
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1983

Pistol.
Edward F. Bacon

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Bacon, Edward F., "Pistol." (1983). Theses and Dissertations. Paper 2348.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228651466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2348&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2348&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2348&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=preserve.lehigh.edu%2Fetd%2F2348&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2348?utm_source=preserve.lehigh.edu%2Fetd%2F2348&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

PISTOL

A Threaded Interpretive [language

by

Edward F. Racon

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Computing Science

Department of Mathematics

Lehigh University

19fl3

ProQuest Number: EP76624

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest

ProQuest EP76624

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

This thesis is accented and approved in partial

fulfillment of the requirements for the deqree of Master

of Science.

hh i7il9S5
Date

Professor in Charqe

Chairman of Department

ii

"If the pocket protector fits...wear it!

-jane Pali

ill

Table of Contents

ABSTRACT 1

1. Introduction 2

1.1 A Look at PISTOL 2

2. Architecture of Threaded Code Languages 7

2.1 The Instruction Set Architecture 8
2.1.1 Removing CALL Instructions -- The Inner 10

Interpreter
2.1.2 The Parameter Stack1 15

2.2 The Duter Interpreter -- A Conversational 17
Monitor
2.2.1 Headers 17
2.2.2 FORTH and STOIC headers 18
2.2.3 Interpret State 21
2.2.4 Compile State 22

3.: Programming; Philosophy of Threaded Language 25
Systems

3.1 Top-down design; Bottom-up testing 25
3.2 Module structure 26
3.3 Exensibillty of Language 29
3.4 Criticism of FORTH-like Lanauges- 30
3.5 Alternatives 31

3.5.1 Lisp-like languages 33

4. PISTOL: for: the Apple]t 35

4.1 The inner interpreter 37
4.2 PISTOL header 38
4.3 PISTOLs Outer Interpreter 39
4.4 Remarks on the Implementation 44
4.5 Conclusion 45

REFERENCES 47

Vita! 49

iv

List of Figures

Figure 2-1: A level-1 routine, PR0.CESS 12
Figure 2-2: Inner Interpreter for direct threaded 12

code
Figure 2-3: RETURN routine 13
Figure 2-4: A level-2 routine, INPUT 13
Figure 2-5: Inner Interpreter: Indirect threaded 14

code
Figure 2-6: Primitive to add two integers 16
Figure 2-7: Sample Dictionary Header 18
Figure 4-1: PISTOL'S Inner Interpreter 37
Figure 4-2: PISTOL'S Outer Interpreter 41

ABSTRACT

PISTOL CPortably Implemented STack Oriented

Language) has been modeled after two threaded

interpreters, FORTH and STOIC. This paper examines the

nature of threaded lanauactes and the particular

installation of PTSTHL for the Apple][.

1, Introduction

This paper looks at threaded intepreters, in

particular the implementation of PISTOL. I beqin with a

section that will give the unfamiliar reader a brief

overview of a: stack oriented language and some of

PISTOL'S features. The second chapter discusses the

internal workings of a threaded Interpreter, using FORTH

and STOIC as models. Chanter three deals with the nature

of programming in these languages and what makes them

unigue. The final chapter covers the inner workings of

PISTOL as written in C for the apple.

1.1 A! Look at PISTOL

PISTOL is an interactive language, commands are

immediately interpreted and executed as they are entered

at a terminal'. Unlike a language like BASIC, it offers

the user greater flexibility in naming variables and

accessing more of the computer's capabilities. Features

of PISTOL and other threaded languages include their

extensiblity and the number of entry points offered by

the system. From the command level the user may execute

or define any number of routines. These languages are

compiled in the sense that during actual execution (run

time) none of the source code is rescanned.

PISTOL consists primarily of a dictionary of words.

7

Each word has a unique meanina and interpretation. For

instance, the word CP means "carriage return" and will

cause the ASCII character 1 "* to be sent. Initially

PISTOL comes with a small dictionary of about seventy

words, which constitute the basis to generate new

commands in the language.

String literals take two forms in PISTOL. A string

may be preceded by a sincile quote and terminated by

spaces or tabs. A string may also be enclosed by double

quotes. For example each of these are string literals:

'GOOD-DAY
"THIS IS A STRING "

The token, 146, is an example of a numeric literal, its

value is determined by the number base the system is

currently using. When 146 Is typed its value is placed

on a stack, thus allowlna other words to access its

va 1 u e.

Most data passed between PTSTOL procedures uses the

parameter stack. PISTOL employs reverse polish notation

for all its operations. RPN requires that operands

precede operators, and eliminates the need for

parenthesis. To get the equivalent of the algebraic

expression

7 * C 8 + 1-2)

in PISTOL, type

7 8 12 + *

This will place 140 on the top of the stack, to see the

result printed you must explicitly type = .

PISTOL words may be used directly as commands to the

computer or may be compiled into the definition of new

words. In fact, programming in PISTOL, consists of

defining new words in terms of existing words. As an

Illustration, the word TRIPLE will be defined to multiply

the value at the top of the stack by 3 and print the

result.

'TRIPLE : 3 * = ;

The special words : and ; indicate to PISTOL to begin

defining a new word in terms of the enclosed words. For

more illustrations of PISTOL programming see the file

PBASE2, which when LOADed defines the common PISTOL

commands.

A sizable collection of new words can be created by

using a simple line editor, which is itself defined in

terms of PISTOL words, or by creating them as an external

text file that is LOADed Into the dictionary. After the

dictionary (set of defined words) has been enlarged an

inage of memory may be saved on disk by the word

4

CO.REDUMP. Later the image may be recovered by using

RESTORE. Together with the capability to restrict users

to limited vocabularies, a programmer has the machinery

to create specialized application software in a

customized PISTOL'.

