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ABSTRACT 

Cerra Jr., Anthony W., M.S. Lehigh University, 1983 
Experimental Observation of Vortex Ring Interaction with the Fluid 
Adjacent to a Surface 

Experimental studies have been done of the breakdown of 

initially laminar vortex rings during impact with 1) both solid and 

free surfaces in a quiescent environment, and 2) a solid surface 

beneath a developing boundary layer.  The flow interactions were 

visualized in water using dye and hydrogen-bubble techniques, and 

recorded with a high-speed video system. 

When a vortex ring approaches a surface the resulting flow 

interaction appears to be chaotic and turbulent, but is actually a 

very organized viscid-inviscid process which rapidly disperses the 

vorticity of the vortex ring throughout the surrounding fluid. A 

description of the flow interaction is presented which integrates 

the following phenomena: 1) the organized dispersal of vorticity, 

2) the generation of secondary vorticity of opposite sense to that 

of the vortex ring, and 3) the deviations in the trajectory of the 

vortex ring from that predicted by classical theory. 

The process by which vorticity dispersal occurs is dependent 

upon the initial Reynolds number (Re ) of the vortex ring. For 

very weak rings, i.e. Re less than 350, vorticity is dispersed by 

laminar diffusion. For stronger rings, vorticity dispersal occurs 

discretely through the formation of secondary and tertiary vortex 

rings (SVR and TVR) via a viscous boundary layer process. 

Vorticity dispersal continues as a result of Biot-Savart type 
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interactions of the SVR and TVR with the original or primary vortex 

ring (PVR). 

During this interaction the diameter of the SVR is compressed, 

causing an instability in the SVR which is characterized by an 

azimuthal waviness. Over the Re range 470 to 1600, the amplitude 

of the waves increases and a loop-structured SVR develops. Over 

the range 2500 to 3000, the amplitude remains small and a 

kink-structured SVR develops. These two structures differ not only 

in wave amplitude but also in how each interacts with the PVR. The 

former is deformed into loops which wrap around the core of the 

PVR. The latter is deformed very little and remains essentially 

ring-like. In both cases, vortex filaments wrap around the core of 

the PVR causing three-dimensional vortex stretching, decreasing 

scales of fluid motion, and the breakdown of the PVR. 

The interaction at the free surface for a vortex ring of 

moderate Reynolds number appears to be identical to that occurring 

at a solid surface. . Surface tension is thought to be responsible 

for making the free surface behave similarly to a solid surface 

with respect to slip, but this could not be proven. 

The flow behavior in the boundary layer flow case was in some 

aspects similar to and in others different from that observed for 

the quiescent flow case. The differences, which include a tilting 

of the PVR as it approaches the surface and an asymmetric develop- 

ment of the SVR and TVR, are the result of a flow interaction 

further complicated by the effects of boundary layer vorticity. 
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CHAPTER 1:  INTRODUCTION 

1.1  BRIEF REVIEW OF VORTEX FLOW LITERATURE 

Although vortex flows were studied as long ago as 1867 by 

Helmholtz (31), it is only within the last fifteen years that such 

study was initiated in response to practical problems in engineering 

and science. Vortex motions have been observed in satellite photo- 

graphs of weather patterns, in turbulent flows such as jets, wakes, 

boundary layers and mixing layers, and also in the wake of aircraft. 

These are just a few of the many examples in which vortex flows play 

a significant role in fluid motion. Vortex flows may also occur in 

a variety of configurations such as two-dimensional line vortices, 

vortex sheets, vortex rings, and three-dimensional vortex loops to 

name just a few. Because the field of vortex study is so broad, it 

is beyond the scope of this work to provide the reader with a compre- 

hensive overview of all the information on vortex flows relevant to 

the present study. For such an overview the reader is referred to 

two excellent review works published in the Annual Review of Fluid 

Mechanics by Widnall (97) and Saffman and Baker (76). 

The review by Widnall (97), entitled "The Structure and 

Dynamics of Vortex Filaments", was prompted by the interest in 

trailing vortices produced by large aircraft. Widnall provides a 

comprehensive review of both the fluid mechanics of trailing 



vortices and vortex rings, as well as the more general problems of 

the structure, motion, and stability of free vortices (which she 

defines as compact regions of concentrated vorticity in free motion 

in a surrounding fluid that is either homogeneous and at rest or 

with weak background vorticity or stratification). The topics which 

should be of particular interest to the reader are her reviews of 

the governing equations and vortex theorems, and the work done on 

vortex rings in both ideal and real fluids. Among the topics she 

considers are the steady motion and the stability of vortex rings. 

The other excellent review, written by Saffman and Baker (76) 

is entitled "Vortex Interactions". Because there is a lack of 

complete uniformity of terminology in the field, they begin their 

work by defining many of the commonly used terms such as vortex, 

vortex tube, vortex filament, and uniform vortex amongst others. 

Their review is limited to vortices in homogeneous imcompressible 

fluids of negligible viscosity, but covers such topics as:  vortex 

sheets and their stability, the formation of vortices from vortex 

sheets, and the interactions of two and three-dimensional vortices. 

Both works provide a fine bibliography of the literature available 

in the field of vortex flows. 

In addition to the two works just presented, the reader should 

also be aware of several works which deal with the production, 



initial motion and stability of vortex rings. These works present 

information which a reader will find helpful in understanding the 

general formation and behavior of vortex rings. 

Maxworthy published three works (51, 52, 53) which deal with 

experimental studies of both laminar and turbulent vortex rings. 

Using flow visualization and laser-Doppler velocimetry, he examined 

the formation process, the flow fields, ring velocities, geometry 

variations, vorticity, and stability of vortex rings over a wide 

range of Reynolds numbers. 

Didden published two papers (13, 1*0 in which he examined the 

variations in velocity, diameter, and circulation of vortex rings 

which occur between the point of formation and a location three 

diameters downstream. His earlier work (13) also examines vortex 

ring stability. His discussion of the difference between the 

circulations measured at the formation of the vortex ring and that 

measured three diameters downstream is particularly interesting. 

This aspect of his work will be discussed further in a discussion of 

circulation measurements presented in Appendix A. 

Guhler and Sallet (23) also examined the formation and initial 

motion of vortex rings, finding a good comparison between their 

results and those from a similar investigation by Didden (13). 



Their investigation established geometric and kinematic relation- 

ships between the vortex ring and the initial cylindrical slug of 

fluid which forms the vortex ring. In addition to their experi- 

mental results, they present a good synopsis of much of the pub- 

lished literature on vortex rings. 

Widnall et al. (92, 100, 101) have theoretically and experiment- 

ally examined the stability of vortex rings. They have demonstrated 

that vortex rings become unstable for short azimuthal bending waves, 

a result that has since been demonstrated experimentally by Didden 

(13) and Maxworthy (51, 53). 

1.2 THE APPROACH OF A VORTEX RING TO A BOUNDARY 

When a vortex ring is present in a free fluid far from a 

boundary, the vortex can be described in an essentially inviscid 

manner. The relatively small effect of viscosity in real fluids 

such as water is to cause vorticity to diffuse across the boundary 

of the fluid moving with the ring, thereby contaminating the sur- 

rounding irrotational fluid. This fluid is then entrained into the 

ring, accounting for the slow increase in size of a laminar vortex 

ring (53). 

When a vortex ring approaches a solid planar boundary, a very 

complex flow interaction takes place between the fluid in the vortex 



ring and the fluid adjacent to the boundary. Near a boundary, 

viscosity may play a significant role in the flow interaction, 

although there is not universal agreement on this point. 

1.2.1  EXPERIMENTALLY OBSERVED CHARACTERISTICS 

When a vortex ring approaches a solid boundary, three character- 

istics of the flow interaction are commonly observed. The first 

characteristic is the occurrence of rebound and reversal in the 

trajectory of the vortex ring (5, 7). As the ring approaches the 

surface, its axial velocity decreases, and its radial velocity and 

diameter rapidly increase; the ring appears to approach the surface 

asymptotically as its diameter increases. At some point in this 

process the ring will stop approaching the surface, will reverse its 

axial velocity and thereby move away from the surface. This axial 

velocity reversal is referred to as rebound. In addition, the 

vortex ring may experience an inversion of its radial velocity in 

which the diameter of the ring decreases. The radial velocity 

inversion is referred to as reversal (7). 

The second characteristic of the flow interaction is the forma- 

tion of a sheet of secondary vorticity along the outer perimeter of 

the ring close to the solid surface (5, *J9, 81, 85, 7). Possessing 

vorticity opposite to that of the vortex ring, this sheet of vor- 

ticity will commonly be observed to roll up into a vortex ring of 



opposite rotation to the original vortex. To differentiate between 

the two vortex rings, the original vortex ring is referred to as the 

primary vortex ring (PVR) and the ring formed from the sheet of 

secondary vorticity is referred to as the secondary vortex ring 

(SVR).  After formation, the secondary vortex ring will interact 

with the primary ring in a very complex flow interaction. 

The third commonly observed characteristic of the flow inter- 

action has been described as a sudden transition to turbulence after 

the ring has impacted the surface. Researchers (87) have observed 

that upon impact the coherent organized flow of the vortex ring is 

rapidly transformed into a chaotic flow generally associated with 

turbulence. The more correct way to describe the flow transforma- 

tion is as a complicated, three-dimensional process in which the 

vorticity of the primary vortex is dispersed throughout the surround- 

ing fluid in an organized manner (49, 7). 

These three characteristics of the flow are all interrelated 

and must be integrated into any theory which successfully attempts 

to explain the interaction of a vortex ring with the fluid adjacent 

to a solid surface. In general, researchers have tried to interpret 

the flow interaction as either an inviscid process or a viscid- 

inviscid process. 



1.3 THE FLOW INTERACTION;  AN INVISCID APPROACH 

Simple classical inviscid theory has been used by Helmholtz 

(31) to predict the behavior of a vortex ring as it approaches a 

solid planar surface. This theory models the ring approaching a 

solid surface as a pair of vortex rings approaching each other along 

a common axis. The second vortex ring, known as the image vortex 

ring, models the hypothetical effect of the plate. This theory 

predicts that the vortex ring radius will become infinite as the 

vortex travels along a trajectory which asymptotically approaches 

the solid surface. Some of the assumptions used in this theory are: 

an inviscid and incompressible fluid, a vortex ring of torroidal 

shape of which the core diameter is much smaller than the ring 

diameter, and a uniform vorticity distribution over the core, 

outside of which the flow is irrotational (31). 

Simple classical inviscid theory fails as a complete model of 

the approach of a vortex ring to solid boundary in a real fluid. The 

infinite increase in diameter of the ring predicted by the theory 

does not occur in any sense for a real vortex ring. The theory also 

does not predict any of the three commonly observed characteristics 

of the flow interaction; it is adequate, however, for the prediction 

of that part of the trajectory which occurs before the rebound 

phenomenon takes place. Although the simple theory fails to predict 

the correct behavior, there are those who believe that the observed 



flow phenomena are the result of an inviscid process and have 

attempted to extend the theory to better predict the real flow 

behavior. 

1.3-1  CLASSICAL THEORY WITH FINITE CORE SIZE EFFECTS 

In 1977 Barker and Crow (2) published an experimental study of 

the behavior of a pair of two-dimensional line vortices impacting 

with both solid and free surfaces; they attempted to explain their 

results by extending potential flow theory to account for finite 

core size effects. Visualizing the flows in water with fluorescein 

dye, they recorded the events with high-speed photography, framing 

at rates of 64 and 200 frames per second. The generated vortex 

pairs were turbulent with moderately high Reynolds numbers of 25,000 

and 75,000 where: 

Re0 = rvv (1-D 

and     p = 4TTS dh (1-2) 
dt 

based on an analysis by Lamb (89). 

P -  the circulation of the line vortex 

i> = kinematic viscosity 

2S = the core spacing of the vortex pair 

dh = the propagation velocity of the pair far from the 
dt  surface 

h = the distance from the surface 

10 



The purpose of their study was to determine the trajectory and 

decay rates of a vortex pair in the vicinity of a boundary, an inter- 

action which they felt would be qualitatively similar to that of 

aircraft trailing vortices in proximity to a runway. Their results 

are of interest to the present study because the rebound and forma- 

tion of secondary vorticity should be qualitatively similar to that 

caused by a vortex ring. 

For the three surfaces used in their investigation, smooth, 

rough and free, they observed rebound, but not reversal in the 

trajectories. Coincident with the rebound, they observed a decrease 

in the rate of separation of the cores. After rebound ocurred, 

their data seems to indicate that the vortices remained at a con- 

stant height above the plate and reached a finite pair spacing of 

approximately 5i times the original spacing. The uncertainty in the 

final height and pair spacing exists because they do not state the 

relation of their last trajectory data point to the final dissipa- 

tion of the vortices. 

Their decay rate data takes the form of a plot of "apparent" 

circulation vs. time, in which the apparent circulation decreases 

from 700 cm^/s to a value of 550 cm2/s after undergoing a series of 

oscillations supposedly caused by the rebound away from the surface. 
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The circulation P is determined from the potential flow theory 

line-vortex trajectory formula (2): 

r= UlTg sh(s2 4yh2) (1-3) 
(sD + hD)i 

where     q = the propagation speed of the vortex 
((ds/dt)2 + dh/dt)2)s 

and s and h are previously defined. 

Equation (1-3) does not give the true circulation of the vortex 

since Barker and Crow measured neither vorticity, nor the exact 

shape of the core. Since the predicted trajactory differs from the 

actual trajectory, indicating a deficiency in the theory, it is 

questionable whether they should even consider using this formula 

after the rebound occurs. They give no other data, quantitative or 

qualitative, on the decay of the vortices. They also do not report 

the observation of any formation of secondary vorticity at the solid 

boundary, even though other researchers (28) who have examined two- 

dimensional line vortices have reported the generation of such 

secondary vorticity. Lighthill (J<4) discusses how vorticity near a 

surface should produce secondary vorticity of sense opposite to that 

of the primary vorticity. The one photograph in their report of a 

vortex adjacent to a boundary seems to show the presence of some 

secondary vorticity at the outer edge of the vortex pair, although 

it is impossible to determine this with certainty with just one 

photograph from the sequence. Since the vortices are turbulent, 
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it is also possible that any secondary vorticity may not be readily 

observable with the flow visualization techniques they employed. 

Their results indicate a deviation between the trajectory 

predicted by the simple inviscid potential flow theory, which 

predicted no rebound, and the actual trajectory. They attributed 

these observed deviations in trajactory to the effects of finite 

core size, which are neglected in the elementary theory. It is 

suggested that upon impact the circular core will deform into an 

elliptical shape which may rotate as it moves along the boundary, 

causing the center of the core to rebound away from the surface. 

However, no proof of their contentions is presented except for a 

reference to an unpublished numerical simulation. 

1.3.2 SAFFMAN'S ANALYSIS OF FINITE CORE SIZE EFFECTS 

To test the validity of Barker and Crow's suggestion that 

finite core size effects can cause vortex rebound, Saffman (75) 

performed an inviscid numerical analysis of the impact of a two- 

dimensional vortex pair with a solid boundary. He modeled the 

vortices to be elliptical with an axis ratio and orientation given 

by Moore and Saffman (59, 60) for steady uniform vortices in a 

steady uniform straining field. Although the validity of the 

analysis depends on the assumption of steady flow, Saffman does not 

evaluate the accuracy of this assumption for this flow. 
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His results show that vortex rebound cannot be explained by 

finite core size effects, and that axial velocity cannot change sign 

as the vortices approached the surface. He further considered the 

possibility that the rebound of the vortices is only apparent and 

not real due to a divergence between the centroid of vorticity and 

the apparent center of rotation of a vortex identified by an 

observer using flow visualization techniques. Hooker (33) claimed 

such a divergence was responsible for an observed increase in 

spacing ratios of Karman vortex sheets. After calculating the 

shapes and paths of the vortices, he found that this effect .cannot 

occur. The trajectories of the centroids of vorticity, which were 

indistinguishable from those of simple point vortices, and the 

trajectories of the apparent center of rotation always approached 

the surface monotonically. 

After determining that inviscid finite core size effects as 

advanced by Barker and Crow (2) could not explain the observed 

rebounding, Saffman suggested that a theory of Harvey and Perry (28) 

which included the effect of viscosity (given six years before the 

work of Barker and Crow) provided a more correct explanation for 

vortex rebound. The work of Harvey and Perry (28) will be discussed 

later in this introduction. 
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1.3.3 CLASSICAL THEORY WITH STABILITY ANALYSIS: SCHNEIDER AND KRAUCH 

Other researchers, Schneider (80-85) and Krauch (38), have 

attempted to explain the differences in the behavior of a real 

vortex ring from that predicted by simple classical theory by 

considering various instabilities which may occur. Peter Schneider 

performed many flow visualization experiments with vortex rings in 

water at the Max Planck Institute fur Stromungsforschung (M.P.I.S.) 

in Gottingen, Germany, using essentially the same experimental 

facility as described in Maxworthy (53). Most of his work is pub- 

lished in M.P.I.S. reports, written in the German language. This 

author's examination of his work has been limited to the photo- 

graphic results and a few selected translated passages and, there- 

fore, cannot be considered a comprehensive review of the results 

contained in Schneider's reports. 

In one of his reports (80), he photographically investigated 

the transformation of laminar and turbulent vortex rings in the 

stable and unstable condition as they approached many different 

surfaces such as:  large and small flat plates, plates with circular 

holes, small and large circular plates, plates angled with respect 

to the axis of the ring, cylinders, cones, screens, and a free 

surface. His results included photographic sequences obtained using 

a 35mm camera and descriptions of the subsequent interactions, 

although he does not seem to explain in detail the causes of the 
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interactions. His photographs of the interaction of vortex rings as 

they impact a flat plate do clearly show the formation of secondary 

vortices. 

In another work (81) entitled Creation, Life, Instability, 

Regeneration, Dissipation of Vortex Rings, Schneider examined the 

instabilities of vortex rings as they propagate toward a solid 

surface. It appears that he uses the instabilities to explain the 

physics of the interaction through the following model:  "a thresh- 

old of a new instability is reached, the instability is initiated by 

a fluctuation which leads to increasing dissipation of the vortex, 

which in turn causes new instabilities", or by a second model in 

which "the vortex is in non-equilibrium, dissipation occurs and 

leads to instability and the formation of new structure followed by 

an increase in dissipation" (81). In this report Schneider attempts 

to interrelate the observed rebound of the primary vortex, the for- 

mation of the secondary vortex and the eventual dissipation of the 

vortices through instability mechanisms. Again his results seem 

more to describe the phenomena, rather than to explain why the phe- 

nomena occur. After reviewing his work, this author is uncertain as 

to the exact nature of the instabilities, how they arise, their rela- 

tion to the secondary vortices and even why the secondary vortices 

should occur. It seems as if Schneider claims the secondary vortices 

arise from some form of instability, but this has not been verified. 
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In a third report by Schneider (83), entitled The Transformation 

and Reflection of a Vortex Ring on a Plate Oriented at an Angle to 

the Translational Velocity, he determined that many of the vortices 

rebounded away from the plate at an angle equal to one, two, or 

three times the angle of the plate with respect to the axis of the 

ring as it approaches the plate. A short discussion of turbulence is 

included in that work and is continued in a fourth report (84) 

entitled Experimental Investigation of Phases of Instability of a 

Laminar Vortex Ring With Respect to Comparable Instabilities in 

Turbulent Shear, Boundary Layer, and Channel Flows. Because of the 

lack of an English translation, no further discussion of this report 

can be given. 

Another researcher at M.P.I.S., who performed complimentary 

research to that of Schneider was Thomas Krauch (38). Krauch com- 

paratively examined the behavior of vortex rings impacting with both 

solid and free surfaces. His work was also published in German as 

an M.P.I.S. report. The reader is cautioned that the following com- 

ments are based on examination of photographs, diagrams, and trans- 

lations of a few selected passages. 

Krauch determined that rings with slower translational velo- 

cities behaved similarly in the vicinity of both solid and free 

surfaces. A secondary vortex ring forms, develops a wavy structure, 

and rotates into the center of the primary vortex ring. Parts of 
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the secondary vortex ring are then pulled between the primary ring 

and the surface. The evidence presented to support this result 

consisted of trajectories from vortices approaching solid and free 

surfaces, and photographic sequences of vortices approaching only a 

free surface, which could presumably be compared to sequences pre- 

sented by Schneider (80). The trajectories which were compared for 

solid and free surfaces were very similar and displayed a rebound 

behavior, although no reversal was observed for these trajectories. 

A single trajectory of a vortex ring approaching a free surface at 

a velocity slower than that of the others was presented which did 

display both rebound and reversal. 

At the higher translational velocities the vortex rings behaved 

differently in the vicinity of the solid and free surfaces. The 

difference in behavior was due to the deformation of the free sur- 

face which occurred as the vortex ring approached it. At very high 

velocities the vortex ring even rose out of the surface. 

Krauch discusses in detail the shape, deformation and rotation 

of the elliptical vortex core as it nears the surface. A schematic 

diagram of the relative positions and shapes of the cores of the 

primary and secondary vortices as the primary vortex follows the 

path of a trajectory with rebound and reversal is also presented. He 

fails, however, to do more than describe what he observes; he does 
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not try to explain why certain phenomena occur, nor does he give 

cause and effect relationships. The causes of rebound and reversal 

are not explained, nor is an explanation offered for the influence 

of the secondary vortex on the behavior of the primary vortex. 

A theory which attempts to model the behavior of a vortex in 

the vicinity of a surface must be able to explain the following 

observations:  the formation of secondary vorticity, the occurrence 

of rebound and reversal in the trajectory of the vortex, and the 

mechanisms involved in the breakdown or dispersal of the vorticity 

of the primary vortex. The theories which rely on totally inviscid 

effects as proposed by Barker and Crow, and Schneider, cannot 

successfully explain the source of the very complicated flow 

phenomena which occur during vortex impact. 

1.4  FLOW INTERACTION:  A VISCID-INVISCID APPROACH 

Several researchers have considered the effects of viscosity to 

explain some of their observations of vortex-surface interactions. 

When the vortex ring is far from the surface, inviscid theory can be 

used to adequately describe the behavior of the ring. Near a sur- 

face, however, the effects of viscosity may become very important. 
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When a vortex is near a surface, viscous effects cause vor- 

ticity of an opposite sense to the original vortex to be created 

from the boundary layer flow imposed by the presence of the vortex 

(44). The boundary layer flow so created can separate at a point 

beneath the vortex core if the local adverse pressure gradient 

caused by the vortex is of sufficient strength. This separation 

creates a sheet of secondary vorticity with rotation opposite to 

that of the primary vortex (28), which if of sufficient strength 

will roll-up to form a secondary vortex. Once formed, the secondary 

vortex will interact with the primary vortex in an essentially 

inviscid manner. 

1.4.1  HARVEY AND PERRY 

In 1971, Harvey and Perry (28) published the results of some 

experimental work which investigated the observed rebounding of the 

trailing vortex shed from the wingtip of an airplane when that vor- 

tex was in the vicinity of the ground. They simulated the flowfield 

by mounting a wing in a wind tunnel with a moving floor and per- 

formed a series of total head surveys to determine the flow patterns. 

The boundary layer induced by the trailing vortex was observed 

to separate because of the local adverse pressure gradient occurring 

near the point of minimum pressure directly beneath the vortex core. 

The separated fluid formed a separation bubble which grew rapidly in 
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strength, detaching from the surface to form a secondary vortex. 

Harvey and Perry could not determine the exact nature of the subse- 

quent interaction of the trailing and secondary vortices, but they 

were able to determine the effect of the secondary vortex on the 

trajectory of the trailing vortex. The downward movement of the 

trailing vortex would be checked and then reversed by the secondary 

vortex as it rebounded away from the surface. The horizontal veloc- 

ity would also be checked by the secondary vortex and in some config- 

urations was reversed. 

In his review of the previously mentioned paper of Barker and 

Crow (2), Saffman (75) determined that Harvey and Perry's explana- 

tion of the observed rebound of a vortex was the correct explanation 

for the vortex-solid surface interaction case. He expressed doubt, 

however, that this explanation could be used to explain the rebound 

from a free surface observed by Barker and Crow. He reasoned: 

"since a boundary layer at a free surface is much weaker than that 

at a rigid surface (and is in a sense continually separating) it is 

most unlikely that secondary vortices would be produced in this case 

as required by Harvey and Perry's explanation. Unless surface 

contamination in Barker and Crow's experiment had the effect of 

making the free surface behave like a rigid boundary with respect to 

slip, then observations that the nature of the boundary had little 
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effect upon the gross properties of vortex motion would suggest an 

inviscid explanation." (75) 

It is probably this suggestion which has prompted some research- 

ers to look for an inviscid explanation. Later results by Schneider 

(81), Krauch (38) and the results of the present work show that 

secondary vortices are generated at a free surface. Harvey and 

Perry's explanation then is a perfectly valid explanation of the 

observed rebound of the primary vortex away from the free surface, 

although one can question whether the free surface in the laboratory 

is actually free of slip. The condition of the surface and the 

observed behavior will be discussed in more detail in section 3-2 of 

the results. 

1.4.2 MAGARVEY AND MACLATCHY 

In 1964 Magarvey and MacLatchy (49) published what is possibly 

the first flow visualization study of a vortex ring impacting a 

rigid surface. The rings, generated in air by a rapid expulsion 

from an orifice, were visualized with smoke and recorded using still 

pictures and 16mm motion picture photography. Observing the inter- 

action that takes place during the violent disintegration process, 

they found a reproducibility of detail that showed the process was 

rather organized and not as random as originally thought. 
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They noted the vortex ring formed at the orifice is not a true 

ring or closed torroid, but is composed of 2 layers of fluid, one 

consisting of fluid from the orifice and the other fluid from out- 

side the orifice, rolled about a circular axis. Their observations 

are interpreted in terms of these fluid layers and their stability. 

Their description of the flow interaction is as follows. The 

secondary vortex ring or "vortex skirt" as they described it, forms 

from the distortion of the core of the ring upon impact. When the 

ring impacts the surface, the initial increase in diameter of the 

axis of rotation occurs without a similar increase in the inside 

diameter of the ring, thereby distorting the core.  An axisymmetric 

protuberance forms on the outside edge of the distorted core and is 

in turn distorted by the external velocity field and rotary motion 

of the ring to form a multilayered sheet which rolls on itself. 

(This rolled sheet is the commonly observed secondary vortex.) The 

velocity field is such that the rolled skirt is carried into the 

center of the ring where it becomes crimped and fluted. The skirt 

is severed at the crimped points in its circumference and the 

vortical motion of the free ends of the segments mutilate the inner 

layers of the original ring, which results in the breakdown of the 

ring. They note that the predominant feature of this interaction 

process is the sharpness of the surfaces demarcating the fluid 

layers indicating the absence of turbulent mixing. 
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Although Magarvey and MacLatchy do not attempt to classify the in- 

teraction as a viscid or inviscid phenomenon, their work is included 

in this section for a number of reasons, foremost of which is their 

finding that the assumptions and conclusions of classical inviscid 

theory are not only unsatisfactory, but also unrealistic. Another 

reason is that the core distortion, which they observe to be caused 

by a difference in initial increase in the diameter of the inner and 

outer parts of the ring, is in reality a viscous or boundary layer 

effect caused by the interaction with the solid surface. The 

authors, however, either do not recognize this, or fail to call it 

to the attention of the reader. Rather, they prefer to discuss the 

interaction in terms of the stability of fluid layers, although they 

do not discuss this stability in much detail. 

