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ABSTRACT 

PISTOL CPortably Implemented STack Oriented 

Language) has been modeled after two threaded 

interpreters, FORTH and STOIC. This paper examines the 

nature of threaded lanauactes and the particular 

installation of PTSTHL for the Apple ][. 



1, Introduction 

This paper looks at threaded intepreters, in 

particular the implementation of PISTOL. I beqin with a 

section that will give the unfamiliar reader a brief 

overview of a: stack oriented language and some of 

PISTOL'S features. The second chapter discusses the 

internal workings of a threaded Interpreter, using FORTH 

and STOIC as models. Chanter three deals with the nature 

of programming in these languages and what makes them 

unigue. The final chapter covers the inner workings of 

PISTOL as written in C for the apple. 

1.1 A! Look at PISTOL 

PISTOL is an interactive language, commands are 

immediately interpreted and executed as they are entered 

at a terminal'. Unlike a language like BASIC, it offers 

the user greater flexibility in naming variables and 

accessing more of the computer's capabilities. Features 

of PISTOL and other threaded languages include their 

extensiblity and the number of entry points offered by 

the system. From the command level the user may execute 

or define any number of routines. These languages are 

compiled in the sense that during actual execution (run 

time) none of the source code is rescanned. 

PISTOL consists primarily of a dictionary of words. 
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Each word has a unique meanina and interpretation. For 

instance, the word CP means "carriage return" and will 

cause the ASCII character 1 "* to be sent. Initially 

PISTOL comes with a small dictionary of about seventy 

words, which constitute the basis to generate new 

commands in the language. 

String literals take two forms in PISTOL. A string 

may be preceded by a sincile quote and terminated by 

spaces or tabs. A string may also be enclosed by double 

quotes.  For example each of these are string literals: 

'GOOD-DAY 
"THIS IS A STRING " 

The token, 146, is an example of a numeric literal, its 

value is determined by the number base the system is 

currently using. When 146 Is typed its value is placed 

on a stack, thus allowlna other words to access its 

va 1 u e. 

Most data passed between PTSTOL procedures uses the 

parameter stack. PISTOL employs reverse polish notation 

for all its operations. RPN requires that operands 

precede operators, and eliminates the need for 

parenthesis. To get the equivalent of the algebraic 

expression 

7 * C 8 + 1-2 ) 



in PISTOL, type 

7 8 12 + * 

This will place 140 on the top of the stack, to see the 

result printed you must explicitly type = . 

PISTOL words may be used directly as commands to the 

computer or may be compiled into the definition of new 

words. In fact, programming in PISTOL, consists of 

defining new words in terms of existing words. As an 

Illustration, the word TRIPLE will be defined to multiply 

the value at the top of the stack by 3 and print the 

result. 

'TRIPLE : 3 * = ; 

The special words : and ; indicate to PISTOL to begin 

defining a new word in terms of the enclosed words. For 

more illustrations of PISTOL programming see the file 

PBASE2, which when LOADed defines the common PISTOL 

commands. 

A sizable collection of new words can be created by 

using a simple line editor, which is itself defined in 

terms of PISTOL words, or by creating them as an external 

text file that is LOADed Into the dictionary. After the 

dictionary (set of defined words) has been enlarged an 

inage of  memory  may be  saved  on  disk by the  word 
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CO.REDUMP. Later the image may be recovered by using 

RESTORE. Together with the capability to restrict users 

to limited vocabularies, a programmer has the machinery 

to create specialized application software in a 

customized PISTOL'. 

PISTOL provides the means to do top-down structured 

programming. The idea of a PTSTOL word as a clearly 

defined module which has been constructed from other 

PISTOL words, facilitates the top-down design and 

modularization of complicated programs. The language 

also includes a' complete set of control structures: 

IF..THEM a single branch 

IF..ELSE...THEN     a two way test and branch 

DFCASE...ENDCASE    a multiway test and branch 

DO...LOOP looping structures similar 
DO...+LOOP to PASCAL'S FOR ... DO 

BEGIN..IF...REPEAT   lllce WHILE...DO in PASCAL 

BEGIN END      like REPEAT... UNTIL NOT.. 

A feature of PISTOL is that these control structures may 

be executed at the commnd level as well as appear in the 

definition of new words. This is possible because PISTOL 

compiles every line into a buffer and then executes it. 

Such a scheme allows PISTOL to handle forward references 

to an address and to support recursive definitions. 



User friendliness was a major design consideration 

for PISTOL. The language system includes a disassembler 

and trace facilities. The orompt displays the current 

number base, the number items on the parameter stack, and 

syntax level information. Rach installation of PISTOL 

supports on-line help files and a tutorial. 



2, Architecture of Threaded Code Languages 

This  chapter discusses the major characteristics of 

a threaded language system, namely: 

- A simple instruction set for an abstract 
machine, written as short code segments 
in another current machine architecture. 

- An interactive fconversational) monitor 
that permits direct execution of 
virtually all commands of the system and 
direct interaction with the user-defined 
objects. Programs (words) created by the 
user effectively extend the language and 
can be used either interactively or in 
new definitions. 

The chapter outlines the mechanisms employed to 

implement a threaded lanmiaae, stacks, headers, and the 

inner and outer interpreters. The basis for this chapter 

comes from examining FORTH, STOTC and PISTOL, as well 

from a book by Loeliger [131. I tried to present a 

generic description of threaded languages, and at times 

will refer tD the specifics of FORTH, STOIC or PISTOL. 

