View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by Lehigh University: Lehigh Preserve

Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1983

Pistol.

Edward E Bacon

Follow this and additional works at: http://preserve lehigh.edu/etd

b Part of the Computer Sciences Commons

Recommended Citation
Bacon, Edward F,, "Pistol." (1983). Theses and Dissertations. Paper 2348.

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an

authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

https://core.ac.uk/display/228651466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2348&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2348&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2348&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=preserve.lehigh.edu%2Fetd%2F2348&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2348?utm_source=preserve.lehigh.edu%2Fetd%2F2348&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

PISTOL

A Threaded Internretive Language
by

Fdward F, BRacon

A Thesis
Presented to the Graduate Committee
of Lehiah UIniversity
in Candidacy for the Degree of
Master nf Science
in
Computing Science
Department of Mathematics

Lehigh fIniversity

1983

ProQuest Number: EP76624

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

ProQuest.

ProQuest EP76624
Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106 - 1346

This thesis 1s accented and approved in partial
fulfillment of the requirements for the deqree of Master

of Science.

Lty 17, 1983
“Rate

e

Professor in Charge

Chalirman of Depa;tment

11

"If the pocket protector fits...wear it!"

-Jane Pali

111

Table of Contents
ABSTRACT
1, Introduction
i.l A Look at PISTOL
2, Architecture of Threaded Co&e Languages

2.1 The Instruction Set Architecture
2.1.1 Removing CALL Instructions == The Inner
Interpreter
2.1.2 The Parameter Stack
2,2 The Duter Interpreter == A Conversational
Monitor
2.2.1 Headers
2.2.2 FORTH and STNIC headers
2.2.3 Interpret State
2.2.4 Complle State

3, Programming. Philosophy of Threaded Language
Systems’

3.1 Top=down design; Bottom=up testing
3,2 Module structure
3.3 Exensibility of Language
3,4 Criticism of FORTH=like Lanauges
3,5 Alternatives

3.5.1 Lisp=like languaqes

4, PISTOL: for: the Apple)l

4,1 The inner interpreter

4,2 PISTOL header

4,3 PISTOLs Duter Interpreter

4,4 Remarks on the Implementation
4,5 Conclusion

REFERENCES

Vita

iv

22

25

25
26
29
30°
31
33

35
37
38
39
44
45
47

49

Fidgure

Figure

Figure
Figure

Figure

Figure

Figure

Figure

Figure

NN
[] 8
se oo oo e ea

N =30 oW N -

NN NN

List of Figures

A" level=1 routine, PROCESS

Inner Interpreter for direct threaded
code

RETURN routine

A level=2 rountine, INPUT

Inner Interpreter: indirect threaded
code

Primitive to Add two inteqgers

Sample Dictionary Header

PISTOL’s Inner Interpreter

PISTOL’s Outer Tnterpreter

12
12

13
13
14

16
18
37
41

ABSTRACT

PISTOL (Portably Implemented STack Oriented
Language) has been modeled after two threaded
interpreters, FORTH and STOIC. This paper examines the
nature of threaded lanauaaes and the particular

installation of PISTOL for the Apple (.

1, Introduction

This paper looks At threaded intepreters, In
particular the implementation of PISTOL. I begin with a
section that w#ill glive ¢the unfamiliar reader a brief
overview of a stack oriented 1language and some of
PISTOL’s features, The second chapter discusses the
internal workings of a threaded {nterpreter, using FORTH
and STOIC as models. Chabpter three deals with the nature
of oprogramming 1in these 1languages and what makes them
unigue, The final chapter covers the inner workings of

PISTOL as written in C for the Apple,

1.1 A Look at PISTOL

PISTOL 1is an interactive language, commands are
{inmediately interpreted and executed as they are entered
at a terminal, Unlike a language like BASIC, it offers
the user greater flexibility in naming variables and
accessing mnore of the computer’s capabllities, Features
of PISTOL and other threaded 1languages include their
extensiblity and the number of entry points offered by
the system. From the command level the user may eXecute
or define anv number of rountines, These lanquages are
compiled in the sense that durina actual execution (run
time) none of the source code 1s rescanned,

PISTAOL consists primarilv of a dictionary of words.

Each word has a unique meanino and interpretation. For
instance, the word CRP means "carrlage return" and will
cause the ASCII —character 13 to be sent, 1Initlally
PISTOlI, comes with a small dictionary of about seventy
¥ords, which constitﬁte the basis to gqgenerate new
commands in the language,

string literals take two forms in PISTOL, A string
may be preceded by a Sinale quote and terminated by
spaces or tabs. A string mavy also be enclosed by double
quotes, For example each of these are:strinq literals:

‘GO0DD=DAY

"THIS IS A STRING "
The token, 146, is an example of A numeric literal, its
value Is determined by the number base the system |{is
currently using. When 146 {is typed its value is placed
oﬁ a stack, thus allowina other w#ords to access its
value,

Most data passed between PYISTOL procedures uses the
parameter stack. PISTOL emplovs reverse polish notation
for all 1its operations. RPN requires that operands
precede operators, and eliminates the need for

parenthesis. To get the equivalent of the algebralc

expression

7 % (8 + 12)

in PISTOL, type
78 12 + %

This will place‘140 on the top of the stack, to see the
result orinted you must explicitly type = ,

PISTOL words may be used directly as commands to the
tomputer or may be compiled 1nto.the definition of new
words., In fact, programming in PISTOLL consists of
defining new words in terms of existing words, As an
illustration, the word TRIPLE will be defined to multiply
the wvalue at the top of the stack by 3 and print the

result,

*TRIPLE ¢ 3 %

]
-e

The speclal words ¢ and 3 Indicate to PISTAL to begin
defining a new word in terms nof the enclosed words. For
more lllustrations of PISTOL, programming see the file
PBASE2, which when LOADed defines the common PISTOL
commands,

A sizable collection of new words can be created by
using a sinple 1line editor, which 1Is itself defined in
terms of PISTOL words, or by creating them as an external
text f£ile that iIs LOADed into the dictionary. After the
dictionary (set of defined words) has heen enlarged an
inage of memory may be saved on disk by the word

