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ABSTRACT 

This paper describes the application of computer image processing 

techniques to thermal images produced by an infrared temperature 

measurement camera. The camera was used to measure the temperature 

of materials inside an iron-producing blast furnace.  The objective 

of computer processing of the images was to provide image enhance- 

ment - that is, improved contrast and reduced noise.  Gray-level 

histogram calculations were performed and it was shown that contrast 

could be enhanced by manipulation (equalization) of the image 

histogram.  Three types of 2-dimensional digital filtering techniques 

were demonstrated and applied to the thermal images. These were 

(1) convolution filtering, (2) discrete transform filtering (Fourier 

and Walsh-Hadamard) and (3) windowed finite impulse response 

filtering.  For convolution filtering, both noise smoothing and 

edge enhancement masks were convolved with the original images. 

Even though both masks were kept relatively small to minimize 

computation time, they yielded very desirable results.  High 

frequency noise was eliminated with the first mask, and edges 

(delineating zones of constant temperature) were defined with 

the second mask.  Discrete transform filtering was performed by 

computing the 2-dimensional Fourier and Walsh-Hadamard transforms 

of the images, setting the smallest coefficients to zero, and then 

inverting the transforms to produce the filtered images.  Although 
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the discrete filtered images contained more distortion than those 

filtered by convolution, this technique did reveal the potential 

for very efficient image coding. As many as 50 percent of the 

transform coefficients were eliminated without significantly 

affecting the quality of the transform filtered images.  The best 

filtering results were produced with the more formal finite impulse 

response (FIR) technique.  Both rectangular and Hanning windows 

were used to truncate the low pass and high pass filter impulse 

responses.  The best results were obtained using the Hanning 

window, which resulted in the least distortion in the filtered 

images.  The FIR technique has the important advantage that the 

filter characteristics can be controlled more precisely than with 

the other two techniques.  A description is given of the software 

used to implement  the image processing functions and program 

flowcharts are provided in the appendix. 
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INTRODUCTION 

Image processing can be broadly defined to include four main 

functions - (1) image acquisition and correction, (2) image enhance- 

ment, (3) feature extraction, and (4) pattern recognition.  This 

paper describes image enhancement in the context of an application 

where acquisition and correction are performed as preprocessing 

functions. 

An infrared camera is used to measure the temperature of materials 

in an iron-producing blast furnace.  The camera provides a two-dimen- 

sional temperature map (thermal image) of the material surface. 

These thermal images are sampled and quantized and are fed to a 

computer where they are corrected for geometric distortion and 

camera detector nonlinearity.  The images are then classified based 

on several process variables and are stored for later viewing. 

This paper describes the application of computer image enhancement 

techniques to the thermal images before they are classified and 

stored.  The enhancement techniques provide (1) better contrast for 

easier interpretation, (2) noise removal for more accurate repre- 

sentation of temperatures, and (3) edge enhancement that could be 

used in automatic feature extraction. Each of the enhancement 

techniques described in the paper was implemented off-line using 

actual thermal images from the camera. 
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The paper is divided into four main sections.  The Tutorial 

Description Section includes a detailed description of image 

sampling and interpolation, contrast enhancement, two-dimensional 

transforms, and two dimensional filtering. Thermal images and 

transform results are presented as 3-dimensional graphic plots. 

The Software Section contains a detailed description of the computer 

programs used to implement the image processing functions.  Program 

flowcharts are included in the appendix.  The Application Section 

describes the infrared camera and data acquisition system, and 

describes the benefits provided by computer image processing. A 

method for incorporating the image enhancement techniques into an 

existing system is also provided in this section. 

The Results Section reviews the usefulness of computer image 

enhancement and discusses the potential for future implementations 

in industrial remote sensing systems. It is assumed that the 

reader understands the fundamentals of one-dimensional signal 

processing techniques including sampling, convolution,  Fourier 

transforms, and digital filtering. 
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Chapter 1 

TUTORIAL DESCRIPTION OF INFRARED 
IMAGE PROCESSING 

1.1  Image Sampling and Interpolation 

The first step in any digital image processing application is the 

sampling and quantization of an analog image from a scanner. 

Figure 1.1 shows a 2-dimensional signal (image) overlayed with a 

2-dimensional sampling grid, where x.. and x, are the sample 

spacings in orthogonal directions.  These spacings can be thought 

of as occuring in either the time or space domain.  If the time 

domain is used, then the corresponding frequency domain units 

should be in radians per second.  Similarly, if sampling is consider- 

ed in terms of distance, or space between samples, then the spatial 

frequency domain should be used. 

The two-dimensional sampling theory essentially states that a function 

of two variables f (x., x„) whose two dimensional Fourier transform 

is equal to zero for W, >Wn  and W„ >W„  is uniquely determined 1  lm     2  2m 

by the values taken at uniformly spaced sample points in the x , x„ 

plane, if the sample spacings satisfy: 

TT ir 
xl *   '  x2 * —~ 

lm 2m 
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Figure 1.1    2-D Signal and Sampling Grid 
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Figure 1.2  shows a projection of  the two-dimensional spectrum of 

the  bandlimited signal in Figure 1.1.     The c.rosshatched area  is   the 

region in the frequency plane containing non-zero samples.    Notice 

that  in two-dimensional systems,   two frequency axes must  be consider- 

ed,   corresponding  to  spatial  frequency variations  in both dimensions 

of   the two  dimensional signal. 

The  spectrum of  the  sampled signal x(n..x  ,  n„x )  can be 

expressed as: 

1     1 

x  (jw1,jw2)=          Z Z    X^wrJnlWsl'Jw2-jn2Ws2) 

xl X2    nl 2 

where X(jw_,jw„)  is  the continuous  two-dimensional signal  spectrum 

and: 

2ir 2TT 
Wsla—    •       Ws2 = 7 

xl Xl 
As  in the  one dimensional case,   the two  dimensional  sampled signal 

spectrum is  periodically repeated,  and is  obtained by superimposing 

an  infinite number of replicas  of  the continuous signal spectrum, 

each of which is centered at a point from the set k..w .,   k„w „. 

Thus  if x(x. ,x_)  is bandlimited and  it  is  sampled sufficiently 

fast,   it  is  possible  to> recover  the  spectrum of  the continuous  two- 

dimensional  signal,   using the ideal two-dimensional low pass  filter. 
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The reconstruction low pass filter could have a transfer function equal 

to 1 in a rectangular region with dimensions W.  and W2 , 

w        w 
H(jwrjw2) - rect(j^) rect(j^-) 

lm       2m 

where H is the filter transfer function and 

1, for -i<x<rl 
rect(x) ~J * 

0, elsewhere 

The spectrum of x(x. ,x_) can be obtained by convolving the filter 

function with the periodic spectrum: 

X(jw1,jw2) = X (jw1,jw2) • H(jwrjw2) 

or in the space domain: 

x(xltx2) = x(n1x1,n2x2) * Mx^x^ 
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where, 

h(x x ) - T^T" " rect(A) rect(A) e^*14****^* dv2 
_» _«      2m        2m 

11 sin(w
3l
xl/2)  sin(ws2x2/2) 

h(VV ' x, x2  w^/2       wg2x2/2 

Convolving this impulse response with the sampled two-dimensional • 

signal, 

»    » sin(wgl(x1-n1x1)/2) 
x(x x ) -  Z I    x(nx,nx)     (      )/2    * 

n B_» n„=-°° si 1 11 

sin(ws2(x2-n2x2)/2) 

ws2(x2-n2X2)/2 

which is the reconstruction relation for the two-dimensional 

case  , i.e., the two dimensional form of the Sampling Theorem. 

As will be described later, the infrared images from the blast 

furnace camera are essentially bandlimited, containing spatial 

frequencies that are relatively low. Thus, in practice, the 

two-dimensional sampling criterion was fairly easy to meet. Figure 

1.3 is a 3-D plot of a sampled thermal image from the infrared 

camera.  The sampling grid (N1.N2) is 25 by 25 points. The sample 

points are connected for a more pleasing presentation, and to 

create an effect similar to that which one would observe on a 2-D 

television type display through visual interpolation (smoothing). 
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ORIGINRL   IR  IMAGE 

Figure 1.3 Original 25 X 25 Infrared Image 
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After sampling, each point is quantized with 8 bits, resulting in 

256 discrete gray levels.  Each of the gray levels represents a 

specific temperature.  For convenience, temperature, rather than 

gray level, has been plotted on the vertical axis.  With infrared 

images, heat intensity (temperature) is analagous to light intensity 

in visible light (vidicon) images. To keep the discussions general, 

image intensity, rather than temperture will be used throughout 

this section. 