PISTOL provides the means to do top-down structured

programming. The idea of a PTSTOL word as a clearly

defined module which has been constructed from other

PISTOL words, facilitates the top-down design and

modularization of complicated programs. The language

also includes a' complete set of control structures:

IF..THEM a single branch

IF..ELSE...THEN a two way test and branch

DFCASE...ENDCASE a multiway test and branch

DO...LOOP looping structures similar
DO...+LOOP to PASCAL'S FOR ... DO

BEGIN..IF...REPEAT lllce WHILE...DO in PASCAL

BEGIN END like REPEAT... UNTIL NOT..

A feature of PISTOL is that these control structures may

be executed at the commnd level as well as appear in the

definition of new words. This is possible because PISTOL

compiles every line into a buffer and then executes it.

Such a scheme allows PISTOL to handle forward references

to an address and to support recursive definitions.

User friendliness was a major design consideration

for PISTOL. The language system includes a disassembler

and trace facilities. The orompt displays the current

number base, the number items on the parameter stack, and

syntax level information. Rach installation of PISTOL

supports on-line help files and a tutorial.

2, Architecture of Threaded Code Languages

This chapter discusses the major characteristics of

a threaded language system, namely:

- A simple instruction set for an abstract
machine, written as short code segments
in another current machine architecture.

- An interactive fconversational) monitor
that permits direct execution of
virtually all commands of the system and
direct interaction with the user-defined
objects. Programs (words) created by the
user effectively extend the language and
can be used either interactively or in
new definitions.

The chapter outlines the mechanisms employed to

implement a threaded lanmiaae, stacks, headers, and the

inner and outer interpreters. The basis for this chapter

comes from examining FORTH, STOTC and PISTOL, as well

from a book by Loeliger [131. I tried to present a

generic description of threaded languages, and at times

will refer tD the specifics of FORTH, STOIC or PISTOL.

The examples of code in this section are from a

fictlcious machine (the RLT-QO), and are meant to serve

as1 outlines. A more detailed description of PISTOL can

be found in chapter 4.

2.1 The Instruction Set Architecture

The essential idea of a threaded language is to

create a simple yet useful and easily understood

psuedo-machine from a real machine. An inner interpreter

and at least two stacks control the execution of the

machine. The instructions are either a small number of

primitives or higher level secondary instructions. The

economy and portability of these languages comes from the

realization that these primitives and I/O routines are

the only code that need to be written for the real

machine.

Designers of various threaded languages differ on

the function of the primitives. Versions of FORTH

usually come with host-specific code for most of the

single-length math operators and number formatting words,

single-length stack manipulation operators, editor

commands, branching and structure control words, the

defining words, and the interpreters. There are many

versions of FORTH for different computers, and hence a

movement to standardize and formally define the

language [7, 173. STOIC M.51 starts with an 8080

assembler, stack and arithmetic operators, and fewer

control words, but can only run on the 8080 family of

processors. PISTOL has rouahly 70 primitives which

supply a broad and universal set, on which all

R

Implementations can be produced to run identically.

The higher order instructions in the threaded

language consist of lists of oointers (addresses) to

primitives or previously defined secondaries. Programs

conceptually are tree structures, whose interior nodes

are the addresses of secondary instructions and whose

leaves reference primitive instructions . The inner

interpreter traverses the list of addresses in a depth

first fashion until it encounters a primitive to be

executed by the host processor. A return stack governs

the flow of control, and a separate LIFO stack is used

for passing parameters and for the temporary storage of

local variables. By using a return stack, the

psuedo-machine can execute instructions in the order in

which they are encountered. The parameter stack

effectively creates a zero-register machine, allowing

procedures to be defined without formal arguments.

1
Within a definition there is the possibility of

multiple occurences of a word and in PISTOL there may be
recursive calls. Technically therefore, some programs may
not be trees, rather they are directed loop-multlgraphs
or psuedo-graphs [51.

2.1.1 Removing: CALL Instructions — The Inner Interpreter

The end result of a structured programming solution

is' a heirarehy of procedures (subroutines), each with

well defined interfaces and concise understandable bodies

(vith minimal' side affects), intimately such a program's

executable code is mostly made up of addresses for the

procedures proceeded by a CALL opcode.

Direct-threaded [?.) interpreters use only the list of

addresses and an address interpreter, a machine-language

routine, NEXT, that sequential.lv passes through the list

making indirect branches at each address. To facilitate

program control, any return from a routine is replaced by

a' branch to NEXT. As an illustration consider the

following "application" consisting of level-l routines

that are defined only in terms of primitives, and level-2

routines made up of primitives and level-l routines:

10

PROGRAM APPLICATION;

PROCEDURE INITIALIZATION;
BEGIN

... some code ...
END;

PROCEDURE GET_INPUT;
{ level-2 routine, calls on
lower level procedures >

BEGIN
OPEN;
READ;
CLOSE;

END;

PROCEDURE GIVE_OUTPUT;
BEGIN

...more code ...
END;

PROCEDURE PROCESS?
{ level-1 routine, calls on
primitive instructions >
BEGIN

STEP-1;
STEP_2;
5TEP.3;

END;

BEGIN
INITIALIZE;

GET-INPUT;
PROCESS;
GIVE-OUTPUT;

END.

A threaded language represents a level-1 routine,

e.g. PROCESS In figure 2-1, as a list of addresses for

primitive instructions, here STEP1 through STEP3. Each

primitive has code executable bv the host machine, but

rather than end with a return encode the routine branches

11

PROCESS IP <- address of pointer
to first sten

branch to NEXT
PLST addr STEP1

addr STEP2
addr STEP3

STEPi code
branch to NEXT

Figure 2-1: A level-l routine, PROCESS

to NEXT .

Figure 2-2 outlines the action of the inner

interpreter. IP and PW are registers or dedicated memory

addresses of the underlying machine. IP, the interpreter

pointer, points to the next address In the list of

procedures to be executed and PW is the address of the

instruction currently being Interpreted. NEXT assigns to

PW the contents of IP, increments IP by the machine word

size, w, and indirectly branches to the contents of PW.