4

COREDUMP, Later the {maage may be recovered by using
RESTNRE. Todgether with the capability to restrict users
to limited wvocabularles, a programmer has the machinery
to c¢reate specialized aoplication software in a
customized PISTOL,

PISTOL provlides the means to do top=down structured
programming. The idea of a PTSTOL word as a clearly
defined module which has been constructed from other
PISTOL words, facilitates the top=down design and
nodularization of complicated programs. The language

also includes a complete set of control structures:

IF, . THEM a single branch

IF. .ELSE ... THEN a two way test and branch
OFCASE...ENDCASFE a multiway test and branch
D04 .. LOOP looning structures similar
D0...+LOOP to PASCAL’s FOR ,.. DD

BEGIN,.IF,.,REPEAT like WHILE,..DO in PASCAT

BEGINsse o« END like REPEAT,.,.., UNTIL NOT,,

N feature of PISTOL 1s that these control structures may
be executed at the commnd level as well as appear in the
definition of new words, This {s possible because PISTOL
compiles every line into a buffer and then executes 1it,
Such a scheme allows PISTOL to handle forward references

to an address and to support recursive definitions.

User friendliness was a major design consideration
for PISTOL, The language system includes a disassembler
and trace facilities. The prompt displays the current
number base, the number items on the parameter stack, and
syntax level information. Fach {installation of PISTOL

supports on=-line help files and a tutorial.

2, Architecture of Threaded Code Languages
This chapter discusses the major characteristics of

3 threaded language system, namely:

- A simple instruction set for an abstract
nachine, written as short code segments
in another current machine architecture,

- An interactive (conversational) monitor
that permits Airect execution of
virtually all commands of the system and
direct interaction with the user=defined
objects, Programs (words) created by the
user effectively extend the lanquage and
can be used either interactively or in
new definitionse.

The chapter outlines ¢the mechanisms emploved ¢to
implement a threaded lanauaae, stacks, headers, and the
inner and outer interpreters. The basis for this chapter
comes from examining FORTH, STOTYC and PISTOL, as well
from a book by Loeliger [131, I tried to present a
generlic description of threaded languages, and at times
will refer to the specifics of FORTH, STDIC or PISTOL,
The examples of code In this section are from a
ficticious machine (the BLT=90), and are meant to serve

as' outlines, A more detalled description of PISTOL can

be found in chapter 4,

2.1 The Instruction Set Architecture

The essential idea of a threaded language is to
create a siaple vyet useful Aand easily understood
psuedo=machine from a real machine. An inner interpreter
apnd at 1least two stacks control the execution of the
nachine, The instructions are either a small number of
primitives or higher level secondary instructions, The
economy and portability of these languages comes from the
realization.that these primitives and 1/0 routines are
the only code that need to be written for the real
nachine,

Designers of various threaded 1languages differ on
the function of the primitives, Versions of FORTH
usually come with host=specific code for most of the
single~length math operators and number formatting words,
single=length stack manipulation operators, editor
commands, branching and structure control words, the
defininy words, and the {interpreters., There are many
versions of FORTH for different computers, and hence a
movement to standardize anA formally define the
language (7, 171, STOIC [15) starts with an 8080
assembler, stack and arithmetic operators, and fewer
tontrol words, but can onlvy run on the 8080 family of
Processors. PISTOL, has rouahly 70 primitives which
supply a broad and universal set, on which all

8

implementations can be produced to run identically.

The higher order instructions In the threaded
language consist of 1lists of bpolnters (addresses) ¢to
primitives or previously defined secondaries. Programs
conceptually are tree structures, whose Interior nodes
are the addresses of secondary Instructions and whose
leaves reference primitive 1nstructionsl. The 1inner
interpreter traverses the 1list of addresses in a depth
first fashion until it encounters a primitive to be
executed by the host processor. A return stack governs
the flow of control, and a separate LIFO stack 1is used
for passing parameters and for the temporary storage of
local varlables. By nsind a return stack, the
psuedo=machine can execnte instructions in the order in
which they are encountered, The parameter stack
effectively creates a =zero-reaister machine, allowing

prbcedures to be defined without formal arqguments,

1

Within a definition there is the possibllity of
multiple occurences of a word And in PISTOL there may be
recursive calls, Technically therefore, some programs may
not be trees, rather they are directed loop=-multigraphs
or psuedo=graphs [5],

2.1.1 Removing: CALL Instructions == The Inner Interpreter

The end result of a structured programming solution
is' a heirarchy of procedures (subroutines), each with
well defined interfaces.and concise understandable bodies
(vith minimal: side affects), [!ltimately such a program’s
executable code Is mostly made up of addresses for the
procedures proceeded by a CALL opcode.,
Direct=threaded (2] interpreters use only the list of
addresses and an address interpreter, a machine=language
routine, NEXT, that sequentiallv passes through the 1list
naking indirect branches at each address. To facilitate
program control, any return from a routine is replaced by
a branch to NEXT. As an 1{llustration consider the
following "application" consisting of 1level=1 routines
that are defined only In terms of primitives, and level=2

routines made np of primitives and level=1 routines:

10

PROGRAM APPLICATION;

PROCEDIURE INITTALIZATION;
BEGIN
ees SOmMe code ..,
END;

PROCEDURE GET.INPIIT:
{ level=2 routine, calls on
lower level procedures }
BEGIN
OPEN;
READ;
CLOSE;
END;

PROCEDURE GIVEOUTPUT:
BEGIN .
sesmore .code .,.
END;

PRIOCEDURE PRNCESS: .
{ level=1 routine, calls on
primitive instructions }
BEGIN
STEP..1:
STEP.2:?
STEP.3:
END;

BEGIN
INITIALIZE;
GET.INPUT;
PROCESS;

GIVE.OUTPUT;
END,

A threaded language represents a level=! routine,
e.g. PROCESS in figure 2=1, as a 1list of addresses for
primitive Instructions, here STEP1 through STEP3,., Each
primitive has code executable by the host machine, but

rather than end with a return oocode the routine branches

1"

PROCESS IP <= address of pointer
to first sten
branch to NEXT
PLST addr STEP1
addr STEP2
addr STFP3