A 25 by 25 sampling grid results in a sampled image that appears 

relatively coarse.  In most cases it is desirable to use more 

sampling points, if only to provide a more pleasing appearance.  In 

addition, a 25 by 25 point function does not directly lend itself 

to many of the fast algorithms for computing transforms, since 

those algorithms require array dimensions that are an integer power 

of 2.  The 25 by 25 point image would be more useful if it were 

transformed to a 32 by 32 point image.  There are a number of 

techniques useful for this kind of interpolation.  The simpler ones 

involve substituting an element in the new (more dense) array with 

the average of the spatially coincident points in the original 

array.  This, however, can result in significant distortion in the 

resulting image, depending on how well points from the original 

image coincide with points in the resultant image.  A technique 

(2) 
that does not have this limitation is called bilinear interpolation. 
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In bilinear interpolation, the original sampling grid is overlayed 

with the new one, and the exact spatial relationship between points 

in both grids is considered. A point in the new grid generally 

lies somewhere between 4 points in the original grid. Using the 

spatial relationship of the new point to the original ones, and the 

value (intensity) of the four original samples, the intensity of 

the new sample is computed. 

This is illustrated in Figure 1.4 where f(x,y) is the intensity of 

the new sample. A bilinear equation of the form: 

f(x,y) = ax + by + cxy + d 

is used in the computation.  Using the four original points, the 

computation is carried out in three steps as follows: 

(1) f(x,0) = f(0,0) + x [f(l,0) - f(0,0)] 

(2) f(x,l) = f(0,l) + x [f(l,l) - f(0,l)] 

(3) f(x,y) = f(x,0) + y [f(x,l) - f(x,0)] 

Putting f(x,y) in the form of a bilinear equation: 

f(x,y) = [f(l,0) - f(0,0)] x + [f(0,l) - f(0,0]y 

+ [f(l,l) + f(0,0) - f(0,l) - £(1,0)] xy + f(0,0). 

The most accurate interpolation scheme, assuming 
there was no aliasing in the original sampling, would 
be to reconstruct a "nearly continuous" image using 
the reconstruction formula for the 2-D sampling theorem. 
This new image could then be resampled at the desired 
frequency, i.e., 32 by 32 points.  This additional 
accuracy (which is computationally expensive) is 
difficult to justify for the infrared images since 
they contain mostly low frequency information. 
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Any interpolation process has the effect of smoothing (low pass 

filtering) the original data.  However, because the image spatial 

frequencies are so low, this effect is minimal.  Figure 1.5 shows 

the image in Figure 1.3 interpolated as a 32 by 32 point image. 

This new image will be used throughout the remainder of the paper 

in the computation of histograms and transforms. 

1.2 Subjective Image Enhancement 

1.2.1 Gray Level Histogram 

The technique of "image enchancement" can involve many image 

processing functins, to meet a variety of goals.  For example 

various types of digital filtering can be used to remove noise from 

images, or to enhance certain features such as edges.  One of the 

most frequently desired objectives in image processing is contrast 

enhancement.  This section describes a very useful technique to 

improve contrast called histogram equalization. 

The gray level histogram of an image is defined as a function 

representing, for each gray level, the number of image samples 

having that gray level.  ' Gray level histograms are usually 

presented by plotting the number of pixels at each gray level 

against the full range of gray levels. Figures 1.6a and 1.6b show 

examples of gray level histograms having undersirable characteristics. 

Figure 1.6a shows a histogram from an image having relatively low 

contrast.  This is reflected in the histogram as regions at both 
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IMAGE   INTENSITY FUNCTION 

Figure 1.5  Interpolated 32 X 32 Infrared Image 
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ends of the gray scale that have zero value.  Thus the full dynamic 

range of gray level values was not utilized.  In Figure 1.6b the 

histogram is clipped at the high end of the scale, again reducing 

the visible dynamic range.  Both of these conditions could be the 

result of improper adjustment of the image quantization electronics. 

Hence the image histogram can provide information, not only on the 

images themselves, but also on the image sampling equipment. 

However, assuming the equipment is operating properly, the overall 

"shape" of the histogram is a function of the image characteristics. 

It is often desirable, in this case, to modify the histogram to 

increase the apparent dynamic range and/or improve the apparent 

contrast. 

Although there are several well developed histogram modification 

techniques, the one that is most commonly used is histogram equaliz- 

(4) 
ation.  ' This is illustrated graphically in Figure 1.7.  In 

this example, the number of discrete output gray levels is one-half 

the number of input gray levels, but the histogram has the desired 

characteristics that it is relatively flat, and covers the full 

dynamic range of values. 

The histogram transformation problem can be stated as follows: 

determine a mapping function T, that transforms an input image 

histogram f(x,y) to an output histogram g(x,y) having some desired 

characteristic. 

g(x,y) = T[f(x,y)]. 

-18- 



c 

•i 
u 
o 
0 

Q 
~2 

input gray 
level 

output gray 
level 

Figure 1.7 Histogram Equalization 

-19- 



A simple linear transformation could Involve scaling the original 

histogram, with gray levels m through M, to cover the full range 

of gray levels n through N.  This scaling could be expressed as: 

g(x,y) - [(f(x,y)-m)/(M-m)] (N-n) 

This type of mapping would be employed, for example when the image 

scanning or quantizer was not adjusted to cover its full dynamic 

range. 

An input image f and output image g can be considered to be continuous 

random variables.  The histograms for each of these functions can 

be normalized to produce the probability density functions P.(x) 

and P (x) respectively.  For histogram equalization, the objective 

is to determine a mapping function T, such that g(x,y) will have a 

flat density function. 

A basic theorem from probability theory states that if X is a 

continuous random value with range 

a <  X < b 

and distribution function 

Fx (x) = Prob (X <  x), 

then the random variable defined by 

Y = Fx (X) 

has a uniform (0,1) distribution, i.e.: 

A>   x < y 
FY(Y) - < y, 0 < y < 1 

(0,  y < 0 
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The theorem states that any absolutely continuous random variable, 

may be transformed into a uniformly distributed random variable. 

Since the theorem does not hold if X is not absolutely continuous, 

the use of this transformation for digital functions is based on 

the approximation of an absolutely continuous function by a finely 

quantized function. 

The theorem shows how to obtain a uniform (equalized) histogram 

with a gray level transformation.  In general, a uniform distribution 

of gray levels makes equal use of each quantization level and tends 

to enhance low contrast information.  This transformation is 

implemented by 

(a) computing the image histogram, 

(b) summing the histogram values to obtain a 

distribution curve, and 

(c) using the distribution curve as the mapping 

function T. 

The function T is the desired mapping function except for scaling. 

Since the original gray level values are integers and the distribution 

function varies between 0 and 1, some method of scaling must be 

used.  A solution is to first convert the input gray levels to 

normalized values between 0 and 1.  These values may then be mapped 
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directly using the distribution mapping. The output values are 

then scaled to integers as follows: 

J = Int[(N-n)[(f(x,y)-m)/(M-ra)]+0.5] 

where the 0.5 term is added for symmetrical rounding. 

Histogram equalization was performed on the infrared image in 

Figure 1.5.  Figures 1.8a and 1.8b show the original and equalized 

image histograms.  The transformed image is shown in Figure 1.9. 

Notice that the image intensity covers the full dynamic range, and 

that low contrast detail, barely visible in the original, is now 

visible. 

There are two characteristics of histogram equalization that may 

produce undesired results.  First, although equalization enhances 

low contrast detail, it does not discriminate between low contrast 

information and noise.  Second, such equalization may impair 

further machine processing of the images -as in absolute intensity 

measurement or in segmentation for pattern recognition.  Hence 

contrast enhancement is usually employed for the sole purpose of 

improving the subjective quality of images. 
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TEMPERATURE HISTOGRAM 
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Figure 1.8 a      Original Histogram of Infrared Itnaee 
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TEMPERRTURE HISTOGRAM 
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Figure 1.3 b      Fqualized Histogram of Infrared Triage 

-24- 



IMRGE   INTENSITY FUNCTION 

Figure 1,9 Infrared Image with Improved Contrast 
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1.2.1 Mask Filtering 

Probably the most widely used technique for subjective improvement 

of image quality is spatial filtering using low pass or high pass 

masks.  The masks are actually sampled impulse responses, or point 

spread functions, of two-dimensional filters with the desired 

characteristics. In most cases the impulse response is severely 

truncated to produce a very small mask.  The filtering is accomplish- 

ed by convolving the mask with the original image to produce an 

output image that is, in some sense, "enhanced". Low pass masks 

can be used to remove random noise from images, and high pass masks 

can be used to enhance edges in the image. 