NEXT PW <- Memory(IP)
IP <- IP + W
branch to (PW)

Figure 2-2: Inner Interpreter for direct threaded code

This method of control may be extended to hiqher

level definitions in the threaded language, by using a

return stack to Keep track of the IP values . An initial

12

segment of code in each procedure at this level will

stack: the current value of TP and assign IP to point to

the new list of instructions. This prologue code

effectively forces execution to a lower level definition.

At the end of each procedure 1.1st is an address that

points to a routine, RETURN, that pops the return stack,

in order to return to the higher level (calling)

definition, see figure 2-3.

RETURN pop from STACK to IP
branch to NEXT

Figure 2-3: RETURN routine

In the above example, GET_TNPUT would call on lower

level routines OPEN, READ and CLDSE as in figure 2-4.

INPUT push IP onto STACK
IP <- NEWLST
branch to NEXT

NEWLST addr OPEN
a'ddr READ
addr CLOSE

•

addr RETURN

Figure 2-4: A level-2 routine, INPUT

Rather than write a conv of the prologue code into

each procedure at this level, we could store the address

of the routine as the first entry of the definition.

Since the primitives of the language should be executed

n

by the real: machine and not: interpreted, a different

prologue is required at the lowest level. For an

immediately executable routine, the inner interpreter

should pass control to the host machine code that defines

the primitive. One method sets the instruction pointer

of the real1 machine, PC, to one word beyond the current

address (see the example PLUS of figure 2-6).

Furthermore, definitions of constructs such as variables

and constants will require the interpreter to behave

differently and therefore to expect a different prologue.

We now have a! collection of prologues for different types

of definitions in the language, and require every

definition begin with a pointer to the code for the

appropriate prologue. These pointers to prologues

require a modification in the address interpreter, which

must now branch indirectly to the first word of the

procedure.

NEXT PW <- memory(IP)
IP <- IP + W
X <- memory(PW)
branch to (X)

Figure 2-5: Inner Interpreter: indirect threaded code

The threading of a sequence of subroutines into a

list of their entry addresses is termed direct threaded

code in the literature 17, 6, 16], Indirect threaded

14

code "consists of a linear list of words which contain

addresses of routines to he executed" by Dev/ar's

definition [6], PISTOL is a variation on indirect

threaded code, that uses lists of tokens which serve as

ah index into a table of routines to be executed. The

indirect token threaded code offers even more machine

independence at ah expense In execution speed.

2.1,2 The Parameter Stack

To pass operands between the instructions a threaded

language makes use of a parameter stack . Any routine

that needs inputs takes them from the stack; any data

returned by a routine goes back onto the top of the

stack. Hence the need for general registers or

accumulators can be largelv eliminated. Furthermore, the

parameter stack facilitates the use of reverse polish

notation, RPN, to specify a series of operations. In RPM

operands precede operators and evaluation is from left to

right. Parenthesis are not needed and no precedence is

given to the operators. For example the primitive to add

two integers is listed in fiaure 2-6.

Procedure calls (addresses') are maintained on the

return stack but operands may only be found on the

parameter stack. This use of multiple stacks greatly

simplifies the implementation of the language and makes

PLUS set PC to next word
pop PSTACK. to Z
POP PSTACK to Y
add Z to Y
push Y to PSTACK
branch to MEXT

Figure: 2-6: Primitive to add two Integers

program design conceptually easier for the user. The

second is an important consideration, as the most obscure

or unfamiliar aspect of programming in these languages is

the stack manipulations. Separating the parameter and

return stacks means the level of calls need not be taken

into consideration when new words are used to rename

existing routines. For examole

'PLUS : + ;
'ADD : PLUS ;

are all equivalent? the only difference is a loss in

execution speed. If the system used only one stack, the

return addresses would interfere with the arguments.

The postfix stack architecture also creates some

nice features for program development.

To debug a module, the user explicitly
places parameters on the stack and
(interactively) executes1 the word she
wants to test.

Entering the variable's1 name places its

16

address on the stack, allowing various
pointer calculations.

Local variables need not be declared
within a routine, lust carefully placed
and removed from the stack.

- Procedures may be written to accept a
variable number of arguments, as in C.

2.2 The Outer Interpreter — A Conversational Monitor

2.2.1 Headers

In order to make the collection of threaded-code

instructions interactive with a human user, a mechanism

to translate the symbolic name of a procedure into its

definition as a prologue pointer and body is needed. h

header preceeding the prologue addresses pointer is

incorporated, and includes the following information:

- the symbolic name of the procedure as a
character strina;

- a pointer to another procedure's header;
usually called the link field.

- other miscellaneous compile time or run
time information?

The link field is used to chain the names of the

procedure set together into a list, called a vocabulary

branch. The dictionary consists of the collection of all

17

vocabulary branches. Startina with a symbolic name, a

search of the dictionary will return a pointer to the

header or body for the appropriate instruction.

2.2.2 FORTH and STOIC headers

FORTH and STOIC use essentially the same header. In

the figure 2-7 each horizontol block represents one

machine-word C2 bytes) of memory, and each dictionary

entry has a three character maxlmium name field. Note

that the newer and more general FORTH-79 standard permits

up to thirty-one characters in the name field and allows

the order of the fields to be implementation dependent.

STOIC employs a 5 character name field that is null

filled, if necessary. PISTOL'S header is described in

section 4.2.

NAME FIELD

LINK FIELD

CODE FIELD

PARAMETER FIELD

Figure 2-7: Samnle Dictionary Header

1R

Name field. The first byte contains the character

count for the name of the defined word. There are

special bits of this byte called precedence bits.