STEPI code
branch to NEXT

Figure 2=1: A level=1 routine, PROCESS

to NEXT ,

Figure 2=2 outlines the action of the {inner
Ilnterpreter, IP and PW are registers or dedicated memory
addresses of the underlyina machine. 1P, the interpreter
pointer, points to the next address in the 1list of
procedures to be executed and PW Is the address of the
instruction currently beinag interpreted. NEXT assigns to
PA the contents of IP, increments IP by the machine word
size, W, and indirectly branches to the contents of PW,

NEXT PW <= Memory(IP)

IP <= IP + W
branch to (PW)

Figure 2e2: Inner Interpreter for direct threaded code

This method of control may be extended to higher
level definitions in the threaded language, by using a

return stack to keep track of the IP values , An initial

12

segment of code in each procedure at this level will
stack the current value of IP and assign IP to point to
the new 1ist of instructions, This prologue code
effectively forces execution to a lower level definition.
At the end of- each procedure 1ist (s an address that
points to a routine, RETIRN, that pops the return stack,
in order to return to the higher level (calling)
definition, see figure 2~3,
RETURN pop from STACK to 1P
branch to NEXT

Figure 2-3: RETIURN routine

In the above example, GET_TNPUT would call on lower
level routines OPEN, READ and CLNSE as in filqure 2-4,
INPUT push IP onto STACK
IP <= NEWLST
branch to NEXT
NEWLST addr OPEN

addr READ
addr CLDSE

addr RETURN
Figure 2=4: A level=? routine, INPUT

Rather than write a copv of the proloque code Iinto
each procedure at this level, we could store the address
of the routine as the first entry of the definition,
Since the primitives of the language should be executed

13

by the real: machine and not Interpreted, a different
prologue is required at the 1lowest level, For an
immediately executable routine, thé inner Interpreter
should pass control to the host machine code that defines
the primitive. One method sets the instruction pointer
of the real machine, PC, to one word beyond the current
address (see the example PLUS of fiqure 2=6),
Furthermore, definitions of constructs such as variables
and constants will require the {interpreter to behave
differently and thereforé to exnect a different proloque,
We now have a' collection of prologues for different types
of definitions 1in the 1lanaguage, and require every
definition begin with a polnter to the code for the
appropriate prologue, These pointers to prologues
reqgquire a modification in the address interpreter, which
must now branch indirectly to the first word of the
procedure,
NEXT PW <= memory(IP)
IP <= 1P + W

X <= memory(PW)
pranch to (X)

Figure 2=5: Inner Interpreter: indirect threaded code

The threading of a sequence of subroutines 1into a
1ist of their entry addresses is termed direct threaded

code in the 1literature [2, 6, 161, Indirect threaded

14

code "consists of a linear list of words which contain
addresses of routines to be -executed" by Dewar’s
definition [61], PISTOL is a wvariation on indirect
threaded code, that uses lists of tokens which serve és
an index into a table of routines to be executed, The
indirect token threaded code offers even more machine

independence at an expense in execution speed,

2,1,2 The Parameter Stack

To pass operands between the instructions a threaded
language makes use of a parameter stack ., Any routine
that needs inputs takes them from the stack; any data
returned by a routine aoes bhack onto the top of the
stack. Hence the need for general registers or
accumulators can be laragelv eliminated, Furthermore, the
parameter stack facilitates the use of reverse polish
notation, RPN, to specify a series of operations. In RPN
operands precede operators and evalation {is from left to
right, Parenthesis are not needed and no precedence 1is
given to the operators. For example the primitive to add
two integers is listed in fiagure 2-6,

Procedure calls (addresses) are maintained on the
return stack but operands may only be found on the
parameter stack. This use of multiple stacks greatly

simplifies the 1implementation of the lanquage and makes

15

PLUS set PC to next word
pop PSTACK to 2
pop PSTACK to Y
add 2 to Y
push ¥ to PSTACK
branch to NEXT

Figure. 2=6: Primiftive to add two integers

program design conceptually easier for the user, The
second 1s an important consideration, as the most obscure
or unfamiliar aspect of proaramming in these lanquages 1is
the stack manlpulations, Senarating the parameter and
return stacks means the level of calls need not be taken
into consideration when new words are used to rename
existing routines. For example
'PLUS ¢ +
‘ADD : PLUS ;
are all equivalent; the only difference is a loss in
execution speed, TIf the system used only one stack, the
return addresses would interfere with the argquments,
The postfix stack aAarchitecture also creates some
nice features for program development.
= To debug a module, the user explicitly
places parameters on the stack and
(interactively) executes: the word she
wants to test,
- Entering the variahle‘’s name places {ts

16

address on the stack, allowing various
pointer calculations,

- Lncal variables need not be declared
within a routine, fust carefully placed
and removed from the stack,

- Procedures may be written to accept a
variable number of arquments, as {n C.

2.2 The Outer Interpreter =« A Conversational Monitor

2.,2,1 Headers

In order to make the collection of threaded=code

Instructions interactive with a human user, a mechanism

to translate the symbolic name of a procedure into
definition as a prologue pointer and body is needed,

header preceeding the proloaque addresses polinter
incorporated, and includes the following information:

= the symbolic name of the procedure as a
character strina;

= a polinter to another pnrocedure’s header;
usually called the 1ink field.

= other miscellaneous compile time or run
time information:

its
A

is

The 1link field i{is used ¢to chain the names of the

procedure set together into a list, called a vocabulary

branch. The dictionary consists of the collection of all

17

vocabulary branches, Startinag with a symbolic name, a
search of the dictionary will return a pointer to the

header or body for the appropriate instruction,

2,2.2 FORTH and STODIC headers

FORTH and STOIC use essentially the same header, In
the figure 2=7 each horizontol' block represents one
mnachine-word (2 bytes) of memory, and each dictionary
entry has a three character maximium name fleld, Note
that the newer and more general FORTH=79 standard permits
up to thirty-one characters in the name field and allows
the order of the fields to be Iimplementation dependent,
STOIC employs a 5 character name field that {is null
filled, 11f necessary. PISTDI ‘s header is described in

section 4.,2.

NAME. FIELD tt 4 D |

] A ! T !