Magarvey and MacLatchy addressed two of the three commonly 

observed characteristics:  that of formation of secondary vorticity 

and the breakdown of the primary vortex ring, but they made no 

observations on the trajectory of the PVR other than to state that 

the diameter does not increase to infinity as predicted by classical 

theory. Their pictures are very good; one can clearly see the 

crimping of the secondary vortex and the absence of turbulent mixing 

in the plan view pictures. Their description of the interaction 

process is fair; some of their points are subject to debate, partic- 

ularly the mechanism for generation of the secondary vorticity and 
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the suggestion of the severing of the secondary vortex at the 

crimped points. 

They consider only the effects of the distortion of the core 

and the velocity field to explain the formation of the secondary 

vortex and do not consider the effects of viscosity or the formation 

of boundary layers. They do not offer any proof for their explana- 

tion, citing only the stability of the fluid layers without offering 

any real discussion of the stability. This author feels that the 

boundary layer explanation offered by Harvey and Perry is the more 

correct one based on work done by Doligalski (15) which will be 

discussed later. 

Magarvey and MacLatchy's suggestion that the secondary vortex 

is severed into segments at the crimped points of its circumference 

is subject to the interpretation of the photographs. What they 

describe as severed free ends may really be the cross-sectional 

views of the core of the secondary vortex which is parallel to the 

plane of the pictures. The present work will present pictures which 

show the secondary vortex wrapping around the primary vortex, during 

which the secondary vortex is not severed. 
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1.4.3 BOLDES AND FERRERI 

Boldes and Ferreri (5) published a "Research Note" in 1973 on 

the behavior of vortex rings in the vicinity of a wall. The results 

of their experimental work imply a confirmation of Harvey and 

Perry's (28) physical model for the case of an axisymmetric vortex 

ring. 

Vortex rings, formed by the impact of drops of fluid with the 

free surface of a quiescent tank of water, were filmed at a rate of 

100 frames per second as they propagated toward a wall. The inter- 

action was visualized by placing dye in fluid forming the vortex 

rings or by placing dye in the fluid adjacent to the wall. 

As the vortex rings approached the wall, an axially symmetric 

vortex sheet with vorticity opposite to that of the ring is formed, 

as observed in the previous studies cited here. This secondary 

vortex sheet was observed to rise and enfold the vortex ring. The 

author presumes that the strength of this secondary vortex sheet was 

too weak to roll-up into a secondary vortex ring. Boldes and 

Ferreri basically present trajectory data for the primary vortex 

ring, all of which indicate rebound to occur as often as twice in 

each trajectory, although no reversal in the radial velocity was 

indicated. It is the interaction of the secondary vortex sheet with 

the primary vortex which causes the rebound in the trajectories. 
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The study of Boldes and Ferreri is basically a further confirmation 

of the axisymmetric case of Harvey and Perry's model explaining the 

rebound of a vortex away from a surface. However, they do not pro- 

vide any insight into the mechanisms by which the primary vortex is 

dispersed, (i.e. the interaction of the primary and secondary vor- 

tices) beyond that of the effect on trajectory of the primary vortex. 

1.4.4 YAMADA AND MATSUI 

Yamada and Matsui (103) reported the results of flow visualiza- 

tion experiments in which they used two smoke wires, one located at 

the vortex ring generating orifice and a second located next to a 

solid surface, to visualize the approach of a vortex ring to a solid 

surface. They observed the formation of a secondary vortex ring and 

the associated rebound phenomenon, explaining the formation of the 

secondary vortex ring using the boundary layer model offered by 

Harvey and Perry (28) and Boldes and Ferreri (5), although no tra- 

jectories were presented. They offered no observations of reversal, 

nor did they discuss any primary-secondary vortex interaction which 

could be responsible for the breakdown of the primary vortex. 

1.5 ANALYTICAL WORK 

1.5.1  VIETS AND SFORZA 

In 1972 Viets and Sforza (95) performed a theoretical and 

experimental study of the motion of bilaterally symmetric vortex 
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rings. From the Biot-Savart law, they calculated the induced 

velocity at each point on the vortex ring and related the induced 

velocity to the motion of the ring using either the Hydrodynamic 

vortex model or the Rankine vortex model. In the Hydrodynamic 

vortex model the center of the potential vortex is the only point in 

the velocity field which has vorticity. In the Rankine vortex 

model, the vorticity is distributed over a small core in solid body 

rotation with an external irrotational velocity field (95). For 

more details of the models, the reader should consult Viets and 

Sforza (95). 

The case of a circular vortex ring approaching a solid boundary 

is analyzed using a Hydrodynamic vortex and an image technique. 

They expectedly achieved the classical results, the vortex ring 

diameter increased very rapidly in the vicinity of the wall until 

numerical accuracy was lost. They reported that the theoretical 

results agreed with the experimental results which were obtained by 

impulsively starting a circular ring wing to generate the vortex 

ring. They presented a trajectory of only the theoretical results 

and did not report any occurrence of rebound, reversal, or the gen- 

eration of secondary vorticity in their experiments. The apparent 

absence of secondary vorticity may have been the result of one or 

more of the following three reasons:  1) an inability to photograph- 

ically resolve the secondary vorticity; 2) the vortex ring may have 
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been sufficiently weak such that no secondary vorticity could be 

generated or observed with the visualization techniques they 

employed; 3) starting vortices generated from a wing have cores 

which are much smaller relative to the ring diameter than those 

generated from an orifice (vortex rings with small core designs more 

closely match the assumptions of the classical model). Due to 

insufficient information in the reported work, it is not possible 

for the author to assess which, if any, of these reasons caused the 

apparent anomaly in the Viets and Sforza work as compared to other 

previously discussed works. 

1.5.2 SCHULZ-GRUNOW 

Schulz-Grunow (87) analytically and experimentally examined a 

laminar smoke ring impinging on a surface as a useful means to re- 

veal the mechanism of sudden transition to turbulence. He described 

the flow as losing its stability all at once with no bifurcation 

taking place, although he fails to explain in what sense a vortex 

ring may undergo a bifurcation process. Literally a bifurcation is 

some sort of division into branches. 

He analyzed the real viscous flow by solving the complete 

Navier-Stokes equations for circular flow with arbitrary n where 

VQ = Jlrn+1 and:  V0 = azimuthal velocity, SI  = the strength of the 

vortex ring P/21Y, p = circulation, r = radius of vortex core. 
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The approach he has taken seems to indicate that the flow of a 

vortex ring impinging on a surface breaks down randomly and under- 

goes transition to turbulence very quickly. In performing his 

analysis, he seems to have lost sight of the physics of the problem. 

The breakdown of the vortex occurs in a very organized, reproducible 

manner as described by Magarvey and MacLatchy (49) sixteen years 

earlier.  His assumption that no bifurcation takes place may also be 

wrong if the dispersal of vorticity through the generation of 

secondary vortex rings can be considered a bifurcatin process. 

1.5.3 DOLIGALSKI:  "THE BOUNDARY LAYER INDUCED BY A CIRCULAR 
VORTEX RING IMPACTING A FLAT PLATE" 

In his analysis, Doligalski (15) numerically examined both the 

behavior of a vortex ring approaching a flat plate and the develop- 

ment of the boundary layer flow induced by the vortex ring. To 

model the effect of the plate, he used the classical inviscid image 

vortex technique. A Kelvin-Hicks vortex ring for which the finite 

sized vortex core is in solid body rotation was assumed. The con- 

stants necessary to describe such a ring were derived from experi- 

mental data provided by the author of this work and C.R. Smith. 

When the vortex ring reaches the vicinity of the plate, the effect 

of viscosity is numerically "turned on" through the solution of the 

boundary layer flow induced by the vortex ring. 
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Doligalski's solutions reveal an unsteady separation zone to 

form in the boundary layer beneath the vortex, which takes the form 

of a closed recirculating eddy with rotation opposite to that of the 

primary vortex ring. This eddy grows in size, undergoing rapid and 

explosive growth until the numerical scheme fails. At some point in 

the evolution of the boundary layer flow, he expects the boundary 

layer thickness will become thick with respect to the length scale 

of the outer inviscid flow, whereupon classical boundary layer 

theory breaks down. The subsequent interaction will then be of a 

viscid-inviscid nature, with the generation and ejection of a 

secondary vortex ring out of the boundary layer as experimentally 

observed by Boldes and Ferreri (5) and Cerra and Smith (7). The 

primary and secondary vortices will then interact in a primarily 

inviscid manner (Biot-Savart) regarding the induced velocities of 

each ring, with viscous dynamics and ring stability affecting distor- 

tion and dissipation effects through inviscid-viscid interactions. 

Doligalski's analysis confirms the separation of the boundary 

layer, reported by Harvey and Perry (28) as the source of the second- 

ary vortex for the axisymmetric case. His work, however, does not 

attempt to model the subsequent viscid-inviscid interaction between 

the primary and secondary vortex rings, and therefore cannot repro- 

duce the experimentally observed rebound or reversal of the trajec- 

tory of the primary vortex ring caused by this interaction. The 
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author knows of no work to date which has attempted to model this 

viscid-inviscid interaction. The results of Doligalski's analysis 

will be compared to experimental results in section 3-1*6 of the 

results. 

1.6  APPLICATIONS 

Understanding the physics of the interaction of a vortex ring 

adjacent to a solid boundary may help one to better understand the 

role that coherent, vortical structures play in the development of 

turbulent boundary layers. At one time turbulent flow was consid- 

ered to be a very disorganized process with random, high frequency 

velocity fluctuations superimposed on a mean velocity field. 

Recently, however, observation of organized coherent structures in 

turbulent boundary layers (e.g. Kline et al. (37)) has led to the 

belief that turbulent flows are much more organized than had been 

thought possible. Vortex structures, as detailed by Head and 

Bandyopadhyay (29), are commonly observed among the coherent struct- 

ures in turbulent boundary layers. Several researchers, Doligalski 

et al. (16), Smith and Metzler (90), and Falco (18), have suggested 

that the coherent structures observed in a turbulent boundary layer 

may be the result of the interaction of vortices with fluid near the 

bounding surface. Development of an understanding of the inter- 

action of a simple vortex ring with a quiescent fluid adjacent to a 

solid boundary is a first step toward understanding the potential 
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interactions which can occur for three-dimensional vortex loops 

convecting in a boundary layer. 

Another situation, in which vortices exist adjacent to a solid 

surface, occurs when aircraft are in proximity to airport runways. 

Pairs of counter-rotating vortices form from the vortex sheet 

leaving the trailing edges of the wings of large aircraft. During 

takeoff and landing these vortices may pose a danger to small air- 

craft using the same runway a short time later. Knowledge of how 

long these vortices will persist in a coherent organized state 

before they disperse into homogenous turbulence would be very useful 

to aircraft controllers. The work of Harvey and Perry (28) was done 

in response to the observation made by Dee and Nicholas (11) of 

actual wingtip vortices in the vicinity of the ground. 

1.7 SUMMARY 

Deviations in the trajectories of experimentally observed vortex 

rings approaching a surface from those predicted by classical theory 

have been reported by many researchers. They commonly observe the 

rebound phenomenon, in which the axial velocity of the ring reverses 

and the vortex "rebounds away" from the surface. Reversal, a pro- 

cess in which the radial velocity reverses and the diameter of the 

ring decreases, has been less commonly reported, with only Krauch 

(38) presenting actual trajectories in which this occurred. 
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When a vortex ring is near the surface, secondary vorticity is 

generated at the surface along the outer perimeter of the ring. 

This secondary vorticity can separate and roll-up into a secondary 

vortex ring which then interacts with the primary vortex ring. This 

subsequent interaction is apparently responsible for the rebound and 

reversal phenomena observed in the trajectory of the primary ring as 

explained by Harvey and Perry (28) and Boldes and Ferreri (5). 

The interaction of the two vortex rings is a complicated pro- 

cess of vortex dynamics. Once formed, the secondary vortex orbits 

above the primary ring and develops azimuthal waves. One group of 

researchers, Magarvey and MacLatchy (49), describes a process in 

which the secondary vortex ring is severed in a few azimuthal 

locations. The severed ends of the SVR then mutilate the primary, 

vortex in a process which leads to the destruction of the organized 

vortex flow. Another group of researchers, Schneider (81) and 

Krauch (38) describe a process in which the wavy ends of the SVR are 

not severed, but rather are pulled under the PVR. In both studies 

there appears to be room for improvement in both the illustration 

and explanation of the processes which lead to the ultimate disper- 

sion of the primary vortex ring. 

Researchers, who have examined the impact of vortices with both 

free and solid surfaces, have reported that the surface condition 
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made little difference in the type of behavior observed. 

1.8 OBJECTIVES 

To date, it appears that no one has successfully integrated all 

three aspects of the flow interaction:  the rebound and reversal 

phenomena, generation of secondary vorticity, and dispersal of 

primary ring vorticity, into one coherent and accurate discussion. 

The motivation for this work is to provide such an integrated 

description and explanation of the behavior of a vortex ring 

impacting with a solid surface. 

Trajectories of primary vortex rings displaying not only 

rebound but also reversal will be presented. In addition, trajec- 

tories of secondary and tertiary vortex rings will be presented 

with the trajectories of primary rings to more clearly illustrate 

how the phenomena of rebound and reversal occur. 

Photographic sequences will be presented which show the genera- 

tion of secondary vortex rings and the subsequent interaction of 

those rings with the primary vortex ring. An attempt is also made 

to illustrate the details of this interaction process and to show 

how the vorticity of the primary vortex ring is dispersed. Vortices 

over a range of Reynolds numbers will be examined to determine how 

this may affect the flow behavior. 
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To examine the effect of surface conditions, the interaction of 

vortices approaching solid surfaces will also be compared with the 

interactions occurring at a free surface. 

A secondary objective of this work is to provide information 

about the behavior of a vortex ring in the vicinity of a solid 

boundary which may lead to an improved understanding of the poten- 

tial interaction of a vortex loop in a boundary layer. To better 

achieve this goal, the interaction of a convecting vortex ring 

impacting a developing boundary layer flow above a solid surface 

will also be examined. 
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CHAPTER 2:  EXPERIMENTAL APPARATUS 

2.1 INTRODUCTION 

All experiments reported in this work were performed in the 

water channel flow facility located in the Fluid Dynamics Research 

Laboratory of Lehigh University. Vortex rings with a range of 

characteristics were generated by a vortex ring generator, designed 

by the author and constructed at Lehigh University. Visualized with 

dye and hydrogen bubble techniques, the interaction of a vortex ring 

with the fluid adjacent to a surface was recorded using an BJSTAR 

high speed video system. The experiments were performed for three 

configurations: solid surface, free surface, and developing 

boundary layer. 

2.2 FLOW  FACILITY 

The flow facility is the same as that described in Metzler (54), 

suitably adapted for this study. Shown schematically in figure 2.1, 

the facility consists of a free-surface channel in which water is 

circulated from one end of the channel to the other by a horizontal 

split-case centrifugal pump, the interior of which was painted with 

epoxy paint to minimize corrosion contamination of the water. The 

pump is powered by a variable speed, feedback controlled, 7i horse- 

power, D.C. electric motor, capable of circulating the 5.0 cubic 

meters in the system at a rate of 4.0 cubic meters per minute. 
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The water enters the inlet tank from a distribution manifold 

pipe and rises vertically through a 15 cm. thick plastic sponge. 

The flow then passes through a flow straightener consisting of 

honeycomb cells (7.5 cm long and 0.48 cm diameter) followed by a 20 

mesh stainless steel screen (45).  A 1.75:1 inlet contraction (45) 

connects the inlet tank to the working section of the channel and 

further reduces freestream turbulence. 

The working section of the channel is constructed of 1.91 cm 

thick plexiglass plate supported by 5 cm square steel tubing at a 

height approximately 1 m above the floor. This section has a depth 

of 30 cm, width of 87 cm, and length of 4.8 m. 

At the termination of the working section, a folded 20 mesh 

stainless steel screen is placed at the entrance to the exit tank to 

1) inhibit the formation of standing waves at the end of the channel 

and 2) prevent the upstream propagation of any disturbances origin- 

ating in the exit tank. The pump circulates the water from the exit 

tank back to the inlet tank. 

2.3  TRAVERSING PLATFORM 

A traversing platform capable of traversing the length of the 

channel is mounted above the channel working section as shown in 

figure 2.1. Supported by two linear motion ball bushings and two 
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ball bearing cam followers, the platform rides on two steel rails 

mounted above and on either side of the channel. An end-on view of 

the water channel and traversing platform is shown in figure 2.2. A 

cable/pulley system powered by a one horsepower, reversible, vari- 

able speed electric motor with dynamic braking can propel the plat- 

form at translational speeds from 0 to 0.5 m/s. A second traversing 

platform, located beneath the channel, is driven by a second cable/ 

pulley system interconnected and synchronized to the first cable/ 

pulley system by a chain/sprocket assembly. 

In figure 2.2, the vortex generator and two video cameras pro- 

viding side and plan-views are shown mounted on the upper platform, 

which is also used as a mount for other apparatus such as hydrogen 

bubble-probes (not shown). The lower platform is used primarily to 

mount lighting equipment. The unique feature of this traversing 

platform system is the ability to perform flow visualization from a 

frame of reference moving with the flow. 

2.H  VORTEX GENERATOR APPARATUS 

Single vortex rings were produced by ejecting slugs of fluid 

through a sharp edged orifice. After ejection, the moving body of 

fluid rolled up into a vortex ring (more precisely, into the shape 

of an oblate spheroid). 
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Shown schematically in figure 2.3, the vortex generator is 

powered by a 0.044 horsepower, variable speed, reversible, direct 

current electric motor connected to a ball bearing lead screw by an 

electric clutch. The lead screw converts the rotary motion of the 

motor to linear motion of a piston via a constant velocity cam 

follower mechanism. Movement of the piston pushes fluid through the 

orifice. As shown in figure 2.2, the generator is attached to the 

traversing platform above the water with the piston, cylinder, 

orifice tube, and orifice submerged in the water. All parts exposed 

to water are made from PVC plastic to resist corrosion. 

The generator was designed to have interchangeable parts which 

allow the generation of vortex rings with a range of characteristics. 

The motor speed is continuously variable up to a speed of 7400 rpm. 

Cams with stroke lengths of 0.64, 1.27, 1.9, and 2.54 cm are 

available. Stroke lengths between these values can also be obtained 

by adjustment of electrical and mechanical stops (not shown in 

figure 2.3).  Piston stroke is measured by a variable reluctance 

displacement transducer. Piston diameters of 1.9, 2.54, 3.81 and 

5.08 cm and orifice diameters of 0.95, 1.43, 1.90, 2.22, 2.54, 3.18, 

and 3.81 cm are available. Various combinations of stroke length, 

piston size, and orifice diameters allowed an examination of L^/D^ 

ratios from 0.75 to 3.41, where L^ is the length of the cylindrical 

slug of fluid ejected from the orifice and D^ is the orifice 
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diameter. Employing orifice tubes of different lengths, the H^/D^ 

ratio, where H^ is the height of the orifice from the surface and D^ 

is the orifice diameter, can be varied over a range of values from 

2.85 to 6.8. The ability to vary this ratio is important since the 

vortex ring should have sufficient distance to fully form or roll- 

up before it encounters the wall. Saffman (74) reports that rollup 

is not complete until the ring has moved several ring radii away 

from the orifice. Likewise, Sallet and Widmayer (79) report that 

vortex rings are fully developed within three ring diameters down- 

stream from the generating orifice. All the vortices studied in 

these experiments were fully developed before they were close enough 

to the surface to be affected by it. 

The quantities which characterize the fully developed vortices 

are the initial vortex ring diameter D0, the initial vortex ring 

velocity V0, and the initial Reynolds number Re0. Ring diameters 

ranged from 1.02 to 3•38 cm and ring velocities from 0.61 to 5.63 

cm/sec. The Reynolds number, Re0, based on these two quantities and 

the kinematic viscosity of the water, varied from 105 for a very 

laminar ring to 4943 for a turbulent ring. 

Two other characteristics of interest in regard to vortex rings 

are the stability of the vortex before impact with the surface and 

the circulation of the vortex as a measure of its strength. All 

44 



results reported in this study are based on the interaction of 

laminar vortex rings which were stable prior to impact with the 

surface. A discussion of vortex ring instability prior to impact is 

included in the results section 3.4. In addition, several attempts 

which were made to experimentally determine the circulation of the 

vortex rings directly met with only limited success. These attempts 

and results of other researchers are also discussed in appendix A. 

To evaluate all the characteristics of interest for a particu- 

lar vortex ring, it was necessary to perform multiple observations 

for each set of ring parameters, which required a vortex generator 

capable of producing a series of vortex rings with identical 

characteristics. The repeatability of the generator was tested by 

configuring the generator to produce a vortex with a particular set 

of characteristics at two different times during the course of the 

experimental program, between which the generator was reconfigured 

to produce other vortex rings. The characteristics of the fully 

developed vortex ring, i.e., Reynolds number, ring diameter, and 

translational velocity, were evaluated for each case and were found 

to be repeatable to within, +}\%,  +}\.5%,  and +1/6, respectively. 

These values fall well within the experimental measurement errors, 

which are recorded in the uncertainty analysis section of appendix 

B. The interaction of the vortex ring with the fluid adjacent to a 

solid boundary was also qualitatively observed for each case and 

45 



found to be very similar, if not identical. For each type of vortex 

ring studied, a number of realizations were required to perform all 

of the necessary observations. The flow behavior appeared to be 

reasonably identical for each realization of a particular type of 

vortex ring. From these sets of observations, it was concluded that 

the generator is capable of repeatedly producing essentially iden- 

tical vortex rings. 

2.5  FLOW VISUALIZATION TECHNIQUES 

Two flow visualization techniques, dye and the hydrogen-bubble 

method, were employed in this study. The dye technique proved most 

useful for qualitative visualization of the complex, three dimen- 

sional nature of the flow interactions. The hydrogen-bubble tech- 

nique was most useful in determining quantitative information such 

as ring diameter and velocity of propagation. 

2.5-1  DYE VISUALIZATION 

One method of dye visualization required the injection of dye 

from a hypodermic syringe into the fluid within the vortex generator 

orifice tube just prior to the generation of a vortex ring. Figure 

2.4 shows a vortex ring visualized by this method. The dye used was 

a 1:10 mixture (approximately) of blue food coloring and water; the 

blue color was determined to provide a better contrast than other 

available colors such as red and green. One injection of dye proved 
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Figure 2.4   Vortex ring approaching a solid plane surface 
(side view, dye placed in vortex ring). Vortex 
propagating from the top to the bottom of the 
picture. Vortex I.D. #51.120, Re, 560. 
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to be sufficient for the visualization of four or five vortex rings. 

The placement of dye in the primary vortex ring (PVR) is an 

effective means for visualizing the three-dimensional flow inter- 

actions of the PVR with the fluid adjacent to the surface. Because, 

the secondary vortex ring (SVR) partially consists of dyed fluid 

from the PVR, it too is visualized by the initial placement of dye 

in the orifice. However, as the interaction of the two vortices 

progresses the dye becomes more diffuse which makes the motions of 

the individual vortex ring elements more difficult to distinguish. 

To alleviate this difficulty a second dye technique was used. 

This second technique required the injection of dye in a layer 

adjacent to the solid surface; with this technique no dye was placed 

in the orifice tube. Using this method, one could clearly observe 

the formation of the secondary vortex from fluid adjacent to the 

surface and the subsequent interaction of the secondary vortex 

through most of the interaction process. Because it contained no 

dye, the primary vortex ring was not visible, only the outline of 

and the effects of the primary vortex could be observed. 

These two dye techniques do have some drawbacks. Because the 

dyed fluid is slightly heavier than water, the dye placed in the 

orifice tube had a tendency to seep out of the orifice and into the 
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experimental field of view, creating obvious viewing difficulties. 

Although the density difference could be used to advantage in the 

second dye technique, it too had its associated difficulties. It 

was difficult to place a uniform sheet of dye adjacent to the sur- 

face using a syringe; additionally, this sheet had to be replaced 

for each ring generated. Both dye methods tended to introduce a 

large amount of dye into the test section, especially when visual- 

izing the larger-sized vortices. After every few runs, it was 

necessary to briefly start the water channel to move the dyed water 

out of the experimental region. An appropriate period was then 

required to allow the water in the test section to settle back into 

a quiescent state. Although the relatively large fluid capacity of 

the channel system allowed a large amount of dye to be absorbed 

without significant loss of clarity, it frequently became necessary 

to drain and refill the system when the dye build-up in the water 

prevented good picture contrast. 

When using dye to visualize vortex flows, one should also be 

aware of a problem noted by Maxworthy (51):  the entire region of 

developing vortical fluid is not shown by the dye in a vortex ring 

because the diffusion coefficient of the dye particles is very much 

smaller than the diffusion coefficient for the vorticity, i.e., the 

kinematic viscosity. 
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2.5.2 HYDROGEN BUBBLE VISUALIZATION 

A second method of flow visualization employed was the 

hydrogen-bubble method as described by Clutter et al. (9) and 

Schraub et al.  (86). A fine platinum wire (.025 mm diameter) is 

used as the cathode of a DC circuit and placed in the flow. A 

carbon rod, serving as an anode, is placed nearby. A square wave 

voltage pulse generator supplies the current for the electrolysis 

process which forms a sheet of hydrogen bubble lines at the wire. 

Construction of the probes used and the voltage generator are 

described in Metzler (54). 

For the experiments in which the vortex ring impacted a develop- 

ing boundary layer, a special hydrogen-bubble probe was constructed 

which allowed the orifice of the vortex generator to pass over the 

probe which was mounted stationary relative to the surface. In 

these experiments, to generate a vortex ring which convected with 

the flow, it was necessary to move the vortex generator downstream 

with the flow. A "U" shaped hydrogen-bubble wire support was 

mounted in a plane parallel to the surface, across which a bubble 

wire was attached in the spanwise direction of the channel. One end 

of a vertical support was attached to the "U" shaped support in an 

offset, cantilevered manner; the vertical support angled up out of 

the plane of the "U" in such a manner as to allow the vortex gener- 

ator orifice to pass over the "U" without interfering with the 
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vertical support as it convected downstream. The other end of the 

vertical support was attached to the side wall of the channel by 

means of a traversing mount which allowed the probe to be raised or 

lowered. The probe was constructed of telescoping square brass 

tubing, insulated with plastic heat shrink tubing, with the smallest 

cross sections of brass tubing located near the bubble wire so that 

the flow disturbance near the wire was minimized. 

Because the hydrogen bubble method only visualizes the flow 

which occurs in the plane of the sheet of bubbles, it is not as use- 

ful as the dye techniques for visualizing three-dimensional vortex 

interactions. The bubble method is more useful, however, for obtain- 

ing quantitative information such as ring diameter, core size, and 

core rotational velocities. If a photograph of a ring visualized by 

dye (figure 2.4) is used to establish the diameter of the ring, 

(i.e., the distance between the centers of the two cores) it is dif- 

ficult to identify the exact positions of the core centers because 

of the diffuse characteristics of the dye. This task of core iden- 

tification is performed more easily with the hydrogen-bubble method 

because the bubbles will be driven toward the center of minimum 

pressure at the core, creating a bright region which makes the iden- 

tification of the center of the vortex core particularly easy. In 

general, the hydrogen-bubble method is one of the better flow visual- 

ization methods available for obtaining quantitative information 
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because of the production of discrete markers in the flow. 

