
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1983

The Multivariate Rotation Method of Quantitative
Grain Shape Analysis.
David G. Collins

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Geology Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Collins, David G., "The Multivariate Rotation Method of Quantitative Grain Shape Analysis." (1983). Theses and Dissertations. Paper
2357.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2357&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2357&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2357&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/156?utm_source=preserve.lehigh.edu%2Fetd%2F2357&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2357?utm_source=preserve.lehigh.edu%2Fetd%2F2357&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


The Multivariate Rotation Method of 

Quantitative Grain Shape Analysis 

by 

David G. Collins 

A Thesis 

Presented to the Graduate Committee 

of Lehigh University 

in Candidacy for the Degree of 

Master of Science 

in 

Geological Sciences 



ProQuest Number: EP76633 

All rights reserved 

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted. 

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion. 

uest 

ProQuest EP76633 

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author. 

All rights reserved. 
This work is protected against unauthorized copying under Title 17, United States Code 

Microform Edition © ProQuest LLC. 

ProQuest LLC. 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346 



CERTIFICATE OF APPROVAL 

This thesis is accepted and approved in partial fulfillment of 

the requirements for the degree of Master of Science. 

9 December 1983 (date) 

Professor in Charge 

Chairman of Department 

11 



ACKNOWLEDGMENTS 

The author would like to thank Dr. James Parks for his 

assistance in this study and for the use of his computer programs. 

Thanks are also extended to Dr. Bobb Carson for helpful discussions 

and advice on statistical procedures, and to Dr. Paul Myers for 

serving as a member on the thesis committee. 

The author would also like to thank his fellow geologists at 

Lehigh University for many helpful discussions and comments.  In 

particular, the helpful discussions with Marty Mengel and Valerie 

Holliday are acknowledged with gratitude.  Alan Blanchard generously 

provided data for the Jackson Hole sample, as well as useful 

discussions and assistance with data processing on the computers. 

Thanks are also extended to Paul Hemler for assistance with the 

microcomputer, and to Jessica Smith for her artistic contribution. 

Financial support was provided by the Sun Oil Company and 

Lehigh University. Support and use of computer facilities was 

provided by the Lehigh University Computing Center. 

Finally, many special thanks are due to my family for their 

inspiration and support throughout my academic career, and to a very 

special individual, Sandra Smith, for her endless patience, 

confidence and encouragement. 

111 



TABLE OF CONTENTS 

Page 

ACKNOWLEDGMENTS iii 

LIST OF FIGURES vi 

LIST OF TABLES vii 

LIST OF APPENDICES viii 

ABSTRACT 1 

INTRODUCTION 3 

Purpose 3 

Background 4 

PREVIOUS WORK 7 

METHODS 11 

Sampling 11 

Data Collection 11 

Data Processing 15 

Data Analysis 18 

Fourier Method 18 

Multivariate Rotation Method 20 

RESULTS 28 

Fourier Method 28 

Graphical Display 28 

Discriminant Functions 32 

IV 



TABLE OF CONTENTS (cont.) 

Page 

Multivariate Rotation Method 37 

Rotated Radials 37 

Estimated Factor Scores 42 

DISCUSSION 50 

Limitations of the method 54 

Future Research     - 55 

CONCLUSIONS 58 

REFERENCES 60 

APPENDICES 64 

VITA 77 



LIST OF FIGURES 

Page 

Figure 1.  Location of samples:  St. Peter sandstone; 
New Jersey beach sand; Lehigh River sand;  and 
Jackson Hole till. 12 

Figure 2.  Location of samples:  Lehigh River sand; 
Sherman Ridge sand; Montebello sand; and Catskill sand.        12 

Figure 3-  Equipment used for data collection and processing.   13 

Figure 4.  Example of grain outline defined by 36 radial 
lengths at equally spaced intervals about the center of mass.   16 

Figure 5.  Reference shape for rotation of radial sets as 
defined by 36 equally spaced radial lengths. 17 

Figure 6.  Flow diagram outlining steps of quantitative 
shape analysis used in this investigation. 27 

Figure 7.  Graph of mean harmonic amplitude vs. harmonic 
number for the St. Peter sandstone, New Jersey beach sand, 
Lehigh River sand and Jackson Hole till samples. 29 

Figure 8.  Graph of mean harmonic amplitude vs. harmonic 
number for the Lehigh River sand, Sherman Ridge sand, 
Montebello sand and Catskill sand samples. 31 

Figure 9«  Graph of mean estimated factor scores vs. factor 
for the Lehigh River sand, Sherman Ridge sand, Montebello 
sand and Catskill sand samples. 43 

Figure 10. Graph of mean estimated factor score vs. factor 
for the St. Peter sandstone, New Jersey beach sand, Lehigh 
River sand and Jackson Hole till samples. 44 

vx 



LIST OF TABLES 

Page 

Table 1.  Results of stepwise discriminant function analysis 
on harmonic amplitude spectra for the Lehigh River, Sherman 
Ridge, Montebello and Catskill sand samples. 34 

Table 2.  Results of stepwise discriminant function analysis 
on harmonic amplitude spectra for the St. Peter sandstone, 
New Jersey beach, Lehigh River and Jackson Hole till 
samples. 36 

2 
Table 3«  Results of two-sample Hotelling's T test using 
rotated radial lengths for the Lehigh River, Sherman Ridge, 
Montebello and Catskill sand samples. 38 

2 
Table 4. Results of two-sample Hotelling's T test using 
rotated radial lengths for the St. Peter sandstone, New 
Jersey beach, Lehigh River and Jackson Hole till samples.      41 

2 
Table 5.  Results of two-sample Hotelling's T test using 
estimated factor scores for the Lehigh River, Sherman Ridge, 
Montebello and Catskill sand samples. 46 

2 
Table 6.  Results of two-sample Hotelling's T test using 
estimated factor scores for the St. Peter sandstone, New 
Jersey beach, Lehigh River and Jackson Hole till samples.      48 

VII 



LIST OP APPENDICES 

Page 

Appendix 1.  Sample preparation. 64 

Appendix 2, A-G.  Graphs of mean harmonic amplitude vs. 
harmonic number for the St. Peter sandstone, New Jersey 
beach, Lehigh River sand, Jackson Hole till, Sherman 
Ridge sand, Montebello sand and Catskill sand samples. 65 

Appendix 3.  Beta coefficients matrix for the St. Peter 
sandstone sample. 72 

Appendix 4A.'" Principal components analysis factor 
loadings on variables for rotated radial lengths of 
the St. Peter sandstone sample. 73 

Appendix 4B.  Varimax factor loadings on variables for 
rotated radial lengths of the St. Peter sandstone 
samples. 74 

Appendix 5-  Example of estimated factor scores for 
twenty grains from the New Jersey beach sand sample. 75 

Appendix 6. 35%  confidence interval for mean values of 
estimated factor scores of the St. Peter sandstone, New 
Jersey beach, Lehigh River, Jackson Hole till, Sherman 
Ridge sand, Montebello sand and Catskill sand samples. 76 

vm 



ABSTRACT 

The capacity of the multivariate rotation method of 

quantitative grain shape analysis (Parks, 19B3a) to discriminate 

between sediments derived from different sources and environments is 

demonstrated using quartz grain shapes.  In this procedure, 

digitized two-dimensional projection outlines are used to calculate 

thirty-six equally spaced radial lengths, radiating from the center 

of mass of the outline to the outline boundary, for each of several 

hundred quartz grains per sample.  The set of radial lengths for 

each grain is rotated to a comparable orientation relative to an 

empirically derived reference shape.  Upon rotation, the set of 

radial lengths serve as descriptors of the gross shape of the 

original grain outline.  Comparison of these shape variables for 

each sample using multivariate statistical techniques allows 

discrimination between sediment samples. 

Statistical analysis of estimated factor scores by Hotelling's 

2 
T  test allowed determination of similarities and differences 

between samples.  Significant differences were observed in shape 

signatures of quartz sand grains from the St. Peter sandstone, a New 

Jersey beach sand, a Lehigh River sand and a glacial till from 

Jackson Hole, Wyoming.  Similar shape signatures were observed for 

samples of quartz sand derived from the Devonian age Montebello, 

Sherman Ridge and Catskill Formations of central Pennsylvania. 

Comparison of the results of this procedure and those obtained by 
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graphical and semi-quantitative analysis of Fourier shape 

descriptors for the same database are comparable.  Based upon 

agreement of results with the Fourier procedure, the multivariate 

rotation method appears useful as an alternative quantitative grain 

shape analysis procedure for discrimination of sediments from 

different sources and environments. 



INTRODUCTION 

PURPOSE 

Quantitative grain shape analysis of quartz sand grains is an 

accepted procedure for discrimination between sediments from 

different sources and environments (Ehrlich and Weinberg, 1970; 

Ehrlich et al., 1974; Yarus et al., 1976; Grothaus and Hage, 1978; 

Porter et al., 1979)•  In this investigation, the primary objective 

is to test the utility of the multivariate rotation method (Parks, 

1981) as an alternate technique for quantitative grain shape 

analysis.  Raw data, consisting of digitized projections of two- 

dimensional boundaries for approximately 400 quartz grains in each 

of seven samples, were processed using the multivariate rotation 

method.  Most quantitative grain shape studies utilize Fourier shape 

data for analysis of shape variation.  Initial studies (Ehrlich and 

Weinberg, 1970; Ehrlich et al., 1974) applied analysis techniques 

focusing on low order harmonics (2-10) carrying information on gross 

shape.  Later investigations (Mrakovitch et al., 1976; Van 

Nieuwenhuise et al., 1978; Porter et al., 1979; Ehrlich et al., 

1980; Mazzulo and Ehrlich, 1980) developed more sophisticated 

techniques for analysis of information carried by higher order 

harmonics (11-20), which are more descriptive of medium to fine 

scale grain shape features. 



For purposes of this investigation, results of the multivariate 

rotation method are compared to those obtained by graphical and 

semi-quantitative methods described by Ehrlich and Weinberg (1970) 

on Fourier shape descriptors for the same data set.  The rationale 

for such a comparison is two-fold.  Shape analysis of Fourier data 

is well documented and accepted as a valid procedure.  Use of early 

analysis techniques on the Fourier descriptors allows evaluation of 

the multivariate rotation method for discrimination of quartz grains 

on the basis of gross shape.  Procedures described in this paper for 

processing rotated radial data sets reflect initial attempts to 

obtain information on shape variation in quartz grains and serve as 

a guide for defining problems for future study. 

BACKGROUND 

Meaningful characterization of sedimentary particle shape and 

the determination of its relation to sedimentary processes continue 

to be objectives of sedimentologists.  Particle shape is influenced 

by a complex combination of factors which include parent rock type, 

mineral composition, physical properties, weathering processes, 

abrasion history, mode of transport and diagenetic effects (Blatt et 

al., 1972; Friedman and Sanders, 1978). 

Many attempts have been made to describe particle shape in 

useful terms, but due to difficulties involved in defining and 

measuring shape parameters, especially for sand-size particles, most 

shape studies prior to the 1970's focused on the concepts of 



roundness and sphericity as originally described by Wentworth (1919) 

and Wadell (1952, 1935) (Russell and Taylor, 1957; Krumbein and 

Pettijohn, 1958; Krumbein, 1941; Pettijohn and Lundahl, 1943; 

Powers, 1953)-  Other problems with these concepts include the 

accuracy, precision and reproducibility of shape data, both within a 

given investigation and between independent studies, due to 

measurement variation and errors by human operators (Folk, 1972; 

Blatt et al., 1980).  As a result, useful geologic information 

derived from shape studies based upon roundness and sphericity has 

been limited. 

More recently, and primarily as a result of automated data 

collection methods that apply computer technology, several 

investigators (Schwarcz and Shane, 1969; Ehrlich and Weinberg, 1970; 

Boon et al., 1982; Parks et al., 1982) have proposed methods of 

quantitative shape analysis which obviate many problems associated 

with the concepts of roundness and sphericity.  Clark (1981) 

summarizes and reviews several proposed approaches to quantitative 

shape analysis, stating important factors to be considered, and 

illustrating advantages and disadvantages of the various strategies 

discussed.  The principal methods currently being applied utilize 

the digitized projections of two-dimensional grain boundaries as a 

basis for shape representation.  Presently, the method using Fourier 

derived shape data for shape analysis as proposed by Schwarcz and 

Shane (1969), and initially applied by Ehrlich and Weinberg (1970), 



is the most widely developed and well-documented procedure.  Results 

of several studies using the Fourier method on quartz sand samples 

indicate that populations of grains from a common source and with a 

similar transport history are characterized by an assemblage of 

shapes which constitute a unique shape signature (Ehrlich and 

Weinberg, 1970; Grothaus and Hage, 1978; Van Nieuwenhuise et al., 

1978; Porter et al., 1979; Ehrlich and Chin, 1980; Hudson and 

Ehrlich, 1980; Wagoner and Younker, 1982).   This signature can be 

used to distinguish the assemblage from another having a different 

source and transport history. 

Parks (1981; 1982; 1983a) proposed a multivariate rotation 

method of quantitative shape analysis in which thirty-six radii 

spaced at equi-angular intervals, representing the two-dimensional 

grain boundary, are rotated to an orientation relative "to a 

reference shape.  Rotation of grains (i.e. sets of radial lengths) 

with respect to a reference shape is accomplished by a least-squares 

procedure to find the best fit.  This rotation procedure may allow 

more meaningful comparisons between grains since grains with similar 

shapes have a common orientation relative to one another (Parks, 

1981).  The rotated radials are then used as shape descriptors for 

further multivariate analysis of the shape variation in quartz sand 

grains. 



PREVIOUS WORK 

Schwarcz and Shane (1969), and Ehrlich and Weinberg (1970) 

proposed and developed an objective procedure for grain shape 

analysis by which grain shape is quantitatively described.  The 

method involves digitizing the projected two-dimensional boundary of 

a grain to obtain coordinates of peripheral points.  These 

coordinates are used to determine the center of gravity of the grain 

outline and to calculate a harmonic Fourier series of the expansion 

of the radius as a function of the angle about the center of 

gravity.  Such a mathematical model represents the shape as a linear 

equation, the terms of which represent contributions of known shape 

components to the overall two-dimensional shape (Ehrlich and 

Weinberg, 1970).  This procedure is based upon evidence indicating 

that the two-dimensional outline of a grain is representative of a 

three-dimensional particle (Schwarcz and Shane, 1969; Tilmann, 

1975).  The harmonic coefficients of the Fourier series are analyzed 

by graphical and statistical techniques to determine variations in 

the two-dimensional projection of grain shapes (Ehrlich and 

Weinberg, 1970). 

Limitations of the method have been discussed by several 

authors (Schwarcz and Shane, 1969; Ehrlich and Weinberg, 1970; 

Clark, 1981; Parks, 1981).  Despite these limitations the method has 

demonstrated that differences between populations of quartz grains 

are the result of the geographic and stratigraphic source of the 



particles as well as the processes acting on the sediments.  As 

currently applied by most investigators, the Fourier method focuses 

on higher order harmonics (17-20) which are descriptive of medium to 

fine scale shape variations, as opposed to lower order harmonics 

(2-10) characterizing overall gross shape (Mrakovitch et al., 1976). 

