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ABSTRACT 

The theory of formally real fields was introduced 

by Artin and Schreier in 1926.  Artin and Schreier noticed 

that in the field of real numbers the only relation of 
n 2 the form E . = 0 is the trivial one 0+0+...+0; this 
1 x 

observation led Artin and Schreier to call any such 

field formally real. 

In this thesis I consider the development of the 

theory of formally real fields from its beginning in 

1926 up to the results of Tarski.  I treat its applica- 

tion to the solution of Hilbert's 17th problem (which 

was solved by Artin using the theory) and to the solu- 

tion in a real closed field of a system of equations, 

inequations and inequalities in several variables. 



INTRODUCTION 

In this thesis I consider the theory of formally 

real fields developed by Artin and Schreier in 1926. 

Artin and Schreier noticed that the only relations of 
n 2 

the form £ a.  =0 in the field of real numbers are the 
1 

trivial ones 0+0+...+0 = 0; this observation led them to 

call any field with this property "formally real."  The 

formally real fields were characterized by the fact that 

-1 is not a sum of squares of elements in the field.  The 

deeper properties of formally real fields concern real 

closed fields which are the formally real fields maximal 

in their algebraic closure.  Real closed fields were 

characterized by Artin and Schreier as those fields of 

finite degree under their algebraic closure; this degree 

is 2 and the algebraic closure can be obtained by the 

adjunction of /^T. 

If F is a real closed field, then it can be ordered, 

the positive elements being the squares in F.  Any for- 

mally real field can be ordered since it can be imbedded 

in a real closure.  The classical application of the 

Artin-Schreier theory is to the problem of determining 

which elements of a given field are representable as sums 

of squares of elements of that field.  For finite alge- 

braic extensions of the  rationals the problem has a 

simple solution which is due to Hilbert and Landau.  The 
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solution says that if K is a finite-dimensional exten- 

sion field of the rationals and if f,,f„,...,f  (r>0) 

are the different isomorphisms of K/Q into the field of 

algebraic numbers, then an element a f  0 of K is a sum 

of squares in K if and only if f.(a) > 0 for i = 

l,2,...,r.  The theory of formally real fields led 

Artin and Schreier to the solution of Hilbert's 17th 

problem, which says that if Q is a rational function of 

n variables with rational coefficients such that 

Q(x-j , . . .x ) _> 0 for all real (x-, , . . . ,x ) for which Q is 

defined, then Q is necessarily a sum of squares of 

rational functions with rational coefficients. 

After Artin came Abraham Robinson.  He gave another 

derivation of Artin's main theorems and obtained various 

improvements and generalizations of Artin's results in 

1955. 

The most important development of the theory of 

formally real fields subsequent to the original work of 

Artin and Schreier is the metamathematical principle 

due to Tarski which asserts that any elementary statement 

of algebra which is valid for one real closed field is 

valid for every real closed field.  This is based on an 

algorithm for deciding the solvability in a real closed 

field of a finite system of polynomial equations and 

inequalities with rational coefficients, such a decision 

method was given originally by Tarski.  We are including 
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an alternative one due to Seidenberg. 

In my thesis I introduce the theory of formally real 

fields starting in §1 with ordered fields, formally real 

fields, and the characterization that F is formally real 

if and only if -1 is not a sum of squares in F.  In §2 

I introduce real closed fields developing their properties. 

In §3 I introduce a classical result, Sturm's theorem. 

Before Sturm's theorem was known there were several ways 

to estimate the roots of an equation f(x) = 0, but the 

question of finding the exact number of real roots was 

open and it was not until 1836 that this question was 

solved completely by Sturm (his solution was announced in 

1829 and was first published in 1835).  In §3 we derive 

Sturm's theorem following rather closely Weber's exposi- 

tion in his Lehrbuch der Algebra (1898) Vol. 1, pp. 301- 

313.  In §4 and §5 we shall consider the theorem on the 

existence of formally real fields and of real closed al- 

gebraic extensions of given formally real field.  We 

conclude that a field can be ordered if and only if it is 

formally real.  In §6 we consider the real algebraic num- 

bers which are the real closure of the rationals.  We 

give a proof of the theorem on the number of distinct or- 

dering of a finite-dimensional extension of the rationals 

and we apply this theorem to obtain the theorem of Hilbert 

and Landau which gives a necessary and sufficient condi- 
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tion that an element of this field is a sum. of squares of 

elements of the field.  In §7 we consider the positive 

definite rational functions and give Artin's theorem which 

solves Hilbert's 17th Problem.  In §8 we shall show that 

we can obtain a version of Sturm's theorem for any equa- 

tion whose coefficients are parameters that take on values 

in a real closed field.  This will be based on a para- 

metrized version of the Euclidean algorithm for deter- 

mining the greatest common division of polynomials.  In 

§9 we consider the theory of elimination of variables in 

systems of equations and inequations with coefficients 

in any field, and in the last section, §10, we give a 

method due to Seidenberg for deciding the solvability 

of f(x,y) = 0 in a real closed field and an extension of 

the decision procedure for f(x,y) = 0 restricted by 

g(x) t  0. 



1.  Ordered Fields and Formally Real Fields 

Definition 1.1.   An ordered field is a field F together 

with a subset P such that we have the following:  (i) 

O^P; (ii) if xeF then either xeP or x=0 or   -xeP; and, 

finally, (iii) P is closed under addition and multipli- 

cation (i.e. x.yeP-^xyeP and x+yeP). 

Remarks:  (i)  Since any field contains at least two 

elements we have that P^ <)>.  (ii)  If we define N = 

{-x/xeP} then from (ii) above if xeF then xeP or x=0 

or xeN and PflN=cf> (if xePnN then -xePnN so x+(-x) = OeP, 

a contradiction).  Also, Ofj:N so F is the disjoint union 

of N,{0}, P. (iii)  We can define an order relation in 

the ordered field (F,P) as follows:  a>b if a-beP.  Then 

for any x,yeF we have that one and only one of the fol- 

lowing holds:  either x>y or x=y or y>x, where x-yeP 

or x-y=0 or -(x-y) = y-xeP, respectively.  We note also 

that the relation (>) in any ordered field (F,P) satisfies 

the following properties: 

(1) x>0 => x_1>0. 

(2) x>y r^x+z > y+z for every zeF. 

