perform the

logical functions of the system specification as assigned

to the structures defined during architectural design.

Code implementation creates the software in a given

programming language based on the design phase information.

During debugging, the program undergoes preliminary testing

by development group to remove coding errors or "bugs."

Testing and verification evaluates the developed soft-

ware with respect to defined criteria including the origi-

nal system specification.

Maintenance involves all follow-up activities after

delivery of the software product. These include correction

of residual errors and minor performance modifications as

requested by the user and accepted by the developer.

3.1.2.1 CORRECTNESS, WORKING, VALIDITY

The correctness of a program is affected by the clarity

and detail of the requirements specification. Vague,

incomplete, or general specifications make correctness

49

difficult to measure or achieve. The true correctness of

the program is obviously the accuracy of the mapping done

during the design and coding phases. In this sense, the

completeness of coverage of all functions defined by the

specification, the accuracy of the algorithms used, and the

accuracy of the code implementation produce the basis for

correctness. The testing phase provides the visible

measure of correctness as modified by the accuracy of the

testing process.

Working is influenced by requirements analysis (if the

program is valid) and by the design phases communications

with the user. As with correctness, working is also affected

by the accuracy of coding, debug, and test effort. Working

is also influenced by the maintenance phase as user feed-

back begins to cause program changes during installation.

Validity is affected by all those areas which make a

program correct and working but is most of all a reflection

on the requirements phase.

3.1.2.2 RELIABILITY

Reliability is, in some cases, an inherent part of the

requirements phase. User needs, the cost of particular

kinds of failures, and the complexity of the system can and

should lead to a specification of the minimum reliability

required by the user and viable by production. Reliability

is affected by the design structure approach taken, the

50

algorithms selected, the coding practices used, and the

completeness of debug and test. The maintenance phase can

provide feedback on reliability and force changes.

3.1.2.3 EFFICIENCY

Efficiency bounds can be forced by the requirements

phase as decisions are often made regarding response time

needs, maximum computer capacity, and other relevant para-

meters which are then included in the specification.

Program design affects efficiency as program struc-

tures, algorithms and design standards are selected and

specified. Choices such as whether data will be global or

passed as parameters and what functions will be placed in

subroutines and which will be in-line code affect code and

data memory size and program speed.

Program code has perhaps the largest direct impact, as

the choices of a given language's constructs may cause

great variations in program size or execution speed. For

example, data storage in an array may be packed (thus

using less memory at the expense of speed) or unpacked

(thus executing faster but requiring more memory.) In

addition, as code is corrected during debug or test, the

style of correction can affect efficiency. Corrections

often are made as "patches" which work, and correct the

51

symptons of failures, but which are not consistent with the

intent and flow of the code causing inefficient execution.

3.1.2.4 INTEGRITY OR SECURITY

The integrity level required should be determined and

specified during the requirements phase, designed in as

required, ensured by code selection and debug, and verified

by testing.
r

3.1.2.5 USEABILITY OR USER CLARITY

The requirements phase has the greatest impact on

useability. The analysts must recognize the importance of

user friendliness and cause appropriate requirements to be

placed in the specification. Design and code phases need

to implement the requirements properly. Test and main-

tenance phases need to provide feedback on the actual

useability and cause changes to be made if necessary.

3.1.2.6 MAINTAINABILITY OR SERVICEABILITY

Maintainability can be a part of the requirements

specification but is a difficult function to verify if

included. Maintainability is affected more by the design

strategies used and the coding practices and standards

employed during development than by anything else. This

52

is due to the dependence of this quality on clarity. Also

affecting this quality is feedback on the ways in which

errors were found during testing and maintenance. This

information can provide insights on enhancements that can

be made in standard diagnostic routines, design approaches,

and error alert and recovery procedures.

3.1.2.7 CLARITY

As with maintainability, clarity is primarily affected

by the types of design strategies used (function based, ■

data based, decomposition, synthesis) and coding practices

employed (comments requirements, mnemonic conventions, data

usage). This quality can be monitored and overall per-

formance upgraded through techniques such as walkthroughs

and code inspections. (These strategies, practices and

techniques are described in greater detail later in this

chapter.)

3.1.2.8 TESTABILITY

Testability is affected by the clarity of the require-

ments specification. It is also influenced by the design

approaches used (levels of fragmentation of functions,

input and output control, and complexity of algorithms used

all affect the ease of testing). Coding practices and

53

language structures utilized can affect testability. In

this area, several metrics, such as McCabe's numbers and

Halstead measures, have been developed which attempt to

relate program design and code parameters to probable

required testing time [10].

3.1.2.9 FLEXIBILITY, EXTENSIBILITY, PORTABILITY,
REUSEABILITY, CONFIGURABILITY, AND GENERALITY

These qualities can be affected by the requirements

phase in the generality or specificity of the specification.

The specification can (but usually does not) require that

the program allow certain types of functional growth or

require that an amount of memory or processing time be

reserved for possible future expansion.

Design strategies and coding techniques tend to have a

greater impact on these qualities. The designer needs to

have these qualities in mind when he develops the program

structure. Likewise, algorithms need to accept the general

input case, functions and subfunctions need to be as

uncoupled as possible. Code needs to avoid self modifica-

tion, assumptions on input states, and restrictive usage

of hardware. Code and design reviews can improve programs

with respect to these qualities.

Maintenance processes need to use the same restraint

when adding functions or correcting latent defects.

54

3.1.2.10 INTEROPERABILITY

Interoperability is a concern of the requirements

phase. Design and code need to properly implement the

specification. Test and maintenance need to verify the

operation.

3.1.2.11 ROBUSTNESS, RECOVERABILITY, STRESS RESISTANCE,
AND VOLUME TOLERANCE

These qualities relate to the development process in

a fashion similar to flexibility and the other "growth"

qualities. Robustness and the other "tolerance" qualities

can be affected by the requirements specification and should

be of concern to the analysts. The qualities are affected

to a much greater degree by the design and code phase

strategies. Again, code and design reviews are important.

3.1.2.12 AVAILABILITY

This quality is controlled by the performance of the

development process with respect to the other qualities,

the development environment (with respect to available

tools), and the overall software management process (its

realism, attitude, and performance).

55

3.1.3 ERROR MONITORING AND RECORDING

In addition to recognizing the impact of various phases

of the development cycle on the desired qualities and

choosing appropriate requirements, design, coding, testing

and maintenance strategies, the quality assurance process

must include a systematic error monitoring and recording

process. Without this process, software development

becomes an open loop control system. There needs to be

feedback to cause adjustments in the techniques and standards

being employed. Designers and programmers need to be made

aware of errors being made, especially those of either

re-occuring or catastrophic nature.

In general, this error monitoring process crosses

phase boundaries as the output of one phase is used as the

input to the next phase. The process of error reporting

can, therefore, lead to conflicts between different groups

within an organization. Thus, the process must be presented

as one which is not an evaluation but rather an educational

vehicle which fosters an overall good. As such, error

monitoring and reporting is best not handled by management.

Guarantees must, however, be made to insure correction of

errors. Dunn and Ullman [10] present a discussion of some

of the potential problems in this area. This area is also

discussed further in Chapter 5 of this thesis.

56

3.2 THE NEED FOR STANDARDS

The software quality assurance process has thus far

been defined to incorporate several things. First, its

goal is to ensure a level of software performance which is

acceptable based on engineering and managerial criteria.

Second, it involves a process by which quality is system-

atically built into the program rather than a process in

which final testing alone is used to remove errors. Third,

the process must recognize those qualities which are most

important and select the techniques in the phases of the

development cycle which will promote those qualities.

Finally, the process must incorporate a feedback loop which

incorporates error reporting and correction monitoring.

In addition to these component concepts, the quality

assurance process must include a final "glue." This "glue"

consists of the adoption of development standards which will

serve as guidelines throughout program development. These

standards provide a visible symbol of the systematic devel-

opment philosophy behind the process. They also provide

starting points for evaluation in the error recording and

correction process. In addition, they can directly affect

software qualities such as clarity. Finally, as mentioned

earlier, standards can ease the costs of training, docu-

mentation, development, and maintenance.

57

In a general sense, these standards consist of:

guidelines in areas such as contents and format of require-

ments specifications; design methodologies to be used in

creating the structure, and detailed logic content of

program design and format of the appropriate design docu-

mentation; program languages to be used and allowed

language structures as well as program format and comment

conventions; program testing and validation techniques to

be applied along with test reporting conventions; and

maintenance logging and configuration management techniques

to be applied after shipping. The specific selection of

guidelines to be used is a function of the types of pro-

grams being developed and the development environment. The

next section presents some of the methods, philosophies,

and standards which have been applied in the various phases

of the life cycle. The next chapter will present those

standards selected for the environment under study.

58

3.3 THE SOFTWARE QUALITY ASSURANCE LIFE CYCLE

This section presents software quality assurance pro-

cedures in the program life cycle. The subsections present

types of errors that can occur, various development methods

to avoid these errors, and methods used to verify quality.

Throughout typical documentation is identified.

Before describing the various quality efforts, it is

useful to note that within the area of quality verifica-

tion techniques, there are two subcategories which are used

within the literature (and to a certain degree this thesis).

These categories are static analysis and dynamic analy-

sis [18]. Static analysis techniques are those which ana-

lyze system performance based on system documentation

(requirements documents, design documents, source code) and

do not require program execution. These techniques are

applied throughout the development cycle. Dynamic analysis

methods require execution of the program to analyze desired

qualities. As such, dynamic analysis techniques can be

applied only in the code and debug, testing, and mainten-

ance phases of the development cycle. While within this

thesis the specific category a technique belongs to is not

always identified, the concepts presented by the categories

are useful when developing an overall SQA process.

59

3.3.1 REQUIREMENTS ANALYSIS AND DEFINITION

As discussed earlier, this phase of the life cycle

involves an analysis of user needs and development of a

system functional definition. Without proper development

of a requirements specification, the rest of the software

quality assurance process has no foundation.

Software design can be characterized as
allocating requirements to the compo-
nents of an architecture. This charac-
terization stresses that a design *
consists of parts (modules) and.their
interconnections (interfaces) for the
purpose of realizing a given set of
requirements. Clearly this presupposes
that the software requirements are
defined and analyzed prior to the
design activity. Without first satis-
fying this important presupposition
all subsequent efforts to assure a
quality product are, at best, misguided,

One problem in developing a good specification in many

development projects is that not enough time is put into

the requirements phase and, as a result, quality suffers.

