
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1983

A Testability Measure.
Stephen Louis Kessler

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Kessler, Stephen Louis, "A Testability Measure." (1983). Theses and Dissertations. Paper 2344.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228651451?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F2344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2344?utm_source=preserve.lehigh.edu%2Fetd%2F2344&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


A Testability Measure 

By 

Stephen Louis Kessler 

A Thesis 

Presented to the Graduate Committee 

of Lehigh University 

in Candidacy for the Degree of 

Master of Science 

in 

Electrical Engineering 

Lehigh University 

1983 



ProQuest Number: EP76620 

All rights reserved 

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted. 

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion. 

uest 

ProQuest EP76620 

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author. 

All rights reserved. 
This work is protected against unauthorized copying under Title 17, United States Code 

Microform Edition © ProQuest LLC. 

ProQuest LLC. 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346 



Certificate of Approval 

This thesis is accepted and approved in partial 

fulfillment of the requirements for the degree of 

Master of Science. 

(date) 

Professor in Charge 

Chairman of Department 

IX 



Acknowledgements 

The author would like to extend his gratitude to 

Professor Alfred K. Susskind for introducing him to the 

subjects of design for testability and fault detection. 

This thesis is based upon ideas generated by Professor 

Susskind; it would never have been written without his 

invaluable help and inspiring direction.  The author 

would also like to thank Debbie Hamann for typing the 

manuscript. 

111 



Table of Contents 

Page 

Abstract 1 

Chapter 1     TM Fundamentals 2 

1.0 Introduction 2 

1.1 Scope of the TM Algorithm 3 

1.2 Algorithm Objectives 3 

1.3 Definition of Terms 4 

1.4 Overview of the TM 9 

Chapter 2     Details of the TM Algorithm 22 

2.0 Introduction 22 

2.1 Controllability Calculations 22 

2.1.1 Combinational Circuit Elements 24 

2.1.2 Sequential Circuit Elements 31 

2.1.3 Treatment of Circuits With 

Feedback Loops 36 

2.2 Observability Calculations 37 

2.2.1 Observability Calculations For 

Nodes With Fanout 41 

2.2.2 Observability Calculations For 

Sequential Circuit Elements 45 

2.2.3 Treatment of Circuits With 

Feedback Loops 4 8 

IV 



Chapter 3 

3.0 

3.1 

3.2 

Chapter 4 

4.0 

4.1 

4.2 

4.3 

4.4 

4.5 

Chapter 5 

Bibliography 

Appendix 

Vita 

Benchmark Calculations 

Introduction 

Benchmark Calculations For 

Combinational Circuits 

Benchmark Calculations For 

Sequential Circuits 

Algorithm Performance 

Introduction 

Exactness of the TM.For Fanout 

Free Combinational Circuits 

Exactness of the TM For Feedback 

Free and Fanout Free Shift 

Register Circuits 

Observability of Stem Fanout 

Leads 

New TM Observability Calculations 

TM Calculations For Redundant 

Circuits' 

Conclusions 

Page 

49 

49 

49 

52 

63 

63 

64 

74 

80 

84 

86 

88 

92 

93 

96 

v 



List of Figures 

Page 

1-1    Flow Chart of the TM Algorithm 10 

1-2    Block Diagram of a Sequential Network 

With Feedback Loops 18 

1-3    Two Bit Counter 20 

2-1    Example Circuit 23 

2-2    Two Input And Gate 24 

2-3    n Input And Gate 26 

2-4a   Proper Decomposition of a Four Input 

And Gate 2 7 

2-4b    Improper Decomposition 27 

2-5    Two Input Or Gate 28 

2-6    n Input Or Gate 29 

2-7    Inverter 30 

2-8    RS Flip-Flop 31 

2-9    Flip-Flop Example Circuit 33 

2-10    D Flip-Flop 34 

2-11    JK Flip-Flop 35 

2-12a  m Input And Gate 38 

2-12b   Gate Equivalent Circuit 38 

2-13a  m Input Or Gate 39 

2-13b   Gate Equivalent Circuit 40 

2-14   A Typical Fanout Node 41 

vi 



Page 

2-15 A Node With Multiple Fanout 44 

2-16 D Flip-Flop Equivalent Circuit 45 

2-17 JK Flip-Flop Equivalent Circuit 46 

2-18 Example Sequential Circuit 48 

3-1 Two Input Exclusive-Or Network 50 

3-2a Example State Table 53 

3-2b Example Synchronizing Tree 54 

3-3 Controllability Tree For Figure 3-2a 56 

3-4 State Assignment For Figure 3-2a 57 

3-5 Observability Tree For Figure 3-2a 60 

4-1 n >  2,   i-th Level And (Or) Gate 68 

4-2 n ^ 2, i-th Level Decomposed Nand (Nor) 

Gate 70 

4-3 D Flip-Flop N-Stage Shift Register 75 

4-4 Fractional Observability Error For 

Combinational Stem Fanout Nodes 82 

4-5 Two Input Exclusive-Or Cell 83 

A-l Circuit Example #1 93 

A-2 Circuit Example #2 94 

vn 



Abstract 

This thesis presents the current status of an al- 

gorithm which is used to calculate how testable a digi- 

tal circuit is.  The algorithm, or testability measure, 

is easier than calculating the entire test set.  The 

algorithm calculates controllability and observability 

figures for each and every node in a given combinational 

or sequential circuit.  These figures are approximations 

to the actual amount of time, and fraction of total in- 

put combinations which are needed to control and observe 

a given circuit node.  Algorithm results can be compared 

to benchmark figures to determine their accuracy.  Test- 

ability measure results are shown to be exact for fan- 

out-free combinational circuits and feedback-free shift 

register circuits which are made using D flip-flops. 

Poor results are found to occur among the observability 

figures for stem fanout nodes, which showed up most 

noticably in multiple level parity trees. 



Chapter 1 

TM Fundamentals 

1.0  Introduction 

In this thesis we present a testability measure, 

abbreviated TM.  The testability measure is an algor- 

ithm which works from a digital circuit at the gate and 

flip-flop level to produce a metric for each lead, or 

node in the given circuit.  Testability measure results 

can be used to determine how testable the given circuit 

is.  A small result, or figure, indicates that a node is 

difficult to test, while conversely, easily tested nodes 

have large figures. 

This chapter contains the background information 

that is necessary to be able to use the TM.  The follow- 

ing section defines the applicability of the testability 

measure.  The algorithm's objectives are discussed in 

the third section, Section 1.2.  In the next section we 

define the terms that are used in this thesis.  The last 

section contains an overview of the algorithm.  A flow 

chart is included to add clarity to the discussion. 

The remaining chapters contain details of the TM 

calculations and the performance of the algorithm. 

Chapter 2 presents details of the algorithm calculations. 

In Chapter 3 we show how to calculate exact testability 
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figures and thus judge their accuracy.  The TM's major 

strong and weak points are discussed in Chapter 4.  The 

last chapter, Chapter 5, contains our concluding remarks 

on the algorithm and our ideas concerning future research. 

1.1  Scope of the TM Algorithm 

TM calculations are performed on digital circuits. 

The permitted class of circuits includes combinational 

circuits and clocked sequential logic networks.  The 

algorithm has been formulated to operate only on cir- 

cuits with a single output, so that multiple outputs 

must be treated as an array of single outputs.  Redundant 

networks (circuits which contain excessive logic) and 

asynchronous circuits are not included in the permitted 

class of circuits.  The permitted combinational logic 

gates include And, Or, Nand, Nor gates and inverters. 

Exclusive - Or gates must be broken down into a more 

basic form.  D flip-flops and JK flip-flops are the per- 

mitted sequential logic elements.  For SR flip-flops 

our algorithms are incomplete. 

1.2  Algorithm Objectives 

The objective of this thesis is to formulate a 

testability measure that is indicative of testing 



difficulty.  The algorithm must show which portions of a 

given circuit are hard to test, and which are easy to 

test.  It also must be easier to compute than finding 

the entire test set.  If this were not true, then there 

would be no advantage in using the TM.  And finally, we 

should be able to compare the testability measure's 

results to a rigorous measure's results.  Thus we want 

to create a measure which is easy to calculate and has 

results that are meaningful. 

A primary feature of our TM is that the results 

have meaning.  They are approximations to exact results 

in purely combinational networks.  In sequential circuits 

they are approximations to benchmark calculations.  The 

benchmark results, while not exact, do indicate how test- 

able a circuit is. 

1.3 Definition of Terms 

The TM requires that all combinational logic be. 

level organized.  Level organized circuits are set up 

in the following manner.  All primary inputs (PI) will 

be placed at the left-hand side of the circuit.  The 

first level, the left-most set of gates, have as inputs 

only Pi's and complemented Pi's.  The next level should 

have as inputs the outputs of the first-level gates, 



complements of the first level outputs and only comple- 

mented or uncomplemented Pi's.  A gate, G,, cannot be on 

the same level with a gate, G„, if the output of G„ is 

used as an input to G. .  Gates can have as inputs only- 

gate outputs of the previous level(s) and possibly Pi's. 

Thus a gate at level i must have at least one input from 

a gate output at level i-1 and can have other inputs 

which are either Pi's or outputs of gates in level 1, 

2,...,i-2. 

Each possible primary input combination is called 

N a vector.  If there are N Pi's, then there are 2  dis- 

tinct vectors.  The term vector is also associated with 

sequential circuits.  A state vector in a sequential cir- 

cuit is the set of bits that make up the coding of a 

M state.  A circuit with M flip-flops has 2  different 

state vectors. 

The TM generates two figures for each node in a cir- 

cuit.  One of these is the controllability figure, a 

concept first developed by Goldstein (see Reference (2) ) . 