(3) x>y =»>xz > yz for every zeP. 

(4) x>y r=J> -y > -x 

(5) x>y, y>z =f>x>z where x,y,z F. 

(6) xeF.x^O =£-x2eP. 

(7) x>y>0 =^ y~1>x"1>0. 



Proof: 

(1) Otherwise x <0 and -x  >0, which implies that 

(x)(-x~ ) = -1>0, a contradiction with (6) below. 

(2) This follows from (x+z)-(y+z) = x-y>0 

(3) This follows from xz-yz = z(x-y)>0 since z> 0 and 

x-y>0. 

(4) _y_(_x) = x-y>0 so -y>-x. 

(5) Since x-y>0,y-z>0, then x-z = (x-y)+(y-z)>0. 
2 

(6) xeF, X^O implies x = x*x = (-x)(-x)eP, since either 

xeP or -xeP and P is closed under multiplication. 

(7) If x>y>0, then if x~ >y  this implies that 

x  -y  >0 and since xy>0 so xy(x -y  ) = y-x >0 hence 

y>x, a contradiction. 
o 

Now 1 = 1 >0 by (6) and if we have x-,,...,x not all 
n  ? 2  2 of them are zero,  then £ x.>0, so we conclude 1 +1 +... 

2 1 X 

+1    = l+l+...+l>0. which means that any ordered field 

must be of characteristic zero. 

Note:  If we are given a field F and a relation > on F 

satisfying the following properties: 

(i)  For a.beF then one and only one of the following 

holds:  a>b , a=b, b>a. 

(ii) a>b,b>c implies a>c, a.b.ceF. 

(iii) a>b implies a+ob+c and ad>bd for every c,deF 

and d>0. 

Then by defining PcF by P = {xeF/x>0} we can conclude 

that (F,P) is an ordered field.  Moreover, the relation 
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> defined by this ordered field is the same as the rela- 

tion we started with, and this can be seen by direct 

verification of the conditions in the definition of an 

ordered field. 

If we define |x| = x when x>0 or x=0 and |x| = -x 

otherwise, then we can see that we have the triangle 

inequality |a+b| < |a|+|b| a.beF and |ab| = |a||b| a.beF. 

The proofs are very easy taking into consideration the 

cases a>0,b>0, or a>0,b<0, or a<0,b>_0, or a<0,b<0. 

Note: If (F,P) is an ordered field and F' is a subfield 

of F, then by defining P' = PHF' we have that (F',P') is 

an ordered field.  The ordering of F1 is called the in- 

duced ordering. 

Deductions: 

(1) -1 f  I  x. in any ordered field (F,P) where x.eF 

^2       n 2 otherwise 1 + £ x. = l+(-l) = 0 which contradict what 
1  x    n  2 

we proved before, that  5 x.>0 if not all x. are zero. 

2 In particular -1 f  a where aeF. 

(2) Any ordered field (F,P) is dense in itself, that is 

for every a.beF a<b there exists ceF such that a<c<b (i.e 

a+bs 
C = -rj~) • 

Definition 1.2.  Let (F,P) and (F'.P') be two ordered 

fields.  An order isomorphism is a field isomorphims 

f:  F -* F' such that f(P)d>\ 

From this definition we conclude that if f is an 

order isomorphism then f(P) = P' since if xeN then -xeP 
8 



and f(-x) = -f(x)eP which implies f(N)czN' and, since f 

is bijective, f(P) = P'.  We say that a field F is order- 

able if we can find a subset P of F such that (F,P) 
2 

is an ordered field.  Since in any ordered field -l^a , 

i.e., /^T^F, (f, the field of complex numbers, cannot be 

ordered. 

Examples:  (l)(Veblen)  If F is a field such that -1 is 

not a square in F and the sum of two non-squares in F is 

a non-square, then F can be ordered in one and only one 

way. 

Proof:     If we let  P =  {aeF/a^O  and a is  a square  in F} 

then   (F,P)   is an  ordered field  since 

(i)     OeP by   definition. 

(ii)     Let aeF with  a^O.     Then we must show aeP or 

-aeP. 

If a is  a square in F,   then aeP;   otherwise  -a is  a 

square in F because,   if not,   then a  is not  a  square and 

-a is  not  a  square  implies  a+(-a)   =  0  is   a non-square in 

F,   a  contradiction.     So  either aeP or a=0,   or -aeP. 

(iii)     If  a.beP   then  -b^P  and if   a+b|;P  then   (a+b) + (-b) 
2 =  aeP,   a  contradiction;   also  abeP  since  a=x   , 

b=y2  then ab  =  x2y2  =   (xy)2eP,   so   (F.P)   is 

ordered  field.     This  ordered field is  unique 

since if   (F,P')   is  another ordering  then P=P' 

since  (1)   PcP'   because P  consists  of squares 

and all   squares  are  in P';   (2)   F'<=P because 
9 



if aeP' and a |P then -aePcP' which implies 

a+(-a) = OeP', a contradiction. 

(2) In any ordering of Z, 1,1+1,... all must be 

positive.  Since these numbers and their negatives to- 

gether with 0 exhaust all Z, we see that Z has only its 

natural order.  From this we conclude also the rationale 

Q have only their natural order:  I claim that if T-eQ 
■a a 

then r->0   is  equivalent  to  ab>0  since r->0   implies 
a       2 a 1 (jj) (b )   =  ab>0   and conversely  ab>0  implies  £ =   (ab)(—j)>0. 

b 
Since Z  has but  one  order,   so  does  Q. 

(3) There  are  two orderings   for Q(/2~),   first by 

considering Q(/2~)d R  and giving Q(/2)   the  induced order- 

ing,   and  also by  considering  the  isomorphism <j>:     Q(/2~) 

into R  such that  <J>(a+b/2~)   =  a-b/2* we  can  define  the  second 

order from the  fact  that  the  image  of  <j> is  a subfield of 

R   .     So  a+b/Z is  positive  if  and only if  c|)(a+b/2~)>0  in R 

is  an  order. 

(4) If F is  an  ordered field,   f (x)   = x +a-,x      +. . . 

+an,   and M = max{l, |a-i|+... + |a|},   then   | u| > M implies 

|f(u)|>0.     To prove  this we  see that 

| f (u) |   =   | u +a^u      +. . . an|   ■>   |u|   - | a-^u  ~ +. . .+an| 

>   lur-Cla^lur^+.-. + lal11)... 