To be effective the requirements phase also requires

good communication between the development group and the

user group. Poor communication decreases information

availability and reduces the quality of the performance

4
John B. Goodenough and Clement L. McGowan, "Software
Quality Assurance; Testing and Validation," Proceedings
of the IEEE, Sept. 1980, p-1096.

60

specification. Even when communication is good, the user

group may not be certain of its needs. Lack of user under-

standing coupled with development time problems leads to

incomplete and changing specifications. Finally, errors

in specification are often caused by lack of available

system analysis tools and procedures.

3.3.1.1 COMMON ERRORS

The problems discussed above create errors that mani-

fest themselves in a variety of ways.

Logic "holes" may exist in the specification. If the

logic of the specification is drawn as a decision table,

blank areas exist in the table. These "blanks" may deal

with handling of input data that is out of range; program

initialization or termination sequences; interaction

between system functions; or system state transitions.

Beside logic holes, the specification may have errors

in the functional definition itself. Functions may have

been omitted, may be erroneously defined, may not be

feasible with current technology, may be unnecessary, or

may be inconsistent with other functions.

Another area for errors is the system's human inter-

face. This interface may be cumbersome, totally undefined,

or only partially defined.

61

Finally, the specification may be weak in the area of

defining performance requirements or system environment.

System specifications often specify only the functions to

be performed and not any overall performance criteria such

as total program size, program recognition and response

times, or spare processing time. In addition, program

environmental concerns such as the expected scope of

operation are not defined.

In addition to these performance related errors, the

specification format may cause problems. The way in which

the information is presented may be confusing or difficult

to modify.

3.3.1.2 METHODS OF DEVELOPMENT

Development techniques used to aid in the creation of

better requirements specifications range from individual

development tools to fully developed analysis processes

which incorporate various tools into a cohesive approach

which attempts to guarantee quality.

Wasserman [14] presents an excellent overview of the

various process approaches which have been defined and used.

Among these are: Structured Systems Analysis (SSA), which

uses a combination diagrams, database elements, a design

language, and decision tables and is discussed by Gane and

Sasson [19] and DeMarco [20]; Structured Analysis and

62

Design Techniques (SADT), a diagrammatic modelling approach

presented by Ross [21] and Ross and Schoman [22]; Problem

Statement Language (PSL), a formal language with an

automated analyzer developed by Teichroew and Hershey [23];

Software Requirements Engineering Methodology (SREM), a

large systems based technique using a variety of notations

and tools presented by Alford [24]; and Higher Order Soft-

ware (HOS), a system of laws and a language consistent with

the laws that may be applied to any design process and is

discussed by Hamilton and Zeldin [25].

In addition to these techniques, some techniques

usually applied to the design phase have been used in

requirements definition. Included in this category are

HIPO (Hierarchy-Input-Process-Output), a means of diagram-

matic structured decomposition discussed by Stay [2 6] and

the IBM report [27]; and the Warnier-Orr approach [28, 29]

an output based on logical analysis process.

Finally, there are some complete life cycle develop-

ment approaches which include requirements specification

approaches. An example is the Software Development System

(SDS), which uses an SREM based requirements phase and is

described by Davis and Vick [30].

Besides the above approaches taken as packages, the

tools used by them may be customized into a given

63

environment. These "tools" include data dictionaries, data

flow diagrams, logic flow diagrams, and requirements state-

ment languages (RSL).

As part of the overall development scheme, the

beginning of the configuration management process described

by Dunn and Ullman [10] should be started. This process

is needed to maintain ordered, documented upgrades to the

software system.

Also useful is the beginning of a form of documentation

known as the project notebook as discussed by Brooks [7].

This notebook serves as a repository for relevant memos,

design notes, and other project data which needs to be

available to all members of the development team.

3.3.1.3 METHODS OF VERIFICATION

As Howden [31] indicates, requirements quality

verification is dependent on analysis of the requirements

specification. This analysis may be done as part of a

formalized walkthrough of the document by the development

group or as part of an independent verification of the

requirements using simulation, modeling, and other math-

ematical analysis techniques.

If a requirement specification language such as PSL

has been used, it is also possible to do some automated

verification such as analyzing the specification for

"completeness."

64

In addition to the above technical analysis of the

requirements document, a final check of the specification

involves user approval. Ideally this includes a review

of the document by the user and a formal sign-off approval.

If this is not possible, an internal quality control group

should serve as a surrogate "user." After approval, the

document needs to be placed under a configuration manage-

ment process which allows change only as approved by the

user, the specification group, the design group, the quality

group, and needed other development groups depending on

the state of the project.

3.3.2 ARCHITECTURAL AND DETAILED DESIGN

This portion of the development cycle develops the

structure., logic, and algorithms to be used in generating

the coded program. Based on the requirements specification,

an information transformation occurs creating a design

specification. How this transformation should proceed to

develop "quality" software is the subject of many articles

in the professional literature. At the heart of the con-

troversy is the question of what is the proper basis for

the development process and structure definition. Should

this basis be data or function oriented? Should the

designer first examine the required output and work back-

wards to the necessary input creating structure along the

65

way? Should the design start at the top with the overall

functions to be performed or at the bottom with the hard-

ware and interfaces that are to be used in the system?

These concepts are presented or reviewed in a text edited

by Freeman and Wasserman [32].

The question is: are there any of these philosophies

which are better from a quality assurance viewpoint? As

would be expected, each author claims he has the best

approach. The authors reviewing the approaches are split.

Goodenough and McGowan [13], for example, claim any

approach which is consistent with the problem is valid.

Dunn and Ullman [10] claim structure is absolutely neces-

sary for the built-in quality and that structure should be

of a layered, top-down functional nature.

Most of the philosophies are represented in design

techniques. These techniques are listed as part of the

development methods portion of this subsection.

3.3.2.1 COMMON ERRORS

Among categories of errors that develop in the design

phase are logic errors, overload errors, timing errors,

documentation errors, through-put or capacity errors,

fallback or recovery errors, and standards errors.

Logic errors include: a process scheduling design

which does not meet the system timing requirements;

66

algorithms that incorrectly compute data or are limited in

range; improper handling of out-of-range input data;

processes or algorithms that fail to complete; improper

design of shared data controls; cumbersome/invalid/vague

assignment of functions to program structures ("spaghetti

logic"); overly complex formula or expressions; and poor

sizing of modules.

Overload, timing, and capacity errors can be the

result of logic errors or may involve improper utilization

of resources.

Fallback and recovery errors include poor error con-

dition definition, poor error alert indication, and various

human interface definition errors.

Standards errors involve failure to use the selected

design approach in developing a system architecture, failure

to document properly, or failure to follow proper configura-

tion management procedures.

Documentation errors would include documentation which

follows standard format but may be vague, misleading, or

incomplete in content.

3.3.2.2 METHODS OF DEVELOPMENT

Wasserman [14] presents a good overview of the various

program design aids and approaches which have been developed

and used in an attempt to design quality software. Among

67

these are: Structured Design, a modular design effort

emphasizing single function modules and well defined data

transfer between modules presented by Yourdon and

Constantine [33]; HIPO, a means of diagrammatic decomposi-

tion discussed by Stay [26] and IBM documentation [27];

the Jackson Design Method (JDM), an input structure to

output structure mapping based approach developed by

Jackson [34]; Design Realization, Evaluation, And Modeling

(DREAM), a behavioral object oriented modelling approach

reported by Riddle [35]; structured flowcharts, a structured

coding based diagramming method developed by Nassi and

Shneiderman [36]; program design languages (PDL), a

"structured" English module description tool reported by

Caine and Gordon [37]; and the Warnier-Orr approach [28, 29],

an output based logical analysis process with a diagram-

matic description tool.

Other methods used include: developing with finite

state machines, a finite state modelling approach, discussed

by Salter [38] ; designing with Petri nets, a directed graph

based approach described by Peterson [39]; and designing

using the Parnas concept, an information hiding approach to

module selection and definition discussed by Parnas [40, 41].

Needless to say, the number of methods used is large

and growing. Choice of an approach or combination of

approaches and philosophies needs to be based on an

68

understanding of the strengths and weaknesses of the

techniques and their applicability to the type of software

being developed. Their impact on those qualities selected

as important must be considered. The description of the

approach to be used in the defined environment will be

presented in the next chapter.

3.3.2.3 METHODS OF VERIFICATION

As with the requirements phase, verification consists

of using static analysis approaches operating on the design

documentation. This documentation, being a by-product of

the design effort, is dependent on the design approach

used. The various approaches create design artifacts in

very different formats (data flow diagrams, logic flow

diagrams, Petri net drawings, HIPO drawings, and PDL

programs). How these are incorporated into a design speci-

fication affects the verification methods that can be used.

Techniques that have been applied include: a cross

reference check between design elements and the require-

ments specificatiQn; verification of the interface portion

of design elements to check consistency; analysis of logic

paths through a top-down design; modelling and simulation

based design data to verify requirements performance;

verification of algorithms via simulation or comparison

with independent equations; units analysis of equations;

69

structured walkthroughs of the design by the development

group simulating execution of the design for various

conditions; design inspections using standard error check-

lists; inductive assertion methods to verify algorithms;

graph theory techniques applied to logic flow diagrams;

and automated module interface checkers applied in certain

PDL environments [31].

Most of the above methods are applied in a somewhat

informal approach by the development group. A more formal

approach is reflected in the widely practiced concepts of

the Preliminary Design Review (PDR) and the Critical Design

Review (CDR) [13]. The PDR consists of a formal review of

the proposed design architecture. This review is performed

by the management group, the users, and the quality assur-

ance group, to verify the logic and feasibility of the

design prior to proceeding to a detailed design level. The

CDR is a similar formal evaluation of the detailed design

for implementation and performance feasibility prior to

code generation.

In addition to these techniques, there is a quality

assurance approach which reflects into the design phase but

is really concerned with overall program performance. This

approach deals with self-testing programs. One self-testing

approach method consists of including "dynamic assertions"

about the properties and relationships of module input and

70

output. These assertions are incorporated into the design

and verify proper operation of the program during execution

[42,43,44]. A second approach, developed by Anderson and

Kerr [45], consists of inclusion in the design and code

of "recovery control blocks." These blocks evaluate a

set of alternatives and return an error indicator to

surrounding code [42].

The configuration management process and the project

notebook begun during the requirements phase should continue

through the design phase.

3.3.3 CODING

In the program development cycle, coding is the process

of transformation of the design information into a format

acceptable by a computer for eventual execution. In a

typical software development project, this phase consumes

less than 20 percent of the total effort. The process

typically is assigned much greater significance due to the

nature of the process and the importance of its output.