Each node has two controllability figures, the one- 

controllability and the zero-controllability.  The one- 

controllability describes the ease, or difficulty, of 

setting a node to a one.  The one-controllability of 

node x is denoted by C .  The zero-controllability of 

node x, denoted C , describes the difficulty of setting 



node x to a zero.  Control of a lead to a one (zero) is 

dependent on the fraction of the total number of vectors 

which set the lead to a one (zero) and on the amount of 

time that must pass before the node is actually set.  To 

describe these factors the one (zero)-controllability is 

split into the fractional one (zero)-controllability and 

the one (zero) time frame number respectively.  The time 

frame number, abbreviated TFN, denotes the number of 

clock periods, or time frames, which are needed to control 

a node to a one   (zero).  The TFN is taken from 

Kovijanic[4].  In a purely combinational network, for 

example, the one (zero)-TFN is equal to zero for all 

nodes because the circuit is unclocked (gate delays are 

ignored).  In Eg. (1-1) we write the one (zero)-control- 

lability of node x as a two-tuple 

C^(0) = {A,B} (1-1) 

where A is the fractional one (zero)-controllability and 

B is the one (zero)-TFN.  The fractional one-and zero- 

controllabilities are restricted to the range [0,1]; thus 

in Eq. (1-1) we have 

0 £ A 1 1. (1-2) 

We must ensure that the fractional controllabilities 

never exceed these bounds.  Any results which are out of 



bounds are forced back into the permitted range by using 

Eq. (1-3). 

If A > 1, then A = 1.0 (1-3) 

If A < 0, then A = 0.0 

Another property of the fractional one- and zero - con- 

trollabilities is that in the same time frame they sum 

to one for any node, x, in a network.  Using Eq. (1-1) 

we have 

C2-   =   {A, B} x 

C° = {D,E} 

and 

A + D = 1.0 (1-4) 

Frequently, we only discuss the one-controllability be- 

cause the zero-controllability can easily be obtained 

from Eq. (1-4).  The detailed discussion in Chapter 2 

relies heavily on this equation. 

The other TM figure is the observability.  The ob- 

servability of lead x, another concept formulated by 

Goldstein[2], is denoted by OBS(x).  Lead x is observ- 

able if a change of signal on x can result in a change 

at the primary output.  Thus to observe a lead x we 

must "sensitize" a path from lead x to the primary 



output.  The fraction of the total number of vectors 

which sensitizes a path from the lead to the primary 

output is called the fractional observability.  Frac- 

tional observabilities are always limited to the range 

[0,1].  If a value becomes greater (less) than one(zero) 

then it is immediately rounded off to one (zero).  The 

time needed to propagate a signal change from a lead to 

the primary output is the second factor which influences 

the observability of a lead.  Time is measured in units 

of clock periods or time frames.  The amount of time re- 

quired to observe a lead is referred to as the time- 

frame number or TFN for short.  The observability of 

lead x, broken down into its two influencing factors, is 

written as a two-tuple in Eq. (1-5) 

OBS(x) = {F, G} (1-5) 

where F = fractional observability of lead x 

G = the TFN. 

Overflow and underflow conditions are treated by using 

Eq. (1-6). 

For       F > 1  -»•   F = 1.0 (1-6) 

F < 0  ->   F=0.0 



1.4  Overview of the TM 

Figure 1-1 is a flow chart of the TM algorithm. 

It highlights the procedure and order of the TM calcula- 

tions; details are contained in the next chapter.  The 

controllability calculations are performed first and the 

network is processed level-by-level, proceeding from in- 

puts to outputs.  This is another idea which was first 

formulated by Goldstein in Reference [2].  For sequential 

circuits with feedback loops we iterate through the 

levels until the fractional controllability figures con- 

verge.  Observability calculations are performed second, 

proceeding from output to input.*  We do not iterate the 

OBS calculations.  The remainder of this section is de- 

voted to explaining selected portions of Fig. 1-1. 

* see Goldstein, Reference [2] 
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Figure 1-1 Flow Chart of the TM Algorithm. 
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A sequential network is diagramed in Fig. 1-2.  The 

inputs to flip-flops 1 thru N are leads a thru v, respec- 

tively.  Leads 1 thru N are the respective flip-flop 

outputs.  For circuits of this type we need to redefine 

Pi's 

PO  -^ 

clock 

Figure 1-2 Block Diagram of a Sequential Network With 

Feedback Loops. 
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the initial level.  This will not eliminate the feedback 

loops, but it will show us how to process this type of 

network.  The initial or first level has as inputs only 

primary inputs or flip-flop outputs.  It does not have 

inputs from other gate outputs.  The higher levels are 

defined the same as before.  As an example consider the 

two-bit counter with carry output in Fig. 1-3.  The gates 

with outputs 2 thru 5 and 12 are at level one, the gates 

with outputs 6 and 7 are at level two, and the flip- 

flops are at level three.  Once the flip-flop one (zero)- 

controllabilities are initialized, this scheme of level 

organizing allows us to process the network without run- 

ning into any undefined values.  Within each level the 

order of processing the nodes is arbitrary because order 

does not alter the controllability figures.  The order 

we have chosen in our calculations is from top to bottom. 

As stated previously, we loop thru the calculations 

level by level until the fractional one (zero)-control- 

lability figures for all flip-flop output nodes converge 

Equation (1-7) is the formula used to determine conver- 

gence of the fractional one (zero)-controllability, 

where i is set equal to the current iteration number. 

|c*(o)(i) - d;(o)(i-i)| < 6 (1-7) 

19 
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lc 
US 

la 

lb 

<J \2 

11 ^y^ 

10 

11 

Q. 

Q2 clk< 

Ql  Dl 

Q-L clk< -clock 

Figure 1-3  Two-Bit Counter. 

The convergence factor, 5, is chosen here as 0.05* 1/2 

where n equals the number of Pi's in the circuit. 

The first part of the flow chart in Fig. 1-1, the 

portion before offpage connector E, shows how the frac- 

tional one (zero)-controllabilities are performed.  This 

part of the flow chart also describes TFN calculations 

for feedback-free sequential networks, i.e., networks 

20 



with finite memory span.  TFN calculations for circuits 

with feedback are explained in more detail in Section 

2.1.3. 

At the end of the controllability calculations for 

sequential networks a check is made for oscillating 

results.  If the controllability figures are found to 

oscillate the algorithm is immediately exited. 

21 



Chapter 2 

Details of the TM Algorithm 

2.0 Introduction 

In this chapter the details of the testability 

measure (TM) algorithm will be presented.  The control- 

lability calculations for combinational and clocked se- 

quential circuits will be explained first.  Then we will 

explain the observability calculations for combinational 

and clocked sequential circuits.  Illustrative examples 

are provided within this chapter to help clarify the TM 

calculations. 

2.1 Controllability Calculations 

To perform the TM controllability calculations we 

need to form lead variable lists for all the leads in 

the circuit.  Each list is a set which has as elements 

the independent variables and/or flip-flop output vari- 

ables.  The lead variable list for lead j, L., contains 

independent variable x. and/or flip-flop variable Q. if 

the logic function for lead j depends on x. and/or Q.. 

If the inversion parity between lead j and x. (or Q.) 
•k if 

is even, then x. = x. (Q. = Q.); if the inversion parity 
"k —     ic 

is odd, then x. =x. (Q. =Q.).  Note that it is possible 

for L. to contain both x. and x. (or Q. and Q.) if 
j 1111 

22 



multiple paths (with even and odd inversion parity) exist 

between the primary input x. (or flip-flop output Q.) 

and lead j. 

In the course of the calculations pairs of lead- 

variable lists are compared and categorized.  To compare 

a pair of lists, L. and L., first apply list reduction 

to the lead-variable lists.  The reduced lists, L! and 
1 

L1., are obtained by deleting all variables which appear 

in both L. and L. in complemented and uncomplemented 

form. 

As an illustration of how to form the lead-variable 

lists, consider the following example circuit. 

A 
B 

A 
C 

A 

C 

A 

B 

Figure 2-1 Example Circuit. 
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The lead-variable lists are: 

1^ = {A, B} L5 = LXU L2={A,A,B/C} 

L2 = {A,C} L6 = {A,A,B,C} 

L3 = {A,C} Ly = {A, A, B,B, C,C} 

L4 = {A,B} 

List reduction can be performed on the lists for the in- 

puts of gate 7*.  Thus we obtain: 

L^ = {B,C} and L£ = {B,C} 

where we deleted A and A from both lists.  Then we get 

Li]  =   {B,B,C,C}. 

Note that it is possible to obtain reduced lists that 

are empty. 

2.1.1  Combinational Circuit Elements 

For the two input And gate shown in Fig. 2-2 

o 
Figure 2-2  Two Input And Gate. 

* Gates are referenced by referring to the gate's output 
node number. 
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where    C^ = {f,F}  ;   C^ = {l-f,F} 

c\  = {g,G}  ;   C° = {l-g,G} 

we have  C3 = {h,max(F,G)} (2-1) 

and      C° = {l-h,min(F,G)} (2-2) 

The fractional one-controllability of lead 3, h, is 

determined by comparing Li and Li and using the appropri- 

ate formula.  If: 

A.   Li and LI are independent (have no common 

elements), then 

h = f * G (2-3) 

B.   Li (LI) is a subset of Li (Li ) , then 

h = min(f,g) (2-4) 

C.   The elements of Li(Li) are the complements of 

those in LI(Li), then 

h = f + g - 1 (2-5) 

D. If Li and LI do not simply fall into one of 

the above cases, then each of the partially 

applicable formulas is used and the results 

are averaged. 

25 



When an And gate has three or more inputs: 

1 
2 

n 

\n+l_ 

Figure 2-3   n Input And Gate. 

where    C. = {a,A}  ;   C° = {l-a,A} 

c\  =   {b,B}  ;  {C° =  l-b,8} 

C* = {n,N}  ;   C° = {l-n,W} 

we have  C  , = {h,max(A,B,...,N)} 

and      Cn+1 = ^1-h'min(^'5'•••'W)) 

(2-6) 

(2-7) 

To find h use associativity to decompose this And gate 

into a tree using as few two input And gates as possible. 