(1) 

If M=l, then |u|>M means u = l+k,k>0 then (1) implies 

|f(u)| > (l+k)n-(|ai| (l+k)n+... + |an|(l+k)n) 

= (l+k)n(l-(|a]L| + ... + |an|)>0 

10 



If M =   |a1|+...+|a   |,   then   |u|>M means   |u|   =   |a1|+... 

+ |an|+ I,. U>0) ,   so   (1)   implies   |f(u)|   >   ( | a]_ | +. . .+aj +£)n- 

|a1| + ... + |an|+£)n-1+... + |an|(|a1| + ... + |anl+£)n-1)   = 

(|a1| + ... + |an|+5-)n_1.£>0. 

This property implies that the roots of f(x) in F are 

contained in the interval L-M,M]. 

We know that if (F ,P) is an ordered field and if 

x-i,...,x  eF are not all zero, then T x. ^ 0.  The con- i.     n v  x. 

verse is obvious and we are led to the following defi- 

nition. 

Definition 1.3.   A field F is called formally real if 
n  2 
y x. = 0 implies x. = 0 i = l,...,n. 
k     i      r     l 

Remark:  F is formally real  if -1 is not a sum of squares 

in F. 
n 9 2   n 9 

Proof:  Assume that -1 = I  xT.  Then 1 + I  xf = 0, and 
1 x 1 x 

F is not formally real.  On the other hand, if F is not 

formally real, then there are x, , ...,x e F, not all zero, 

2    2 -12 with x. + . . .x = 0.  Assume x, f  0. If we multiply by (x, ) 
-12      -1  2 (x-, x2) +• • . + (x, x )  = -1.  So -1 is a sum of squares. 

Definition 1.4.  For F any field let E(F) be the set of 

all sums of squares of elements of F. 

We notice that leZ(F) and E(F) is closed under addi- 

tion and multiplication and if ae£(F) then a eE(F) since 

a"1 = (a_1)2'a. 

11 



Thus we can state the previous result for formally 

real fields as:  F is formally real  iff -1 £ £(F). 

Property:  If F is not formally real and not of character- 

istic 2 then £(F) = F. 

Proof:  We can write aeF as a = (^)2 + (-l)(i^)2 since 

-leZ(F) and E(F) is closed under addition and multipli- 

cation. 

Corollary:  In any finite field any element is a sum of 

squares. 

Fact:  If F is a formally real field and t is any trans- 

cendental then F(t) is formally real. 
n     9 

Proof:  If -1 = ) <$>. (t)  where cf).(t)eF(t) then if we 
1  x       n  x    2 

substitute t=l we have -1 =  1   <j>.(l)  which is contradic- 
1  L 

tion of the formal reality of F since <J>.(l)eF. 

2.  Real Closed Fields 

Definition 2.1.  A field F is called real closed if F 

is formally real and no proper algebraic extension of 

F is formally real. 

Theorem 2.1.  Let F be a real closed field then if xeF 

either x is a square in F or -x is a square. 

Proof:  Assume xeF and x is not a square.  Then /xiF and 

F(/x) is proper algebraic extension of F.  So F(/x; is 
n       2 

not formally real.  -1 =  £(a.+b./x)   a.,b.eF or 
n     2 n 1    n     2 n 

-1 =   Y  a.   +2/x    I     a.b.   + x )'  b. .     Now    j  a.b.   =  0 since 
t1 i=lxl I1 ill 

n  «    n  ?        n  9 
otherwise /XEF.  SO -1 = T af + x )' bf ; also, I  b.   f  0 

I  x    I  x        l     x 

12 



v  2 since otherwise -1 = la..     Therefore 
2   2-1 -x = (l+£a.)(Eb.)   and -x££(F) by the properties of 

2(f).  -l££(F) implies x£l(F) since otherwise x~ e£(F) 

and (x )(-x) = -leZ(F), an impossibility.  Therefore 

x£z(F) and we have proved that x not a square implies 

x^E(F) which is equivalent to xeZ(F) implies x is a 

square, we proved x not a square implies -xe£(F), so 

x is a square or -x is a square. 

Theorem 2.2.  Any real closed field can be ordered in one 

and only one way and any automorphism of such a field is 

an order automorphism. 

Proof:  Let P = {x/x is a square in F.x^O} then we can 

check easily that (F,P) is an ordered field since 0£F 

from definition and if xeF'by the last theorem either x 

is a square or -x is a square so xeP or -xeP and finally 

if x,yeP (i.e. squares) then xy eP and x+y eP since if 

x+y £P then -(x+y) is a square and so (-x-y)+(y) = -x 

is a square which is a contradiction since we have as- 

sumed already that x is a square. 

The ordering is unique since if (F,P') is another or- 
o 

der then xeP implies x=a  so xeP' and PcP'.  On the other 

hand, if P'd:P then let xeP',x$P.  Then -x is a square 

so -xeP' and x+(-x) = OeP1, a contradiction so P = P' 

and the ordering is unique. 

13 



Theorem 2.3. Let F be a real closed field then every 

polynomial of odd degree with coefficients in F has a 

root belonging to F. 

Proof:  We use induction.  If n=l the assertion is trivial. 

Assume f(x) is of degree n>l and assume that the theorem 

is true for all polynomials of odd degree <n.  If f(x) is 

reducible than one of its factors has odd degree <n, so 

has a root in F.  If f(x) is irreducible then let K = 

F(9) where f(6) = 0.  Then K is not formally real so -1 = 
n  2 
2  i>-    (6) where <f).(x)eF(x) of degree <n-l and so we have 
1 ri    « n    o 
-1 + f(x)g(x) = £d>. (x)  and since degree of y<j>.(x)  < 

1 l I1    " 
2(n-l) = 2n-2 and degree of f(x) = n which is odd then 

degree g(x)<n and is odd so by induction there exists 

r    2 aeF, such that g(a) = 0 which implies -1 = >(j>.(a) , a 

contradiction So f(x) has a root in F. 