Bokman (1952), using ratios of elongation for quartz grains in 

thin section, illustrated the usefulness of quartz grain shapes as a 

means for distinguishing two sandstone lithologies derived from 

different.sources.  Application of the Fourier shape analysis method 

has clearly demonstrated that quartz grain shapes yield meaningful 

information related to provenance, transportation and deposition of 

sediments.  Several investigators (Ehrlich et al., 1974; Yarus et 

al., 1976; Van Nieuwenhuise et al., 1978; Porter et al., 1979; Brown 

et al., 1980; Riester et al., 1982) have shown that detrital quartz, 

due to its inherent characteristics and overall abundance, is useful 

both as a natural tracer of sediment transport and accumulation, 

especially for sand-size material, and as a means for distinguishing 

between sediment sources.  Shape analysis has also been useful for 

determining relative contributions of sediments mixed together from 

several sources (Ehrlich et al., 1974; Grothaus and Hage, 1978; Van 

Nieuwenhuise et al., 1978; Porter et al., 1978; Ehrlich and Chin, 

1980; Hudson and Ehrlich, 1980).  Potential applications of shape 

analysis for stratigraphic analysis and correlation were illustrated 

by Mrakovitch (et al., 1976) and Mazzulo and Ehrlich (1980). 
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Investigations of the areal distribution and mixing of modern 

sediments off the Atlantic coast have successfully utilized shape 

analysis (Brown et al., 1980; Hudson and Ehrlich, 1980; Riester et 

al., 1982).  Yarus (et al., 1976) distinguished between first cycle 

quartz grains from different igneous and metamorphic rock types. 

Modification of unique sand population shape signatures by abrasion 

and selective sorting during transport were observed by Van 

Nieuwenhuise (et al., 1978).  Shape investigations utilizing the 

Fourier method have been conducted in a variety of sedimentary 

environments:  fluvial (Ehrlich et al., 1974; Yarus et al., 1976; 

Kennedy and Ehrlich, 1981); beach (Ehrlich et al., 1974; Porter et 

al., 1979); estuarine (Van Nieuwenhuise et al., 1978); shelf and 

offshore (Mrakovitch et al., 1976; Hudson and Ehrlich, 1980; Brown 

et al., 1980; Riester et al., 1982); alluvial (Grothaus and Hage, 

1978; Vander Zouwen and Younker, 1981; Wagoner and Younker, 1982); 

and glacial (Libert and Ridky, 1981). 

Parks (1981; 1982; 1983a; 1983b) has proposed a multivariate 

rotation method of grain shape analysis which focuses on variations 

of gross shape.  Digitized outlines of quartz grains are used to 

calculate thirty-six radials, spaced at equi-angular intervals, 

projecting from the center of mass to the boundary of the outline. 

Rotation of the radial set for each grain relative to an empirically 

derived reference shape provides a frame of reference for comparison 



of either large groups of grains or individual grains.  The thirty- 

six radials per grain serve as measured variables descriptive of 

gross grain shape.  Using linear combinations of the thirty-six 

rotated radials, data sets for each grain are reduced to produce the 

minimum number of new variables necessary to represent a large 

percentage of the shape variation observed.  These new variables are 

analyzed by multivariate statistical methods to determine 

whether significant differences exist between groups of grains. 

10 



METHODS 

SAMPLING 

Quartz grains in the 0.35-0.50 mm (medium sand) size range were 

obtained from seven sediment samples covering a variety of sources 

and environments.  Sources and localities for the samples (Figures 1 

and 2) consist of the following:  friable sandstone from the Saint 

Peter Sandstone, considered to be an ancient near-shore sand, 

Ottawa, Illinois; recent beach sand from Sandy Hook, New Jersey; a 

channel bar sample from the Lehigh River, Northampton County, 

Pennsylvania, which drains a variety of Devonian and Mississippian 

clastic lithologies in the Appalachian Mountains; pooled channel bar 

samples from two first-order streams, each isolated within the 

Montebello or Sherman Ridge Formations (Miller, 1961), both of which 

are stratigraphically adjacent Middle Devonian sandstones, Perry 

County, Pennsylvania; pooled channel bar samples from a stream 

isolated to the Duncannon Member of the Catskill Formation (Dyson, 

1967), an Upper Devonian sandstone, Perry County, Pennsylvania; and 

pooled samples from glacial till in the Teton Mountains, Jackson 

Hole, Teton County, Wyoming (this sample will be referred to as the 

Jackson Hole till).  Sample preparation is discussed in Appendix 1. 

DATA COLLECTION 

Two-dimensional projected outlines for approximately 400 grains 

per sample were digitized.  Equipment used for collection of raw 

shape data is illustrated in Figure 3.  The hardware included a 
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FIGURE 1.  Location of samples:  St. Peter sandstone (SP) ; 
New Jersey beach sand (NJ); Lehigh River sand (LR); and 
Jackson Hole till (JH). 

^\ 

MON 
SR 

FIGURE 2.  Location of samples: Lehigh River sand (LR); 
Sherman Ridge sand (SR); Montebello sand (MON); and 
Catskill sand (CAT). 
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IMS 5000  MICROCOMPUTER 

DISC DRIVES 

MODEM FOR DATA 
TRANSFER TO 
MAINFRAME COMPUTER 

PROJECTED GRAIN OUTLINE 

DIGITIZING TABLET 

Figure 3.  Equipment uaed for data collection and processing. 
(Illustration by Jessica Smith) 



microprojector, Houston Hipad II electronic digitizing tablet with 

stylus, and an IMS 5000 microcomputer.  The interface between the 

digitizing tablet and the microcomputer was implemented by FORTRAN 

programs. 

Raw data for quantitative shape analysis was collected by 

digitizing (i.e. sampling) the projected two-dimensional continuous 

outline of each grain.  Grains were placed loosely on a glass slide. 

The slide was tapped gently to allow perched grains to come to rest 

in a stable position.  Grain orientation on the slide was not 

critical in terms of the shape information carried by the projected 

area of the grain.  Tilmann (1973) demonstrated that shape 

information contained in the maximum projection plane of quartz 

grains was not significantly different from shape information 

carried by projection planes of grains in other orientations.  Each 

slide was mounted on a mechanical stage on the microprojector.  A 10 

mm lens objective projected a two-dimensional darkened image, 

approximately 2-4 inches in diameter, onto the digitizing tablet. 

Coordinates for 150-200 points along the edge of the projected image 

were obtained by manually tracing the periphery of the outline in a 

few seconds with the stylus of the digitizing tablet.  In the stream 

digitizing mode, the position of the stylus was automatically 

sampled at intervals of twenty-five milliseconds.  The coordinates 

were stored on floppy disks. 

14 



DATA PROCESSING 

Data processing utilized a series of FORTRAN programs by Parks 

(in preparation).  These programs were modified to execute on an IMS 

5000 microcomputer and to access data files stored on disk for the 

CDC CYBER 730 mainframe computer.  Processing of X-Y coordinates 

which described the two-dimensional profiles began with calculation 

of the center of mass for the outline, using an algorithm by Hall 

(1976).  Radial lengths from the center of mass to peripheral points 

on the outline were calculated for every third pair of X-Y 

coordinates, resulting in the calculation of fifty to sixty-five 

radial lengths on the average for each grain.  Every third 

coordinate pair was used to calculate radial lengths that described 

the overall shape and to reduce computational time required for 

calculations.  The fifty to sixty-five radial lengths were reduced 

to thirty-six radials equally spaced at ten degree intervals about 

the grain center of mass by a cubic interpolation procedure (Parks, 

in preparation).  These thirty-six equally spaced radial lengths, 

considered as independent variables, defined the gross shape of the 

original outline portrayed by the X-Y coordinates (Figure 4). 

The radial lengths were normalized to the mean radial length of 

each grain to reduce the size effect due to variations between 

grains within the size interval. Rotation of normalized radial 

lengths to a best fit relative to an empirically derived asymmetric 

reference shape (Figure 5) utilized a least-squares algorithm 
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20  19  IB 

FIGURE A.  Example of grain outline defined by 36 radial lengths 
at equally spaced (10°) intervals about the center of 
mass. 
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FIGURE 5.  Reference shape for rotation of radial sets as defined 
by 36 equally spaced radial lengths.  Note pivot 
point (•) for rotation is offset from center of 
mass (+). 
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(Parks, 1981; 1982).  Upon rotation to the initial best fit 

position, a second rotation was executed after re-ordering the 

radials such that the grain was, in effect, flipped over.  The 

rotation providing the best fit relative to the reference shape was 

used for further processing. 

Rotation of all grains to a similar position with respect to 

the reference shape ensured that similarly shaped grains were 

oriented in the same manner, allowing more meaningful comparisons 

between either individual grains or groups of grains (Parks, 1981; 

1983b).  For example, grains with a rectangular shape rotated to a 

best fit position relative to the reference shape would all have a 

similar orientation.  Pear-shaped grains rotated to a best fit 

position would have their own unique orientation relative to one 

another.  However, it should be noted that the relationship between 

orientation of rectangular grains relative to pear-shaped grains was 

unrelated and arbitrary. 

After rotation, the thirty-six radials, serving as shape 

descriptors for the projected outlines, were used as measured 

variables for further analysis with multivariate statistical tests. 

DATA ANALYSIS 

FOURIER METHOD.  The rationale for quantitative shape 

measurement using a Fourier series is thoroughly discussed by 

several authors (Schwarcz and Shane, 1969; Ehrlich and Weinberg, 

1970; Ehrlich et al., 1974; Clark, 1981).  Briefly described, this 
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procedure uses the harmonic coefficients (amplitudes) of a closed 

Fourier series to characterize the projected two-dimensional outline 

of a grain.  The number of terms calculated for the series is 

dependent on the precision desired.  Each harmonic amplitude 

represents the contribution of a particular shape component to the 

overall shape of the grain outline.  The set of amplitudes for a 

grain, referred to as the harmonic amplitude spectrum, are used as 

variables of shape for further analysis.  A sample of quartz grains 

may be characterized by the mean harmonic amplitude spectrum, which 

consists of the mean amplitude value for each harmonic of all grains 

in the sample.  Mean harmonic amplitude spectra are compared to 

discriminate between samples.  A variety of graphical and 

statistical techniques have been applied to analysis of Fourier 

derived shape data (Ehrlich and Weinberg, 1970; Ehrlich et al., 

1974; Mrakovitch et al., 1976; Van Nieuwenhuise et al., 1978; 

Ehrlich et al., 1980; Hudson and Ehrlich, 1980; Mazzulo and Ehrlich, 

1980). 

Analysis of Fourier derived shape data for samples in this 

study provided results of an accepted shape analysis method by which 

to evaluate the quality of results for sample discrimination using 

the multivariate rotation method.  Fourier derived shape data from 

this investigation were analyzed using the basic procedure of 

Ehrlich and Weinberg (1970).  Eighteen harmonic amplitudes per grain 

were calculated using thirty-six rotated radials per grain.  Use of 
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rotated rather than unrotated radials as input for Fourier analysis 

is immaterial, since harmonic amplitudes are rotation-invariant 

(Clark, 1981).  Mean harmonic amplitude spectra graphs were 

constructed by plotting mean amplitude values against appropriate 

harmonic number.  These graphs were compared by observing 

differences between corresponding mean amplitude values. 

A stepwise discriminant function analysis was used to determine 

at which harmonics significant differences existed in harmonic 

amplitude spectra for all possible combinations of samples taken two 

at a time. This was done in order to verify differences observed in 

the graphical displays.  Calculation of discriminant functions on 

Fourier amplitude values was executed using program P7M of the BMDP 

Statistical Software (Dixon, 1981) package.  Significance of the 

comparisons performed by the stepwise discriminant function was 

determined from an approximate F statistic derived from Hotelling's 

2 2 
T and Mahalanobis D    statistics for the samples being compared. 

These results were used to verify conclusions based upon visual 

observations of graphically displayed mean harmonic amplitude 

spectra. 

MULTIVARIATE ROTATION METHOD.  R-mode factor analysis appears 

to be an obvious approach for reduction of multivariate rotation 

data consisting of thirty-six rotated radials (variables) for each 

of several hundred grains in a sample.  The number of variables is 

reduced by using linear combinations of the original variables to 

20 



create a few hypothetical variables (factors) that contain 80 - 90 

percent of the variance in the sample.  The R-mode analysis 

procedure produces factor loadings which indicate the contribution 

of each original variable to each of the factors.  The factor 

loadings are then used to calculate factor scores.  Factor scores 

describe the entities (grains) of the original data set in terms of 

the new hypothetical variables (factors).  The size of the original 

data set is subsequently reduced, since it can be characterized in 

terms of a few new variables rather than the original thirty-six 

variables. 

Klovan (1975) concisely outlines details for the basic factor 

model of R-mode factor analysis.  Summarized briefly, the procedure 

uses algebi'aic matrix manipulations to produce a new frame of 

reference for the variables of the data set.  This is executed in 

such a manner that the new reference axes for the data coincide with 

the directions of maximum variance and are uncorrelated.  To meet 

these two criteria, roots are calculated for sets of equations 

designed to maximize the variance and maintain orthogonality of the 

factors (Klovan, 1975) •  These roots are called eigenvalues.  The 

number of axes is usually less than the original number of variables 

used to characterize the data.  Factor scores are calculated from 

the matrix equation (Klovan, 1975): 

F = ZAE~1 
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where F is an n*p factor score matrix (n = no. of cases, p = no. of 

factors), Z is an n*v standardized data matrix (v = no. of original 

variables), A is the v*p factor loadings matrix, and E  is the 

inverse of the diagonal matrix of eigenvalues for the original 

correlation matrix. 

The drawback to using straightforward R-mode factor analysis 

for comparisons between data sets is that the factor loadings 

matrix, A, changes for each data set and is automatically centered 

on the mean for that data set.  Consequently, the reference axes 

also change for each data set.  As a result, two different samples 

cannot be directly compared because data reduction for each sample 

is performed relative to different frames of reference. 

Specifically, for any two samples consisting of shape data for 

several hundred grains each to be compared, the second factor for a 

sample may not represent the same linear combination of original 

variables as the second factor for another sample, therefore making 

comparisons meaningless between the two (Parks, personal comm.). 

There is also a problem for comparisons if each of several samples 

is described by a different number of factors.  In either case, data 

for the samples cannot be directly compared for purposes of 

discrimination. 

Parks (1983a) suggested a procedure utilizing an R-mode factor 

analysis approach which produces a similar data reduction but allows 

direct comparison of different samples.  The technique is a method 
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of calculating "estimated factor scores" that can be directly 

compared between samples ("estimated" is used here to mean an 

approximation, not a statistical estimate).  The product of the 

factor loadings matrix and the inverse of the diagonal matrix of 

eigenvalues is computed for one key or reference sample in the 

overall group of samples to be compared.  This product matrix, 

referred to as the beta coefficients matrix (Parks, in preparation), 

is used as a constant in the matrix equation for calculating factor 

scores for all sets of grains (samples) comprising the study set for 

the problem under investigation.  The standardized data matrix, Z, 

is post-multiplied by the beta coefficients matrix to calculate 

estimated factor score matrix for each sample.  The new matrix 

equation is: 

F = ZB 

where B is the v x p beta coefficients matrix for the selected 

reference sample, and which is the product of the factor loadings 

matrix, A, and the eigenvalue matrix, E 

This approach keeps the factor axes constant for the set of 

variables, therefore computing factor scores for each grain in all 

samples relative to the same set of factor axes or frame of 

reference.  Comparison of any factor (for example the second 

factor), as represented by the factor scores, between any two 

samples is possible since the underlying variables for that factor 

do not change.  Discrimination between samples is possible by 
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determining significant differences between mean factor scores of 

each factor in the samples.  The number of factors remains fixed for 

all samples because the factors are fixed for the beta coefficients 

matrix, B. 

The beta coefficients matrix for this investigation (Appendix 

3) was derived by an R-mode factor analysis (Parks, 1970) of the St. 