The tree should also contain as few levels as possible... 

A tree containing a minimum number of gates and levels 

is called a minimum level tree.  Thus to decompose a 

four input And gate we use the circuit shown in Fig. 2-4a 

26 



Figure 2-4a Proper Decomposition of a Four 

Input And Gate. 

and not the circuit in Fig. 2-4b. 

Figure 2-4b  Improper Decomposition. 

We arrange the decomposition in such a manner that as 

many gates as possible have their inputs such that one 

of the above conditions (i.e., A,B or C) is fully met. 

In the case of independence decomposition is not neces- 

sary since formula (2-3) can be easily extended to 

h=a*B*C*... * n 

For a two input Or gate: 

(2-3a) 

27 



o 
Figure 2-5  Two Input Or Gate. 

where    cj = {f,F}   ;   C° = {l-f,F} 

C2 = {g,G}   ;   C° = U-g,G} 

we have   C3 = {h,min(F,G)} (2-8) 

and      C° = {l-h,max(F,G) } (2-9) 

The fractional one-controllability of lead 3, h, is 

determined by comparing L' and L' and using the appropri- 

ate formula.  If: 

A. L.! and Li are independent, then 

h = g + f - f*g (2-10) 

B. subset, then 

h = max(f,g) (2-11) 

C. complement, then 

h = f + g (2-12) 

28 



D.   If L'   and LL  do not simply fall into one of 

the above cases, then take the average of the 

results of each of the partially applicable 

formulas. 

When an Or gate has three or more inputs: 

E> n+l  I > 
n 

Figure 2-6  n Input Or gate. 

where    C, = {a,A}   ;   C° = {l-a,A} 

C* = (b,B}   ;   C° = U-b,B} 

we 

C* = {n,N>   ;   C° = {l-n,W} 

have   C1L1 = {h,min(A,B,...,N)} (2-13) 
n+J. 

and      C°+1 = {l-h,max(A,B,. . .hi) } (2-14) 

To find h decompose this Or gate into a minimum level 

tree of two input Or gates.  We pair up the leads so 

that as many gates as possible have their inputs such 

that one of the above conditions is fully met.  For the 

29 



case of independence, decomposition is not necessary 

since formula (2-10) can be easily extended.  From (2-10) 

we have 

l-h = g + f-f*g= (1-f) * (1-g) 

and for Fig. 2-6 this becomes 

1 - h = (1-a) * (1-b) ... *(l-n)      (2-10a) 

The treatment of inverters is very straightforward. 

For the inverter 

H> 
Figure 2-7  Inverter. 

where     C* = {f,F}   ;   C° = {l-f,F} 

we have  C^ = C° and C° = C^ . (2-15) 

The last two combinational circuit elements treated 

by our algorithm are Nand and Nor gates.  The formulas 

for these are obtained by decomposing a Nand into an And 

gate and an inverter, and a Nor into an Or gate and an 

inverter.  Thus we have: 
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'Nand 'And 'Nand 'And 

'Nor 'Or 'Nor 'Or 

2.1.2  Sequential Circuit Elements 

Recall that when sequential circuit elements are 

present in a circuit we must iterate through the circuit 

until the fractional one-controllabilities converge. 

Thus it is obvious that the fractional controllability 

figures are iteration dependent.  This means that at 

the next iteration, i+1, the one-controllability figure 

for node j, C.(i+1), will be a function of one or more 

one-controllability figures from the current iteration. 

For the RS flip-flop shown in Fig. 2-8 

S   Q 

>clk_ 
R  Q 

Figure 2-8  RS Flip-Flop. 

we define the set controllabilities: 

N(i) = do nothing 

S(i) = set 

R(i) = reset 
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where    S(i) + R(i) + N(i) = 1 

and      cj(i) = {f(i),F}   ;   C°(i) = {l-f(.i),F}* 

c£(i) = {g(i),G}   ;   C°(i) = {l-g(i);G}. 

f(i) and g(i) are the fractional one-controllabili- 

ties at the i-th iteration for leads 1 and 2 respec- 

tively.  So we have 

cjd+l) = C°(i+1) = (h(i+l), i+1} (2-16) 

C°(i+1) = cj(i+l) = (l-h(i+l), i+1} (2-17) 

h(i+l) = s(i) + N(i) * h(i) (2-18a) 

and      1 - h(i+l) = R(i) + N(i) * (l-h(i)). (2-18b) 

h(i+l) is the fractional one-controllability for the 

next iteration.  In Eq. (2-18a) we can see that the flip- 

flop output fractional one-controllability figures for 

the next iteration, i+1, are a function of the current 

iteration figures.  Thus we calculate the fractional one- 

controllabilities of the flip-flop outputs for the next 

iteration during the current iteration.  Consider the 

following example. 

* Note that all the TFN's are not iteration dependent. 
More will be said about the TFN's later on in this chap- 
ter. 
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Figure 2-9  Flip-Flop Example Circuit. 

During the initial iteration, i=0, C. (o) is a function 

of the initial condition of Q (i.e., C,(o)).  But to 

calculate C. (1) we need C_ (1) .  In order to avoid this 

undefined condition we calculate C_(l) during the initial 

iteration, i.e., at i=0. 

The variables S(i), R(i) and N(i) are found by the 

following formulas which refer back to Fig. 2-8.  If: 

A.   leads 1 and 2 are primary inputs (abbreviated 

P.I.'s), then 

N(i) = S(i) = R(i) = 1/3 V i (2-19) 

B.   leads 1 and 2 are not P.I.'s, then 

S(i) = f(i) * (l-N(i))/(f (i) + g(i))  (2-20) 

R(i) = g(i) * (l-N(i))/(f(i) + g(i))  (2-21) 
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and N(i) is found by comparing the reduced lead variable 

lists.  If L' and L': 

are independent, then 

N(i) = (l-f(i)) * (l-g(i)) (2-22) 

2.   are complements, then 

N(i) = 0 (2-23) 

3•   are subsets, then 

N(i) = 1 - max(f (i) , g(i)) (2-24) 

4.   do not fall simply into one of the above cases, 

then find N(i) by taking the average of the 

results from each of the partially applicable 

formulas. 

For the D flip-flop shown in Fig. 2-10 

Figure 2-10  D Flip-Flop, 
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where    C*(i) = {f(i),F} 

we have  C^d+D = C°(i+1) 

and      C°(i+1) = C* (i+1) 

C°(i) = {l-f(i),F} 

= {f(i),i+l) 

= {1-f(i),i+l}. 

(2-25) 

For the JK flip-flop shown in Fig. 2-11 

1 J       Q 
->.clk 

3 

2 4 
K. Q 

Figure 2-11  JK Flip-Flop. 

where    C^(i) = {f(i),F} 

C*(i) = (g(i) ,G} 

we have  C^(i+1) = C°(i+1) 

and      C°(i+1) = cj(i+l) 

,o,. C^(i) = {l-f(i),F} 

C°(i) = (l-g(i),G) 

= {h(i+l),i+l}      (2-27) 

= {l-h(i+l) ,i+l}.   (2-28) 

To find h(i+l) we compare the reduced lead variable lists 

for leads 1 and 2.  If: 

A.   L| and L' are independent, then 

h(i+l) = f(i) * [l-h(i)] + [l-g(i)] * (2-29) 

h(i) 

B.   L,' and Li are complements, then 
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h(i+l) = f(i) (2-30) 

C. L' and L' are subsets, then 

h(i+l) = 1/2 * |f(i) - g(i)| + min(f(i),g(i)) 

+ h(i) * (l-f(i)-g(i))       (2-31) 

D. lead labels 1 and 2 are equal (i.e., they come 

from the same fanout point), then 

h(i+l) = f(i) + h(i) - 2 * f(i) * h(i)   (2-32) 

E. L| and L~ do not fall into one of the above 

classes, then take the average of the results 

obtained from each of the partially applicable 

formulas. 

2.1.3  Treatment of Circuits With Feedback Loops 

When a circuit contains feedback loops it will also 

contain flip-flops (because we do not consider asynchro- 

nous circuits), but the converse is not necessarily 

true.  The fractional one-controllabilities are calcu- 

lated by iterating through the circuit until all of the 

flip-flop fractional one-controllabilities converge. 

The convergence criterion has been stated in Chapter 1 

(see Eg. (1-6) ) . 

36 



Calculation of the TFN is different from the frac- 

tional controllability calculations.  The time frame 

number for a flip-flop output node is the iteration num- 

ber.  Thus each time we iterate through the network we 

increment the previous TFN to obtain the new TFN.  We 

stop incrementing a flip-flop output node's TFN when the 

fractional controllability figure for this node con- 

verges, and in general, TFN computation continues until 

all flip-flop fractional controllability figures con- 

verge.  Hence the final TFN values are dependent upon how 

and when the flip-flop fractional controllabilities con- 

verge. 

2.2 Observability Calculations 

We now proceed to describe the observability calcu- 

lations for combination circuit elements. For a two in- 

put And gate (refer back to Fig. 2-2), 

where C* = {a,A}   C^ = (b,B} 

and 0BS(3) = {c,C} 

we have 0BS(1) = {b * c, max(B,C)} (2-33) 

and 0BS(2) = {a * c, max(A,C)}. (2-34) 

For And gates with three or more inputs 
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1 
2 
3 
• 

m 

n 

Figure 2-12a m Input And Gate. 

we calculate the OBS(l) by forming the gate equivalent 

circuit of Fig. 2-12a as shown in Fig. 2-12b. 

2 
3 

m 

_ n 

L> 

where 

Figure 2-12b  Gate Equivalent Circuit. 