Theorem 2.4.  If F is a real closed field then F (/IT) is 

algebraically closed 

Proof:  We note first that (fcFC/1!) ■+  FC/TT) such that 
4>(a+b/^T) = a-b/-T is an automorphism of F(/^l) and what 

we want to prove is that if f(x)eFC/^T)[X] then f(x) has 
r_  -I 

a root in F(/T).  Now if f(x) = a x +a -, x  +. . . n   n-1 

+a eF(/^T) [ x],   set f (x)   =  a~xn+a    7 n"1+. . .+a~ then o n n-1 o 
(ff)(x)eF(x)   since  f (x) f (x) =b2nx r4-b2n_1x2n-1+. . .+bQ where 

bk =  ak5o+ak-l5l+"-+ao5k 
=   <alLao+aTg.go> + ---H*k+l  V^   if  k is  °dd 

T"    ~2~ 

14 



and bk = (akaQ + akaQ) + ... + (ak ak + ak ak) if k is even. 

2  2~   2  2 

Thus bkeF, and ffeF(x) .  Now if f(x) has a root in 

F(/^T) then also ff has a root and the converse is true 

so it is sufficient to show that if feF[X] then f has a 

root in F (/^T).  First we notice that any element a of 

F(/rT) has a square root in ¥(/^Y) , since if a>0 then 

2 2 a=b , beF since F is real closed and if a<0 then -a=b , 
2 

beF so a^C/TTb) .  Now suppose a = x+iy where i «■ /^l 
2 2  2 then (x+iy) = (c+di)  is equivalent to c -d = x and 

2 
2cd = y.  Since y i=  0 we can multiply x+iy by — which 

has a square root in F(/^T).  Thus we can assume that 

y = 2. 

2  2 -1 So we have c -y = x and cd = 1 or d = c  .  The 

first equation is c -c~  = x so c -xc -1 = 0 or 
/~2   

c2 = x +/x +4 and we notice that x
2+4<o also x+/x2+4<0. 

since otherwise this will give 4<0 which is a contra- 

2 ~~2— diction.     So  c    = %(xf/x +4)   has  a solution in F.     So 

c,d =  c       is   a solution.     This means   that   there  exists no 

E  such  that   [E:F]   = 2,   since  any element  in F has   a 

square root.     Now let f(x)eF[x].     Let E be a splitting 

field of  f(x)   (x +1)  which  contains  F(/^T).     E  is  Galois 

over F.     Let G be  the Galois  group  and   \G\   = 2em where m 

is   odd.      By   Sylow's   theorem G has   a  subgroup  of  order   2   , 

say H.     If K is  the   corresponding subfield of E/F  then 
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we have [E:K] = 2  and [K:F] = m since F has no proper 

odd-dimensional extension since every polynomial of odd 

degree has a root.  So m=l and K=F so [E:F] = 2e this 

implies that G=H and this group is solvable if e>l so 

E contains a subfield L which contains F(/^T) such that 

[L:F(AT)] = 2 but there is no L over F(/^T) such that 

[LiF^/^l)]   =  2  since any element has a square root in 

F(/=T). 

Corollary:  Every polynomial in F[x] where F is real 

closed splits into factors of the first or second degree. 

Using the algebraic closure of F we can prove easily 

some of the facts about continuous and differentiable 

real functions, for example. 

Theorem 2.5.  Let F be a real closed field.  Let f(x) 

eF[x] and let a<b such that f(a)f(b)<0.  Then there 

exists a<c<b such that f(c) = 0. 

Proof:  f(x) = (x-a-j^) (x-a2) • • • (x-ar)g1(x) .. .gg(x) where 

2 2 ci 2 gi(x) = x +cix+di and ci<4di then gi(x) = (x + -£-) 
o 

+%(4d.-cT), so g.(u)>0 for all u.  Now if a,b<ai for 

every i then 

f(a)f(b) = n (a-ai)(b-ai)g.(a)g.(b)>0.  Also if a,b>a. 

for every i, then f(a)f(b)>0.  Therefore there is a, with 

a<a, <b.  But f(a, ) = 0 and the theorem is proved.  If 

define f' (x) = n a x   + (n-l)a  -jx " + . . . + a^ whe 

f(x) = a xn+a ,xn" +...+a then it is easy to see that '   n   n-1        o J 

we 
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for f(x), g(x)eF[x] then (f(x)g(x))' = f'(x)g(x) + 

f(x)g'(x) and we can use induction to prove that if f(x)= 

f1(x)f2(x)...fk(x) the f'(x) = f'(x)f2(x)...fk(x) 

+f1(x)f2(x)...fk(x)+...+f1(x)f2(x)...fk(x). 

Theorem 2.6.  (Rolle's theorem for polynomials)   If 

f(a) = 0 = f(b) and a<b then there is c such that a<b<b 

and f'(c) = 0. 

Proof:  As before, f(x) can be written as 

f(x) = (x-a^ . . . (x-ar) g-j^Cx) . . .gg(x) where gl (x) are ir- 

reducible of degree two.  Then using the formula for the 

derivative we can write f'(x) as 

f'(x) = (x-a2) . . . (x-a Jg^x) . . .gg(x) + . . .+(x-aL) . . . 

(x-a )g, (x) . . .g'(x) .  We can assume that a=a, , b=a 

where SLU^Q   e{a,,...a } and no root of f(x) between a 

and b.  Since g-i(u)>0 for every u then f' (a)f ' (b) >0.  So 

by theorem.2.5 for f'(x) we conclude that there is c 

such that a<c<b with f'(c) = 0. 

Now we can state the converse of theorem 2.4. 

Theorem 2.7:  If F is an ordered field and fO'^I) is 

algebraically closed then F is a real closed field. 

Proof:  We want to show first that -1^:E(F) for this implies 

that F is formally real.  Now, since FC/^TT) is algebrai- 

cally closed the irreducible polynomials in F[x] are of 
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the first or second degree.  Let a.beF arbitrary and con- 

sider g(x) = (x
2-a)+b2 = (x2-a-bi)(x2-a-bi), where i = /=T. 

g(x) = (x-(a+bi)%)(x+(a+bi)%)(x-(a-bi)%)(x+(a-bi)%). 