The spatial convolution of two functions corresponds to the frequency 

domain multiplication of the transforms of the two functions. 

Hence, mask filtering can be carried out in the frequency domain. 

However, for small masks, spatial convolution is generally simpler 

to implement and is computationally faster than the frequency 

domain approach. 

The spatial convolution can be expressed mathematically as: 

N-l M-l 
g(x,y) = Z      Z    f (x-n,y-m) • h(n,m) 

n"0 raa0 
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where g(x,y) is the output image function, f(x,y) is the input 

function, and h is the 2-dimensional mask matrix of dimensions M by 

N.  If the input image and mask matrix are real, as is usually the 

case, then the filtering can be carried out using only real multi- 

plications and additions.  As an example, a 32 by 32 point infrared 

image filtered with a 3 by 3 mask, requires less than 10,000 

multiplications.  The same filtering, done in the frequency domain, 

would require over 50,000 multiplications, even if Fast Fourier 

Transform algorithms were used. 

Low frequency masks are used for removal of random noise from 

images.  Random noise can give rise to extreme pixel to pixel 

variations in intensity, rather than the smooth variations normally 

observed in natural scenes or processes.  For noise removal, a 

technique that detects the extreme'variations can be used, and the 

affected points can be replaced by a local, weighted average.  An 

example of a low pass mask to compute a local, weighted average is 

given below: 

n  16 

12 1 

2 4 2 

12 1 
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This mask is symmetrical and is normalized to unit weighting. 

Figure 1.10 shows the image of Figure 1.5 filtered with the above 

mask.  Clearly, the image intensity variations are much smoother in 

the filtered image.  This image would lend itself to automatic 

feature extraction more readily than the original, because local 

random variations are much more subtle. 

In addition to noise removal, masks can be used for edge enhancement. 

In this case, a high pass mask would be used to increase the 

visibility of low contrast edges.  One of the simplest edge enhance- 

ment techniques is the digital equivalent of photographic "unsharp 

masking". '    The essence of this method is to subtract a blurred 

representation of an image from the original image.  The unsharp 

masking operation is equivalent to the convolution of the original 

image with a filter (mask) whose point spread function is of the 

form: 

1 1 1 
8 8 8 

1 
" 8 1 1 

" 8 

1 
" 8 

1 
" 8 

1 
" 8 
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IMRGE   INTENSITY  FUNCTION 

Figure 1.10 Convolution Filtered Image (low pass) 

-29- 



To illustrate the effect of this filter, assume an image contained a 

horizontal edge of the form (..., 0; 0, 1, 1, 0, 0, ...) with all 

zeroes elsewhere.  When this portion of the image was convolved with 

the center of the above filter, the result would be (..., 0, -1/8, 

7/8, 7/8, -1/8, 0, ...).  Scaling could then be performed, for example 

by multiplying by 8, to produce (..., 0, -1, 7, 7, -1, 0, ...) This 

result more clearly defines the location of the edge. 

The high pass mask above was convolved with the infrared image in 

Figure 1.5, and the result is shown in Figure 1.11.  Notice 

that the mask has unity weighting and is symmetrical. The symmetry 

of the mask results in equal edge sensitivity in both the horizontal 

and vertical directions.  The original infrared image contained 

very few sharp edges, except in the regions where the intensity 

changed from 0 to some positive value.  The regions show up in the 

high pass filtered image as peaks, or regions of higher amplitude. 

Edge enhancement is most useful in processing images that contain 

very well defined shapes or objects.  In fact, unsymmetrical high 

pass masks are sometimes used to enhance edges in specific directions. 

Two examples of such directional gradient filters are: 

h - 

111 

10-1 

0 -1 -1 

h - 

0 11 

-10 1 

-1 -1  0 
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IMAGE   INTENSITY  FUNCTION 

Figure 1.11 Convolution Filtered Image (high pass) 
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These masks would be most sensitive to edges oriented at 45 and 135 

degrees respectively. 

To summarize, spatial filtering using masks provides a convenient 

means of improving the subjective quality of images.  However, the 

specific characteristics of the mask must usually be determined 

empirically, and there is no quantitative means of determining 

whether the "optimum" mask has been found.  Therefore in many 

cases, it is desirable to employ more formal or analytical filter 

design techniques.  Several of these techniques will be described, 

later, but first, two dimensional transform processing will be 

illustrated. 

1.3 Two-Dimensional Transforms 

This section reviews two of the most commonly used and well documented 

two dimensional image transforms - Fourier and Walsh Hadamard. 

Both of these transforms were used on the original infrared image 

and the results are described in this section. 
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1.3.1    Fourier Transform 

The continuous  two  dimensional Fourier  transform  is described  by 

the  transform pair:     ' 

00 

„/       v        tr ct       \     -j 2:r (ux4vy) , F(u,v)  «■ // f(x,y)   e J •"  dx dy 

f (x,y)  =  /" F(u,v)   «32ir<«^y>  dx dy 

The significance of this transform in image processing is enhanced 

by the fact that the Fourier transform of an image field is equal 

to the far field or Fraunhoffer diffraction pattern of the image. 

For example the twinkling of a distant light or star at night is 

due to the observation of the Fourier transform.  This property is 

also the basis for the computation of the Fourier transform using 

an optical system. 

In both the continuous and discrete cases the Fourier transform is 

a complex function, i.e.: 

F (u,v) = R (u,v) + j I (u,v) 
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where R and I represent the real and imaginary components respectively. 

F (u,v) can be represented by its magnitude and phase spectrum 

where: 

F<u,v) - |F(u,v)|ej*(u'v) 

|F(u,v)|- [ R2(u,v) + I2(u,v) ] 1/2 

<()(u,v) - tan"1 [ I(u,v)/R(u,v) ] 

The human eye responds to the magnitude of an image field, therefore 

it is difficult to directly observe the phase spectrum. However, it 

is now widely known that the phase spectrum contains most of the 

information about the position of edges in an image.  This fact will 

be demonstrated later. 

The two-dimensional discrete Fourier transform (DFT) for a square 

N by N image is defined by the transform pair: (8) 

. N-l N-l       -j2i(km+ln) 
F(k,l) -i  I  E f (ra,n) e N 

N m«»0 n=0 

N-l N-l        j|-(km+ln) 
f(n,n) = E  E F(k,l) e 

k=0 1=»0 
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The significance of the DFT is that it may be computed on sampled 

data using a fast Fourier transform (FFT) algorithm. 

Important properties of the DFT such as linearity, symmetry, shift 

of position, modulation and convolution are similar to those 

properties of the continuous transform- The only differences 

result from the fact is that the discrete transform is periodic as 

a result of the sampling of the image.  As an example, the DFT 

computed on an image with a dark background and a high intensity 

area in the center, will have the DC or average value term at the 

origin of the array, and the largest magnitude terms occur at the 

corners.  This is the case with all casual two-dimensional signals 

or images, and does not present any special difficulties in computer 

processing.  It is worth mentioning that in some literature, origin 

centered transforms are computed.  Origin centered transforms 

correspond directly to optically computed transforms, and using the 

shift property of the DFT, can be produced by multiplying each 

element of the image array by the factor (-1)   . This will 

center the transform at the point (1/2N, 1/2N). 

Observation of the DFT of an image reveals several important 

features of the image.  The magnitude spectrum contains information 

about overall intensity and the frequency of intensity variations 

in the horizontal and vertical directions.  As stated earlier, the 

phase spectrum contains information about the location of edges in 
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the image.  Figure 1.12 shows the DFT magnitude spectrum of the 

infrared image of Figure 1.5.  Since the original image intensity 

was fairly symmetric, the magnitude spectrum coefficients are also 

relatively symmetric.  In addition Jthe spectrum shows that the 

image contains primarily low frequency information.  In fact, based 

on the magnitudes, there would appear to be relatively few significant 

coefficients. This infers that there is potential for efficient 

image coding, and also that low pass filtering could be done very 

effectively.  Both of these ideas will be illustrated in the 

section on filtering. 

Finally, the importance of the phase spectrum is illustrated in 

Figure 1.13, where the "inverted phase" spectrum has been plotted. 

The inverted phase spectrum was computed by setting the coefficient 

magnitudes to 1, and using the phase coefficients to compute the 

real and imaginary DFT coefficients: 

R (u,v) = Cos (<j>(u,v)) 

I (u,v) = Sin ((j)(u,v)) 

These coefficients were  then used  to  compute  the inverse DFT. 