The examples of code in this section are from a 

fictlcious machine (the RLT-QO), and are meant to serve 

as1 outlines. A more detailed description of PISTOL can 

be found in chapter 4. 



2.1 The Instruction Set Architecture 

The essential idea of a threaded language is to 

create a simple yet useful and easily understood 

psuedo-machine from a real machine. An inner interpreter 

and at least two stacks control the execution of the 

machine. The instructions are either a small number of 

primitives or higher level secondary instructions. The 

economy and portability of these languages comes from the 

realization that these primitives and I/O routines are 

the only code that need to be written for the real 

machine. 

Designers of various threaded languages differ on 

the function of the primitives. Versions of FORTH 

usually come with host-specific code for most of the 

single-length math operators and number formatting words, 

single-length stack manipulation operators, editor 

commands, branching and structure control words, the 

defining words, and the interpreters. There are many 

versions of FORTH for different computers, and hence a 

movement to standardize and formally define the 

language [7, 173. STOIC M.51 starts with an 8080 

assembler, stack and arithmetic operators, and fewer 

control words, but can only run on the 8080 family of 

processors. PISTOL has rouahly 70 primitives which 

supply a  broad  and universal  set,  on  which  all 
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Implementations can be produced to run identically. 

The higher order instructions in the threaded 

language consist of lists of oointers (addresses) to 

primitives or previously defined secondaries. Programs 

conceptually are tree structures, whose interior nodes 

are the addresses of secondary instructions and whose 

leaves reference primitive instructions . The inner 

interpreter traverses the list of addresses in a depth 

first fashion until it encounters a primitive to be 

executed by the host processor. A return stack governs 

the flow of control, and a separate LIFO stack is used 

for passing parameters and for the temporary storage of 

local variables. By using a return stack, the 

psuedo-machine can execute instructions in the order in 

which they are encountered. The parameter stack 

effectively creates a zero-register machine, allowing 

procedures to be defined without formal arguments. 

1 
Within a definition there is the possibility of 

multiple occurences of a word and in PISTOL there may be 
recursive calls. Technically therefore, some programs may 
not be trees, rather they are directed loop-multlgraphs 
or psuedo-graphs [51. 



2.1.1 Removing: CALL Instructions — The Inner Interpreter 

The end result of a structured programming solution 

is' a heirarehy of procedures (subroutines), each with 

well defined interfaces and concise understandable bodies 

(vith minimal' side affects), intimately such a program's 

executable code is mostly made up of addresses for the 

procedures proceeded by a CALL opcode. 

Direct-threaded [?.) interpreters use only the list of 

addresses and an address interpreter, a machine-language 

routine, NEXT, that sequential.lv passes through the list 

making indirect branches at each address. To facilitate 

program control, any return from a routine is replaced by 

a' branch to NEXT. As an illustration consider the 

following "application" consisting of level-l routines 

that are defined only in terms of primitives, and level-2 

routines made up of primitives and level-l routines: 

10 



PROGRAM APPLICATION; 

PROCEDURE INITIALIZATION; 
BEGIN 

... some code ... 
END; 

PROCEDURE GET_INPUT; 
{ level-2 routine, calls on 
lower level procedures > 

BEGIN 
OPEN; 
READ; 
CLOSE; 

END; 

PROCEDURE GIVE_OUTPUT; 
BEGIN 

...more code ... 
END; 

PROCEDURE PROCESS? 
{ level-1 routine, calls on 
primitive instructions > 
BEGIN 

STEP-1; 
STEP_2; 
5TEP.3; 

END; 

BEGIN 
INITIALIZE; 

GET-INPUT; 
PROCESS; 
GIVE-OUTPUT; 

END. 

A threaded language represents a level-1 routine, 

e.g. PROCESS In figure 2-1, as a list of addresses for 

primitive instructions, here STEP1 through STEP3. Each 

primitive has code executable bv the host machine, but 

rather than end with a return encode the routine branches 

11 



PROCESS IP <- address of pointer 
to first sten 

branch to NEXT 
PLST   addr STEP1 

addr STEP2 
addr STEP3 

STEPi  code 
branch to NEXT 

Figure 2-1:   A level-l routine, PROCESS 

to NEXT . 

Figure  2-2  outlines  the  action of  the  inner 

interpreter.  IP and PW are registers or dedicated memory 

addresses of the underlying machine.  IP, the interpreter 

pointer, points to  the  next  address  In the  list  of 

procedures  to be executed and PW is the address of the 

instruction currently being Interpreted.  NEXT assigns to 

PW the contents of IP, increments IP by the machine  word 

size, w, and indirectly branches to the contents of PW. 

NEXT  PW <- Memory(IP) 
IP <- IP + W 
branch to (PW) 

Figure 2-2:   Inner Interpreter for direct threaded code 

This method of control may be extended to hiqher 

level definitions in the threaded language, by using a 

return stack to Keep track of the IP values . An initial 

12 



segment  of code  in each  procedure at this level will 

stack: the current value of TP and assign IP to point  to 

the new list of  instructions.   This prologue  code 

effectively forces execution to a lower level definition. 

At the end of each procedure  1.1st  is an address  that 

points  to a routine, RETURN, that pops the return stack, 

in order  to return to the higher level   (calling) 

definition, see figure 2-3. 

RETURN pop from STACK to IP 
branch to NEXT 

Figure 2-3:  RETURN routine 

In the above example, GET_TNPUT would call on lower 

level routines OPEN, READ and CLDSE as in figure 2-4. 