LINK FIELD | ! |

CODE FIELD | ! |

PARAMETER FIELD | | |

D MY Gt e A Gy TR we ma We WO Wn W Wy R
. A om B e P e . A WA S G -

Figure 2=7: Samble Dictionary Header

19

Name field. The first hyte contains the character

count for the name of the defined word, There are
special bits of this bhvte called precedence bits,
Micro=Motion’s FORTH [8]) uses the next to most
significant bit, bt six, to Indicate whether the word is
to be executed or to be compiled into the new definition
during compilation, Bit five is set when the word |is
being defined and reset when the definition is complete.
This is referred to as "smudainag"™ the name field., Note
that only words with bit 5 reset may be compiled into a
definition, therefore a word may not refer to 1itself
#ithin its definition. The next three bytes contain the
ASCII representation of the first three characters of the
vord’s name,

Link field. The 1link fileld contains the address of
the previous definition, thus chaining the word into the
dictionary. To install a new word the compller sets the
new word’s 1link field to point to the last entry in the
dictionary and updates the system varifable CURRENT to the
address of the new word, To search for a néme, start at
the end of the dictionarv and follow the polinters
opackward comparing name flelds until a match or until the
sentinal, 0, stored in the first word’s 1link fileld 1s
encountered,

Code fdield, This c¢ell contains a pointer to the

19

appropriate prologue code, which distinguishes variables,
constants and (colon) definitions. Briefly here is an
outline of what the various prologues do at "run time"

- For variables push the address of the
variable onto the parameter stack,

- For constants push the value of the
constant onto the parameter stack.

= For colon definitions begin Interpreting
the word by setting the iInterpreter
pointer, IP, to the oarameter fleld.

-~ For primitives begin executing the native
code by settina the hosts program counter
to the next memory location2.

Parameter field. The parameter field beains the
data or code area used by the FORTH word . If the word
is' a variable or a constant this area is_only one cell in
length, it contalins the value of the variable or the
constant, In STOIC and PTSTOL the address of the
variable is stored in the parameter fileld, not the value,
In primitive and higher level definitions the parameter

field merely contains the first instruction in the body

of the definition, and is where execution of the word

2
In STOIC this action 1s performed hy NEXT

20

begins,

2.2.,3 Interpret State

The outer interpreter is a simple program that gets
characters from a buffered input line. Upon recognizing:
a complete token, it searches the dictionarv. If a match
is- found, the entry In the dictionary is executed (by the
psuedo=nachine inner interpreter), 1If no match is found,
the program attempts to convert the token to a number in
the current base. If the conversion is successful, the
value {s pushed onto the parameter stack. 1If the token
is' not numeric, some threaded 1lanqguages (PISTOL and
STOIC) will try to convert the token as a string and push
a pointer to the strinag onte the stack, If all the
conversions fail, an error message Is printed and the
program reset, This simple text Iinterpreter design
allows execution to occur in the order in which
procedures are typed, from left to riaht, hence
capitalizing on RPN conventions and greatly reducing the

need for syntactical analysis.

21

2,2.4 Compile State

With little_need for svntax checkina, it is possible
to compile new definitions in one pass, Compilation {is
triggered when the user tvpes aAdefining word, such as é,
the outer interpreter chanaes 1ts state and function,
Instead of executing the subsequent procedures, the
compile facility enters the 1ist of their starting
addresses 1into the new procedure, When a terminating
command is encountered, such as ¢, the RETURN instruction
is- compiled into the definition, the new word is entered
into the dictionary and the interpreter returns to 1its
normal state, It 1is apparent that the word ; to
terminate a definition should be executed and not
compiled,

In general two types of behavior may be exhibited by
a FORTH word: run time actions occur when the word |{s
executed (in the interpret state), and compile time
actions occur during the compile state, Some words
behave 1in both ways and fall {into the two general
classes, usually referred ¢to as defining words or
compliling words [8), Definina words specify the compile
time and run time behavior for a family of words, for
example the defining words CONSTANT and VARTABLE, When a

user enters the definition

22

2 CONSTANT TWO

the compiler constructs a new dictionary entry called TWO
and enters the value 2 in its parameter field., If the

user subsequently types
TWO

the run time behavior of CNONSTANT is executed and the
value is 2 is pushed onto the stack.

Compiling words are used inside colon=definitions
and cause the compiler to take specific actions, such as
touching=~up forward refences, thus ultimately affecting
the run time execution. The compiler does not compile
the address of the compilina word, bhut executes it
instead, These Iimmedliate words are distinguished by the
orecedence bit in their name field,

The above scheme for a monitor restricts code
generation to the compile state, And as execution in the
interpret state is sequential, forward references and
touchup must be prohibited while in the interpret state,
FORTH for this reason limits the use of LNNP and TF=THEN
statements to be within the Adefinition of a word., To
avold this short coming, PISTNRL and STDIC use a buffer to
store compiled code, which 1{is then executed by the

interpreter, All addresses contained in the compiled

23

code are elther absolute addresses of words in the
dictionary or offsets relative tn the 1P, The code |{is
position independent and wil)l execute correctly in the

compile buffer or when relocated in the dictionarvy.

24

3, Programming Philosophy of Threaded Language 8ystem§
FORTH, the most popular threaded language, has
gained a large group of advocates, who seem to have given
this slightly wunconventional 1language a cult status.
They state many outrageous clajms to its versatility and
unigueness, professing that it s THE way to program
micro=-computers. Clearly FORTH and other such language
systems change the way a proarammer thinks about her
machine, her problem and the set of possible solutions,
These language systems supply the total environment
to develop and execute Dprodarams., They contain an
interpreter for 1nteract1ve‘execntion, compiler, bullt in
utilities, and often their own operating system. Each of
which may be modified or extended to some degree., This
means that the artificial constraints to a problem that
grow out of a software develapment system can be side

stepped by changing the environment,

3.1 Top=down design; Bottom=up testing

Threaded language svstems support the top=down
analysis and design of a solution, The programmer
expresses a complex task in terms of simpler set of 1less
complex words, each of which can be refined (defined)
still further untll he reaches constructs of the baslic

language, However, it 1{s most advantageous to use a

25

bottom=up order for implementation and testing. That is
the lowest level modules (words) are written and tested
before the top level modules,