2.5.3 WATER QUALITY 

To insure good quality photographic data, clean water, free 

from particulates and algae was necessary. The system was filled 

with water filtered by 1 micron (w.m) cotton wound filters. To con- 

trol the growth of algae and bacteria, copper sulfate (CuSOn • 5H2O) 

in granular form was added to the water in concentrations of 5 to 

20 g/m3 as recommended by the Degremont Water Treatment Handbook 

(12).  Plexiglass covers for the channel and end tanks and a contin- 

uous 1.1 m3/hr filtering system were used to prevent the accumula- 

tion of particulate matter. 

When the hydrogen bubble method was used, an electrolyte, 

sodium sulfate (Na2 SO4) was used in concentrations of 0.15 g/liter 

to facilitate the electrolysis process. 

2.6  VIDEO EQUIPMENT 

Once the flows were visualized, they were viewed and recorded 

using a two-camera INSTAR high-speed video system manufactured by 

the Video Logic Corporation. Framing at a rate of 120 frames/second, 

the cameras are synchronized with strobe lights to achieve an 

effective shutter exposure time of 10~5 sec. With conventional zoom 

and close-up lenses, the cameras can provide fields of view as small 
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as 6mm x 6mm at a distance of 0.5m. The viewing screen, a 250 line 

direct overlay raster display type with a sweep frequency of 25.2 

KHz, provides a high resolution picture. With two cameras, the 

system has a split-screen capability which allows the simultaneous 

viewing of two different fields-of-view.  Photographic data, 

recorded on a 1 inch magnetic tape recording unit, can be played 

back at real-time forward speeds and in flicker-free forward and 

reverse slow-motion. Slow-motion forward playback can be done at 

speeds continuously variable from 0 to 15 percent of real-time 

speed. Frame-by-frame and stop-action capability allows further 

detailed analysis of the recorded data. Individual pictures can be 

obtained using a videographic copier (a latent image process using 

heat developed dry silver paper) which interfaces directly with the 

video recorder or by conventional photographic methods. The 

majority of photographs presented in this work were obtained using 

Type 57 Polaroid film and a Polaroid back for a 4x5 Graflex camera. 

This video system is described in greater detail by Smith (89). 

Figure 2.5 shows the viewing angles of the two cameras. To 

obtain a sharp oblique plan-view, a plexiglass viewing box was used 

to prevent the distortion caused by diffraction of the light rays at 

the surface of the water. Lighting equipment consisted of two 90 

watt and one 1000 watt strobe lights, synchronized with the cameras, 

and two auxiliary quartz studio lamps employed for difficult 
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Figure  2.5 Perspective view of camera viewing angles and coordinate 
system orientation, 



lighting situations. For the dye visualizations, white plastic back- 

grounds were used with backlighting techniques. The strobe lights 

were mounted as shown in figure 2.2. For hydrogen-bubble visualiza- 

tion, a black background was used with the strobes directed at an 

oblique angle (^35°) to the line-of-sight of the cameras. 

2.7 SCOPE OF EXPERIMENTS 

The experiments examined the interaction of stable laminar vor- 

tex rings with three types of surfaces:  a smooth solid surface, a 

free surface, and a smooth surface with a developing boundary layer 

flow. The visual data included video sequences taken for both 

qualitative observation of behavior and for quantitative evaluation. 

Six hours of video tape were recorded, consisting of 2530 separate 

vortex sequences, or approximately 2,127,000 individual picture 

frames. The 2530 recordings represent about one half the number of 

times the vortex generator was actually operated, a period over 

which the repeatability of the generator was very good. The gener- 

ator was used to generate 93 different types of vortex rings and 

interactions with approximately 25 separate video sequences recorded 

for each type. 

2.7.1  SOLID SURFACE CONDITION 

Of the three surface conditions, the solid surface was the con- 

dition most comprehensively studied, representing 83 of the 93 types 
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of vortex interactions examined. Of these 83 cases, 19 cases (23 

percent) were unacceptable for inclusion in the results presented 

here because they were either unstable at impact, turbulent, or 

improperly formed. Although not included in these results, these 

unacceptable cases often provided some insight into the interaction 

process. 

Because the primary objective of this work was an understanding 

of the three-dimensional flow interactions, the dye visualization 

methods were used for most of the solid surface cases. The hydrogen 

bubble method was used for a limited number of cases to obtain data 

for circulation calculations which are presented in appendix A. 

2.7.2 FREE SURFACE CONDITION 

To perform the free surface experiments, a "U" tube attachment 

to the vortex generator, shown in figure 2.6, was used to generate 

vortices which would propagate towards the surface of the water 

channel. Only one type of vortex ring, visualized with dye tech- 

niques, was generated with the free surface boundary condition. The 

free surface results were compared directly with solid surface 

interaction by impacting the vortex ring with a flat plexiglass 

plate device floated on the water surface. 
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Figure    2.6 Diagrammatic side view of a vortex ring approach- 
ing a free plane surface. 
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2.7-3 BOUNDARY LAYER SURFACE CONDITIONS 

A schematic diagram of a vortex ring approaching a laminar 

boundary layer is shown in figure 2.7. The traversing platform, 

convecting at the freestream velocity, allowed the generation of a 

vortex ring with a convection velocity equal to the freestream 

velocity and minimized any turbulence generated by the plexiglass 

viewing box and the vortex generator. Nine types of vortices were 

examined, of which two were studied in detail. The flow inter- 

actions were visualized using dye and hydrogen-bubble methods. The 

bubble methods were particularly useful in visualizing the boundary 

layer and evaluating boundary layer characteristics. 
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59 



CHAPTER 3:  RESULTS AND DISCUSSION 

3.1  IMPACT OF A VORTEX RING WITH A SOLID SURFACE;  QUIESCENT FLOW 

3.1.1  INTRODUCTION 

The trajectory of a vortex ring approaching a solid surface 

through a real fluid is not the same as that predicted by classical 

inviscid theory. The diameter of the ring remains finite. In its 

trajectory the vortex may rebound away from the surface, during 

which its radial and axial velocities may reverse. Presently there 

is disagreement over why the actual trajectories deviate from those 

predicted by classical theory. Some feel that these deviations are 

the result of an inviscid instability mechanism, while others feel 

that a viscid-inviscid explanation is more appropriate. The author 

agrees with the latter viewpoint and will attempt to provide evi- 

dence which supports this viewpoint. 

Another common conception is that the impact of a vortex ring 

with a solid surface results in the rapid transformation of the flow 

from one with a very orderly structure to one with the chaotic 

structure associated with turbulence. Although the transformation 

to turbulence appears to take place very chaotically (87), this 

transformation is actually a very organized process in which the 

vorticity of the vortex ring is rapidly dispersed into a larger 

volume of fluid through decreasing scales of fluid motion created by 
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a series of complex, but symmetric vortex interactions. The present 

work will illustrate the flow phenomena which are responsible for 

this degeneration of the vortex ring into an apparently "turbulent" 

state. 

The flow phenomenon which appears to be responsible for both 

the deviations in the trajectory from that predicted by classical 

theory and the rapid dispersal of the vortex ring is the generation 

of secondary vorticity by viscous effects as the vortex ring 

approaches a solid surface. The resulting secondary vorticity then 

interacts with the original vortex ring in a somewhat inviscid 

manner, causing substantial divergence from the classical image 

trajectory. 

By replaying flow visualization video tape sequences in slow 

motion, one can readily observe the effect of the secondary vortic- 

ity on both the trajectory of the original ring and the dispersal of 

its vorticity. The reader should realize that the sequences pre- 

sented are only a sample of the many video sequences which were used 

to draw the conclusions presented here. Each selected sequence con- 

tains photographs taken from a particular video sequence, but unfor- 

tunately cannot transmit the same degree of physical appreciation as 

experienced when viewing the original video sequence in slow motion 

replay. 
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3.1.2 GENERATION OF SECONDARY VORTICITY 

When a vortex ring approaching a solid surface reaches a height 

above the surface on the order of the ring radius, it begins to 

induce a flow between itself and the solid surface. As the vortex 

continues to approach the surface, a boundary layer flow is formed 

adjacent to the surface as a result of viscous effects. 

When the ring approaches very near the surface, a pressure mini- 

mum develops directly beneath the center of the core of the vortex 

ring with the imposed surface pressure increasing radially outward 

from this minimum. The resultant adverse radial pressure gradient 

causes the boundary layer flow beneath the ring to separate from the 

surface along a circular line which is below the vortex core and out- 

board of the perimeter of the vortex ring. (See Figure 3.1a.) The 

separated fluid forms an axially symmetric vortex sheet of opposite 

vorticity, which, if of sufficient strength, will develop into 

another vortex ring of opposite rotation to the original.  (See 

Figure 3.1b.) To distinguish between these two vortex rings, the 

original vortex ring shall be referred to as the primary vortex ring 

(PVR) and the ring generated from the induced boundary layer flow 

shall be referred to as the secondary vortex ring (SVR). The forma- 

tion of the SVR from the separated boundary layer has been predicted 

in a numerical boundary layer analysis by Doligalski (15) and observed 

experimentally by Boldes and Ferreri (5) and Cerra and Smith (7). 
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Figure 3.1 Schematic diagram of primary, secondary and ter- 
tiary vortex rings.  (a)  Primary vortex ring 
approaching solid surface.  (b)  Generation of 
secondary vortex ring.  (c)  Generation of ter- 
tiary vortex ring. 
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After formation, the primary and secondary vortex rings inter- 

act with each other in an apparent Biot-Savart fashion. The second- 

ary vortex orbits from the outside perimeter of the primary vortex 

over the top of the core and towards the inside perimeter of the 

primary ring. 

If the primary vortex ring has sufficient strength after the 

secondary vortex ring has formed, another vortex ring of vorticity 

opposite to that of the primary ring may form from further boundary 

layer development beneath the ring. This vortex ring will be re- 

ferred to as the tertiary vortex ring (TVR). A side view showing the 

proximity of these three rings is shown schematically in Figure 3.1c. 

Figure 3.2 is a sequence of photographs showing the right half 

of a dyed vortex ring as it impacts a solid surface. Note the 

finite increase in diameter of the ring. The formation of the 

secondary vortex can be observed in the latter half of the first row 

and into the second row of photographs in the sequence. The rota- 

tion of the end of the dye spiral in the secondary vortex gives an 

indication of its vorticity as it orbits above the primary vortex. 

In the third row one can observe the formation of a relatively weak 

tertiary vortex ring and the disappearance of the secondary vortex 

as it orbits into the interior of the primary ring. Although not 

shown here, the tertiary vortex ring will also behave in a manner 
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Figure 3.2 Close view of right half of vortex ring impacting solid plane surface 
(side view, dye placed in vortex ring). Vortex ID. ^52.218, Re0=564. 
Pictures are 0.25 seconds apart. 



similar to the secondary vortex. The interaction of the three 

vortices does not stop at this point, but rather becomes much more 

complicated. However, before the complete interaction process with 

all its complexity is described, a relatively simpler discussion of 

the trajectories of the vortex rings will be presented. This latter 

discussion should aid in understanding the details of the total 

interaction process. 

3.1.3 VORTEX RING TRAJECTORIES 

The vortex ring trajectories presented here were traced onto 

clear plastic sheets from either the video monitor screen or video- 

graphic prints, which were obtained from a videographic printer 

which uses a latent image process with heat developing silver paper 

and interfaces directly with the video recorder. In both cases, it 

was necessary to observe the recordings in slow motion to assist in 

the identification of the centers of the vortex cores from the 

relative motions of the fluid particles. 

As stated earlier, inviscid theory predicts a trajectory for 

which the diameter of the ring increases to an infinite value as the 

ring asymptotically approaches the surface. Because the fluid by 

definition has no viscosity, this theory does not predict the forma- 

tion of secondary vorticity. 
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Although the laws of inviscid dynamics reasonably model the 

trajectory of a real vortex ring far from a solid surface, they fail 

when the ring is in the vicinity of the plate. Figure 3-3 is an 

example of the trajectories of the primary, secondary, and tertiary 

vortex rings resulting from the interaction of a ring with a low 

initial Reynolds number (Re0) based on initial ring diameter, propa- 

gation velocity, and kinematic viscosity. The formation of the 

secondary and tertiary vortices occurs near points in the primary 

trajectory when the primary vortex is closest to the surface. At 

these points the adverse radial pressure gradient is greatest, 

apparently creating discrete boundary layer separations which form 

the secondary and tertiary vortices. 

Figure 3^3 clearly shows the finite limit of the growth in the 

primary ring diameter and a definite "rebound" of the primary ring 

away from the surface in two locations. As will be discussed, this 

rebound phenomenon appears to be caused by an inviscid interaction 

between the primary vortex ring and the secondary and tertiary 

vortex rings. 

Figure 3.4 shows another set of trajectories for a set of 

primary, secondary, and tertiary vortex rings obtained for a primary 

vortex ring with a much higher Reynolds number. This figure indi- 

cates that the primary ring not only rebounds, but also experiences 
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Figure 3.3  Trajectories of the right cores of the primary, 
secondary> and tertiary vortex rings, Curve I: Trajectory of the 
primary vortex ring. Curve II; Trajectory of the secondary vortex 
ring. Point A on curve I coincides in time with the origin of 
curve II, Point B on curves I and IT coincides in time with the 
origin of curve III,  O Marks time intervals of 0.5 seconds. 
Vortex ID,#52.218, Re0=564, Observe rebound in the trajectory 
of the primary vortex, 
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Figure 3.4  Trajectories of the right cores of the primary, 
secondary, and tertiary vortex rings. Curve I: Trajectory of the 
primary vortex ring. Curve II; Trajectory of the secondary vortex 
ring. Curve TIT: Trajectory of the tertiary vortex ring. Point A 
on curve I coincides in time with the origin of curve II. Point 
B on curves r and IT coincides in time with the origin of curve 
III,    O Marks time intervals of 0.5 seconds. Vortex ID,#52,250, 
Reo-2550. Observe rebound and reversal of primary vortex, 
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a reversal in radial velocity which shrinks the ring diameter. The 

primary vortex in this case is much stronger as indicated by the 

larger Reynolds number. The secondary and tertiary vortices are 

consequently stronger. It was generally found that vortices with an 

Re0 less than 600 only displayed a rebound behavior, whereas when 

Re0 was greater than 1300 both rebound and reversal occurred. For 

vortices with an Re0 between 600 and 1300, rebound was always 

observed while reversal was observed only sometimes. 

Figure 3.5 shows the trajectories of 4 different primary vortex 

rings with Re0 ranging from 564 up to 2840. In the first trajectory 

(Figure 3.4a), only rebound occurs. The PVR is rather weak as is 

indicated by its Re0 of 564. In each of the next three trajectories 

(Figures 3-5b - d) both rebound and reversal occur; all of the 

vortex rings have an Re0 greater than 1300. Note that the strength 

of the reversal, or complexity of the trajectory appears to increase 

with the initial Reynolds number. 

The explanation for rebound, reversal, and other variations 

observed in the trajectories of primary vortex rings appears to lie 

in the velocities induced by the presence of the secondary and 

tertiary vortices. In the vicinity of the solid surface the primary 

vortex experiences a small self-induced axial propagation velocity 

and a radial velocity due to an image vortex effect created by the 
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Figure 3.5 Trajectories of the right cores of primary vortex rings, 
(a) Vortex ID #52.218, ReQ = 564;  (b) Vortex ID #51.160, 

= 1680;  (c) Vortex ID //52.250, Re0 = 2550; Rec 
(d) Vortex ID Z/52.265, Re0 = 2840; 
of 0.75 seconds. 

Marks time intervals 



surface. However, the formation of a secondary vortex by viscous 

effects creates a situation such that the primary and secondary 

vortices will mutually induce a velocity upon each other due to 

Biot-Savart effects. The velocity which the secondary vortex 

induces on the primary vortex is responsible for the rebound and 

reversal observed in the primary vortex trajectory. Likewise the 

velocity which the primary vortex induces on the secondary vortex 

causes the secondary vortex to orbit around the primary vortex. As 

the secondary vortex orbits the primary vortex, the direction of the 

mutually induced velocities continually changes. As illustrated in 

Figure 3.6, when this induced velocity due to the secondary vortex 

is vectorally added to the self and image induced axial and radial 

velocity components of the primary vortex ring, the result is a 

primary vortex core velocity which can experience drastic changes in 

both magnitude and direction, yielding the observed rebound and 

reversal behavior. 

The presence of the tertiary vortex has an effect on the 

primary vortex very similar to that of the secondary vortex. The 

tertiary vortex induces a velocity on the primary vortex just as the 

secondary vortex does; however, the interaction process becomes much 

more complicated by the presence of three interacting vortices. Not 

only do the primary and tertiary vortices mutually induce velocities 

on each other, but induced velocities are also experienced between 
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the secondary and tertiary vortices as well. In addition to the 

mutually induced velocities, there are also self-induced propagation 

velocities acting on each of all three vortices. Figure 3.7 

attempts to illustrate the self and mutually induced velocities and 

the progressive increase in complexity of the interaction process. 

The relative strengths of the vortices is an important deter- 

minant of the nature of the interaction process. The initial 

Reynolds number of the fully developed primary vortex ring, which 

can be used to indicate the strength of the primary and to a much 

lesser extent that of the secondary and tertiary vortex rings, is 

given by, 

Re0 = D0U0 (3-1) 
V 

where 

Do = the initial diameter of the fully developed primary vortex 
ring 

Uo = the initial translational or axial velocity 
))   = the kinematic viscosity. 

The strength as measured by the circulation T of an inviscid vortex 

ring is given by (64), 

r = MTT HU  (3-2) 
ln(8R/a) - C 

where 

a = the core radius of the vortex ring 
c = a constant dependent on the vorticity distribution 

across the core 
R = initial vortex ring radius 
U = initial propagation velocity of the vortex. 
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Figure  3.7  Velocities resulting from vortex interactions, 
(a) Generation of secondary vortex ring, (b) Generation of ter- 
tiary vortex ring, (c) Subsequent interaction of primary, secon- 
dary, and tertiary vortex rings. VMPS: The velocity which the 
primary and secondary vortices mutually induce on each other. 
VMPT: The velocity which the primary and tertiary vortices 
mutually induce on each other. Vps; The self-induced propaga- 
tion velocity of the secondary vortex. Vpj: The self-induced 
propagation velocity of the tertiary vortex, VMST: The rota- 
tional velocity which the secondary and tertiary vortices 
mutually induce on each other, 
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For a constant fluid viscosity, as the Reynolds number 

increases, the circulation will also increase subject to the change 

in the ratio of ring radius to core radius. The strength of the 

secondary and primary vortices should also increase as the strength 

of the primary vortex increases. Visual observation of the vortices 

seemed to support the hypothesis that the strength of all three 

vortices increased as the Re0 of the primary ring increased. 

Appendix A discusses various attempts to quantitatively determine 

the strength of the primary vortex. Because the attempts met with 

limited success, the Reynolds number, Re0, based on initial ring 

geometry and propagation characteristics was used to indicate the 

strength of the vortices examined in this study. 

Figure 3-5 will now be reexamined to illustrate how the 

strength of the interacting vortices, as indicated by the Reynolds 

number, can influence the trajectory of the primary vortex ring 

(PVR). As was discussed earlier, for Re0 less than 600 only rebound 

was observed in the trajectory of the primary vortex, which is 

illustrated in Figure 3.5a. Here the velocity induced by the SVR 

causes a relatively weak PVR to momentarily rebound away from the 

surface, after which the PVR's self and image induced velocities 

cause the PVR to continue to increase in diameter and reapproach the 

surface. The next three vortices have Reynolds numbers of 1680, 

2550, and 2840, all of which are above the 1300 Re0 level for which 
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both rebound and reversal are observed. For reversal to occur, the 

secondary and usually the tertiary vortex rings must be strong 

enough to cause at least a momentary inversion of the primary vortex 

ring's radial velocity. In Figure 3.5b, the first reversal in the 

trajectory, caused by the SVR, is only momentary and creates a loop 

in the trajectory. The second reversal, caused by the TVR, is also 

momentary, resulting in a second loop in the trajectory following 

which the PVR continues to increase in diameter, influenced predomin- 

antly by its image velocity at this point. In the next two Figures, 

3.5c and d, the trajectories end in a state of permanent reversal. 

The vortices here are much stronger as indicated by their Reynolds 

numbers of 2550 and 2840. The TVR apparently has sufficient 

strength to cause a permanent reversal in the trajectory of the PVR; 

the PVR moves back toward its center axis and ceases its radial 

expansion. The reader should note one difference between these two 

trajectories. In Figure 3«5d, the PVR is able to close the loop 

formed during its second reversal before it permanently reverses. 

This is due to the influence of its induced image vortex velocity 

and the complicated interaction which is taking place between all 

three vortices. This complicated interaction will be discussed more 

fully in a later section of this chapter. 

The dynamics of the rebound and reversal process can be summar- 

ized as follows. As the primary vortex ring of Re0 greater than 
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1300 approaches the wall, its radial velocity and, therefore, 

diameter increase because of the image vortex effect caused by the 

wall. At some point when the primary vortex is very close to the 

wall, the boundary layer flow induced by the vortex separates due to 

the adverse radial pressure gradient. This separated boundary layer 

flow rolls up into a secondary vortex ring of opposite sign to the 

primary ring. A process of mutual interaction between the secondary 

and primary vortex rings then ensues. This process causes the 

secondary vortex to orbit toward the center of the primary vortex 

ring which is influenced by the velocity induced by the orbiting 

secondary vortex. At some point, as the secondary vortex ring 

orbits around the primary vortex ring, the velocity induced by the 

secondary ring becomes large enough and of the proper direction to 

overcome the radial velocity due to the image vortex effect, which 

results in the reversal of the primary vortex ring. As the second- 

ary vortex continues to orbit the primary vortex, the direction of 

the induced velocity changes and the velocity due to the image 

vortex effect again becomes radially dominant, causing the primary 

ring to again grow in the radial direction. As the primary ring 

approaches the wall again (due to both self induction and the 

induced secondary vortex velocity), the boundary layer flow again 

separates and rolls up into a tertiary vortex ring. Throughout this 

process the strength of the primary vortex ring is decreased as 

energy is transferred to the secondary and tertiary rings or is 
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dispersed into surrounding fluid. Thus, the velocity due to the 

image vortex effects is likewise decreasing. The tertiary vortex 

also orbits above the primary ring and induces a velocity on it. The 

velocity inversion of the primary vortex caused by the tertiary 

vortex may be momentary or permanent as shown in Figure 3-5, 

depending on the relative strengths and positions of the three 

vortex rings and the degree of interaction. 

The preceding discussion of the trajectory of the PVR has been 

done at a macroscopic level. The evaluation of the interaction of 

the PVR with the SVR and TVR and the subsequent effects on the PVR 

trajectory has been done in a two-dimensional sense; it was not 

necessary to consider any three-dimensionality in the interaction 

process. However, to properly discuss the mechanisms responsible 

for the dispersal of the initial vorticity of the PVR, the inter- 

action process must be examined at a microscopic level. In the 

following discussions of the dispersal of vorticity, the three- 

dimensionality of the interaction process will be examined and 

presented in detail. 

3.1.4 DISPERSAL OF VORTICITY 

Another, perhaps more important effect of the secondary vortex 

is to precipitate the breakdown of the structure of the PVR, result- 

ing in the rapid dispersal of vorticity of the primary vortex. 
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Some investigators (81) have observed that the organized flow of a 

vortex ring upon impact with a solid surface develops very rapidly 

into a "cloud" of turbulent fluid. Figure 3«8 shows the development 

of the primary ring into such a turbulent mass.of fluid at two 

points in time. Figure 3-8a shows the side and plan views of vor- 

tices at a point where the tertiary vortex ring is in the process of 

formation. One can observe that the primary vortex ring is still 

rather coherent and radially symmetric. On the other hand, figure 

3.8b shows the turbulent, chaotic mass of fluid which has resulted 

from the dispersal of the vorticity of the primary vortex as a 

result of the subsequent interaction of the primary ring with its 

secondary and tertiary rings. The following figures and discussion 

will attempt to illustrate the very organized nature of the inter- 

action which results in this dispersal of ring vorticity. 

3.1.4a  Laminar Diffusion 

The simplest mechanism by which the vorticity of the 

primary vortex ring can be dispersed is laminar diffusion. For 

Reynolds numbers below 350, laminar diffusion of vorticity was the 

only mechanism observed; no secondary or tertiary vortices were 

observed to form. Figure 3^9 shows a sequence of side and plan- 

views for a vortex ring of Re0 = 126 impacting a solid surface. The 

vorticity of the ring very slowly diffuses, as evidenced by the five 

second time span of the sequence, during which the vortex ring 
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(a) (b) 

Figure .3.8   Breakdown of primary vortex (side and oblique 
plan views, dye placed in vortex), (a) Before 
breakdown, (b) after breakdown. Side views: 
Vortex ID. #41.830, Reo=1250. Plan view: 
Vortex ID. #51.145, Re0=1000. 
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Figure   3.9 Vortex ring  impacting solid plane surface ((a)  side 
and  (b) oblique plan views,  dye placed in vortex 
ring).    Vortex  ID #50.625,  Re0=126.    Pictures are 
1.67 seconds apart. 
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never loses its coherent, azimuthally symmetric shape. When viewing 

these photographs, it is important to realize that the dye visualiza- 

tion can be somewhat misleading because the dye diffuses more slowly 

than the vorticity into the surrounding fluid (51). In this 

sequence, the vortex is sufficiently weak such that laminar diffu- 

sion suffices to cause dispersion of the vorticity without the 

generation of the secondary and tertiary vortices which,as will be 

shown for stronger initial vortices, accelerate the dispersion of 

vorticity by convection effects. 

3.1.4b  Primary-Secondary Vortex Interaction 

Vortices with Reynolds numbers greater than approximately 

350 generate secondary vorticity at the solid surface which, as 

previously explained, rolls up into secondary and tertiary vortex 

rings with vorticity of opposite sign to that of the primary vortex 

ring. Vorticity of the primary ring is rapidly dispersed into 

previously irrotational fluid through the generation of these 

secondary and tertiary vortex rings. The primary, secondary, and 

tertiary vortex rings then interact in a very organized manner to 

further disperse the vorticity of the primary vortex into the 

surrounding fluid. The eventual disintegration of these organized 

vortex flows results from a very complex viscid-inviscid, three- 

dimensional interaction process in which the scales of fluid motion 

are continually decreasing. 
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The flow within the primary vortex ring is initially axially 

symmetric when it impacts the solid surface, as is the initial 

secondary vortex ring generated from the axially symmetric vortex 

sheet created by this impact. After formation, the secondary vortex 

ring orbits from the outside perimeter of the primary vortex ring 

around the top of the core towards the inside perimeter of the 

primary ring.  As it orbits, the diameter of the secondary ring is 

compressed. This compression causes an instability (76) which leads 

to an azimuthal waviness in the secondary vortex ring. Figure 3«10 

is a sequence of photographs illustrating the interaction process, 

beginning with the impact of the primary vortex ring and continuing 

through the development of the azimuthal waviness in the secondary 

vortex.  In the last two frames the formation of the tertiary vortex 

ring can be observed. Figure 3.11 is a sequence for a primary 

vortex ring generated in an identical manner to that shown in 

Figure 3.10 with the interaction visualized by placing a sheet of 

dye adjacent to the solid surface, rather than in the fluid from 

which the primary ring was generated, as was done for Figure 3.10. 