Peter sample.  Factor analysis of this sample produced six factors 

accounting for 91$ of the variance in the sample (see Appendix 4 for 

the factor loadings on variables of the St. Peter sample).  The St. 

Peter sample was selected because the formation is a well-known and 

thoroughly described lithologic unit in the literature (Thiel, 1935) 

which has been used in past shape studies (Mazzulo and Ehrlich, 

1980), and because the sample was expected to be distinctly 

different in its shape signature relative to the other samples 

examined in this study. 

Initially, comparison of estimated factor scores was done 

visually (using factor score plots) to identify sample differences. 

In these diagrams factor scores for each sample are plotted relative 

to factor axes, for all possible pairs of factors.  Comparison of 

diagrams for each pair of factors would allow visual identification 

of differences or similarities between samples.  However, since 

overlap of sets of estimated factor scores was great, even for 

samples with extremely different shape characteristics, this 
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procedure did not prove useful.  Therefore, it was necessary to find 

another method of analysis. 

Statistically significant differences between samples were 

detected for mean estimated factor scores of the factors using 

2 
Hotelling's T test.  This is a test for equality of means for 

2 
several variables simultaneously (Morris, 1967).  The T statistic 

2 
is calculated from the Mahalanobis D statistic of the group means. 

These statistics can be transformed to an F statistic, the 

significance of which can be determined for a specified level of 

significance using the appropriate degrees of freedom.  These 

statistics were computed by the BWDP Statistical Software (Dixon, 

1981) package, program P3D.  Rotated radials were also used as input 

2  2 
variables used to calculate T , D and F statistics to determine if 

comparable results could be obtained without the calculation of 

estimated factor scores. 

An overall view of the steps for collecting and analyzing shape 

data in this investigation using rotated radials as measured shape 

variables is illustrated in Figure 6.  X-Y coordinates describing 

the projected grain boundary are used to determine the outline 

center of mass and to calculate the thirty-six radial lengths 

defining the gross shape of the outline.  Radial lengths for each 

grain are rotated to a best fit with respect to the reference shape. 

Rotated radial lengths serve as variables for Fourier methods, 
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direct multivariate statistical analysis (Hotelling's T test), or 

reduction to estimated factor scores.  Reduction to estimated factor 

scores initially requires factor analysis of the rotated radial set 

for a reference sample to produce the beta coefficients necessary 

for calculation of the scores. 
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DIGITIZE GRAIN OUTLINE 
(X-Y COORDINATES) 

CALCULATE CENTER OF MASS, RADIAL LENGTHS 
(36 RADIAL LENGTHS) 

ROTATION TO BEST FIT WITH REFERENCE SHAPE 
(36 ROTATED RADIAL LENGTHS) 

FACTOR ANALYSIS ON 
REFERENCE SAMPLE 
(BETA COEFFICIENTS) 

CALCULATE FOURIER SERIES 
(AMPLITUDE COEFFICIENTS) 

MATRIX MULTIPLICATION OF 
ROTATED RADIAL SETS BY 

BETA COEFFICIENTS 
(ESTIMATED FACTOR SCORES) 

GRAPH OF MEAN AMPLITUDE 
VS. HARMONIC NUMBER 

GRAPH OF MEAN ESTIMATED 
FACTOR SCORES VS. FACTORS 

DISCRIMINANT FUNCTION 
ANALYSIS 

HOTELLING'S T TEST 

FIGURE 6.  Flow diagram outlining steps of quantitative 
shape analysis used in this investigation. 
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RESULTS 

FOURIER METHOD 

Graphical Display.  Graphical displays of mean harmonic 

amplitude spectra reveal differences and overall relationships 

between samples.  Mean amplitude values are plotted against the 

appropriate harmonic number.  The amplitude value for each harmonic 

is the mean value for all grains in a sample.  Samples with 

relatively low values for mean harmonic amplitudes contain grains 

with two-dimensional projections which have less irregular 

shapes than samples with relatively higher mean amplitude values 

(Mrakovitch et al., 1976). 

This relationship is clearly evident in Figure 7.  The mean 

harmonic amplitude spectrum of the St. Peter sandstone sample 

displays the lowest mean amplitude values for harmonics two through 

fifteen, which indicates that projections of grains in this sample 

are less irregular in shape and have less angular surface texture 

relative to projections of grains in the other samples.  This would 

be expected for sediments deposited in a nearshore environment which 

have undergone processes producing grains with smooth, rounded 

surfaces that approach sphericity such as those of the St. Peter 

sandstone.  The New Jersey beach sample has a mean harmonic 

amplitude spectrum with values somewhat larger than the St. Peter, 

but consistently less than those of the Lehigh River sand and 

Jackson Hole till samples for harmonics three through fourteen. 
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FIGURE 7.  Graph of mean harmonic amplitude vs. harmonic number 
for the St. Peter sandstone (SP), New Jersey beach 
sand (NJ), Lehigh River sand (LR), and Jackson Hole 
till (JU) samples. (See Appendix 2 for confidence 
intervals). 
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Values of the Lehigh River mean amplitude spectrum are intermediate 

between those of the New Jersey beach and Jackson Hole till samples 

for harmonics three through ten.  For harmonics eleven through 

eighteen of the Lehigh sample values remain higher than those of the 

New Jersey sample, but equal to or higher than the mean values for 

the till. 

The gradation of mean values from the lower values for the St. 

Peter to higher values for the Jackson Hole sample, as shown in 

Figure 7, illustrates the departure of grain projections for these 

samples from smooth, less angular to more angular and irregular 

shapes.  Using conventional terminology of the roundness and 

sphericity concepts, the St. Peter would be described as having 

rounded and more spherical grains, while the till would be 

considered more angular and less spherical.  The New Jersey beach 

and Lehigh River samples would be intermediate between these 

extremes in terms of roundness and sphericity, with the grains of 

the New Jersey sample closer to those of the St. Peter in shape 

characteristics.  As for discrimination of the samples represented 

in Figure 7, based upon observable differences between values of the 

mean harmonic amplitude spectra, it appears that the samples may be 

unique and distinctly different. 

Figure 8 is a graph of mean harmonic amplitude spectra for 

fluvial sediments of the Lehigh River and sediments derived from 

particular Devonian sandstone lithologies, which themselves were 
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FIGURE 8. Graph of mean harmonic amplitude vs. harmonic number 
for the Lehigh River sand (LR), Sherman Ridge sand (SR), 
Montebello sand (MON), and Catskill sand (CAT) samples. 
(See Appendix 2 for confidence intervals). 
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presumably derived from a common source, based upon the areal 

proximity of the units.  Mean amplitude values for sediments from 

the Lehigh River and streams draining the Montebello, Sherman Ridge 

and Catskill Formations overlap closely for almost all harmonics, 

especially harmonics two through sixteen.  Based upon the observed 

overlap of the spectra, these samples are almost indistinguishable, 

especially in terms of gross shape as represented by harmonics two 

through ten. 

Discriminant Functions.  Ehrlich and Weinberg (1970) used 

harmonic amplitudes as independent variables for a discriminant 

function analysis in order to verify conclusions based upon 

observations of graphical displays for mean harmonic amplitude 

spectra. Although this procedure does not allow definitive 

discrimination between samples, it provides statistical evidence 

that indicates at which harmonics significant differences exist. 

In this study, amplitude values for harmonics two through 

eighteen were used as independent variables in a stepwise 

discriminant function analysis.  Computation of linear 

classification functions was based upon stepwise selection of 

variables.  The variable selected at each step was the one which 

added the most to the separation of the groups in the discriminant 

o 
function (Dixon, 1981).  Using the Mahalanobis D statistic for the 

groups an approximate F statistic was calculated for the variables 

entered into the discriminant function.  Significance of the F 
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statistic was determined at the 5%  significance level (using 

appropriate degrees of freedom) to demonstrate that the variables 

entered into the discriminant function displayed significant 

differences between the samples being compared.  This information 

was used to determine whether or not observed similarities and 

differences in the graphical displays (Figures 7 and 8) were 

statistically significant. 

Harmonic amplitudes for the Lehigh River, Montebello, Sherman 

Ridge and Catskill samples were analyzed using all possible 

combinations of pairs, and also for all four simultaneously. 

Results of these comparisons are summarized in Table 1.  For each 

pair of samples only two to four harmonics out of seventeen were 

entered into the discriminant function.  This indicates that for 

most harmonics there was no significant difference between mean 

amplitude values for any two samples.  For the Montebello - Sherman 

Ridge comparison, the two harmonics entered into the discriminant 

function were not significantly different at the 5%  level. 

Comparing all four samples simultaneously, only one harmonic out of 

seventeen showed a significant difference between the samples.  Due 

to the apparent lack of significant shape variation as expressed in 

terms of mean harmonic amplitude spectra, it was difficult to 

discriminate between these samples conclusively.  These results 

corroborate the similarity of the four samples observed in Figure 8. 
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Harmonic No. 
Sample Entered into 
Comparison Function 

LR-MON 4,11 
LR-SR 7,11,15 
LR-CAT 2,7,16 
MON-SR 7,8 
MON-CAT 2,3,4,12 
SR-CAT 2,3,7,8 

Critical 
F F 

Statistic D. F. Statistic* 

8.07 2, 788 3-01 
8.70 5, 817 2.61 
4.78 3, 791 2.61 
2.77 2, 771 3-01 
9-46 4, 743 2.38 
4.67 4, 773 2.38 

LR-SR- 
MON-CAT  7 6.12   3, 1565   2.60 

* At 5%  significance level 

H :  No significant difference between samples for 

harmonics entered into discriminant function. 

2 
F - Approximate F Statistic from Mahalanobis D 
D. F. - Degrees of Freedom 
Critical F - Interpolated value for D. F. 

TABLE 1.  Results of stepwise discriminant function analysis 
on harmonic amplitude spectra for the Lehigh River (LR), 
Sherman Ridge (SR), Montebello (MON), and Catskill (CAT) 
sand samples. 
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Table 2 displays results of discriminant functions using 

harmonic amplitudes for samples from the St. Peter sandstone, New 

Jersey beach, Lehigh River and Jackson Hole till.  The Lehigh River 

sample was selected to represent the fluvial sediments derived from 

Devonian sandstones since there was no apparent difference between 

those samples, and since it contained sediments from more than one 

sandstone unit.  Samples again were compared two at a time for all 

possible combinations, as well as all four simultaneously.  Results 

for the discriminant function on each pair showed that for every 

case, from seven to eleven harmonics adding most to the separation 

of the groups were entered into the function.  On the average, at 

least half of the total number of variables were entered into the 

discriminant function.  Most of the harmonics entered were low order 

harmonics (2-10) descriptive of gross shape, although for each pair 

several higher order harmonics were also entered.  Comparison of all 

four samples simultaneously resulted in eleven harmonics entering 

into the discriminant function, seven of which were low order 

harmonics (2-10).  The large F values for the sample pairs in Table 

2 show a greater separation between samples than is the case for 

Table 1.  Samples in Table 1 have greater similarity to each other, 

based upon the smaller F values, than those in Table 2.  The 

observed differences between mean harmonic amplitude spectra in 

Figure 7 are supported by the results of the discriminant function 

analyses at the 5%  significance level.  Shape variation as 
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Harmonic No. Critical 
Sample Entered into F F 
Comparison Function Statistic D . F. Statistic* 

SP-NJ 2,5,6,7,8, 
9,10,11,17 53-06 9, 884 1.89 

SP-LR 2,5,6,7,8, 
9,11,14,15 114.68 9, 831 1 .89 

SP-JH 2,4,5,6,7,8, 
9,10,11,13,17 103-85 11, 807 1.80 

NJ-LR 2,5,9,12,. 
13,14,15 17.42 7, 843 2.02 

NJ-JH 3,5,7,9, 
10,11 ,18 24-89 7, 821 2.02 

LR-JH 2,4,5,6,7, 
11,13,15,16 11.62 9, 806 1.89 

SP-NJ-        2,5,6,7,8,9, 
LR-JH 10,11,13,14,15 34-71       33,  4870        1.66 

* At 3%  significance level 

H:  No significant difference between samples for 

harmonics entered into discriminant function. 

2 
F - Approximate F Statistic from Mahalanobis D 
D. F. - Degrees of Freedom 
Critical F - Interpolated value for D. F. 

TABLE 2.  Results of stepwise discriminant function analysis 
on harmonic amplitude spectra for the St. Peter sandstone 
(SP), New Jersey beach (NJ), Lehigh River (LR), and Jackson 
Hole till (JH) samples. 
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characterized by eighteen harmonic amplitudes per grain is 

sufficient for discrimination of these samples by this procedure. 

MULTIVARIATE ROTATION METHOD 

Analysis of multivariate rotation data included both graphic 

and statistical methods.  Statistical analysis of multivariate 

2 
rotation data involved application of Hotelling's T test, with 

rotated radials serving as measured shape variables for each grain. 

2 2 
The T statistic in combination with the Mahalanobis D statistic 

enables testing of the equality of group means for several variables 

simultaneously (Morris, 1967; Dixon, 1981).  These statistics are 

related and can be transformed to an F statistic (Morris, 1967).  In 

order to discriminate between samples, the F statistic is tested at 

a specified level of significance to determine significant 

differences.  These statistics were computed using both estimated 

factor scores and rotated radials as variables for each grain.  The 

purpose for using both sets of variables was to determine if both 

would yield similar results.  The initial expectation was that the 

estimated factor scores would provide somewhat better results, since 

they represent the essential information carried by the original 

variables. 

Rotated Radials.  Results utilizing rotated radials as 

2 
variables for Hotelling's T test on data from the sand samples of 

the Devonian units are summarized in Table 3>  It is noted that in 

the analysis, with radials as variables for testing equality of 
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Sample 

Comparison D2 T2 P DP P Value 

LR-MON 0.23 45.67 1.25 35, 755 0.16 
LR-SR 0.24 49-02 1.34 35, 785 0.09 
LR-CAT 0.27 52.54 1.44 35, 759 0.05 
MON-SR 0.17 33-58 0.92 35, 738 0.61 
MON-CAT 0.31 57.59 * 1.57 35, 712 0.02 
SR-CAT 0.23 45.51 1.24 35, 742 0.16 

*Significant at 5%  level    Critical F value =1.45 

H :  No difference in mean radial lengths between samples 

2 2 
D - Mahalanobis D statistic 

T2 - Hotelling's T2 statistic 
DF - Degrees of Freedom 
P Value - Probability of rejecting H if H is true 

2 
TABLE 3-  Results of two-sample Hotelling's T test using 
rotated radial lengths for the Lehigh River (LR), Sherman 
Ridge (SR), Montebello (MOM), and Catskill (CAT) sand 
samples. 
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means for each sample pair, one variable was omitted for each 

comparison.  The omission occurred because the particular variable 

(radial length) was a linear combination of the other variables, as 

determined by the statistical software.  This appeared to be an 

artifact of the program in the statistical package.  Specifically, 

rotated radial number eight was omitted in every case except the 

Lehigh River - Catskill and Montebello - Catskill pairs, for which 

radials number two and seven, respectively, were omitted .  As a 

result, calculation of the statistics was based upon thirty-five 

variables. 

At the 5%  significance level, results show a significant value 

of the F statistic for only the Montebello - Catskill pair (Table 

3).  A significant difference between these samples is not entirely 

unexpected since results of the discriminant function analysis using 

Fourier data (Table 1) showed significant differences at four 

harmonics, three of which (2,3,4) characterize gross shape.  It is 

also noted that in Table 1, four harmonics were significantly 

different for the Sherman Ridge - Catskill samples.  However, for 

the Hotelling's T  test on rotated radial lengths, no difference (5% 

significance level) was detected between this sample pair. 