The task of writing code is closely related to the design

effort, and overall quality is strongly dependent on the

proper interaction between these two efforts [31]. Also

the style used in generating the code affects on the various

software qualities (as noted earlier in this chapter).

71

Finally, it is the code that executes and generates the

results that are visible to the world outside the develop-

ment group.

The transformation of design into code includes efforts

such as: selection of a programming language; development

of logic and data structures within the language to support

the algorithms of the design; selection of an implementation

strategy (code from the top in layers with lower levels as

"stubs," code individual modules and integrate them as they

are developed, code individual modules and wait until all

are available before integration); incorporation of a

mnemonics or labelling convention; and inclusion of a com-

ments standard [1, 14].

3.3.3.1 ERRORS

As presented earlier (see Section 2.1.3), Goodenough

and Gerhart [6] provide a basic classification of error

types that are evident in the generated code. Other

references [1, 10, 46] provide sample lists of errors that

commonly develop in the code phase. These errors are

generally classified in groups which include: data refer-

ence errors, data declaration errors, computation errors,

comparison errors, control flow errors, interfacing errors,

language utilization errors, hardware utilization errors,

and documentation or comments errors. The error lists can

72

form a basis for preventive approaches in the coding effort

as well as checklists during code evaluation.

3.3.3.2 METHODS OF PREVENTION

Many different techniques have been applied to attempt

to minimize coding errors. As indicated by Wasserman [14],

some of the approaches are as simple as the development of

a list of guidelines for programming style (strive for

program readability, avoid programming tricks, restrict

use of global data). Yourdon [1], in his discussion of

ways to minimize coding errors, includes these guidelines

but adds the concept of "antibugging" or including error

traps in the code. These error traps are to catch standard

coding errors and respond in some defined fashion.

The use of high level languages is another approach

which is being used extensively. These languages often

have "intelligent" compilers or syntax checking editors

which can reduce errors or catch them earlier in the devel-

opment phase. Specific languages have been developed

TM (Pascal) and are being developed (ADA) which incorporate

concepts such as data typing and structured programming

approaches in an effort to further reduce coding errors.

On larger projects, configuration management is aided

by the use of "program libraries" with a "librarian"

responsible for source and object file maintenance. Various

73

team programming approaches have also been used on these

projects in an effort to utilize as much experience as

possible to develop better code.

3.3.3.3 METHODS OF DETECTION / VERIFICATION

Several methods have been developed to aid in error

detection in the coding phase. As indicated in the pre-

vious section, improved compilers and assemblers have been

developed which provide greater analysis of data types and

program syntax. These have been added to traditional tools

such as the symbol cross-reference table output of compilers

and assemblers. Tools such as automatic "flowchart genera-

tors" have been built which create a flowchart from the

source code which can be compared to the design data.

Howden [31] reviews a group of other static analysis

techniques which can be applied to the source code.

Included in his review are: type and units analysis, ref-

erence analysis, expression analysis, and interface analysis,

In addition, Howden reviews the new concept of symbolic

execution and lists a variety of references. This tech-

nique involves utilization of a system which can "execute"

the source program with program variables assuming symbolic

values rather than numeric ones. Using algebraic and

boolean logic, the system evaluates branch conditions or

"predicates" to form "symbolic predicates." These are used

74

by the process to evaluate program logic and computa-

tions. The process has also been used to develop test data

cases and, in some instances, been used to prove the cor-

rectness of the program.

Besides the various "tool" approaches, several review

procedures have been developed and applied. Myers [4 6]

presents a good review of these techniques which include:

desk checking (a programmer self-testing process), code

inspection (a group line-by-line analysis of the code for

common errors), code walkthroughs (a group simulated

"execution" examination of the code under specified states),

and peer ratings (an anonymous group review of the code for

style, clarity, extensibility and other qualities).

The configuration management efforts must continue to

handle the inevitably staggered code development and to

manage design change request impact on the code effort.

The project notebook provides a vehicle for recording

reasons behind various coding decisions and dissemination

of required data to the programming team.

3.3.4 DEBUG

Debugging is the process of removing errors from a

program. The effort may be looked' upon as a phase within

the life cycle between coding and testing where the devel-

opment group exercises a variety of processes to find and

75

remove errors prior to the formal testing phase. Debugging

may also be looked upon as the effort which occurs as a

result of a successful test in the testing phase (i.e. a

test which has found an error) and which attempts to find

the cause of the error and remove it. Whether debugging

is defined as a separate phase or as a result of the test

phase, or both, the process of debug provides an important

opportunity for quality advancement. Debugging can produce

data on error categories and error solution recognition

techniques which can provide the design and coding phases

with important feedback. Good debugging approaches are

also required to enhance the availability of the program.

An interesting history of debugging approaches and the

changes in debugging philosophies through the years is

given by Brooks [7]. He concludes his historical review

by making a very important point: "... System debugging

will take longer than one expects, and its difficulty
5

justifies a thoroughly systematic and planned approach."

3.3.4.1 PROBLEMS / ERRORS

The area of debugging can introduce errors into the

program in the same way as the design and coding phases.

5 . Frederick P. Brooks, Jr., The Mythical Man-Month, Addison-
Wesley, 1975, p-147.

76

The methods of introducing corrections to found errors can

profoundly influence the clarity, efficiency, "growth"

qualities, and "tolerance" qualities. Ideally, the correc-

tion process should restart the development cycle at the

earliest required phase including the requirements phase

if necessary. In reality, the pressures of deliveries tend

to make corrections use the "band-aid" or "patch" approach.

Needless to say, the quality assurance process must attempt

to force usage of procedures which eliminate the patch

approach.

In addition to these potential quality problems, the

process of debugging, as Brooks [7] points out, is diffi-

cult. Yourdon [1] discusses debugging as an "art."

Myers [46] lists some of the reasons for this difficulty:

the psychological barriers inherent in admitting one's

mistakes in the design and coding effort; the pressure to

fix the problem as soon as possible; the nature of software

(the "bug" can be anywhere - no line of code is sacred);

and the lack of theory and technology on the methods of

debugging.

In summary, just as the measurement of quality is

hampered by the non-physical basis of software, so too is

the process of error isolation hampered and made into a

very mentally taxing effort.

77

3.3.4.2 METHODS OF APPROACH

Both Yourdon [1] and Myers [46] have excellent dis-

cussions on approaches to debugging. The methods can be

somewhat loosely categorized as: brute force, analytical

approaches, "rules of the road," and preventive medicine.

Brute force techniques include: data dumps (where

you try to figure out what happened based on a snapshot of

memory at the failure); print statement seeding (where you

put print statements throughout the program to analyze,

via the resultant printouts, what paths the program is

executing); and the usage of traces and breakpoints (where

a "debugger" tool is used to follow the sequence of routines

being executed or stop the program at specified points).

"Debuggers" have been expanded from traces and breakpoints

to allow data and input/output monitoring and manipulation.

Analytical approaches include using inductive reasoning,

using deductive reasoning, mentally "backtracking" from the

error output, and hypothesis testing via executing various

test cases.

The "rules of the road" category consists of a variety

of error locating and error repairing principles. These

rules include: check the obvious first, errors clump

together, fix the error - not the sympton, determine if the

error is repeatable and consistent, be thorough and method-

ological in data collection and hypothesis analysis, take

78

nothing for granted, think before you test, talk the

problem over with others, if you reach an impasse - sleep

on it, and know your own typical errors. Again, Myers and

Yourdon present a good discussion on these and other

principles.

Preventive medicine is the concept presented by

Yourdon [1] (and discussed earlier - see Section 3.3.3.2)

of "antibugging."

3.3.4.3 METHODS OF QUALITY ENHANCEMENT

As stated earlier in this section, debugging can

provide important feedback information to the other develop-

ment phase and improve the overall quality process. This

feedback data results from following the error analysis

process described by Myers [46] in which, for each error,

the following questions are raised and answered: "When in

the process was the error made?," "Who made the error?,"

"What was done wrong?," "How could the error have been

prevented?," "Why was the error not found earlier?," "How

could the error have been found earlier?," and "How was the

error found?." The answers to these questions should be

found and incorporated into changes in the development and

quality assurance processes.

Configuration management is especially important during

debug, as the temptation to incorporate changes rapidly to

79

fix the "bug," or try to isolate the bug, override the need

to maintain orderly modifications and defined program

versions. The project notebook continues to be a useful

record keeping device.

3.3.5 TESTING' AND VALIDATION

During testing and validation, the software is evalu-

ated to determine if it performs all of the desired functions

properly. Many different approaches have been taken to

accomplish this task from informal programmer checkout to a

series of independently operated tests leading to a formal

operational certification.

Independent of the techniques is the basic goal of

finding errors. As noted by several sources [1, 10, 46]

this primary goal is sometimes forgotten as the meaning of

a successful test becomes inverted (i.e. a successful test

becomes one which discovers no errors rather than being one

which does discover new errors).

The remainder of this section, through its subsections,

will present: a discussion on the approaches used in

developing software test procedures; a list of some of the

errors made when developing those procedures; a discussion

on some of the methods used in testing; and a presentation

on the importance of error follow-up, configuration manage-

ment, and the project notebook during testing.

80

3.3.5.1 TESTING APPROACHES

The primary approach to verifying programs is direct

program testing using specific test plans. In addition to

this approach, several other philosophies have been used

including: symbolic execution, self-testing code, and

program proofs. There has also been an approach used to

test the quality of the tests called "mutation testing."

Reviews of these categories may be found in a variety of

references [18, 31, 42, 50]. The following sections

examine these approaches.

3.3.5.1.1 SYMBOLIC EXECUTION

As discussed earlier (see Section 3.3.3.3), symbolic

execution involves utilizing a system which "executes" the

source code with the data variables assuming symbolic,

rather than numerical, values. This approach is reviewed

by Howden [31], discussed with reference to proving the

correctness of programs by Hantler and King [47], and an

example system called dissect is discussed by Howden [48].

3.3.5.1.2 SELF-TESTING CODE

The dynamic assertion method produces a program which

is partially self testing (see Section 3.3.2.3). In this

approach, code is inserted into the main program which

81

verifies the status of various data properties and rela-

tionships. The concept is reviewed by Howden [31],

examined in terms of proving program correctness by Hantler

and King [47], and presented as a concept by Stucki [43, 44]

The technique of Recovery Blocks [42, 45] provides for

an evaluation of a set of alternatives to determine if an

error exists. This information is then returned to sur-

rounding code for appropriate action (see Section 3.3.2.3).

3.3.5.1.3 PROGRAM PROOFS

Some efforts have been made in the area of developing

ways of mathematically proving the correctness of a program.