Placing dye on the surface allows one to visualize the behavior of 

the fluid originally adjacent to the surface. From Figures 3-10 and 

3.11 one can clearly see that the secondary vortex ring is comprised 

of fluid not only from the primary vortex, but also from originally 

quiescent fluid at the surface of the plate. 
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Figure 3.10 Vortex ring impacting solid plane surface (side 
view).  Illustrates development of azimuthal wavv 
ness in secondary vortex, visualized by placino 
dye in vortex ring. Vortex ID.*41 .R30," Re0=1250. 
Pictures are 0.083 seconds apart. 
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Figure 3,11  Vortex ring impacting solid pi fine surface (side 
view).  Illustrates development of azimuthfil waviness in secondary 
vortex, visualized by placing dye on the surface. Vortex ID. 
••"41.830, Roo=12!i0. Picture time units are seconds. 
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The development of azimuthal waviness is shown in an oblique 

plan view in Figure 3.12. Note that during the initial phases of 

the interaction process the primary vortex ring does not develop the 

azimuthal waviness characteristic of the secondary vortex. Although 

the original vorticity of the primary vortex has been dispersed 

throughout a larger volume of fluid by the formation of the second- 

ary vortex ring, the primary vortex ring is still very coherent and 

has not yet begun to degenerate to the chaotic mass of fluid we 

commonly associate with turbulence. 

The azimuthal waviness which develops in the secondary vortex 

ring is speculated to arise from either an instability present in 

the primary vortex or more probably from an instability caused by 

the compression of the secondary vortex ring. It has been observed 

by Widnall (100) that a vortex ring propagating through a quiescent 

fluid may develop an instability which leads to an azimuthal wavi- 

ness in the ring. The development of this Widnall instability has 

been shown to be primarily a function of distance travelled. The 

present experiments were configured such that the fully developed 

vortex rings remained stable prior to impact with the surface. Of 

the many different types of vortices generated, a few became 

unstable before impact. Sometimes the formation of some type of 

secondary vorticity was observed before impact. In just about all 

of these cases, the secondary vortex ring which formed at the 
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Figure   3.12     Vortex ring  impacting solid plane surface  (oblique 
plan view,  dye placed  in vortex).   Illustrates development of azi- 
muthal waviness in secondary vortex.  Vortex  ID.#41.830,  Reo=1250. 
Picture time units are seconds. 
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surface displayed an immediate azimuthal waviness which appeared to 

be induced by the waviness in the primary vortex. 

However, the vast majority of the vortices examined in this 

study appeared to be stable and azimuthally symmetric before impact. 

As can be observed in Figures 3.10 and 3.12, these initially stable 

primary vortex rings display no azimuthal distortion even after the 

secondary vortex has developed an extreme azimuthal waviness. Since 

all observations of stable vortex impacts displayed the same univer- 

sal pattern (i.e. wavy secondary vortex ring, but non-wavy primary 

vortex ring) it is felt that the instability giving rise to the 

azimuthal waviness in the SVR probably develops due to the vortex 

compression effects and is not a result of an initial instability 

present in the PVR. 

The azimuthal waviness of the secondary vortex ring will event- 

ually create a waviness of the primary vortex ring structure through 

a complex viscid-inviscid interaction. The subsequent result of 

this interaction is a three-dimensional breakdown of the original 

flow field. The waviness of the secondary vortex ring will cause 

some sections of the secondary vortex to migrate closer to the 

primary vortex than other sections. Variations in the proximity of 

the two vortices causes variations in the mutually induced veloci- 

ties of these two rings. The variations in the velocities cause 
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three-dimensional stretching of the vortices and relocations of 

fluid, which through viscous action disperses the vorticity of the 

rings into a larger volume of fluid and in many different 

directions.  As the vortices are progressively stretched and 

entangled, the scales of motion continually decrease until an 

apparently chaotic "turbulent" state results. 

3.1.5  DEVELOPMENT OF SECONDARY VORTEX RING STRUCTURE 

After a secondary vortex ring develops an azimuthal waviness, 

it is observed to develop either a looped or a kinked structure; the 

difference in these structures is the extent to which the waves are 

deformed or stretched. The loop-structured secondary vortex has a 

wave structure which is highly deformed or stretched while for the 

kink-structured secondary vortex the waves are of smaller amplitude, 

being just barely observable. These two structures will be dis- 

cussed and illustrated in more detail in the following sections. 

As the Reynolds number of the PVR is increased, the structure 

of the SVR gradually evolves from a looped to a kinked structure. 

When the SVR structure is in the transition region between these two 

structures, one section of the SVR will often display the character- 

istics of the looped structure while the remainder of the SVR dis- 

plays a kinked structure. As the Reynolds number is increased 

beyond the transition region, the section of the SVR displaying a 
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looped structure will decrease until the entire SVR displays a 

kinked structure. As was mentioned previously, below an Re0 of 350 

no secondary vortex formation is obvserved. Loop-structured second- 

ary vortices were generally observed for vortices within a Reynolds 

number range of 470 to 1600. Between 1600 and 2500 the structure 

appeared to be in transition between a looped and a kinked structure. 

Kink-structured secondary vortices were observed for a Reynolds 

number range from 2500 to 3000. Above an Re0 of 3000, the present 

apparatus could not generate primary vortices which would remain 

stable prior to impact. 

3.1.5a  Loop-Structured Secondary Vortex Ring 

The loop-structured secondary vortex ring develops from a 

ring with azimuthal waviness of relatively small amplitude into a 

three dimensional vortex loop with azimuthally symmetric loops of 

large amplitude. A schematic diagram of such a loop structure is 

sketched in Figure 3-13- Each loop has one end which migrates very 

close to and orbits around the core of the primary ring while the 

other end of each loop migrates toward the center axis and away from 

the plane of the primary ring. The ends of the loops closer to the 

primary ring interact most strongly; their proximity to the ring 

results in much greater induced velocities causing the ends to orbit 

in a tighter arc about the core of the primary vortex. As shown in 

Figure 3.13b, if the strength of the primary vortex ring is 
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Figure  3.13 (a) Diagrammatic plan view and (b) diagrammatic 
side view of loop structured secondary vortex. 
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sufficient, the lower ends of the loops will pass beneath and around 

the core of the primary ring. This behavior has been observed 

(using dye placed on the plate) for the majority of the secondary 

vortices displaying loop behavior. Those for which loops do not 

rotate under the PVR still seem to be deformed or stretched by the 

PVR in such a way that a layer of dye is pulled away from the 

secondary vortex and under the PVR. The cause of this variation is 

uncertain; further study and analysis would be required to resolve 

this variation in behavior. 

Because they migrate farther from the PVR, the upper ends of 

loops in the secondary vortex ring do not interact with the PVR as 

strongly as the lower ends. As they orbit over the top of the core 

of the PVR, they stay above the plane of the PVR and propagate 

toward the center of the ring. Since the upper loops are farther 

from the PVR, the mutually induced velocities are less than those 

induced between the PVR and the lower ends of the loops. The 

vorticity of the upper loops is such that their proximity to each 

other causes a self-induced propagation velocity in the vertical 

direction away from the PVR. Thus in most observations of loop- 

structured secondary vortices, the upper ends of the loops move 

toward the center axis of the PVR and upward away from the surface. 

Generally as the Re0 of the PVR increases, the strength of the SVR 
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increases and the upper ends of loops move vertically upward with a 

greater self-induced velocity. 

Figures 3.14 and 3-15 show the development of a loop-structured 

secondary vortex in a side view; Figure 3.14 was visualized by 

placing dye in the PVR and Figure 3.15 was visualized by placing dye 

on the surface of the plate. One can observe the evolution of the 

SVR from a ring with azimuthal waviness to a structure consisting of 

highly deformed loops. Although the loops do not appear to be 

pulled beneath the core of the PVR, one can observe at the arrow in 

the last photograph of Figure 3.14 the aforementioned behavior in 

which a dye layer from the SVR is pulled beneath the core of the 

PVR. In Figure 3.15 the reader can observe the upper ends of the 

loops slowly propagating toward the center axis of the PVR. Because 

this is a relatively weak PVR (Re0 = 440), the upper ends of the 

loops do not propagate as far toward the center nor as far ver- 

tically as was observed in other cases of loop-structured secondary 

vortex rings. 

Figure 3.16 is an oblique plan-view obtained with dye on the 

surface illustrating the development of a loop-structured secondary 

vortex for which the lower loops pass beneath the PVR. The first 

row of photographs in this figure clearly shows the development of 

the periodic loops from the azimuthal waviness of the secondary 
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Figure 3.14  Development of loop structured secondary vortex, 
visualized by placing dye in the vortex (side view). Right edge 
of primary vortex is not in view. Vortex ID.#40.860, Reo=440. 
Picture time units are seconds. 
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Figure 3.15  Development of loop structured secondary vortex, 
visualized by placing dye on surface (side view). Vortex ID. 
#40.860, Reo=440. Picture time units are seconds. 
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Figure 3.16 Development of loop structured secondary vortex (oblique plan view, dye placed 
on surface). Vortex ID.#51.130, Re0=811. Pictures are 0.167 seconds apart. 



vortex. The edge of the clear region is essentially the location of 

the outer perimeter of the PVR. The last photograph in the first 

row and the photographs comprising the second row show the formation 

of the tertiary ring, the very dark ring of dye that appears at the 

beginning of the second row. At this same point in time, the lower 

loops of the secondary vortex can be observed to pass beneath the 

PVR with a consequential stretching taking place. As they stretch, 

the core diameters of these loops decrease and presumably their 

vorticity increases. As the ends of the loops are pulled under the 

core of the PVR, the sides of each loop trail behind somewhat 

parallel to each other, forming pairs of counter-rotating vortices. 

These counter-rotating vortex pairs wrap around the core of the 

primary ring very quickly. Starting with the sixth photograph in 

the sequence, the formation of "mushroom" shapes caused by these 

counter-rotating "legs" of the loops can be clearly observed in the 

lower section of each photograph. With the appearance of these 

mushroom shapes, both the primary vortex (observed in other se- 

quences with dye in the vortex) and the tertiary vortex begin to 

deform three-dimensionally. 

Once a three-dimensionality is imposed on the structure of the 

vortex ring, all subsequent motion, stretching, and entanglement of 

the vortices acts to increase the three-dimensionality. As the 

three-dimensionality increases, the scales of the motion decrease 
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and the structure of the vortices becomes increasingly complex. The 

symmetry of this process continually degenerates due to an amplifica- 

tion of initial irregularities, until what some researchers describe 

as a turbulent state results. In actuality what has happened is 

that the vorticity of the original vortex is dispersed through a 

larger volume of fluid in many different directions, but by a very 

organized and structured process. 

3.1.5b  Kink-Structured Secondary Vortex and Ejection Process 

Although both loop-structured and kink-structured secondary 

vortices cause the PVR to breakdown three-dimensionally and disperse 

its vorticity, there are significant differences as well as similar- 

ities in how each accomplishes this. Vortex loops or filaments 

which wrap around the core of the primary vortex ring are respon- 

sible in each case for the breakdown of the primary ring. As shown 

above, the loop-structured secondary vortex is substantially de- 

formed into periodic loops which wrap around the PVR core. On the 

other hand, the kink-structured secondary vortex ring deforms very 

little, but apparently induces other vortex filaments which wrap 

around the PVR core and lead to its three-dimensional breakdown. 

A second significant difference between these two types of 

secondary vortex rings is the final trajectory of each after it has 

orbited above the PVR into the center of the ring. The loop- 
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structured secondary vortex forms loops, of which some ends are 

wrapped around the primary core and the other ends remain in the 

center. The kink-structured secondary vortex undergoes a process 

which will be called secondary vortex ejection, because the entire 

secondary vortex (which remains in the shape of a ring) migrates 

vertically away from the PVR and the solid surface. This ejection 

process takes place with varying degrees of secondary vortex co- 

herence over the Re0 range reported. Although other researchers, 

notably MaGarvey and MacLatchy (49), have observed the loop- 

structured secondary vortex (although they did not identify it as 

such) to the author's knowledge, no one has reported observing the 

secondary vortex ejection phenomenon associated with the kink- 

structured secondary vortex. 

Figures 3«17a and 3.17b are a sequence of side-view photographs 

obtained using dye on the surface which show the formation of the 

kink-structured secondary vortex ring and the subsequent ejection of 

that ring away from the surface. The kink-structured secondary vor- 

tex ring initially forms in the same manner as the loop-structured 

secondary vortex. As shown by the plan view of Figure 3«18, the SVR 

orbits around and into the center of the primary ring, developing an 

azimuthal waviness in the process. However, upon reaching the 

center of the PVR, the waviness does not develop any further, with 

the SVR residing in the center of the primary ring for some time. 
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Figure 3.17a     Development of   kink   structured  secondary vortex 
with secondary vortex ejection  (side-view, dye placed on sur- 
face).     Vortex 
next page. 

ID.   #52.265,  Re =3000.     Sequence continued on 
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Figure 3.18a Development of kink structured secondary vortex 
with secondary vortex ejection . Visualized by placing dye 
on the surface (oblique plan view). Vortex ID.  #52.250, 
Re =2550. Sequence is continued on next page. 
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This behavior is apparently a result of a balance between 1) the 

velocity induced on the SVR by the PVR and 2) the self-induced 

velocity of the SVR (see Figure 3.7 )• The result is the elongated 

pause of the SVR inside the PVR. The SVR remains in the center 

until the tertiary vortex ring develops and orbits to a position 

above the primary ring. At this point, the velocity induced by the 

tertiary ring on the SVR is in the same direction as the secondary 

ring's self-induced propagation velocity. This causes an imbalance 

in the resultant induced velocity such that the SVR propagates (is 

ejected) away from the plate, forming a "mushroom" cloud. This is 

shown rather vividly in Figure 3.17b. Figures 3.18a and 3.18b show 

an oblique plan view of the same development of the kink-structured 

SVR and its subsequent ejection. 

Figure 3.19 shows the trajectories (as observed in side-view) 

of the primary, secondary and tertiary vortex rings for a typical 

ejection type impact. One can observe two occurrences of rebound 

and reversal in the trajectory of the primary vortex ring. The 

secondary vortex ejection phenomenon is clearly displayed by the 

SVR's trajectory. 

Far from the surface the PVR propagates downward because of its 

self-induced propagation velocity as shown in the initial portion of 

curve I in Figure 3.19. As it nears the surface, its diameter 
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Figure 3.19 Trajectories of the right cores of the primary, 
secondary, and tertiary vortex rings, Curve I; Trajectory of the 
primary vortex ring. Curve II; Trajectory of the secondary vor- 
tex ring, Curve III: Trajectory of the tertiary vortex ring. 
Point A on curve I coincides in time with, the origin of curve n. 
Point B on curves I and II coincides in time wttfi the origin of 
curve III,  O Marks time intervals of 0,5 seconds, Vortex 
ID,#52,Z65, Re0=284Q, Observe the rebound and reversal of the 
primary vortex and ejection of the secondary vortex, 
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increases because of the image vortex effect caused by the surface. 

At point A, a secondary vortex ring is generated through viscous 

effects. Between this point and point B, the PVR rebounds away from 

the surface and experiences a reversal in its radial velocity. This 

is caused by the mutual interaction with the SVR which is orbiting 

over the PVR. As the SVR orbits toward the inside of the PVR, the 

primary vortex begins to again migrate toward the surface. During 

this downward movement, viscous effects create a tertiary vortex 

ring which is formed at point B. As the PVR continues to approach 

the surface, its diameter again begins to increase because of image 

vortex effects. During the time from point B to the last time 

indicating circle, the SVR, influenced primarily by the PVR, 

continues its orbit over and into the center of the PVR. The PVR 

then undergoes a second rebound and reversal caused by the orbit of 

the tertiary vortex ring over the PVR. 

When the TVR reaches a position above the PVR coinciding with 

the last time marking circle of the trajectory curves, it is close 

enough to have a significant influence on the motion of the SVR. At 

this point in time, the SVR begins to propagate away from the 

surface rather dramatically. As pointed out earlier, the addition 

of the velocity induced by the TVR to the self-induced propagation 

velocity of the SVR causes the SVR to propagate away from the PVR 

and the surface. Over the period from the last time marking circle 
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until its complete dispersal, the diameter of the PVR is permanently 

decreased both in response to the influence of the secondary and 

tertiary vortex rings, and as a result of the diminished strength of 

the image vortex effect due to the dispersal of much of the initial 

vorticity of the PVR. 

The secondary vortex ejection as described above was observed 

to occur with varying degrees of coherency in the range of Reynolds 

numbers reported. In some cases, as in the sequences shown here, 

the secondary vortex would appear very ring-like and well structured, 

i.e. the SVR was not significantly deformed by any three-dimensional 

interaction with the PVR and TVR. In other cases, the secondary vor- 

tex would appear as a very turbulent vortex ring or even degenerate 

to a turbulent mass of fluid during the ejection process.  The 

coherency of the secondary vortex ring, as it propagated away from 

the PVR seemed to depend upon the extent to which the SVR interacted 

with the PVR and the TVR. More experimental investigation and 

analysis would be necessary to determine any discernible cause for 

this behavior. 

As complex as the interaction of the primary, secondary, and 

tertiary vortices already appears to be, it becomes even more 

complicated when one attempts to explain how the vorticity of the 

primary vortex is dispersed. As in the loop-structured case, the 

108 



initial dispersal of vorticity occurs with the generation of the SVR 

and TVR. As already stated, the vorticity of the primary vortex 

ring is further dispersed by filaments of vorticity which wrap 

around it. Figure 3.20 is an oblique plan-view sequence of one half 

of the vortex ring which illustrates the development of these vortex 

filaments. 

The first two photographs in the sequence (obtained using dye 

on the surface) show the secondary vortex ring just after formation 

and after it has orbited into the center of the PVR and developed a 

kinked-structure. The third picture reveals a sheet of dye passing 

over the top of the core of the PVR following the path of the SVR. 

Note that the edge of the dye sheet is somewhat smooth and continu- 

ous indicating the sheet is travelling at a relatively uniform 

velocity around the circumference of the PVR. In the fourth photo- 

graph of the first column, the tertiary vortex ring has formed and 

the dye sheet has reached a position directly above the core of the 

PVR. In the first picture of the second column, the dye passes 

between the cores of the primary and secondary vortex rings and is 

accelerated by the velocity field of the SVR. At this point, one 

can begin to see undulations in the leading edge of the dye sheet. 

These undulations, which are caused by the variations in proximity 

of the secondary vortex ring to the primary vortex ring due to the 

kinked-structure of the SVR, result in circumferential variations in 
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Figure   3.20a     Detailed interaction of primary, secondary, and 
tertiary vortices during secondary vortex ejection (oblique plan 
view of half of vortex rinq, dye on surface).  Vortex ID.#52.265, 
Reo=3000..   Times of pictures are 0.0,  0.275, 0.367,  0.433,  0,467, 
0.500,  0.533,  0.558 sec.  Sequence continued on next page. 
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Figure   3.20b    Detailed interaction of primary,  secondary, and 
tertiary vortices during secondary vortex ejection  (oblique plan 
view of half of vortex ring, dye placed on surface). Times of pic- 
tures are 0.583,  0.625,  0.667,  0.717,  0.733,  0.775,  0.925,  1.21 
sec.    Sequence is continued from previous page. 
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the velocity of the dye sheet. The faster moving regions will occur 

where the PVR and SVR are in closest proximity, likewise the slower 

regions will be where the two vortices are farther apart. 

The last three photographs in the second column of Figure 3«20a 

show both the growth in the undulations of the leading edge of the 

dye and the continued orbit of the tertiary vortex ring around the 

core of the PVR. In these photographs, the thinly dyed regions 

become difficult to see because of the brightness of the back 

lighted background. 

The undulations in the dye sheet indicate the presence of 

three-dimensional velocity gradients and thus vorticity. As this 

vorticity is stretched under and around the core of the PVR, small 

pockets can be seen to form in the edge of dye on the surface 

beneath the PVR. These pockets subsequently develop into the 

mushroom shapes associated with pairs of counter-rotating vortices. 

This pocket-mushroom shape development can be seen beginning with 

the last photograph of the first column of Figure 3.20b and continu- 

ing through the next two pictures of the second column. These 

mushroom shapes are indicative that the stretching of the vorticity 

in the undulating dye sheet (as it is wrapped around the core of the 

PVR) results in the formation of very coherent pairs of vortices. 

Throughout this process of formation of vortex filaments, the SVR 
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has remained essentially in the center of'the PVR, and the TVR has 

been slowly orbiting over the PVR.  In the second and third pictures 

of the second column of Figure 3.20b the SVR is beginning to move 

upward from the surface, out of the view of the camera. As it moves 

upward, it causes a very intense stretching of the vortex filaments, 

which interact very strongly with the PVR resulting in a rapid, 

almost explosive dispersion of the remaining organized vorticity in 

the PVR. As shown in the last picture of Figure 3.20b, the scale of 

the residual vorticity and coherent motions have been drastically 

reduced yielding a dispersed mass of apparently turbulent fluid. 

A side-view of this process of vorticity dispersion during a 

secondary vortex ejection process is shown in Figure 3.21. In the 

first two photographs of Figure 3.21a, the SVR has formed and is 

orbiting over the top and toward the center of the PVR. The follow- 

ing four photographs show the separation and roll-up of fluid into 

the tertiary vortex ring. In the last two photographs of the second 

column, one can just barely see the leading edge of the dyed sheet 

referred to in the plan-view of Figure 3-20. The fluid in the dye 

sheet appears to be part of a continuous sheet or layer of the fluid 

which separates from the boundary layer (created by the viscous 

interaction of the PVR with the surface) and rolls up into the ter- 

tiary vortex. For some reason, not all of the fluid is rolled up 

into the tertiary vortex ring. This fluid is then pumped or 
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Figure   3.21a     Detailed interaction of primary,  secondary,  and 
tertiary vortices during secondary vortex ejection   (side view ot 
right halves of vortices, dye placed on surface).  Vortex ID. 
-52.265,  Reo=3000..   Times of pictures are 0.0,  0.092,  0.150,  0.200, 
0.258, 0.308, 0.358, 0.383 sec Sequence continued on next page. 
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Figure 3,21b Detailed interaction of primary, secondary, and 
tertiary vortices during secondary vortex ejection (side view of 
right halves of vortices, dye placed on surface). Times of pic- 
tures are 0.458, 0.525, 0.592, 0.633, 0.675, 0.783, 0.942, 1.1 
sec. Sequence is continued from previous page. 
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accelerated between the primary and tertiary vortex rings because of 

the velocity fields induced by these vortex rings. The arrows in 

the last two photographs of column two of Figure 3.21a point to the 

leading edge of this dyed fluid as it travels over the top of the 

PVR. In the first photograph of Figure 3.21b, the leading edge of 

the dyed fluid is now between the cores of the primary and secondary 

vortices. One can see the undulations just beginning to form in 

this fluid. In the second photograph striations begin to form in 

the sheet as a result of the variations in velocity caused by the 

kinked secondary vortex, as explained earlier. One can also see 

what appears to be a fourth vortex attempting to form near the outer 

edge of the PVR. This is indicative of additional fluid separating 

from the boundary layer as the primary vortex again travels down 

toward the surface after the second reversal (caused by the tertiary 

vortex ring).  Apparently this additional separation of fluid does 

not have sufficient vorticity to roll up into an additional vortex 

ring. Note that at this point the dyed sheet of fluid previously 

referred to has not yet reached this newly separated fluid. In the 

third photograph, the dyed sheet has caught up with the newly 

separated fluid. The third and fourth photographs of Figure 3.21b 

now clearly show striations developing in the dyed sheet. Starting 

with the fourth photograph, the dyed fluid passes over the top of 

the PVR again. At this point the dyed sheet will take either one of 

two directions. Some will travel up between the secondary and 
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tertiary vortex rings, and some will continue around the PVR, 

passing down between the primary and secondary vortices. This 

splitting of the dye sheet is observed through the second photograph 

of column two. By this point, the SVR has already begun to move 

vertically away from the surface, initiating the intense stretching 

of the vortex filaments (indicated by the striations in the dye 

sheet) which causes the final dispersion of the PVR. This rapid 

dispersion is observed in the last two photographs, as the entire 

PVR flow pattern degenerates into small scale motions due to the 

rapid stretching and twisting of the vortex filaments. As the 

secondary vortex, and to some extent the tertiary vortex, move 

upward from the surface, they also become less coherent through an 

apparent interaction with the stretched vortex filaments (this is 

more clearly seen in Figure 3.17b). 

The process by which the vorticity of the PVR is dispersed for 

the kink-structured SVR case as just described is very complicated. 

Vorticity is incrementally dispersed at first in the production of 

the SVR and the TVR. Azimuthal waviness in the SVR further induces 

vorticity filaments which then wrap around the PVR. The stretching 

of these filaments during the ejection of the SVR subsequently 

causes three-dimensional relocation of fluid in the PVR, which 

results in the breakdown of the PVR. As the PVR, SVR, TVR, and 

these vortex filaments interact in an increasingly complicated 
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manner in accord with the laws of vortex dynamics, the scales of 

fluid motion continuously decrease until the vorticity of the PVR 

becomes fully dispersed throughout the fluid, subsequently decaying 

due to viscous effects. 

3.1.5c  Summary of SVR Structure 

Upon impact with a surface, vortex rings of Reynolds number 

greater than 350 will form a secondary vortex ring of opposite vor- 

ticity as a result of a viscous boundary layer separation process. 

The formation of the SVR and later the TVR represent a segmentation 

process by which a portion of the vorticity of the PVR is initially 

dispersed into originally quiescent fluid. The remaining vorticity 

in the PVR is dispersed via the inviscid interaction of the PVR, 

SVR, and TVR. As these vortices interact, vortex filaments wrap 

around the PVR causing the three-dimensional breakdown of the PVR. 

The SVR develops from the separation and rollup of the boundary 

layer induced by the PVR when it nears the surface. After formation, 

the SVR develops an azimuthal waviness as it orbits above and into 

the center of the PVR. At this point the SVR will evolve into 

either a loop-structured or a kink-structured vortex ring depending 

on the Re0 of the PVR as already explained. 
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For a loop-structured SVR, the azimuthal waves increase in 

amplitude to a point where the SVR develops into a three-dimensional 

vortex loop with azimuthal loops of large amplitude as illustrated 

by Figure 3-13. As the PVR and SVR interact in Biot-Savart manner, 

the ends of the loops in the center tend to propagate vertically due 

to self-induced velocity effects, whereas the ends closer to the PVR 

become wrapped around the core of the PVR. As loops of the SVR wrap 

around the PVR, the vorticity of the PVR is dispersed by the three- 

dimensional interaction of the vortices. 

The kink-structured SVR is differentiated from the loop- 

structured SVR by the small amplitude of its azimuthal waves and its 

ejection away from the surface. Although the SVR itself does not 

appear to develop loops which wrap around the PVR, it does induce 

apparent vortex filaments which wrap around the PVR, causing a 

dispersal of the vorticity of the PVR. Because the SVR remains 

somewhat coherent throughout the interaction process, it retains a 

significant self-induced propagation velocity which, when added to 

the velocity induced by the TVR, causes an ejection of the SVR away 

from the surface. 

The process by which the vorticity of the PVR is dispersed, 

changes as the Re0 of the PVR changes. The physical mechanism 

responsible for this change in behavior appears to be the change in 
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strength and stability of the SVR. At low Re0 (below 350), no SVR 

forms and vorticity dispersal occurs by laminar diffusion. In the 

Re0 range over which an SVR forms, vorticity dispersal occurs as a 

result of interacting vortex filaments which wrap around the SVR. 