Clearly  the inverted phase  spectrum reveals  the  location of edges 

in  the original image,   and  is  qualitatively  similar  to a high pass 

filtered  image. 
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FOURIER  MAGNITUDE SPECTRUM 
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Figure 1.12  Discrete Fourier Transform Coefficients 
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INVERSE TRRNSFORM 

Figure 1.13 Inverted Phase Spectrum 
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1.3.2 Walsh-Hadamard Transform 

Another useful two-dimensional transform is the Walsh-Hadamard 

transform.  The Walsh-Hadamard transform is computed using Walsh 

functions as basis vectors, the first 8 of which are shown in 

Figure 1.14.    Sequency of the Walsh functions is the analog 

of frequency of the Fourier sine and cosine basis vectors.  The 

functions of Figure 1.14 are in sequency and not Hadamard order. 

Sequency is defined as one-half the number of zero crossings of a 

function on a specified interval. 

r 

sequency = s i 

The CAL and SAL functions are even and odd respectively and are 

analogous to the sine and cosine functions.  The most significant 

property of the Walsh functions is that they contain only terms 

whose values are 1 and -1.  Thus no complex arithmetic is required 

to compute the transform. Another advantage, since there are no 

complex terms, is that the transform coefficients can be stored in 

one-half the space that the Fourier coefficients would require for 

a given size image. 
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Figure 1.14    Walsh Functions 
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A one dimensional signal x(t) can be described using the Walsh 

functions as: 

x(t) ■ / d wal (k,t) 
k-0 

d, = / x(t) wal (k,t) dt , k=0,l,2,, 
*     0 w 

or: 

x(t) - a0 wal (0,t) + I     [a. .cal(k,t)+b. #sal(k,t)] 
k=l 

where: 

aoa do 
ak " d2k 

bk = d2k-l 

The above equation shows that the Walsh representation of signals 

is analogous to the Fourier representation.  Intuitively, this is 

what one would expect because of the resemblance between the Walsh 

functions and the Fourier sinusoids.  Since the Walsh-Hadamard 
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transform does not include complex coefficients, the phase spectrum 

is not usually considered.  However, a Walsh-Hadamard phase spectrum 

(9) 
is described in at least one text  .  An analogy with the DFT 

phase spectrum is used to define the WHT phase spectrum as: 

_! vw(2s-l) 

*w(s) * tan   w (2s) 
w 

or: 

4> (s) » tan  —i ,. ( rw cal(k) 

The difference is that for each Fourier phase coefficient, the 

real and imaginary parts of a single frequency term are used to 

compute the phase.  Each phase component for the Walsh-Hadamard 

transform requires two sequency coefficients for definition. 

Computation of the Walsh-Hadamard transform in two dimensions can 

be expressed, in matrix form, as: 

[F (u,v)] = [H (u,v)] [f (x,y)] [H (u,v)] 

where: 
[F (u,v)] = WHT coefficient matrix 

[H (u,v)] = Walsh-Hadamard basis matrix 

[f (x,y)] = input image 

The inverse transform is computed as: 

[f (x.y)] - 1   [H (u,v)] [F (u,v)] [H (u,v)] 

N2 

for an N by N image. 
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The sequency ordered Walsh-Hadamard transform can be thought of as 

the  summed product or non-normalized correlation of the correspond- 

ing basis matrix with the original image^   . Thus the (1,1) 

element may be interpreted as the average value, the (2,1) element 

as the correlation with a single step horizontal edge, the (1,2) 

element as the correlation with a single step vertical edge, the 

(3,1) element as the correlation with a horizontal line, and so on. 

These correlation relationships contain the same kind of information 

that the Fourier phase spectrum contains, i.e:  the locations of 

edges in the image. 

A relationship analogous to Paserval's relation for the Fourier 

transform exists for the Walsh-Hadamard transform: 

N-l N-l ,     .01  N-l N-l ,     , 2 
I  Z     Iftx.y)!2-^ Z       Z     |F(U,V)( 

x=0 y=0 N u=0 v=0 

The implication is that if a few of the WHT coefficients are large 

in magnitude, then many of the remaining coefficients must be of 

small magnitude.  In many cases the smaller magnitude coefficients 

may be discarded to effect a bandwidth reduction.  This is the 

basis for WHT image coding. 
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Figure 1.15 shows the Hadamard ordered WHT magnitude spectrum of 

the infrared image of Figure 1.5.  Note that the coefficients are 

Hadamard, and not sequency, ordered. The lower sequency coefficients 

have the largest magnitude, and there are many very small coefficients. 

The sequency information presented follows the same pattern as the 

DFT frequency information.  However the WHT contains more very 

small coefficients than the DFT and hence more efficient data 

compression would be possible, in this case, using the WHT. This 

will be illustrated in the section on digital filtering. 

1.4 Two Dimensional Filtering 

Filtering of images is done for a number of reasons depending on 

the application.  Among the most common uses of filtering are 

removal of random noise, removal of noise caused by the process 

being sensed, and enhancement of certain features such as edges. 

It was shown previously that filtering could be accomplished by 

convolving various types of masks with the image to be filtered. 

This type of filtering is generally employed to improve the sub- 

jective quality of images for improved viewing. Where filtering is 

required for the removal of specific image frequency components 

(noise) or the enhancement of certain features, it is necessary to 

use more quantitative and exact filter techniques. 
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WHT  COEFFICIENTS 

Figure 1.15 Walsh-Hadamard Transform Coefficients 
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1.4.1 Frequency Domain Representation of Images 

A discrete two-dimensional system with impulse response h (m1 ,m„) 

(12) has an Input/output relation of the form: 

00        03 

yO^.n^    E    E  h(m1>m2) x^^.^-m^ 

where x is the input and y is the output.  If 

where: 

xCn^x^)  « e e 

00 » j(n1-m1)w1    j(n2-«»2)w2 

y(nlfn2) E E      h(m]L,m2)  e e 
i »-» m =-°° 

1 2 

jnlWl    jn2W2 „, jWl    jW2, e e H(e       ,e      ) 

jw,    jw, °> » -jn-w      -jn.w 
H(e    x,e      ) -      E E    hd^.n^)  e e ^ 

m   a_oo   m   a—as 
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H Is,   by definition,   the frequency response  of  the system.     H is 

periodic  in both W,   and W, with period  2n 

jw,     jw, jw.+j2kir    jw +j21ir 
H(e    \e    n  - H(e ,e ) 

Recalling  that  convolution in the  spatial domain  (or in time)  is 

equivalent  to multiplication  in  the  frequency domain; 

jw,     jw jw      jw„ jw      jw 
Y(e    \e    *)  - H(e    \e    Z)-X(e    i,e    Z) 

This relationship is the basis for fast, frequency domain filtering. 

The relationship above is implemented by computing the complex DFT 

of both the filter frequency response and the input image, multiplying 

to generate the output image DFT, and then performing the inverse 

DFT to generate the filtered output image. Later in this section, 

techniques will be presented for deriving the filter frequency 

response, but first a more direct transform filtering technique 

will be illustrated. 
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1.4.2 Direct Transform Filtering 

Direct transform filtering is accomplished by computing the Fourier 

or Walsh-Hadamard transform of an image, systematically forcing 

certain coefficients to zero, and then computing the inverse 

transform to produce the filtered image.  This is equivalent to 

time domain filtering with an ideal (but unrealizable) filter 

having unity magnitude in the passband, an infinitely sharp tran- 

sition band, and zero magnitude in the stopband. 

There are two main advantages to this type of filtering. First, it 

is extremely simple to implement since it involves only the image 

function - no filter function is involved.  Second, since certain 

coefficients are set to zero (or discarded) it provides a direct 

means of data compression.  That is, the image can be stored using 

the remaining transform coefficients at a significant reduction in 

required storage space. 

A disadvantage to this type of filtering is that the filtered image 

is distorted by the elimination of some transform coefficients. 

This effect is not the result of aliasing per se, but is similar to 

time domain distortion that would be caused by the elimination of 

certain Fourier series coefficients.  Another disadvantage to this 

method is that it has limited application.  It should be used only 

with images whose spectra contain components with very large or 
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very small magnitudes.  For images with slow transitions from the 

very large to very small magnitude coefficients, application of 

direct transform filtering may result in significant distortion in 

the filtered image. 

This technique can be applied, with reasonably good results, to the 

infrared images.  Figures 1.16 and 1.17 show the infrared image of 

Figure 1.5 after filtering with a low pass, direct DFT and direct 

WHT technique respectively.  The distortion in the filtered images 

manifests itself as "ripples" in the' image, especially in the low 

intensity regions.  In this example, filtering with either transform 

appears to have produced approximately the same result. However, 

only 50 percent of the DFT coefficients were set to zero, while 

over 70 percent of the WHT coefficients were set to zero.  Thus the 

WHT filtering was considerably more efficient. 