Micro-Motion's FORTH [83 uses the next to most

significant bit, bit six, to indicate whether the word is

to be executed or to be compiled into the new definition

during compilation. Bit five is set when the word is

being: defined and reset when the definition is complete.

This is referred to as "smudqlnq" the name field. Note

that only words with bit 5 reset may be compiled into a

definition, therefore a word may not refer to itself

tfithin its definition. The next three bytes contain the

ASCII representation of the first three characters of the

word's name.

Link: field. The link field contains the address of

the previous definition, thus chaining the word into the

dictionary. To install a new word the compiler sets the

new word's link field to point to the last entry in the

dictionary and updates the system variable CURRENT to the

address of the new word. To search for a name, start at

the end of the dictionary and follow the pointers

oackward comparing name fields until a match or until the

sentinal, 0, stored in the first word's link field is

encountered.

Code field'. This cell contains a pointer to the

1Q

appropriate prologue code, which distinguishes variables,

constants and (colon) definitions1. Briefly here is an

outline of what the various prologues do at "run time*'

- For variables push the address of the
variable onto the parameter stack.

- For constants push the value of the
constant onto the parameter stack.

For colon definitions begin Interpreting
the word by setting the Interpreter
pointer, IP, to the oarameter field.

For primitives begin executing the native
code by setting the hosts1 program counter

2
to the next memory location .

Parameter field. The parameter field begins the

data or code area used by the FORTH word . If the word

Is' a variable or a constant this area is.only one cell in

length, it contains the value of the variable or the

constant. In STOIC and PISTOL' the address of the

variable is stored in the parameter field, not the value.

In primitive and higher level definitions the parameter

field merely contains the first instruction in the body

of the definition, and is where execution of the word

2
In STOIC this action is performed by NEXT

20

begins.

2.2.3 Interpret State

The outer interpreter is a simple program that gets

characters from a buffered input line. Upon recognizing

a complete token, it searches the dictionary. If a match

is' found, the entry in the dictionary is executed (by the

psuedo-machine inner interpreter). If no match is found,

the program attempts to convert the token to a number in

the current base. If the conversion is successful, the

value is pushed onto the parameter stack. If the token

is' not numeric, some threaded languages (PISTOL and

STOIC) will try to convert the token as a string and push

a pointer to the string onto the stack. If all the

conversions fail, an error message is printed and the

program reset. This simnle text interpreter design

allows execution to occur in the order in which

procedures are typed, from left to right, hence

capitalizing on RPN conventions and greatly reducing the

need for syntactical analysis.

21

2.2.4 Compile State

With little-need for syntax checking, it is possible

to compile new definitions in one pass. Compilation is

triggered when the user types a defining word, such as :,

the outer interpreter changes its state and function.

Instead of executing the subseguent procedures, the

compile facility enters the list of their starting

addresses into the new procedure. When a terminating

command is encountered, such as ?, the RETURN instruction

is* compiled into the definition, the new word is entered

into the dictionary and the Interpreter returns to its

normal state. It is apparent that the word ; to

terminate a' definition should be executed and not

compiled.

In general two types of behavior may be exhibited by

a FORTH word: rurv time actions occur when the word is

executed (in the interpret state), and compile time

actions occur during the compile state. Some words

behave in both ways and fall into the two general

classes, usually referred to as defining words or

compiling words [83. Deflnlna words specify the compile

time and run time behavior for a family of words, for

example the defining words CONSTANT and VARIABLE. When a

user enters the definition

22

2 CONSTANT TWO

the compiler constructs a new dictionary entry called TWO

and enters the value 2 in its parameter field. If the

user subsequently types

TWO

the run time behavior of CONSTANT is executed and the

value is 2 is pushed onto the stack.

Compiling words are used inside colon-definitions

and cause the compiler to take specific actions, such as

touching-up forward refences, thus' ultimately affecting

the run time execution. The compiler does not compile

the address of the compiling word, but executes it

Instead. These immediate words are distinguished by the

precedence bit in their name field.

The above scheme for a monitor restricts code

generation to the compile state. And as execution in the

interpret state is seguentlal, forward references and

touchup must be prohibited while in the interpret state.

FO.RTH for this reason limits the use of LOOP and TF-THEN

statements to be within the definition of a word. To

avoid this short coming, PISTOI, and STOIC use a buffer to

store compiled code, which is then executed by the

interpreter. All addresses contained in the compiled

23

code are either absolute addresses of words In the

dictionary or offsets relative to the IP. The code is

position independent and will, execute correctly in the

compile buffer or when relocated in the dictionary.

24

3, Programming Philosophy of Threaded Language Systems

FORTH, the most popular threaded language, has

gained a large group of advocates, who seem to have given

this slightly unconventional language a cult status.

They state many outrageous claJms to its versatility and

uniqueness, professing that it Js THE way to program

micro-computers. Clearly FORTH and other such language

systems change the way a programmer thinks about her

tiachine, her problem and the set of possible solutions.

These language systems supply the total environment

to develop and execute programs. They contain an

interpreter for Interactive execution, compiler, built in

utilities, and often their own operating system. Each of

which may be modified or extended to some degree. This

means that the artificial constraints to a problem that

grow out of' a software development system can be side

stepped by changing the environment.

3,1 Top-down design; Bottom-up testing

Threaded language svstems support the top-down

analysis and design of a solution. The programmer

expresses a complex task In terms of simpler set of less

complex words, each of which can be refined (defined)

still further until he reaches constructs of the basic

language. However, it is most advantageous to use a

25

bottom-up order for implementation and testing. That is

the lowest level modules (words) are written and tested

before the top level modules.

In a language like PASCAL there is only one entry

point, namely the main program, which then calls on

procedures and functions to nerform subordinate tasks.

To test the top level module before lower level modules

are created, requires the programmer to provide routines

that do, nothing when executed (except perhaps return

simulated data). When these dummy routines are replaced

by fully implemented modules, the top level must be

retested. Alternatively the bottom-up order tests only

the implemented modules as they are created, and does not

require retesting as others are written and put in place.