Myers [46] reviews some of these approaches and lists

various inductions and assertion proof methods that have

been advanced. As Myers points out, there still is some

question about the validity of the claim of guaranteeing

no errors exist in anything but trivial programs.

3.3.5.1.4 MUTATION TESTING

Mutation testing is really a test of the tests. The

process, as defined by Howden [49], involves defining a set

of transformations to the program which should determine

if the given test set will catch a specific type of error.

The process is described as a method of determining whether

82

a given test set is complete. This concept provides a

more complete and theoretical background to an effort known

as "error seeding." Error seeding has been used to add

known errors to a program to verify a test's ability to

find a given error.

3.3.5.1.5 PROGRAM TESTING

The primary approach of program evaluation involves

the execution of the program with a given input test set

and an analysis of the output results. This process

requires the selection of input data test sets for utiliza-

tion during execution as well as the definition of the

expected output. The criteria for selection of these test

sets have been broken down into categories of requirements

based, design based, program based, and error based.

Reviews of these criteria and the reasoning behind an

individual basing selection can be found in several refer-

ences [5, 10, 13, 18, 31, 42, 46], Actual test plans should

include elements of tests from each of the basing methods

since each provides some portion of quality testing which

is not available in the others. The following paragraphs

briefly examine the categories and provide some relevant

references.

83

3.3.5.1.5.1 REQUIREMENTS BASED TESTING

This type of testing, often called "black box" testing,

develops input test data to evaluate the program as defined

by the requirements specification. Included in this

analysis are: the functions to be performed; analysis of

the input domain; extreme case analysis of input and output

data; special value analysis; and analysis of the output

domain. Howden [51] discusses functional based testing

and reviews the overall concepts [42].

3.3.5.1.5.2 DESIGN BASED TESTS

Design based testing uses data about algorithms, data

structures, modules and module interfaces as described in

the design document to develop test cases. These character-

istics are looked upon as abstract operators and abstract

data elements. Functional style testing may then be devel-

oped based on these abstract elements and appropriate

input data selected. Howden [42] reviews the concepts of

design based tests, Goodenough and Gerhart [6] discuss some

of the implications on test data selection, and Weyuker and

Ostrand [52] provide further analysis of the use of program

design information in the development of test sets.

84

3.3.5.1.5.3 PROGRAM BASED TESTS

Program based testing uses the specific program logic

and data structures as a basis for the test data cases.

This type of testing is often called "white box" or "glass

box" testing since it utilizes all of the data on the

specific construction methods used in creating the program.

Much of the theory behind the methods used in developing

test cases for this strategy is derived from graph theory

as applied to logic or data flow graphs derived from the

program. Included in the approaches used to develop the

test data are: branch testing (each branch of the program,

where a branch corresponds to an edge on the program flow

graph, is traversed at least once); statement testing (each

statement of the program is executed at least once); path

testing (each "logical" path through the program is exe-

cuted at least once); expression testing (where the various

algebraic cases of the expressions in the program are

tested); and data flow testing (where the data paths through

the program are evaluated). Howden [42] and Dunn and

Ullman [10] review these approaches and several papers

[53, 54, 55] look at path testing. Statement testing is

mentioned in several references as being unreliable.

Expression testing and data flow testing require additional

test cases based on other criteria to provide adequate test

coverage.

85

3.3.5.1.5.4 ERROR BASED TESTS

Error based tests use typical programming error classes

as the basis for test cases. This approach is obviously a

supplemental one, but does provide interesting additional

test sets. Gerhart and McGowan [13] briefly discuss the

concept and indicate a need for research in the area and

Gerhart and Yelowitz [56] indicate some examples of the

types of categories that should be tested.

3.3.5.2 "ERRORS" IN TESTING

In the process of developing test procedures many

possible "errors" or problems can develop. Among these

are: poorly defined test objectives; tests that are vague

or disorganized; inadequate time allowance for tests to

be performed or results analyzed; inadequate planning for

availability of test hardware or support software; lack

of definition of authority or responsibility for tests;

inadequate record keeping procedure definitions; incomplete

retest procedures after repairs are made; undefined or

erroneous expected results; incomplete test coverage; and

undefined test completion criteria.

86

3.3.5.3 TESTING METHODS

With the knowledge of the various testing philosophies,

how are these approaches implemented? How are they

organized into a cohesive process to evaluate program

quality? The answers to these questions are typically found

in a project's test plan. This document should list the

types of approaches to be used, when they should be applied,

who should oversee the tests, what tools are required, and

how their results are to be evaluated.

Most test plans will list a sequence of tests to be

executed. These tests are, in general, ordered in a

sequence that is compatible with the development process

philosophy (bottom-up, top-down, or a mix). Usually

included in this sequence, in one form or another, are:

module related tests; integration type tests (as modules

are joined together or as a new portion of a module is

added to the system); function tests (where an overall sys-

tem function is evaluated); system tests (where the entire

system is evaluated by the development group); acceptance

tests (where the customer or an outside quality control

group conditionally accepts the system); and installation

tests (where the system is checked out and accepted by the

customer on the customer site). These tests, and the way

they should be organized, are discussed in several

references [1, 10, 46].

87

Tools have been developed to be used with the various

test philosophies and approaches. In the area of program

testing, Yourdon [1] describes some of these tools including:

automated test data generators; automated output data

checkers; automated test harnesses (an executive which con-

trols the generation of the test data, the execution of the

test, and the operation of the output checker); automated

retesting of repaired software; and automated logging of

test coverage and results via a monitor. Myers [46]

describes several other tools including: module drivers;

static flow analyzers; program correctness provers; sym-

bolic execution "machines;" environmental simulators; and

virtual machines. Dunn and Ullman [10] describe tools such

as a standards analyzer and a system performance monitor.

Obviously, to maintain quality and to aid in avoidance

of the test errors listed earlier, test plans need to be

reviewed by a quality control group to verify content and

conformance to standards.

3.3.5.4 ERROR REPORTING, CONFIGURATION MANAGEMENT,
AND THE PROJECT NOTEBOOK

The process of error reporting and processing during

the test and validation phase has the same importance

ascribed to the error reporting and processing efforts in

the debug phase (see Section 3.3.4.3). As noted by Dunn

88

and Ullman [10], this process can and must affect all

software development not just a given project. To this

end, Dunn and Ullman discuss various means of fault clas-

sification and present some sample data from published

reports.

The configuration management process is again put

under pressure as successful tests uncover errors causing

the debug process to occur. Keeping track of changes and

what tests have been executed with what version of the soft-

ware can become difficult.

The project notebook continues to serve as a storehouse

of data on the history and status of the project.

3.3.6 MAINTENANCE

The maintenance phase of the development cycle begins

after product installation. The quality assurance process

continues to have a major role as field repairs, program

revisions, and customer requests for changes affect the

delivered software.

Repairs due to latent defects need to be monitored to

verify the quality of the change and the potential impact

of the error on other systems and the overall development

standards.

Customer requests for program enhancements need to be

processed as a "mini" life cycle with appropriate quality

measures being applied.

89

Configuration management becomes a major concern as

the problems associated with maintaining a potentially

very large number of different versions of software become

great. These problems reflect the effort required to

maintain accurate documentation, source files and program

listings, and other information relevant to a given instal-

lation. Changes made to that installation for whatever

reason must start with this data and modify it as required

after the change has been successfully installed.

90

3.4 INDEPENDENT VERIFICATION

Independent verification uses an outside group to

monitor software quality [10]. This approach has several

strong advantages. First, it relieves the development

group of the burden of additional, non-production related,

effort. Second, the outside group should provide a more

objective viewpoint on the quality and therefore the

resultant product should eventually improve. Third, the

independent group can provide an additional source of

information about the overall product status to management.

Finally, the process may take less time if the development

group needs to be trained in quality assurance or is

understaffed.

There are several disadvantages to independent verifi-

cation. First, it costs more over a given time frame.

Second, it can lead to personnel problems over differences

of professional opinion on project quality between the

reviewers and the development group. Finally, it can lead

to potential conflict of interest by the outside group

depending on their other activities.

91

3.4 INDEPENDENT VERIFICATION

Independent verification uses an outside group to

monitor software quality [10]. This approach has several

strong advantages. First, it relieves the development

group of the burden of additional, non-production related,

effort. Second, the outside group should provide a more

objective viewpoint on the quality and therefore the

resultant product should eventually improve. Third, the

independent group can provide an additional source of

information about the overall product status to management.

Finally, the process may take less time if the development

group needs to be trained in quality assurance or is

understaffed.

There are several disadvantages to independent verifi-

cation. First, it costs more over a given time frame.

Second, it can lead to personnel problems over differences

of professional opinion on project quality between the

reviewers and the development group. Finally, it can lead

to potential conflict of interest by the outside group

depending on their other activities.

91

3.5 SUMMARY

This chapter has reviewed the software "qualities"

and discussed which phases of the software life cycle

affect the performance of the developed software with

respect to these qualities. The chapter has presented

various philosophies, techniques and tools which have been

used in the phases of the life cycle to improve software

with respect to these qualities.

The next chapter presents a software quality assurance

plan, which incorporates some of the approaches presented,

for the defined environment.

92

4. A SOFTWARE QUALITY ASSURANCE PLAN

Previous chapters have discussed a specific develop-

ment environment and demonstrated a need for a software

quality assurance process in that environment. A discus-

sion of the various ways in which a quality assurance

process affects the software development life cycle has

been presented. The question is now: how should the types

of techniques presented in the last chapter be applied to

the defined environment?

The presentation of the software quality assurance

process for this, or any other environment, should be done

via a software quality assurance plan. As indicated by

several references, a defined organized plan is, in fact,

an inherent part of the quality assurance process that it

documents. The plan serves as a guideline to the develop-

ment and quality groups and their management during the

implementation of the process. Several standards have been

developed defining the form and content of software quality

assurance plans. Among these are: MIL-STD-1679, a Navy

document; MIL-S-52779A, a tri-service document; FAA-STD-018,

a Federal Aviation Administration document; AQAP-13, a NATO

document; DLAM-8200.1, a Department of Defense document;

and IEEE-P730, an IEEE standard. Dunn and Ullman [10]

review these documents and discuss their similarity in

93

content as an indication of the maturing of the concepts

of software quality assurance.

This thesis, through the sections in this chapter,

presents a quality assurance plan in a format based on the

IEEE standard as described by Buckley [57]. Some liberties

have been taken with the defined content and format based

on the desire to develop a plan that is in keeping with the

concept of the "small" (see Section 1.1.1.1) development

environment being examined.