1.4.3 Analytical Two-Dimensional Filter Design 

The mathematical basis for digital filter design is the study of 

the z-transform.  Z transforms for filter functions are computed, 

and the characteristics of the filters can be studied by observing 

the poles and zeroes in the z-plane.  Z-transform techniques are 

generally easy to apply to one-dimensional systems because the 
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INVERSE  TRANSFORM 

Figure 1.16 Image Filtered with Direct DFT Technique 
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INVERSE  NHT 

Figure 1.17  Image Filtered with Direct WHT Technique 
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convergence of the transform can be easily evaluated.  The 2-D 

z-transform of a sequence x(n.., n„) is defined as: 

»    °° -n«  -n9 
X(z1,z2)    E    E  xCn^n^ zx  z2 

n ss-co n a-oo 

The inverse relation is: 

2 £ £ "r1 n2-2 

:(ni,n2)  =   (l/2irjr  *J   ^  X(zl'z2}   Zl Z2 dzl dz2 
cl C2 

where C1 and C„ are closed, contours encircling the origin and 

within the region of convergence. 

As stated above it is very difficult to study in detail the 

convergence of the 2-D z transforms, because the z.. - z_ space 

is actually four-dimensional. This difficulty is alleviated in the 

case of finite length sequences which are bounded.  For finite 

length sequences, the z-transforms converge everywhere in the 

z-plane except perhaps at z, =0, z? = 0, or z., =oo , z    = oo . 

It is for this reason that finite impulse response (FIR) filters 

are almost always used to filter images (or two-dimensional signals) 

Infinite impulse response (IIR) filters are generally not used 

because their stability, which is directly related to the conver- 
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gence of the z-transform, is difficult to predict.  The remainder 

of this section will deal with the design of 2-D FIR filters. 

The finite impulse response design technique involves defining a 

desired frequency response D, and then computing the filter CO- 

M3) 
efficients (or impulse response h(n , n„).  In general: 

j 2irf _  j2irf      »    » -j2im f  -j2irn_f2 
D(e   \e    ) -  E    Z      h(nlfn2) e    X  e 

nl   n2- 

0.5 0.5   j2nf.  i2iTf   j2irf  j2irf 
h(n.,n„) -  /   / n(e   \e   Z) e   X  e     d£. df„ 

1 2        -0.5 -0.5 l 

This analytical expression for the filter coefficients h(n ,n_) 

can be difficult to evaluate unless certain assumptions are made 

about the symmetry of the desired frequency response.  Generally, 

either rectangular (or square) or circular symmetry is assumed. Of 

these, circular symmetry is more popular because one-dimensional 

impulse responses and window functions can be extended to two 

dimensions using straightforward trigonometric techniques. Even 

though, for sampled systems, the DFT coefficients repeat with 

rectangular symmetry, very good approximations can be attained in 

practice using circular symmetry. 
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The two most popular FIR design techniques in two dimensions are 

windowing and frequency sampling.  Optimum design using Chebyshev 

approximations is not often used because it is not possible to 

generalize multiple exchange algorithms such as the Remez exchange 

algorithm.  This is because the alternation problem is not directly 

(14) generalizable in the 2-D case.     The technique of windowing is 

the most straightforward to apply, and in image processing produces 

excellent results. 

As in the one-dimensional case, the object of windowing is to 

produce a smooth truncation of the filter impulse response. 

Assuming the impulse response is windowed to length N1 by N?: 

j2Tff, j2irf«    N'l    N2 -12ir£ .n.  -12irf2n2 
H(e   1,e    ) -  S_   E   Mn^) e       e 

n,*-N.    ~ 
1  1 n2-W2 

where: 

N =» —7T~ 

For circular symmetry: 

h(n.,n2) » h(n;,,-n2) - h(-n.,,n2) = h(-n^,-n2) 
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To obtain a causal response, h(n.,, n„) is shifted (N..-l)/2 

samples in the positive n^  direction and (N2-l)/2 samples in 

the positive n„ direction.  This corresponds to a linear phase 

term: 

-1(Nl-l)/2wl -j(N2-l)/2w2 

For•N. and N„ even, this phase shift term corresponds to a 

delay that is a non-integer number of samples.  The impulse response 

requirements for linear phase in the 2-D case are directly analogous 

to the requirements in the 1-D case.  ' To preserve the impulse 

response symmetry, the window must have even symmetry.  The "windowed" 

frequency response can be expressed as: 

A .12irf  j2irf      Nl    N2  A       -12irf n  -W*?2*2 
D(e    ,e    ) "      E _   E _ hO^,^) e       e 

nl='Nl n2=-N2 

where 

■h (alt  n2) = h (n^ n2) * w (n^ n2) 

and w is the window function. 

„    j2irf.     j2irf, .I2irf       j2rrf .12irf.     j2irf0 
0(e        1,e l)  - u(e \e.       *)  * W(e X,e        ") 
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where W is the frequency response of the window.  Thus the frequency 

response is the desired response smeared by the response of the 

window.  The frequency transform of a good window will: 

(1) be a circularly symmetric function, 

(2) have a large volume under its main lobe, and 

(3) have a small volume under the secondary side lobes. 

In addition, the window response should be narrow with respect to 

the desired frequency response.  If this is the case, the actual 

filter response will "look like" the desired response. This, 

however, requires a long duration window containing many samples. 

In practice the window function is chosen as short as possible to 

minimize computation time while having a frequency response as 

narrow as possible to faithfully reproduce the desired response. 

The height of the side lobes in the window response can be made 

smaller by tapering the window smoothly to zero at both ends.  But 

this causes a wider main lobe and a wider transition band in the 

filter frequency response.  There are several well developed window 

functions that are designed to minimize oscillations and smearing 

at discontinuities in the filter response.  Among these are the 

Bartlett, Hamming, Hanning, Blackman, and Kaiser windows.  In 

general, if w(n) is a good 1-D window and if W(w) is narrow with 
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respect to the bands of the desired filter, then the 2-D circularly 

symmetric window obtained from rotating w(n) as: 

2   2 1/2 
w(nlfn2) ■ w(n1 + n2) 

is also a good window. 

The usual process for windowed filter designs is to define the 

desired filter response and then calculate the impulse response 

using the integral relationship. A useful technique for doing this 

when circular symmetry is used is the Hankel transform.  ' For 

circular symmetry: 

f (x,y) = fr (r) 

2   2 .  2 
r = x + y 

then: 

» -j2ir(ux+w) »      2TT -I2irqr cos (6-*) 
// f(x,y)  e dx dy = /      /    f  (r)  e 

0      0 

•   r dr de 

where: 

j a u 
x + jy ° re and      u- + jfV = oe 
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Angle § can be  dropped  because   the integral is  taken over  one  full 

cycle of  the cosine: 

<*> 2ir -i2trqr cosG 
F( f(x,y)  )  / f  (r)    / e ' d9 r dr 

0 0 

And: 

.     2ir    -jz cosG 
j000 = ^ /   e de 

where J    is  the Bessel  function of  the first kind of  order 0. o 

F( f(x,y)  ) - 2ff /  f  (r) Jn(2*qr)  r dr 
0    r 

F(u,v)   - Fr(q) 

2 2.2 
O      ■   U      +  V 
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Thus the Fourier transform of a 2-D circularly symmetric function can 

be expressed as a function of only a single radial frequency q. 

Fr(q) - 2ir / fr(r) J0(2irqr) r dr 

f (r) - 2ir / F (q) Jn(2irqr) q. dq 
r       Q r    u 

This special case of the 2-D Fourier transform is called the Hankel 

transform of order zero. A useful table of Hankel transforms in 

given in reference (17). 

Where the original integral cannot be evaluated and the Hankel 

Transform cannot be used, an approximation to the impulse response 

can be obtained by sampling the desired frequency response and then 

calculating an inverse DFT.  The greater the number of samples, the 

better the approximation to the desired response. 

1.4.4 Implementation of 2-D Filters 

Two dimensional digital filters designed by any method can be 

applied using either direct convolution in the time domain or 

frequency domain multiplication. With direct convolution the 

number of multiplications required is: 

N. x N, x M, x M2« 
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where N.. and N2 are the filter dimensions and M, and M, are 

the image dimensions.  Filtering in the frequency domain is accom- 

plished by augmenting the filter and image arrays with zeroes to 

allow buffer space for the effect of circular convolution. The 

dimensions of both the new filter and image arrays are L. and 

L„.  Filtering is accomplished by: 

(1) Computing the image 2-D FFT: 

X (kp k2); kx  =■ 0,  1^ -1 

iC« a  U, • • .L« —i 

of x (n., n_) where 

x (n. , n9) => x (n. , n,) a. =» 0, 

x (n^ n2) = 0 

nx «« 0, ...   M, -1 

n2 - 0, ...   M2 -1 

nl=Ml •   •   •  • J-l* -1 

n2 =M2  L2 -1 

where L^ and L_ are the minimum powers of 2 greater than M. + N, -1, 

M2 + N2 -1. 