In a language like PASCAL there is only one entry
point, namely the main oprogram, which then c¢alls on
procedures and functions to pmerform subordinate tasks.
ré-test the top level module before lower Jlevel modules
are created, requires the proarammer to provide routines
that do, nothing when executerd (except perhaps return
simulated data). When these dummy routines are replaced
by fully implemented modules, ¢the top level must be
retested, Alternatively the bottom=up order tests only
the Implemented modules as they are created, and does not
requlre retesting as others are written and put in place,
To achieve bottom=~up testing and Iimplementation, a
language system must be interactive and allow enty points
at any level of the program, The bottom=up
inplementation and testing offers easier debugging

capablilities and faster overall nrogram development,

3.2 Module structure

A tenet of structured programming is that a complex
task should be decomposed into simpler sub=tasks or
nodules, Harris discussed the orginization and size of

FORTH modules in [10]

26

« Each module should carry out a single
action

- Each module should have a simple
interface to others

- The modules should be grouped into lavers
of equal complexity,

= The layers shoulAd be ordered by
complexity such that the bottom 1layer
contains: the simplest functions and the
top would have the most complex,

= Modules should be small, generally not
referencing more than nine others,

Harris states that the reasoning behind the last
restriction comes from the number of things a human can
"simultaneously analyze, trade=off, or optimize,"” And
that FORTH programs will bhe simpler and -easier to
understand 1f definitions are not more than a few lines

long. 9Jf ctourse FORTH'’s screen editor encourages short
3
modules by offering only 24 lines on the Apple 1{ , As a

Mass storage units are "blocks" 1if thevy hold data or
object code or "screens" {f they hold source code, In
FORTH=79, &each block of mass storage can hold 1024 bytes
of data, If the block Is used as a screen, these 1024
bytes will usually be oraganized as 16 1lines of 64
characters each. The Appble requires 24 1ines of 40
cnaracters with 64 inaccessible characters 1in each
screen,

27

result there will be many of these short modules to build
a’ large, complex program, An extensive application in
this type of language may he as unwieldy as an assembly
language program. A label 1s used to indicate the entry
point to each routine, and within the routine there is a
collection of Jumps to other labeled statements, 1In
assembly language there is not much harm in creating all
these 1labels, however for a threaded lanqguage thé result
w11l be a swollen dictionary and far too many words for a
user to remenmber, This suqgests that FORTH=11ike
languages may not be suitable for 1large programming
applications,

To speed up searches and avoid conflicts between
some common words, the proqgrammer may form vocabulary
branches., These are indepent 1linked 1ists within the
dictionary that chain together words used in a special
context., For example the assembler which accompanies
nany of these language systems, Is a specilalized
vocabulary that is accessable only during CNODE
definitions. PISTOL 1includes the word UNLTINK to make
rarely used, obscure or danagerous words inaccessable to a

user,

28

3,3 Exensibility of Language

Compilation {is the ©process of converting a source
language program into a form that a computer can use,
Conpllers for most popular lanaunages, such as PASCAL, are
large complicated programs designed to handle every
imaginable variation of the lanquage‘’s syntax. These
compilers must also include storage allocation and code
generation routines, Alternatively threaded languyage
systems wuse multiple compilers to handle the functions
that a larger language miaht, The system views complling
a constant declaration as a distinct process from
compiling the definition of a new executable Qord, and as
such handles them by different defining words, Most
threaded languages provide a mechanism to declare a word
"immediate," or executable during compilation, in effect
allowing the user to create new defining (compiling)
words, Since user~defined words are treated the same as
system=supplied words, A nproarammer can extend the
capabilities of- the 1language by adding simple and
speclalized complling words, FORTH offers the CREATE and
DDES> combination to specify the <compile time behavior
and the run time behavior of a word, For a detailed
discussion of CREATE and DOES> (or <BUILD and DOES> 1in

earlier versions of FORTH) see Harris’ article (9],

29

3.4 Criticism of FORTH=1ike Languges:

Whole 1issues of BYTE and Dr., Dobb’s Journal have
been devoted to FORTH, But with all the acclaim comes
some serious criticism of this unconventional
language (1, 11)], The most unappealling aspect of FORTH
ist that its code Is virtually unreadable, To understand
the definition of a word requires a pencil and paper
simulation to follow the nse of the stacks, The compact
code begs for extensive documentation. But the 1K screen
atforded by the FDORTH operating system seriously
restricts definitions from including many comments. This
environment is not optimal for production svstems that
would involve more than two proarammers or an application
with a long life span, Lanquaades that are supported by a
host operatihg system (STATC, PISTOL and LISP), allow the
user to load external filles created by a friendlier
editor that would afford more space.for documentation,

In practice many programmers shun the transparency
of local variables and parameters offered as a feature of
the language. Instead storaade is allocated to varlables,
#hich as dictionary entries are alobal hence susceptible
to side effects, furthermore they may begin to bloat the
dictionary. By adding floating point routines, graphics
capabilities and other svecialized vocabularles, the
language becomes less compact and even slugqgish, Some

30

users of FORTH systems have filled the avajlable memnory
“in a 48K Apple,

A postfix language may be difficult for even
experlenced programmers to learn. It requires a closer
understanding of how a computer works, The language does
not make the transformation from the way a human might
define a programming solution to what the machine
executes, the programmer must, Further ¢the control
structures are awkward and in practice tend to be abused,
Just as an APL programmer will forgo good structured
programming technigques for an indecipherable one=liner,
FORTH projrammers worship the compact, efficient

solution,.