To achieve bottom-up testing and implementation, a

language system must be interactive and allow enty points

at any level of the program. The bottom-up

implementation and testing offers easier debugging

capabilities and faster overall program development.

3,2 Module structure

A tenet of structured programming is that a complex

task should be decomposed into simpler sub-tasks or

modules. Harris discussed the orginlzation and size of

FORTH modules in [10]

26

Each module should carry out a single
action

Each module should have a simple
interface to others

- The modules should he grouped into layers
of equal complexity.

- The layers should be ordered by
complexity such that the bottom layer
contains the simplest functions and the
top would have the most complex.

- Modules should be small, generally not
referencing more than nine others.

Harris states that the reasoning behind the last

restriction comes from the number of things a human can

"simultaneously analyze, trade-off, or optimize." And

that FORTH programs will be simpler and easier to

understand if definitions are not more than a few lines

long. Of course FORTH's screen editor encourages short
3

modules by offering only 24 lines on the Apple 1C . As a

3
Mass storage units are "blocks" if they hold data or

object code or "screens" if they hold source code. In
FO.RTH-79, each block of mass storage can hold 1024 bytes
of data. If the block is used as a screen, these 1024
bytes will usually be organized as 16 lines of 64
characters each. The Apple requires 24 lines of 40
characters with 64 Inaccessible characters in each
screen.

27

result there will be many of these short modules to build

a1 large, complex program. An extensive application in

this type of language may be as unwieldy as an assembly

language program. A label is used to indicate the entry

point to each routine, and within the routine there is a

collection of jumps to other labeled statements. In

assembly language there is not much harm in creating all

these labels, however for a threaded language the result

will be a swollen dictionary and far too many words for a

user to remember. This suggests that FORTH-llke

languages may not be suitahie for large programming

applications.

To speed up searches and avoid conflicts between

some common words, the programmer may form vocabulary

branches. These are indepent linked lists within the

dictionary that chain together words used in a special

context. For example the assembler which accompanies

many of these language systems', is a specialized

vocabulary that is accessable only during CODE

definitions. PISTOL Includes the word UNLINK to make

rarely used, obscure or dangerous words inaccessable to a

user.

?fi

3.3 Exensibillty of Language

Compilation is the process of converting a source

language program into a form that a computer can use.

Compilers for most popular languages, such as PASCAL, are

large complicated programs designed to handle every

imaginable variation of the lancruage's syntax. These

compilers must also include storage allocation and code

generation routines. Alternatively threaded language

systems use multiple compilers to handle the functions

that a larger language miaht. The system views compiling

a constant declaration as a distinct process from

compiling the definition of a new executable word, and as

such handles them by different defining words. Most

threaded languages provide a mechanism to declare a word

"immediate," or executable during compilation, in effect

allowing the user to create new defining (compiling)

words. Since user-defined words are treated the same as

system-supplied words, a programmer can extend the

capabilities of the language by adding simple and

specialized compiling words, FORTH offers the CREATE and

D0,ES> combination to specify the compile time behavior

and the run time behavior of a word. For a detailed

discussion of' CREATE and DOES> (or <BUILD and DOES> in

earlier versions of FORTH) see Harris* article [93.

29

3.4 Celticism: of' FORTH-like Lahguges'

Whole Issues of BYTE and Dr. Dobb's Journal have

been devoted to FORTH. But with all the acclaim comes

some serious criticism of this unconventional

language U, 11], The most unaopealling aspect of FORTH

is1 that its code is virtually unreadable. To understand

the definition of a word requires a pencil and paper

simulation to follow the use of the stacks. The compact

code begs for extensive documentation. But the 1K screen

afforded by the FORTH operating system seriously

restricts definitions from including many comments. This

environment is not optimal for production systems that

would involve more than two proarammers or an application

with a long life span. Languaaes that are supported by a

host operating system (STOIC, PISTOL and LISP), allow the

user to load external files created by a friendlier

editor that would afford more space for documentation.

In practice many programmers shun the transparency

of local variables and parameters offered as a feature of

the language. Instead storage is allocated to variables,

which as dictionary entries are alobal hence susceptible

to side effects, furthermore they may begin to bloat the

dictionary. By adding floating point routines, graphics

capabilities and other specialized vocabularies, the

language becomes less compact and even sluggish. Some

30

users of FORTH systems have filled the available memory

in a 48K Apple.

A postfix language may be difficult for even

experienced programmers to learn. It requires a closer

understanding of how a computer works. The language does

not make the transformation from the way a human might

define a programming solution to what the machine

executes, the programmer must. Further the control

structures are awkward and in practice tend to be abused.

Just as an API/ programmer will forgo good structured

programming techniques for an indecipherable one-liner,

FO.RTH programmers worship the compact, efficient

solution.

3.5 Alternatives

GraFORTH is a wholly compiled version of FORTH

written for the Apple M by Paul Lutus. Fxecution is

very fast, allowing the animation and graphic

capabilities for which it was conceived. Externally

graFORTH looks like FORTH to the user. Tt employs a

parameter stack and postfix notation, as well as FORTH

conventions for defining words. GraFORTH, however does

not use the standard FORTH operating system, rather hooks

into the Apple DOS. Tt also does not conform to the

FO.RTH-79 standard in many other places. Internally

31

graFORTH offers a completely different look than FORTH.

It compiles a line into a buffer and executes it, like

STOIC and PIvSTOL. Significantly the body of a definition

is1 less like threaded code. It mostly Is made up of

calls to subroutines and includes the 6502 opcode JSR

addr. This has many FORTH advocates' upset, claiming that

graFORTH is not really FORTH.

John McCarthy develoDed LISP as a language to

process symbolic rather than numeric data [14, 18, 193.