(2) Computing the filter 2-D FFT: 

H (k^ k2); ^ = 0 1^ -1 

0,   L„ -1 

of h (k , k2) where 

h (i^, n2) = h (nL, n2) 

h (n1} n2) =» 0 
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(3) Computing the complex product: 

Y (klf k2) = X (klf k2) ' H (klf k2) 

kx =■ 0 Lx -1 

k2 = 0« \~l 

(4) and then computing the inverse FFT of Y (k., k_) which is 

the convolution of the filter function with the image. 

The number of multiplication using the frequency domain approach is: 

1^ L2 (log2 1^ + log2 L2) . 

Usually the input matrix is real, therefore the DFT is symmetric 

with the origin and therefore with the L/2 point.  Also, the 

imaginary part of the DFT is antiysmmetrlc with respect to the same 

point.  Thus the real part has L/2 + 1 independent values and the 

imaginary part has L/2 -1 independent values (since the 0 and L/2 

points are zero for antisymmetry).  So the transform of the L point 

sequence is specified by L real values, which reduces the number of 

required computations. 

Figure 1.18 shows the magnitude response of a 17 by 17 point 

circularly symmetric low pass filter, windowed with a rectangular 

window.  The cutoff frequency is T/2.  The ripples in the passband 

and stopband are caused by the rectangular window.  Figure 1.19 is 
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Figure 1.18 Magnitude Response of FIR Low Pass Filter (rectangular) 
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Figure 1.19 Magnitude Response of Fir Low Pass Filter (Hamming) 

-63- 



the magnitude response of the same basic filter, windowed with a 

Hamming window.  Here the passband and stopband have very little 

ripple, however the transition band is slightly wider than it was 

with rectangular windowing.  Figure 1.20 and 1.21 are the infrared 

image of Figure 1.5 filtered with Hamming windowed filters having 

cutoff frequencies of "rr/2 and T/4 respectively.  Both images are 

"smoother" than the original with the second, narrower band, filter 

producing a very dramatic effect. 

Figure 1.22 shows the magnitude response of a 17 by 17 point 

circularly symmetric high pass filter, windowed with a rectangular 

window.  The cutoff frequency is TT/2.  As in the low pass example, 

the passband and stopband contain ripples caused by the rectangular 

window.  Figure 1.23 is the magnitude response of the same basic 

filter, windowed with a Hamming window.  Again the passband and 

stopband are much smoother but the transition band is wider. 

Figure 1.24 is the original infrared image filtered with this 

Hamming windowed high pass filter.  The filtered image reveals 

edges or spatial discontinuities in the original. 

-64- 



FILTERED  IMRGE 

Figure 1.20 Low Pass Filtered Infrared Image (w = PI/2) 
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Figure 1.21 Low Pass Filtered Infrared Image (w «=> PI/4) 
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Figure 1.22 Magnitude Response of FIR High Pass Filter (rectangular) 
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Figure 1.23 Magnitude Response of FIR High Pass Filter (Hamming) 
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Figure 1.24 High Pass Filtered Infrared Image (w - PI/2) 
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Chapter 2 

DESCRIPTION OF THE IMAGE PROCESSING SOFTWARE 

Each of the image processing functions described in the Tutorial 

Description was implemented in software using programs written in 

FORTRAN programming language.  The programs were run interactively 

on an IBM 3032 computer using actual thermal image data from the 

infrared camera.  The two and three dimensional plots were generated 

(IS) 
on a VERSATEC plotter using the "DISSPLA"^ '  software package. 

Flowcharts for each of the image processing programs are provided 

in the Appendix. A brief description of each of the programs is 

given below, with the program name in parenthesis. 

2.1 Bilinear Interpolation (INTPOL) 

INTPOL transforms an N by N image array to an M by M image array 

using bilinear interpolation.  The details of bilinear interpolation 

were described in the Tutorial Description section. 

To make this program as general as possible and to eliminate 

overlap problems at the image edges, the borders of the interpolated 

image are defined to line up with the borders of the original 

image. Hence, each point in the first and last row and column of 

the new image are filled in by interpolating only points in that 

row or column. 
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The remainder of the new image is filled in, point by point as 

follows.  For each point, the four closest points in the original 

image are determined, and then the spatial relationship in the X 

direction is determined. Interpolation in X is performed, for two 

adjacent rows. Next the spatial relationship in the Y direction is 

determined and interpolation in y is performed using the two 

results of the previous calculation.  This process is repeated 

until the value for each point in the new image is computed. 

2.2 Gray Level Histogram Equalization (HIST) 

It was shown in the Tutorial Description that the gray level 

histogram of an image could be transformed (equalized) to improve 

contrast. 

This program computes the histogram of an image by scanning the 

image array, using the gray level of each pixel as an index into 

the histogram array, and adding one to the histogram at that index 

(gray level). The length of the histogram array is equal to the 

number of gray levels. Each element contains the number of pixels 

having that gray level. Finally the histogram is output to a disc 

file for plotting. 

The first step in equalizing the histogram is normalization of the 

histogram. This is performed by dividing each element of the 

histogram array by the number of pixels. The result is the pro- 
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bability distribution function.    Next  the cumulative probability 

distribution is  computed by calculating a running  sum on  the 

initial distribution function-     (The cumulative probability distri- 

bution is  the mapping function).    The gray level  of each  pixel in 

the original image is used  as  an index into  this mapping function 

array  to  derive  a new,   normalized gray level.     The normalized gray 

level is  then scaled and  substituted back into  the  same  location in 

the image  array.     The new image is   then  output  to  a disc  file  for 

plotting. 

Finally  the equalized histogram is verified by computing  the gray 

level  histogram of  the new (contrast  enhanced)  image. 

2.3    Mask Filtering (IFILT) 

IFILT performs  spatial domain convolution filtering by sliding  a 3 

by 3 mask (low pass or high  pass)  across   the  image  function and 

performing a convolution sum at each point.     The mask type is 

operator  selectable during program execution. 

The  filtered image is generated as  follows.     At  each pixel,   the 

values  of  the eight  surrounding points and  of  that  pixel are 

multiplied by the values at  the corresponding points of  the mask 

function.     These nine products are  then added  together and divided 

by  the mask normalizing value.    This quantity is  entered  into  the 

new image  array  at  the corresponding pixel  location.    The process 

-72- 



is repeated at each pixel in the image. As noted in the Tutorial 

Description, this filtering technique is very effective, yet is 

computationally very simple to implement and requires relatively 

little storage space. 

2.4 Walsh-Hadamard Transform (WHT) 

WHT computes the forward or inverse Walsh-Hadamard transform of an 

image.  The image size and direction of the transform are selected 

by the operator at run time. A special feature of the program is 

that, for the forward transform, the operator can input a threshold 

value and force any coefficients less than that value to zero.  The 

inverse transform can then be computed using this new set of 

coefficients, and data compression can be optimized. 

WHT uses the same algorithm for the forward and inverse transforms, 

performing in-place computations.  The two dimensional transform is 

computed by performing fast one-dimensional Walsh-Handamard trans- 

forms on each row of the image, and then on each column of the row 

transformed array.  In the program this is accomplished by computing 

the 1-D transform of each row, transposing the matrix, and then 

transforming each new row.  For the forward transform, each co- 

efficient is divided by the number of pixels in the image.  After 

the forward transform is computed the operator can optionally enter 

a threshold value and force the smallest coefficients to zero.  The 

coefficients of the forward or inverse transform are then output to 

a disc file for plotting. 
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As mentioned in the Tutorial Description, the Walsh-Hadamard 

transform is easy to compute and relatively efficient in terms of 

storage because no complex numbers are involved.  In addition, the 

same program statements can be used to compute the forward and 

inverse transforms. 

2.5 Fast Fourier Transform (FFTRAN) 

FFTRAN computes the forward or inverse two-dimensional fast Fourier 

(19) transform (FFT). The FFT subroutine is an IMSL library functions   , 

As with the 2-D Walsh-Hadamard transform, a one-dimensional trans- 

form is performed on each row, the matrix is transposed, and a 1-D 

transform is again performed on each new row.  The image size and 

direction of the transform are entered by the operator at run time. 