Before presenting the plan, a caveat must be stated.

Using this plan (or any other known plan) does not guarantee

that software developed will be perfect. The plan presents

a process which, it is believed, will improve the quality

of software currently being developed as measured by the

qualities defined in section 2.2.1.

In addition to this caveat, it must be noted that:

(1) the plan is intended as a guideline to indicate the

processes that should be included in the development effort

and (2) the plan is intended as a starting point for a

dynamic quality assurance process which can and should

adjust to changing needs in the development environment and

in the level of quality assurance effort required.

Given the above notes, the following sections present

the proposed quality assurance plan. Each section corre-

sponds to a like-named section in IEEE-P730.

94

4.1 PURPOSE

The purpose of this document is to present a software

quality assurance plan for the development of "small,"

embedded, process control software in a specific manufac-

turing environment. This environment develops three types

of software: a standard product, which uses previously

developed software and adjusts allowed parameters; a

customer special product, which is based on a standard

product but modifies it for a customer requested special

function; and a new system product, which creates new

standard functions for inclusion in the product line.

This plan examines the entire development cycle and is

relevant to the following produceable items: a customer

application memo, a software requirements memo, a program

design document, a program test memo, a program error

report, a program listing, the program itself, and a program

change form.

4.2 REFERENCE DOCUMENTS

Table 4.2-1 lists documents referenced by this plan.

95

(1) Development Standards and Procedures Manual

(2) H. D. Mills, Mathematical Foundations for Structured
Programming, FSC 72-6012, Gaithersburg, Md.: Federal
Systems Division, IBM, 1972.

(3) E. Yourdon, Techniques of Program Structure and Design,
Englewood Cliffs, N.J.: Prentice-Hall, 1975.

(4) H. D. Mills, "How to Write Correct Programs and Know
It," Tutorial on Structured Programming, New York,
N.Y.: IEEE Press, 1975.

(5) V. R. Basili and A. J. Turner, "Iterative Enhancement:
A Practical Technique for Software Development," IEEE
Transactions on Software Engineering, Vol. SE-1,
Dec. 1975.

(6) D. L. Parnas, "Designing Software for Ease of Exten-
sion and Contraction," IEEE Transactions on Software
Engineering, Vol. SE-5, March 1979.

(7) J. F. Stay, "HIPO and Integrated Program Design," IBM
Systems .Journal, Vol. 15(2), 1976.

(8) G. J. Myers, The Art of Software Testing, New York,
N.Y.: John Wiley & Sons, 1979.

TABLE 4.2-1: REFERENCED DOCUMENTS

96

4.3 MANAGEMENT

The development organization will be defined in this

document in terms of functional group categories. These

functional groups are described in the following paragraphs.

The sales interface group provides communication with

the company sales force. This group receives sales data,

formats it into a generally distributed document called a

"customer application memo," and provides a point of commu-

nication between engineering and sales.

The applications engineering functional group develops

the hardware design, the software design, and the software

code required for an individual customer machine.

The applications engineering management group is

responsible for overseeing the proper operation of the

applications engineering group and for interfacing that

group with the other functional groups.

The engineering staff functional group is responsible

for the development of new concepts and standards within

the overall engineering operation. With the applications

engineering group and its management, it is also responsible

for developing new systems for utilization on the manufac-

tured product.

The engineering management group oversees the operation

of the applications engineering group, its management, and

the engineering staff group. The engineering management

97

group is also responsible for interface with the production

management group and the group management functional group.

The production staff functional group produces the

manufactured product and performs system checkout and final

product test.

The production management group oversees the operation

of the production staff and interfaces with engineering

management and group management.

Group management is responsible for the overall opera-

tion of development and production and oversees the opera-

tion of engineering and production management.

4.3.1 TASKS

Table.4.3-1 presents the tasks associated with the

software development cycle covered by this quality assurance

plan.

4.3.2 RESPONSIBILITIES

Table 4.3-1 also presents the organizational functional

groups responsible for the tasks associated with the soft-

ware development cycle covered by this plan.

98

Task

Customer
Application
Memo (CAM)

Description

Generation of memo incorpor-
ating sales information in
format consistent with standards

Responsible
Group (1)

SIG

CAM Review Review CAM for clarity, soft-
ware development category,
errors, conformance to standards

AEM,AE,SIG,

Standard
Development:

Parameter
selection
and review

Test Type
Confirmation

Test
Application
and Report

Test Report
Review

Error
Procedure

Selection of standard software
parameters by assigned engi-
neer, review of selection by
second applications engineer

Generation of program test
memo to production confirming
standard test approach

Execution of required standard
tests, report generation,
system acceptance

Confirm test report receipt,
log errors

Generation of error report
Review report, plan response
Confirm valid response

AE

AE,AEM

PS,PM

AE,AEM,ES

PS
AE
AEM

Customer
Special Dev.:

Requirements Generation of software require- AE
Memo (RM) ments reflecting special
Definition software requirements needed to

accomplish customer requested,
non-standard function

RM Review Review requirements memo for
content, completeness, clarity,
feasibility

AEM,ES

TABLE 4.3-1: TASKS AND RESPONSIBILITIES

99

Task Description Responsible
Group (1)

Customer Spec:
(Continued)

Approach
Definition

Approach
Review (PDR)

Detailed
Design

Detailed
Design
Review (CDR)

Code
Development

Code Review

Test Type
Memo Dev.
and Review

Test
Application

Error
Procedure

Develop proposed software AE
modification plan indicating
new modules, changed modules,
and basic solution concept

Review proposed approach for AEM,AE
feasibility, clarity,
flexibility

Develop specific modification AE
algorithms and data structures
for custom software in manner
consistent with standards

Review detailed design document AEM,AE
for feasibility, clarity, con-
formance to standards

Generate code based on design AE
documentation and coding
standards

Review generated code for AE,AEM
clarity, standards incorpor-
ation, and comments by second
application engineer

Develop proposed test set to AE
verify new function(s), confirm
other standard base tests,
generate memo reflecting test
plan
Review memo for validity AEM

Execution of required tests
and report completion, system
acceptance

PS,PM

Report errors, test solutions PS
Review error & dev. solution AE
Review soln., confirm correction AEM
Log error AEM,ES

TABLE 4.3-1: TASKS AND RESPONSIBLITIES (CONT.)

100

Task

New "System"
Development:

Requirements
Memo (RM)
Definition

Description

RM Review

Approach
Development

Approach
Review (PDR)

Detailed
Design

Detailed
Design
Review (CDR)

Code
Development

Code
Review

Develop requirements needed for
software to create new system,
examine requirements from
defined qualities standpoint,
examine performance require-
ments, write requirements memo
in concert with format and con-
tent standards

Review RM for content,
clarity, extensibility, use-
ability, other relevant
qualities, and feasibility

Develop proposed solution
concept and software archi-
tectural structure, create
relevant portion of program
design document consistent
with content and format
standards

Review approach as defined in
documentation. Evaluate
feasibility; incorporation of
desired qualities, and stan-
dards compliance

Develop data and logic struc-
tures consistent with standard
development approach, document
following required content and
format standards

Review program design document
for feasibility, content and
format. Examine for qualities
desired.

Develop code based on approved
design document using code
standards

Review developed code for
conformance to design document,
coding standards, required
qualities. Do code walkthrough

Responsible
Group (1)

AE,ES

AEM,ES,EM,
SIG

AE,ES

AEM,ES,EM

AE,ES

AEM,ES,EM

AE,ES

AEM,ES,EM

TABLE 4.3-1: TASKS AND RESPONSIBILITIES (CONT.)

101

Task

New "System"
Development:
(Continued)

Debug Plan

Description Responsible
Group (1)

Debug Plan
Review

Test Memo
Development

Test Memo
Review

Test
Application

Error
Procedure

Error Summary
Analysis

AE,ES

AEM,ES,AE

AE,ES

Develop a preliminary check-
out plan designed to verify as
much code as possible off the
machine and an organized engi-
neering check-out on the machine

Review debug plan for feasi-
bility and level of coverage

Develop test procedures to
evaluate new software using
requirements, input domain,
output domain, and path based
approaches. Document clearly
via test memo

Review test memo for clarity,
test coverage, organization,
results definition, estimated
testing time, and feasibility

Execute required tests as
defined
Generate appropriate error
reports, system acceptance

Report errors, test solutions PS
Review error & dev. solution AE
Review soln, confirm correction AEM
Log error AEM,ES

Review error log, analyze error ES
types, propose procedure and
standards changes to reduce
errors

AEM,ES,EM,
SIG,PM

PS, PM

Change Control
Process:

In
Development

Evaluate proposed sales change
Evaluate impact on current
status
Develop plan, implement on OK
Approve plan

SIG,AEM,EM
AEM,EM,AE,ES

AE,ES
AEM,EM

TABLE 4.3-1: TASKS AND RESPONSIBILITIES (CONT.)

102

Task

Change Control
Process:
(Cont.)

Field Change

Process
Monitor

Arbitration

Description

Evaluate proposed change
Approve change
Go to customer specials

Evaluate conformance to quality
and development process, recom-
mend changes, approve changes

Settle disputes on process
implementation

Responsible
Group (1)

EM,AEM,SIG
EM,AEM

EM,AEM,ES,
GM,PM

ES,EM,PM,GM

Notes: (1) Responsibilities are listed in abbreviated
form where:

SIG - Sales Interface Group
AE - Applications Engineers
AEM - Application Engineering Management
ES - Engineering Staff
EM - Engineering Management
PS - Production Staff
PM - Production Management
GM - Group Management

TABLE 4.3-1: TASKS AND RESPONSIBILITIES (CONT.)

103

4.4 DOCUMENTATION

4.4.1 PURPOSE

This section describes the documents to be used in

controlling software development and how they are audited.

A customer application memo (CAM) is developed for each

machine and is reviewed as part of the minimum required

audit described in section 6 of this plan. The format and

content requirements of the CAM are reviewed as required by

applications engineering management, engineering management,

production management, and group management.

The software requirements memo (SRM) is created for

customer special machines and for new systems and is

reviewed as part of the required audits described in section

6 of this plan. The format and content standards for this

document are reviewed as required by the applications

engineering management, engineering staff, and engineering

management groups.

The design document (DD) is developed for customer

special machines and for new systems and is reviewed as

part of the required audits described in section 6 of this

plan. The format and content standards for this document

are reviewed as required by the applications engineering

management, engineering staff, and engineering management

group.

104

The program listing is reviewed as described in the

in-process audit and physical audit portions of section 6

of this plan. The format and content requirements are

reviewed as required by applications management, engineering

staff, and engineering management.