Since g(x)eF[x] and has no root in F it factors into two 

quadratic factors.  The one divisible by (x-(a+bi)2) 

cannot be (x-(a+bi)2(x+(a+bi)2) for this will imply that 

a+b.eF so it must be either (x-(a+bi)2)(x+(a-bi)2) or 

(x-(a+bi) 2) (x-(a-bi) 2). In both cases this implies that 

(a +b )2eF so the sum of two squares in F is a square in 

F and in general the sum of squares is a square.  Since 

-1 is not a square so -1 is not a sum of squares which 

means that F is formally real.  Any proper algebraic 

extension of F must be isomorphic to FC/^T) so not formal- 

ly real.  This implies that F is a real closed field. 

Remarks.  (1)  Theorems 2.4 and 2.7 give a characteriza- 

tion of real closed fields:  An ordered field is real 

closed if FC/^T) is algebraically closed. 

(2)  There is another characterization of real closed 

fields and this is often given as a definition:  An 

ordered field F is real closed iff (i) positive elements 

of F have square roots in F and (ii) any polynomial with 

odd degree with coefficients in F has a root in F. 

3.  Sturm's Theorem 

The main object of this section is to give a method 

for determining the exact number of roots of a polynomial 
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in a real closed field.  We start with the following de- 

finition. 

Definition 3.1:   Let f(x)eFfx] where F is a real closed 

field, a sequence of polynomials: f (x) = f(x),f-,(x), 

. ,.,f (x) is called a Sturm sequence for f(x) for the 

closed interval [a ,b] if f.(X) 0<i£seF[x] such that 

(1) f (x) has no roots in [a,b]. 

(2) fo(a)fQ(b) *  0. 

(3) If fi(c) = 0 for ce[a,b] then f._1(c)f-+1(c)<0 

0<i<s. 

(4) If f(c) = 0 for ce[a,b] then there exists c,<c 

and c<c? such that f (x)f,(x)<0 for XE[C,,C] and 

fQ(x)f1(x)>0 for xe[c,c2]. 

Definition 3.2:  By the number of variations in sign of 

an r-tuple of non-zero elements {c-. , c« , . . . , c } , of an 

ordered field we mean the number of indices i, l£i£r-l 

such that c.c._|_-,<0. 

If A = {c,....,c } is an arbitrary r-tuple of an 

ordered field then the number of variations in sign of 

A is equal to the number of variations in sign of A1 

obtained by dropping the zero elements.  For example, if 

A = (-2,0,5,10,%,0,-5} then the number of variations in 

sign of A is the same as the number of variations in sign 

of A' = {-2,5,10,%.-5} which is equal to 2. 

Theorem 3.1:  Let f(x) be a polynomial of positive degree 
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with coefficients in a real closed field F.  If f (x) = o 

f(x),f^(x),...,f (x) is a Sturm sequence for f(x) for 

the interval [a,b], then the number of distinct roots of 

f(x) in [a,b] is V -V, , where V is the number of varia- 
3.   D C 

tions in sign of the sequence {f (c) , f, (c) , . . . , f (c)}. 

Proof:  The interval [a,b] is divided into sub-intervals 

by the roots of f.(x), 0<i<s.  If a = x <x-,< . . . <x = b 

are these points, let ce(x , x-,) , so there is no root for 

f. (x),0<j<s in the interval (x , c) .  By the intermediate 

value theorem f.(x )f.(c)>0.  So if none of f.(x ) =0 

then f.(x )f.(c)>0 which means that V  = V .  Now assume 
J  o J xo   c 

k,   0<k<s such that f, (x ) =0 then f. , (x )f, ,,(x )<0 
KO K-lO  K+l  O 

by property (3) of the definition of Sturm's theorem. 

Since fk i and f 1.4.1 have no roots in the interval (x , c) , 

therefore, f
k_i(

x
0)
f
k_;i/

c) >0 anci fk+l^xo^ fk+l^>0 *  This 

implies that fk_]_(c), fk(c) , fk+1(c) , and fk_]_(x ), 0, 

fi .1 (x ) each contributes one variation in sign to V and k+l o °     c 

V  , respectively.  Taking into consideration all k, 0<k<s 
xo 

we conclude that V  = V .  The same argument applies 
xo   c 

if ce(xs_1(xs).  Next let ce(xi_1>xi), de(xi,xi+1). 

(1)  If f(x±) *  0 then 

(i) either f, (x.) ^ 0 0<k<s which implies that f, 

has no roots in the interval (c,d) so f,(c)f,(d) >0, so 

f, (c),f, (d) have the same sign. 

(ii) or f, (x.) = 0 for some 0<k<s so fk_i(
x-:) 

f,+1(x.)<0 which implies that fk_i and fk+i have no roots 
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in [c,d].  So fk_1(c)fk_1(d)>0 and fk+1(c)fk+1(d) >0, 

which implies fk_i<
c)»fk(c),fk+1(c) and fk_1(d),fk(d), 

fk.i(d) each contributes one variation in sign to V 

and V,.  From (i) and (ii) and taking into account all 

k we have V = V,. c   d 

(2)  If f(xt) = 0 then fQ(c)f ±(c) <0, fQ(d)f1Cd)>0 which 

implies that f (c),f,(c) has one variation in sign more 

than f (d),f,(d).  The argument used before shows that 

fj_1(c),fj(c),fj+1(c) and fj^Cd) ,fj(d),fj+1(d) have the 

same number of variation in sign if j>l.  Now if 

*ie(H_1>H)   then Va-Vb = (Va-Va.) + "j (V ,-Vfl  ) 
1    1   l   l+l 

+ (V , -V, ) and we notice that each term is either 0 or 
an  b 

1 and the number of l's is the same as the number of x. 

for which f('x.) = 0. 

The construction of a Sturm eequence for any poly- 

nomial f(x) is very easy.  We can construct it in the 

following way: 

Let f(x)eF[x], F real closed.  We define f.(x) 0<i<s 

as follows: f (x) = f(x), f-^x) = f'(x) and 

fi_1(x) = q.Cx) f.(x)-fi+1(x)  l<i<s 

fs-l(x) = ^s(x)fs(x)    (i'e> fs+l(x) = 0)' 

We shall call f (x),...f (x) the standard sequence for 

f(x). 
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3 2 Example:  Let f(x) = x -7x-7, f (x) = 3x -7. Then since 

x3-7x-7 = (^x)(3x2-7)-(^x+7) and (3x2-7) = (f^x- §|) 

(I*x+7)-(+%), we have fQ(x) = x
3-7x-7, f^x) = 3x-7 , 

f2(x) = —o +7, fo(x) = +% is the standard sequence for 

f(x).  If we define g.(x) = f.(x)f~ (x) then we can show 

that gQ(x) .g-^Cx) , . .. ,gg(x) is a Sturm sequence for gQ(x) 

for the interval [a,b] where g (a) +  0, g (b) +  0. 