Very early in this Re0 range, the SVR develops a loop structure from 

an instability which causes an azimuthal waviness in the SVR. As 

the Re0 increases, the number of waves or loops increase. As the 

Re0 increases further, fewer of the loops wrap around the PVR and 

the wave or loop amplitude decreases as the strength of the SVR 

appears to increase, the structure of the SVR is changing from a 

loop to a kink structure. As the Re0 increases through the range 

investigated, the SVR seems to be less influenced by mutual induc- 

tion with the PVR (as evidenced by the wrapping of the SVR loops 

around the PVR) and is more influenced by its own self induction and 

mutual induction with the TVR (as evidenced by the ejection of the 

SVR away from the PVR and the surface). However, as described in 

detail earlier, the vorticity of the PVR is ultimately dispersed by 

the interaction of vortex filaments wrapping around the PVR for both 

the loop and the kink-structured SVR. 

3.1.6  QUANTITATIVE RESULTS 

3.1.6a  Nondimensional Time to Formation of the Secondary Vortex 

The time to formation of the SVR was measured in reference 

to the point in the trajectory of the PVR when it was one diameter 
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away from the surface. As stated earlier, the SVR has its origin 

from both originally quiescent fluid and fluid from the PVR. For 

this measurement the formation of the SVR was defined as the point 

in time when the boundary layer had separated and begun to roll up 

and form the SVR. Since the trajectory of the PVR and the boundary 

layer flow were not visualized simultaneously, the point of boundary 

layer separation and rollup was arbitrarily determined to occur when 

the core of the dyed PVR was deformed such that a noticeable con- 

cavity appeared in its outer surface. This measurement is very 

sensitive to the subjective interpretation of the observer. As an 

example of the degree of core deformation used to indicate the 

formation of the SVR, in Figure 3.2 the point of formation of the 

SVR was determined to occur between the second and third photographs 

of the first row. 

The normalized time to formation of the SVR was defined as: 

Ts = t^Va (3-3) 

DO 

where 

T3 = normalized time for formation of the SVR 
ts = actual time elapsed from the point at which the 
PVR was one diameter from the surface to the 
point of formation of the SVR 
V0 = initial velocity of the PVR 
D0 = initial diameter of the PVR. 
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A plot of T3 versus Re0 compiled for 72 separate cases is shown 

in Figure 3.22. Note that Ts appears to change very slightly if at 

all with Re0. At lower Reynolds numbers there is a larger variation 

in Ts which is felt to be the result of uncertainty of the data 

measurements, and the subjectiveness in defining the formation of 

the SVR. A lower Reynolds number is indicative of a weaker PVR and 

a correspondingly weaker SVR. The weak SVR causes smaller deforma- 

tions of the core of the PVR which makes the determination of T3 

more uncertain. To indicate the subjectiveness of these lower 

Reynolds number measurements, the corresponding data symbols have 

been filled-in. A best fit average value of all the T3 measurements 

is 1.3 with a standard deviation of 0.3. 

A Ts value obtained experimentally was compared to a Ts value 

obtained from Doligalski's (15) numerical analysis (as described in 

Chapter 1) for a boundary layer induced on a flat plate by a circu- 

lar vortex ring which approaches the plate along its axis of 

symmetry. His analysis confirmed that the boundary layer will 

separate and form an eddy which will develop into a secondary vortex 

ring of vorticity opposite that of the PVR. His predicted Ts value 

of 0.92 was determined at the point of initial secondary eddy forma- 

tion in the boundary layer. This value agrees favorably with a 

value of 1.25 determined experimentally for the same set of vortex 

parameters as evaluated numerically by Doligalski. It is not 
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Figure    3.22 Nondimensional time of observation of the secondary vortex, Ts=tsV0/D0 
vs. Re0.  V , DM=0.95 cm.,  A , DM=1,4 cm.; O , DM=1.9 cm.;  □ , 
DM=2.2 cm.;  O » Dff=2,5 cm.; O » DM=3.2 cm. Solid symbols represent 
very weak vortices and indicate data based on very  subjective observa- 
tions. 



surprising that the numerical value is less than the experimental 

value because the method of definition of the numerical and experi- 

mental time differed slightly. Whereas Doligalski directly deter- 

mined the point of eddy formation in the boundary layer, the 

experimental values are based on observation of the effect of the 

eddy formation on the visualized PVR. Thus, one would expect a lag 

in time between when the eddy forms and when it has grown in 

strength sufficient enough to have an observable effect on the PVR. 

3.1.6b  Instability of the SVR: Number of Azimuthal Waves 

As already indicated, after formation the SVR develops 

azimuthal waves as it orbits above and into the center of the PVR. 

The number of waves formed, N, were determined for a number of 

vortex rings with L^/DM eQual to 1*6 or 2.2. The results of these 

determinations are shown plotted vs Re0 in Figure 3.23. An apparent 

relationship exists between the number of waves observed and the 

initial Re0 of the PVR. The line on the plot is a least squares 

linear regression curve fit of the data. 

The number of waves is obviously a result of the complicated 

flow interaction occurring between the SVR and the PVR. The com- 

pression of the diameter of the SVR as it orbits above the PVR 

appears to be the major cause of the instability. The flow inter- 

action with the PVR and the velocities induced by each vortex then 

determine how much the waves deform. If much deformation takes 
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Figure 3.23 Number of waves in secondary vortex ring, N vs. 
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place, a loop-structured SVR is formed; if little growth occurs, a 

kink-structured SVR is formed. 

The possibility also exists that the number of waves may be 

related to an initial instability of the PVR. Many investigators, 

including Krutzsch (39), Maxworthy (51-53), Widnall et al. (100,101) 

and Didden (13), have observed the instability of a vortex ring in 

a free fluid far from any boundaries. The instability for such a 

ring also manifests itself as an azimuthal waviness which grows in 

amplitude at 45 degrees to the direction of propagation. The wavi- 

ness neither travels nor rotates around the vortex core. The waves 

grow to finite amplitude and then apparently break, transforming the 

laminar ring into a turbulent ring (53). 

Widnall et al. (100, 101) performed a number of analytical and 

experimental studies of a vortex ring in a free fluid. This 

analysis showed that a vortex ring of small but finite core size in 

an inviscid fluid is unstable to small sinusoidal displacements of 

its centerline. The number of waves depends on the core size; as 

the core size decreases, the number of waves increases. 

In their experimental study they used flow visualization and 

laser-doppler-velocimetry techniques to determine the number of 

waves and vortex ring characteristics such as circulation, P , 
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translational velocity, V0, and core size, a. Their results 

take the form of a plot of the number of waves, N, versus a nondimensional 

velocity, V, 

V =  Vn   = ln(8R/a) + A - \        where 
PA1TR 

V0 = translational velocity 

p = ring circulation 

R = ring radius 

a = core size 

A = a constant which is a function of the 
vorticity distribution 

Basically, their experimental results indicate a reasonable 

agreement with their theory. 

Maxworthy conducted several experimental studies of vortex 

rings during which he observed the aforementioned instability of the 

initial ring. From his observations, he proposed the unproven 

theory that the instability is caused by secondary vorticity of 

opposite rotation, created at the outside wall of the orifice, which 

is swept into the main vortex ring. This secondary vorticity 

creates a layer on the outside of the ring which is unstable by 

Rayleigh's criterion because the square of the circulation decreases 

rapidly outwards (51). 

127 



In a study using laser-doppler-velocimetry and flow visualiza- 

tion techniques Maxworthy determined that both the number of waves 

observed in the vortex ring and the reciprocal of the core diameter 

increase monotonically with Re^, the Reynolds number of the fluid 

slug ejected from the nozzle. Furthermore, he determined that 

X/a = constant 

where 

X = ITD/N (A is the wave length of the waves) 
N = the number of azimuthal waves 
D = vortex ring diameter 
a = vortex core diameter. 

His results take the form of a plot of the number of waves at 

instability versus Re^. 

Didden (13) performed several experiments similar to those of 

Maxworthy in which he investigated laminar, unstable vortex rings by 

means of laser-doppler-velocimetry techniques. His study provides 

the most extensive quantitative information on vortex rings formed 

by expelling fluid from tubes (76). Because his report was written 

in the German language, this author is only able to discuss his 

graphical results, particularly a plot of N versus Re0, the initial 

Reynolds number of the vortex ring. 

3.1.6c  Comparison of the Instability of a Vortex 
Ring in a Free Fluid with that of the SVR 

To examine the possibility that the wave behavior observed 
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for the SVR is the direct consequence of an existing instability of 

the PVR prior to impact, the wave number results for a vortex ring 

in a free fluid as previously reported in the three studies of 

Widnall et al.  (100), Maxworthy (53), and Didden (13) are compared 

to the wave number results for the SVR as determined by the present 

study. 

Experimental data for the number of waves observed in an SVR 

from this study is compared in Table 3.1 to the data reported by 

Widnall et al. (100) for the number of waves in a vortex ring in a 

free fluid. The number of waves, N, is shown as a function of V as 

previously defined. 

Table 3-1 

Comparison of the Number of Waves Observed in This Study For 
an Unstable SVR With Those Observed By Widnall et al. (100) 

For an Unstable Vortex Ring in a Free Fluid 

Waves in 
SVR V 

2.31 

Waves 
Ring in 

in Vortex 
i Free Fluid 

6 

V 

7 2.52 

7 4.57 7 2.46 

8 4.41 8 2.77 

8 4.61 12 3.16 

9 5.65 

9 4.40 

10 4.92 
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There appears to be little correlation between the two sets of 

data. This is most likely due to the different methods of deter- 

mining the circulation used in the two studies. Widnall et al. 

(100) used a laser-doppler-velocimeter to experimentally determine 

the circulation of the vortex ring at a station downstream of the 

generating orifice. In the present study, because such equipment 

was not available, an estimate of the initial circulation at the 

orifice was used. This estimate of the circulation was determined 

from the measured piston displacement curve and a simple "slug" 

model of the amount of vorticity formed at the orifice (53). This 

technique of estimating the circulation will be discussed further in 

appendix A. Because of the poor correlation of results, no conclu- 

sions regarding the influence of a possible instability in the PVR 

can be drawn from this comparison. 

To properly compare Maxworthy's data, his Re^ data had to be 

converted to Re0 data. In his paper (53), he provides a table of 

L^/DMI Re^, and Re0 for 20 data points covering a L^/D^ range of 

0.66 to 1.51 and an Re0 range of 18,000 to 30,000. This data was 

curve fitted using a least squares linear regression analysis and 

plotted in Figure 3.24. At an L^/DM equal to 1.5, which was used to 

generate Maxworthy's N versus Re^ data, Re0/Rej»j equals 0.386. This 

value was then used to determine the Re0 corresponding to Re^ values 

reported by Maxworthy. For comparison, Re0/Re^ versus LJ/J/DM data 
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from Didden (13) and the present work are also plotted in Figure 

3.24. The data from the present work and Didden*s work appear to 

correspond very well. Maxworthy's data indicates that Re0/Refwj 

changed less with L^/DM than is indicated by the present data and 

Didden!s work. The difference in trends may be due to differences 

in the Reynolds number ranges over which the ratio was evaluated. 

Maxworthy's data ranged from an Re0 of 18,000 to 30,000, whereas the 

data of Didden ranged from 725 to 3300 and for this work ranged from 

125 to 5000. 

Table 3.2 compares the curve fit of N vs Re0 for the SVR shown 

in Figure 3-23 to the curve fit of Maxworthy's (53) N versus Re^ 

(converted to Re0) data and Didden's (13) N versus Re0 data for PVR 

instability. 

Table 3.2 

Comparison of the Number of Waves Observed in This Study For 
an Unstable SVR With Those Observed By Didden (13) and 

Maxworthy (53) For an Unstable Vortex Ring in Free Fluid 

Waves in Vortex    Waves in Vortex 
Ring in Free Fluid  Ring in Free Fluid Waves in 

Ren SVR 

500 7.2 

1000 8.0 

1500 8.8 

2000 9.7 

2500 10.5 

Didden (13) Maxworthy (53) 

5 5 

6 6 

7.1 7.1 

7.9 8 

8.6 8.7 
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The data of Didden and Maxworthy agree very well for the number 

of waves of an unstable vortex ring in a free fluid. However, the 

number of waves observed for a secondary vortex ring appears to be 

approximately two higher than the number observed for a vortex ring 

in a free fluid throughout the Re0 range investigated. 

The conclusion to be drawn from this comparison is that it does 

not appear that an instability in the PVR before impact imposes its 

wave number on the secondary vortex ring. Rather, the instability 

and hence the wave number of the SVR probably results from the com- 

plex interaction of the PVR and SVR which occurs as the SVR orbits 

the PVR and decreases in diameter. In this interaction the mutual 

and self-induced velocities would seem to play an important role. 

3.2  IMPACT OF A VORTEX RING WITH A FREE SURFACE 

To investigate the effect of surface condition, several experi- 

ments were performed in which vortex rings of identical initial 

conditions impacted with both solid and free surfaces. The vortex 

ring generator was configured as shown in Figure 2.6 such that the 

vortex ring would propagate toward the free surface. To perform the 

solid surface case, a flat bottomed plexiglass boat was floated on 

the surface. 
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One vortex ring, ID #51.825, was generated with an orifice 

2.54 cm in diameter located 3.5 ring diameters from the surface. The 

vortex ring, formed from an ejected slug 1.8 diameters in length, 

had a moderate Re0 of 1200. 

In this experiment the impacting vortex rings behaved very 

similarly, if not identically, for the two different surfaces. 

Figure 3.25 shows side-by-side views of a vortex ring impacting both 

a free and a solid surface. The only significant difference in the 

two sets of photographs is the initial concentration of the dye in 

the PVR. Note that secondary and tertiary vortices form for both 

surface conditions. An azimuthal waviness in the SVR, which can be 

seen in the second last photograph of Figure 3-25 and in Figure 3-26, 

develops into a loop-structured SVR for both interactions. Rebound 

and reversal are also observed to occur. The times to formation of 

the secondary vortices are within 5%  of each other, which is well 

within the experimental uncertainty for this determination. All 

visual aspects of the behavior appear to be essentially identical. 

These results are in agreement with the work done by Krauch 

(38) who observed similar phenomena and found that vortex rings 

impacting free and solid surfaces behaved very similarly as long as 

the free surface was not deformed by the vortex ring. Barker and 

Crow (2) also found that the approach of a two-dimensional vortex 
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Figure 3.25  Comparison of vortices impacting different sur- 
faces: (a) free plane surface, (b) solid plane surface (side view, 
dye placed in vortex). Vortex ring travels from bottom to top of 
picture. Vortex ID. "51,825, Reo=1200. 
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Figure   3.26 Vortex  impactinq free plane surface (oblique plan 
view, dye placed in vnrt.ex).    Vortex  ID.#51.825, 
Reo=1200.    Time between  pictures  is 0.439 sec. 
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pair to a free surface was very similar to that for a solid surface 

case. However, Barker and Crow did not observe the formation of 

secondary vortices for either case. Presumably, this is due to a 

deficiency in their flow visualization and photographic methods, or 

to the nature of turbulent, very high Reynolds number (25,000 and 

75,000) vortices. 

As Saffman (75) stated, one would expect a boundary layer at a 

free-surface to be much weaker than one at a solid-surface because 

of the difference in slip conditions; in a sense the free-surface 

boundary layer should experience continuous separation. Secondary 

vortices should, therefore, not form, or at least be very weak. 

Since these expectations were not realized, the actual condition of 

the free-surface was questioned. No surface contamination seemed to 

be present which would make the free-surface behave like a solid- 

surface with respect to slip. The possibility that surface tension 

was responsible for the behavior was then considered. 

To test the hypothesis that surface tension effects may (for 

low Reynolds number vortices) cause the free surface to behave 

similarly to a rigid surface with respect to slip, a few attempts 

were made to decrease the surface tension by placing a surfactant (a 

solution of liquid hand soap and water) on the surface. When a few 

drops of surfactant were placed on the surface, the surface layer of 
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fluid and contaminants could be observed to break down in a somewhat 

irregularly shaped region, which fluctuated rapidly in size and 

shape, eventually reconverging as the effects of the surfactant 

dissipated. The movement of .this layer imposed a velocity condition 

on the surface as the vortex ring impacted it and grossly affected 

the behavior of the ring. In an attempt to decrease the area over 

which the surfactant layer could spread and thereby stabilize the 

layer, a styrofoam ring was placed on the surface of the water such 

that the area affected by the surfactant could be confined and 

stabilized. This attempt also failed. The attempts at modifying 

surface tension effects were unsuccessful because of an inability to 

obtain a layer of surfactant which would remain in a stationary 

equilibrium on the surface. No experimental evidence could there- 

fore be obtained to support the contention that surface tension was 

responsible for making the free-surface behave like a solid-surface 

with respect to slip. 

From this examination it has been determined that the behavior 

of a vortex ring of moderate Reynolds number impacting a free- 

surface will be similar to that of a vortex ring impacting a solid- 

surface. Visual evidence indicates that the behavior for the free- 

surface case occurs for the same reasons as that for the solid- 

surface case, i.e. the vortex ring causes the formation and separa- 

tion of an induced boundary layer which develops into secondary 
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vortex rings, subsequently interacting with the PVR. The unanswered 

question seems to be why the free-surface behaves similarly to the 

solid-surface with respect to slip. The logical explanation appears 

to be the effect of surface tension, but attempts to show this were 

unsuccessful because of an inability to reduce the surface tension 

of the free-surface and obtain a surface in a state of stationary 

equilibrium. 

3.3  INTERACTION OF A VORTEX RING WITH A DEVELOPING 
BOUNDARY LAYER ABOVE A SOLID SURFACE 

3.3.1 OBJECTIVE 

The primary objective of the work already presented was to 

develop a better understanding of the behavior and interaction of a 

vortex element in the vicinity of a solid boundary. Hopefully, 

knowledge gained from these experiments can be applied to the under- 

standing of the behavior and interaction of three-dimensional vortex 

elements within turbulent boundary layers. To bring these experi- 

ments a step closer to this goal, the interaction of a convecting 

vortex ring (i.e. a simple three-dimensional vortex element) with 

a laminar boundary layer above a solid surface was examined. 

3.3.2 EQUIPMENT AND EXPERIMENTAL DIFFICULTIES 

To perform such an experiment, the traversing platform on which 

the vortex generator was mounted was translated in the streamwise 

direction with a velocity essentially equal to the free-stream 
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velocity. After the generation of a vortex ring, cameras and 

lighting equipment, also mounted on the platform and moving with the 

free-stream velocity, recorded the interaction of the vortex ring 

with the boundary layer. The flow visualization studies performed 

included: 

1) side and plan-views of the interaction of a vortex ring 

marked with dyed fluid; 

2) side and plan-views with a sheet of dye placed in the 

boundary layer fluid adjacent to the surface; 

3) a plan-view with a sheet of hydrogen bubbles generated 

by a horizontal bubble-wire adjacent to the surface. 

The hydrogen-bubble method is commonly used for visualization of 

turbulent boundary layers; it is used here to allow the flow 

behavior observed in the present study to be qualitatively compared 

with the characteristics observed for turbulent boundary layers. 

Only a limited number of the experimental parameters, particu- 

larly those involving the generation of the vortex ring, were varied 

during the course of the experiments. Eight different types of 

vortex rings were generated; two of these were studied and photo- 

graphed in detail. The changes made in the generation parameters 

and their ranges included: orifice diameter (D) 0.95 and 1.90 cm., 

ejected slug length (L/D) 1.2 to 3.1, height of orifice from surface 
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(H/D) 4.75 and 6.85, and the average ejected slug velocity (%) 5.03 

to 11.04 cm/sec. The initial Reynolds number (Re0) of the two 

vortices studied in detail were 567 and 727. The experimental para- 

meters which were not varied throughout the course of the experi- 

ments were:  the free-stream velocity (U^, ) of 4.1 cm/sec (yielding 

a Reynolds number (Rex) based on the location of the developing 

boundary layer of 1.96 x 105) and a boundary layer height (<5 ) of 

3.8 cm as measured from photographs of hydrogen bubble lines. 

Some difficulties encountered during the experiments required 

several compromises to be made, primarily with respect to the varia- 

tion of experimental parameters. One of the more difficult problems 

was the maintenance of a laminar boundary layer with the vortex 

generator orifice tube and the plexiglass viewing box immersed in 

the channel flow. When these parts were stationary just prior to 

the start of an experimental run, a weak laminar wake would be 

developed near the free-surface of the flow channel which could 

destabilize the laminar boundary layer. To minimize this problem, 

the flow velocity was kept relatively low and the distance over 

which the platform was moved with the flow prior to the generation 

of a vortex ring was maximized. Employment of these measures 

resulted in maintenance of an acceptable laminar boundary layer 

throughout the entire experimental run. 
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Another problem involved synchronizing the flow speed with that 

of the traversing platform such that a stable coherent vortex ring, 

convecting at the same speed as the surrounding fluid, could be 

generated. After much trial and error, the appropriate speeds were 

determined. The carriage speed was 3-81 cm/sec, and was 6.7%  slower 

than the free-stream velocity of 4.08 cm/sec. The small difference 

in these speeds did not significantly affect the laminar boundary 

layer due to relative motion effects. The difficulty in synchron- 

izing the flow and platform speeds to obtain a laminar boundary 

layer and stable vortex rings discouraged examination of a range of 

flow speeds during these experiments. 

3.3.3  EXPERIMENTAL RESULTS 

The interaction of a vortex ring approaching a solid surface 

through a boundary layer flow displays many of the characteristics 

of a vortex ring approaching a surface through a stationary fluid, 

in addition to some characteristics which are peculiar to the bound- 

ary layer flow case. The characteristics which are similar to the 

stationary flow case are an increase in diameter in the vicinity of 

the surface, the occurrence of rebound in the trajectory, and the 

formation of a secondary vortex ring with its subsequent development 

of an azimuthal waviness. Those characteristics which are peculiar 

to the boundary layer case show up in the trajectory of the vortex 

ring and include a pronounced tilting of the ring. 
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3.3.3a  Trajectory Data 

Figure 3*27 shows the trajectory of a vortex ring approach- 

ing a solid surface through a boundary layer. The frame of 

reference for this plot is fixed with respect to the solid surface. 

The pairs of connected circles indicate the relative positions of 

the two observable cores of the vortex rings at 0.5 second 

intervals. 

The most immediate feature of this trajectory is the apparent 

angle of the vortex ring. The first set of circles shows the vortex 

ring angled at 7 degrees with respect to the surfce and the last set 

at 12 degrees. In this and several other cases, the vortex ring 

entered the boundary layer at a slight angle. In the remainder of 

the observations, the vortex ring initially appeared to be very 

nearly horizontal with respect to the plate. In all cases, however, 

the angle of the vortex ring increased as it approached the surface, 

particularly in the immediate vicinity of the surface. The author 

can only speculate on the reason for the inconsistency of the 

initial angle of the vortex ring. It may possibly be due to flow 

disturbances occurring near the nozzle and the plexiglass viewing 

box although, as pointed out above, great lengths were gone to 

minimize these as much as possible. The increase in angle of the 

vortex ring as it approaches the plate can plausibly be explained by 

the interaction of the vorticity of the vortex ring with the 
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Figure 3.27 Trajectories of the two cores of a vortex ring in a laminar boundary 
layer above a solid surface.  Vortex ID.//31.323, Re =727.  O O 
indicate the relative position of the vortex ring at 0.5 second 
intervals.  Boundary layer thickness 6=3.8 cm. Freestream velocity 
U =4.1 cm/sec.  Vortex ring vertical velocity (Y direction) = 3.53 cm/s, 
  represents edge of boundary layer. 



vorticity of the boundary layer. The discussion of this interaction 

will be found below in conjunction with the discussion of the 

rebound of the vortex away from the surface. 

Note that for the case shown, the angle of the initial trajec- 

tory of the vortex with respect to the surface has a value of 142.2 

degrees averaged for the trajectory of the two cores. This was 

essentially consistent for all cases with the same initial conditions. 

Another striking feature displayed by Figure 3.27 is the 

increase in diameter of the ring as it approaches the plate. This 

increase in diameter occurs in two stages; the first is due to the 

image effect of the plate, and the second is due to the stretching 

caused by the velocity gradients of the boundary layer. 

When the vortex approaches the surface, its diameter will 

increase by image vortex effects (due to the presence of the 

surface), the same as observed for the stationary case described 

previously. The small loop occurring in the left trajectory between 

the second and third circles is a product of this image effect. 

This loop is initiated by the rapid increase in diameter of the ring 

due to image vortex effects. This increase in diameter is initially 

greater than the convection velocity of the ring, therefore the core 

initially propagates upstream. As this upstream propagation is 
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arrested and overcome by the combined effects of the velocity 

induced by the formation of the secondary vortex and a weakening of 

the PVR due to stretching (as its diameter increases), the convec- 

tive velocity of the boundary layer becomes dominant causing the 

vortex ring to turn downstream, thus completing the loop. 

The second stage of the diameter increase occurs because of 

stretching caused by velocity gradients in the boundary layer. For 

reasons to be explained later, the trailing edge or core of the ring 

reaches a position which is much lower in the boundary layer and 

closer to the surface than the position reached by the leading edge 

or core of the vortex ring. By the very nature of a boundary layer, 

the convective velocities decrease as one approaches the stationary 

surface and therefore the trailing core experiences a convective 

velocity which is less than the velocity of the leading core. This 

results in the stretching of the vortex ring in the streamwise 

direction. This stretching due to the boundary layer velocity gradi- 

ent does not directly affect the spanwise dimensions of the ring. 

Another feature of the flow interaction which can be observed 

in the trajectory is the rebound of the vortex ring away from the 

surface. The leading edge of the vortex ring rebounds and continues 

to move away from the surface. As the leading edge rises, the ring 

continues to stretch by the difference in the convection velocities 
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for each end of the ring. The trailing edge of the vortex undergoes 

a momentary rebound as evidenced by the loop in the trajectory and 

then continues to migrate closer to the surface until it dissipates. 

Observation of the video sequences shows that the cause of the 

initial rebound is the formation of the secondary vortex ring, just 

as for the stationary flow case. The subsequent motion, which is 

different for each end of the ring and results in a further tilting 

of the ring, indicates that there is another type of flow inter- 

action beyond that with the secondary vortex which is responsible 

for the observed behavior. 

Although the following hypothesis is speculative, it seems 

plausible to believe that the subsequent motion of each core can be 

attributed to interaction with the vorticity of the boundary layer. 

Figure 3-28 is a schematic diagram illustrating the vorticity of the 

PVR, SVR, and boundary layer vorticity. Let us assume that beyond 

the initial rebound caused by the SVR, its effect is small or negli- 

gible in comparison to the effect of the boundary layer vorticity. 

The boundary layer all around the outside of the PVR has vorticity 

of negative sense. The trailing core of the PVR also has vorticity 

of negative sense. Vortex elements with the same sense tend to 

rotate around each other or "leap frog" until they coalesce. This 
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type of behavior may be responsible for the approach of the trailing 

core of the PVR to the surface. 

<S 

Figure 3.28 Interaction of PVR, SVR, and 
boundary layer vorticity 
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The leading core of the PVR has vorticity of positive sense, 

opposite to that of the boundary layer vorticity. In this case the 

interaction will be similar to the interaction between the PVR and 

SVR; each vortex element will induce a velocity on the other. The 

boundary layer vorticity is of the proper sense to potentially 

induce a vertical velocity on the leading core of the PVR and thus 

cause this core to continue to rise. 

Of course the preceding discussion is much too simple to 

adequately explain the interaction occurring between the PVR and the 

boundary layer vorticity. The boundary layer vorticity is properly 

considered only as a field or distributed vorticity and one must 

consider the strength of this field above, below, and on all sides 

of the PVR to accurately explain the interaction process. The 

effects of the SVR and image vortex effects caused by the surface 

must also be included in any explanation. Such a discussion is 

beyond the scope of this work and is left to further study of bound- 

ary layer flows and vortex interactions. 