It has been the main vehicle for encoding processes that

exhibit artificial Intelligence. LISP is an extensible

interpretive language that, employs prefix notation.

Because it resembles functional notation, prefix is more

familiar than postfix notation for most users. However

derivatives of. LISP (REDUCE and LOGO for example) use

algebraic (or infix) notation. Execution of LISP-like

languages is slower because most words are partially

reinterpreted each time they are called. But the

reinterpretation and blurred distinction between data and

program gives LISP its most distinctive character.

32

3,5.1 Lisp-like languages

Lisp data are called s-expressions (symbolic

expressions). The simplest s-expression is an atom,

which is a numeric or literal. Non-atomic s-expresslons

are dotted pairs, represented as a two compartment cell

whose left and right parts hold pointers to the left and

right sub-expressions. The storage for the cells is an

area of memory called the heap, and the value of a

variable is a' pointer to an s-exnression in the heap.

The Lisp interpreter alwavs tries to evaluate an

expression and return a value; the value returned by an

atom is itsell. To defer evaluation by the interpreter

use the quote, '. If an atom follows the quote, then a

pointer to that atom Is the value of the quoted

expression. If a left parenthesis follows the quote,

then a structure corespondinq to the s-expression is

created in the heap, and a pointer to this structure is

the value of the quoted expression. The evaluation of an

s-expression is done by the function CVAL, which

recursively traverses the tree that represents the

expression in a preorder. EVAL separates the expression

into its left component, S, and its riqht component,

called the a)-llst for associated list. Tf s is an atom

return its value, namely return S. If is quoted return a

pointer to S, If the first part of S (CAR S) is an

33

idiomatic Lisp form, en. CCiMn, perform the appropriate

routine. Otherwise F.VALuate the associated a-.list and

"apply" S to the returned value.

The syntax of Lisp for procedure calls requires

prtefix notation, that is the procedure name precedes its

list of arguments-. The body of a Lisp procedure is an

expression and the value it returns is the value of that

expression. Lisp functions are really data objects that

are arguments to EVAL, and are reinterpreted every time

they are called. This makes Lisp execution slow, but

allows procedures that alter themselves while they are

executed.

The property list of the item in the symbol table

representing the function is the defining expression.

The formal parameters are the second item in the

expression and appear in a list that starts with LAMBDA.

They receive their value from the actual parameters

through "lambda binding." Arguments to the procedure are

quoted in order to defer evaluation and to bind them to

the lambda expression in the procedures definition.

34

4. PISTOL, for the Apple] t

PISTOL (Portably Implemented STack Oriented

Language) was designed bv Frnest E. Bergmann of the

Physics Department at Lehigh University [3], It is

modeled after FORTH (Charles Moore, 1970) and STOIC (MIT

and Harvard Bloengineerina Center, 1977), but with a

slightly different design philosophy. STOIC and FORTH

were written to run on a micro- or mini-computer, but

PISTOL was developed as a language to be used on large

tialnframe -na'chines' as well. ft major goal included

portability between machines with different word-lengths

and instruction sets. Other criteria which directed the

creation of PISTOL were: to add a greater degree of user

friendliness, to bypass some of the bothersome short

commings of FORTH, to be as self-contained and complete

as' possible, and to stress short simple and "stupid"

routines.

UnliKe FORTH, strings are a fundamental part of

PISTOL. And as in STOIC, the name of a word being

defined precedes the colon, hence achieving a greater

degree of flexibility when defining new words.

PISTOL and STOIC compile every line Into a buffer

and do not require two modes of operation for the outer

interpreter, as FORTH does.

PISTOL does not come with its own operating system,

35

but does have a resident line editor, a disassembler and

trace facilities. To maintain portability between

machines and insure that all defitions can disassemble

completely, no facillity to write "CODE" definitions was

included. However PISTOL does have in-line macro

defining capabilities, and custom versions written in

assembly language are planned to include CODE

definitions [43.

PISTOL employs a different type of header than STOIC

or FORTH. It uses a name field which points into the

string area and recognizes a word by its entire name.

PISTOL'S header is also larger. By adding an extra field

to the dictionary header that points' to the end of the

definition, PISTOL is able to implement macros which copy

the code from the parameter field to the end of the

definition directly into the compile buffer. This extra

field also Is used to indicate to the disassembler where

to stop disassembling.

PISTOL has been written in RDS-C to run in a CP/M-80

based environment, and in PASCAL to run on the DEC-20. I

have written the Apple 3 r version in Aztec C as

distributed by Manx Software. This1 chapter will discuss

the inner workings of PISTOL as a threaded language. The

examples of code that appear are taken from the

implementations written in c.

36

4.1 The Inner interpreter

In the implementation of PISTOL, the action of the

prologue code and NEXT are combined in the function

interpretO of figure 4-1. While the return stack is not

empty (rptr >= 0), the interpreter increments ip by the

machine word size, W. Tt then tests if the current

instruction, instr, is a primitive; if yes, then execute

the primitive, otherwise push the interpreter pointer,

Ip, onto the return stack and set it to instr. Finally

the current instruction is set to the contents of ip.

((define NFUNCS 74
((define W 7
unsigned ip, instr;
int *Pw;
int C *f array [NFHNCsnO;

InterpretO
{ do {

Ip += W;
if (instr < NFUNCS) (*farray[instrl)();
else

{ rpush(in); ip =■ instr; }
Pw = ip;
instr = *Pw;
>

while (rptr >= 0);
ip -= W;

Figure 4-1: PISTOL'S Tnner Interpreter

There are aproxlmatelv 70 PISTOL primitives, each

associated with an integer from 0 to NFUNCS. It is this

37

Integer that is entered Into a compiled definitiion and

Later assigned to instr. When a secondary reaches

Interprets), instr holds the address' of the secondary and

will be larger than NFUNCS. Execution of a primitive

comes from selecting a pointer to a function from farray.