C^ = {a,A} 

C^ = {b,B} 

OBS(n) = {n,N} 

C  = {ra,M} m 

C  = {x,X}  ;  X = max(B,C,...,M) 

The fractional one-controllability of lead x, x, is 

found using the procedure for And gates in Section 2.1.1. 
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Thus we have 

OBS(l) = {x * n, max(X,N)}. (2-35) 

Note that if leads 2 thru m are independent, Eq. (2-35) 

becomes 

(2-35a) 

0BS(1) = {b * c * ... *m*n, max(X,N)}. 

This procedure is repeated for input leads 2 thru m. 

For two-input Or gates (refer to Fig. 2-5), 

where     C° = {l-a,A}   0BS(3) = {c,C} 

and      C° = {l-b,B} 

we have   0BS(1) = {(1-b) * c, max(B,C)}        (2-36) 

and      0BS(2) = {(1-a) * c, max(A,C)}        (2-37) 

For Or gates with three or more inputs we calculate 

1 

3  1      ^  n 

m 

Figure 2-13a m Input Or Gate. 

the 0BS(1) by forming the gate equivalent circuit of 

Fig. 2-13a as shown in Fig. 2-13b. 
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where 

2 
3 

m 

Figure 2-l3b Gate Equivalent circuii 

C±  =   {l-a,A}     QBS(n) = {n/N} 

Co = {l-b,B} 

C = {l-m,,V(} m 

C° = {l-y,/} ,    / = max(8,C, ... M) 

The fractional one-controllability of lead y, y, is 

found using the procedure for Or gates in Section 2.1.1. 

Thus we have 

0BS(1)   =  {(i-y,   *  n/  max(K,N)} ^^^ 

If leads 2 thru m are independent, Eg. (2-38) becomes 

0BS(1) = {(1_b) * (1_c) 

max(J^,N) }. 

* d-m) * n, 

(2-38a) 

This procedure is repeated for 
the input leads 2 thru m. 
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For an inverter (refer to Fig. 2-7) , 

where 0BS(2) = {a,A} 

we have   0BS(1) =  0BS(2) (2-39) 

2.2.1- Observability Calculations for Nodes With Fanout 

We first consider nodes with two fanout paths.  In 

Fig. 2-14 lead x is the stem of the fanout, and leads 1 

and 2 are on the fanout paths of x.  N is the first gate 

or flip-flop at which the fanout reconverges. 

1 

x 

> 
Nl 

3 *" 
1 

2 

W2 
4       > 

 s> 

3' 

/ 

.O /y ^ 

n 

N n 
n 

0BS(1) = {f,F}   ;   0BS(2) = {g,G} 

Figure 2-14  A Typical Fanout Node. 

To calculate OBS(x), form the path-variable list 

for each path.  A path-variable list for lead i, P., is 

the union of the lead variable lists that are associated 

with all the gates or flip-flops that lie on the path 

from lead i to the input of the gate at which the fanout 
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first reconverges.  In Fig. 2-14 for P_ the gate at 

which the fanout first reconverges is N .  Note that 3      n 

P9 does not include L , because it is at the point of 

fanout reconvergence. The path-variable list for the 

stem of the fanout, lead x, is 

Px = P2 U P2. (2-40) 

In the course of the observability calculations 

pairs of path-variable lists are compared and categorized. 

To compare a pair of lists, P, and P?, first form the 

reduced path-variable lists P' and PI.  The reduced path- 

variable lists are obtained by deleting all elements 

that appear in barred and unbarred form in both lists. 

For example, let 

P1 = {A,A,B,C,D,D}   ;   P2 {A,A,B~} 

Then the reduced path-variable lists are 

Pj = {B,C,D,D}   ;   P^ = {B}. 

Note that it is possible to obtain 

P' = P» = {0}. q   r   ^ 

Next we state the rules for calculating the observ- 

ability of the stem of a fanout node, x.  If the 
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inversion parity* of the signal on lead 1 (refer to Fig. 

2-14) is the same as the inversion parity of the signal 

on lead 2, then 

OBS(x) = {f + g, 1/2 * (F+G)}.        (2-41) 

If the inversion parity of the signals does not satisfy 

the above condition, then three subcases are considered. 

A. If the elements in P' that appear in one form, 

x*, do not appear in their opposite form, x*, 

in PL,   then 

OBS(x) = {|f-g|  1/2 * (F+G)}. (2-42) 

B.   If the condition under A above does not hold 

or P' and P' have no common elements (including 

P^ = P'2  =  {#}) , then 

OBS(x) = {f + g, 1/2 * (F+G)}.        (2-43) 

C.   If both conditions above are partially ap- 

plicable to the elements in P'   and P', then 

OBS(x) = {max(f,g), 1/2 * (F+G)}.     (2-44) 

* The inversion parity of a lead is detetmined from the 
point of fanout to the input of the gate at which the 
fanout first reconverges. 
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To extend the above rules to leads with multiple 

fanout nodes, i.e., three or more, consider the follow- 

ing figure. 

x 
"> 

> 

■> 

o 
o 
o 

i - > 
Figure 2-15  A Node With Multiple Fanout. 

First group the paths into three sets: 

Set a - leads with even inversion parity 

Set b - leads with odd inversion parity 

Set c - leads with both even and odd inversion 

parity 

The observabilities for sets a and b are easily computed 

using the rule for nodes with the same inversion parity. 

To calculate the OBS(set c), form a pyramid (tree) of 

the nodes in this set.  The nodes should be paired off 

so that the stated conditions, cases A and B on pp. 43 

are fully met as often as possible.  Next compute the 

observability of sets a and b combined.  Denote this as 
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OBS(x').  This computation requires P  ,   and P   , , 

where the path-variable list for each set is the union 

of the path-variable lists of the leads in each par- 

ticular set.  Finally compute the OBS(x) using OBS(x'), 

OBS(set c), P . and P  ,  .  P . is the union of P  ,   and x1     set c   x* set a 

set b 

2.2.2  Observability Calculations For Sequential Circuit 

Elements 

The observability calculations for D flip-flops are 

stated with reference to the circuit in Fig. 2-16. 

D   Q 

>clk 

i> 

Figure 2-16  D Flip-Flop Equivalent Circuit. 

OBS(Q) = OBS(2) = {f,F} ; 

OBS(Q) = OBS (3) = {g,G} 

and we have 

0BS(1) = {h, 1/2 * (F+G) + 1} ' (2-45) 
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The fractional observability figure for lead x, h, is 

determined by using f, g and the rules for leads that 

have fanout, which were given in Section 2.2.1.  If 

either node Q or Q, leads 2 or 4 respectively, are un- 

used, then the unused lead is unobservable.  The un- 

used lead is then ignored when calculating the observ- 

ability of lead x.  For example, if lead 2 is unused, 

then Eg. (2-45) becomes 

0BS(1) = {g,G+l}. (2-45a) 

If lead 4 is unused we have 

0BS(1) = {f,F+l}. (2-45b) 

JK flip-flop observability calculations* are stated 

with reference to the circuit in Fig. 2-17.  Let 

1 
J         Q 

> elk 
K 

X 3 

2 JLT^JL 

— y 

- Q 

Figure 2-17 JK Flip-Flop Equivalent Circuit. 

* Observability calculations were not determined for RS 
flip-flops.  The JK flip-flop OBS equations were not 
verified via experimental calculations. !. 
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C* = {e,E}   ;   C° = {l-e,E}* 

0BS(3) = {f,F}   ;   0BS(4) = {g,G} 

and      OBS(x) = {h,H}   ;   H = 1/2 * (F+G) . (2-46) 

Note that h is calculated using the rules for fanout 

leads.  If either node Q or Q, leads 3 or 5 respectively, 

are unused, then the unused lead is unobservable.  The 

unused lead is then ignored when calculating the observ- 

ability of lead x and we have 

OBS(x) = {h,H} 

f if lead 5 is unused 
where    h = { 

g if lead 3 is unused 

F if lead 5 is unused 
and      H  = { (2-46a) 

G if lead 3 us unused 

The flip-flop input observabilities are 

0BS(1) = {(1-e) * h, max(E,H) + 1}    (2-47) 

and      0BS(2) = {e * h, max(E,H) + 1}.       (2-48) 

The reasoning behind Eq. (2-47) (Eq. (2-48)) is very 

straightforward.  When Q~  = 0 (Q =1) a change in the 

* These are the converged figures. 
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J(K) input is reflected in a change in the output, 

+ —+ 
Q (Q ) , no matter what the state of input K(J). 

2.2.3  Treatment of Circuits With Feedback Loops 

The presence of feedback loops only affects the OBS 

calculations of flip-flop output nodes.  For each flip- 

flop we determine which nodes or fanout paths are in 

feedback loops.  Those nodes which are found to lie in 

such loops are ignored when calculating the observability 

of a flip-flop.  Thus in Fig. 2-18 lead 

1 

<3 4a 

2a 

J    Q 

>clk 

K    Q 

4b 

Figure 2-18  Example Sequential Circuit. 

4a (which is on a fanout path) is in a feedback loop; 

hence OBS(4) = OBS(4b).  Note that Q is unused and hence, 

it too is ignored when calculating the observability of 

leads 3 and 2a. 
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Chapter 3 

Benchmark Calculations 

3.0 Introduction 

This chapter describes how to do the benchmark cal- 

culations.  These calculations generate figures with 

which we may compare our TM results, and thus determine 

their accuracy.  The calculations are split into two 

major groups; those for purely combinational circuits 

and those for sequential circuits.  Within each group 

there are separate calculations for controllability and 

observability.  Example calculations are included to 

help clarify the concepts. 

3.1 Benchmark Calculations For Combinational Circuits 

The controllability benchmark calculations are very 

straightforward.  At each lead, i, determine the func- 

tion, F., in terms of the primary inputs.  The frac- 

tional one-controllability for lead i is the number of 

solutions to F. =1 divided by 2 , where N is the number 

of primary inputs.  The fractional zero-controllability 

is the number of solutions to F. =0 divided by 2 . 
a. J 

Note that the fractional zero-controllability does not 

need to be calculated, since 2 minus the number of 
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solutions to F. =1 divided by 2  yields the desired 

figure and is a much simpler computation.  Consider the 

circuit shown in Fig. 3-1. 