INPUT push IP onto STACK 
IP <- NEWLST 
branch to NEXT 

NEWLST addr OPEN 
a'ddr READ 
addr CLOSE 

• 

addr RETURN 

Figure 2-4:  A level-2 routine, INPUT 

Rather than write a conv of the prologue code into 

each procedure at this level, we could store the address 

of the routine as the first entry of the definition. 

Since the primitives of the language should be executed 

n 



by  the  real: machine  and not: interpreted, a different 

prologue is  required at  the  lowest  level.   For  an 

immediately executable  routine,  the  inner interpreter 

should pass control to the host machine code that defines 

the primitive.  One method sets the  instruction  pointer 

of  the real1 machine, PC, to one word beyond the current 

address  (see  the  example  PLUS  of   figure  2-6). 

Furthermore,  definitions of constructs such as variables 

and constants will  require  the  interpreter  to behave 

differently and therefore to expect a different prologue. 

We now have a! collection of prologues for different types 

of   definitions  in the  language,  and  require  every 

definition begin with a pointer  to  the  code  for  the 

appropriate  prologue.   These  pointers  to prologues 

require a modification in the address interpreter,  which 

must  now branch  indirectly to  the  first word of the 

procedure. 

NEXT  PW <- memory(IP) 
IP <- IP + W 
X <- memory(PW) 
branch to (X) 

Figure 2-5:   Inner Interpreter: indirect threaded code 

The threading of a sequence of subroutines into a 

list of their entry addresses is termed direct threaded 

code in the literature 17,   6, 16],   Indirect threaded 
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code "consists of a linear list of words which contain 

addresses of routines to he executed" by Dev/ar's 

definition [6], PISTOL is a variation on indirect 

threaded code, that uses lists of tokens which serve as 

ah index into a table of routines to be executed. The 

indirect token threaded code offers even more machine 

independence at ah expense In execution speed. 

2.1,2 The Parameter Stack 

To pass operands between the instructions a threaded 

language makes use of a parameter stack . Any routine 

that needs inputs takes them from the stack; any data 

returned by a routine goes back onto the top of the 

stack. Hence the need for general registers or 

accumulators can be largelv eliminated. Furthermore, the 

parameter stack facilitates the use of reverse polish 

notation, RPN, to specify a series of operations. In RPM 

operands precede operators and evaluation is from left to 

right. Parenthesis are not needed and no precedence is 

given to the operators. For example the primitive to add 

two integers is listed in fiaure 2-6. 

Procedure calls (addresses') are maintained on the 

return stack but operands may only be found on the 

parameter stack. This use of multiple stacks greatly 

simplifies  the  implementation of the language and makes 



PLUS  set PC to next word 
pop PSTACK. to Z 
POP PSTACK to Y 
add Z to Y 
push Y to PSTACK 
branch to MEXT 

Figure: 2-6:   Primitive to add two Integers 

program design conceptually easier for the user. The 

second is an important consideration, as the most obscure 

or unfamiliar aspect of programming in these languages is 

the stack manipulations. Separating the parameter and 

return stacks means the level of calls need not be taken 

into consideration when new words are used to rename 

existing routines.  For examole 

'PLUS : + ; 
'ADD : PLUS ; 

are all equivalent? the only difference is a loss in 

execution speed. If the system used only one stack, the 

return addresses would interfere with the arguments. 

The postfix  stack architecture also creates some 

nice features for program development. 

To debug a module, the user explicitly 
places parameters on the stack and 
(interactively) executes1 the word she 
wants to test. 

Entering the variable's1 name places its 

16 



address  on the  stack, allowing various 
pointer calculations. 

Local variables need not be declared 
within a routine, lust carefully placed 
and removed from the stack. 

- Procedures may be  written  to accept  a 
variable number of arguments, as in C. 

2.2 The Outer Interpreter — A Conversational Monitor 

2.2.1 Headers 

In order to make the collection of threaded-code 

instructions interactive with a human user, a mechanism 

to translate the symbolic name of a procedure into its 

definition as a prologue pointer and body is needed. h 

header preceeding the prologue addresses pointer is 

incorporated, and includes the following information: 

- the symbolic name of the procedure  as  a 
character strina; 

- a  pointer to another procedure's header; 
usually called the link field. 

- other miscellaneous compile time or run 
time information? 

The link field is used to chain the names of the 

procedure set together into a list, called a vocabulary 

branch.  The dictionary consists of the collection of all 

17 



vocabulary branches. Startina with a symbolic name, a 

search of the dictionary will return a pointer to the 

header or body for the appropriate instruction. 

2.2.2 FORTH and STOIC headers 

FORTH and STOIC use essentially the same header. In 

the figure 2-7 each horizontol block represents one 

machine-word C2 bytes ) of memory, and each dictionary 

entry has a three character maxlmium name field. Note 

that the newer and more general FORTH-79 standard permits 

up to thirty-one characters in the name field and allows 

the order of the fields to be implementation dependent. 

STOIC employs a 5 character name field that is null 

filled, if necessary. PISTOL'S header is described in 

section 4.2. 

NAME FIELD 

LINK FIELD 

CODE FIELD 

PARAMETER FIELD 

Figure 2-7:   Samnle Dictionary Header 
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Name field. The first byte contains the character 

count for the name of the defined word. There are 

special bits of this byte called precedence bits. 

Micro-Motion's FORTH [83 uses the next to most 

significant bit, bit six, to indicate whether the word is 

to be executed or to be compiled into the new definition 

during compilation. Bit five is set when the word is 

being: defined and reset when the definition is complete. 