Proof:  First we note that f (x) is the greatest common s 

divisor of f (x) and f' (x) .  Next we see that g (x) = 1 

so g (x) f  0 for every x which is condition (1).  Since 

g (a)g (b) ^ 0 condition (2) is satisfied.  Next assume 

g, (c) = 0 0<k<s then dividing the relation f-_i = q^f- 

- f
i+1 

bY fs we have g±_1 = ^i&Czi.+V   so  if 8k(c) = ° 

then Sk_i(c)   = ~S^+i(c)  which implies Sk_]_(
c)gk+1(c) <0. 

If gk_]_(
c) = ° therl Sk+l^0^ = ° which imp!ies gfc-i^0) = 

g, (c) = ... = g (c) = 0, a contradiction.  So 

g, _■, (c)g, , •, (c) <0 and condition (3) is satisfied.  Finally, 

if gQ(c) = 0 then f(x) = (x-c)
eh(x) e>0 and h(c) t  0, then 

f'(x) = (x-c)eh'(x) + e(x-c)e"1h(x) and also f (x) = 

(x-c)e_1k(x) .k(c) ±  0 so h(x) = k(x)£(x) where £(c) f  0 

and h'(x) = k(x) m(x) these give gQ(x) = (x-c)ji(x), 

1(c)   ±  0, g-i(x) = (x-c)m(x) + e£(x) and then g-j(c) = 

e£(c) ^ 0.  Since g-i(c) ^ 0 we choose [c, ,c2] such that 

g1(x)£(x)>0 in [c1?c2].  So gQ(x)g1Cx) = (x-c)g1(x)£(x) 

has the same sign as x-c in [c-i.c^], so g (x)g,(x)<0 if 
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xe[c-,,c] and g (x)g, (x)>0 if xe[c,C2] which is condition 

(4) of the definition of Sturm's theorem. 

We note that if f(x) has no multiple roots in [a^] 

then the greatest common divisor of f(x) and f'(x) is 

1 then the sequence {f (x), ±\(x) . . . } differs from 

•Cg (x) ,gn (x) , • • . } by a non-zero multiplier so the sequence 

{f (x) ,f-. (x) , . . . } is a Sturm sequence.  But if f(x) 

contains a multiple root in the interval [a,b] then the 

sequence {f (x) , f-i(x) , . _ ,.} will not be a Sturm sequence. 

But still we can use the standard sequence for determining 

the number of roots of f(x) in [a,b].  We have the follow- 

ing theorem. 

Theorem 3.2.  Let f(x)eF[x], F a real closed field, and let 

(fo(x) = f(x),F1(x) = f'(x),...,fs(x)-} be the standard 

sequence for f(x) in the interval [a ,b] where f(a) f  0, 

f(b) £  0.  Then the number of distinct roots of f(x^ in 

[a,b] is V  - V, . 1   '   J    a   b 
Proof:  If g•(x) = f.(x)f ~ (x) then f(x) and g (x) have 

the same number of roots, and gQ(x) has only simple roots, 

so they have the same number of distinct roots.  Since 

the sequence g (x),g,(x),...  is a Sturm sequence for 

g(xj in [a,b], the number of roots of g.(x) is V (g)-V, (g). 
O 3D 

Since  f^c)   = g.(c)r1(c),   and fs(a),fs(b)   * 0 so Vfl(g)   = 

V    and V,(g)   = V,    and V  -V,    is   the number of  distinct a b D a    D 

roots   for f(x). 
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Remarks:     (1)     We have seen before  that  the roots  of 
n — 1 

f(x) = x +a,x  +..-+a  lie between -M and M where M = 

max{l, | a.J + . . .4-1 an|} . 

Set k = 14-laJ-K . .4-| an | •  If {fQ(x) .... ,fs(x)} is 

the standard sequence for f(x) then the number of roots 

is v-k"V Using !ail<1+ai2 • 1+la1l + --. + lan|i
< 

l+|ai|4-.. .4-|an|<14-(l-ha1
2)4-... + (l4-an

2) = (l4-n)4-(ai
24-. . . 

2 n  2 4-a  ) , and if I  = (n4-l)4-£ a..     then the number of distinct i 
roots of f(x) is v_ -V. . 

(2)  If we wish to apply Sturm's theorem for deter- 

mining the total number of roots of f(x)eF[xJ. the limits 

and and b must be respectively so small and so large that 

there are no more roots for either x<a or x>b.  It suffices 

to take a = -M and b = M.  However, it is still more con- 

venient to choose a and b so that all polynomials of 

Sturm's chain have no more zeros for x<a or for x>b.  Then 

their signs are determined by the signs of their leading 

coefficients: a X 4-a.,X  4-. . . has the sign of a for very 

large x and that of (-1) a0 for very small x<0.  In this 

method we may disregard the question as to how large a 

and b have to be.  We merely compute the leading coeffi- 

cient a and degrees m of Sturm's polynomials. 

Examples:  (1)  We have seen before that the standard 

sequence for f(x) = x -7x-'7 is 

x -7x-7, 3x -7, -o-x+-7, +k  so the number of distince roots 

of f(x) in the interval [-2,1] is ^_2~vi  = 3_1 = 2- 
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(2).  If f(x) = x4+12x2+5x-g then f'(xi » 4x
3+24x-*-5, 

and from the following equations 

(x4+12x2+5x-9) = (%x)(4x3+24xf5)-(-6x2-^x +9) 

0   ,   ,   ,v       15   .Q>.   _   ,96 1419    w-505.      5v   ,4x1419     QN and  (-6x T
X+9

>   =   (FTTFX o^TfT*"  ZY~( ? ~9) 4       ^   5(101)2  ib   4  5(101)Z 

we have the standard sequence for f(x) defined by 

f (x) = x4+12x2+5x-9, f^x) = 4x3+24x+5. 

f9(x) = - ^Px - %  and f (x) = K = - i4-!9- 9-9. 
Z       lb    ^.     s (101)Z 

By remark (2), if we choose a, a very small negative number, 

and b,a very large positive number, then f (a)>0, f, (a)<0, 

f9(a)>0, f„(a)<0.  They have the same sign as 1.4,- —rz
-, 

-K, respectively, and fQ(b)>0, f1(b)>0, f2(b)<0, f3(b)<0. 