A 

B 

Figure- 3-1 Two Input Exclusive-Or Network. 

We wish to determine the benchmark fractional one-con- 

trollability figure for lead 4.  Thus 

F. = A -A~E=A + AB = A + B = 1 
4 

which yields 3 solutions.  The desired figure is 

3/22 = 3/4. 

The controllability TFN's for all leads in a combina- 

tional circuit are all zero by definition, since no 

clock pulses are needed to control any leads in the 

circuit. 
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We use the Boolean difference (abbreviated BD) to 

calculate the fractional observability benchmark figures. 

Given a function f of x,,x2, ..., x  the BD is defined as 

df/dx. = f(xx,x2,...,x.=0,... ,xn) 

© ir(X-/X«/«../X.  J., • • • , X y . 

The BD is the ring sum of the function with x. = 0 and 

x. =1.  The number of solutions to 
:   

df/dx. = 1 
3 

divided by 2  is the fractional observability of lead 

x ..  Due to the nature of the ring sum, df/dx., equals 

one if and only if the function has different values 

for f(x.=0) and f(x.=l).  Thus if lead x. switches 
3 3 3 

values this action will be observed at the output of 

the circuit.  The observability TFN's for all leads in 

a combinational circuit are all zero, since no clock 

pulses are needed to observe any leads in the circuit. 

Let us calculate the fractional observability of lead 

3a in Fig. 3-1.  In terms of this lead the function is 

F = (Ax, ) • (B-AB) 

= Ax-  + AB 3a 
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Thus 

dF/dx. = AB ffi (AB+A) = A 

and the desired figure is 

2/22 = 1/2. 

3.2  Benchmark Calculations For Sequential Circuits 

The controllability benchmark calculations are 

performed using a modified synchronizing tree.  We will 

first define the synchronizing sequence and then show 

how to find the synchronizing tree for a given machine. 

Then we will show the modifications needed to find the 

fractional one-controllability figures. 

"A synchronizing sequence of a machine, M, is a 

sequence which takes M to a specified final state, re- 

gardless of the output or the initial state."   Not 

all machines posses such a sequence. 

A synchronizing tree is constructed for a given 

machine by ignoring the outputs and by, at the j-th 

level in the tree, listing the state ambiguity at each 
2 

node which results after the first j inputs.   For a 

machine with N input leads, i.e., N Pi's, the j-th-level 

will contain at most 2 ^  nodes.  The state ambiguity at 

1 Zvi Kohavi, Switching and Finite Automata Theory 
(New York:  McGraw-Hill Book Company, 1978), p. 456. 

2 Ibid. 
52 



each node does not contain repeated entries.  The initial 

ambiguity contains all the states of the given machine. 

A node becomes terminal if it contains a single entry or 

if it is a repetition of an ambiguity for a node at some 

3 preceding level.   The synchronizing tree for the state 
4 

table  in Fig. 3-2a is shown in Fig. 3-2b. 

PS NS z 

x=0 x=l 

A B,0 D,0 

B A,0 B,0 

C D,l A,0 

D D,l C,0 

Figure 3-2a Example State Table. 

3 Ibid., 457. 

4 Ibid., 455 and 457, 
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(ABCD) 

(BD) 

(ABCD) 

(ABC) 

Figure 3-2b Example Synchronizing Tree. 

Thus for this example one synchronizing sequence is 

0 10 10 and D is the final state. 

The modified synchronizing tree, or controllability 

tree, works from an expanded state table.  To find the 

expanded state table list the state assignment for each 

state, noting which state variable corresponds to which 

flip-flop in the circuit.  If a state has n multiple as- 

signments, so that the circuit has n equivalent states, 

then list the n assignments separately in the new table. 

In other words, we split all the equivalent states and 

list them separately in the expanded state table.  The 
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table must also include any transient states which are 

present in the given machine.  Thus our expanded state 

table is actually the machine's transition table.  So 

if the machine has q flip-flops, i.e., q state variables, 

then the expanded state table will have 2g rows. 

Next find the synchronizing tree for the expanded 

state table.  We associate with each element in the 

initial ambiguity, a probability of starting in the cor- 

responding row of the expanded state table.  Since we 

assume an equally likely starting condition, the assigned 

probability for each element is 1/2™.  As nodes are added 

to the tree we calculate the probability for each element 

in the state ambiguity, given that a specific input has 

occurred.  For the state table shown in Fig. 3-2a (we 

assume it is in expanded form) we have the control- 

lability tree of Fig. 3-3.  Note that each level of this 

tree contains all the nodes which result from all pos- 

sible input combinations.  Thus for a machine with N 

Pi's, the j-th level will contain 2 •*   nodes.  Before we 

show how to terminate this tree we first describe the 

benchmark one-controllability figures for sequential 

circuits. 
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kkkk 
(ABCD) 

(ABD) (BCD) (ABD) (ABCD) 

Figure 3-3 Controllability Tree For Figure 3-2a. 

To calculate the fractional one-controllability 

figures for a flip-flop output terminal, Q., first 

determine the set of states that have state vectors 

such that the flip-flop in question has a one (zero) at 

its output.  This set is called the one-controllability 

set for Q., denoted CS(Q.).  Figure 3-4 shows the state 

assignment for the state table of Fig. 3-2a.  Thus for 

Q, we have CS(Q,) = {C,D}.  At a given sequence length, 

i.e., tree level, add together the probabilities which 

correspond to members of the controllability set for 

Q..  Then divide this total by the number of paths, or 

nodes, at that sequence length.  By summing the 

probabilities at a given sequence length we are actually 
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State Assignment 

Ql     Q2 PS 

0        0 A 

0        1 B 

1     1 C 

1        0 D 

Figure 3-4  State Assignment For Figure 3-2a. 

calculating the probability that flip-flop output Q. 

will be at logic 1.  Division by the total number of 

paths assumes that each path, or input sequence, is dis- 

joint and equally likely.  The fractional one-control- 

labilities for Q, for sequences of length one and two 

are given by: 

sequence length, £ = 1 

1/2 * [1/2 + 1/4 +1/4]  = 1/2 

1=2 

1/4 [1/2 + 1/2 + 1/4 + 1/2 + 1/4 + 1/4] = 9/16 

Termination of the tree occurs when the fractional 

one-controllability figures for all Q. converge.  Al- 

though we have not proved that the figures will always 
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converge, intuition and all of our experiments to date 

have not disproved this idea.  This is, admittedly, a 

very weak argument and should be supported by stronger 

facts. 

Currently the TM fractional one-controllability 

fiugres from the j-th iteration are compared with the 

controllability tree figures from the j-th level.  The 

comparison is performed for j = 0, the initial values, 

through to the converged results.  The levels in the 

modified synchronizing tree correspond to the control- 

lability TFN's.  We lack benchmark fractional one- 

controllability figures for non-Q nodes in a sequential 

circuit.  (This is another area which needs more re- 

search) . 

The final topic of this section, and of this chap- 

ter, is the benchmark observability calculations.  These 

calculations yield results which are used to compare the 

accuracy of the TM observability figures.  This bench- 

mark procedure only yields fractional observability 

figures for the flip-flop output nodes in a sequential 

circuit. 

The benchmark observability calculations are also 

derived from the expanded state table.  This table is 

used to form unit distant state pairs.  For a sequential 
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circuit with q flip-flops, i.e., q state variables, 

there will be q sets of state pairs; one set for each 

flip-flop, and each state-pair set contains 2™  state 

pairs.  Each set is formulated for a specific state 

variable Q..  The elements in each pair have comple- 

mentary values in Q. and equal values for the remain- 

ing state variables; hence the state pairs are unit 

distant. 

Once the pairs have been found we use a tree of all 

the input sequences to find how many of the state-pair 

elements are distinguished, or split.  The state-pair 

set for Q. is the initial level in the tree; the next 
1 

level of the tree contains state-pairs which have as 

elements the next states of the pairs in the initial 

level and possibly split elements.  The third level con- 

tains state-pairs whose elements are the next states 

of the second level pairs, split elements which are the 

next states of the split elements on the second level 

and possibly newly split elements.  The j-th level cor- 

responds to the state-pairs for an input sequence of 

length j.  A state pair, sp. , is split for a given in- 

put if the outputs for each element in sp. are different. 

When this occurs we can observe which state in sp. the 

circuit was in.  The fractional observability figures 

are calculated for each level of the tree.  The figure 
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for Q. at level j is given by the formula 

fractional OBS(Q.) = ' e,le_m;ntf SP1^ a* *evel j 
1   Total # elements at level j 

Let us find the observability tree for the state 

table of Fig. 3-2a using the state assignment of Fig. 3-4. 

Normally we need to find two trees, one for Q, and Q„. 

As an illustration of the observability benchmark calcu- 

lations we will only find the tree for Q„.  The state- 

pairs are (AB) and (CD).  The tree is shown in Fig. 3-5. 

(AB) (CD) 

(AB)M 

(AB)M (BD)M 

(AB) 
M 

(BD)  (A) (D) 
M     M 

Term. 

(BD) (AC) 

(A) (D) (B) (D) 

Term. 

(BC) (AD) 

(A) (D) 
(B) (D) 
Term. 

Figure 3-5  Observability Tree For Figure 3-2a, 
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The M in Fig. 3-5 represents a merged condition. Merged 

conditions occur when the elements in a state pair go 

to the same next state with identical outputs.  When 

this occurs, one will never be able to distinguish these 

elements.  Note that M actually represents two elements, 

a merged state pair.  Nodes become terminal when, under 

a given input, all the state pairs either split or merge. 