This is referred to as "smudqlnq" the name field. Note 

that only words with bit 5 reset may be compiled into a 

definition, therefore a word may not refer to itself 

tfithin its definition. The next three bytes contain the 

ASCII representation of the first three characters of the 

word's name. 

Link: field. The link field contains the address of 

the previous definition, thus chaining the word into the 

dictionary. To install a new word the compiler sets the 

new word's link field to point to the last entry in the 

dictionary and updates the system variable CURRENT to the 

address of the new word. To search for a name, start at 

the end of the dictionary and follow the pointers 

oackward comparing name fields until a match or until the 

sentinal, 0, stored in the first word's link field is 

encountered. 

Code field'.   This cell contains a pointer to the 

1Q 



appropriate prologue code, which distinguishes variables, 

constants and (colon) definitions1. Briefly here is an 

outline of what the various prologues do at "run time*' 

- For variables push  the address  of  the 
variable onto the parameter stack. 

- For  constants  push  the  value of  the 
constant onto the parameter stack. 

For colon definitions begin Interpreting 
the word by setting the Interpreter 
pointer, IP, to the oarameter field. 

For primitives begin executing the native 
code by setting the hosts1 program counter 

2 
to the next memory location . 

Parameter field. The parameter field begins the 

data or code area used by the FORTH word . If the word 

Is' a variable or a constant this area is.only one cell in 

length, it contains the value of the variable or the 

constant. In STOIC and PISTOL' the address of the 

variable is stored in the parameter field, not the value. 

In primitive and higher level definitions the parameter 

field merely contains the first instruction in the body 

of the definition, and is where execution of the word 

2 
In STOIC this action is performed by NEXT 

20 



begins. 

2.2.3 Interpret State 

The outer interpreter is a simple program that gets 

characters from a buffered input line. Upon recognizing 

a complete token, it searches the dictionary. If a match 

is' found, the entry in the dictionary is executed (by the 

psuedo-machine inner interpreter). If no match is found, 

the program attempts to convert the token to a number in 

the current base. If the conversion is successful, the 

value is pushed onto the parameter stack. If the token 

is' not numeric, some threaded languages (PISTOL and 

STOIC) will try to convert the token as a string and push 

a pointer to the string onto the stack. If all the 

conversions fail, an error message is printed and the 

program reset. This simnle text interpreter design 

allows execution to occur in the order in which 

procedures are typed, from left to right, hence 

capitalizing on RPN conventions and greatly reducing the 

need for syntactical analysis. 

21 



2.2.4 Compile State 

With little-need for syntax checking, it is possible 

to compile new definitions in one pass. Compilation is 

triggered when the user types a defining word, such as :, 

the outer interpreter changes its state and function. 

Instead of executing the subseguent procedures, the 

compile facility enters the list of their starting 

addresses into the new procedure. When a terminating 

command is encountered, such as ?, the RETURN instruction 

is* compiled into the definition, the new word is entered 

into the dictionary and the Interpreter returns to its 

normal state. It is apparent that the word ; to 

terminate a' definition should be executed and not 

compiled. 

In general two types of behavior may be exhibited by 

a FORTH word: rurv time actions occur when the word is 

executed (in the interpret state), and compile time 

actions occur during the compile state. Some words 

behave in both ways and fall into the two general 

classes, usually referred to as defining words or 

compiling words [83. Deflnlna words specify the compile 

time and run time behavior for a family of words, for 

example the defining words CONSTANT and VARIABLE. When a 

user enters the definition 

22 



2 CONSTANT TWO 

the compiler constructs a new dictionary entry called TWO 

and enters the value 2 in its parameter field. If the 

user subsequently types 

TWO 

the run time behavior of CONSTANT is executed and the 

value is 2 is pushed onto the stack. 

Compiling words are used inside colon-definitions 

and cause the compiler to take specific actions, such as 

touching-up forward refences, thus' ultimately affecting 

the run time execution. The compiler does not compile 

the address of the compiling word, but executes it 

Instead. These immediate words are distinguished by the 

precedence bit in their name field. 

The above scheme for a monitor restricts code 

generation to the compile state. And as execution in the 

interpret state is seguentlal, forward references and 

touchup must be prohibited while in the interpret state. 

FO.RTH for this reason limits the use of LOOP and TF-THEN 

statements to be within the definition of a word. To 

avoid this short coming, PISTOI, and STOIC use a buffer to 

store compiled code, which is then executed by the 

interpreter.   All addresses contained in the compiled 

23 



code are either absolute addresses of words In the 

dictionary or offsets relative to the IP. The code is 

position independent and will, execute correctly in the 

compile buffer or when relocated in the dictionary. 

24 



3, Programming Philosophy of Threaded Language Systems 

FORTH, the most popular threaded language, has 

gained a large group of advocates, who seem to have given 

this slightly unconventional language a cult status. 

They state many outrageous claJms to its versatility and 

uniqueness, professing that it Js THE way to program 

micro-computers. Clearly FORTH and other such language 

systems change the way a programmer thinks about her 

tiachine, her problem and the set of possible solutions. 

These language systems supply the total environment 

to develop and execute programs. They contain an 

interpreter for Interactive execution, compiler, built in 

utilities, and often their own operating system. Each of 

which may be modified or extended to some degree. This 

means that the artificial constraints to a problem that 

grow out of' a software development system can be side 

stepped by changing the environment. 