FFTRAN includes several experimental features that can be selected 

by the operator at run time.  When computing the forward transform, 

the smallest coefficients can be forced to zero.  The number of 

coefficients to be forced to zero is entered by the operator.  In 

addition the operator can have the inverse transform computed using 

the phase spectrum only.  This is accomplished by setting each 

coefficient in the magnitude spectrum to one and then using the 

phase spectrum to compute the real and imaginary coefficients. 

Initially two arrays are defined; one for the real coefficients and 

one for the imaginary coefficients.  For the forward transform, the 
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image is read into the real array and the transform is computed 

(with any of the options described previously) by calling the FFT 

subroutine.  The coefficients are returned in a complex array, 

which is then separated into arrays containing the real and imaginary 

parts. These arrays are then used to compute both the magnitude 

and phase spectrum.  The four arrays containing the real and 

imaginary coefficients and the magnitude and phase spectra are 

written to disc files for plotting. 

For the inverse transform, the FFT coefficients are read from disc, 

a complex array is set up, and the inverse FFT is calculated. A 

complex array is returned and is separated into the real and 

imaginary part.  Since the original image was real, the imaginary 

part of the inverse transform is zero and can be discarded.  The 

real part is written to a disc file for plotting. 

2.6 FIR Filter Design (FILT2D) 

FILT2D is an interactive program used to design two-dimensional 

finite impulse response filters with the window technique.  Either 

low pass or high pass filters can be designed using Hanning, 

Hamming, Blackman or rectangular windows. 

The operator enters the filter type, window-type, filter cutoff 

frequency, and filter length, N.  Next the one-dimensional window 

function is computed based on the window type. This one-dimensional 
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function is converted to a circularly symmetric two-dimensional 

function (in one quadrant only). The circularly symmetric filter 

impulse response is computed in one quadrant (using a Bessel 

(19) 
function library routine)   . This impulse response is then 

windowed by multiplying by the one-quadrant window function. The 

remainder of the two-dimensional array is then filled in using 

mirror image values from the first quadrant. This step guarantees 

circular symmetry and saves a great deal of computation time. 

The filter frequency response coefficients are then computed by 

using the impulse response as the real part of a complex array and 

(19) 
then calling the complex FFT subroutinev '.    The FFT subroutine 

returns a complex array that is then separated into the real and 

imaginary parts. These are the coefficients that will be used for 

filtering in the frequency domain, and so they are written to a 

disc file.  They are also used to compute the filter magnitude and 

phase spectra which are written to disc files for plotting. The 

filter impulse response is also written to a disc file for plotting. 

2.7 Image Filtering (IMFILT) 

IMFILT performs frequency domain filtering on an M by M image using 

the N by N filter function computed by FILT2D.  Low pass or high 

pass filtering is performed depending on the coefficients in the 

disc files generated by FILT2D. 
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The real and imaginary filter coefficients are read from disc and 

are used to formulate a complex array.  The real image array is 

read from disc, a complex image array is set up, and an FFT is 

performed on the image to generate a complex array of frequency 

domain coefficients.  The complex filter and image coefficient 

arrays are multiplied to effect the spatial domain convolution. 

This new complex array is then inverse transformed to produce the 

filtered image.  The real part of the inverse transform is then 

written to a disc file for plotting. 

The overlap effects of circular convolution were circumvented by 

padding the filter and image arrays with a suitable number of 

zeroes before the transforms were computed.  Frequency domain 

filtering is faster than conventional convolution filtering for 

large arrays, but does require considerably more storage space 

since several complex arrays must be stored.  The greatest efficiency 

is achieved when the image and filter array dimensions add up to a 

number that is just less than an integer power of two.  In the 

present example, the infrared image dimension was 32 and the filter 

dimension was 17, for a total of 49.  This required that the 

complex array dimension be equal to 64.  Thus only about 50 percent 

of the required space was utilized.  A filter dimension of 31 could 

have been used with no additional computation time or storage 

space. 
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Chapter 3 

DESCRIPTION OF THE APPLICATION 

Throughout the previous sections of this paper, images from an 

infrared camera have been used to illustrate various image pro- 

cessing functions.  The application of the camera was described, 

but only in very general terms. This section presents a more 

complete description of the application, describes the factors 

contributing to the degradation of the images, and outlines a 

method of incorporating image enhancement functions into an existing 

image processing system. 

3.1 Blast Furnace Burden Temperature Measurement 

In the steel industry, blast furnaces are used to produce pure iron 

from iron ore.  This is accomplished chemically by combining a 

reducing gas containing carbon with the ore.  Carbon atoms in the 

gas, produced by heating baked coal (coke) combine with oxygen 

atoms from the iron ore. The primary products of this reaction are 

carbon dioxide and pure iron.  This process is performed in the 

furnace by charging alternate layers of coke and iron ore into the 

furnace from the top, and then forcing an extremely hot (2000F) 

blast of air up through these layers of material (burden) from the 

bottom of the furnace.  The bottom layers melt, the chemical 

reactions take place, and pure iron is tapped from the bottom of 

the furnace. 

-78- 



The efficiency of iron production is determined largely by the flow 

pattern of the hot air blast up through the material layers.  This 

flow pattern is in turn determined by the distribution pattern of 

the material layers.  The hot blast flow characteristics can be 

monitored indirectly by measuring the surface temperature of 

materials at the furnace top. Temperatures will be highest where 

the volume flow rate is greatest. 

The hot blast flow pattern can be optimized (strong central flow) 

by using the material surface temperature data to (manually or auto- 

matically) alter the material charging pattern.  This can result in 

improved furnace efficiency and potentially significant cost 

savings. 

One of the best methods for measuring the material surface temper- 

atures at the furnace top is remote sensing using an infrared 

camera.  An infrared camera is sensitive to infrared energy (heat), 

and is capable of providing a two dimensional thermal image.  In 

most systems, the object whose temperature is being measured is 

optically or electronically scanned to produce a continuous elec- 

trical signal whose amplitude is a function of the heat intensity. 

Bethlehem Steel Corporation uses such a camera on its largest blast 

furnace in Baltimore, Maryland.  Installation of the camera on the 

furnace top is illustrated in Figure 3.1.  The distribution chute 
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Figure 3.1 Installation of Infrared Camera on Blast Furnace 
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is used to charge materials into the furnace. The chute is rotated 

and its vertical angle is varied to deposit the materials in any 

desired pattern.  The position of the infrared camera is also shown 

in Figure 3.1. The camera views the material surface at an oblique 

angle which results in geometric distortion of the thermal image. 

Charging of materials into the furnace is not continuous. Typically, 

material is charged for 1-2 minutes and then there is a delay of 1-5 

minutes before more material is charged. The average material 

temperature varies as a function of material charging as shown in 

Figure 3.2.  The temperature drops when new (colder) material is 

charged into the furnace. After charging is complete, the temper- 

atures rise gradually and reach a quasi steady state value after 

about 2 minutes.  Not only does the average temperature change with 

time - the two dimensional thermal pattern also changes. 

3.2 Factors Contributing to the Degradation of the Thermal Images 

Most of the factors affecting the quality of the infrared images 

are related to the blast furnace ironmaking process itself. For 

example, as material is charged into the furnace a great deal of 

gas, steam, and dust is created in the furnace interior.  Infrared 

radiation emitted from the material surface will not transmit 

through the gas and dust, and hence will not reach the camera. 

Therefore a good quality thermal image cannot be obtained during 
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material charging. When charging is complete, some residual dust 

and particulate matter are still present, however their density 

varies throughout the image field and with time in a randam 

manner. 

The highest velocity of the hot air blast occurs at the center of 

the blast furnace.  This causes excess gas and dust at the top 

center of the furnace even after the effects of material charging 

have stabilized.  This central area of gases and dust is referrred 

to as the "plume". This plume makes it virtually impossible for the 

camera to obtain a clear view of the material surface on the 

opposite side of the furnace. 

Another factor affecting the quality of the images is the accumu- 

lation of dust, dirt, and moisture on the camera lens.  As stated 

previously, these materials impede the transmission of infrared 

energy. 

Figures 3.3a through 3.3p illustrate the variation of the thermal 

pattern of the material surface with time. These unprocessed 

images were taken at 15 second intervals following the completion 

of material charging. (Figure 3.3a is 15 seconds after completion 

of the charge, Figure 3.3b is 30 seconds after completion, and so 

on). These figures illustrate the effect of the material charging, 

random gases and dust, and the central gas plume.  Clearly the 
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Figure 3.3 Infrared Images as a Function of Time 
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IMAGE INTENSITY FUNCTION 
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thermal pattern reaches a fairly steady state condition after about 

120 seconds (Figure 3.3h).  It Is at this time that the thermal 

patterns are most representative of the flow of gases through the 

material layers.  Just before the image of Figure 3.3p was acquired, 

new material was charged into the furnace.  Hence Figure 3.3p 

resembles Figure 3.3a. 