They have the same sign as (-1)4(1), (-1) 3(4) , (-1) (-4-||) , 

-K, respectively.  So V -V, = 3-1 = 2 which is the total 

number of distinct roots of f(x) in R . 

4.  Extension Theorems for Formally Real Fields 

The question of existence of formally real fields 

can be answered by the following theorems. 

Theorem 4.1:  If F is an ordered field then the field K 

that we obtain by adjoining to F all square roots of 

positive elements of F is formally real. 
n 2 

Proof:  If we have a relation of the form -1 = £b, in K 

then the b, are contained in a finite dimensional exten- 

sion of the form F(/c7./cT....,/c~) where the c.'s are 

positive elements in F.  So it is sufficient to prove that 
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every subfield of K of the form F(/c7, . . . ,/c~) is for- 

mally real.  We prove this by induction on r.  We want to 
n    2 show a strong result that if Z  a. b, = 0 where a.eF, 
T   1   K- X. 

b, eK, a.>0 then the b, are zeros. Viz  see this is true 

for F.  Next assume that it is true for subfields of 

indicated form with dimensionality less than r, so if 
n  2 
£a.b, = 0 then the b, are contained in L = F(/cT, . . . , 

/c~)"=3 F( c-, , . . . , c  ,) = M, we can write b, = x. + 
r       J-      r—i K   l n 2 n  2  n . 

y./c~.  So 0 = Z   a.(x.+y./c~)  implies 0 = £a.x +cZ 
xi. -j  J.  J.  i  r -ill  r-t 

2   n a.y.+2(i:a.x.y.) (/c~) .  Since /O.M, then Za.x. y.=0, 
j-j--tJLj.i    IT r iii 

2        2 Za.x. + c Ea.y.=0, since a.>0 and a.c>0 then x.=0,y.=0 11   r xJx     ' l       l l  '•'l 

by the induction hypothesis and so b, =0 for every k. 

The field of real numbers is a real closed field.  Is 

there any other real closed field?  In fact, we have the 

following constructive theorem. 

Theorem 4.2:  Let F be a formally real field and let K 

be an algebraic closure of F then K contains a real 

closed field containing F. 

Proof:  Let 4> be the collection of all formally real sub- 

fields of K containing F, <j) is not empty since it con- 

tains F.  Now the union of any chain {L, } of formally 
n 2 real fields is formally real for otherwise -1 = Z  a. 
1  x 

holds in the union then the elementa a.cL,  for some k., 
1  K± 1 

a  contradiction with  the formal  reality of L    .     So  the 
i 

set  ty forms  an inductive  set  and  contains  a maximal 
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element, say E.  E is real closed, since if E is not real 

closed then it contains an algebraic extension which is 

formally real, but since E is a maximal element this can 

not happen,  since this real clo.sed field is a subset of 

K and will contain E. 

Corollary 1.  From theorems (4.1) and (4.2) we have that 

any ordered field has a real closed algebraic extension. 

Corollary 2.  Any formally real field can be ordered. 

Proof:  Let F be a formally real field, then F has a real 

closed algebraic extension so it can be ordered by the 

unique ordering of this real closed field. 

We can come to the conclusion that a field can be 

ordered if and only if it is formally real. 

5.  Real Closure of Ordered Fields 

We have seen that for every ordered field F there is 

a real closed algebraic extension. Thus we have the fol- 

lowing. 

Definition 5.1:  Let F be an ordered field, a field K 

is called a real algebraic closure of F if and only if 

(1)  K is real closed; (2) K is algebraic over F; (3) the 

order in K is an extension of that of F. 

Theorem 5.1:  Let F be an ordered field, then F has a real 

closure.  If F, , F? are two ordered fields with real clo- 

sures K, and K„, respectively, then any order isomorphism 

of F, onto F2 can be extended to a unique isomorphism of 
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K-^ onto K2 .  In particular, the only automorphism of K, 

which leaves the elements of F fixed is the identity. 

Proof:  Corollary 1 to theorem 4.1 and 4.2 gives the 

existence.  For the second part assume that F,,F„ are 

two ordered fields with the real closure K, and K?, 

respectively.  Let x -* x be an order isomorphism of F, 

onto F„.  We want to define an extension of this mapping 

into one between K-, and K? .  Now we observe that if 

f(x)eF[x] then f(x) and its image £(x) have the same 

number of roots, since by Sturm's theorem we can find 

M such that the roots of f(x) are in [-M,M] and the num- 

ber of these roots in K, is V U-Vu.  Since the standard 1    -MM 

sequence of f(x) are contained in F, [xj, all of this 

carries over f(x) and F„ , so the number of roots of f(x) 

in F„[ x] is the same as the number of roots of f(x) in 

F-,[x].  Next we observe that if we are given a set A = 

{a, .a^. . . .',a }cc K, then there exists a subfield L of 

K-j /F-. and an isomorphism f of L-. into K~ such that if 

a-,<a2<...<a  then f(x) = x.xeF., and f(a,)<f(a2)<...<f(a ) 

for this.  Let f(x)eF[x] be such that it contains among 

its roots a,,..., a and /a. .-, -a. l<i<n-l.<,(/a. ,, -a. EK, 1    ' n      l+l  1 — —  —>^     l+l  1  1 

since a.,-,-a.>0 and K, is real closed).  Let L-, be the 

subfield of K, generated by the roots of f(x.) in K, , then 

L-, = F,(0).  If g(x) is the minimum polynomial for 9 then 

g(x) has a root 8 in K2 and we have an isomorphism f 
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from L  into F2   (9)   such  that  f(x)   = x  if xeF1 and f(9)   = 

0.     So   f(a.+1)-f(ai)   =  f(a.+1-a.)   =  f(b.)2for b.^ 
9 9 _ 

bi = ^a±+l~a±  so f^b>^ = f(b.) so in F2(§,) so we have 

f(a,)<f(a2)<...<f(a ) as required. 