The difference detected between the Montebello - Catskill pair 

appears to be anomolous since the sample from the Sherman Ridge 

Formation, which is stratigraphically adjacent to the Montebello but 

below the Catskill, is statistically indistinguishable from both the 

Montebello and Catskill as shown by this test in Table J>.     Although 
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there is no obvious reason for the results of the comparisons 

between these samples in view of their apparent similarity as 

determined by results from Fourier data, this procedure indicated 

that there is significant shape variation between some of the 

samples.  It may be that the differences between only two to four 

harmonics for each sample pair shown in Table 1, are enough to 

consider the samples as distinctly different.  However, this would 

not resolve the inconsistency which exists since only two of these 

samples showed significant differences on the basis of rotated 

radials. 

2 
Table 4 contains results of the Hotelling's T  test for the St. 

Peter sandstone, New Jersey beach, Lehigh River and Jackson Hole 

till samples, using rotated radials as variables.  Again the Lehigh 

River sample is used as the fluvial sample for these comparisons 

since it is composed of sediments from a variety of sandstone 

sources, and also to allow straightforward comparison of results 

with those of the Fourier method. 

For all possible combinations of sample pairs between this 

group of samples, significant differences existed at the 5% 

significance level.  These samples, derived from very diverse 

sources and environments, are distinguishable from one another on 

the basis of gross shape variation.  However, the magnitude of the F 

values is not much greater than the magnitude of the F values shown 
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Sample 

Comparison D2 T2 P DF P Value 

SP-NJ 0.66 141 .41 * 5-88 35, 818 0.00 
SP-LR 1.39 292.84 * 8.03 35, 805 0.00 
SP-JH 1.49 304.19 * 8.33 35, 783 0.00 
NJ-LR 0.40 84.82 * 2.33 35, 815 0.00 
NJ-JH 0.46 94.41 * 2.59 35, 793 0.00 
LR-JH    0.28     56.26   * 1 .54  35, 780    0.03 

*Significant at 3%  level     Critical P value = 1.45 

H :  No difference in mean radial lengths between samples 

2 2 
D - Mahalanobis D statistic 

T2 - Hotelling's T2 statistic 
DF - Degrees of Freedom 
P Value - Probability of rejecting H if H is true 

2 
TABLE 4.  Results of two-sample Hotelling's T  test using 
rotated radial lengths for the St. Peter sandstone (SP), New 
Jersey beach (NJ), Lehigh River (LR) and Jackson Hole till 
(JH) samples. 
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in Table 3-  These results also agree with those obtained by semi- 

quantitative methods using Fourier derived data for the same 

samples. 

Estimated Factor Scores.  Plotting mean values of estimated 

factor scores versus the appropriate factor permits visual 

inspection of mean differences between samples.  Figure 9 

illustrates such a graph for the Devonian sandstone sediments.  The 

most obvious relationship is the similar trend of changes in mean 

factor scores from one factor to another.  Mean factor scores 

decrease from Factor 1 to Factor 2, and then increase to a maximum 

value for Factor 5 in each case.  For Factor 6 all samples have mean 

values near zero.  The similarity of the changes in mean values of 

factor scores is a qualitative indication that these samples are 

similar in their shape characteristics. 

In Figure 9, the Montebello sample exhibits the smallest range 

of mean values, and the Catskill sample shows the largest range of 

mean values.  Of the samples displayed, these two have the largest 

differences.  This observation lends support to the significant 

differences determined between these two samples (Table 3) for 

2 
results of Hotelling's T test using rotated radials as variables. 

Figure 10 is a graph of mean estimated factor scores versus 

factors for the St. Peter - Jackson Hole suite of samples.  In this 

illustration, trends of mean values are quite different for each 

sample.  Qualitatively, these four samples appear to be different on 
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FIGURE 9.     Graph of mean estimated  factor score vs.   factor  for 
the Lehigh River sand   (LR),   Sherman  Ridge sand   (SR), 
Montebello  sand   (MON),  and Catskill  sand   (CAT)   samples. 
(See Appendix 6  for confidence  intervals). 
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the St.> Peter sandstone (SP), New Jersey beach sand (NJ), 
Lehigh River sand (LR), and Jackson Hole till (JH) 
samples.  (See Appendix 6 for confidence intervals). 
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the basis of observed differences for mean estimated factor scores, 

and the difference in the distribution of these means from one 

factor to another. 

The differences of values for the St. Peter and Jackson Hole 

samples are the largest of the four samples.  The New Jersey beach 

and Lehigh River samples have intermediate mean values between these 

extremes.  A similar relationship was observed for these samples in 

Figure 7 for mean harmonic amplitudes of the low order harmonics two 

through ten. 

Another interesting feature of Figures 9 and 10 is that, in 

both instances, most if not all the samples have very similar mean 

values of estimated factor scores for Factors 4 and 6.  The reason 

for this similarity is unclear, however, it may reflect some 

underlying shape feature or component which is common to all the 

samples.  Overall, graphs of mean values for estimated factor scores 

plotted against the corresponding factors confirmed expected 

similarities and differences between groups of samples. 

Use of estimated factor scores as variables for Hotelling's T 

test on samples from the Devonian sandstones produced results shown 

in Table 5«  At the 3%  level of significance there was no difference 

between pairs of samples with two exceptions, the Montebello - 

Catskill and Sherman Ridge - Catskill pairs.  It seems reasonable 

that the shape signatures of samples from the stratigraphically 

adjacent Montebello and Sherman Ridge formations would be similar to 
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Sample 

Comparison D2 T2 F DF P Value 

LR-MON 0.04 7-77 1.29 6, 784 0.26 
LR-SR 0.01 2.17 0.36 6, 814 0.91 
LR-CAT 0.05 9-52 1 .58 6, 788 0.15 
MON-SR 0.03 5-40 0.89 6, 767 0.50 
MON-CAT 0.16 29-89 * 4-95 6, 741 0.00 
SR-CAT   0.08    14.82    * 2.45   6, 771    0.02 

*Significant at 5%  level     Critical F value =2.11 

H :  No difference in mean factor scores between samples 
o r 

2 2 
D - Mahalanobis D statistic 

T2 - Hotelling''s T statistic 
DF - Degrees of Freedom 
P Value - Probability of rejecting H if H is true 

oo 

2 
TABLE 5-     Results of two-sample Hotelling's T test using 
estimated factor scores for the Lehigh River (LR), Sherman 
Ridge (SR), Montebello (MON), and Catskill (CAT) sand 
samples. 
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each other, yet different from that of the Catskill sample, which is 

stratigraphically higher.  The fact that the adjacent Montebello and 

Sherman Ridge Formations have been defined as separate and distinct 

formations (Miller, 1961) does not necessarily mean that they are, 

in fact, different lithologic units.  Therefore, it is possible 

these formations could have the same shape signature.  The Catskill 

Formation, which is higher in the stratigraphic section and not 

adjacent to either the Montebello or Sherman Ridge, could reasonably 

be expected to have a different shape signature.  In any case, a 

2 
conflict exists with the results of the T test using radials as 

variables, in which no significant difference was detected between 

the Sherman Ridge - Catskill samples {5%  significance level).  This 

conflict may indicate that the factor scores produce better 

resolution than the rotated radials.  Results from Fourier data 

showed significant differences between the Sherman Ridge - Catskill 

and Montebello - Catskill pairs for four harmonics in each case. 

2 
Results for estimated factor scores as variables for the T 

test, shown in Table 6, are quite conclusive for the St. Peter 

sandstone, New Jersey beach, Lehigh River and Jackson Hole till 

samples.  Pairwise comparisons of all samples at the 5%  significance 

level displayed differences between samples in every case.  These 

results are in agreement with those obtained using radial lengths as 

variables, as well as with the outcome for Fourier derived shape 

variables.  However, it should be noted that when analyzing 
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Sample 

Comparison D2 T2 F DF P Value 

SP-NJ 0.25 53-37 *    8.84 6,   847 0.00 
SP-LR 0.36 75.17 * 12.45 6,   834 0.00 
SP-JH 0.68 138.31 * 22.91 6,   812 0.00 
NJ-LR 0.06 13-65 *    2.26 6,   844 0.04 
NJ-JH 0.19 38.91 *    6.45 6,   822 0.00 
LR-JH 0.12 23-64 *    3-92 6,   809 0.00 

*Significant at 5%  level     Critical F value = 2.11 

H :  No difference in mean factor scores between samples 

2 2 
D - Mahalanobis D statistic 

T2 - Hotelling's T2 statistic 
DF - Degrees of Freedom 
P Value - Probability of rejecting H if H is true 

o    o 

2 
TABLE 6.  Results of two-sample Hotelling's T test using 
estimated factor scores for the St. Peter sandstone (SP), 
New Jersey beach (NJ), Lehigh River (LR), and Jackson Hole 
till (JH) samples. 
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estimated factor scores (Table 6), calculated F values for each 

sample pair are larger than the F values for the same sample pair 

when using rotated radial lengths (Table 4).  This is strong 

evidence to suggest that estimated factor scores provide better 

resolution, and accordingly, are more useful for discriminating 

between samples. 
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DISCUSSION 

Although results for quantitative shape analysis of quartz 

grains with the multivariate rotation method indicate the usefulness 

of the technique, there are several issues which must be addressed. 

Although the method produced comparable results to the Fourier 

procedure for the St. Peter - Jackson Hole suite of samples 

representing diverse sediment sources, some discrepancies existed 

between results of the two methods when analyzing sediments derived 

from the Devonian sandstones, which have a more narrow spectrum of 

shape variation.  One of several explanations may account for the 

disagreement of these results utilizing the same database. 

For the multivariate rotation method, results of the shape 

analysis on fluvial sediments from the proximate Devonian sandstones 

varied slightly depending upon whether radial lengths or factor 

scores were used for statistical tests (Tables 3 and 5).  It is not 

completely clear why this is the case, however, several 

possibilities are suggested.  The differences between some of these 

samples detected by analysis of both sets of variables indicates 

that there are subtle but discernible variations in shape signatures 

of samples which reasonably could be expected to be somewhat similar 

in view of the common age and proximity of the sandstone sources. 

It would appear that the problem is related to the choice 

between rotated radials or factor scores as variables for the 

50 



statistical analysis.  Intuitively, it seems that the use of thirty- 

six radials as input for the analysis may be the cause of the 

discrepancies between results for these two variable sets.  Aside 

from the fact that such a large number of variables is cumbersome to 

handle and expensive in terms of computer time, there is an 

inordinate amount of redundancy using so many variables.  This is 

supported by the fact that for the St. Peter sample six factors 

accounted for 91 percent of the variance in the data.  This 

redundancy would be likely to create noise in the data, adding to 

the complexity of subtle shape variations that must be 

differentiated.  If redundancy is indeed a source of noise, then the 

R-mode factor analysis approach for computing estimated factor 

scores to use as variables for analysis seems justified, since it 

eliminates redundancy and the resulting noise. 

The estimated factor scores appear to be more sensitive for 

detecting variations in shape signatures.  For the sediment samples 

derived from the Devonian sandstones, a significant difference was 

detected between the Sherman Ridge - Catskill pair for estimated 

factor scores (Table 5), but not for rotated radials (Table 3). 

Although a significant difference was detected between the 

Montebello - Catskill pair using both sets of variables, the F value 

for the estimated factor scores (Table 5) is approximately three 

times larger than the F value for rotated radial lengths (Table 3). 
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It appears, therefore, that estimated factor scores are best 

suited for analysis of shape variation.  The factor scores eliminate 

redundant information carried by rotated radial lengths, and seem to 

be more sensitive to shape variations based upon initial evidence. 

Conclusive determination of which variable set is best for analysis 

will require a more detailed and sophisticated investigation 

specifically designed to verify this preliminary finding. 

Results obtained by use of rotated radials as variables (Table 

4) for statistical analysis of the St. Peter - Jackson Hole suite of 

samples lends support to the concept that radials contain noise and 

are less sensitive to shape variations.  For these samples, results 

of discrimination between sample pairs were the same as the results 

using estimated scores (Table 6).  Since the shape variation in this 

suite of samples is so evident, the redundancy of information 

carried by the radials is not as critical because the intensity of 

the variations is discernible despite any associated noise.  The 

estimated factor scores appear to be more sensitive to the shape 

variation in these samples.  For the St. Peter - Jackson Hole sample 

group, the F values obtained from estimated factor scores were 

larger for any given sample pair than the F value obtained from 

rotated radial lengths for the same sample pair (Tables 4 and 6). 

The larger F value for each sample pair indicates greater separation 

of the samples than a smaller value even though the F values are 

significant in both cases. 
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As for shape analysis results of the fluvial samples using the 

Fourier (Figure 8 and Table 1) and multivariate rotation methods 

(Figure 9 and Tables 3 and 5). the slight differences between 

results probably reflect the type of data analysis.  For the 

pairwise analyses of the fluvial samples significant differences 

between some samples (Montebello - Catskill and Sherman Ridge - 

Catskill) were detected by the multivariate rotation method using 

estimated factor scores.  From Fourier derived shape data, using 

discriminant function analysis, minor differences were observed for 

four of the harmonics.  The small number of harmonics exhibiting 

significant differences is considered insufficient evidence that the 

samples are distinctly different.  It appears, however, that the 

differences between samples detected at these few harmonics may have 

been enough to be responsible for the difference detected by the 

multivariate rotation method.  The conclusion of no difference 

between samples, based upon Fourier results, was somewhat subjective 

since there is no standard procedure for deciding how many harmonics 

must be significantly different to reveal a "real" difference in the 

grain shape signature.  Use of a more sophisticated analysis method 

on the Fourier derived data, such as chi-square analysis of shape 

frequency distributions (Ehrlich et al., 1980), might produce more 

objective results. 

Application of the various procedures outlined reveals distinct 

differences in the shape signatures of quartz grains for the St. 
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Peter sandstone, New Jersey beach, Lehigh River, and Jackson Hole 

till samples.  In general, results for the sediment samples derived 

from Devonian sandstones showed no differences between most samples. 

Agreement of results on the same database for the procedures applied 

demonstrates the capacity of the multivariate rotation method for 

discrimination of samples on the basis of variations in shape 

signatures of quartz sand grains from diverse sediment sources. 

Thirty-six equally spaced radial lengths from the center of 

mass to the peripheral outline for projected two-dimensional quartz 

grain shapes, rotated to a common orientation, serve as useful 

measured shape variables.  Estimated factor scores, as computed from 

the rotated radials for each grain using the multivariate rotation 

method of Parks (in preparation) are adequate as variables for 

statistical analysis to discriminate differences in shape signatures 

of quartz grains. 

Limitations of the method.  Despite the apparent utility of the 

multivariate rotation method for shape discrimination of sediments 

from different sources there are limitations and drawbacks.  Use of 

2 
Hotelling's T test, to determine the equality of means for the 

estimated factor scores between two samples, is quite adequate for 

circumstances involving comparisons of a small number of samples. 

However, for investigations requiring analysis of large numbers of 

samples, use of this test may be cumbersome since only paired 

comparisons are possible. 
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Another limitation at the present time is that the resolving 

power of the method is not well-defined.  Preliminary results 

suggest that the method may have potential beyond that which was 

originally anticipated.  This is evidenced by the detection of shape 

differences in the fluvial samples derived from the Devonian 

sandstones for which analysis of Fourier derived data suggested a 

common origin.  However, modifications of either the method or 

statistical procedures may be required to increase the sensitivity 

of the method. 