The test memo (TM) and the error report (ER) are

reviewed as part of the in-process audits described in sec-

tion 6 of this plan. The format and content requirements

are reviewed as required by applications management,

engineering staff, production management, and engineering

management.

User's manuals, on those projects that require them,

are reviewed as part of the in-process audits described in

section 6 of this plan. The format and contents require-

ments are reviewed as required by the applications manage-

ment, engineering staff, sales interface, and engineering

management groups.

Standards documents, the program change form, and this

plan are reviewed for content and format as required by

applications management, engineering staff, engineering

management, and group management.

105

4.4.2 MINIMUM DOCUMENTATION REQUIREMENTS

This section details the minimum documentation products

required.

4.4.2.1 CUSTOMER APPLICATIONS MEMO (CAM)

The customer applications memo defines at a high level

the functional and operational requirements of the system.

This document provides the basis for the software require-

ments memo and therefore must reflect all required system

functions, operational modes, and relevant hardware

information.

4.4.2.2 SOFTWARE REQUIREMENTS MEMO (SRM)

On customer requested specials and on new systems, this

document clearly and precisely defines the essential func-

tions, design constraints and attributes of the software to

be developed to meet the customer application memo.

Included in this description is a discussion on: input

required, functional processing used, generated output,

operational modes included, mode selection logic used, and

operator interface provided. It indicates any special

limitations or considerations in the target environment.

106

4.4.2.3 DESIGN DESCRIPTION (DD)

On customer required specials and on new systems, this

document describes the major components of the software

design including the data requirements, the internal module

communications, and the algorithms used to meet the soft-

ware requirements memo defined needs. The components docu-

mentation includes an input/processing/output description

and references the feature of the software requirements

being supported.

4.4.2.4 TEST MEMO (TM)

This document clearly defines the test processes to be

used in verifying the embedded software's proper operation.

For standard products, this memo references the appropriate

normal test procedure. For customer special systems and

for new systems, this document references any standard plan

used as a base, indicates what base plans are no longer

valid, and adds those procedures which are needed to eval-

uate the special function. These added procedures verify

the software with respect to the CAM, the SRM, and the DD.

This plan includes test input data, test procedures, and

expected results.

The test memo format includes the area required for test

result reporting. This area is filled in during testing and

references any generated error reports.

107

4.4.2.5 PROGRAM LISTING

The program listing is included in the documentation to

allow examination of program code with respect to defined

quality aspects such as clarity and to support configura-

tion management functions in the maintenance phase of the

development cycle.

4.4.2.6 ERROR REPORT (ER)

The error report form is to be filled out for all errors

located in the debugging and test phases of the development

cycle. This form incorporates content to allow subsequent

error analysis for development of- relevant error prevention

procedures.

4.4.3 OTHER DOCUMENTATION

On customer requested specials and on new systems, a

user's manual may be required. This manual includes clear

and precise operating instructions. These instructions

include set-up procedures, normal operational procedures,

allowed options, alert conditions, recovery procedures and

shutdown procedure descriptions.

A standards and procedures manual [1] is to be devel-

oped incorporating: document format and content descrip-

tions, coding conventions, comments requirements, and error

checklists.

108

The program change form is utilized as part of the

configuration management process for sales and field

requested modifications to the system. The document clearly

defines the functional change required, provides for an

estimated change time and includes an approval authorization

area.

109

4.5 STANDARDS, PRACTICES, AND CONVENTIONS

4.5.1 PURPOSE

The following paragraphs list a set of standards,

practices and conventions to be used in the development

cycle and how they will be verified.

Documentation format and content standards exist for

various documents listed in Section 4. Conformance to

these standards is as defined in the audit processes in

Chapter 6.

Logic structure standards exist and compliance is

verified via the audit processes defined in Section 6 for

the design document and program code products.

Coding standards and commentary standards will be

followed and verified via the code audit processes des-

cribed in Chapter 6.

4.5.2 CONTENT

The documentation content and format standards are

defined in a separate document [1].

Logic structure utilized in design and code will con-

form to those structures allowed in the structured program-

ming approach as defined by Mills [2] and as implementable

in the standard language. These structures are further

described in the standards document [1].

110

Coding standards require the use of the high level

TM language Microprocessor Pascal for all code, except where

its use prevents the operational feasibility of the software.

In those cases, the assembly language of the computer will

be allowed. Indentation of nested loops and conditional

statement predicates is to be used to aid readability.

Mnemonics are to be as descriptive as possible and may

include only alphabetic characters and the underscore.

Mnemonics must be unique within the first six characters and

avoid utilization of any operating system standard function

names.

Comments requirements include a standard header for

all programs, processes, procedures, and functions. This

header includes a description of the routine, an author's

identification, a revision indication, a source date, a

copyright indication, and a description of all input, output,

and called routines. Comments are to be used to highlight

compound statement groups in nested conditional statements.

Comments are used to clarify algorithms. Comments are used

to describe required detail for defined data elements.

Comments shall be used to cross reference requirements memo

functions to code sections.

The above standards on logic structures, coding

requirements, and comments usage are examples of standards

incorporated in the coding practices and procedures manual

II].

Ill

4.6 REVIEWS AND AUDITS

4.6.1 PURPOSE

During the development cycle, the various products

being developed are reviewed. These audits examine the

product for potential errors, feasibility, conformance to

content and format standards, and performance with respect

to defined software qualities [1].

The audit process is divided up into: a minimum set

of design reviews, a functional test process, a physical

software products review, and a series of in-process audits.

The CAM, SRM and DD products are reviewed as part of the

minimum design review set. The test memo and error reports

are reviewed as part of the in-process audits. The program

listing is reviewed in both the physical audit and the in-

process audits. The program itself is evaluated during

the functional audits.

The following subsections to this section describe how

the various audit processes are accomplished.

4.6.2

The following paragraphs describe a minimum set of

design reviews for the software development cycle in the

environment of this test plan.

112

4.6.2.1 CUSTOMER APPLICATION MEMO REVIEW

This review is held to ensure the adequacy of the

functional and operational data presented in the customer

applications memo. The review also evaluates the require-

ments specified to determine the nature of software develop-

ment to be used in implementing the CAM, i.e. standard soft-

ware, customer special, or new systems development. The

review includes, at a minimum, the sales interface group and'

the applications engineer. If required, the review also

includes the applications engineering management, engi-

neering staff and engineering management personnel. Changes

made as a result of the review are re-examined until

approved.

4.6.2.2 SOFTWARE REQUIREMENTS REVIEW

On customer specials and on new systems, the software

requirements memo is examined to ensure the adequacy of the

requirements specified. This review examines the SRM for

completeness, feasibility of implementation, conformance

to standards, and impact on qualities such as testability,

useability, correctness, the "growth" and "tolerance" qual-

ities, and reliability. The review is performed by the

applications engineering management group with assistance as

required by engineering staff. On new systems, the review

includes engineering management and the sales interface

group.
113

4.6.2.3 PRELIMINARY DESIGN REVIEW (PDR)

On customer specials and on new systems, the PDR

evaluates the technical adequacy of the preliminary design

of the software as given in a preliminary version of the

design document (DD). The preliminary DD is reviewed for:

coverage of requirements specified in the SRM, feasibility

of the architecture described to implement the defined

requirements, clarity of architecture description, confor-

mance to development philosophies, and impact on qualities

such as testability, clarity useability, the "growth" and

"tolerance" qualities, maintainability, efficiency,

reliability, and correctness. The review is done by the

applications engineering management group in concert with

the applications engineer. On new systems the review also

includes engineering staff and engineering management.

This review must be performed prior to initiation of

detailed design development.

4.6.2.4 CRITICAL DESIGN REVIEW (CDR)

On customer specials and on new systems, the CDR

determines the acceptability of the detailed software

design as described in the detailed design document. The

DD is examined for: incorporation and proper implementation

of requirements given in the SRM, feasibility of algorithms

114

and data structures used in terms of meeting the require-

ments and in terms of being implemented in the target

language, conformance of the DD to the content and format

standards, and impact on all the defined qualities. The

review is done by the applications engineering management

group along with the applications engineer. On new systems

the review also includes the engineering staff and the

engineering management.

4.6.3 FUNCTIONAL AUDIT

The functional audit consists of machine checkout by

the production staff. On customer specials and new systems,

this includes special tests as defined in the test memo*.

On all systems, this testing includes normal machine opera-

tion checkout including a final sytems run with appropriate

actual production requirements of the machine being utilized

and examined. This audit is performed by the production

staff and serves as an independent verification of the

operation of the software with respect to the functions and

operations defined in the CAM. Production management is

responsible for overseeing the audit and completion of the

test report portion of the test memo.

115

4.6.4 PHYSICAL AUDIT

On customer specials and on new systems, the program

documentation including the CAM, SRM, DD and program listing

are evaluated for consistency and for conformance to the

content and format standards. This review is performed by

the applications engineering management group and by

engineering staff. On new systems the review includes the

engineering management.

4.6.5 IN-PROCESS AUDIT

During the development process various other audits

are performed as part of the quality assurance process.

The following paragraphs detail these reviews.

On standard development software, the parameter selec-

tion is reviewed for accuracy by a second applications

engineer.

On customer specials and on new systems, the code is

reviewed prior to testing. The code is examined for

clarity, conformance to standards, and comments usage. A

code walkthrough is performed. This audit is done by the

applications engineers and the engineering staff.

On new systems, a review of a proposed debug plan is

done. This review evaluates the planned effort to check

out the code prior to machine usage as well as preliminary

116

engineering checkout of the machine operation. The plan is

examined with respect to feasibility and level of coverage.

The review is performed by the applications engineer, the

applications engineering management, and the engineering

staff.

The test memo is reviewed prior to sending it to

production. The memo is examined for validity and clarity.

On customer specials and on new systems, the memo is also

examined for feasibility, completeness of coverage, organi-

zation, results expected definitions, and estimated testing

time. The test memo audit is performed by the applications

engineering management. On new systems the audit includes,

as required, the engineering staff, the engineering manage-

ment, the sales interface group and production management.

117

4.7 CONFIGURATION MANAGEMENT

The configuration management process is concerned with

two areas: identification of software products and change

control and reporting.

Product identification involves both individual cus-

tomer products and standard software. For customer software,

all documentation is identified with the customer name and

the machine serial number. In addition, program listings

are identified with respect to the revision of the standard

software used as a base. Customer specials and new systems

may require their own revision information. For both

customer software and standard software, revision infor-

mation consists of a revision identifier and data with each

revision change indicating the changes made to create the

revision. Guidelines on what constitutes a revision are

included in the coding practices and procedures manual [1].