3.5 Alternatives

GraFORTH is a wholly compiled version of FORTH
written for the Apple)[bv Paul Lutus, Fxecution is
very tast, allowing the animation and graphic
capablilities for which it was conceived, FExternally
graFORTH looks like FORTH to the user, Tt employs a
parameter stack and postfix notation, as well as FORTH
conventions for defining words., GraFORTH, however does
not use the standard FORTH operating system, rather hooks
into the Apple DOS, Tt also does not conform to the

FORTH=79 standard in manvy other places, Internally

31

graFORTH offers a completelv AdAifferent look than FORTH,
It compiles a line into a buffer and executes 1it, like
STOIC and PISTOL. Significantly the body of a definition
I1s+ less 1ike threaded code, It mostly is made up of
calls to subroutines and includes the 6502 opcode JSR
addr, This has many FORTH advocates upset, claiming that
JrafFORTH is not really FORTH,

John Mclarthy develoned ©LISP as a language to
process symbolic rather than numeric data (14, 18, 19],
It has been the main vehicle for encoding processes that
exhibit artificial intelligence, LISP is an extensible
interpretive language that employs prefix notation,
Because it resembles functional notation, prefix is more
familiar than postfix notation for most users. However
derivatives of bISé (REDUCE and LDGO for example) use
algebraic (or Infix) notation, Execution of LISP=like
languages ls slower because most words are partially
reinterpreted each time they are called, But the
reinterpretation and blurred distinction between data and

program gives LISP its most distinctive character.

32

3.5.1 Lisp~like languages

Lisp data’ are called se=expressions (symbolic
expressions). The simplest se~expression {s an atomn,
#hich 1s a numeric or literal. VNon=-atomic s-expressions
are dotted pairs, represented as a two compartment cell
#whose left and right parts hold pointers to the left and
right sub=-expressions. The storage for the cells 1s an
area of memory called the heap, and the value of a
variable is a pointer to an s=exnpression in the heap,

The Lisp interpreter alwavs tries to evaluate an
expression and return a value; the value returned by an
atom is itself. To defer evaluation by the 1Interpreter
use the guote, *, If an atom follows the quote, then a
pointer to that atom 1s the value of the quoted
expression, If- a left parenthesis follows the quote,
then a structure coresponding to the s-expression 1is
created in the heap, and a pointer to this structure is
the value of the guoted expression., The evaluation of an
s=eXpression 1s done by the function EVAL, which
recursively traverses the tree that represents the
expression in a preorder. FEVAL separates the expression
into 1its 1left component, S, and its right component,
called the a=list: for associated list., Tf S is an atom
return its value, namely retuvrn S. If is aquoted return a
pointer to S, If the first part of S (CAR S) 1Is an

33

idiomatic ULisp form, ea, COND, perform the appropriate
routine. Otherwise EVALuate the assoclated a=list and
"apply"” S to the returned value,

The syntax of Lisp for procedure calls reguires
prefix notation, that is the procedure name precedes its
list of argumentss, The body of a Lisp procedure 1is an
expression and the value it returns is the value of that
expression, Lisp functions are really data objects that
are arguments to EVAL, and are reilnterpreted every time
they are c¢alled, This makes Lisp eXecutfion slow, but
allows procedures that alter themselves while they are
executed,

The property 1list of the item In the symbol table
representing the function 1s the defining expression.
The formal- parameters Aare the second jitem in the
expression and appear in a list that starts with LAMBDA,
They receive their value from the actual paranmeters
through "lambda bindina.," Arguments to the procedure are
gquoted in order to defer evaluation and to bind them ¢to

the lambda expression In the procedures definition,

4

4, PISTOL: for the Apple)

PISTOL (Portably Implemented STack Oriented
Language) was designed bv Frnest E, Bergmann of the
Physics Department at Lehigh University (3], It is
modeled after FORTH (Charles Moore, 1970) and STNIC (MIT
and Harvard Bdoengineerinag Center, 1977), but with a
slightly different design philosophy,. STOIC and FORTH
were written to run on a micro= or mini-computer, but
PISTOL was developed as a lanauaage to be used on large
mainframe machines as well, A major aoal included
portability between machines with different word=lengths
and Instruction sets, Other criteria which directed the
creation of PISTOL were: to add a greater deqgree of user
friendliness, to bypass some of the bothersome short
commings of FORTH, to be as self-contained and complete
as' possible, and to stress short simple and "stupid"
routines,

Unlike FORTH, strings are a fundamental part of
PISTOL, And as in STOIC, the name of a word being
defined precedes the colon, hence achieving a greater
degree of flexibility when defining new words,

PISTOL and STOIC compile every line into a buffer
and do not require two modes of operation for the outer
interpreter, as FORTH does,

PISTOL does not come with {its own operating system,

a5

but does have a resident 1ine editor, a diéassembler and
trace facilities, To maintain portability between
machines and insure that all defitions can disassemble
completely, no faclllity to write "CODE" definitions was
included, However PISTOI, does have in-line macro
defining capabilities, and custom versions written 1in
assembly language are planned to include CNDE
definitions (4],

PISTOL employs a different type of header than STOIC
or FORTH, It uses a name fileld wnhich points into the
string area and recognizes a word by its entire name.
PISTOL’s header is also larager, By adding an extra field
to the dictionary header that points to the end of . the
definition, PISTOL {s able to implement macros which copy
the code from the parameter field to the end of the
definition directly into the comnile buffer., This extra
fleld also i{s used to indicate to the disassembler where
to stop disassembling.

PISTOL has been written In RDS=C to run in a CP/M=80
based environment, and in PASCAL to run on the DEC=20, I
have written the Apple)T version in Aztec C as
d{stributed by Manx Software, This chapter will discuss
the inner worklings of PISTOL as a threaded lanquage, The
examples of ¢ode that appear are taken from the
implementations written {n C,

36

4,1 The inner interpreter

In the 1implementation of PISTOL, the action of the
prologue code and NEXT are combined in the function
interpret() of figure 4-1., While the return stack is not
empty (rptr >= 0), the interpreter increments ip by the
machine word size, W, Tt then tests {f the current
instruction, instr, is a primitive; 1{f ves, then execute
the primitive, otherwise push the interpreter pointer,
ip, onto the return stack and set {t to instr. Finally

the current instruction is set to the contents of ip.