3,1 Top-down design; Bottom-up testing 

Threaded language svstems support the top-down 

analysis and design of a solution. The programmer 

expresses a complex task In terms of simpler set of less 

complex words, each of which can be refined (defined) 

still further until he reaches constructs of the basic 

language.   However,  it  is  most advantageous to use a 

25 



bottom-up order for implementation and testing. That is 

the lowest level modules (words) are written and tested 

before the top level modules. 

In a language like PASCAL there is only one entry 

point, namely the main program, which then calls on 

procedures and functions to nerform subordinate tasks. 

To test the top level module before lower level modules 

are created, requires the programmer to provide routines 

that do, nothing when executed (except perhaps return 

simulated data). When these dummy routines are replaced 

by fully implemented modules, the top level must be 

retested. Alternatively the bottom-up order tests only 

the implemented modules as they are created, and does not 

require retesting as others are written and put in place. 

To achieve bottom-up testing and implementation, a 

language system must be interactive and allow enty points 

at any level of the program. The bottom-up 

implementation and testing offers easier debugging 

capabilities and faster overall program development. 

3,2 Module structure 

A tenet of structured programming is that a complex 

task should be decomposed into simpler sub-tasks or 

modules. Harris discussed the orginlzation and size of 

FORTH modules in [10] 
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Each  module  should  carry out a single 
action 

Each module  should  have  a  simple 
interface to others 

- The modules should he grouped into layers 
of equal complexity. 

- The layers should be ordered by 
complexity such that the bottom layer 
contains the simplest functions and the 
top would have the most complex. 

- Modules should be  small,  generally not 
referencing more than nine others. 

Harris  states  that the  reasoning behind the last 

restriction comes from the number of things a human can 

"simultaneously analyze,  trade-off,  or optimize."  And 

that  FORTH  programs  will be  simpler and  easier  to 

understand  if  definitions are not more than a few lines 

long.  Of course FORTH's screen editor encourages  short 
3 

modules by offering only 24 lines on the Apple 1C .  As a 

3 
Mass storage units are "blocks" if they hold data or 

object code or "screens" if they hold source code. In 
FO.RTH-79, each block of mass storage can hold 1024 bytes 
of data. If the block is used as a screen, these 1024 
bytes will usually be organized as 16 lines of 64 
characters each. The Apple requires 24 lines of 40 
characters with 64 Inaccessible characters in each 
screen. 
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result there will be many of these short modules to build 

a1 large, complex program. An extensive application in 

this type of language may be as unwieldy as an assembly 

language program. A label is used to indicate the entry 

point to each routine, and within the routine there is a 

collection of jumps to other labeled statements. In 

assembly language there is not much harm in creating all 

these labels, however for a threaded language the result 

will be a swollen dictionary and far too many words for a 

user to remember. This suggests that FORTH-llke 

languages may not be suitahie for large programming 

applications. 

To speed up searches and avoid conflicts between 

some common words, the programmer may form vocabulary 

branches. These are indepent linked lists within the 

dictionary that chain together words used in a special 

context. For example the assembler which accompanies 

many of these language systems', is a specialized 

vocabulary that is accessable only during CODE 

definitions. PISTOL Includes the word UNLINK to make 

rarely used, obscure or dangerous words inaccessable to a 

user. 
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3.3 Exensibillty of Language 

Compilation is  the process of converting a source 

language program into a form that  a computer can use. 

Compilers for most popular languages, such as PASCAL, are 

large  complicated  programs  designed to handle every 

imaginable variation of the  lancruage's  syntax.   These 

compilers  must  also include storage allocation and code 

generation routines.   Alternatively threaded language 

systems  use  multiple compilers to handle the functions 

that a larger language miaht.  The system views compiling 

a  constant  declaration  as  a  distinct process  from 

compiling the definition of a new executable word, and as 

such handles  them  by  different  defining words.  Most 

threaded languages provide a mechanism to declare a word 

"immediate,"  or executable during compilation, in effect 

allowing the user  to create new defining  (compiling) 

words.   Since user-defined words are treated the same as 

system-supplied words,  a  programmer can extend  the 

capabilities  of  the  language  by adding  simple and 

specialized compiling words,  FORTH offers the CREATE and 

D0,ES> combination to specify the  compile time behavior 

and  the  run  time  behavior of a word.  For a detailed 

discussion of' CREATE and DOES> (or <BUILD and DOES>  in 

earlier versions of FORTH) see Harris* article [93. 
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3.4 Celticism: of' FORTH-like Lahguges' 

Whole Issues of BYTE and Dr. Dobb's Journal have 

been devoted to FORTH. But with all the acclaim comes 

some serious criticism of this unconventional 

language U, 11], The most unaopealling aspect of FORTH 

is1 that its code is virtually unreadable. To understand 

the definition of a word requires a pencil and paper 

simulation to follow the use of the stacks. The compact 

code begs for extensive documentation. But the 1K screen 

afforded by the FORTH operating system seriously 

restricts definitions from including many comments. This 

environment is not optimal for production systems that 

would involve more than two proarammers or an application 

with a long life span. Languaaes that are supported by a 

host operating system (STOIC, PISTOL and LISP), allow the 

user to load external files created by a friendlier 

editor that would afford more space for documentation. 

In practice many programmers shun the transparency 

of local variables and parameters offered as a feature of 

the language. Instead storage is allocated to variables, 

which as dictionary entries are alobal hence susceptible 

to side effects, furthermore they may begin to bloat the 

dictionary. By adding floating point routines, graphics 

capabilities and other specialized vocabularies, the 

language becomes less compact and even sluggish.   Some 
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users  of  FORTH systems have filled the available memory 

in a 48K Apple. 