Beside the listing and other documentation, the customer

software is also presented in the hardware memories placed

in the computer. To aid in identification, checksums of

these chips are recorded and referenced to customer name,

machine number, and engineer.

The change control process is concerned with changes

made in two segments of the development cycle. These seg-

ments are separated by the actual shipment of the machine.

Changes requested prior to shipment will be evaluated by

118

the sales interface group, applications engineering manage-

ment and engineering management for feasibility, cost, and

impact on current status. If accepted, the request initiates

a change order which describes in detail the desired change.

This change order is reviewed and an implementation plan is

developed by applications engineering and engineering staff.

This plan must then be approved by applications management

and engineering management. The change is then implemented

by the applications engineer and/or engineering staff.

Field change requests are evaluated by the sales interface

group, applications engineering management and engineering

management for feasibility and cost. On acceptance by

management and by the customer, a change order is initiated

describing clearly and in detail the desired functional

change. This change is reviewed in much the same fashion

as a new customer special machine with a new CAM and other

documentation being developed.

119

4.8 PROBLEM REPORTING AND CORRECTIVE ACTION

Errors discovered during the reviews of the CAM, SRM,

DD, and program listing are referred back to the originator

of the document for correction. The document is then

reviewed again. This process repeats until acceptance.

Errors found during debug and testing are recorded

using the error report form. These errors are reported to

the responsible engineer for correction in all applicable

areas including both documentation and code. Corrections

made must be noted on the error report form. Applications

and engineering management are responsible for insuring

that all error reports are reviewed for correction and

appropriate changes are made. Engineering staff reviews

all error reports and is responsible for developing new

procedures and modifying standards as required to attempt

to eliminate commonly reported error types.

120

4.9 TOOLS, TECHNIQUES, AND METHODOLOGIES

This section describes the tools, techniques and

methodologies to be used in software development to aid in

quality assurance. Included in this group are design

philosophies, review techniques, development tools, and

approaches in language utilization.

The development philosophy to be used is the "top-

down" design concept described by Yourdon [3]. Also to be

incorporated are the concepts described by Mills [4], Basili

and Turner [5], and Parnas [6]. These philosophies should

promote the general "growth" qualities as well as clarity

and maintainability. These ideas involve the concept of

a functional-based structure where the stepwise refinement

technique is used as the design moves from the general to

the specific. The Parnas ideas of choosing modules which

protect volatile areas of the design are important in an

environment which is based on hardware and functional

modularity.

The HIPO approach [7] will be used in design documen-

tation to aid in clarity.

Desk review [8] should be used during the code develop-

ment process to aid in individual correction of errors.

The Pascal based language will be used with structured

programming techniques to aid in clarity and maintainability.

The syntax check feature of the language editor is to be

121

used after every edit session to find and correct syntax

errors early and improve availability.

The debugger of the host development system and the

target debugger are to be used to speed up analysis of

errors and enhance availability.

The methods, techniques and tools described are

incorporated in a separate development guide [1].

122

4.10 CODE CONTROL

Specific versions of the code need to be controlled

and maintained. Copies of the final customer software,

standard "generic" software, and currently valid versions

of software in development need to be protected from loss.

Final customer software is copied onto flexible

diskettes and stored in a protected area.

Standard software is likewise copied and stored in a

protected area. In addition, engineering staff and appli-

cations engineering management are responsible for storing

and additional copy of the standard software.

In progress software is backed up by engineering staff

on an every other day basis as part of normal system backup

procedures.

123

4.11 MEDIA CONTROL

Software physical media for working software is stored

in a controlled access, environmentally controlled computer

room. Backup copies of shipped programs are stored in an

environmentally protected safe.

4.12 SUPPLIER CONTROL

This section is not relevant to the defined development

environment.

124

4.13 RECORDS

This section discusses the retention of software

records.

The CAM, SRM, DD, user's manual and program listing are

retained until the machine is modified in the field. At

that time, they are replaced with the new documents. The

test memo and error reports are retained until reviewed and

incorporated by the error analysis process.

125

5. PLAN IMPLEMENTATION

The last chapter presented a proposed quality assurance

plan for the defined environment. Implementation of this

plan in the defined environment is accompanied by several

questions which need resolution for the plan to succeed.

These questions reflect potential problems in three areas:

plan acceptance, logistics, and growth potential.

126

5.1 PLAN ACCEPTANCE

To succeed the plan must be accepted by management, by

the development group, and by production personnel.

An expected and legitimate question from management

is the "cost" impact of the plan on development. The plan

obviously calls for more work to be done and this can imply

increased cost and increased time. The response that must

be given is both philosophical and practical. The philo-

sophical response deals with the entire question of the

role of quality control in a business. The problem is

reaching a point where.:

Management acceptance will stem from a
philosophical point of view for which we
may well look to Japan. There, quality
control is considered a cost-saving
measure; in the United States, it's
generally regarded as a cost.6

Backing up this philosophical point of view are the items

discussed in Chapter 2 of this thesis on the need for a

quality assurance process. Specifically, costs can be

reduced by the software quality assurance process in three

ways. First, by using the design approaches, few errors

will be required in testing. Second, errors that do occur

Robert Dunn and Richard Ullman, Quality Assurance for
Computer Software, McGraw-Hill, 1982, p-261.

127

will be found earlier in the development process due to

the new and earlier reviews and, as documented in a wide

variety of literature, these errors will therefore cost

less to fix than if they were not caught until the testing

phase. Finally, by using the reuseable software design

concepts (in conjunction with the quality process to ensure

the reliability of the reuseable code) the software develop-

ment time will decrease as development becomes a process

of selecting "building blocks" which will fit together to

meet the customer's needs.

Acceptance by the development group is hindered by

several items. First, there is a natural concern that this

whole process is questioning the engineer's abilities to

develop software. (What's wrong with what we're doing now?)

The response to this concern needs to be based on the

information presented in Chapter 2. (Nobody is perfect and

we should always be looking for ways to improve the way we

do things and try to decrease debugging on the production

floor.) A second natural response results from looking at

the whole process as more work to be done when there is not

enough time now to develop code. The response here needs

to be one similar to the discussion with management over

increased costs and time. Finally, there may be inhibitions

aroused by the concept of "pride of authorship," the desire

not to use other engineer's code, or the anxiety over other

128

engineers seeing mistakes in your work as it is used or

reviewed by them. This can only be resolved by an ongoing

effort by management and other personnel to look at errors

as being natural and not to demand individual perfection.

Instead, the emphasis needs to be on the concept of "team"

quality control (ala Japan's quality circles [11]).

Acceptance by the production personnel is hindered by

the attitude: "It's not my problem - why should I worry

about it?." In this case, the need again is to emphasize

that quality is everyone's concern (the quality circle con-

cepts) . In addition, production personnel need to know the

important role they are playing in the feedback process and

in the role of independent evaluation.

Beyond the need for communication among and education

of the various groups, plan acceptance and success also

depends on the acceptance of the plan as policy. As noted

by Dunn and Ullman [10], the informal approach to presenting

the role of quality assurance in development does not work.

129

5.2 LOGISTICS OF IMPLEMENTATION

Implementation of the plan also faces some logistic

problems. There currently exists a large amount of soft-

ware design of the old style; software development is

continuous and cannot be interrupted; the standards and

procedures manual does not exist; the "standard" software

does not exist; the various standard forms have not been

created; and personnel are not familiar with the quality

assurance or design concepts.

Obviously the plan cannot be implemented immediately.

What is required is a phase-in process. This phase-in

effort involves four basic concepts. First, implementation

begins by working on parts of the plan. Those concepts

which can be immediately implemented (CAM reviews, parameter

selection reviews, the beginning of code reviews) are

started. Subsequent sections of the plan are implemented

in stages as soon as feasible. Second, this staging process

must involve the development of the required new work habits.

These habits involve not only the design and coding phases

but also attitudes toward quality assurance as a team con-

cept. Third, the initial development of the standards and

procedures manual and its evolutionary review process must

begin as soon as possible. This document forms the founda-

tion of the quality assurance process and its sections need

to be developed to support the relevant phase-in stage which

130

is to be initiated. Finally, the phase-in process involves

beginning periodic training sessions to present the quality

concepts, development methods and tools, and review pro-

cedures which will be used.

The phase-in concept has several drawbacks including

slower overall progress to quality and potential confusion

as only portions of new concepts are implemented. These

drawbacks are offset by the advantages of maintaining

production during phase-in and, at the same time, gradually

increasing overall software quality.

131

5.3 GROWTH

The final question deals with the plan's ability to

accept change. As new languages and new processors are

used, new development tools (such as a source formatter

or a program design language) are proposed or become avail-

able, or as new design philosophies (a data base approach

for example) are proposed for review, how well will the

plan respond?

The plan inherently includes a review process for the

standards and procedures. New areas of development, new

tools, and new philosophies should be examined as part of

the review process. Changes to the process would probably

undergo the same phase-in process proposed for the initial

implementation of the plan.

132

5.4 CONCLUSION

Plan implementation involves modification of work

habits and philosophies. This process should be a day by

day evolution to quality.

...We can do a great deal to improve
software immediately with the auto-
mation at hand. We do not need to
set impossible, idealistic goals...
We can do much by simply adjusting
our everyday procedures.7

7 Yukio Mizuno, "Software Quality Improvement," Computer,
March 1983, p-72.

133

6. CONCLUSION

This thesis has examined the concepts of software

quality assurance for a defined environment. In this

analysis, the need for quality controls during the develop-

ment of software has been examined. It has been found that

there is a need to affect the entire development process,

not just the program test and verification phase.

In analyzing the development process, the thesis has

defined certain qualities of software which may be subjec-

tively evaluated. These qualities were rated with respect

to importance in the defined environment. The software

development process itself was reviewed with respect to

these qualities; and the methods, techniques, tools, and

philosophies used in requirements definition, design code

and testing reviewed.

A quality assurance plan was presented in a format

compatible .with IEEE-P730, a standard for software quality

assurance plans. The plan itself consisted of: using the

basic sequence of development steps of the defined environ-

ment; adding needed review steps; incorporating guidelines

for design, coding and testing; and defining a design

philosophy to be used.

Questions of implementation of the plan in the defined

environment were reviewed and solutions to potential

problems presented.

134

It is believed that this plan does present a viable

approach to developing available, reliable, and reuseable

software in the "small."

135

BIBLIOGRAPHY

[1] E. Yourdon, Techniques of Program Structure and
Design, Englewood Cliffs, N.J.: Prentice Hall, 1975.