The interested reader should see section 5.12. of

Kernighan and Ritchie [12] for a discussion of pointers

to functions in C. The PASCAL implementation uses a large

CASE statement to select the appropriate procedure.

4.2 PISTOL: heaaer

The header format for PTSTOL consists of four

fields:

ENDA address of the end of the code body;

LFA link field -- pointer to previous entry;

NFA name field -- pointer into string area;

CFA code field

EMDA most often points to the instruction which

simulates a return, viz. the procedure psemiO. The link

field, LFA, points to the CFA of the previous entry; and

the function vflndO follows these pointers attempting to

match the current token from the text interpreter with

the symbolic name of an Instruction. NFA points into the

string area, where strings are stored with a character

3fl

count and up to 127 characters. The CFA will contain

different information depending on the word. Most

primitives have the instruction compmeO, which tells the

compiler to copy from this point to the address pointed

to by ENDA into the code of the word being defined

(compiled). Secondary instructions contain the

instruction comphereO, which tells the compiler to

insert the address of the instruction into the code of

the new word.

The ENDA permits two of PISTOL'S unique features.

The disassembler package uses it to decide when to stop

disassembling a word. And the macro-definq words $: and

;$ rely on ENDA to bracket the definiton of a macro.

4.3 PISTOLs Outer Interpreter

The outer interpreter has been divided into two

parts. The main loop of the program calls on complineO

to enter a line into the compile buffer, and then

executes the instructions in the buffer, see figure 4-2.

complineO gets a buffered line of input, either from the

console or an input file, then enters a loop to process

the tokens. In this loop a pointer to the current token

is* pushed onto the stack, find() absorbs this pointer and

searches through the dictionary for a match. If

successful, flndO leaves the CFA on the stack, otherwise

39

pushes 0 indicating no word was found in the dictionary.

compllneO then uses a nested conditional statement to

decide how to handle the current token.

If the address at the too of the stack (pad) is
not zero, then £lnd() succeeded and interpret
the instruction in the CFA . Most often CFA
contains the instruction compme or comphere.
CompmeO copies the entire definition into the
compile buffer, and is used by primitive and
macro definitions. While comphereO compiles
the address of the word into the buffer.

If find(): did not succeed, try to convert the
token to a: numeric value using the current
base. If convertC-,-,-) is- successful, the
instruction that indicates literal storage and
the numeric value are entered into the compile
buffer.

string
single

Long

If none of the conditions above are selected,
the token cannot be decinhered. A message and
the offending token are printed, control is
returned to the main Drogram loop where the
pointer into the compile buffer, ,C, Is reset.

The main loop then interprets the instructions in

the compile buffer.

As an example, suppose X is a' variable that has been

40

complineO
{

getlineO;
ignrblnksO;
while (nextcharptr 1= NEWT.TNE)
<

IntolcenO;
push(endofstrnaotr);
find();
pad = pop();
If (pad) < instr = pad - 1; interpretO; }

else < if (convert(endofstrngptr,base,&val))
{ comDile(IiTT); compile(val); }

else { if (*PC == »\")
(pad = slitO;
comDile(STRLIT);
compile(pad);

>

else { if (*Pc == 'V")
{pad =' longstringO ;
compile(STRT.JIT);
compile(pad);

>
else

/* token not deciphered */
(message(endofstrngptr);
printfC ?\n");
abortO;

>
>

>

ignrblnksO;
>

Figure 4-2: PISTOL'S Outer Interpreter

previously declared and given a value. If the user

enters the lines

41

BEGIN
X
we
EQZ

END

compline() will proceed in the following manner:

- BEGIN is a primitive, so can be found in the
dictionary. When complineO calls interpretO
the routine beglnopO is Imediately executed.
BeglnopO pushes the compile buffer pointer,
.C:, onto the parameter stack for a future
branch calculation.

After matching X, the comphere Instruction is
passed onto InterpretO, which places the
address of the word X Into the next location of
the compile buffer.

Wfa is a primitive, whose CFA contains compme,
which causes the token selecting vratO to be
inserted into the compile buffer.

EQZ is a secondary instruction, defined in
PBASE2 to test the top of the stack for zero,
and therefore has its address inserted into the
compile buffer.

The primitive END causes the instruction
selecting pifO to be complied into the buffer.
END pops the address stored by BEGIN and
computes the difference between that address
and the current compile buffer pointer storing
the result in the compile buffer.

Upon reaching the end of the line, control goes to

the main loop which sets lnstr to the contents of the

first entry in the compile buffer and calls interpretO.

42

When interpret*) encounters the address of X, it realizes

X is not a primitive; after saving a return address

execution (interpretation) of X begins. The code for X

pushes the address of the variable onto the parameter

stack: and interpret*) returns to the compile buffer. The

(primitive) code for watO oops the parameter stack and

pushes the contents of that address1 onto the stack. EQZ

tests the top of the stack; if it is zero, pushes on TRtJ

(-1), otherwise pushes on FALS (0). Mext the interpreter

finds the token for pifO, which pops the top of the

parameter stack. If that value is 0, it then bumps the

Interpreter pointer to the next address. Otherwise pifO

sets ip to the contents of the word to which lp is

pointing, namely the value computed by the branch

calculation.

PISTOL handles colon-definitions in much the same

fashion. When complineO, the outer interpreter,

encounters a' :, it compiles the instruction pcolon into

the buffer and calls on a routine to setup a forward

reference, fwdrefO pushes ,C onto the parameter stack

and compiles a 0 into the compile buffer which will be

overwritten later during touchup. At the end of the new

word's definition is ;, which compiles psemicolon and

calls touchupO. During interpretation of the compile

buffer, pcolonO calls on enterO. This routine creates

43

a dictionary header with CFA containing the instruction

comphere, and it updates the svstem variable CURRENT.

pcolonO then moves the contents of the compile buffer

into the dictionary area and finalizes the entry by

patching up the word's FNDA.