For the present discussion it is sufficient for the reader to 

realize that the lifting of the leading core away from and the 

approach of the trailing core to the surface are caused by the inter- 

action of the PVR with boundary layer vorticity and result in the 

streamwise stretching and tilting of the primary vortex ring. 
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3.3.3b  Flow Visualization Data 

The following photographs illustrate some of the points of 

the preceding discussion and provide a visual description of the 

flow interaction phenomena. 

Figure 3.29 is a side-view of a vortex ring, marked with dye, 

as it approaches a solid surface through a boundary layer. In the 

first photograph the vortex is approaching the surface at a slight 

angle; the edge of the surface can be seen as a faint white line in 

the lower fourth of the frame. Examining the sequence, one can 

observe a behavior with respect to the tilting of the vortex which 

is similar to that presented in the trajectory. The magnitude of 

the angle is less than that for the trajectory shown in Figure 3.27, 

which may be due to the difference in initial ring strength (as 

indicated by the Reynolds numbers) from Figure 3.27 to 3.29 

In the third photograph of the sequence, the formation of the 

secondary vortex ring along the trailing edge of the PVR can be 

observed. The SVR does not appear clearly at the front edge until 

two photographs later.  In the sixth photograph, the SVR develops a 

strong azimuthal waviness, which quickly evolves into a loop 

structure. The ends of the loops near the rear and sides quickly 

orbit above the core of the PVR and into the center of the ring. 

The upper ends of the loops which occur near the leading edge of the 
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Figure   3.29       Vortex impacting a boundary layer above a solid 
surface (side view,  dye placed in vortex).  Boundary layer flow 
is from left to right.  Frame of reference is moving at the free- 
stream velocity.  Vortex ID.#11.728, Re0=567.  Times'of pictures 
are 0.0,  0.1,  0.175,  0.233,  0.283,  0,367,  0.425,  0.492 sec. 
Uco = 4.1  cin/s;  <S = 3.8 cm. 

151 



PVR remain above the plane of the PVR and do not propagate into the 

center of the ring, probably because of the boundary layer velocity 

gradient effect discussed previously. In the last three photo- 

graphs, one can observe the initial formation of a tertiary vortex 

at the trailing edge of the PVR. 

Figure 3-30 shows an oblique plan-view (looking down at the 

vortex from the rear) of an impacting vortex ring, identical to that 

shown in Figure 3.29, again visualized with dye in the vortex. 

Initially, the diameter of the PVR increases uniformly because of 

the image vortex effects caused by the surface.  (Note that vertical 

distances in the photographs are slightly foreshortened by the 

camera viewing angle.) The streamwise stretching of the vortex ring 

can be clearly seen in the last two photographs of the sequence. 

In the fourth photograph, the SVR has developed a pronounced 

loop structure. The inner or lower ends of the loops are not 

visible in any of the photographs and presumably remain very close 

to the PVR or wrap around its core. The outer or upper ends of the 

loops propagate toward the center of the PVR; the ends of the loops 

from the leading edge of the ring do so to a lesser degree. 

Figure 3.31 is another side-view of the interaction of a vortex 

ring with the boundary layer with the interaction in this sequence 
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Vortex impacting a  boundary layer above a solid surface  (oblique plan 
view,  dye placed in vortex).  Boundary  layer flow is  from bottom to 
top in each picture.   Frame of reference is moving at the freestream 
velocity.  U„ = 4.1  cm./sec, fi = 3.8 cm., Vortex ID.#11.728, Re0= 
567.   Times of pictures are 0.0,  0.1, 0.2, 0.308,  0.408,  0.508,  0.625, 
0.933 sec. 



Figure 3.31  Vortex impacting a boundary layer above a solid 
surface (side view, dye placed on surface). Boundary layer flow 
is from left to right. Frame of reference is moving at the free- 
stream velocity. Vortex ID.#11.728, Re0=567. Times of pictures 
are 0.0, 0.058, 0.125, 0.225, 0.342, 0.458, 0.633, 0,917 sec. 
IL = 4.1 cm/s; a  = 3,8 cm. 
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visualized by placing dye in the fluid adjacent to the surface. 

Note that the fluid beneath the trailing edge of the PVR separates 

from the surface first, possibly because this end is closer to the 

surface and the boundary layer flow induced by this end of the vor- 

tex ring is therefore stronger. The superposition of the boundary 

layer effects induced by the PVR on the boundary layer flow already 

developing over the surface also has an effect on which end separ- 

ates first. The vorticity of the trailing core of the PVR has the 

same sign as the boundary layer flow, thus the additive effect will 

promote a more rapid growth and formation of a SVR. In contrast, 

the vorticity of the leading core of the PVR has the opposite sign 

of the boundary layer flow, thus the additive effect here will slow 

the growth of the boundary layer and retard the formation and 

strength of the SVR. 

As the separated fluid rolls up into the SVR, one can observe 

in the third and fourth photographs of Figure 3.31 that the SVR 

orbits over the trailing core of the PVR much more quickly that it 

does over the leading core. This occurs not only because of the 

angle of the PVR (the trailing core is noticeably lower than the 

leading core of the PVR) but also because of the direction of the 

orbit with respect to the direction of the boundary layer flow. 

Although the PVR induces a velocity which causes the SVR to orbit 

the PVR, at the leading edge the SVR must overcome the velocity of 
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the boundary layer flow in order to fully complete its orbit. As 

shown in the fourth through seventh photographs of this sequence, it 

has limited success in completing its orbit and primarily remains 

above the leading core of the PVR. In the last photograph, the PVR, 

well stretched and inclined at an angle, has lost much of its 

coherency. 

3.3.3c  Turbulence 

It has been suggested (18) that the impact of vortex rings 

is a primary mechanism for the causation of low speed "streaks" in 

the near-wall region of turbulent boundary layers. To examine this 

hypothesis, a series of vortex impacts with either dye in a sheet on 

the surface or with hydrogen bubble-line visualization were done to 

search for qualitative comparison between these vortex interactions 

and the turbulent streak structure. A series of three different 

representative cases from this study are presented and discussed 

below. 

Figure 3-32 shows a plan-view of a vortex ring impacting a 

boundary layer as visualized by placing dye in the fluid layer 

adjacent to the surface (the camera is moving with the flow). The 

region around the impact appears to remain somewhat laminar after 

the impact of the vortex. The flow in the last photograph of the 

sequence indicates the evolution of dye concentrations, but is 
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Figure 3.32 Vortex impacting a boundary l.jyer above a solid surface (oblique plan 
view, dye placed on surface). Boundary layer flow is from bottom to top 
in each picture. Frame of reference is moving at the freestream velo- 
city. U.„ = 4.1 cm./sec, .s = 3.8 cm., Vortex" ID.#31.323, Re0=727. 
Times of pictures are  0.0. 0.267, 0.458, 0.783, 1.15, 1.82. 



definitely not typical of the alternating high-speed, low-speed 

"streaky" pattern observed in the near-wall region of turbulent 

boundary layers. The dark regions are disorganized vortex filaments 

and not the regions of slow speed fluid normally characterized as 

streaks (88). 

Figure 3.33 is a similar plan-view, in which the development of 

the secondary vortex is much more coherent. One can more clearly 

see the development of the SVR from azimuthal waviness, to loop- 

structured SVR, and finally to disorganized vortex filaments which 

stretch ahead of the PVR. At first glance, these filaments may 

appear streak-like, but again are not. 

Figure 3.3^ is a plan-view of a vortex ring impacting a bound- 

ary layer visualized using the hydrogen bubble technique. This 

sequence is provided for those readers who are familiar with the 

visualization of turbulent boundary layer flows by this method. The 

flow at impact and in the region around the vortex ring appears to 

be laminar for quite some time. The flow in the latter part of the 

sequence appears to be highly three-dimensional, but no simple 

pattern characteristic of wall region turbulent structures appears 

to be present. Repeated observation of this type of visualization 

for vortex impacts in different phases of development relative to 

varied wire positions never revealed what could be construed as 
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Figure 3.33 Vortex impacting a boundary layer above a solid surface (oblique plan 
view, dye placed on surface). Boundary layer flow is from bottom to 
top in each picture. Frame of reference is moving at the freestream 
velocity. UM = 4.1 cm./sec, & =  3.8 cm., Vortex'ID.#11.728, Re0=567. 
Times of pictures are 0.0, 0.1, 0.2, 0.333, 0.492, 0.675, 0.917, 
1.2  sec. 



"characteristic" turbulence patterns (e.g. low-speed streaks) adja- 

cent to the surface. In fact, although typical turbulent patterns 

did ensue after the vortex impact, these were precipitated by the 

instability waves introduced by the disturbance which then broke 

down to yield turbulence. It was clear that the impacting vortex 

did not directly create turbulence type patterns, but only acted as 

a destabilizing influence on the boundary layer, causing a subse- 

quent transition of the boundary layer to turbulence (which can be 

accomplished by any number of different types of disturbances). 

Thus, while the interaction of an impacting vortex ring within a 

laminar boundary layer is instructive with regard to vortex 

dynamics, it is fairly clear that such symmetric vortices are not a 

constituent flow structure of turbulent boundary layers. 

The objective of these studies of a vortex ring impacting 

within a developing a boundary layer above a solid surface, was to 

examine the resulting flow interaction, providing basic information 

which may prove useful in establishing the role of vortex elements 

within turbulent boundary layers. The flow behavior observed was in 

some respects similar to that observed for the stationary impact 

case; the diameter of the vortex ring increases rapidly in the 

vicinity of the surface, a secondary vortex is formed, and a rebound 

occurs in the trajectory of the vortex ring. The flow interaction, 

however, is complicated by the presence of the boundary layer which 
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results in a tilting of the vortex ring which, though not completely 

understood, seems to be the result of the interaction with boundary 

layer vorticity. 

As pointed out, no characteristic turbulent patterns were 

observed to be generated in response to the vortex ring's impact 

with the boundary layer. Turbulence generation at a surface is 

clearly not dominated by simple vortex rings impacting within a 

boundary layer, as has been suggested by Falco (18). However, this 

is not to imply that some of the dynamics which are observed during 

such vortex impacts are not similar to those which occur in the 

near-wall region of turbulent boundary layers, since turbulence 

depends on three-dimensional vortex stretching and interaction. 

Thus, it is hoped that this particular study presented here may help 

provide some insight with regard to the effect that vortex elements 

may play in the development of a turbulent boundary layer. 
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CHAPTER H;  SUMMARY 

When a vortex ring (PVR) impacts a solid surface, the flow 

interaction is marked by three features:  1) During its motion 

toward the surface the PVR rebounds away from the surface and may 

experience a reversal of its radial velocity; 2) The PVR generates 

at the surface secondary vorticity of opposite sign to itself, which 

if of sufficient strength will roll-up into a secondary vortex ring 

(SVR) and possibly a tertiary vortex ring (TVR); 3) The vorticity of 

the PVR is dispersed very rapidly in a process that appears to be 

chaotic, but is actually very organized. These three flow features 

are the result of an apparent viscid-inviscid flow interaction 

between the PVR and the fluid adjacent to the surface. 

The initial stages of this interaction are primarily viscous in 

nature and result in the formation of the SVR. As the PVR approaches 

the surface, it induces a boundary layer flow which separates from 

the surface due to the adverse radial pressure gradient imposed by 

the presence of the PVR. If of sufficient strength, the separated 

boundary layer will roll-up into a SVR. Once formed, the SVR will 

orbit over the top of the PVR into its center, interacting in a 

primarily inviscid manner. After the SVR is formed, a tertiary 

vortex ring (TVR) may form in a manner similar to that which created 

the SVR, interacting with the PVR in a fashion similar to that of 
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the SVR. The inviscid interaction of the PVR, SVR, and TVR is the 

mechanism which is responsible for the aforementioned first and 

third flow features, i.e., the rebound and reversal in the PVR 

trajectory and the rapid dispersal of PVR vorticity. 

Contrary to the predictions of classical inviscid theory, the 

diameter of the PVR does not increase to infinity when it approaches 

the surface, rather it experiences only a finite growth in its dia- 

meter. The PVR also does not approach the surface asymptotically. 

The present study determined that a PVR with an Re0 less than 600 

will rebound away from the surface and a PVR with an Re0 greater 

than 1300 will not only rebound away from the surface, but can also 

experience an intermittent reversal of its radial velocity. This 

behavior is the result of an apparent Biot-Savart type interaction 

among the PVR, SVR, and TVR. As the three vortices interact, their 

relative positions change and therefore the directions of the 

induced velocities likewise change, creating the conditions for 

rebound and, depending on initial conditions, reversal of the PVR 

trajectory. 

The interaction of the PVR, SVR, and TVR is also responsible 

for the ultimate dispersal of the vorticity of vortex rings with a 

Re0 greater than 350.  (Below 350 the SVR is not observed to form, 

with PVR vorticity apparently dispersed relatively slowly by laminar 
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diffusion.) The initial dispersal of vorticity occurs with the for- 

mation of first the SVR and then the TVR. The continued dispersal 

of vorticity and breakdown in structure of the PVR results from the 

rather complex, three-dimensional, viscid-inviscid interaction of 

the PVR, SVR, and TVR. Because the structure of the SVR changes as 

the initial Re0 of the PVR increases, the nature of this interaction 

correspondingly changes. However, in all cases, the ultimate 

dispersal of vorticity is caused by vortex filaments which wrap 

around the core of the PVR and cause three-dimensional stretching 

and breakdown of the PVR. 

After a SVR is formed, it orbits over the top and into the 

center of the PVR. As it does so, the diameter of the SVR is 

compressed, causing an instability which results in an azimuthal 

waviness in the SVR. At this point the structure of the SVR may 

develop along one of two paths. If the amplitude of the waves 

increases, the SVR may develop a loop structure. If the amplitude 

of the waves remains small, a kink structure will develop. 

The loop structured SVR, which is observed for 470 < Re0 <  1600, 

evolves from a ring with azimuthal waviness of relatively small 

amplitude into a three-dimensional vortex with azimuthally symmetric 

loops of large amplitude. After the SVR orbits into the center of 

the PVR, one end of each loop will generally migrate toward the 
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center axis of the PVR and the other end of each loop will interact 

strongly with the core of the PVR. The ends of the loops which 

interact with the PVR are usually pulled beneath the PVR core, 

causing the loop structures to be wrapped around the PVR. This 

subsequent wrapping of the SVR around the PVR causes a three- 

dimensional stretching of all nearby vortex elements, a rapid 

decrease in the scales of motion, and the subsequent three- 

dimensional breakdown of the PVR and the dispersal of its vorticity. 

A kink structured SVR, which is observed over a Re0 range of 

2500 to 3000 is differentiated from the loop structured SVR by the 

lower amplitude of its azimuthal waviness and its complete ejection 

away from the surface. Despite its waviness, the kink structured 

SVR remains somewhat coherent after orbiting into the center of the 

PVR. After a brief pause in the trajectory of the SVR, during which 

the TVR forms and orbits above the PVR and SVR, the induced veloci- 

ties are such that the SVR propagates rapidly away from the surface 

and the PVR. For this kink structured SVR case, small vortex fila- 

ments (apparently the result of three-dimensional velocity gradients 

caused by variations in the proximity of the SVR to the PVR due to 

the azimuthal waviness of the SVR) are observed to wrap around the 

core of the PVR. As the SVR propagates away from the surface, the 

small vortex filaments are rapidly stretched causing a very strong 

166 



interaction with the PVR and a very rapid, almost explosive dis- 

persal of the remaining organized vorticity in the PVR. 

Regardless of the structure of the SVR, the mechanism respon- 

sible for the dispersal of the PVR remains the wrapping of vortex 

filaments around the core of the PVR. The interaction of all the 

vortex elements results in a three-dimensional breakdown of the PVR 

in a very organized manner in which the scales of fluid motion 

continually decrease. 

In addition to flow visualization data, some quantitative data 

was obtained for the interaction of a vortex ring with the quiescent 

fluid adjacent to a solid surface. This quantitative data included 

the time for formation of the SVR and the wavenumber of the 

azimuthal waviness of the SVR. 

The time for formation of the SVR is measured in reference to 

the point in the trajectory of the PVR when it was one diameter away 

from the surface. When non-dimensionalized on initial PVR condi- 

tions, this time appears to remain relatively constant over the Re0 

range investigated. The time obtained experimentally was compared 

to a predicted time for formation determined from a parallel numer- 

ical study by Doligalski (15) of boundary layer growth beneath an 

impacting vortex ring. Good agreement between his analysis and 
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experiment is further support for the formation of the SVR being the 

result of an explosive boundary layer growth caused by a viscid- 

inviscid interaction. Unfortunately his analysis is only valid up 

to the point of formation of the SVR and cannot model the subsequent 

multiple vortex interaction. 

As the SVR orbits into the center of the PVR, the SVR develops 

an instability which leads to an azimuthal waviness. The wavenumber 

of this instability was determined and plotted as a function of Re0. 

An examination was done to determine whether the wavenumber of the 

SVR is related to an initial instability in the PVR before impact or 

is the result of the complex flow interaction of the PVR and the 

SVR. It was concluded that the resultant wavenumber appears to be 

a consequence of the interaction process, with the wavenumber result- 

ing from an instability precipitated and amplified by the compression 

of the diameter of the SVR as it orbits the PVR. 

To investigate the effect of surface conditions on the flow 

interaction, several experiments were performed for which vortex 

rings of identical initial conditions impacted solid and free 

surfaces. It was determined that the flow behavior in each case was 

very similar if not identical. In each case the impact of the vor- 

tex ring causes the formation and separation of an induced boundary 

layer flow which develops into a SVR. This result leads to the 
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unanswered question of why the free surface behaves similarly to the 

solid surface with respect to slip. The logical explanation appears 

to be the effect of surface tension, but this could not be proven. 

The flow interaction of a vortex ring impacting within a devel- 

oping boundary layer above a solid surface was also examined in an 

effort to provide basic information which may prove useful in estab- 

lishing the role of vortex elements within turbulent boundary 

layers. The observed flow behavior was in some respects similar to 

that observed for the stationary impact case; the diameter of the 

PVR increases rapidly in the vicinity of the surface, a SVR forms, 

and rebound occurs in the trajectory of the PVR. There are also 

some aspects of the flow behavior which are unique to the boundary 

layer case. The PVR experiences a slight tilting behavior after 

entering the boundary layer, with the degree of tilt increasing as 

the PVR approaches the surface. The leading and trailing edges of 

the PVR behave differently in the vicinity of the surface with the 

SVR developing much more rapidly at the trailing edge of the vortex 

ring than at the leading edge. After an initial rebound, the trail- 

ing edge of the PVR migrates closer to the surface until it dissi- 

pates; the leading edge rebounds and continues to move away from the 

surface. The tilting of the PVR and the difference in behavior of 

the leading and trailing edges can be basically attributed to a flow 

interaction complicated by the presence of boundary layer vorticity. 
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APPENDIX A;  EVALUATION OF VORTEX RING CIRCULATION 

A.1  INTRODUCTION 

Among the parameters which characterize fully formed vortex 

rings are D, U-j-, and P , which are respectively the ring diameter, 

translational velocity, and circulation. Many investigators 

including Maxworthy (53) and Didden (13) have established that these 

parameters are functions of the vortex generator parameters which 

include the diameter of the vortex ring generator orifice, D^, the 

length of the ejected fluid slug, L^, and the time history of the 

fluid slug velocity, Uj^(t). Because there exists no satisfactory 

theory relating to these quantities, much experimental work has been 

done to determine the relationships between these parameters. 

There are a variety of experimental methods available to evalu- 

ate the vortex ring parameters D, U^, and P . The ring diameter and 

translational velocity are accurately evaluated using any of the fol- 

lowing methods:  flow visualization techniques, hot film anemometry, 

and laser doppler velocimetry. It is more difficult to accurately 

determine the circulation of a vortex ring because the velocity field 

associated with the vortex ring must be instantaneously evaluated. 

In this appendix, a review of some of the work that has been 

done to establish vortex ring circulation will be presented. 
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Evaluations of the circulation of the vortex rings examined in this 

study will  then be presented. 

A. 2     REVIEW OF  PREVIOUS WORK 

A.2.1     AN  ESTIMATE OF CIRCULATION  FROM  THE TRANSLATIONAL  VELOCITY 

Lamb  (40)  derived the classical Kelvin formula relating the 

translational  velocity  to the circulation of a circular vortex ring 

of small cross-section in a perfect fluid as 

UT  =     r   (ln(8D/d)  -   1/4) (A-1) 
21YD 

The critical assumptions for this derivation are circular cores of 

small cross-section (i.e. d/D << 1 where d is the core diameter) and 

uniform vorticity in the core (i.e. the core rotates as a solid 

body). 

If the translational velocity and the core and ring 

diameters can be determined, then an estimate for the vortex ring 

circulation may be established. There are two difficulties with 

using this method to estimate vortex ring circulation. The first 

difficulty occurs in determining the core diameter. It is difficult 

to determine accurately the core diameter using the same flow visual- 

ization techniques used to determine U>p and D. The second diffi- 

culty with this method is in the accuracy of this relation for real 

vortex rings, particularly when some of the assumptions used for the 

derivation of this relationship may not be valid. Normally, the 
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cores of real vortex rings are not of small circular cross-sections, 

nor do they generally have uniform vorticity contained entirely 

within their cores. The accuracy of this relationship for real 

vortex rings will be discussed later with the results of other 

experimental studies. 

Saffman (7*1) presented a relation for U^ for a vortex ring 

of arbitrary circulation distribution, P(s), as 

UT =  P  (In (8D/d) - 1/2 + A) (A-2) 
2-nTD 

rd/2       2 
where    A =  \   f T(s)<) ds (A-3) 

and s is a streamline of radius s in the core. These relations are 

presented to show how the relation (A-1) will change with the 

assumed or actual vorticity distribution in the ring. 

It- thus appears that the relationship between the transla- 

tional velocity and the circulation of a vortex ring is of limited 

usefulness to the experimenter in determining the circulation of a 

vortex ring primarily because of the difficulty in obtaining 

accurate core diameter measurements. 

Sallet and Widmayer (79) conducted an experimental investi- 

gation of laminar and turbulent vortex rings generated in air. 

Using hot wire anemometry techniques, they measured ring diameter, 
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D, effective core diameter, dc, and velocities of several points 

within the ring. The effective core diameter was defined as the 

distance between peaks in the measured velocity profile. The ef- 

fective core circulation, Pc, was then calculated from the relation 

Pc = lYdc (UMAX - UT) (A-4) 

One of their objectives was to verify the relationship 

between translational velocity and circulation. To do this, they 

needed to determine the total circulation of the vortex ring, which 

they estimated by resorting to theory. They determined that the 

core growth predicted by the Hamel-Oseen solution of the viscous 

decay of a line vortex agreed well with their measurements for 

laminar vortex rings. Using this solution they established that the 

total circulation, P, and the solid body core diameter, d, are 

given by, 

T=  Pn (A-5) 
0.715 

and 

d = 0.391 dc. (A-6) 

Relation (A-2) then becomes 

UT =    PP   [in/ 8D  \- 1/2 + A"] (A-7) 
2(0.715)TTDL \0.891dc/       J 

From their data and relation (A-7), they determined that a 

value of ln(2) for the constants, A-1/2, gave good agreement between 

their predicted and measured translational velocities. 
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A.2.2 DIRECT MEASUREMENT OF CIRCULATION AND VORTICITY 

A.2.2a  Sullivan, Widnall, and Ezekiel 

Sullivan, Widnall, and Ezekiel (92) measured the axial and 

radial velocity distribution in a vortex ring with a two-component 

laser Doppler velocimeter. The vortex ring was generated in air. and 

had a Reynolds number (Re = P/)>)  of 7780 and a d/D of 0.27, indica- 

ting that this vortex ring had a fat rather than a thin core. They 

were able to determine the circulation by two methods:  in the first 

they calculated P from the line integral of the velocity for a path 

around and far outside of the core of the ring; in the second they 

calculated P from the vorticity distribution within the ring.  (The 

vorticity was rather concentrated with roughly 8556 of the vorticity 

within the vf/(D/2)2U>p = 0.4 streamline.) These two circulation cal- 

culations yielded results which were within 3.456 of each other. 

From their measurements, they determined that neither 

Hill's spherical vortex model, where vorticity is distributed 

throughout a sphere, nor a model using a small core in solid body 

rotation properly described the vorticity distribution in their 

experimentally produced vortex ring. By numerically integrating 

their vorticity distribution, they established a value for A in 

relation (A-2) of 0.136.  This yields an A-1/2 value of -0.364, in 

sharp contrast with Sallet and Widmayer's (79) value of In(2). 
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A.2.2b  Maxworthy 

Maxworthy (53) performed a series of experiments with 

vortex rings generated in water with Reynolds numbers (Re^) ranging 

from 10,000 to 100,000. Among other quantities, he determined the 

circulation of the rings using a one-component laser Doppler velo- 

cimeter. He determined that although the vorticity distribution was 

peaked in the center of the core, significant vorticity was con- 

tained in the fluid outside of the core. Only 50% of the circula- 

tion was contained within the core of the ring, which is much less 

than indicated in the work of Sallet and Widmayer (79) and Sullivan 

et al. (92). 

Maxworthy also compared the measured circulation, P , to an 

estimate of the initial circulation, Ps, based on the vorticity 

present at the orifice during formation of the ring. From a simple 

"slug" model and the ejected slug nozzle velocity (determined from 

the vortex generator piston displacement curve, as measured with a 

displacement transducer), Ts was estimated from the relation 

>: 

He determined that Ps was approximately equal to P . Generally, 

one would expect Ps to be greater than P by the amount of negative 

vorticity which is created at the outside wall of the nozzle and is 

ingested into the vortex ring, cancelling some of the positive 

vorticity present in the ring. This negative vorticity was observed 
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and reported by Maxworthy (51) in some flow visualization experi- 

ments. Since the amount of negative vorticity was not measured, he 

could not comment quantitatively on the expected difference between 

the estimated circulation, Ps, and the actual measured circulation, 

P. In addition the "slug" model is very simple and does not 

properly model the roll-up process that occurs at the nozzle exit. 

The usefulness of the estimated Ps is as a simple reference value 

with which the actual measured value can be compared. 

A.2.2c  Didden 

In 1977 Didden (13) published a report at the Max Planck- 

Institut fur Stroraungsforschung in which he comprehensively investi- 

gated laminar vortex rings using both flow visualization and laser 

Doppler anemometry techniques. Only his results with respect to 

circulation will be discussed here. These comments should not be 

considered a complete representation of his work because of this 

author's inability to read the German text. 

The circulation, P, was measured with a laser Doppler 

velocimeter at a point three orifice diameters downstream from the 

orifice. This measurement was then compared to the "slug" estimate 

of circulation, P3, by the relation 

rs = 1 (T UM
2 (t) dt, (A-9) 

'o 

which, by assuming constant velocity across the nozzle exit plane, 
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reduces to 

H3 = 1 UM LM. (A-10) 
2 

Comparing P with Ps, he found that P was generally 30^ to 6056 

greater than r*s. Again, the effects of the negative vorticity 

generated at the orifice are not included in P s. In this case Ps 

underestimates the actual vorticity generated at the orifice even 

more than it did in Maxworthy's study (53). One difference between 

the two studies is the difference in the Reynolds numbers of the 

vortices; in this study the Reynolds number, Re0, is much lower, 

ranging from 650 to 6600. 