A postfix language may be difficult for even 

experienced programmers to learn. It requires a closer 

understanding of how a computer works. The language does 

not make the transformation from the way a human might 

define a programming solution to what the machine 

executes, the programmer must. Further the control 

structures are awkward and in practice tend to be abused. 

Just as an API/ programmer will forgo good structured 

programming techniques for an indecipherable one-liner, 

FO.RTH programmers worship the compact, efficient 

solution. 

3.5 Alternatives 

GraFORTH is a wholly compiled version of FORTH 

written for the Apple M by Paul Lutus. Fxecution is 

very fast, allowing the animation and graphic 

capabilities for which it was conceived. Externally 

graFORTH looks like FORTH to the user. Tt employs a 

parameter stack and postfix notation, as well as FORTH 

conventions for defining words. GraFORTH, however does 

not use the standard FORTH operating system, rather hooks 

into the Apple DOS. Tt also does not conform to the 

FO.RTH-79 standard  in  many other  places.   Internally 
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graFORTH offers a completely different look than FORTH. 

It compiles a line into a buffer and executes it, like 

STOIC and PIvSTOL. Significantly the body of a definition 

is1 less like threaded code. It mostly Is made up of 

calls to subroutines and includes the 6502 opcode JSR 

addr. This has many FORTH advocates' upset, claiming that 

graFORTH is not really FORTH. 

John McCarthy develoDed LISP as a language to 

process symbolic rather than numeric data [14, 18, 193. 

It has been the main vehicle for encoding processes that 

exhibit artificial Intelligence. LISP is an extensible 

interpretive language that, employs prefix notation. 

Because it resembles functional notation, prefix is more 

familiar than postfix notation for most users. However 

derivatives of. LISP (REDUCE and LOGO for example) use 

algebraic (or infix) notation. Execution of LISP-like 

languages is slower because most words are partially 

reinterpreted each time they are called. But the 

reinterpretation and blurred distinction between data and 

program gives LISP its most distinctive character. 
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3,5.1 Lisp-like languages 

Lisp data are called s-expressions (symbolic 

expressions). The simplest s-expression is an atom, 

which is a numeric or literal. Non-atomic s-expresslons 

are dotted pairs, represented as a two compartment cell 

whose left and right parts hold pointers to the left and 

right sub-expressions. The storage for the cells is an 

area of memory called the heap, and the value of a 

variable is a' pointer to an s-exnression in the heap. 

The Lisp interpreter alwavs tries to evaluate an 

expression and return a value; the value returned by an 

atom is itsell. To defer evaluation by the interpreter 

use the quote, '. If an atom follows the quote, then a 

pointer to that atom Is the value of the quoted 

expression. If a left parenthesis follows the quote, 

then a structure corespondinq to the s-expression is 

created in the heap, and a pointer to this structure is 

the value of the quoted expression. The evaluation of an 

s-expression is done by the function CVAL, which 

recursively traverses the tree that represents the 

expression in a preorder. EVAL separates the expression 

into its left component, S, and its riqht component, 

called the a)-llst for associated list. Tf s is an atom 

return its value, namely return S. If is quoted return a 

pointer to S, If the first part of  S  (CAR S)  is an 
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idiomatic Lisp form, en. CCiMn, perform the appropriate 

routine. Otherwise F.VALuate the associated a-.list and 

"apply" S to the returned value. 

The syntax of Lisp for procedure calls requires 

prtefix notation, that is the procedure name precedes its 

list of arguments-. The body of a Lisp procedure is an 

expression and the value it returns is the value of that 

expression. Lisp functions are really data objects that 

are arguments to EVAL, and are reinterpreted every time 

they are called. This makes Lisp execution slow, but 

allows procedures that alter themselves while they are 

executed. 

The property list of the item in the symbol table 

representing the function is the defining expression. 

The formal parameters are the second item in the 

expression and appear in a list that starts with LAMBDA. 

They receive their value from the actual parameters 

through "lambda binding." Arguments to the procedure are 

quoted in order to defer evaluation and to bind them to 

the lambda expression in the procedures definition. 
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4. PISTOL, for the Apple ] t 

PISTOL (Portably Implemented STack Oriented 

Language) was designed bv Frnest E. Bergmann of the 

Physics Department at Lehigh University [3], It is 

modeled after FORTH (Charles Moore, 1970) and STOIC (MIT 

and Harvard Bloengineerina Center, 1977), but with a 

slightly different design philosophy. STOIC and FORTH 

were written to run on a micro- or mini-computer, but 

PISTOL was developed as a language to be used on large 

tialnframe -na'chines' as well. ft major goal included 

portability between machines with different word-lengths 

and instruction sets. Other criteria which directed the 

creation of PISTOL were: to add a greater degree of user 

friendliness, to bypass some of the bothersome short 

commings of FORTH, to be as self-contained and complete 

as' possible, and to stress short simple and "stupid" 

routines. 

UnliKe FORTH, strings are a fundamental part of 

PISTOL. And as in STOIC, the name of a word being 

defined precedes the colon, hence achieving a greater 

degree of flexibility when defining new words. 

PISTOL and STOIC compile every line Into a buffer 

and do not require two modes of operation for the outer 

interpreter, as FORTH does. 

PISTOL does not come with its own operating system, 
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but does have a resident line editor, a disassembler and 

trace facilities. To maintain portability between 

machines and insure that all defitions can disassemble 

completely, no facillity to write "CODE" definitions was 

included. However PISTOL does have in-line macro 

defining capabilities, and custom versions written in 

assembly language are planned to include CODE 

definitions [43. 