Macro-definitions are delimited by the words $: and

;$. They cause slmiliar compilation and interpretation

as1 colon-definitions, except in place of pcolon $:

compiles pdollar, which during interpretation overwrites

the CFA with compme.

A scheme to extend PI.STDL to compile CODE

definitions could incorporate an instruction like

comphere. it would place the PFA in the compile buffer.

During execution, the inner interpreter distinguishes

between address list and machine code by "glancing up" at

the header to see if CODF or comphere was used in the

CFA. The interpreter would recognize that what follows

is1 native code and pass control to the host processor.

4.4 Remarks on the Implementation

With portability as a design goal, the

implementation language of PTRTDTi was chosen as C or

PASCAL. The installation on a new machine that maintains

one of these languages should be straight forward.

However I had encountered some difficulties trying to put

44

PISTOL on the Apple][. The PASCAL version causes the

internal statics of the p-machtne to overflow during

compilation. T tried many combinations of unitsr include

files, and swapping options, but never successfully

compiled PISTOL' using the Apple PASCAL.

The version written in C must be run with the Aztec

Z' shell, an interpreter and ooerating system combination.

When the relocatable code for PISTOL is linked to the

libraries that support a "stand alone" program, the

executable code grows very larae and overwrites the DOS

file buffers. The Aztec C shell adds another layer of

interpretation which slows execution, particularly the

I/O operations. I intend to write a version of PISTOL in

6502 code that will be more compact and faster than the

present Apple version.

4.5 Conclusion

Threaded interpretive languages' have made their mark

in computing, particularly on minis and micros.

Exhibiting great versatility, they have been used for

nany scientific and industrial applications. In the

decade since Moore first developed FORTH, there has been

a steady evolution of the languages. (Initially FORTH

words were reinterpreted each time they were called.)

PISTOL being the latest of the threaded languages, has

45

benefited the most from qrowina pains of FORTH. When a

feature like string capabilities or the case-statement

was added to FORTH, it was placed on top of the existing

architecture often times in an awkward fashion. Rather

than such a patch-work desiqn, PISTOL started with a more

flexible header and a compile buffer (ala STOIC). While

PISTOL may sacrifice some execution speed and is not as

compact as its predecessor, it offers more consistent and

friendly aspects.

46

REFERENCES

[1] Barry, T.
On FORTH Failings: We need solutions not languages.
Iaf.aiiac.Ld , October 11, IQR2.

[2J Bell', J'.R.
Threaded Code,
Cataiau.ai.cati.aas. at Laa LCS1 1 6(6):37 0-372, June,

1973.

[3] Bergmann, E.E.
PISTOL A Forth-like Portably Implemented STack

Oriented Language.
Qt. Qaaa's. JLauxaal (76):1?-15, February, 1983.

[41 Bergmann, E.E.
Private communication.

[5] Chartrand, G.
Gcaaas, as. iiataamaLIcal HadaLs.
Prindle, Weber & Schmidt, Incorporated, Boston, MA,

1977.

[63 Dewar, R.B.K.
Indirect Threaded Code.
CaamaalcaLlaas. a£. Laa ML>± 18(6):330-331, June,

1975.

[7] EQEia-ia: L Euulicatlaa af. taa EQR1E SLaadatds. laam,
San Carlos, CA, 1980.

[8] EQElti-ia InLaciaL aad Eaf.acao.ee. daaual Anala] [
Jtac.s.i.aa
MicroMotion, 12077 wilshlre Blvd West Los Angeles,

CA 90025, 1981.

[9] Harris, K.
FORTH Extensibility.
ailE 5(9):164-184, August, 1980.

[103 Harris, K.
The FORTH Philosophy.
Ox. aaaa's, laataal (59):6-ll, September, 1981.

[11] Hogan, T.
Demystify FORTH by facing the facts.
Laiaalacld , October 11, 19R2.

47

[12] Kernighan, B.W. and Ritchie, D.M.
Ilia Z EtaaLaatalao. Lanauaaa.
Prentice-Hall, Englewood Cliffs, NJ, 1978.

[13] Loeliger, R.G.
lacaadad LaLatuxaLIua Lanauaa&s.
BYTE Books, Peterborough, NH, 1981.

[14] McCarthy, J., Abrahams, P., Edwards, D., Hart, T.,
Levin, M.
LLSE L.S Etaanamtaar.' s. LiaauaL.
MIT Press, Cambridge, MA, 1962.

[15] Sachs, J.
S1QIC (Sta'cic. QciaaLad latacactiJia Caoallar.)
Cambridge, MA, 1977.

[16] Sirag, D.J.
DTC versus ITC for FORTH on the PDP-11.
LQ&IU aiaaas-tans. 1(41, December, 1978.

[17] Ting, C.H.
Formal definition of FORTH.
Qc. Qaaa's. Jauxaal (64):19-21, February, 1982.

[18] Winston, P.H.
AxtULlcLaL LaLalllaauca.
Addison-Wesley, Reading, MA, 1977.

[191 Winston, P.H., Berthold, K.P.
LL&u.
Addison-Wesley, Reading, MA, 1980.

48

Vita

Edward Francis Bacon was born on November 10, 1951.

He attended VIllanova University from 1969 to 1973, when

he received a Bachelor of Science In Mathematics degree.

In 1975, he received a Master of Science in Mathematics

from Lehigh University. From 1976 to 1980, he taught

mathematics at Stockton State College in Pomona, New

Jersey. From 1980 to 1983 he attended Lehigh University

as1 a graduate student in computer science and taught at

Lafayette College in F.aston, Pennsylvania.

49

	Lehigh University
	Lehigh Preserve
	1-1-1983

	Pistol.
	Edward F. Bacon
	Recommended Citation

	tmp.1451580486.pdf.bNotL