Didden (14) published the results of another study in 1979 

in which he attempted to determine the vortex circulation from the 

flow conditions at the nozzle. Using a laser Doppler velocimeter he 

measured the unsteady velocity field in the nozzle exit plane during 

the vortex formation process. From these measurements, the circula- 

tion of vortical fluid convected through the nozzle exit plane was 

evaluated. This work is perhaps the first attempt to directly 

measure all flows contributing to the initial circulation of the 

vortex ring, including the boundary layer of negative vorticity, 

which is produced at the outer wall of the nozzle and convected into 

the vortex ring. 
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In addition to calculating the circulation in the region 

X > 0 (X is the downstream distance from the nozzle exit plane), 

created by convective transport of vorticity through the plane X = 0 

during the piston displacement, Didden also determined the circula- 

tion of the ring at a position X = 3DM- Many detailed results are 

presented including plotted distributions of velocity, vorticity, 

and vorticity flux.  The following comments will be made on a plot 

of dimensionless circulation P = P/U^DM versus LM/DM- 

The positive circulation, produced by the boundary layer at 

*\ 
the inner wall of the nozzle, fj_, was greater than the circulation 

s\ A 

measured at X = 3 DM, ^W* The fc°tal vorticity, P , which included 

the negative vorticity formed at the outer wall of the nozzle was 
A 

slightly less than Py. Didden speculates that the deviation is 

probably the result of an inability to exactly determine the vor- 

ticity flux, dPj/dt, during the initial start-up period of the 

piston, since it is sensitive to the interpolation of the 

velocity near the wall. He also plots an estimate of circulation 

found by assuming a constant velocity across the nozzle exit plane 

as was assumed in his earlier work, and shows that it is much less 
A A 

than both Py and P. A significant result of this work is that the 

negative circulation produced at the outer wall is a significant and 

measurable amount; at one point in the early development of the ring 

the negative circulation, Pa, is as much as 25% of P/. 
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In conclusion, he presents the following three effects 

which are not accounted for in the simplified "slug" flow model: 

(i) The starting flow around the nozzle edge produces a 
large flow velocity U > Uj^ near the edge, causing a 
large vorticity flux into the vortex ring, especially 
at small t. 

(ii) At larger t, the maximum velocity u^ in the exit 
cross-section remains larger than U^ because of the 
displacement effect of the boundary layer. 

(iii) The net vorticity flux into the vortex ring is 
considerably diminished by the negative vorticity 
of the external boundary layer, which is produced 
by the flow of the rolling-up vortex at the outside 
nozzle wall.(14) 

Didden's last study (14) appears to be the best description 

to date of the production of circulation in vortex rings generated 

from a nozzle. He has shown that the circulation of a vortex ring 

can be accurately determined from a detailed measurement of the flow 

velocities at the nozzle during the formation of the vortex ring. 

A.2.3 MEASUREMENT OF CIRCULATION WITH FLOW VISUALIZATION TECHNIQUES 

A.2.3a  The Bubble Line Method 

The bubble line method consists of using the hydrogen 

bubble technique to measure the velocity along a closed path around 

the core. According to the assumptions of classical theory, all the 

vorticity is contained within the core of the ring, which is 

rotating in solid body rotation; the region outside the core is 

irrotational. To determine the circulation one must measure the 
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rotational velocity Q  along a closed path at the edge of or outside 

of the core. The expression for circulation then becomes 

P = Tfd2 e/2 (A-11) 

where d and 9   are the diameter and rotational velocity at the point 

of measurement with respect to the center of the core. 

The method seems simple enough to use, but the present 

author knows of no work where it has been employed successfully, if 

at all. Maxworthy (51) used the hydrogen bubble technique to 

visualize vortex rings, but he made no reports of any circulation 

measurements using this method. He did make some qualitative 

comments concerning the vorticity of the vortices; presumably these 

comments may have been based on observations of experiments for 

which this method was used. 

This method was one of those used to determine circulation 

in the present study. Results of these experiments will be reported 

in a following section. 

A.2.3b  A Combination of Kinematics and Flow Visualization 

Brasseur and Chang (6) describe a method in which simple 

flow visualization measurements are combined with relationships 

derived from kinematic properties of a vortical flow field using 

potential flow theory to compute the total circulation of a vortex 
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ring. Using simple flow visualization data, they were able to 

determine the change in the circulation of a fully developed vortex 

ring as it evolved. This is a powerful method because it can easily 

determine the circulation at multiple points in the trajectory of a 

ring from a single data realization. Other techniques, such as 

those using an L.D.V. require multiple data realizations. 

The method will be discussed in general terms below; the 

reader who is interested in the details may refer to their published 

work (6).  The Biot-Savart law as reported by Batchelor (3) kine- 

matically relates the velocity field to the vorticiy field at each 

instant in time. Assuming the vorticity is sufficiently concen- 

trated in the core, the vortex ring can be modelled as a filament of 

strength P and the flow field can be calculated using a much 

simpler relation: 

0(x) = ((    a (   V    \dA(y) + 0i(x) 
J)     dn I i*TTr / 

_   . _ (A-12) 
An I H-IYr. 1 

where A is the surface bounded by the filament, n is the outward nor- 

mal to that surface, r = x - T    where Y3 is the point at which the 

vorticity exits, and P^ is the potential field induced by the 

presence of boundaries and must satisfy Laplace's equation. Thus, 

there exists a kinematic relationship between the potential flow 

field and the strength and geometry of the vortex. From knowledge 

of the potential flow field and the geometry of the vortex ring, the 
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total circulation can be calculated. The necessary knowledge of the 

flow field and geometry of the ring is obtained from the flow 

visualization experiments in the form of U-p and T/R' where U^ is the 

translational velocity, T is the half thickness of the bubble of 

fluid moving with the ring, and R* is the radius to the outer edge 

of this bubble of fluid. Using the kinematic relationships, a/R is 

determined as a function of T/R'. Relationship (A-13), which is a 

modified form of the Kelvin/Lamb formula, is used in the determina- 

tion of the circulation of the ring. 

UT   = In (8R/a) - 1/3 (A-13) 
P/4TTR 

Brasseur and Chang used this method to compute the circu- 

lation and its variation with time for vortex rings over a range 

from Re0 = 690 to 50,100 as they propagated through a fluid filled 

tube. To check this method, they computed an estimate of the cir- 

culation, P3, using a simple slug theory and compared this value to 

the circulation computed using their method. The estimate of 

circulation, Ps, is given by relations A-14 and A-15 

Ps = C (L U(z)dz (A-1U) (L U( 

where C = vortex ring bubble volume. (A-15) 
ejected fluid volume 

They reported excellent agreement between the values of circulation 

otained using their method and Ps. This result should be compared 

to similar results of Maxworthy (53) and Didden (13). Maxworthy, 
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who examined vortex rings in an Re0 range of 10,000 to 100,000, also 

found that Ps was very close to measured values of circulation 

using an L.D.V. Didden, who examined rings in an Re0 range of 650 

to 6600, found that the measured value of P was 30%  to 60% greater 

than the value of Ps. There is a difference in how Ps was com- 

puted for these cases. Maxworthy and Didden use a factor of 1/2 in 

place of C. Didden does show the origin of the factor of 1/2, 

although Maxworthy does not. Brasseur and Chang fail to report any 

of their C values so no meaningful comparisons can be made amongst 

these studies. 

Questions regarding the accuracy of this method also arise 

concerning the two critical assumptions used in their analysis: (1) 

that the vorticity is sufficiently concentrated such that the finite 

extent of the core can be neglected, and (2) that the circulation in 

the wake is such a small fraction of the total circulation that it 

can be ignored. The first hypothesis was tested by computing the 

potential fields for two vortices:  the first had the assumed 

concentrated vorticity, the second had vortex filaments distributed 

over the core of the vortex. The differences between the calculated 

potential fields were extremely small with virtually no difference 

in T and R' values. The second hypothesis was tested by placing 

vortex filaments in the wake region of the vortex ring, calculating 

the potential field for the ring, and comparing it to that obtained 
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for a ring with no vorticity in the wake. The difference in T was 

found to be only 3%,  well within the precision of their measure- 

ments. 

From these results Brasseur and Chang concluded that a 

vortex filament model is satisfactory for computing the size and 

shape of the vortex bubble. They do expect, however, that inaccur- 

acies due to finite noncircular cores and wake vorticity will become 

significant at very low Reynolds numbers when vorticity is diffused 

over a large volume and not highly peaked. 

The authors acknowledge that to fully assess the accuracy 

of their method, calculations of circulation using their method 

should be directly compared to independent measurements of circu- 

lation such as those obtained using a laser Doppler velocimeter. In 

this regard they were able to compare only one independent measure- 

ment of circulation using an L.D.V., that of Sullivan et al. (92). 

The agreement for this one data point was excellent, being within 

In conclusion, the method of Brasseur and Chang appears to 

be a very powerful and attractive method, particularly because of 

the ease with which flow visualization techniques may be employed. 

However, a good check of its accuracy for a variety of cases using 
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an independent method, such as measurement of circulation with a 

laser Doppler velocimeter, remains to be performed. 

A.3 RESULTS OF CIRCULATION MEASUREMENTS 

A.3-1  REVIEW OF METHODS USED 

In the present study, three different methods were used to 

determine the circulation of the vortex rings:  (1) the hydrogen 

bubble-line method, (2) the estimate of circulation in the ejected 

fluid slug, and (3) the method of Brasseur and Chang (3). 

The bubble line method consisted of using the hydrogen bubble 

method as previously described to generate a line or lines of 

bubbles which mark the flow in the vortex ring as it propagates by 

the bubble wire. The necessary data could best be obtained when the 

center of the core of the vortex ring exactly coincided with the 

bubble wire at the instant a line of bubbles was generated. If this 

occurred, the initial deformation of the bubble line would show a 

velocity profile across the core with velocity peaks'indicating the 

edges of the core. One of the problems with this method is that 

such an exact coincidence of a bubble line with the vortex core 

occurred very infrequently. Because it could not be repeated with 

any regularity, many realizations were required to obtain a few 

"good" (relatively speaking) data points. 
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To determine the circulation, PB, using this method, the 

diameter and rotational velocity, obtained from the flow visualiza- 

tion and measured with respect to the center of the core, were used 

with relation A—11. Because the center of the core is translating 

with respect to the field of view, it is difficult to properly 

determine the data if the center is poorly marked by the bubbles. 

The second method used was to estimate the vortex ring 

circulation derived from a simple slug model of the fluid ejected 

from the orifice. The circulation Pjvj was determined using relation 

A-16 as discussed in Maxworthy (53) and Didden (13). 

rM = 1 fT UM
2(t)dt (A-16) 

2 )o 
U^(t) is the mean velocity of the fluid ejected from the orifice as 

determined from the velocity of the piston and the area ratio of the 

piston and orifice. The velocity of the piston was determined from 

the time history of a displacement transducer attached to the 

piston. Relation A-16 was then numerically evaluated to determine 

the circulation P^. 

The third method used was that of Brasseur and Chang (6). 

From the flow visualization the following data was obtained: the 

translational velocity, U^, the radius of the ring, R, the half 

thickness, T, and the outer radius of the dyed bubble of fluid 
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moving with the vortex ring, R1, as previously defined. Data giving 

a/R as a function of T/R* for a vortex ring in an unbounded fluid is 

shown in Table A-1, as obtained from a figure in Brasseur and Chang 

(6). a/R is the ratio of core radius to ring radius. 

Table A-1. T/R' vs a/R 

Obtained from Brasseur and Chang (6) 

T/R' a/R 

0.338 0.04 
0.412 0.07 
0.452 0.10 
0.48 0.13 
0.505 0.16 
0.525 0.19 
0.542 0.22 
0.558 0.25 
0.57 0.28 
0.585 0.31 
0.595 0.34 
0.635 0.49 

The a/R for a given ring was estimated from the measured 

T/R* and the data in Table A-1. The circulation P$Q  was then cal- 

culated using the U^, R, and a/R data, in conjunction with relation 

A-13 (the modified Kelvin/Lamb formula used by Brasseur and Chang 

(6)) which is repeated here in rearranged form as A-17• 

/~BC =   4TTR UT (A-17) 
8 

ln(a7R)- 3 
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A.3.2 COMPARISON OF THREE METHODS OF CIRCULATION CALCULATION 

Table A-2 shows the values of circulation computed using each 

of the three methods for four vortex ring cases. The bubble method 

was used in only four cases because of the aforementioned 

difficulties in obtaining useable data. 

Table A-2. Comparison of Three Methods of Circulation Calculation 

Vortex Ring 
No. cm2/S 

QM 
cm2/S 

TRC 
cm2/S 

21.635 
31.340 
112.825 
51.245 

7.74 
11.2 
4.71 
5.82 

13.3 
27.4 
8.06 
6.32 

15.4 
18.1 
8.12 
9.84 

The data indicates that there is a wide variation in the 

circulation obtained using the three methods.  Pg ranges from 58$ 

to 92$ of PM and PBC ranges from 66$ to 156$ of PM« 

There are at least three sources of error in the bubble 

method calculation besides the normal measurement error. The first 

possible source is that the bubble velocity may not be the same as 

the fluid velocity. No attempt has been made to evaluate this 

error, but it is believed to be small based on the results of 

Schraub et al. (86). A second source of error is the existence of 

vorticity to the outer edge of the fluid moving with the vortex 

ring. As Maxworthy (53) reported, 50$ of the vorticity is within 
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the core, with vorticity existing out to the edge of the vortex 

bubble volume. To eliminate this error, the data measurement would 

have to be taken at the outer edge of the vortex bubble volume. The 

third source of error is due to the difficulty in determining the 

exact center of the core, as already mentioned. 

Because of the difficulties associated with the data 

measurements, the necessity to rearrange equipment and lighting when 

changing from dye visualization to hydrogen bubble visualization, 

and the variation in the data, it was not considered practical to 

determine the circulation using the bubble method for each vortex 

case studied. 

Because of the large variation between Tgc an^ HM and the 

small data population, it was decided to investigate the relation 

between F%Q  
and ^M for a much larger data population. PBC  and 

' M were calculated for each vortex case studied; the ratio F%Q/ PM 

was then plotted in Figure A.1 as a function of L^/D^.  The results 

were somewhat surprising in that the large variation persisted. 

Just about all the data points were in a range of 0.8 to 2.0 with an 

average value of 1.44. This data contrasts sharply with the excell- 

ent agreement reported by Brasseur and Chang. It is not expected 

that such a large variation in the data can be due to the difference 

in relations for F^  where they used a factor, C, defined in A-15 
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instead of the factor 1/2 used in A-16. What is surprising is the 

agreement with Didden's data (13), in which P\JQ^/ PM varied from 

1.3 to 1.6, where f\DV is the circulation of the vortex ring 

measured with an L.D.V. The average of 1.3 and 1.6 is 1.45 which is 

very close to the average of 1.44 reported here. 

One source of error in the HgQ measurements is the T 

measurement. In the wake region there often was no sharp interface 

delineating the dyed region of the vortex ring. This alone could 

cause as much as +1056 error. Another possible source of error in 

the Brasseur and Chang method is in the accuracy of the method 

itself in the range of Reynolds number (Re0) investigated here, 105 

to 4940. Brasseur and Chang report they expect that inaccuracies 

due to finite noncircular cores and wake vorticity will become 

significant at very low Reynolds numbers when vorticity is diffused 

over a large volume and not highly peaked. 

It is difficult to^iiltt«»IE^^f^^^f.VtI-3 <\?.v.a w1.tV-.jut -?. 

better, independent estimate of the circulation in the vortex as 

might be obtained using a L.D.V. The data presented here must there- 

fore be regarded as somewhat inconclusive in regard to the accuracy 

of the Brasseur and Chang method for determining circulation. 
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Likewise T^ has not been proven to be a reliable estimate 

of the circulation in a vortex ring. The studies by Maxworthy (53) 

and Didden (13) seem to indicate that as Reo decreases, P ^ worsens 

as an estimate of the circulation in a vortex ring, underestimating 

the circulation by as much as 60$ in Didden's study. 

It appears that the most accurate method to measure the cir- 

culation of a vortex ring is the use of LDV velocity measurements. 

Brasseur and Chang's method offers the promise of a very simple and 

accurate method, but its accuracy remains to be established by an 

accurate independent method over a range of vortex Reynolds numbers. 
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APPENDIX B:  UNCERTAINTY ANALYSIS OF RESULTS 

B.1  ESTIMATES OF ERRORS:  UNCERTAINTIES 

Errors, i.e. the difference between the measured value and the 

"true" value of an experimentally determined quantity, arise from 

finite sample sizes and inaccuracies in the experimental techniques 

used. 

The best measure of an experimental quantity is obtained by 

making many measurements using many different experimental 

techniques. To the extent that the sample size and number of experi- 

mental methods are limited, there exists the possibility of error in 

the value of the quantity being measured. The error in a quantity 

determined from a limited sample size can be estimated using statis- 

tical methods. Unfortunately, in this as in many engineering 

experiments, the sample size may be very limited. In these experi- 

ments for a given experimental realization, generally only one and 

at most three observations were measured. Because the sample sizes 

are so small, the error will not be determined using statistical 

methods of standard deviations and means, but instead will be esti- 

mated using uncertainty analysis methods for single observations. 

The total uncertainty, WR, in an experimental result, R=R(V-|, 

V2,...V^) may be calculated using relation B-1 (36): 
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wmssB®* 

WR   = [>£R W^2 +/5R W2\
2   .... /dR WMfl i  (B-1) 

where W-], W2,...Wjq are the uncertainty intervals in variables V-|, 

V2,...VN for a certain estimated level of confidence, generally 95$. 

V-| , V2,...Vfj must be independent and their statistical distributions 

must have only a single peak. If Vi, V2> • • -Vjvj are normally distri- 

buted the expression is exact. 

B.2 UNCERTAINTY IN EXPERIMENTAL RESULTS 

B.2.1  CALIBRATION UNCERTAINTY 

Generally, all results are based on length and time measure- 

ments of flow phenomena for selected frames of data from a video 

sequence. Measurements were taken directly from hard copy prints of 

the desired data frames. The prints were obtained using a video- 

graphic printer, which employs a latent image process with heat 

developed dry silver paper and interfaces directly with the video 

recorder. 

Because the resulting images are larger than their actual size, 

a calibration must be used for any length measurement. The uncer- 

tainty in length calibration, CL, is 

JJCL = + 1.456 (95$ confidence) 

CL 
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Time measurements are based on the displayed frame numbers and 

the framing rate of the video recorder, 120 frames per second. The 

error in the framing rate was assumed to be negligible, Since the 

effective shutter speed for each frame was less than 1/10,000 

second. 

The uncertainties for the following measurements are for a 

typical vortex ring case #52.235 which had a D0 of 3«05 cm, a V0 of 

6.65 cm/s, Re0 of 2140, Ts of 1.4 and PBC of 44.2 cm
2/s, except 

where specified otherwise. 

B.2.2 UNCERTAINTY IN RING DIAMETER Dn 

The uncertainty in D0 includes the expected uncertainty in any 

measurement of this type as well as the uncertainty due to the 

subjective determination by the observer of the location of the 

center of the vortex ring core. The uncertainty is calculated for 

a horizontal core center location error of .14 cm for each core on 

a diameter of 3.05 cm as shown below. The calibration error is also 

included. 

wDn = f2 fdD„ . \id\ 2 + /3Dn . WCT \ 
2~I 1 ^P_n = f2 (^a.  • W!^ 2 + f*Jhi  • WCr.N 21 

D0 L lad   d)      UcL  cLj J 

£2 (.14/3.05)2 + (.0l4)2Ji = +6.6$ (95$ confidence) 
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This uncertainty is generally valid for all vortex ring cases since 

the zoom lens feature of the video system allowed each vortex ring 

to have approximately similar image sizes on the video screen. 

B.2.3 UNCERTAINTY IN TRANSLATIONAL VELOCITY Vn 

The uncertainty in the translational velocity V0 can be 

calculated as shown in B-2 from the uncertainties in the 

calibration, the distance traveled, and the measured time.  (The 

uncertainty in the time is assumed to be zero.) 

WVn-- DWCL/CL)2 + (wL/L)2 + (WT/T)2J£ (B-2) 

Vo 

The uncertainty in the distance travelled (WL/L) is due to the 

uncertainty in determining the vertical location of the center of 

the vortex ring cores at two locations, estimated to be .23 cm at 

each location. W^/L is calculated in B-3. 

WL = [_(( ^l1/li)(l1/L))2 + (( «J12/12)(12/L))2J 1    (B-3) 
L 

= [((•23/3-M5)(3.15/3.40))2 + ((.23/6.86)(6.86/3.M0))2J * 

= +9.6% 

The uncertainty in V0 is calculated using B-2. 

wVo = C(2.4^)2 + (9.656)2 + (05t)2Jl 

Vo 

= +9.7$    (9556 confidence) 
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This uncertainty also is generally valid for all vortex ring cases 

since the zoom lens feature allowed each vortex ring to have approx- 

imately similar image sizes on the video screen. 

B.2.4  UNCERTAINTY IN KINEMATIC VISCOSITY 

W y   = + "\.Q%    (corresponds to a +1°C error in temperature) 
V 

B.2.5  UNCERTAINTY IN REYNOLDS NUMBER Ren 

The uncertainty in Re0 can be calculated using relation B-1 as 

= r(6.6%)2 + (9.7*)2 + d.85t)2Jl 

= + 12$ C95% confidence) 

B.2.6  UNCERTAINTY IN THE NORMALIZED TIME FOR FORMATION OF THE 
SECONDARY VORTEX T„ 

Relation 3-3 defining Ts is repeated below as B-4: 

Ts = ts V0 / D0 (B-H) 

The uncertainty in T3 can be calculated as shown in B-5 from 

the uncertainties in V0, D0, and ts. 

%g = C(WV0/V0)
2 + (WDo/D0)

2 + (Wt3/ts)
2]i (B-5) 
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The uncertainty in t3, W^ /t3, is calculated in B-6 where ts = 0.62 

sec and the uncertainty at each end of the time interval is 0.025 

sec. 

hs.  = &  (( dts/at)(«ft/ o2ll (B-6) 

= C2  (0.025/0.62)2J i    =    5.1%       (95* confidence) 

The uncertainty in T3 can now be calculated from B-5. 

%s = C(9.7%)2 +  (6.6*)2 +  (5.7?)2ji (B-7) 

= +'\3%    (95? confidence) 

Ts 

This uncertainty level is generally valid for most of the vortex 

ring cases except the very low Reynolds number cases which are 

marked by solid symbols in Figure 3.24. For these cases an outer 

limit of the uncertainty may be estimated by a fourfold increase in 

the t3 uncertainty which would cause the uncertainty in T3 to double 

to a level of +26$. The reader should refer to section 3.16 for a 

discussion of this uncertainty. 

B.2.7 UNCERTAINTY IN CIRCULATION MEASUREMENTS 

B.2.7a Uncertainty in Ppr 

The uncertainty' reported here is an uncertainty in the 

measurements and does not reflect any error which may be present in 

the theory or method. See Appendix A for a discussion of possible 
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The uncertainty in ts, W^ /ts, is calculated in B-6 where ts = 0.62 

sec and the uncertainty at each end of the time interval is 0.025 

sec. 

^=[.2 ((dtsAJt)(«rt/ t)
2]* (B-6) 

ts 

= C2  (0.025/0.62)2ji    =    5.7?       (95* confidence) 

The uncertainty in Ts  can now be calculated from B-5. 

Ula = C(9.7*)2 +  (6.6*)2 +  (5.7*)2J* (B-7) 
Ts 

= + 13? (95? confidence) 

This uncertainty level is generally valid for most of the vortex 

ring cases except the very low Reynolds number cases which are 

marked by solid symbols in Figure 3.24.  For these cases an outer 

limit of the uncertainty may be estimated by a fourfold increase in 

the t3 uncertainty which would cause the uncertainty in T3 to double 

to a level of +26$. The reader should refer to section 3.16 for a 

discussion of this uncertainty. 

B.2.7  UNCERTAINTY IN CIRCULATION MEASUREMENTS 

B.2.7a Uncertainty in F^r. 

The uncertainty' reported here is an uncertainty in the 

measurements and does not reflect any error which may be present in 

the theory or method. See Appendix A for a discussion of possible 
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error in this method. The source of greatest error is the T measure- 

ment, the vortex ring half thickness. In the wake region of the 

vortex ring, the dye interface was often not sharply defined, which 

made it difficult to precisely determine the T measurements. The 

uncertainty in the T measurement is +11/6 and is the source of a 

rather large uncertainty in r*BC. 

The uncertainty in Pgc is a function of the uncertainty in a/R, 

D0, and V0 as shown in B-8: 

wrRr =*|7£IBC • S/H   2   + (djjm • ^M 2   + (*£BZ • %\2? (B-8) 
pBC   Lvaa/R     rBC        WD0    rBC>        vav0    rBC)J 

which reduces to B-9: 

W TRH =[( 1  . JWR ) 2 + (-[   . ^M 2 + f-\   .  ^V^) 2U  (B-9) 
TBc LVln(8/a/R) - 1/3   a/R'    V    D0 /   V    V0' J 

The functional relationship between T/R' and a/R is unknown to 

this author, but is represented by the data in table A-1. Using 

this data and the 11? uncertainty in T/R' yields the rather large 

uncertainty in a/R of +58?. Substituting into B-9 yields an uncer- 

tainty in PBc of +23? at a 95? confidence level as shown below. 

w PBn = ft.3155 x 58?)2 + (6.6?)2 + (9-7?)2J i (B-10) 

= +23?  (95? confidence) 
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B.2.7b Uncertainty in TM 

The uncertainty reported here is also measurement uncertainty 

and does not reflect any error in the theory. It should be recalled 

that Didden (13) found that P^ underestimated the circulation 

measured using a LDV by 30% to 60%. 

H^ was calculated by numerically evaluating relation A-16 

using the vortex generator piston displacement vs time curve. The 

velocity U^ (t-j_) is calculated by applying a displacement calibra- 

tion to the displacement transducer data as shown in B—11. 

U^(ti) = xtt-j + i) - x(tj_i)  cal disp (B-11) 
At 

The only assumed uncertainty in U^ results from uncertainty in the 

displacement calibration. The largest uncertainty occurred for the 

smallest piston stroke and is equal to +10%. The uncertainty in U^ 

is therefore +10%.  The uncertainty in P^ is calculated below in 

B-12. 

" "" 4 (B-12) 
pM   L^uM     rM' J 

WUM = +20%  (95% confidence) 
2 "M 
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B.2.7c Uncertainty in nR 

Again, the uncertainty reported here is a measurement uncer- 

tainty only. To the author's knowledge, no reports have been 

published in which this method was used successfully. 

The uncertainty in P3, which is determined using relation A- 

11, is a function of the uncertainty in d and 9 as shown in B-13- 

wrR =[7arR . w^z +/arB . w9ynt (B_13) 
rB   LWd    IV     I, ae    rB< J 

The uncertainties in d and 9 are respectively +20% and +8%.    Sub- 

stituting these quantities and solving for the partial derivatives 

yields: 

LCR = Q(2 • 20?)2 + (8%)2j2 

TB 

= +^1%   (95% confidence) 

This uncertainty is valid for all the cases so studied. 
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APPENDIX C:  EXPERIMENTAL DATA 

The following data tables present the quantitative data 

obtained during the course of this study.  Table C.2 tabulates the 

data for the quiescent flow cases, including impacts with both solid 

and free surfaces. Table C.3 tabulates data for the boundary layer 

flow cases. 