PISTOL employs a different type of header than STOIC 

or FORTH. It uses a name field which points into the 

string area and recognizes a word by its entire name. 

PISTOL'S header is also larger. By adding an extra field 

to the dictionary header that points' to the end of the 

definition, PISTOL is able to implement macros which copy 

the code from the parameter field to the end of the 

definition directly into the compile buffer. This extra 

field also Is used to indicate to the disassembler where 

to stop disassembling. 

PISTOL has been written in RDS-C to run in a CP/M-80 

based environment, and in PASCAL to run on the DEC-20. I 

have written the Apple 3 r version in Aztec C as 

distributed by Manx Software. This1 chapter will discuss 

the inner workings of PISTOL as a threaded language. The 

examples of code that appear are taken from the 

implementations written in c. 
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4.1 The Inner interpreter 

In  the  implementation of PISTOL, the action of the 

prologue code and NEXT  are  combined  in  the  function 

interpretO of figure 4-1.  While the return stack is not 

empty  (rptr >= 0),  the interpreter increments ip by the 

machine word size, W.   Tt  then  tests  if  the current 

instruction,  instr, is a primitive; if yes, then execute 

the primitive, otherwise push the  interpreter pointer, 

Ip,  onto  the return stack and set it to instr.  Finally 

the current instruction is set to the contents of ip. 

((define       NFUNCS  74 
((define       W       7 
unsigned ip, instr; 
int *Pw; 
int C *f array [NFHNCsnO; 

InterpretO 
{     do { 

Ip += W; 
if (instr < NFUNCS)  (*farray[instrl)(); 
else 

{ rpush(in); ip =■ instr; } 
Pw  = ip; 
instr = *Pw; 
> 

while (rptr >= 0); 
ip -= W; 

Figure 4-1:  PISTOL'S Tnner Interpreter 

There are aproxlmatelv 70 PISTOL primitives, each 

associated  with an integer from 0 to NFUNCS.  It is this 
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Integer that is entered Into a compiled definitiion and 

Later assigned to instr. When a secondary reaches 

Interprets), instr holds the address' of the secondary and 

will be larger than NFUNCS. Execution of a primitive 

comes from selecting a pointer to a function from farray. 

The interested reader should see section 5.12. of 

Kernighan and Ritchie [12] for a discussion of pointers 

to functions in C. The PASCAL implementation uses a large 

CASE statement to select the appropriate procedure. 

4.2 PISTOL: heaaer 

The header format for PTSTOL consists of four 

fields: 

ENDA address of the end of the code body; 

LFA link field -- pointer to previous entry; 

NFA name field -- pointer into string area; 

CFA code    field 

EMDA most often points to the instruction which 

simulates a return, viz. the procedure psemiO. The link 

field, LFA, points to the CFA of the previous entry; and 

the function vflndO follows these pointers attempting to 

match the current token from the text interpreter with 

the symbolic name of an Instruction. NFA points into the 

string area, where strings are stored with a character 

3fl 



count and up to 127 characters. The CFA will contain 

different information depending on the word. Most 

primitives have the instruction compmeO, which tells the 

compiler to copy from this point to the address pointed 

to by ENDA into the code of the word being defined 

(compiled). Secondary instructions contain the 

instruction comphereO, which tells the compiler to 

insert the address of the instruction into the code of 

the new word. 

The ENDA permits two of PISTOL'S unique features. 

The disassembler package uses it to decide when to stop 

disassembling a word. And the macro-definq words $: and 

;$ rely on ENDA to bracket the definiton of a macro. 

4.3 PISTOLs Outer Interpreter 

The outer interpreter has been divided into two 

parts. The main loop of the program calls on complineO 

to enter a line into the compile buffer, and then 

executes the instructions in the buffer, see figure 4-2. 

complineO gets a buffered line of input, either from the 

console or an input file, then enters a loop to process 

the tokens. In this loop a pointer to the current token 

is* pushed onto the stack, find() absorbs this pointer and 

searches through the dictionary for a match. If 

successful, flndO leaves the CFA on the stack, otherwise 
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pushes 0 indicating no word was found in the dictionary. 

compllneO then uses a nested conditional statement to 

decide how to handle the current token. 

If the address at the too of the stack (pad) is 
not zero, then £lnd() succeeded and interpret 
the instruction in the CFA . Most often CFA 
contains the instruction compme or comphere. 
CompmeO copies the entire definition into the 
compile buffer, and is used by primitive and 
macro definitions. While comphereO compiles 
the address of the word into the buffer. 

If find(): did not succeed, try to convert the 
token to a: numeric value using the current 
base. If convertC-,-,-) is- successful, the 
instruction that indicates literal storage and 
the numeric value are entered into the compile 
buffer. 

string 
single 

Long 

If none of the conditions above are selected, 
the token cannot be decinhered. A message and 
the offending token are printed, control is 
returned to the main Drogram loop where the 
pointer into the compile buffer, ,C, Is reset. 

The main loop then interprets  the instructions  in 

the compile buffer. 