3.3 A Thermal Image Processing System 

In order to provide automatic acquisition and analysis of images 

from the infrared camera, and to provide a tool to implement image 

processing functions, Bethlehem Steel developed a computerized 

image processing system for the infrared camera   .  This system 

presently includes some rudimentary image processing functions as 

illustrated in Figure 3.4. 

The analog image from the camera is periodically sampled and 

quantized using a high speed analog to digital converter.  The 

sampled image is then input to the computer for preprocessing under 

software control.  The preprocessing functions include: 

(1) Linearization of the gray level of each pixel to compensate 

for the nonlinear infrared detector characteristic.  (With all 

infrared detector materials the output signal is a known, 

but nonlinear, function of the infrared energy impinging on 

the detector). 
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(2) Geometric distortion correction to compensate for the oblique 

camera view angle and the varying level (depth) of materials 

in the furnace. 

(3) Averaging of several images acquired in rapid succession to 

reduce the effect of random noise.  (This assumes that the 

spatial registration of successive images is exact). 

The digitization and preprocessing of the images is performed in 

real time. 

After the image has undergone preprocessing it is further processed 

for interpretation and feature extraction.  In thev present imple- 

mentation of the system the feature extraction includes: 

(1) finding the value of the maximum temperatures, 

(2) finding the location of the maximum temperture, and 

(3) identifying the shape of the thermal profile along an 

arbitrary diameter of the furnace. 

Each of the features is identified by simply searching the image 

array, point by point. No other machine interpretation is performed. 

The processed images and/or key features are archived on magnetic 

tape and magnetic disk memory for later recall and observation.  In 
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addition, the key image features are printed and are displayed 

using a psuedocolor display terminal, where colors are used to 

represent ranges of temperature. 

3.4 Potential Improvements to the Image Processing System 

The image processing sytem just described would conveniently lend 

itself to many of the more advanced functions described in this 

paper.  These functions are listed in paren- 

thesis above the appropriate blocks in Figure 3.4. 

The preprocessing operation could include some type of digital 

filtering for removal of random noise. This could be used to 

replace the averaging function, which requires extra time since 

multiple images must be processed, and also requires perfect 

spatial registration from frame to frame. Figures 3.5a through 3.5p 

are the original 16 images of Figure 3.3 filtered with a low pass 

Hanning window FIR filter.  Clearly some of the effects of the 

process noise have been eliminated by the filtering. 

The feature extraction operation could include mask filtering for 

edge enhancement.  This would reveal the areas where the temperature 

gradient is highest - an important parameter in the operation of 

the furnace.  Figures 3.6a through 3.6p are the 16 original thermal 

images, filtered with a high pass mask. The intensity is largest 

in amplitude where the gradient is largest.  Note how the temper- 

ature gradient changes with time. 
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(a) 

Figure 3.5 Low Pass FIR Filtered Infrared Images 
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(b) (d) 

(a) (c) 

Figure 3.6 High Pass Mask Filtered Infrared Images 
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The output presentation function could include image interpolation 

(smoothing) and or contrast enhancement using histogram equalization. 

Either of these additions would improve the subjective quality of 

the images for viewing.  Figures 3.7a through 3.7p are the original 

16 infrared images after contrast enhancement.  Here the full 

dynamic range (all gray levels) is utilized and low contrast detail 

is improved. These images could be displayed on a black and white 

monitor with a continuous gray scale. 

Perhaps the most useful addition to the existing image processing 

system would be in the area of image coding.  It presently requires 

625 words of computer memory to store one, 25 by 25 thermal image. 

This is because the gray level of each individual pixel must be 

retained. This storage requirement could be reduced by transforming 

the image and saving only the most significant transform coefficients. 

Using the Walsh-Hadamard transform, the storage requirement can be 

reduced by 70 per cent, to approximately 200 words.  Figures 3.8a 

through 3.8p are the inverse Walsh-Hadamard transforms of the 200 

most significant WHT coefficients of each of the original 16 

images.  The distortion caused by the elimination of 70 per cent of 

the coefficients is not significant in any of the images. 

The image processing functions described above could be used 

individually or in any combination.  Each of the functions, provides 

a unique benefit and could be implemented in software that would 

require relatively little computer time or space. 
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Figure 3.7 Infrared Images with Enhanced Contrast 
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SUMMARY 

This paper reviewed fundamental techniques for subjective improve- 

ment of image quality, discussed two-dimensional image transforms, 

and illustrated the design and implementation of two-dimensional 

FIR filters.  It was shown that low contrast regions in images 

could be improved by a histogram equalization technique that 

expands the image dynamic range.  Direct convolution filtering, 

with a very small mask as the filter impulse response, was demon- 

strated for noise removal (low pass case) and edge enhancement 

(high pass case).  Two-dimensional Fourier and Walsh-Hadamard 

transforms were used to illustrate the potential for efficient 

image coding and direct transform domain filtering.  Using the 

Walsh-Hadamard transform, it was shown that the required image 

storage space could be reduced by 70 percent.  Two dimensional 

finite impulse response filters were designed using the windowing 

technique.  Filters designed with a Hanning window were shown to be 

superior to filters designed with a rectangular window. 

FORTRAN programs were written to perform each of the image processing 

functions described above. Thermal images from an infrared camera 

were processed off-line using these programs.  The programs were 

effective in improving the subjective image quality and in removing 

the effects of random noise. 
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An image processing application was described in which an infrared 

camera is used to measure the temperature of materials in an 

iron-producing blast furnace.  A scheme for adding four useful 

image processing functions to the existing system was described. 

It was shown that; (1) low pass digital filtering could be used to 

reduce the effect of random noise from the ironmaking process, (2) 

direct convolution high pass filtering could be used to locate 

severe temperature gradients, (3) histogram equalization could be 

used for contrast improvement, and (4) the Walsh-Hadamard transform 

could be used for efficient image coding.  It was suggested that 

each of these functions could be implemented in software, and that 

they could be incorporated in cascade with the existing software at 

the appropriate location. 
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TRENDS AND FUTURE DIRECTIONS 

Many systems, having some or all of the features described above, 

are already in existence to perform a variety of functions.  Among 

the applications are aerial reconaissance from planes or satellites, 

television picture coding, computerized axial tomography, and 

nondestructive testing - just to name a few.  In many of these 

applications, complex image processing functions are performed 

off-line.  Recently, however, military applications such as target 

detection and industrial applications involving continuous high- 

speed processes are requiring that image processing functions be 

performed on-line, in real time. 

This requirement for real time processing has led to the development 

of ultra-fast special purpose hardware. These processors are 

generally used as a "front-end" to a general purpose computer and 

are capable of performing fast Fourier transforms, floating point 

multiplications, and convolution filtering. This trend toward 

special purpose hardware has been accelerated by the growing 

popularity of distributed processing systems. 

Probably the most significant factor contributing to the prolifer- 

ation of image processing systems has been the development of 

high-quality, low-cost solid state scanners and cameras. These 
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solid state scanners are ideal for remote sensing applications 

requiring high reliability, and for industrial applications in 

hostile environments. 

The development of better imaging devices, and the declining cost 

of hard-ware, should make many new applications both technically 

feasible and economically justified - especially in industry. The 

future of image processing appears to be very bright. 
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APPENDIX 

This appendix contains program flowcharts for the 

image processing software developed in Chapter 2. 
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'lowchart for Program INTFOL 
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Flowchart for Program IHIST 
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read image 
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psum(k) is the 
mapping function 

± 
fill in new 
image array 

L 
write both 
histograms and 
new image to 
disc 

1 
end 

calculate the 
cumulative 
distribution 
psum(k) 
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Flowchart for Program IFILT 
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Flowchart for Program FFTRAN 

read array 
size and transform 
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initialize FTT 
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set up 
complex array 

call FFT3D 
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and imag. parts 
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.output result 
to disc 

end 
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Flowchart for Program WHT 

5 

read array 
size and 
transform 
direction 

V 

read image 
from disc 

SfeS: 
increment row 
number 

1 W- 
compute butter- 
fly offset 

£ 
calculate 
element 

transpose 
array 

normalise 

v 
read filter 
response 

$*% 
_!' 

read threshold 

zero coefficients 

-123- 

write to disc 

end 

I  i 



Flowchart for Program FILT2D 

FILT2D 

read filter & 
window type 
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compute quadrant 1 
of 2-D window 
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Flowchart for Program IMFILT 

IMFILT 
) 

\read fliter \ 
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initialize 
parameters for 
FFT3D subr. 

" 

set up a complex 
array of filter 
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\' 
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" 
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