Factors (hypothetical variables) derived by R-mode factor 

analysis of the St. Peter sample are assumed to represent specific 

components of shape which contribute to the overall two-dimensional 

representation of each grain.  It is net known, however, what these 

components are or how they are related to one another.  Knowledge of 

the shape components represented by the factors would allow insight 

into the structure of raw data (rotated radials) and permit 

evaluation of the ability of the estimated factor scores to 

characterize the shape of a unique grain. 

Future Research.  On the basis of information produced by this 

investigation, several subjects for future study may be defined.  A 

detailed analysis of the resolving power of the multivariate 

rotation method would provide information useful in choosing 

problems for which this type of procedure is best suited.  A 

combination of carefully designed experiments on synthetic data sets 
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as well as selected geologic investigations should provide the 

necessary information. 

Estimated factor scores derived from rotated radial lengths 

appear to be better suited than rotated radials alone for 

2 
discriminating between samples by application of Hotelling's T 

test.  However, this test only allows pairwise comparison of 

samples.  Further research is necessary to determine a statistical 

procedure for multivariate analysis of estimated factor scores which 

will allow more efficient comparison of large numbers of samples 

simultaneously.  The current approach only verifies whether or not 

significant differences exist for means of factor scores. 

While evidence supports the use of estimated factor scores as 

variables for statistical analysis of shape data, further work is 

required to understand the meaning of the underlying factors and 

beta coefficients from which these scores are derived.  Insights 

into the structure of raw data (rotated radials) would be 

facilitated if the meaning of the factors can be determined.  More 

information is also needed on the beta coefficients.  Several beta 

coefficients matrices derived from different samples should be 

tested on the same database to determine what impact a particular 

set of coefficients will have on the results for a given data set. 

Finally, a procedure capable of sorting out mixtures of 

sediments derived from multiple sources would greatly enhance the 

applicability of the multivariate rotation method for a large number 
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of sedimentation problems.  Such a procedure would require the 

capacity to discriminate shape variations of quartz sand grains 

within a sample, and to determine the proportions of sediments 

contributed by each source to mixed samples. 
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CONCLUSIONS 

This investigation has demonstrated the usefulness of the 

multivariate rotation method of quantitative grain shape analysis 

for discrimination of shape variation in sediment samples from 

several diverse sources and environments.  Preliminary results 

indicate that rotated radial lengths serve as adequate shape 

variables descriptive of projected two-dimensional grain outlines. 

Estimated factor scores, as calculated by the procedure outlined, 

allow data reduction and enhance shape information necessary for 

sample discrimination.  These scores, characterizing the gross shape 

of each grain, serve as variables for statistical analysis to 

determine significant differences between samples. 

Shape analysis of quartz grains in sediments derived from 

Devonian sandstones of central Pennsylvania indicates that the 

grains, derived from lithologies of similar age, geographic 

location, and presumably a common source, have similar shape 

signatures.  Quartz grains in sediment samples from the widely 

different sources and environments sampled have unique shape 

signatures which permit discrimination between these sediments. 

The multivariate rotation method produces results comparable to 

those obtained by semi-quantitative analysis of Fourier derived 

shape data for discrimination of-sediments from the diverse sources 

and environments sampled.  Overall results verify conclusions of 

previous investigators that projected two-dimensional outlines of 
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quartz sand grains carry information on particle shape which is 

useful for distinguishing sediments derived from unique sources. 
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APPENDIX 1 

SAMPLE PREPARATION 

Fluvial and till samples contained significant amounts of mud, 

therefore a 10 ml. volume of sodium metaphosphate solution (50 grams 

per liter distilled water) was added to each.  Samples were shaken 

for ten minutes in a wrist action shaker to disperse the clay 

fraction and facilitate removal of sediments less than the 0.063 

size fraction by wet sieving. 

All samples were dry sieved to isolate the 0.35-0..50 mm size 

fraction to be used for shape analysis.  For each sample this size 

fraction was treated with hydrochloric acid to remove iron oxide 

coatings from the grains.  Samples were warmed on a hot plate in a 

10 percent hydrochloric acid solution for several minutes to speed 

up the reaction.  Some samples required repeated treatments, washing 

the sample with distilled water between each treatment, before all 

the iron oxide was removed.  Treatment was considered complete when 

freshly added hydrochloric acid solution ceased turning pale green 

to pale yellow in color.  Upon rinsing and drying, samples were 

ready to be digitized. 

Prior to digitizing, each sample was viewed through a binocular 

microscope. Approximately 400 quartz grains were randomly selected 

from each sample.  Grains were placed loosely on a glass slide, 

approximately 100 at a time, and digitized by tracing the projected 

two-dimensional grain boundary. 
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APPENDIX 2A. Graph of mean harmonic amplitude VB.  harmonic number 
for the St.  Peter sandstone sample.     Error bars 
define  the 95% confidence interval. 
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APPENDIX 2B. Graph of mean harmonic amplitude vs. harmonic number 
for the New Jersey beach sand sample.  Error bars 
define the 95% confidence interval. 
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APPENDIX 2C.     Graph of mean harmonic amplitude vs.  harmonic number 
for the Lehigh River sand sample.     Error bars 
define the 95% confidence interval. 
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APPENDIX 2D. Graph of mean harmonic amplitude vs. harmonic number 
for the Jackson Hole till sample.  Error bars 
define the 95% confidence interval. 
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APPENDIX 2E. Graph of mean harmonic amplitude vs. harmonic number 
for the Sherman Ridge sand sample. Error bars 
define the 95% confidence interval. 
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APPENDIX 2F.  Graph of mean harmonic amplitude vs. harmonic number 
for the Montebello sand sample.  Error bars define 
the 95% confidence interval. 
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APPENDIX 2G. Graph of mean harmonic amplitude vs. harmonic number 
for the Catskill sand sample.  Error bars 
define the 95% confidence interval. 
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FACTOR 1 FACTOR 2 FACTOR 3 FACTOR 4 FACTOR 5 FACTOR 6 

1 .09878822 .02639567 -.11474554 .02400774 -.03884165 .02504508 
2 .08656075 .00841302 -.09995747 .04130196 -.04222548 -.04517755 
3 .06195825 -.03317698 -.03419502 -03115719 -.01730447 -.14797466 
4 -.00120460 -.11876115 .06873072 -.00805750 .04853157 -.23832981 
5 -.08666814 -.15380552 .06965660 -.02404855 .06656054 -.13741856 
6 -.11425098 -.11877151 .01104548 -.01745458 .04643127 .05402984 
7 -.09226297 -.06328971 -.03775069 -.04611443 .03617799 .15672574 
8 -.05218541 -.00116587 -.06496248 -.00066425 .02404691 .13101546 
9 -.00942713 .06580802 -.05445745 -.09819629 .00607178 .06511027 
10 .05255746 .12658858 -.00455990 -.09326960 -.00275403 -.04727805 
11 .05205555 .16036218 .04657979 -.03162001 -.01451596 -.15856514 
12 .04085097 .14769764 .06624041 .08666056 -.02829664 -.15773946 
13 .00322008 .07677342 .05591067 .23085146 -.02401262 -.08608175 
14 -.04282191 -.05750417 -.00611505 .32829959 -.01151584 .05660261 
15 -.05437355 -.15216505 -.06435825 .25262229 .04405111 .17745995 
16 -.03012094 -.18052590 -.04972782 .07377065 .07442121 .14556598 
17 -.00000250 -.15191152 .02545018 -.07743536 .05020092 -.00557947 
18 .U2259046 -.05727525 .06256268 -.14676139 -.01353100 -.12562972 
19 .05142062 .01965074 .05124089 -.14062108 -.09911174 -.15666559 
20 .01805051 .06612955 .00706754 -.07808532 -.17447586 -.11079618 
21 -.00856129 .07207050 -.05102773 .00983062 -.21059194 .02929641 
22 -.02579728 .05136252 -.08472385 .06004236 -.17753007 .20675303 
23 -.04^50542 -.04577798 -.04152402 .05112203 .02628690 .45476971 
24 .05114924 -.11107273 .15153168 -.15417291 .33445587 .1941.9342 
25 .06314762 -.03352858 .oei4eo46 -.17662697 .24181783 -.09182047 
26 .04572304 .01489833 -.04430026 -.10702521 .10319239 -.10756926 
27 .00558J86 .03151894 -.15707173 -.01624469 .00487399 -.03683995 
2n -.05591150 .02536815 -.16538390 .08549123 -.06155872 .04664392 
29 -.11418245 .01802569 -.11410578 .17170524 -.10998029 .08041164 
}0 -.14819020 .00647202 .03494017 .18532056 -.09964481 .02981125 
51 -.13360284 .00031256 .27186497 .11796970 -.03065816 -.08319623 
32 -.04110270 .00441268 .36267088 -.01217140 .05762708 -.10673343 
33 .04707575 .01IH2146 .23770792 -.08562430 .00416703 -.02924147 
34 .08oU'jf41 .01494054 .09165354 -.08776739 .06517858 .04223357 
55 .10036903 .02476201 -.02689479 -.04940530 .02102136 .00219724 
50 .10287581 .05051360 -.09238081 -.00857061 -.01642791 .07264682 

APPENDIX 3.  Beta ceofficients matrix for the St. Peter 
sandstone sample (0.35-0.50 mm size interval). Variables 
are rotated radial lengths. 
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FACTOR 1 FACTOR 2 FACTOR 3 FACTOR 4 FACTOR 5 FACTOR 6 

1 .09878822 .02639567 -.11474554 .02400774 -.03884165 .02504508 
2 .08656073 .00841302 -.09993747 .04130196 -.04222548 -.04517755 
5 .0619562} -.03317698 -.03419502 -03113719 -.01730447 -.14797466 
4 -.00120400 -.11876115 .06873072 -.00805730 .04853157 -.23032981 
5 -.08666814 -.15300552 .06965660 -.02404855 .06656054 -.13741836 
6 -.11425098 -.11877151 .01104548 -.01743438 .04643127 .05402984 
7 -.09226297 -.06328971 -.03775069 -.04611443 .03617799 .13672574 
0 -.05218341 -.00116587 -.06496248 -.00066425 .02404691 .13101346 
9 -.00942718 .06580002 -.05445745 -.09819629 .00607178 .06311027 
10 .03253746 .12658838 -.00455990 -.09326960 -.00275403 -.04727605 
11 .05205535 .16036218 .04657979 -.03162001 -.01451396 -.13838514 
12 .04005097 .14769764 .06624041 .08666036 -.02829664 -.15773946 
13 .00322088 .07677342 .05391067 .23085146 -.02401262 -.08600175 
14 -.04282191 -.03750417 -.00611303 .32829959 -.01151304 .05660261 
15 -.05437333 -.15216503 -.06435825 .25262229 .04403111 .17745995 
16 -.03012094 -.18052390 -.04972702 .07377065 .07442121 .14336598 
17 -.00000250 -.13191132 .02345018 -.07743536 .05020092 -.00557947 
18 .02259046 -.05727323 .06256268 -.14676139 -.01353100 -.12362972 
19 .03142062 .01963074 .05124089 -.14062108 -.09911174 -.15666359 
20 .01695051 .06612953 .00706754 -.07808532 -.17447586 -.11079618 
21 -.00656129 .07207030 -.05102773 .00963062 -.21059194 .02929641 
22 -.02579728 .05136252 -.08472383 .06004236 -.17753007 .20675303 
23 -.04^50542 -.04577798 -.04152402 .05112203 .02628690 .43476971 
24 .03114924 -.11107273 .13153168 -.15417291 .33445587 .19469342 
25 .06314762 -.03352858 .08148046 -.17662697 .24181763 -.09102047 
26 .04372^04 .01489833 -.04430026 -.10702521 .10319239 -.10756926 
27 .00538386 .03151894 -.13707173 -.01624469 .00487399 -.03663995 
2(5 -.05391130 .02536813 -.16538390 .08549123 -.06155872 .04664392 
29 -.11410243 .01002569 -.11410578 .17170524 -.10998029 .08041164 
i0 -.14819020 .00647202 .03494017 .18532036 -.09964401 .02<J8I 125 
31 -.13360264 .00031236 .27106497 .11796970 -.03065816 -.08319623 
52 -.04110270 .00441268 .36267088 -.01217140 .05762708 -.10673343 
'S'5 .'J47U7575 .011H2146 .23770792 -.0H562430 .08416703 -.02924147 
A ,0bbO'.ll>H .01494034 .09165354 -.08776739 .06517858 .04223337 
35 .10036903 .02476201 -.02689479 -.04940530 .02102136 .06219724 
36 .10287J01 .03031380 -.09238081 -.00657061 -.01642791 .07264602 

APPENDIX 3.  Beta ceofficients matrix for the St. Peter 
sandstone sample (0.35-0.50 mm size interval).  Variables 
are rotated radial lengths. 
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FACTOR 1  FACTOR 2  FACTOR 3 FACTOR 4 FACTOR 5 FACTOR 6 

1 0.820 0.416 -0.163 -0.236 -0.074 0.085 
2 0.796 0.340 -0.329 -0.159 -0.137 0.036 
3 0.740 0.150 -0.506 -0.011 -0.155 -0.086 

V    4 0.454 -0.270 -0.700 0.217 -0.067 -0.235 
5 -0.129 -0.678 -0.517 0.303 0.075 -0.161 
6 -0.554 -0.688 -0.196 0.166 0.180 0.044 
7 -0.752 -0.537 0.032 -0.012 0.215 0.115 

A    8 -0,863 -0.336 0.150 -0.173 0.176 0.098 
9 -0.889 -0.094 0.241 -0.255 0.070 0.021 

10 -0.837 0.213 0.297 -0.237 -0.064 -0.100 
11 -0.711 0.5H 0.285 -0.107 -0.203 -0.169 

R  12 -0.487 0.731 0.181 0.101 -0.296 -0.123 
13 -0.154 0.827 -0.008 0.351 -0.279 0.030 
H 0.277 0.665 -0.254 0.496 -0.147 0.242 
15 0.618 0.265 -0.460 0.391 0.121 0.323 

I  16 0.750 -0.159 -0.461 0.175 0.255 0.179 
17 0.747 -0.458 -0.299 0.026 0.181 -0.064 
18 0.716 -0.592 .-0.106 -0.084 0.019 -0.209 
19 0.681 -0.604 0.105 -0.169 -0.153 -0.212 

A 20 0.650 -0.572 0.268 -0.194 -0.266 -0.097 
21 0.641 -0.494 0.409 -0.168 -0.252 0.108 
22 0.618 -0.327 0.558 -0.136 -0.088 0.290 
23 0.402 0.029 0.625 0.010 0.397 0.398 

B 24 -0.325 0.496 0.124 0.082 0.711 -0.087 
25 -0.690 0.421 -0.271 -0.073 0.318 -0.286 
26 -0.810 0.231 -0.370 -0.203 0.059 -0.155 
27 -0.861 0.085 -0.352 -0.226 -0.069 0.032 

L 28 -0.901 -0.072 -0.247 -0.106 -0.130 0.198 
29 -0.859 -0.236 -0.054 0.116 -0.188 0.268 
30 -0.718 -0.346 0.181 0.386 -0.190 0.159 
31 -0.308 -0.307 0.505 0.647 -0.117 -0.116 

E 32 0.3H -0.029 0.672 0.544 0.053 -0.298 
33 0.677 0.232 0.541 0.189 0.164 -0.231 
34 0.788 0.345 0.339 -0.064 0.173 -0.099 
35 0.819 0.409 0.164 -0.211 0.105 0.027 
36 0.825 0.431 0.003 -0.259 0.014 0.086 