Each vortex case is identified by a five digit number which 

gives an indication of the generation parameters. The first digit 

indicates the orifice size, D , and ranges from 1 to 7 corresponding 

to orifice diameters of 0.95 to 3.81 cm. The Dx.  for each orifice M 

size is listed in the table.  The second and third digits correspond 

to LM/DM rounded to two digits.  The fourth and fifth digits indicate 

the speed control setting for the electric motor used to drive the 

vortex generator. 

Dashes in the data table indicate either no data was available 

for that case, or that measurement was not relevant to the particular 

vortex case. 

At the bottom of each column are listed abbreviations under the 

heading "Comments".  These abbreviations, which are explained in 

Table C.l, are not meant to give the reader a comprehensive descrip- 

tion of the flow phenomenon for a particular case, but rather an 

indication of the general flow behavior.  Only the most relevant 

abbreviations which best define the behavior for each case are 

included. 

211 



Table C.l Flow Behavior Abbreviations 
and Their Definitions 

WPVRNC 

WPVRCS 

LAMDIF 

NOSVR 

APPSEP 

Weak Primary Vortex Ring Not Coherent. The PVR so 
formed was not coherent, unstable, and generally of 
no usefulness in this study. 

Weak Primary Vortex Ring Coherent and Stable.  A 
Weak PVR;generally did not form a SVR. 

Laminar Diffusion.  The PVR dispersed its vorticity 
by laminar diffusion. 

No SVR was formed. 

Apparent Separation.  The boundary layer created by 
the PVR appeared to separate, but did not roll up 
into an SVR. 

VWSVR Very Weak SVR.  The separated boundary layer had 
sufficient strength to just about roll up into a SVR. 
The fluid generally made one or slightly more revolu- 
tions in the SVR. 

WSVR 

SVR 

Weak SVR.  The SVR formed a very coherent ring but 
was very weak in comparison to the PVR. 

SVR.  The SVR interacted with the PVR in a significant 
manner. 

RBND Rebound.  Rebound occurred in the trajectory of the 
PVR. 

RVRSL Reversal.  Reversal occurred in the trajectory of 
the PVR. 

LOOP 

UND 

UP 

L-KTRN 

Loop-Structured SVR was formed. 

Under.  Some of the loops of the loop-structured SVR 
would be pulled beneath the core of the PVR. 

Up.  Some of the loops of the loop-structured SVR 
would propagate vertically in the center of the PVR 
which resulted in the stretching of the SVR. 

Loop to Kink Transition.  The SVR would be in 
transition between a loop and a kink structure. 
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KINK 

EJECT 

TVR 

MVR 

TRB@FO 

UNSTBL 

SHDVRT 

AZWVIN 

RADDSP 

A Kink-Structured SVR was formed. 

Secondary Vortex Ring Ejection occurred. 

Tertiary Vortex Ring. 

Multiple Vortex Rings.  Multiple vortex rings would 
form at the orifice if the ejected fluid slug was 
excessively long and/or ejected at too high a velocity. 

Turbulent at Formation.  The PVR was turbulent at 
its formation. 

Unstable.  The PVR was unstable before impact with 
the surface. 

Sheds Vorticity.  The PVR would shed much vorticity 
into its wake as it propagated towards the surface. 

Azimuthal Waviness Instability.  The PVR displayed 
an instability which was characterized by the 
azimuthal waviness observed by Maxworthy (53) and 
others as it approached the surface.  This usually 
caused an immediate azimuthal waviness in the SVR 
when it was formed. 

Rapid Dispersal. The PVR was dispersed in an almost 
explosive manner almost immediately after the forma- 
tion of the SVR. 

The question mark in conjunction with any of the 
above abbreviations indicates an uncertainty in the 
observation. 
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Table C.2 Experimental Data - - Quiescent Flow Case 

Vortex ID // 12.920 12.630 13.040 12.450 12.660 20.940 20.940 

Piston Dia(cm] )  1.90 1.90 1.90 1.90 1.90 1.90 1.90 

Spd Cntrl // 20 30 40 50 60 40A 40B 

Water Temp(c) 22.2 23.3 22.2 23.3 23.3 22.2 22.2 

DM (cm) 0.95 0.95 0.95 0.95 0.95 1.43 1.43 

VDM 4.16 4.16 6.83 6.83 6.83 4.55 4.-55 

LM/DM 
2.88 2.56 2.99 2.41 2.36 0.92 0.89 

UM (cm/s) 4.45 5.80 9.25 8.72 8.32 4.14 6.37 

DQ (cm) 1.12 1.00 1.14 0.99 .91 1.06 1.02 

T/R .677 .622 .659 .635 .652 .540 - 

UQ (cm/s) 2.64 3.43 7.32 4.93 8.69 1.15 1.45 

N 0 5,5 6,6 6,5,6 6,6,6 0 0 

Ts 1.5 2.0 1.5 1.6 2.5 - - 

Re 
o 

313 376 880 537 867 129 155 

ReM 447 603 929 907 865 624 960 

TM (cm/s
2) 5.51 7.2 13.1 9.12 8.98 2.71 3.83 

PBC (cm/s
2) 8.86 8.35 23.34 12.6 21.6 2.32 - 

Comments: LAMDIF LAMDIF LOOP RBND LAMDIF WPVRCS WPVRNC 

APPSEP APPSEP UND RVRSL LOOP LAMDIF UNSTBL 

RBND VWSVR MVR SVR AZWVIN NOSVR 

UNSTBL TVR 

7UNSTBL 

7AZWVIN 

UNSTBL APPSEP 

RBND 
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Table-C.2 Experimental Data - Quiescent Flow Case 

Vortex ID // 20.960 20.960 20.970 21.615 21.725 21.635 21.65C 

Piston Dia(cm; I  1.90 1.90 1.90 1.90 1.90 1.90 1.90 

Spd Cntrl # 60A 6 ON 70 15 25 35 50 

Water Temp(c) 22.2 22.2 22.2 22.2 22.2 22.2 22.2 

DM (cm) 1.43 1.43 1.43 1.43 1.43 1.43 1.43 

VDM 4.55 4.55 4.55 4.55 4.55 4.55 4.55 

LM/DM 
0.89 0.85 0.89 1.61 1.71 1.64 1.64 

UM (cm/s) 4.55 8.09 4.50 2.28 5.47 7.40 8.83 

DQ (cm) 1.07 1.07 1.19 1.64 1.47 1.32 1.32 

T/R 0.617 - 0.56 0.541 0.615 0.619 0.62 

UQ (cm/s) 1.12 - 1.47 0.61 2.37 3.40 4.50 

N 0 - - 0 0 7,6 7,7,7 

Ts - - - - 1.4 1.3 1.5 

Re 
o 

126 - 186 105 369 474 626 

ReM 686 1219 678 344 824 1115 1263 

rM (cm/s ) 3.01 4.66 2.90 2.30 6.02 7.87 9.55 

PBC 
(cra/s2) 2.,84 - 3.50 1.89 8.28 10.78 14.3 

Comments: WPVRCS WPVRNC MVR WPVRCS WPVRCS SVR SVR 

LAMDIF TRB(§F0 UNSTBL LAMDIF LAMDIF RBND RBND 

APPSEP MVR APPSEP APPSEP LOOP ?RVRSL 

RBND UNSTBL RBND RBND UND&UP 

TVR 

LOOP 

UND&UP 

TVR 
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Table-C.2 Experimental Data - Quiescent Flow Case 

Vortex ID // 21.675 22.418 22.525 22.433 22.545 22.475 23.215 

Piston Dia(cm) 1.90 1.90 1.90 1.90 1.90 1.90 1.90 

Spd Cntrl # 75 18 25 33 45 75 15 

Water Temp(c) 22.2 22.2 22.2 22.2 22.2 22.2 21.7 

DM (cm) 1.43 1.43 1.43 1.43 1.43 1.43 1.43 

VDM 4.55 4.55 4.55 4.55 4.55 4.55 4.55 

LM/DM 
1.64 2.40 2.47 2.40 2.47 2.44 3.16 

UM (cm/s) 8.89 3.71 6.22 8.12 10.7 10.9 2.85 

DQ (cm) 1.32 1.63 1.65 1.63 1.68 1.50 1.75 

T/R 0.626 0.65 0.688 0.647 0.611 0.618 0.68 

UQ (cm/s) 4.52 1.34 3.40 4.42 6.27 7.21 1.40 

N 6677 - 6 666 6 6 0 

Ts 1.5 - 1.5 1.3 1.1 1.4 1.5 

Re o 630 230 593 758 1109 1140 254 

ReM 1340 559 937 1224 1613 1643 422 

2 
9.62 5.53 9.53 12.5 16.9 17.4 5.64 

PBC (cm/s
2) 14.7 5.90 17.4 19.2 24.5 25.9 7.42 

Comments: SVR LAMDIF SVR SVR RBND RVRSL WPVRCS 

RBND APPSEP RBND RBND RVRSL LOOP LAMDIF 

RVRSL RBND 7RVRSL 7RVRSL LOOP UND&UP 7APPSEP 

LOOP LOOP LOOP UND&UP TVR RBND 

UND&UP UND&UP UND&UP TVR TRB@FO 

TVR TVR TVR SHDVRT SHDVRT 

216 



Table-C.2 Experimental Data - Quiescent Flow Case 

Vortex ID //   23.225 23.230 23.050  23.425 22.850 31.230 31.255 

Piston Dia(cm] )  1.90 1.90 1.90 3.81 3.81 3.81 3.81 

Spd Contrl # 25 30 50 25 50 30 55 

Water Temp(c) 21.7 21.7 21.7 18.9 18.9 18.9 18.9 

DM (cm) 1.43 1.43 1.43 1.43 1.43 1.90 1.90 

VDM 4.55 4.55 4.55 4.55 4.55 4.75 4.75 

LM/DM 
3.22 3.22 3.04 3.41 2.77 1.17 1.17 

UM (cm/s) 7.23 8.94 18.3 8.43 18.4 8.40 11.0 

D  (cm) 
o 

1.60 1.73 1.73 1.83 1.75 1.85 1.80 
t 

T/R 0.646 0.601 0.550 0.587 0.628 0.619 0.57: 

U  (cm/s) 
0 

3.94 5.21 9.98 5.72 12.4 4.06 4.75 

N 6 - - 8.8 7 8888 8,8 

Ts 0.69 1.2 0.98 1.0 1.4 1.6 1.3 

Re 
0 

654 933 1786 1015 2118 731 832 

ReM 1072 1325 2712 1170 2552 1554 2034 

TM (cm/s
2) 14.6 18.2 35.7 20.3 32.0 8.96 10.5 

PBC 
(cm/s2) 16.8 20.2 33.5 22.4 54.1 18.1 17.5 

Comments: TRB@F0 MVR MVR MVR MVR SVR SVR 

UNSTBL UNSTBL TRB@F0 UNSTBL UNSTBL RBND RBND 

SHDVRT LOOP UNSTBL LOOP LOOP 

SVR UND&UP SVR UND&UP UND&UP 

TVR RBND TVR TVR 

?RVRSL 7RVRSL 
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Table-C.2 Experimental Data - Quiescent Flow Case 

Vortex ID # 31.330 31.355 32.225 32.450 32.225 32.455 32.825 

Piston Dia(cm)  1.90 1.90 2.54 2.54 5.08 5.08 3.81 

Spd Contrl # 30 55 25 50 25 55 25 

Water Temp (c :) 20.6 20.6 18.9 18.9 19.4 19.4 18.9 

DM (cm) 1.90 1.90 1.90 1.90 1.90 1.90 1.9 

VDM 4.75 4.75 4.75 4.75 4.75 4.75 4.75 

VDM 1.31 1.29 2.23 2.37 2.19 2.37 2.83 

UM (cm/s) 5.69 7.07 5.56 12.6 12.2 18.3 10.6 

D  (cm) 
0 

1.73 1.88 2.13 2.13 2.03 2.29 1.96 

T/R 0.60 0.619 0.648 0.588 0.593 0.576 0.663 

U  (cm/s) 
o 

2.69 3.76 2.69 8.13 6.60 11.53 5.51 

N 7 77 6,7,7 8 - 8 5,6,6 

Ts 1.7 1.5 1,3 1.3 1.2 0.91 1.1 

Re 
o 

470 714 558 1684 1322 2597 1047 

ReM 1095 1360 1028 2330 2290 3440 1960 

TM (cm/s
2) 6.47 8.66 10.6 24.8 22.8 35.7 25.5 

PBC (cm/s2) 10.43 16.9 15.4 37.4 29.4 54.7 30.6 

Comments: APPSEP SVR SVR SVR SVR AZWVIN SVR 

VWSVR LOOP LOOP LOOP RBND UNSTBL MVR 

RBND UND&UP 

RBND 

TVR 

AZWVIN AZWVIN LOOP 

AZWVIN 

L-KTRN 

RVRSL 

218 



Tabl .e-C.2  Experimer ital Data i - Quiescent Flow ■ Case 

Vortex ID # 32.650 40.925 40.860 41.325 41.555 41.525 41.555 

Piston Dia(cm) 3.81 3.81 3.81 5.08 5.08 2.54 2.54 

Spd Contrl # 50 25 60 25 55 25 55 

Water Temp (c) 18.9 18.9 18.9 15.6 15.6 18.9 18.9 

DM (cm) 1.9 2.22 2.22 2.22 2.22 2.22 2.22 

VDM 4.75 4.07 4.07 4.07 4.07 4.07 4.07 

VDM 2.61 0.87 0.78 1.26 1.50 1.45 1.50 

UM (cm/s) 19.1 4.88 6.00 7.84 13.0 5.29 9.64 

D  (cm) o 
2.16 2.16 1.80 2.21 2.21 2.74 2.16 

T/R 0.593 0.584 0.565 0.576 0.548 0.625 0.619 

U  (cm/s) 
0 

9.30 1.65 2.49 3.81 7.62 2.46 5.13 

N 8 0 7,8 8,9,9 9,9,9 7,7,7 8,8,8 

Ts 1.4 1.4 1.7 1.1 1.2 1.4 1.3 

Re 
o 1949 347 437 752 1503 535 1075 

ReM 3533 1053 1295 1556 2580 1140 2080 

TM (cm/s
2) 40.2 4.18 4.89 9.91 18.7 7.57 13.9 

rBC (cm/s
2) 43.9 7.59 9.06 17.5 32.5 13.5 26.6 

Comments: SVR LAMDIF SVR TRB@F0 SHDVRT SVR SVR 

MVR APPSEP RBND SVR ?TRB@F0 RBND RVRSL 

RADDSP VWSVR LOOP RBND SVR LOOP LOOP 

TVR RBND UND&UP ?RVRSL RVRSL TVR 

L-KTRN LOOP 

TVR 

LOOP 

TVR 
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Table C.2  Experimental Data - Quiescent Flow Case 

Vortex ID # 41.830 41.745 42.625 42.545 50.835 50.845 50.625 

Piston Dia(cm) 3.81 3.81 3.81 3.81 2.54 2.54 3.81 

Spd Contrl // 30 45B 25 45 35 45 25 

Water Temp (c) 22.2 22.2 19.4 19.4 19.4 • 19.4 22.2 

DM (cm) 2.22 2.22 2.22 2.22 2.54 2.54 2.54 

VDM 4.07 4.07 4.07 4.07 3.56 3.56 3.56 

VDM 1.75 1.65 2.55 2.46 0.76 0.75 .63 

UM (cm/s) 10.0 20.0 9.77 16.9 4.93 5.74 3.22 

D  (cm) o 
2.24 2.18 2.57 2.54 1.85 1.98 1.35 

T/R 0.603 0.569 0.631 0.576 0.568 0.624 0.603 

U  (cm/s) 
0 

5.28 10.2 5.94 10.4 1.95 2.45 0.88 

N 9,9,9 991010 77788 8,8 0 7 0 

T 
S 1.3 1.3 1.1 1.2 2.L 1.7 - 

Re 
0 

1246 2353 1502 2593 356 479 126 

ReM 2344 4689 2139 3700 1234 1436 862 

TM (cm/s
2) 17.1 29.9 24.3 39.7 4.15 4.84 2.56 

TBC (cm/s2) 26.7 45.4 38.3 54.6 7.33 11.9 2.69 

Comments: SVR SVR SVR MVR LAMDIF WSVR WPVRCS 

RVRSL RVRSL RVRSL 7UNSTBL APPSEP RBND LAMDIF 

LOOP L-KTRN L-KTRN SVR 7VWSVR LOOP APPSEP 

TVR UND&UP UND&UP L-KTRN 

TVR 

RBND TVR 

7AZWVIN 

RBND 
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Tabl e C.2 Experimental Data - Quiescent Flow Case 

Vortex ID # 50.640 50.560 51.115 51.120 51.130 51.145 51.160 

Piston Dia(cm) 3.81 3.81 3.81 3.81 3.81 3.81 3.81 

Spd Contrl // 40 60 15 20B 30B 45 60B 

Water Temp (c) 22.2 22.2 22.2 22.2 22.2 22.2 22.2 

DM (cm) 2.54 2.54 2.54 2.54 2.54 2.54 2.54 

VDM 3.56 3.56 3.56 3.56 3.56 3.56 3.56 

VDM .61 0.54 1.15 1.13 1.08 1.13 1.08 

UM (cm/s) 4.65 4.83 3.36 4.95 7.70 9.43 17.9 

DQ (cm) 1.96 1.22 2.67 2.57 2.57 2.33 • 2.26 

T/R 0.593 0.569 0.530 0.55 0.589 0.566 0.529 

U (cm/s) o 
1.38 1.26 .937 2.08 3.00 4.06 7.29 

N 0 02? 0,2? 7 889910 88910 9,10 

T S 
- 2.3 1.1 1.5 1.1 1.2 1.2 

Re 
0 

284 162 264 562 811 999 1680 

ReM 1246 1294 900 1326 2063 2527 4796 

TM (cm/s
2) 3.47 3.25 4.36 6.58 9.39 11.97 19.97 

TBC 
(cm/s2) 5.89 2.96 4.64 10.3 16.6 19.1 30.5 

Comments: LAMDIF LAMDIF LAMDIF WSVR SVR SVR SVR 

APPSEP APPSEP APPSEP RBND RVRSL RVRSL RVRSL 

7VWSVR 7VWSVR RBND LOOP LOOP LOOP LOOP 

RBND RBND UND UND&UP UND&UP UND&UP 

TVR TVR TVR TVR 

SHDVRT 
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Table C.2  Experimental Data - Quiescent Flow Case 

Vortex ID // 51.620 51.625 51.530 51.640 51.665 52.218 52.220 

Piston Dia(cm )  3.81 3.81 3.81 3.81 3.81 3.81 3.81 

Spd Contrl # 20B 25B 30B 40B 65B 18 20B 

Water Temp (c ) 22.2 22.2 22.2 22.2 22.2 22.2 22.2 

DM (cm) 2.54 2.54 2.54 2.54 2.54 2.54 2.54 

VDM 3.56 3.56 3.56 3.56 3.56 3.56 3.56 

VDM 1.55 1.62 1.51 1.60 1.60 2.18 2.18 

UM (cm/s) 4.14 7.62 9.24 12.9 19.5 4.91 5.09 

D  (cm) o 2.57 2.74 2.64 2.77 2.57 3.12 3.10 

T/R 0.599 0.575 0.605 0.588 0.586 0.620 0.60 

U  (cm/s) 
0 

1.67 3.40 4.80 5.59 8.38 1.75 3.00 

N 8 8 99 991012 9910 67 7788 

Ts 1.4 1.2 1.4 1.2 1.1 1.1 1.1 

Re 
0 

451 985 1338 1632 2268 564 980 

ReM 1109 2042 2476 3456 5225 1316 1364 

PM (cm/s ) 7.32 13.3 15.0 22.1 33.5 12.1 12.6 

rBC 
(cm/s2) 9.55 19.3 28.9 33.3 46.1 13.2 20.8 

Comments: WSVR SVR SVR SVR SVR SVR SVR 

RBND RVRSL RVRSL RVRSL RVRSL RBND RVRSL 

RVRSL LOOP LOOP L-KTRN L-KTRN LOOP LOOP 

LOOP UND&UP UND&UP UP TVR UND UND&UP 

UND&UP TVR TVR TVR TVR 

TVR SHDVRT 
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Table C.2 Experimental Data - Quiescent Flow Case 

Vortex ID // 52.235 52.250 52.265 52.265 52.170 51.035 52.030 

Piston Dia(cm) 3.81 3.81 3.81 3.81 3.81 5.08 5.08 

Spd Contrl # 35 50 65 65 7 0B 35 30 

Water Temp (c) 22.2 22.2 22.2 25 22.2 17.5 17.8 

DM (cm) 2.54 2.54 2.54 2.54 2.54 2.54 2.54 

VDM 3.56 3.56 3.56 3.56 3.56 3.56 3.56 

VDM 2.20 2.16 2.16 2.25 2.12 0.96 2.0 

UM (cm/s) 10.9 15.8 16.6 - 23.2 8.74 14.0 

D  (cm) 
0 

3.05 2.79 2.79 2.82 3.28 2.31 2.69 

T/R 0.591 0.596 0.605 - 0.649 0.572 0.574 

u t     I   ^ o (cm/s) 6.65 8.56 9.14 9.25 14.3 3.63 7.26 

N 91010 101012 - - 8 8,8,9 8,8 

Ts 1.4 1.1 1.1 - 1.2 1.1 1.2 

Re 
o 

2140 2546 2842 2962 4943 786 1845 

ReM 2921 4233 4448 - 6216 2080 3355 

TM (cm/s
2) 25.9 37.4 39.4 - 53.7 9.58 31.8 

PBC (cm/s2) 44.2 52.9 61.5 - 126.2 17.2 40.32 

Comments: SVR SVR SVR SVR ?TRB@FO SVR UNSTBL 

RVRSL RVRSL RVRSL RVRSL ?UNSTBL RVRSL AZWVIN 

L-KTRN KINK KINK KINK 7AZWVIN LOOP RVRSL 

?EJECT EJECT EJECT EJECT RADDSP UND&UP LOOP 

UND&UP SHDVRT 

TVR 

SHDVRT 

TVR 

SHDVRT 

TVR 

?EJECT TVR 

SHDVRT 
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Table C.2 Experimental Data - Quiescent Flow Case 

Vortex ID # 52.155 52.930 53.055 51.825 60.840 61.135 70.940 

Piston Dia(cm i)  5.08 5.08 5.08 3.81 3.81 3.81 5.08 

Spd Contrl // 55 30 55 25 40 35 40 

Water Temp (c :) 17.8 21.1 21.1 . 25 19.4 19.2 21.1 

DM (cm) 2.54 2.54 2.54 2.54 3.18 3.18 3.81 

VDM 3.56 4.56 4.56 3.50 2.85 2.85 3.04 

VDM 2.08 2.92 2.96 1.80 0.84 1.12 0.89 

UM (cm/s) 19.9 15.6 23.3 8.72 6.92 7.92 9.08 

D  (cm) 
0 

3.02 3.12 3.10 2.67 2.92 ■ 3.20 3.38 

T/R 0.609 0.554 0.597 0.557 0.539 0.565 0.525 

U  (cm/s) 
0 

12.3 9.70 15.8 3.96 2.26 2.64 2.84 

N 8 8 - 8 6,7 - 10,9 

Ts 1.1 1.1 1.2 1.2/1.14 1.1 1.0 1.1 

Re 
0 

3505 3093 4987 1201 651 827 981 

ReM 4768 4043 6039 2517 2165 2460 3530 

PM (cm/s
2) 45.5 51.5 78.1 17.1 7.88 12.0 13.6 

rBC (cm/s2) 86.0 59.39 108.4 20.9 12.5 17.02 17.7 

Comments: UNSTBL UNSTBL UNSTBL SOLID/ 
FREE 

SVR SVR WSVR 

7AXWVIN TRB@F0 TRB@F0 SURFACE RBND RBND RVRSL 

RVRSL MVR AXWVIN RVRSL LOOP LOOP LOOP 

LOOP 7AZWVIN LOOP UND&UP UND&UP TVR 

TVR UND TVR 
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Table C.2    Experimental Data - Quiescent  Flow Case 

Vortex  ID  // 51.245 32.825 21.635 31.340 

Piston Dia   (cm) 3.81 3.81 1.90 1.90 

Spd Contrl  // 45 25 35 40 

Water Temp   (c) 17.8 20 20 20.6 

DM  (cm) 2.54 1.90 1.43 1.90 

VDM 3.56 4.75 4.55 4.75 

VDM 1.17 2.83 1.64 1.33 

UM  (cm/s) 10.7 11.7 7.58 6.34 

D     (cm) 
0 

2.49 2.29 1.50 2.01 

T/R 0.447 0.469 0.510 0.525 

U     (cm/s) o 

N 

Ts 

4.01 4.85 3.05 2.67 

1.2 0.96 1.1 1.3 

Re 
0 

942 1109 457 541 

ReM 2564 2229 1083 1220 

PM  (cm/s  ) 13.3 27.4 8.08 7.09 

2 
PBC   (cm/s  ) 15.4 18.1 8.12 9.84 

Comments: TB=7.74 ryn.2 ry=4.7i rB=5.82 

D =0.11 

BUBBLE 
VISUAL- 
IZATION 

D = .086 

BUBBLE 
VISUAL- 
IZATION 

D =0.11 

BUBBLE 
VISUAL- 
IZATION 

^0.11 
Do 

BUBBLE 
VISUAL- 
IZATION 
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Table C.3  Experimental Data - Boundary Layer Flow Case 

Vortex ID  // 11.728 13.030 13.125 

Piston Dia(cm) 1.90 1.90 1.90 

Spd Contrl  it 28 30 25 

Water Temp   (c) 24.5 24.5 24.5 

DM   (cm) 0.95 0.95 0.95 

VDM 6.85 6.85 6.85 

VDM 1.71 2.99 3.09 

UM  (cm/s) 5.03 8.53 5.98 

DQ   (cm) 0.91 - - 

T/R 0.502 - - 

U     (cm/s) 
0 

5.51 - - 

N 7 - - 

O (cm) 3.8 3.8 3.8 

Re 
o 567 - - 

ReM 539 914 641 

2 
PM  (cm/s  ) 6.82 11.2 8.78 

2 
pBC   (cm/s  ) 8.83 - - 

U„ (cm/s) 4.08 4.08 4.08 

U           (cm/s) 
carr 3.81 3.81 3.81 
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Table C.3  Experimental Data - Boundary Layer Flow Case 

Vortex ID // 31.323 31.219 31.626 31.730 31.735 31.740 

Piston Dia (cm) 3.81 3.81 3.81 3.81 3.81 3.81 

Spd Contrl // 23 19 26 30 35 40 

Water Temp (c) 23 24 24 24 24 24 

DM (cm) 1.90 1.90 1.90 1.90 1.90 1.90 

VDM 4.75 4.75 4.75 4.75 4.75 4.75 

VDM 1.33 1.17 1.65 1.71 1.71 1.71 

UM (cm/s) 7.68 5.78 7.58 7.72 9.50 11.04 

DQ (cm) 1.90 - - - - - 

T/R 0.546 - - - - - 

U  (cm/s) 
o 

N 

O (cm) 

3.53 - - - - - 

3.8 3.8 3.8 3.8 3.8 3.8 

Re 
0 

727 - - - - - 

ReM 1581 1226 1608 1638 2015 2342 

PM (cm/s
2) 8.56 6.07 11.11 12.74 14.6 16.2 

PBC (cm/s2) 12.9 - - - - - 

Ugo  (cm/s) 4.08 4.08 4.08 4.08 4.08 4.08 

U    (cm/s) 
carr 

3.81 3.81 3.81 3.81 3.81 3.81 
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