A terminal node could also contain some combination of 

split and merged pairs.  The fractional observability 

figures for Q„ at levels 1, 2 and 3 are: 

level 1   fract OBS(Q„) = J = 0 
z     o 

level 2   fract OBS(Q2) =^= j 

level 3   fract OBS(Q2) = (?*4)2
+*2

±Q   
4 = jg 

Although node 10 is terminal, it still contributes to 

the totals at the third level.  The number of elements 

at the j-th level is 2g * 2 J, where j = level, N = num- 

ber of input leads and q = number of state variables. 

Currently the fractional observability tree figures are 

compared to TM figures that have TFN's equal to the level 

of the tree.  For example, if 

0BS(Q±) = {|,2} 
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then we compare this to the tree figure from level 2. 

A major problem still exists with the observability 

tree.  The algorithm has no provision for terminating 

the tree.  While it is true that some branches will be- 

come terminal, it is not true in general that all the 

branches will become terminal.  One idea would be to 

terminate the tree when either all the branches become 

terminal, or if the fractional observability figure 

converges.  That the figures will converge has not been 

proven, nor do we have significant data in this area. 
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Chapter 4 

Algorithm Performance 

4.0  Introduction 

In this chapter we present the strong and weak 

points of the TM.  The discussion concentrates on the 

major aspects of the algorithm's performance.  The 

chapter begins with a proof of the exactness of the TM 

figures for fanout-tree combinational circuits.  The TM 

is also shown to be exact for feedback free and fanout- 

free shift register circuits implemented with D flip- 

flops, i.e., shift registers which have only serial-in 

serial-out.  Observability calculations for stem fanout 

leads are shown to be the weakest area of the TM calcu- 

lations.  This is shown to be especially true for the 

primary inputs in multi-leveled parity trees.  An al- 

ternate method of calculating the observability figures 

is presented and shown to be not much of an improvement 

over our original method.  We close the chapter with 

some remarks about the TM calculations for redundant 

circuits. 
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4.1 Exactness of the TM For Fanout-Free Combinational 

Circuits 

The TFN's for fanout-free combinational circuits 

are always exact and can be proven by the following 

simple argument.  Because these circuits are not clocked, 

we need not wait a clock period (gate delays are ignored) 

to control or observe any of the circuit nodes.  Thus 

the TFN's for each and every node in a combinational 

circuit are zero.  By definition in the TM, all primary 

inputs have TFN =0.  As defined in Chapter 2, the 

operations used for TFN calculations in fanout-free com- 

binational circuits are max, min and equivalence.  Thus 

it is obvious that all the TFN's in these types of cir- 

cuits will always be equal to zero. 

The remainder of this section is devoted to proving 

the exactness of the fractional controllability and ob- 

servability figures.  For the rest of this section only 

whenever we write C , C , or OBS(x), we are referring to 

the fractional one-and zero-controllabilities, and the 

fractional observabilities of lead x respectively. 

We continue the discussion with a theorem concern- 

ing controllability calculations for inverters. 

Theorem #1:  For an i-th level inverter if the input 

controllability figure is exact then the TM output 
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controllability will  also be  exact. 

Proof: Using Fig.   2-7   the  TM dictates 

C^  =  C° (3-la) 

and C°   =  C^ (3-lb) 

For an inverter to have a one (zero) at the output, 

there must be a zero (one) at the input.  All input 

zero (one) vectors, that is all primary input combina- 

tions which yield a zero (one) on lead 1, will generate 

a one (zero) at the output, i.e., lead 2.  Hence the 

fraction of input zero (one) vectors equals the frac- 

tion of output one (zero) vectors.  Thus from Eqs. (3-la) 

and (3-lb) if the input controllability is exact, then 

the output controllability will be exact. 

To prove that the TM is exact for And and Or gates 

we first need to show that the one (zero)-controllability 

figures are actually a probability measure. 

Theorem #2:  For any lead x, in a fanout-free combina- 

tional circuit the TM one-and zero-controllabilities of 

lead x constitute a probability measure. 

Proof:   "A probability measure on the sample space ft 

is a function of subsets of ft satisfying three axioms: 

(i)  For every set A c ft, the value of the function is 

a non-negative number, P(A) > 0. 
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(ii) For any two disjoint sets A and B, the value of 

the function for their union A + B is equal to the sum 

of its value for A and its value for B, P(A+B) = P (A) + 

P(B) for A • B = 0. 

(iii)The value of the function for ft (as a subset) is 

equal to 1, P(ft) = H'5 

In our sample space, ft, there are only two events.  Let 

us denote then as A and B, where 

A = lead x is at logic zero, 

and      B = lead x is at logic one. 

We define 

P(A) = C° (4-1) 

and       P(B) = C1 (4-2) 

Recall that for fanout-free combinational circuits we 

work from Eqs. (2-3), (2-10) and (2-15).  Note that 

Eq. (2-10) is simply the multiplication of the zero- 

controllability figures put in terms of the one-control- 

labilities.  We also set all primary input controllabil- 

ities to 1/2.  Because we always either multiply control- 

labilities or use equality the gate output controllabil- 

ities, and all leads, everywhere will always be in the 

5 Kai Lai Chung, Elementary Probability Theory 
With Stochastic Processes (New York:  Sringer-Verlag, 
1979), pp. 23-4. 
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range [0,1].  Hence axiom (i) is satisfied.  It is intu- 

itively obvious that A and B are complements.  This also 

implies that these events are mutually exclusive, that 

is 

A fl B = 0. 

Also the union of A and B comprise the entire sample 

space Q.     Thus 

A U B = Q 

or       P(AUB) = P(ft) 

where we have used standard probability notation.  That 

lead x will be logic one or zero is a certainty (note 

that the algorithm considers only fault-free digital 

operation).  Therefore 

P(AUB) = P(ft) = 1. 

Using the TM property that the zero- and one-control- 

labilities always sum to one and Equations (4-1) and 

(4-2) we obtain 

P(AUB) = P(ft) = 1 = C1 + C1 = P(A) + P(B). 

Thus axioms (ii) and (iii) are satisfied.  Q.E.D. 

The next theorem states that the TM is exact at any 

level i, provided the controllabilities are exact at the 
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i-1 level. 

Theorem #3:  For an i-th level n-input And or Or gate 

in a tree circuit if the input controllabilities are 

exact then the output controllabilities will be exact. 

Proof;    In Fig. 4-1 let 

X = The event lead x is a one (zero) for an 

i-th level And (Or) gate. 

A = The event lead 1 is a one (zero) for an 

i-th level And (Or) gate. 

B = The event lead 2 is a one (zero) for an 

i-th level And (Or) gate. 

N = The event lead n is a one (zero) for an 

i-th level And (Or) gate. 

1 
2 
3 

Figure 4-1 n > 2, i-th Level And (Or) Gate. 
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Now we know 

P(X) = P(ABC. . .N) 

Since the network is fan-out free, the inputs to the 

i-th level gate are all functions of different primary 

inputs.  This means that each input is an independent 

variable, or event.  Thus for independent events 

P(X) = P(ABC. . .N) 

= P(A) * P(B) * P(C) . . . *P(N) 

Using Theorem #2 this becomes 

P(X) = Ca = P(A) * P(B) * P(C) ... * P(N) 

= C° * C2 * C^ ... * C^ (4-3) 

1 for an And gate 
where    a = { 

0 for an Or gate 

Equation (4-3) is equivalent to Eq. (2-3a) for the And 

gate and to (2-10a) for the Or gate.  Thus if the input 

controllabilities of an i-th level gate are exact, then 

the output controllabilities will be exact. 

Theorem #3 is now expanded to include Nand and Nor 

gates. 

Corollary #1;  For an i-th level n-input Nand or Nor 

gate in a tree, if the input controllabilities are 
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exact, then the output controllabilities will be exact. 

Proof;    In Fig. 4-2 we decompose the n-input Nand 

(Nor) gate into an n-input And (Or) gate and an inverter. 

By Theorem #3 we know that the controllability figure 

for lead x will be exact if the input figures are exact. 

From Theorem #1 we know that the figure for lead x will 

be exact if the figure for lead x is exact.  Q.E.D. 

1 
2 
3 

n 

Figure 4-2 n _> 2, i-th Level Decomposed Nand (Nor) 

Gate. 

We are now ready to show that the controllability 

figures are always exact in combinational circuits with 

no fanout. 

Theorem #4:  The controllability measure is exact for 

all leads in a fanout free combinational network. 

Proof;   By definition the controllability values for 

the primary inputs are exact.  Since the circuit is fan- 

out free, each input of every first-level gate is a 

primary input.  Hence these first-level gates all have 
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exact inputs.  Thus by Theorem #3 all the outputs of 

the first-level gates are exact.  Now each input of all 

the second-level gates is either a first-level gate out- 

put or a primary input.  So all of these second-level 

inputs are exact.  Hence by Theorem #3 all the second- 

level outputs are exact.  The third-level gates all 

have inputs which are either second-level outputs, 

first-level outputs, or primary inputs.  Since all of 

these inputs are exact, Theorem #3 tells us that all 

the third-level outputs will be exact.  The next level's 

outputs will be exact, from Theorem #3, because this 

level has inputs from preceding levels which were shown 

to be exact.  Thus each succeeding level will have exact 

output controllability figures because the figures for 

all preceding levels are exact.  Q.E.D. 

To complete the proof of the exactness of the TM 

we must show that the observability figures are exact. 

The following theorem states that if the observability 

of the output lead of an i-th level gate is exact, then 

the input lead observability figues are also exact. 

Theorem #5:  For an i-th level And, Or, or Inverter, if 

the output lead's observability figure is exact, then 

the input observability figures are exact. 

Proof:    Refer to Fig. 4-1.  In this figure n = 1 for 

an inverter.  The inverter observability equation, 
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Eq. (2-39), proof is obvious. To prove the exactness 

for And (Or) gates, we will use the event definitions 

in the proof of Theorem #3.  In addition we define: 

X = The event lead x is observable. 

A = The event lead 1 is observable. 

8 = The event lead 2 is observable. 