As an example, suppose X is a' variable that has been 
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complineO 
{ 

getlineO; 
ignrblnksO; 
while   (   nextcharptr   1= NEWT.TNE   ) 
< 

IntolcenO; 
push( endofstrnaotr ); 
find(); 
pad = pop(); 
If (pad)  < instr = pad - 1; interpretO; } 

else < if (convert(endofstrngptr,base,&val) ) 
{   comDile(IiTT); compile(val); } 

else { if ( *PC == »\" ) 
(pad = slitO; 
comDile(STRLIT); 
compile(pad); 

> 

else { if (*Pc == 'V") 
{pad =' longstringO ; 
compile(STRT.JIT); 
compile(pad); 

> 
else 

/* token not deciphered */ 
(message(endofstrngptr); 
printfC ?\n"); 
abortO; 

> 
> 

> 

ignrblnksO; 
> 

Figure 4-2:   PISTOL'S Outer Interpreter 

previously declared and given a value.  If the user 

enters the lines 
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BEGIN 
X 
we 
EQZ 

END 

compline() will proceed in the following manner: 

- BEGIN is a primitive, so can be found in the 
dictionary. When complineO calls interpretO 
the routine beglnopO is Imediately executed. 
BeglnopO pushes the compile buffer pointer, 
.C:, onto the parameter stack for a future 
branch calculation. 

After matching X, the comphere Instruction is 
passed onto InterpretO, which places the 
address of the word X Into the next location of 
the compile buffer. 

Wfa is a primitive, whose CFA contains compme, 
which causes the token selecting vratO to be 
inserted into the compile buffer. 

EQZ is a secondary instruction, defined in 
PBASE2 to test the top of the stack for zero, 
and therefore has its address inserted into the 
compile buffer. 

The primitive END causes the instruction 
selecting pifO to be complied into the buffer. 
END pops the address stored by BEGIN and 
computes the difference between that address 
and the current compile buffer pointer storing 
the result in the compile buffer. 

Upon reaching the end of the line, control goes to 

the main loop which sets lnstr to the contents of the 

first entry in the compile buffer and calls  interpretO. 
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When interpret*) encounters the address of X, it realizes 

X is not a primitive; after saving a return address 

execution (interpretation) of X begins. The code for X 

pushes the address of the variable onto the parameter 

stack: and interpret*) returns to the compile buffer. The 

(primitive) code for watO oops the parameter stack and 

pushes the contents of that address1 onto the stack. EQZ 

tests the top of the stack; if it is zero, pushes on TRtJ 

(-1), otherwise pushes on FALS (0). Mext the interpreter 

finds the token for pifO, which pops the top of the 

parameter stack. If that value is 0, it then bumps the 

Interpreter pointer to the next address. Otherwise pifO 

sets ip to the contents of the word to which lp is 

pointing, namely the value computed by the branch 

calculation. 

PISTOL handles colon-definitions in much the same 

fashion. When complineO, the outer interpreter, 

encounters a' :, it compiles the instruction pcolon into 

the buffer and calls on a routine to setup a forward 

reference, fwdrefO pushes ,C onto the parameter stack 

and compiles a 0 into the compile buffer which will be 

overwritten later during touchup. At the end of the new 

word's definition is ;, which compiles psemicolon and 

calls touchupO. During interpretation of the compile 

buffer, pcolonO calls on enterO.  This routine creates 

43 



a dictionary header with CFA containing the instruction 

comphere, and it updates the svstem variable CURRENT. 

pcolonO then moves the contents of the compile buffer 

into the dictionary area and finalizes the entry by 

patching up the word's FNDA. 

Macro-definitions are delimited by the words $: and 

;$. They cause slmiliar compilation and interpretation 

as1 colon-definitions, except in place of pcolon $: 

compiles pdollar, which during interpretation overwrites 

the CFA with compme. 

A scheme to extend PI.STDL to compile CODE 

definitions could incorporate an instruction like 

comphere. it would place the PFA in the compile buffer. 

During execution, the inner interpreter distinguishes 

between address list and machine code by "glancing up" at 

the header to see if CODF or comphere was used in the 

CFA. The interpreter would recognize that what follows 

is1 native code and pass control to the host processor. 

4.4 Remarks on the Implementation 

With portability as a design goal, the 

implementation language of PTRTDTi was chosen as C or 

PASCAL. The installation on a new machine that maintains 

one of these languages should be straight forward. 

However I had encountered some difficulties trying to put 
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PISTOL on the Apple ][. The PASCAL version causes the 

internal statics of the p-machtne to overflow during 

compilation. T tried many combinations of unitsr include 

files, and swapping options, but never successfully 

compiled PISTOL' using the Apple PASCAL. 

The version written in C must be run with the Aztec 

Z' shell, an interpreter and ooerating system combination. 

When the relocatable code for PISTOL is linked to the 

libraries that support a "stand alone" program, the 

executable code grows very larae and overwrites the DOS 

file buffers. The Aztec C shell adds another layer of 

interpretation which slows execution, particularly the 

I/O operations. I intend to write a version of PISTOL in 

6502 code that will be more compact and faster than the 

present Apple version. 

4.5 Conclusion 

Threaded interpretive languages' have made their mark 

in computing, particularly on minis and micros. 

Exhibiting great versatility, they have been used for 

nany scientific and industrial applications. In the 

decade since Moore first developed FORTH, there has been 

a steady evolution of the languages. (Initially FORTH 

words were reinterpreted each time they were called.) 

PISTOL being the latest of the threaded languages, has 
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benefited the most from qrowina pains of FORTH. When a 

feature like string capabilities or the case-statement 

was added to FORTH, it was placed on top of the existing 

architecture often times in an awkward fashion. Rather 

than such a patch-work desiqn, PISTOL started with a more 

flexible header and a compile buffer (ala STOIC). While 

PISTOL may sacrifice some execution speed and is not as 

compact as its predecessor, it offers more consistent and 

friendly aspects. 
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