#define NFUNCS 74
#define W 2
unsigned 1ip, instr;

int XPw3

int (*¥farrayINFUNCS1)();

interpret()

{ do
ip += W;
if(instr < NFUNCS) (*farraylinstrl)():;
else
{ rpush(ip); {p = instr; }

Pw = 1p;
instr = *pPw;
}

while (rptr >= 0):

Ip == W;

Figure 4=1: PISTOL’Ss Tnner Interpreter

There are aproximatelv 70 PISTOL primitives, each
assoclated with an integer from 0 to NFUNCS., It is this
37

Integer that is entered Into a compiled definitiion and
later assigned to Instr. wﬁen a secondary reaches
interpret(), instr holds the address of the secondary and
#i11ll be 1larger than NFUNCS, Execution of a primitive
comes from selecting a pointer to a function from faftay.
The interested reader should see section 5.12,. of
Kernighan and Ritchie (12] for a discussion of pointers
to functions in C. The PASCAT, implementation uses a large

CASE statement to select the appropriate procedure,

4,2 PISTOL. header:

The header format for PTSTOL consists of four

fields:
ENDA address of the end of the code body:
LFA link field ~= pointer to previous entry;
NEA name fleld =~«~ pointer into string area;
CFA code field

ENDA mnost often points to the Instruction which
simulates a return, viz. the procedure psemi(). The link
fleld, LFA, points to the CFA of the previous entry; and
the function veind() follows these pointers attempting to
match the <current token from the text interpreter with
the symbolic name of an instruction, NFA points into the
string area, where strings are stored with a character

38

count and up to 127 characters, The CFA will contain
different information dependina on the word, Most
primitives have the instruction compme(), which tells the
compiler to copy from this point to the address pointed
to by ENDA into the code of the word belng defined
(compiled), Secondarv instructions contain the
instruction comphere(), which tells the compiler to
insert the address of the instruction into the code of
the new word,

The ENDA permits two of PISTOL’s unique features,
The disassembler package uses it to decide when to stop
disassembling a word. And the macro=defing words $: and

$$ rely on ENDA to bracket the definiton of a macro,.

4,3 PISTOLS Outer: Interpreter

The outer Interpreter has been divided into two
parts., The main loop of the proaram calls on compline()
to enter a 1line Iinto the complle buffer, and then
executes the instructions in the buffer, see figure 4=2,
compline() gets a buffered line of input, either from the
console or an input file, then enters a loob to process
the tokens., In this loop a pointer to the current token
1s pushed onto the stack, find() absorbs this pointer and
searches through the dictionary for a match, If

successful, find() leaves the CFA on the stack, otherwise

39

pushes 0 indicating no word was found in the dictionary.
compline() then uses a nested conditional statement to

decide how to handle the current token,

= If the address at the too of the stack (pad) is
not zero, then £ind() succeeded and interpret
the instruction in the CFA , Most often CFA
contains the instruction compme or comphere,
Comome() coples the entire definition into the
compile buffer, and 1is used by primitive and
macro definitions. While comphere() compiles
the address of the word into the buffer,

- If £ind(): did not succeed, try to convert the
token to a numeric value using the current
base, If convert(=,=,=) 1is successful, the
instruction that indicates Jiteral storage and
the numeric value are entered into the compile
buffer,

- Next try to recognize the ¢token as a string
literal, If the taken begins with a single
guote, process the string with slit(Q). Long
strings are delimited by double quotes and are
recognized by longstring(). Both functions
return the address of ¢the string, and after
conpiling the string literal storage
instruction, compline() enters the address of
the string into the compile buffer,

= If none of the conditions ahove are selected,
the token cannot be Adeciohered, A message and
the offending token are onrinted, control 1is
returned ¢to the main oprogram loop where the
pointer into the comnile buffer, ,C, is reset,

The main loop then interprets the instructions 1in

the compile buffer,

As an example, suppose X §is a variable that has been

40

compline()

{
getline();
ignrblnks();
while (pextcharptr != NEWLTNE)
{
intoken();
push(endofstrnaotr }):
£ind();
pad = pop();
i1f (pad) { Instr = pad - 1; interpret();)}
else { if (convert(endofstrngptr,base,&val))
{ compile(t,TT); compile(val); }
else { 1f (*pPc == *'\°’")

{pad = slit();
compile(STRLIT);
compile(pad);

}

else { {f (¥Pc == "\"*")

{pad = longstring();
compile(STRLIT);
compile(pad);

}

else
/¥ token not deciphered */
{message(endofstrngptr);
printf(" 2\n");
abort();
}
}
}
fgnrblnks();
}
y:

Flgure 4w=2: PISTOL’s Outer Interpreter

previously declared and aliven a valne, If the user

enters the lines

41

BEGIN
X
ne
EQZ

END

compline() will proceed in the following manner:

- BEGIN {s a primitive, so can be found in the
dictionary. When compline() calls 1interpret()
the routine beginop() 1is imedlately executed.
Beginop() pushes the compile buffer pointer,
«C, onto the parameter stack for a future
branch calculation,

= After matching X, the comphere instruction |is
passed onto interpret(), which places the
address of the word X into the next location of
the complle buffer,

- W@ Iis a primitive, whose CFA contains compme,
which causes the token selecting wat() to be
inserted into the compile buffer,

- EQZ is a3 secondary instruction, defined in
PBASE?2 to test the top of the stack for zero,
and therefore has its address inserted into the
compile buffer,

- The prianitive END causes the instruction
selecting pif() to be compiled into the buffer,
EMD pops the address stored by BEGIN and
computes the difference between that address
and the current complle buffer pointer storing
the result in the compile bhuffer,

Upon reaching the end of the line, control goes ¢to
the maln 1loop which sets instr to the contents of the

first entry in the compile buffer and calls interpret().