% VARIANCE 45-89 18.56 12.77 6.21 4.52 3.20 

CUMULATIVE 
% VARIANCE 45.89 64.55 77.33 83-54 88.07 91.27 

APPENDIX 4A.  Principal components analysis factor loadings on 
variables for rotated radial lengths of the St. Peter sandstone 
sample. 
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R 

FACTOR  1 FACTOR 2 FACTOR  3 FACTOR 4 FACTOR 5 FACTOR i 

1 0.900 -0.223 -0.094 0.184 -0.185 0.064 
2 0.824 -0.335 -0.133 0.228 -0.179 -0.092 
3 0.646 -0.522 -0.102 0.215 -0.160 -0.291 
4 0.148 -0.768 -0.057 0.088 -0.071 -0.496 
5 -0.551 -0.641 -0.051 -0.127 -0.003 -0.367 
6 -0.852 -0.263 -0.135 -0.244 0.073 -0.057 
7 -0.859 0.068 -0.189 -0.322 0.144 0.113 
8 -0.763 0.342 -0.245 -0.355 0.212 0.141 
9 -0.603 0.584 -0.230 -0.3H 0.257 0.083 

10 -0.376 0.780 -0.140  ' -0.180 0.319 -0.034 
11 -0.149 0.864 -0.027 0.065 0.369 -0.150 
12 0.057 0.764 0.057 0.381 0.377 -0.203 
13 0.240 0.446 0.110 0.700 0.355 -0.156 
14 0.374 -0.086 0.081 0.840 0.223 -0.021 
15 0.417 -0.627 -0.015 0.591 0.075 0.119 
16 0.364 -0.864 - -0.024 0.156 -0.111 0.112 
17 0.274 -0.820 0.085 -0.188 -0.325 -0.016 
18 0.228 -0.654 0.167 -0.361 -0.524 -0.113 
19 0.217 -0.433 0.205 -0.397 -0.701 -0.108 
20 0.198 -0.268 0.205 -0.332 -0.822 -0.016 
21 0.189 -0.173 0.204 -0.216 -0.856 0.197 
22 0.226 -0.083 0.239 -0.128 -0.741 0.480 
23 0.213 -0.007 0.330 -0.039 -0.187 0.823 
24 0.046 0.171 0.183 -0.085 0.829 0.355 
25 -0.155 0.298 -0.188 -0.105 0.844 -0.209 
26 -0.324 0.344 -0.451 -0.097 0.618 -0.3H 
27 -0.469 0.357 -0.572 -0.044 0.434 -0.254 
28 -0.664 0.345 -0.535 0.042 0.280 -0.143 
29 -0.830 0.313 -0.319 0.130 0.099 -0.055 
30 -0.884 0.255 0.065 0.161 -0.028 -0.030 
31 -0.634 0.166 0.649 0.145 -0.137 -0.002 
32 0.030 0.052 0.940 0.056 -0.178 0.128 
33 0.563 -0.028 0.719 -0.015 -0.155 0.249 
34 0.786 -0.085 0.414 -0.020 -0.141 0.286 
35 0.885 -0.111 0.163 0.037 -0.160 0.271 
36 0.915 -0.151 0.002 0.111 -0.179 0.193 

% VARIANCE    30.20 20.46 9-97 8.07 16.34 6.21 

CUMULATIVE 
% VARIANCE    30.20 50.67 60.64 68.71 85.05 91.27 

APPENDIX 4B.  Varimax factor loadings on variables for rotated radial 
lengths of St. Peter sandstone sample. 
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FACTOR 1  FACTOR 2 FACTOR 3 FACTOR 4 FACTOR 5 FACTOR 6 

-0.28634 
0.27816 
0.05653 
0.20129 
-0.01252 
0.27726 
0.06096 
-0.28589 
-0.24659 
0.01113 
0.19658 

-0.20307 
0.00242 

-0.35476 
0.10912 
0.06788 

-0.52747 
0.02309 

-0.60433 
0.02530 

-0.45674 
-0.12407 
0.16653 
0.27642 

-0.27832 
-0.01225 
-0.02159 
-0.16816 
0.07309 

-0.03699 
0.24693 
0.22321 
0.10004 

-0.03328 
0.10960 
0.03572 

-0.01715 
-0.20451 
0.26621 
0.28782 

-0.07539 
0.05555 

-0.01064 
0.18712 

-0.15842 
0.17201 
0.29569 

-0.17641 
0.07390 
0.26230 
0.129H 

-0.07731 
-0.00394 
-0.03542 
0.06415 
0.11761 
0.17402 

-0.32271 
-0.19267 
-0.13410 

-0.18071 
-0.28543 
-0.14023 
0.05007 
0.07638 

-0.22502 
-0.02408 
-0.12468 
-0.05639 
0.24H7 

-0.08647 
-0.28104 
-0.01743 
0.05229 

15897 
12167 
19973 

,22792 
-0.15847 
0.28422 

-0. 
0. 

-0. 
0. 

-0.02849 
-0.02775 
-0.19682 
-0.08516 
0.06019 
0.02364 

-0.00192 
-0.01027 
-0.17743 
0.03707 
0.18253 
0.09567 

-0.14982 
0.04901 
0.16220 
0.08545 

-0.01149 
-0.05334 
-0.09803 
0.29563 

-0 
-0 
-0 

0 
-0 

0.12270 
0.02318 

-0.02829 
-0.32233 

05230 
11718 
36374 
18294 
19089 

0.19609 
-0.12727 
-0.07964 
-0.33435 

05808 
01 283 
29458 
11432 
38762 
67869 

0. 
0. 
0. 

-0. 
-0. 
0. 
-0.07449 

APPENDIX 5-  Example of estimated factor scores for twenty- 
grains from the New Jersey beach sand sample. 

75 



MEAN ESTIMATED STANDARD 95$ 
SAMPLE  FACTOR FACTOR SCORE DEVIATION CONFIDENCE INTERVAL 
SP        1 -0.002        0.195 -0.012 0.008 

2 0.036        0.017 0.028 0.044 
3 0.027        0.165 0.019 0.035 
4 -0.002        0.158 -0.010 0.006 
5 -0.029        0.138 -0.036   -0.022 
6 0.002        0.132 -0.004 0.008 

NJ 1 -0.015 0.206 -0.035 0.005 
2 -0.017 0.204 -0.037 0.003 
3 0.026 0.207 0.006 0.046 
4 0.000 0.223 -0.011 0.011 
5 0.034 0.166 0.026 0.042 
6 -0.002 0.197 -0.012 0.008 

LR 1 -0.019 0.209 -0.030 -0.009 
2 -0.039 0.214 -0.050 -0.029 
3 -0.019 0.215 -0.030 -0.009 
4 0.001 0.258 -0.012 0.014 
5 0.027 0.173 0.019 0.035 
6 -0.003 0.215 -0.014 0.008 

JH 1 -0.054 0.247 -0.066 -0.042 
2 -0.043 0.213 -0.054 -0.033 
3 -0.045 0.245 -0.057 -0.033 
4 0.003 0.283 -0.011 0.017 
5 0.073 0.201 0.063 0.083 
6 0.023 0.243 0.011 0.035 

SR 1 -0.007 0.224 -0.018 0.004 
2 -0.025 0.210 -0.035 -0.015 
3 -0.026 0.226 -0.037 -0.015 
4 -0.008 0.256 -0.021 0.005 
5 0.025 0.168 0.017 0.033 
6 -0.002 0.211 -0.012 0.008 

MON 1 -0.003 0.217 -0.014 0.008 
2 -0.018 0.213 -0.029 -0.007 
3 -0.007 0.192 -0.017 0.003 
4 0.002 0.237 -0.010 0.014 
5 0.006 0.155 -0.002 0.014 
6 0.001 0.196 -0.009 0.011 

CAT 1 -0.038 0.221 -0.049 -0.027 
2 -0.038 0.225 -0.049 -0.027 
3 -0.030 0.217 -0.041 -0.019 
4 0.012 0.230 0.000 0.024 
5 0.053 0.169 0.011 0.013 
6 -0.001 0.229 -0.024 0.022 

APPENDIX 6.  95$ confidence intervals for mean values of estimated 
factor scores of the St. Peter sandstone (SP), New Jersey beach 
(NJ), Lehigh River (LR), Jackson Hole till (JH), Sherman Ridge 
sand (SR), Montebello sand (MON) and Catskill sand (CAT) samples. 
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Abstract 

The purpose of this study was to demonstrate the 

functioning of the concepts of likeableness and 

dislikeableness as prototypes.  Thirty-two (32) males 

selected from the Lehigh University subject pool served as 

subjects.  An acquisition set of 42 items describing a 

likeable and dislikeable character was presented to 

subjects.  Subjects were then administered a recognition 

test containing 20 old items (i.e. members of the 

acquisition set) and 30 new items (10 likeableable, 10 

control, 10  dislikeable).  For each item on the 

recognition test, a subject both identified the character 

described by that item and rated how certain he was about 

his decision.  Only the 30 new items in the recognition set 

were considered in the analysis.  Data from the recognition 

test indicates that memory was biased towards recognizing 

nonpresented trait related items.  This suggests that trait 

concepts are represented in memory as prototypes. 



CHAPTER 1 

TRAITS AS PROTOTYPES IN HUMAN MEMORY 

STATEMENT OF THE PROBLEM 

Scientists from both social and cognitive psychology 

are working towards a better understanding of the cognitive 

processes involved in perceiving, encoding, storing, and 

remembering social information.  Much of this research has 

focused on person-memory, that is, memory for the 

characteristics and behavior of people.  Numerous theorists 

(e.g., Mischel, 1979; Neisser, 1976;) have postulated that 

one's memory is influenced by one's stucture of prior 

knowledge called schemata.  These thematic stuctures have 

been shown to influence both the encoding (e.g., Anderson, 

Reynold, Schallert, & Goetz, 1977; Rumelhart, 1977) and the 

retrieval (Cohen, 1983; Cantor & Mischel, 1979, 1977; 

Spiro, 1977) of information about other people.  The 

schematic properties of traits (Cantor & Mischel, 1977), 

social attitudes (Judd & Kulik, 1980), occupations (Cohen, 

1981), race (Taylor, Fiske, Etcoff, Ruderman, 1978), and 

sex (Taylor et al., 1978) have been demonstrated.  However, 

the ability to generalize from the results of many of these 

studies is severly limited due to an inadequate analysis of 
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the data, an improper experimental design, or both.  The 

purpose of the present study was to test, using a proper 

experimental design and correct analysis of the data, 

whether the traits of likeableness and dislikeableness have 

schematic properties by examining whether recognition 

memory is biased towards information that is consistent 

with schematic expectations. 

REVIEW OF THE LITERATURE 

The notion of schema is appearing more and more 

frequently in the cognitive psychology literature which has 

long been dominated by two approaches to the study of 

memory - the information processing model and the levels of 

processing •model.  The information processing approach to 

memory (Simon, 1979; Shiffrin & Schneider, 1977; Atkinson & 

Shiffrin, 1968) identifies two distinct storage mechanisms 

- short term and long term memory.  Incoming information is 

first stored in short term memory which is limited in both 

capacity (about 7 chunks, or units) and duration (lasting 

only a few seconds).  If the information contained in short 

term memory is rehearsed, it may then be transferred to 

long term memory which is unlimited in both duration and 

capacity.  However, the information processing model, as 

originally conceived (Waugh & Norman, 1965; Atkinson & 



Shiffrin, 1968) has undergone a number of modifications and 

with each modification/ the differences between the 

information processing model and the levels of processing 

model have become less distinct. 

The levels of processing model (Craik, 1979; 

Colthart, 1977; Craik & Tulving, 1975; Craik & Lockhardt, 

1972) has been viewed as extending, not replacing the 

information processing approach to memory (Craik, 1979). 

This model identifies memory as a by-product of various 

perceptual processes and analyses.  That is, the result of 

various perceptual processes is a memory trace, the means 

by which we remember information.  There is no need to 

postulate separate memory stores for the depth, or amount 

of processing is directly related to the task the subject 

is asked to perform.  Hyde & Jenkins (1973) demonstrated 

this by presenting word lists to subjects who performed one 

of three types of orienting tasks on each of the items - 

semantic (i.e., attend to the meaning of the word), 

syntatic (i.e., identify the word's part of speech), or 

graphic (i.e., determine if the word contained specific 

letters).  After the subjects completed their tasks, they 

were unexpectedly asked to recall the words.  Subjects who 

performed the semantic task, that is, processed the 

information most deeply, recalled more words than subjects 



who performed nonsemantic rasks. 

Although the information processing model and the 

depths of processing model have been commonly accepted 

approaches to the study of memory, a third approach - the 

schema model - is becoming increasingly popular among 

researchers (e.g., Cohen, 1983, 1981; Taylor et al., 1978; 

Tsujimoto, 1978).  Schemata, a notion first developed by 

Bartlett (1932/1967), refer to cognitive structures - 

internal rule structures - that contain one's organized 

knowledge of the world.  Each person has many schemata 

containing different types of information.  For example, an 

avid baseball fan has a "baseball schema" containing the 

rules of play and these rules provide a cognitive framework 

through which the game is perceived and remembered. 

Current research in memory is moving in this new direction 

as more researchers are exploring how schemata influence 

the aquisition, storage, and retrieval of information 

(e.g., Cohen, 1983, 1981; Cantor and Mischel, 1979, 1977). 

Theorists (e.g., Neiser, 1976) have postulated that 

schemata focus our attention on a particular aspect of the 

environment thereby making perception inherently selective. 

The perceived information is then actively processed or 

catagorized in terms of the appropriate schema.  Research 



has shown that we use a number of different catagories to 

organize our perceptions of other people.  For example, a 

study by Taylor, et al. (1978) in which subjects listened 

to a series of taped discussions supplemented by pictures 

of the participants, demonstrated that race can be used as 

the basis for the organization of information.  Three of 

the participants were black and three were white ( all 

particicpants were male).  Each time a participant made a 

suggestion, his picture was presented.  The task of the 

subject was to match, relying on their memories of the 

taped discussion, each of the suggestions with the man who 

offered it.  If information is encoded in terms of race 

than one would expect a greater number of intraracial 

errors, i.e., black (white) suggestions erroneously 

attributed to other blacks because of the perceived 

similarity within groups.  That is,  blacks (whites) should 

be seen as similar to other blacks (whites)and different 

from whites (blacks). This was, in fact, the case - 

intraracial errors significantly exceeded interracial 

errors.  A second study by Taylor et al. (1978) using male 

and female discussion participants was conducted and 

similar results were found, that is, intrasex errors far 

exceeded intersex errors.  Thus the assumption that sex and 

race are catagories used to organize person information has 

been supported.  As Taylor et al. stated, "Stereotypes can 



be thought of as attributes that are tagged to cataegory 

lables (e.g., sex, race) and imputed to individuals as a 

function of their being placed in that catagory,  (p. 

792". 

Stereotypic knowledge about occupation has also been 

shown to influence memory in important ways (Cohen, 1981). 

Features that were truly typical of waitresses and features 

that were truly typical of librarians were identified by 

subjects who were asked to described their image of a 

typical librarian and a typical waitress.  These attributes 

were rated by a different group of subjects according to 

how likely they were to be possessed by librarians and 

waitresses.  Cohen then selected eighteen pairs of features 

- for each pair, one feature was highly likely of a 

waitress (e.g. does not wear glasses) and the other feature 

was highly likely of a librarian (e.g., wears glasses). 

Subjects viewed a videotape of the target character who was 

explicitly identified before hand as either a librarian or 

a waitress.  The videotape contained nine features that 

were characteristic of librarians and nine features that 

were characteristic of waitresses. 