[2] F. DeRemer and H. H. Kron, "Programming-in-the-Large
versus Programming-in-the-Small," IEEE Transactions
on Software Engineering, Vol. SE-2, June 1976.

[3] M. M. Lehman, "Programs, Life Cycles, and Laws of
Software Evolution," Proceedings of the IEEE, Vol. 68,
Sept. 1980.

[4] P. Freeman, "Reuseable Software Engineering: A
Statement of Long-Range Research Objectives," Dept.
of Information and Computer Science, University of
California, Irvine, California, Tech. Rep. 159,
Nov. 1980.

[5] R. A. DeMillo, F. J. Kipton, and F. G. Sayward,
"Hints on Test Data Selection: Help for the Prac-
ticing Programmer," Computer, Vol. 11, April 1978.

[6] J. B. Goodenough and S. L. Gerhart, "Toward a Theory
of Test Data Selection," IEEE Transaction on Soft-
ware Engineering, Vol. SE-1, June 1975.

[7] F. P. Brooks, Jr., The Mythical Man-Month, Reading,
Mass.: Addison-Wesley, 1975.

[8] G. J. Myers, Software Reliability Principles and
Practices, New York, N.Y.: John Wiley & Sons, 1976.

[9] J. R. Garman, "The "Bug" Heard 'Round the World,"
Software Engineering Notes, Vol. 6, October 1981.

[10] R. Dunn and R. Ullman, Quality Assurance for Computer
Software, New York, N.Y.: McGraw-Hill, 1982.

[11] Y. Mizuno, "Software Quality Improvement," Computer,
Vol. 16, March 1983.

[12] B. W. Boehm, "Software Engineering," IEEE Transactions
on Computers, Vol. C-25, Dec. 1976.

[13] J. B. Goodenough and C. L. McGowan, "Software Quality
Assurance: Testing and Validation," Proceedings of
the IEEE, Vol. 68, Sept. 1980.

136

[14] A. I. Wasserman, "Information System Design Method-
ology," Journal of the American Society for Infor-
mation Science, Vol. 31, Jan. 1980.

[15] R. Friehmelt, A. Jaeschke, and H. Tranboth,
"Evolutionary Cyclic Model for Development of Complex
Systems," COMPCON81 Proceedings, Sept. 1981.

[16] M. M. Lehman, "Programming Productivity - A Life
Cycle Concept," COMPCON81 Proceedings, Sept. 1981.

[17] W. E. Howden, "Introduction to Software Validation,"
Tutorial: Software Testing and Validation Techniques,
Second Edition, New York, N.Y.: IEEE Computer
Society Press, 1981.

[18] E. Miller, "Introduction to Software Testing Tech-
nology," Tutorial: Software Testing and Validation
Techniques, Second Edition, New York, N.Y.: IEEE
Computer Society Press, 19 81.

[19] C. Gane and T. Sarson, Structured System Analysis,
Englewood Cliffs, N.J.: Prentice-Hall, 1979.

[20] T. DeMarco, Structured Analysis and System Specifi-
cation, New York, N.Y.: Yourdon, 1978.

[21] D. T. Ross, "Structured Analysis (SA): A Language
for Communicating Ideas," IEEE Transactions on Soft-
ware Engineering, Vol. SE-3, Jan. 1977.

[22] D. T. Ross and K. E. Schoeman, Jr., "Structured
Analysis for Requirements Definition," IEEE Trans-
actions on Software Engineering, Vol. SE-3, Jan. 1977-.

[23] D. Teichroew and E. A. Hershey III, "PSL/PSA: A
Computer Aided Technique for Structured Documentation
and Analysis of Information Processing Systems,"
IEEE Transactions on Software Engineering, Vol. SE-3,
Jan. 1977.

[24] M. W. Alford, "A Requirements Engineering Methodology
for Real-Time Processing Requirements," IEEE Trans-
actions on Software Engineering, Vol. SE-3, Jan. 1977.

[25] M. Hamilton and S. Zeldin, "Higher Order Software:
A Methodology for Defining Software," IEEE Transac-
tions on Software Engineering, Vol. SE-2, March 1976.

137

[26]

[27]

[28]

[29]

[30]

J. F. Stay, "HIPO and Integrated Program Design,"
IBM Systems Journal, Vol. 15(2), 1976.

HIPO-A Design Aide and Documentation Technique,
White Plains, N.Y.: Data Processing Division, IBM
Corporation, Document GC20-1851.

J. D. Warnier, Logical Construction of Programs,
New'York, N.Y.: Van Nostrand Reinhold, 1974.

K. E. Orr, Structured Systems Development, New York,
N.Y.: Yourdon, 1977.

C. G. Davis and C. R. Vick, "The Software Development
System," IEEE Transactions on Software Engineering,
Vol. SE-3, Jan. 1977.

[31] W. E. Howden, "A Survey of Static Analysis Methods,"
Tutorial; Software Testing and Validation Tech-
niques, 2nd Ed, New York, N.Y.: IEEE Computer
Society Press, 1981.

[32] P. Freeman and A. I. Wasserman, Tutorial on Software
Design Techniques, 3rd Ed, New York, N.Y.: IEEE
Computer Society Press, 1980.

[33] E. Yourdon and L. L. Constantine, Structured Design,
Englewood Cliffs, N.J.: Prentice-Hall, 1979.

[34] M. A. Jackson, Principles of Program Design, London,
England: Academic, 19 75.

[35] W. Riddle, et. al., "DREAM - A Software Design Aid
System," Information Technology, Proceedings of the
3rd Jerusalem Conference on Information Technology,
Amsterdam: North-Holland, 1978.

[36] I. Nassi and B. Shneiderman, "Flowcharting Techniques
for Structured Programming," ACM SIGPLAN Notices,
Vol. 8, August 1978.

[37] S. H. Caine and E. K. Gordon, "PDL - A Tool for Soft-
ware Design," Proceedings of the AFIPS 1975 NCC,
Vol. 44, 1975.

[38] K. G. Salter, "A Method for Decomposing System
Requirements into Data Processing Requirements,"
Proceedings of 2nd International Conference on Soft-
ware Engineering, 1977.

138

[39] J. Peterson, Petri Nets; Theory and Practice,
Englewood Cliffs, N.J.: Prentice-Hall, 1981.

[40] D. L. Parnas, "On the Criteria to be Used in Decom-
posing Systems into Modules," Communications of the
ACM, Dec. 1972.

[41] D. L. Parnas, "Designing Software for Ease of Exten-
sion and Contraction," IEEE Transactions on Software
Engineering, Vol. SE-5, March 19 79.

[42] W. E. Howden, "A Survey of Dynamic Analysis Methods,"
Tutorial: Software Testing and Validation Tech-
niques, 2nd Ed, New York, N.Y.: IEEE Computer
Society Press, 1981.

[43] L. G. Stucki, "New Directions in Automated Tools for
Improving Software Quality," Current Trends in
Programming Methodology, Vol. 2, Englewood Cliffs,
N.J.: Prentice-Hall.

[44] L. G. Stucki, "The Use of Dynamic Assertions to
Improve Software Quality," McDonnell Douglas, G6588,
Nov. 1976.

[45] T. Anderson and R. Kerr, "Recovery Blocks in Action,"
Proceedings of Second International Conference on
Software Engineering, IEEE Press, 1976.

[46] G. J. Myers, The Art of Software Testing, New York,
N.Y.: John Wiley & Sons, 1979.

[47] S. L. Hantler and J. C. King, "An Introduction to
Proving the Correctness of Programs," ACM Computing
Surveys, Sept. 1976.

[48] W. E. Howden, "Symbolic Testing and the DISSECT
Symbolic Evaluation System" IEEE Transactions on
Software Engineering, Vol. SE-3, July 1977.

[49] W. E. Howden, "Completeness Criteria for Testing
Elementary Program Functions," Proceedings, Fifth
International Conference on Software Engineering, 1981.

[50] M. Schindler, "Software Testing - a Scarce Art
Struggles to Become a Science," Electronic Design,
July 1982.

[51] W. E. Howden, "Functional Based Testing," IEEE Trans-
actions on Software Engineering, Vol. SE-6, March 1980,

139

[52] E. J. Weyucker and T. J. Ostrand, "Theories of Program
Testing and the Application of Revealing Subdomains,"
IEEE Transactions on Software Engineering, Vol. SE-6,
May 1980.

[53] W. E. Howden, "Reliability of the Path Analysis
Testing Strategy," IEEE Transactions on Software
Engineering, Vol. SE-2, Sept. 1976.

[54] L. J. White and E. I. Cohen, "A Domain Strategy for
Computer Program Testing," IEEE Transactions on Soft-
ware Engineering, Vol. SE-6, May 1980.

[55] E. Miller, M. R. Paige, J. P. Benson, and W. R.
Wisehart, "Structural Techniques of Program Valida-
tion, " Digest of Papers, COMPCON Spring 1974.

[56] S. L. Gerhart and L. Yelowitz, "Observations of
Fallibility in Applications of Modern Programming
Methodologies," IEEE Transactions on Software
Engineering, Vol. SE-2, Sept. 1976.

[57] F. Buckley, "A Standard for Software Quality Assur-
ance Plans," Computer, Vol. 12, August 1979.

[58] H. D. Mills, Mathematical Foundations for Structured
Programming, FSC 72-6012, Gaithersburg, MD.: Federal
Systems Division, IBM, 1972.

[59] H. D. Mills, "How to Write Correct Programs and Know
It," Tutorial on Structured Programming, New York,
N.Y.: IEEE Press, 1975.

[60] V. R. Basili and A. J. Turner, "Iterative Enhance-
ment: A Practical Technique for Software Develop-
ment ," IEEE Transactions on Software Engineering,
Vol. SE-1, Dec. 1975.

140

VITA

David Taylor was born August 23, 1948 in York,

Pennsylvania to Henry E. and Evelyn P. Taylor. He received

a B.S.E.E. from Lehigh University in 1970. He was employed

by Vitro Laboratories in Silver Spring, Maryland where his

interests were in real-time simulation and program develop-

ment and test techniques. He is currently employed by

Bell & Howell in Phillipsburg, New Jersey where his efforts

involve real-time process control, component software,

and high-level software development for microprocessor

systems. He is a member of the I.E.E.E. and the A.CM.

He is married and has three children.

141

	Lehigh University
	Lehigh Preserve
	1-1-1983

	A software quality assurance plan for a 'special' manufacturing environment.
	David Henry Taylor
	Recommended Citation

	tmp.1451580486.pdf.hYZ7V