N  = The event lead n is observable. 

To observe input lead 1 the output lead, x, must be ob- 

servable and 2 thru n must be set to a one (zero) for 

an And (Or) gate.  In terms of probability, this trans- 

lates to 

P(A) = P(XABC. . .N) 

Because the network is fanout free the action of con- 

trolling leads 2 thru n to a one (zero) does not affect 

the ability to observe leads x or 1.  Thus the events 

X,A,B...N are independent and the above equation becomes 

P(A) = P(X) * P(A) * P(B) ... * P(N) 

Using Theorem #2 this becomes 
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P(A) = P(X) * c" * C" ... Ca i i n 

1 for an And gate 
where    a = { 

0 for an Or gate 

Next we let 

0BS(1) = P(A) 

OBS(x) = P(X) 

and obtain 

0BS(1) = OBS(X) * C" * c" . . . * CQ    (4-4) z 3 n 

This equation is identical to Eqs. (2-35a) for And gates 

and (2-38a) for Or gates.  That this can be shown to be 

true for leads 2 thru n should be obvious.  Thus the 

TM's input observability figures will be exact if the 

output lead's observability is exact. 

It is now possible, with the aid of Theorem #5, to 

show that the TM observability figures are exact for 

every lead in a combinational circuit that has no fanout. 

Theorem #6:  The observability measure is exact for all 

leads in a fanout free combinational network. 

Proof;   The last, n-th, level in the circuit is at a 

gate which has as its output lead the primary output of 

the entire network.  By definition this lead has an 
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observability of one.  This figure is exact because a 

primary output is always observable.  The inputs to this 

gate, at the n-th level, have observability figures 

which are known to be exact by Theorem #5.  Gates at 

level n-1 feed into the inputs of the gate at level n. 

Thus the observabilities of the output leads at level 

n-1 are exact.  By Theorem #5 we know that all the in- 

puts to the gates at the n-th-1 level have exact ob- 

servabilities.  It is now obvious that we can work our 

way back, level by level, to the primary inputs at the 

first level and state that the primary inputs have 

exact observability figures.  Q.E.D. 

4.2 Exactness of the TM For Feedback Free Shift 

Register Circuits 

The Testability Measure produces exact results for 

a special class of sequential networks.  This special 

class contains shift register circuits made from D flip- 

flops which do not have fanout or feedback loops.  The 

TM fractional controllability, fractional observability 

and observability TFN's for this class of circuits 

exactly match our benchmark figures.  Although these 

results are not exact in the conventional sense, we will 

show that they do exactly match our intuitive ideas 
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about shift register operation. 

Figure 4-3 shows an N-stage shift register consist- 

ing of only D flip-flops.  In this circuit node N is the 

primary output, z, and x is the primary input.  There is 

no feedback in this circuit and except for the clock 

lines, there is no fanout either. 

clock 

Ul^l 
1 

D2Q2 

>   Q2 

2 
DiQi 
>Qi 

l 
DNQN 

Q N 

N 

Figure 4-3  D Flip-Flop N-Stage Shift Register. 

Theorem #7:  The TM fractional controllability figure 

for lead i in an arbitrary length shift register made 

from D flip-flops is equal to the corresponding bench- 

mark figure. 

Proof:    From Eq. (2-25) and the circuit configuration 

in Fig. 4-3 it is obvious that the fractional one- and 

zero-controllability of lead i, for all i, 1 _< i <_  N, 

is equal of 1/2.  Because the shift register has N 

N stages, there are 2  states in thxs machine.  The next 

state vector is composed of the left most N-l bits from 

the initial state, and the input bit.  Let us call the N-l 

bits from the initial state the core bits, or core for short. 
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Now it is obvious that there are 2   different cores 

N which occur twice among the 2  states.  Each core has 

two distinct successors in the modified synchronizing 

tree.  Hence at level one each core appears four times 

and each state appears twice.  At the second level each 

core appears eight times while each state appears four 

times.  Therefore at level j in the modified synchro- 

nizing tree, for input sequences of length j, each of 

the 2  states appears 2^   times, and there are 2-1 paths 

in the tree.  Thus at level j each state has probability 

1/2N * (1/2^) * 21* = 1/2N 

assuming each state and path are equally likely.  For 

any lead i in the shift register it is intuitively ob- 

vious that there are 2   members, or states in the 

one-controllability set and 2 ~ members in the zero- 

controllability set.  Thus by the procedure in Section 

3-2, the benchmark fractional one (zero)-controllability 

for lead i is 

2N_1 * (1/2N) * 2j * (1/2^) = 1/2 

Q.E.D. 

That the fractional one (zero)-controllability is 

1/2 for all leads in a shift register made from D flip- 

flops should come as no surprise.  This fact matches 
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our intuitive ideas about this circuit.  Since we can 

control any flip-flop output only by shifting data in 

from the x input, flip-flop controllability is equal to 

the x input's controllability.  And because the x input 

is a primary input, its one (zero)-controllability is 

equal to 1/2. 

The observability of lead N, the primary output in 

Fig. 4-3, is given by 

OBS(QN) = {1,0}. 

From Eq. (2-45b) we have 

OBS(QN_1) = {1,1}. 

Working back towards the primary input by (2-45b) we 

have 

OBS(QN_2) = {1,2} 

OBS(Q±)   = U,N-i} (4-5) 

OBS(Q1)   = {1,N} 

OBS(x)    = {1,N+1} 

Using our distinguishing tree analysis we claim that 

for Q. we have 
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OBS(Q.) = {l,N-i+l} (4-6) 

where N-i+1 is the length of the input sequence you must 

apply to be able to observe node Q..  Before we can 

prove the validity of Eq. (4-6) we first need the fol- 

lowing theorem. 

Theorem #8;  For an N stage shift register there are 2 

state vectors, and exactly one way to form the 2   unit 

distant state pairs for node Q.. 

Proof:    Each stage may store either a zero or a one. 

Thus by the fundamental counting rule the number of state 

codes, or vectors, for N stages is 

,2 * 2 * ... * 2= 2N. 

N terms 

Consider one state vector, j, out of the 2  total vec- 

tors.  A unit distant state pair including vector j, to 

observe lead Q., necessitates finding another vector, 

k, which has a complementary value in the i-th bit. 

Now for vectors j and k to also be unit distant they 

must have identical values in the remaining N-l bits. 

Thus there is only one way to pick k, and only one way 

to pair off the 2  vectors.  In Theorem #9 we prove the 

validity of Eq. (4-6). 
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Theorem #9:  For an N stage shift register the distin- 

guishing tree analysis gives the observability of node 

Q. as 
1 

OBS(Q.) = {l,N-i+l}. 

In other words, all sequences of length N-i+1 will split 

all the state pairs and allow you to observe node Q.. 

N-l Proof:   The 2   state pairs represent all of the pos- 

sible unit distant ambiguities concerning the i-th flip- 

flop in the shift register.  The crux of the problem is 

to resolve these ambiguities.  The only way to do this 

is via some input sequence which yields different out- 

puts for each state vector in each of the state pairs. 

Now since each state pair, from Theorem #8, is different 

only in the i-th bit, we must shift this bit to the 

output where it can be observed.  Thus we must shift 

thru N-i stages until the i-th bit is stored in the 

N-th stage.  Because we are dealing with a Mealy machine 

we need one additional input to observe the output. 

Hence the required sequence length is N-i+1.  Whether 

we shift in a zero or a one will not alter the outputs 

observed while the sequence of length N-i+1 is applied 

to the input.  Thus we don't care which input value is 

selected, as long as N-i+1 values are applied to the 

input.  Therefore all sequences of length N-i+1 are 

79 



usable to split the state pairs and to observe lead i, 

or node Q..  Q.E.D. 
1 

It should be obvious to the reader that Eqs. (4-5) 

and (4-6) are almost identical.  The TM results are dif- 

ferent from the benchmark results only in the TFN.  Re- 

call that the TM assigns a value of zero to the TFN of 

the primary output, whereas in the distinguishing tree 

analysis we need an input sequence of length 1 to ob- 

serve the output.  The TM does not take into account 

the fact that a shift register is a Mealy machine and 

that a time frame is needed to observe the primary out- 

put.  In the TM we assumed that the primary output was 

readily available.  Thus the testability measure TFN's 

will always differ from the benchmark TFN's by one. 

4.3  Observability of Stem Fanout Leads 

Lead x in Fig. 2-15 is a stem fanout lead.  The TM 

fractional observability figures for these leads fre- 

quently turn out poorly.  As will be shown later in 

this section these figures are poor for a large, impor- 

tant class of circuits.  Figure 4-4 shows a plot of the 

fractional observability error for stem fanout nodes in 

combinational circuits.  This plot contains results 

taken from 33 nodes in 13 example circuits.  The error 
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is plotted as a bar graph in terms of the number of 

nodes with a given error in vectors.  The error in vec- 

tors is calculated using Eq. (4-7). 

Error = |A - B| * 2N (4-7) 

where    A = the TM fractional observability 

B = the Boolean difference fractional ob- 

servability 

N = the number of primary inputs 

One of the main objectives of this thesis is to 

create a testability measure which has meaningful re- 

sults.  To accomplish this the results should closely 

approximate the exact figures.  Figure 4-4 shows that 

this objective is not always reached.  The plot has far 

too many results with errors greater than two vectors; 

nor are there any results with zero error.  It was hoped 

that there would be almost no nodes with errors of three 

or more vectors.  These erroneous results are very dis- 

couraging. 

There exists a large important class of circuits, 

parity trees, for which the fractional observability 

figures are poor.  The parity tree is made from exclu- 

sive-Or gates which in turn are made from two inverters, 

two And gates and an Or gate.  The exclusive-Or gate 
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configuration is called a cell and is shown in Fig. 4-5. 

Note that the cell in Fig. 4-5 has two levels, and a 

parity tree with two cells has four levels.  As more 

levels are added to the tree, the TM fractional observ- 

ability figures for the primary inputs (the stem fanout 

leads) worsen. 