After viewing the videotapes, subjects were presented 

a forced choice memory tests based on the eighteen pairs of 



features mentioned above.  The results indicate that 

features that are consistent with one's stereotypes are 

better remembered.  That is, when the target character was 

identified as a librarian, features characteristic of 

librarians were more accurately remembered than features 

that are characteristic of waitresses.  These results 

suggest that subjects brought to mind occupational 

prototypes when recalling the information. 

It has been hypothesized that most categories - 

concepts - are represented in memory by prototypes, that 

is, the example which allows us to best understand it 

(Rosch, 1975; Rosch & Mervis, 1975).  Category prototypes 

may be determined neurophysiologically, as has been 

suggested in the case of color, or formed through the 

principles of learning (Rosch & Mervis, 1975).  For 

example, many people share common person prototypes such as 

an "absent minded professor", a "dizzy blond", and an 

"all-American boy".  A number of studies (e.g., Cohen, 

1981; Cantor & Mischel, 1977) have shown that prototypes 

are, in fact, schemata, that is, they serve as the basis 

for the organization, or catagorization, of information. 

According to the schema model of memory, as incoming 

information about an individual is encoded in terms of a 
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specific category (e.g. likeable), a comparison to 

prototype process occurs (Tsujimoto, 1978; Cantor & 

Mischel, 1977).  Tsujimoto (1978) has shown that this 

categorization seems to be based on their prototypicality, 

the degree to which they share common characteristics of 

that category. 

Tsjimoto presented subjects 14 lists of personality 

traits that varied in their similarity to the prototype 

list.  The most similar list contained the greatest number 

of items in common with the prototype list.  There were 3 

prototype lists - positive (composed of positive traits), 

negative (composed of negative traits), and novel (composed 

of both negative and positive traits).  Sixteen recognition 

lists were presented (including the prototype lists). 

Subjects were asked to rate how certain they were that they 

had heard the lists before.  However, none of the 16 lists 

had ever been presented.  Lists that had the most items in 

common with the prototype lists received the highest 

confidence ratings.  Tsujimoto (1978) posits that during 

the recognition test, each new list was compared with the 

prototypes of the old lists. 

The results obtained by Tsujimoto (1978) suggest that 

when information is organized in terms of prototypes, one's 



memory for that information is improved.  Therefore if 

information is categorized in terms of prototypes, then 

category consistent information should be more memorable 

than category inconsistent information.  A number of 

studies have, in fact, supported this interpretation 

(Cohen, 1981; Rothbart, Evans, & Fulero, 1979; Cantor & 

Mischel, 1977).  One series of studies, however, by Hastie 

&   Kumar (1979) has not. 

Subjects formed impressions of 6 fictional characters, 

each described by eight synonymous trait adjectives (e.g., 

clever, bright).   Hastie and Kumar (1979) then presented 

subjects lists describing the behaviors of each character 

which were congruent, incongruent, or neutral with respect 

to the given trait used to identify the character.  The 

results indicate that behaviors that were inconsistent with 

the given trait were more likely to be recalled than 

behaviors that were consistent with the given trait. 

The schema model of memory has great difficulty 

accounting for these results.   Perhaps the inconsistent 

information is more salient and therefore more deeply 

processed than the consistent information.  This study does 

differ from much of the current research in one important 

respect.  Subjects anticipated a recall test as an 

10 



intentional measure of memory.  Even given this procedural 

difference, the question remains, why these results were 

found only by Hastie & Kumar (1979).  A study by Spiro 

(1977) may help to shed some light on this matter. 

Spiro (1977) has shown that subjects who anticipated 

an intentional measure of memory remembered information 

more accurately than subjects who did not expect a memory 

test.  He presented a story about an engaged couple, Bob 

and Marge, in which Bob tells Marge he does not want 

children. In one condition, Marge is relieved because she 

does not want children either.  In a second condition, 

Marge is very upset at Bob's revelation and argues 

bitterly.  After the subjects had read the story, it was 

casually mentioned either that Bob and Marge were happily 

married, or that the engagement was broken.  Several days 

later, the subjects were asked to recall the story about 

Bob and Marge.  Subjects who anticipated an intentional 

measure of memory remembered the story more accurately than 

subjects who believed they were in a study of interpersonal 

relationships.  For example, subjects believing they were 

in a study of interpersonal relationships who were told 

that Bob and Marge fought bitterly but were later married, 

often erroneously recalled that Bob and Marge ended their 

relationship.  Likewise, many subjects told Bob and Marge 
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agreed not to have children but later separated, 

erroneously recalled that Bob and Marge were married. 

Spiro suggests these errors occured because subjects who 

believed they were in a study of interpersonal 

relationships were more likely to assimilate the story into 

their pre-existing body of knowledge about interpersonal 

relationships than subjects who expected an intentional 

measure of memory.   Thus, those subjects who did not 

anticipate a memory task were forced to rely on their 

'interpersonal relationship' schema when recalling the 

details of the story. Spiro contends that this reliance on 

schemata when retrieving details of the story was 

responsible for the subjects' memory biases. 

The biasing effects of schemata have been 

demonstrated in a number of other  studies as well (e.g., 

Cantor & Mischel, 1979; Snyder & Uranowitz, 1979; Cantor & 

Mischel, 1977).  Cantor & Mischel (1977) have suggested 

that when information about people is encoded in terms of a 

particular trait schema, memory is biased towards 

information that is consistent with that trait.  That is, 

once an individual is assigned to a particular category 

(e.g.,  extravert) , one tends to attribute characteristics 

to the individual that are consistent with that label. 
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Cantor & Mischel (1977) presented trait words 

describing four characters - an introvert, an extrovert, 

and two neutral (i.e., control) characters.  After having 

formed an impression of the characters, subjects were asked 

to identify only those words actually used to describe the 

characters.  This recogniton test contained both items used 

to describe the characters and new items (i.e., words that 

did not appear on the acquisition list) that were either 

consistent with the trait category or neutral with respect 

to the trait.  For example, new trait-consistent words such 

as "assertive" and "outgoing" appeared on the recognition 

test that assessed the subjects' memory of the extravert 

character.  Cantor and Mischel concluded from the results 

of this study, which indicated that subjects were more 

likely to falsely recognize words that were conceptually 

related to the trait category than neutral words, that 

traits function as prototypes.  However, the biasing 

effects of prototypes on memory (i.e., the prototype 

effect) was not reliably demonstrated due to errors made in 

both the design of the study and in the analysis of the 

data. 

DESIGN AND ANALYSIS ERRORS 

There are several serious errors in the design and 
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analysis of the Cantor & Mischel (1977) study, the first of 

which is known as the category confound effect (Kay & 

Richter, 1977).  This error occurs when "only one sample 

from a population of possible samples is used to define a 

category of treatment factors (Kay & Richter, 1977)."  As 

previously mentioned, subjects were presented trait items 

(the acquisition lists) describing four fictional 

characters.  The extravert (introvert) character was 

described by 10 items - 6 moderately related to the trait 

of extraversion (introversion) and 4 unrelated (i.e., 

control) items.  The two control characters were each 

described by ten items unrelated to either introversion or 

extraversion (e.g.,  tall).  For all subjects, the same 10 

items were always used to describe the extravert 

(introvert, control) character.  The failure to use more 

than a single list of words to define a particular 

character results in the category confound effect. 

The category confound is a serious problem in this 

case because the single set of items used to describe each 

character is confounded with that character, that is, the 

treatment category.  A different set of acquisition items 

may have yielded differing results.  The likelihood of this 

event cannot be estimated because there is no way to assess 

the effects of the individual items on the acquisition 
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lists, that is, no way to estimate their variance.  This 

confounding results in a serious interpretation problem - 

are the results of the study due to the treatment factor or 

the single list of acquisition items used to describe each 

character.  Cantor & Mischel (1977) could have avoided this 

error by using a number of different randomly chosen 

acquisition lists to describe each character. 

Cantor & Mischel not only failed to use a number of 

different randomly chosen acquisition lists, they also 

failed to use a number of different randomly chosen 

recognition lists for each character.  There were four 

recognition lists, one for each of the four characters. 

New items (e.g., lively, timid) that were consistent with 

the trait categories (i.e., extraversion, introversion) 

were more likely to be erroneously recognized as having 

been used to described  the characters than new neutral 

items (e.g.,  sensible, original).  However, each of the 

four recognition lists were the same across subjects, that 

is, the same 15 items always appeared on the extravert 

(introvert) recognition list (16 items appeared on the 

control recognition list). Cantor & Mischel failed to 

assess the reliabilty across recognition words thus 

confounding the prototype effect with the single set of 

recognition items employed in the study. 
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Simply stated, in the analysis of their data, 

recognition word variance within catagories was simply 

ignored, that is, Cantor & Mischel implicitly treated it as 

a fixed effect.  However, when a sample of words is chosen 

from a population of words, a words factor should be 

included as a random effect in the analysis of the data 

(Clark, 1973).  Subsequently, recognition word variance 

within catagories should have represented a random effect 

in the analysis of the data.  The pattern of results 

obtained by Cantor & Mischel could have resulted from word 

differences alone therefore, if the study were to be 

replicated using different recognition words, the same 

pattern of results may not emerge (Richter & Seay, 1983). 

The assumption that recognition word variance within 

categories represents a fixed effect means that the results 

obtained by Cantor & Mischel are not generalizable beyond 

the actual recognition words employed the study. 

The errors mentioned above are by no means unique to 

the Cantor & Mischel (1977) study but have appeared 

frequently throughout the prototype literature.  Catagory 

confound, that is, the failure to use a number of randomly 

chosen samples from a population of samples to define a 

treatment catagory, occurs in several studies (e.g., Cohen, 

16 



1981; Hartwick, 1979).  However, the failure to include 

word variance as a random effect in the model is a much 

more common error, subsequently inadequate data analyses 

have been performed in many of the person prototype studies 

(e.g., Cohen, 1981; Hartwick, 1979; Taylor et al., 1978; 

Tsujimoto, 1978)  Thus, although a number of studies seem 

to have demonstrated the prototype effect, there is some 

doubt as to whether it is, in fact, a reliable effect in 

the individual studies. 

THE PRESENT STUDY 

The purpose of this study was to demonstrate the 

prototype effect, using the concepts of likeableness and 

dislikeableness as prototypes, while avoiding the 

generalization problems found in much of the person 

prototype research.  The likeable - dislikeable dimension 

was chosen because research has indicated that these 

conceptual categories are a basic - perhaps the most basic 

dimension of an individual's personality as perceived by 

others (Hartwick, 1979; Lott & Lott, 1970; Osgood, Suci, & 

Tannenbaum, 1957).  There are number of important 

differences between the present study and the Cantor & 

Mischel (1977) study.   To avoid the confounding of 

treatment categories (i.e., likeable, dislikeable) with the 
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single acquisition list used to describe each of the 

characters, a different set of acquisition words were 

randomly chosen to describe each character for each 

subject.  This allows for the generalization of the results 

across the total population of words that could have been 

randomly selected to define the likeable and dislikeable 

character.   Recognition lists were also randomly selected 

for each subject.  By confounding recognition lists with 

subjects,  recognition word variance within treatment 

categories (i.e., likeable, dislikeable control) was 

properly treated as a random effect.  Therefore, for each 

subject, a different set of recognition words and 

acquisition words were randomly chosen, incorporating all 

sources of random error into a single random factor - 

subjects.  Subsequently, unlike the Cantor & Mischel (1977) 

study , the results of this study are generalizable beyond 

the actual recognition words used in the study. 

Whereas Cantor & Mischel defined two prototype 

characters and two control characters, the present study 

defined only a likeable and dislikeable character.  The 

elimination of the control characters meant that more words 

had to be used to describe each of the two characters in 

order to avoid a ceiling effect (i.e., subjects recognizing 

only those words actually used to describe the characters). 
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The likeable and dislikeable characters were explicitly 

identified as likeable and dislikeable, in addition to 

being described by 14 trait adjectives (e.g.,  happy, 

hostile) and 6 control adjectives (e.g., tall). 

The elimination of the control characters also 

allowed for the employment of a single recognition list 

composed of likeable, dislikeable, and control words, 

unlike the Cantor & Mischel (1977) study which used four 

recognition lists, one for each character.  Employing a 

single recognition list allowed for a simple analysis of 

the data which provided easily interpretable results. 

Although the recognition list contained both adjectives 

actually used to describe the characters and nonpresented, 

or new, adjectives (i.e., not used during the acquisition 

phase to identify the characters), only the new adjectives 

were considered in the analysis.  This was done because we 

were not interested in comparing subjects' recognition of 

presented and nonpresented words: we were solely interested 

in those words falsely recognized as having been used to 

describe the characters.  In addition, because the design 

is within subjects and words, the test of the prototype 

hypothesis was expected to be more powerful than the test 

used by Cantor & Mischel (1977). 
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Thus, the following hypothesis was proposed: 

Subjects will use the trait concepts (likeable, 

dislikeable) as organizing prototypes for processing 

information, and will be biased towards recognizing 

nonpresented but trait-related adjectives. 

That is, subjects are expected to erroneously identify 

nonpresented trait-related adjectives as being among the 

items originally used to describe the characters 

(acquisition set).  For example, even though 'honest' was 

not among the acquisition list items, subjects are expected 

to erroneously identify 'honest' as being used to describe 

the likeable character more often than they erroneously 

identify 'honest1 as being used to describe the dislikeable 

character.  In sum, this study was conducted in order to 

demonstrate the prototype effect while properly including 

words in the ANOVA design as a random effect which permits 

the generalization of the results across both subjects and 

words. 
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CHAPTER 2 

THE RESEARCH 

EXPERIMENT 1 

Method 

Subjects. Eighty students enrolled in two introductory 

psychology courses served as subjects.  The students were 

randomly selected from the Lehigh University subject pool 

and served in the study as part of the course requirement. 

Procedure. Two hundred items were selected from 

Anderson's (1968) list of likeableness ratings of 555 

personality trait words.  These 200 items received the 

highest meaningfulness rating in Anderson's (1968) study. 

One hundred ninty-nine items were distributed across 8 

pages (one of the items was inadvertently ommitted). 

Booklets, each containing 4 randomly selected pages of 

items were constructed.  Therefore/ each subject was 

required to rate either 99 or 100 items.  The subjects were 

given the following instructions in writing: 

"I am interested in determing how you describe the 

people you like and dislike.  On the following pages there 

are 100 words commonly used to describe people.  Think of a 
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person as being described by each word.  Then rate that 

word according to how much you would like that person.  The 

scale on which to rate the person being described looks 

like this: 

like dislike 

12  3  4  5  6  7 

Circle the most appropriate number.  Work at your own pace, 

and please try to use the numbers 1-7 about equally often." 

Results.  The mean rating of the 199 items was 3.875, 

and the median was 3.975.  The items were divided into 

three pools of approximately equal numbers words based on 

the frequency distribution shown if Figure 1.  The 69 items 

with mean ratings between 1.00 and 2.99 composed the 

likeable pool of words.  The 63 with mean ratings between 

3.00 and 4.99 composed the control pool of words, and the 

67 items with mean ratings between 5.00 and 7.00 composed 

the dislikeable pool of words. 

EXPERIMENT 2 

Method 

Subjects.  The subjects in this study were thirty-two (32) 
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male undergraduates randomly selected from the Lehigh 

University subject pool and served as part of a course 

requirement.  Subjects were run in small groups; 

approximately 5 per session. 

Stimuli.  The pool of trait adjectives acquired from Study 

1 was used to construct both the acquisition and 

recognition sets. 