42

dhen interpret() encounters the address of X, it realizes
X 1s not a primitive; after saving a return address
execution (interpretation) of X begins. The code for X
pushes the address of the variable onto the parameter
stack and {interpret() returns to the compile buffer. The
(primitive) code for wat() pops the parameter stack and
pushes the contents of that address onto the stéck. EQZ
tests the top of the stacky 1f it i{s zero, pushes on TRU
(-1), otherwise pushes on FALS (0), MNext the interpreter
finds the token for pilf(), which pops the top of the
parameter stack. If that value is 0, it then bumps the
interpreter pointer to the next address. Otherwise pif()
sets ip to the contents of the word to which ip s
pointing, namely the value computed by the branch
calculation,

PISTOL handles colon=definitions in much the same
fashion, When compline(), the outer 1ntérpreter,
encounters a ¢, 1t compiles the instruction pcolon into
the buffer and calls on a routine to setup a forward
reference, fwdref() pushes ,C onto the parameter stack
and complles a 0 into the compile buffer which will be
overwritten later during touchup, At the end of the new
word’s definition is 3, which compiles psemicolon and
calls touchup(). During interpretation of the compile
buffer, pcolon() calls on enter(). This routine creates

43

a dictionary header with CFA containing the instruction
comphere, and it updates the svstem variable CURRENT,
pcolon() then moves the contents of the compile buffer
into the dictionary area and finalizes the entry by
patching up the word’s ENDA,

Macro=definitions are delimited by the words $: and
18, They cause similiar compilation and interpretation
as' colon=definitions, except {n place of pcolon §3
compiles pdollar, which during interpretation overwrites
the CFA with compme,

A scheme to extend PISTOL to compile CODE
definitions ~could incorporate an instruction like
comphere, it would place the PFA 1n the complle buffer,
During execution, the inner {nterpreter distinguishes
between address list and machine code by "glancing up" at
the header to see if CODF or comphere was used in the
CFA, The interpreter would recoqnize that what follows

i1s' native code and pass control to the host processor,

4.4 Remarks on the Implementation

With portability as a desiagn goal, the
implementation language of PISTNI, was chosen as C or
PASCAL., The installation on a new machine that maintains
one of these languages should be straight forward,

However I had encountered some AdAffficulties trving to put

44

PISTOL on the DApple J[. The PASCAL version causes the
internal stacks of the p~machine to overflow during
compilation., T tried many combinations of units, include
files, and swapping options, but never successfully
complled PISTOL using the Apnle PASCAL,

The version written in C must be run with the Aztec
2" shell, an interpreter and ooverating system combination.
When the relocatable code for PISTOL 1s linked to the
libraries that support a "stand alone" program, the
executable code (grows very large and overwrites the DOS
file buffers, The Aztec C shell adds another layer of
Interpretation which slows execution, particularly the
I1/0 operations. 1 intend to write a version of PISTOL in
6502 code that will be more compnact and faster than the

present Apple version.

4,5 Conclusion

Threaded interpretive lanauages' have made thelr mark
in computing, particularly on minis and micros.
Exhibiting great versatility, they have been used for
many sclentific and fIndustrial applications. In the
decade since “oore flrst developed FORTH, there has been
a steady evolution of the lanauages, (Initially FORTH
words were reinterpreted each time they were called,)

PISTOL being the 1latest of the threaded languages, has

4%

benefited the most from arowina pains of FORTH, When a
feature like string capabilities or the case=statement
was added to FORTH, it was placed on top of the existing
architecture often times in an awkward fashion. Rather
than such a patch=work design, PYSTOL started with a more
flexible header and a compile buffer (ala STNIC), While
PISTOL may sacrifice some executjon speed and is not as

compact as its predecessor, it offers more consistent and

friendly aspects,

46

REFERENCES'

(1)

(21

(31

4]

(5]

(6]

(71

(81

(9]

(10]

(11)

Barry, T.
On FORTH Falilings: We need solutions not languages,
Iafodarld , October 11, tan2,

Bell, J.R,
Threaded (ode,

Cammnunicatiaons af the ACM 16(6):370-372, June,
1973,

Bergmann, E.E,

PISTOL A Forth=like Portably Implemented STack
Oriented Lianguage,

Rr. Raba’s Jaurnal (76):12-15, February, 1983,

Bergmann, E.E,
Private communication,

Chartrand, G.
Graphs as’ ¥Yathematlcal Madels.

Prindle, Weber & Schmidt, Tncorporated, Boston, MA,
1977.

Dewar, R.B.K,
Indirect Threaded Code,

Caoznunlications af Lthe ACM 18(6):330-331, June,
1975,

EQRIH=12: A RBublication af the EQRTH Standards Ieam
San Carlos, CA, 1980,

EQBTH-292 Tutarial and RBaference Manual Apple 1(
verslan

MicroMotion, 12077 Wilshire Blvd West lL,os Angeles,
CA 90025, 1981,

Harrls, K.
FORTH Extensibility.
BYIE 5(9):164~184, Auqust, 1980,

Harris, K,
The FORTH Philosophv,
Rr. Dabb’s Journal (59):6=11, September, 1981,

Hogan, T.

Demystify FORTH by facina the facts,
Lofodarld , October 11, 1982,

47

[12]

(13]

(14]

(15]

(161

(171}

(18]

(191

Kernighan, B8.,W, and Ritchie, D.M.
Ihe O Bragramming Language.
Prentice-Hall, Englewood Cliffs, NJ, 1978.

Loeliger, R,G.
Ihreaded lnierpretive Languages.
BYTE Books, Peterborough, NH, 1981,

McCarthy, J,, Abrahams, P,, Edwards, D,, Hart,
Levin, M,

LISE L.5 Bragrammer’s Maaual,

MIT Press, Cambridge, MA, 1962,

Sachs, J.
SINLC (Stack Arlented Interactive Camnliler)
Cambridge, MA, 1977,

Sirag, D.J,.
DTC versus ITC for FORTH on the PDP=~11,
EQRIH QOinensians 1(4), December, 1978,

Ting, C.H.
Formal definition of FORTH,
Qr. DRokh’s Janrnal (64):19=21, February, 1982.

Winston, P.H.
Artificial Intelligence,
Addison-Wesley, Readina, A, 1977,

Winston, P,H., Berthold, K.P,

Lisp.
Addison-Wesley, Readinag, MA, 1980,

48

Vita

Edward Ffrancis Bacon was born on November 10, 1951,
He attended Villanova University from 1969 to 1973, when
he recelived a Bachelor of Science In Mathematics degree,
In 1975, he received a Master of Science {in Maihematics
from Lehigh University, From 1976 to 1980, he taught
mathematics at Stockton State (College in Pomona, Hew
Jersey, From 1980 to 1983 he attended Lehigh University
as' a graduate student In computer science and taught at

Lafayette College in Faston, Pennsylvania,

49

	Lehigh University
	Lehigh Preserve
	1-1-1983

	Pistol.
	Edward F. Bacon
	Recommended Citation

	tmp.1451580486.pdf.bNotL