A 

B 

Figure 4-5  Two Input Exclusive-Or Cell, 

No. of TM Fractional 

Levels/Cells Observability 

2/1 0.750 

4/2 0.563 

6/3 0.422 

8/4 0.316 

10/5 0.237 

Table 4-1 
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Table 4-1 shows how the TM fractional observability 

figures for the primary inputs are affected by increas- 

ing the number of levels in the parity tree.  The exact 

fractional observability of all'stem fanout leads, as 

calculated by the Boolean difference, in a parity tree 

is one.  Note how quickly the TM figures deteriorate. 

In a one-cell tree the error is one vector, while in a 

five-cell tree it is 48.8 vectors 1  This class of cir- 

cuits clearly shows how inadequate the TM is for calcu- 

lating the observability of stem fanout leads. 

4.4  New TM Observability Calculations 

The generally disappointing performance of the TM 

observability calculations prompted an attempt to improve 

upon these calculations.  One of the more promising 

ideas appears in Eqs. (4-8) and (4-9); Figs. 2-12a and 

2-13a, respectively, must be referenced to understand 

these equations.  The advantages 

for an m-input And gate: 

OBS(a) = {d * "-, max(A,N,D)} (4-8) 
3. 

where    1 <_ a <_  m  OBS (n) = {d,D} 

C* = {n,N}  C* = {a,A} 
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for  an m-input Or gate: 

OBS(a)   =   {d  *  ^"-,   max(A,N,D)} (4-9) x-a 

where    1 <  a  <  m  OBS(n) = {d,D} 

C° = {l-n,W}  C° = {l-a,A} 

of this idea are that no new controllability figures 

must be calculated and the m-input gate does not have to 

be decomposed.  Thus this idea is simpler and quicker to 

use.  Note that in the degenerate case, i.e., all m-in- 

puts are independent, Eqs. (4-8) and (4-9) become Eqs. 

(2-35a) and (2-38a), respectively. 

The investigation of the accuracy of these equations 

involved reworking our previous example circuits.  In 

the examples the error, on the average, worsened by 0.6 

vectors.  This small decrease in accuracy is the price 

paid for the large simplification of the TM observability 

calculations.  Unfortunately Eqs. (4-8) and (4-9) suffer 

from the same drawbacks that plaques our original mode 

of calculation.  The new equations perform poorly for 

fanout nodes and especially poorly for parity trees. 

Table 4-2 shows the TM fractional observability results 

for a multi-level parity tree uisng the cell in Fig. 4-5. 

The results of Table 4-2 clearly contain larger errors 
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than the corresponding results in Table 4-1, 

No. of TM Fractional 

Cells/Level Observability 

2/1 0.667 

4/2 0.444 

6/3 0.296 

8/4 0.198 

10/5 0.132 

Table 4-2 

4.5 TM Calculations For Redundant Circuits 

In the course of investigating this algorithm it 

was discovered that the TM figures for redundant leads 

were sometimes poor.  Although this area was not exten- 

sively explored, in some of the examples which had re- 

dundant leads the observability results contained siz- 

able errors.  We have included two such example circuits 

along with their respective TM and exact results in the 

Appendix.  The first example contains a redundant And 

gate and a redundant primary input.  The errors in this 

circuit are quite reasonable.  But in the next example 

the figures contain huge errors.  The worst error, 7 

vectors, occurs at node eh.  This error occurs because 
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the  TM does  not take  redundancy into  account.     Thus  it 

is possible   for  these  types  of circuits  to  cause  the  TM 

to  generate  highly  erroneous  results. 
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Chapter 5 

Conclusions 

This thesis contains the current status of an 

algorithm which measures how testable a given circuit 

is.  Combinational and clocked sequential circuits with 

single outputs and no redundancy are the types of net- 

works that the TM operates on.  Redundant networks are 

not allowed because they can produce highly erroneous 

figures.  The permissible circuit elements include And, 

Or, Nand and Nor gates, Inverters, D flip-flops and JK 

flip-flops.  The flip-flops are not permitted to con- 

tain clear and preset inputs.  RS flip-flops were in- 

completely studied. 

Our algorithm meets the objectives which have been 

specified as essential characteristics of a testability 

measure.  The TM is easier to compute than the test 

set.  In combinational networks one way of finding the 

test set for stuck-at faults necessitates finding solu- 

tions 

x* • df/dx = 1 (5-1) 

r 
to Eq. (5-1)  for each node in the circuit.  This can 

be a very long and tedious process and can be much more 

6  Kohavi, op. cit., 228-234. 
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time consuming than the TM calculations.  Test-set 

generation in sequential circuits is even longer and more 

complex than the corresponding calculations for combina- 

7 tional circuxts.   Although the TM figures indicate test- 

ing difficulty, another objective of ours, there is no 

single comprehensive figure.  Testing difficulty of a 

node is currently indicated by controllability and ob- 

servability figures which have small fractional values 

and large TFN's.  It is a matter of judgement as to 

what a "poor" TFN is, since no comparison criteria has 

been established.  But since the TM figures are mean- 

ingful, and not simply numbers, discerning testing dif- 

ficulty, or ease, is not impossible. 

Ease of TM figure computation and meaningful results 

are two important features of our algorithm.  The frac- 

tional controllability and fractional observability fig- 

ures are fractions between zero and one which represent 

the portion of vectors that can be used to control or 

observe a given node.  Controllability and observability 

TFN's represent the number of time frames or clock 

periods that must pass before a given node can be con- 

trolled or observed.  Another strength of the algorithm 

is the ability to compare the TM figures to benchmark 

7  Ibid., 449-470, 476-491, 
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figures, making it possible to check on the accuracy of 

the TM figures.  Exact TM figures are obtained for fan- 

out free combinational networks and for feedback-free 

shift registers made from D flip-flops.  Thus our algo- 

rithm performs well on simple network structures. 

Even though the TM has many strong points, it is 

not without its weak points.  The fractional observ- 

ability figures for stem fanout leads are one such weak 

point because they frequently contain large errors. 

The largest errors are found in parity tree networks. 

As more levels are added to the tree, the error in the 

fractional observability figures increases.  This error 

becomes unacceptably large very quickly, at the third 

level (see Table 4-1). 

This algorithm is not complete and consequently 

there are some areas which need additional research. 

The TM can only be used in conjunction with single out- 

put networks.  Refinements should be made on the TM to 

enable it to be used on multiple output circuits, since 

the majority of actual circuits are of this type.  Con- 

trollability TFN calculations in sequential networks 

also needs more work.  The TM should be altered to pro- 

duce controllability TFN's which are exact for feed- 

back-free shift register networks.  Although we have 

formulated observability equations for JK flip-flops, 
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they have not been studied.  In addition to studying 

these equations, new equations should be formulated to 

calculate the observability of RS flip-flops.  The 

benchmark calculations for sequential circuits, while 

a useful addition to the algorithm, also need additional 

research.  Currently there is no way to terminate the 

controllability and observability trees.  If we could 

terminate these trees, then we could generate converged 

benchmark figures.  There are also no benchmark figures 

for controllability TFN's and for non-Q nodes in a se- 

quential circuit.  And finally the poor results for the 

fractional observability of stem fanout nodes demon- 

strates that this portion of the TM must be reformulated. 

TM calculations are currently done by hand.  This 

is adequate for SSI and MSI circuits but not for LSI and 

VLSI size circuits.  TM calculations for large networks 

should be done on a computer.  To do this necessitates 

translating the contents of Chapters 1 and 2 into a 

computer program which can work from a circuit diagram 

as its input.  Thus we must also automate the circuit 

diagram.  The best way to automate the algorithm is to 

generate TM equations on the first pass through the 

network, then loop through the equations as many times 

as is needed.  This procedure should yield the most ef- 

ficient computerized version of the TM. 
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Appendix 

Redundant circuit example #1.  F = AB + ABC 

Figure A-l  Circuit Example #1, 

Summary of Results 

Ckt TM Exact Errors(absolute) 

Node c1 OBS C1  ! OBS C1^} OBS 

output F 1/4 1 1/4 i  1 i 

lead a 1/4 7/8 1/4 j 7/8 i 

lead b 1/8 3/4 1/8 j 3/4 ! 

input A 1/2 5/8 1/2 i 1/2 i 1/8 = 1 vector 

input B 1/2 5/8 1/2  i 1/2 -  j 1/8 

input C 1/2 3/16 1/2  j  0 J  3/16=1.5 vectors 

one vector = 1/8 
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Redundant circuit example #2. 

F = (ABC + CD + (BD+CD)) + (ABC) + (BD+CD) 

A 
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Figure A-2  Circuit Example #2, 
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Summary of Results 

U3 
en 

ckt TM Exact Errors 

Node c1 OBS c1 OBS C1   ■ 

output F 0.452 1 0.563 1 0.110 i 

lead a 0.125 0.615 0.125 0.563 1 

lead b 0.385 0.553 0.438 0.5 0.053 J 

lead cf 0.344 0.941 0.375 0.563 0.031 j 

lead d 0.125 0.363 0.125 0.5 I 

lead g 0.25 0.706 0.25 0.563 | 

lead eh 0.25 1 0.25 0.563 j 

input A 0.5 0.244 0.5 0.375 i 

input B 0.5 0.444 0.5 0.375 | 

input C 0.5 0.591 0.5 0.375 - 

input D 0.5 0.853 0.5 0.625 - 

OBS 

- 

0 053 = 0 84 vectors 

0. 053 

0 379 = 6. 06 vectors 

0 137 = 2. 2 vectors 

0 144 = 2 3 vectors 

0 438 = 7 vectors 

! o 131 = 2 1 vectors 

i o 069 = 1 1 vectors 

i 0 216 = 3 45 vectors 

! o 228 = 3 65 vectors 

one vector =  1/16  =  0.06 3 
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