Acquisition set.  The pool of adjectives rated as 

being likeable contained the 69 items that had mean ratings 

between 1.00 and 2.99.  Trait adjectives rated as being 

dislikeable composed a pool of 67 items and obtained mean 

ratings of between 5.00 and 7.00. The remaining 63 

adjectives obtained means between 3.00 and 4.99 which 

indicates that they were judged as not being particularily 

likeable nor particularily dislikeable.  These items 

comprise the control pool. 

Two characters, one likeable and one dislikeable, 

were created from these pools of words.  Each character was 

described by 21 sentences in the form "X is friendly" (e.g. 

"Tom is friendly").  The likeable (or dislikeable) 

character was described by 14 sentences containing items 
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randomly selected from the likeable (or dislikeable) pool 

of words.  Six sentences contained items randomly selected 

from the control pool of words.  The sentences "X is 

likeable" and "X is dislikeable", which explicitly identify 

the likeable character as likeable and the dislikeable 

character as dislikeable, were included in every 

acquisition set. 

Thus, the acquisition set for each subject contained 

21 sentences describing the likeable character and 21 

sentences describing the dislikeable character.  Since the 

items used to describe the characters were randomly 

selected for each subject, no two subjects received 

identical acquisition sets.  The names of the characters, 

Jim and Bob, were randomized across subjects.  For some 

subjects Jim was identified as likeable and Bob identified 

as dislikeable, while the reverse was true for other 

subjects. 

Recognition set.  A booklet containing fifty 

recognition set items was constructed.  Thirty of those 

items were adjectives that were not among the acquisition 

set, ten each selected from the pools of likeable, 

dislikeable, and control adjectives.   The remaining 20 

items were selected from the acquisition set.  Seven items 

25 



used to describe the likeable character originally selected 

from the likeable pool of words were randomly chosen. 

Likewise, seven items used to describe the dislikeable 

character originally selected from the dislikeable pool of 

words were randomly chosen.  Three control items used to 

describe the likeable character and three control items 

used to describe the dislikeable character were also 

randomly selected.  As with the acquisition set, no two 

subjects were presented identical recognition sets.  The 

order of the 50 recognition set items were then randomized 

for each subject. 

Trait rating scale.  Subjects were also asked to rate 

both characters as either high (1), moderate (2), low (3), 

or no information (4) on eight different traits.  The 

following traits were included: extroverted, introverted, 

good, bad, likeable, dislikeable, flexible, and rigid. 

These scales were included so that in the event that 

nonsignificant results were obtained, it could be 

determined whether the subjects realized that the 

characters described to them were likeable and dislikeable. 

For example, the failure of a subject to rate the likeable 

character as likeable, would make the results extremely 

difficult to interpret since it would suggest that the 

expected prototype was not activated by exposure to the 
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acquisition items. 

Procedure 

Acquisition set phase.  During the acquisition set 

phase of this study, subjects viewed the 42 sentences 

describing the two characters.  The order of the 

presentation of characters was randomized across subjects. 

That is, for some subjects the sentences describing the 

likeable character were presented first and the sentences 

describing the dislikeable character presented second while 

the reverse was true for other subjects.  The following 

instructions were presented to the subjects both verbally 

and in writing: 

"In this experiment you will be viewing a series of cards. 

Each card will describe a person.  For example a card might 

say, 'Tom is thoughtless'.  The cards will be describing 

two people - Jim and Bob.  Each person will be described by 

a separate series of cards.  When I tell you to begin I 

would like you to turn over the first card and read it. 

Each time the buzzer sounds, turn over the next card and 

read it.  When you have gone through the entire deck of 

cards set them aside. 

As you are viewing the cards try to form impressions 
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of Bob and Jim.  For example, would you like them to be 

your friends?  After you have finished looking at all the 

cards I am going to ask you some questions about your 

impressions of Bob and Jim." 

Subjects were given two seconds to view each card. 

Impression formation task.  This task was included to 

facilitate the formation of impressions of the two 

characters.  By forming impressions of Bob and Jim, 

subjects were forced to actively process the information 

presented them.  Additionally, since subjects were given 

five minutes to complete this task, they were forced to 

rely on long term memory during the recognition test phase, 

The following questions were asked the subjects in writing; 

1. Would you like Bob to be your roommate?  Briefly 

explain in one or two sentences why you would or would not 

want Bob as a roommate. 

2. Would you like Jim to be your roommate?  Briefly 

explain why you would or would not want Jim as a roommate 

3. Would you like Bob to work with you on a project? 

Briefly explain why you feel that way about Bob. 

4. Would you like Jim to work with you on a project? 

Briefly explain why you feel that way about Jim. 
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Recognition test phase.  Subjects were presented 

booklets containing the recognition set items.  These 

instruction were presented both verbally and in writing: 

"In this part of the experiment you will be presented a 

list of 50 words.  Alongside each of the words will be the 

names of the two people who were described to you and the 

item "No one".  For each word, identify who was described 

by that word.  If Bob was described by that word, place an 

X next to his name.  If Jim was described by that word, 

place an X next to his name.  If neither character was 

described by that word place an X next to "No one".  The 

words will be arranged this way: 

1. tall    Jim 

Bob 
  12   3   4   5 

No one        verY ver^. 
             uncertain       certain 

After you indicate who was described by that word, 

then rate how certain you are about your decision on the 

scale provided.  If you are very certain that the word 

'tall' was used to describe Bob, place an X next to his 

name and circle 5.  If you are very certain that the word 

'tall' was not used to describe either character, then 

place an X next to "No one" and circle 5.  The other 

numbers reflect intermediate levels of certainty.  For 
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example, if you are only moderately certain that a word was 

used to describe the person you indicated then you would 

circle 3. 

When indicating who was described by a particular 

word, you may make only one choice.  That is, you cannot 

indicate that one word was used to describe two people. 

Are there any questions?" 

Results 

Only the 30 new items in the recognition sets, (i.e. 

those that were not members of the acquisition set) were 

considered in the analysis.  The following procedure was 

used to create an ordinal scale that reflected the 

confidence ratings of the subjcts.  When a subject 

indicated that the likeable character was described by a 

particular item, his confidence rating on that  item was 

multiplied by +1.00.  When the dislikeable character was 

selected, the  confidence rating was multiplied by -1.00. 

When subjects indicated that no one was described by the 

item, the number of zeros (0's) corresponding to the 

confidence rating was added to the sum of the confidence 
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ratings for that catagory of words.  For each subject, the 

mean of these signed ratings was calculated for each of 

three item catagories.  For example, when a subject 

indicated that no one was described by a dislikeable item 

and was very certain about his decision, then 5 zeros were 

added to the sum of the confidence ratings for the 

dislikeable items.   When a subject indicated that the 

likeable character was described by a likeable item and 

circled 3, then +3.00 was added to the sum of the 

confidence ratings of the likeable items. Thus, a +5 (-5) 

indicated that the subject was very certain that the item 

was used to describe the likeable (dislikeable) character 

during the acquisition phase of the study.  Intermediate 

numbers represent intermediate levels of certainty.  The 

mean ratings of the new likeable, dislikeable, and control 

items are given in Table 1.  A one-way analysis of the data 

indicates that the group means are reliably different F (2, 

62) = 42.313, p < .001. 

TABLE 1: MEAN CONFIDENCE RATINGS 

Word catagory 

likeable        control        dislikeable 

.4356 -.0773 -.3120 
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A second method was used to analyze the data because 

we were not certain that the scale on which the first 

analysis was based was free from distortion.  That is, we 

were not sure whether the first method provided a valid 

measure of the subjects' recognition confidence.  This 

second analysis ignored the confidence ratings:  a 

confidence rating of 5 was treated the same as a confidence 

rating of 1.  If the subject indicated that the likeable 

(dislikeable) character was described by an item/ a +1.0 

(-1.0) was added to the sum of the confidence ratings for 

that catagory of words.  When a subject indicated that "no 

one" was described by a word in a particular word catagory 

(e.g. likeable), a 0 was added to the sum of the ratings 

for that word catagory.  The mean ratings of the new 

likeable, dislikeable, and control items are given in Table 

2.  A one-way analysis of these data also indicates that 

the group means are reliably different F (2, 62) = 49.02, p 

< .001.  It is clear from the data that the likeable 

(dislikeable) items were identified as having being used to 

describe the likeable (dislikeable) character significantly 

more often they were identified as having been used to 

describe "No one" or the dislikeable (likeable) character. 
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A second method was used to analyze the data because 

we were not certain that the scale on which the first 

analysis was based was free from distortion.  That is, we 

were not sure whether the first method provided a valid 

measure of the subjects' recognition confidence.  This 

second analysis ignored the confidence ratings:  a 

confidence rating of 5 was treated the same as a confidence 

rating of 1.  If the subject indicated that the likeable 

(dislikeable) character was described by an item, a +1.0 

(-1.0) was added to the sum of the confidence ratings for 

that catagory of words.  When a subject indicated that "no 

one" was described by a word in a particular word catagory 

(e.g. likeable), a 0 was added to the sum of the ratings 

for that word catagory.  The mean ratings of the new 

likeable, dislikeable, and control items are given in Table 

2.  A one-way analysis of these data also indicates that 

the group means are reliably different F (2, 62) = 49.02, p 

< .001.  It is clear from the data that the likeable 

(dislikeable) items were identified as having being used to 

describe the likeable (dislikeable) character significantly 

more often they were identified as having been used to 

describe "No one" or the dislikeable (likeable) character. 
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TABLE 2: MEAN RATING OF ITEMS DISREGARDING CONFIDENCE 

RATINGS 

Word catagory 

likeable        control        dislikeable 

.4400 -.1000 -.3240 

Discussion 

The research hypothesis which stated that subjects 

would use the trait concepts (likeable, dislikeable) as 

organizing prototypes for processing information and would 

be biased towards recognizing nonpresented, trait related 

items was confirmed.  The biasing of memory towards 

recognizing nonpresented, trait related words supports the 

notion that the traits of likeableness and dislikeableness 

operate as prototypes for organizing information about 

personal attributes.  Subjects were presented a description 

of two characters, one likeable and the other dislikeable, 

and seem to have used the traits of likeableness and 

dislikeableness to organize their impressions.  Then, 

during the recognition phase, prototypes of these 

personality traits, that is, likeable and dislikeable, were 

activated as evidenced by memory biases consistent with the 
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trait prototype.  The prototype hypothesis has been 

supported by the results which indicated that subjects 

reported greater confidence that new likeable (dislikeable) 

items, as opposed to new dislikeable (likeable) and control 

items,  had been used to describe the likeable 

(dislikeable) character during the acquisition phase of the 

study.  The implication of this study is that the prototype 

effect is, in fact, a reliable effect. 

Unlike many of the other prototype studies appearing 

in the literature, this study has been both a powerful and 

reliable demonstration of the prototype effect.  The 

pattern of results obtained are generalizable beyond the 

actual set of words employed in the study because words 

were randomly selected and properly included in the ANOVA 

design as a random effect.  That  is,  this study has 

provided statistical evidence that the same pattern of 

results would emerge if the study were to be replicated 

using a new selection of words in both the acquisition and 

recognition lists. Thus, the reliability of the prototype 

effect seems to have been established.  In fact, the 

present study has provided statistical evidence  that the 

prototype effect can be quite robust. 

The experimental design used in this study, which 
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allowed for a simple analysis of the data and the 

generalization of the results beyond the actual words used 

in this study, had one major drawback, that is, the 

preparation of the stimuli lists was a time consuming and 

tedious task.  As stated in an earlier part of this paper, 

this study confounded words with subjects thus 

incorporating all sources of random error into a single 

factor - subjects.  Because different acquisition lists and 

a different recognition list were randomly chosen for each 

subject, the lists had to be constructed by hand. 

An alternative experimental design may have been a 

better solution to the generalization problems found in 

much of the prototype literature.  Instead of preparing 

acquisition and recognition lists unique to each subject, 

subsets of lists could have been constructed introducing an 

additional factor, Lists, into the analysis.  It would be 

desirable to construct as many lists as possible in order 

to maximize the power of the tests because the degrees of 

freedom for the error term used to test for the prototype 

effect is directly dependent on the number of lists 

(Richter & Seay, 1983).  This method would reduce the time 

needed to prepare the study while still avoiding the 

generalization problems found in much of the prototype 

literature. 
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Although the results of this study are a reliable 

demonstration of the prototype effect and lend support to 

the prototype hypothesis, they do not conclusively 

demonstrate that personality traits operate as organizing 

prototypes for processing information.  Richter & Seay 

(1983) have proposed an alternative to the prototype 

hypothesis, that is, the semantic similarity hypothesis. 

They have suggested that recognition responses in many 

prototype studies, such as the Cantor & Mischel (1977) 

study, may depend heavily upon the semantic similarity 

between the acquisition list words and the recognition list 

words.  Some of the items on the acquisition lists may have 

been semantically similar to items on the recognition list. 

For example, the likeable character could have been 

described by the word "clever" during the acquisition phase 

and the word "witty", which is semantically similar to the 

word "clever", could have been appeared on the recognition 

list.  Semantic generalization would occur if a subject, 

remembering that a word meaning clever was presented, 

erroneously recognized witty as being among the acquisition 

set items. 

Further research is necessary to determine whether 

the semantic similarity hypothesis or the prototype 
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hypothesis is the best explanation of the prototype effect. 

This problem could be studied using two conditions, in one 

condition trait-related items comprising the acquisition 

and recognition sets would be semantically similar (e.g. » 

happy - cheerful)and in the second condition, the trait 

related items would not be semantically similar (e.g. t 

friendly - daring).  If memory was biased towards 

recognizing non-presented trait-related items in the first 

condition, but not in the second condition, then one could 

posit that subjects were responding to the meanings of the 

words and had not organized information in terms of 

prototypes.  On the other hand, if memory is biased when 

the words were not semantically similar, then one could 

argue that prototypes were actually being used to organize 

incoming information. 

Although the prototype hypothesis has been confirmed, 

it should be pointed out that the applicability of the 

results may be somewhat limited. Both Cohen (1981) and 

Gibbs (1979) note that because of an excess emphasis on 

objectivity and precision, much of the social science 

research lacks ecological validity.  That is, because of 

the artificiality of the laboratory situation, the results 

of many studies are not generalizable to the real world. 

Unfortunately, the paradigm used in the present study, 
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similar to paradigms typically used in prototype research, 

was very different from person-perception as it occurs in 

everyday life.   Subjects were presented a list of trait 

adjectives describing fictional characters: the information 

presented about the characters related to only one 

dimension of their personality (i.e., whether they were 

likeable or dislikeable).  Subjects were, in fact, given a 

list of personality attributes which is not the typical way 

of getting to know people.  The paradigms of future 

person-memory research studies should be more similar to 

real-life person perception situations.  For example, 

instead of simply presenting a list of adjectives 

describing a character, videotapes of people in every day 

situations could be presented thus increasing the 

complexity of the perceivers' tasks.  However, such studies 

with more "natural" materials present even more formidable 

problems with regard to avoiding the category confound and 

other obstructions to establishing generalization across 

experimental materials. 
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APPENDIX 

AoV SUMMARY TABLE INCLUDING CONFIDENCE RATINGS 

Source        SS      df       MS 

Words       9.3571     2       4.6786 

W*S 6.8554     62      .11057 

F (2, 62)= 42.313    p<.001 

AoV SUMMARY TABLE DISREGARDING CONFIDENCE RATINGS 

Source SS       df      MS 

Words        9.8972      2      4.9486 

W*S 6.2596      62     .10096 

F (2, 62) = 49.015   p<.001 
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