Now we can define the extended isomorphism between 

K-,   and K2 as follows:  If aeK-,, let f(x) be the minimum 

polynomial of a in F,, let the roots of f(x) in K, be 

a-, <a2< . . . <a .  The function f(x)eF2[xJ has exactly s 

roots, a, ' a9 ' . . . a ' in K9 and if a = a, we define 

g(a) = a/.  This mapping is well-defined since if aeK-, it 

cannot have two minimum polynomials and so g(a) is defined 

uniquely and it is obvious that g(x) = x, for every xeF 

since the minimum polynomial in this case is just x-a 

for every aeF, which has one root aeF, and this is mapped 

into 5eF9.  g is obvious one to one and onto. 

It remains to be shown that g is an isomorphism of 

K-, onto K9, so let afbeK, .  We have to show that g(a+b) 

= g(a)+g(b) and g(ab) = g(a)g(b), so let A<=K, such that 

A contains the roots of the minimum polynomials of a,b,a+b, 

ab.  So there exists a subfield L-pA of K,/F, and an 

isomorphism f of L-, into K2 extending x ->- x and preserving 

the order of elements in A.  Then if h(x) is the minimum 

polynomial of a over F-, and the roots of h(x) are 

b,<b2<...<b , b.eA then f (b-, <f (b2) < . . . <f (b ) , and since 

g(f(b.)) =0.  So from the definition of g we have g(b.) 

= fCb^ and so g(a) = f (a) ,g(b) = g(b) , also 
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from L into F2 (8) such that f(x) = x if xeF, and f(6) = 

0.  So f(ai+1)-f(ai) = f(ai+1-ai) = f(b.)2for b.eK^ 
9 9- 

b. = /a.+,-a. so f(b.) = f(b.) so in F^Ce,) so we have 

f(a,)<f(a2)<...<f(a ) as required. 

Now we can define the extended isomorphism between 

K-, and K„ as follows:  If acK-,, let f(x) be the minimum 

polynomial of a in F, , let the roots of f (x.) in K, be 

a-. <a2< . . .<a .  The function £(x)eF2[xJ has exactly s 

roots, a, ' a0' ... a ' in K0 and if a = a, we define '12      s     2 k. 

g(a) = a/.  This mapping is well-defined since if aeK-, it 

cannot have two minimum polynomials and so g(a) is defined 

uniquely and it is obvious that g(x) = x, for every xeF 

since the minimum polynomial in this case is just x-a 

for every aeF, which has one root aeF, and this is mapped 

into aeF„.  g is obvious one to one and onto. 

It remains to be shown that g is an isomorphism of 

K-, onto K? , so let a,be:K, .  We have to show that g(a+b) 

= g(a)+g(b) and g(ab) = g(a)g(b), so let A<=K, such that 

A contains the roots of the minimum polynomials of a,b,a+b, 

ab.  So there exists a subfield L-pA of K,/F, and an 

isomorphism f of L. into K2 extending x -> x and preserving 

the order of elements in A.  Then if h(x) is the minimum 

polynomial of a over F-, and the roots of h(x) are 

b1<b2<...<b , b.eA then f(b,<f(b2)<...<f(b ), and since 

g(f(b.)) = 0.  So from the definition of g we have g(b.) 

= f(bi) and so g(a) = f(a),g(b) = g(b), also 
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g(a+b) = f(a+b), g(ab) = f(ab) so g is isomorphism since 

f is an isomorphism. 

g is unique since if g' is another order isomorphism 

extending that x ->- x of F, onto F„ then if aeK, and 

b-,<b2<-..<b  are the roots of the minimum polynomial h(x) 

of a then g1 (b^g'(b2) <. . . <g'(b ) and so g'(a) = g(a). 

If K and K' are two real closure for F then the 

identity   isomorphism of F can be extended to an iso- 

morphism of K onto K' fixing the elements of F, and since 

this is unique we see that K,K' are equivalent. 

If g is an automorphism of K leaving the elements 

of F fixed, and since the identity of K is an isomorphis 

so by uniqueness, g must be the identity.  This theorem 

means that if K is an ordered field with one ordering 

then all the real closures are isomorphic under the iso- 

morphism fixing the elements of K.  For example, the field 

of rational numbers Q has only one order so any two real 

closed fields over Q are isomorphic under an isomorphism 

which leaves the element of Q unchanged.  On the other 

hand, if K is an ordered field with n different orderings 

then each gives rise to a real closure and no two of 

them are isomorphic, because if L,,L? are two real closure 

with distinct orderings >,, >? of K, respectively, then 

for some aeK a>-,0 and a<o0 so a is a square in L-, and not 

in L2. 

30 



An example:  Q(/2) has two distinct orderings and there- 

fore we have two non-isomorphic real closures of Q(/2). 

6.  Real Algebraic Numbers 

We know that the field of rational numbers has only 

one ordering.  As already mentioned, Q has a real closure 

and this is determined up to isomorphism.  If K is the 

real closure of Q then K(i) = S is algebraically closed. 

We call K the field of real algebraic numbers and S the 

field of algebraic numbers. 

Theorem 6.1:  Let L be a finite dimensional extension 

field of the field of rational numbers.  Then the number 

of distinct ordering of L is the same as the number of 

isomorphisms of L into the field K of real algebraic 

numbers. 

Proof:  Suppose L = Q(6) and f(x) is the minimum poly- 

nomial of 0.  Let {9-, . .. 6„ . . . . , 0 } be the set of distinct 1   z     n 

roots of f(x) in S.  We have n distinct isomorphisms of 

L into S.  If {9, ,.. . , 9 } are the roots of f(x) contained 

in K then these roots are called the real conjugates of 

9.  We have the isomorphism f. of L into K such that 

f.(6) = 0. l<i<r.  Now Q(9.) is a subset of the real 

closed field, so it has the induced order and this order 

can be used to define an ordering of L as follows:  If 

PeL then P>0 if f.(P)>0 and it is easy to see that this 

is an ordering of L.  If L has a certain order then 
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this order has a real algebraic closure K'.  K1 is a real 

closure of Q since L is algebraic over Q, so by theorem 

5.1 K' and K are isomorphic and the restriction of K 

coinside with one of the mappings f..  If f. , f. have the 

same ordering of L then we have an isomorphism of Q(0.) 

onto Q(9.) such that 9. -»■ 0..  Since K is a real algebraic 

closure of both Q(9.) and Q(9.) this can be extended to 

an automorphism of K such that a ->■ a for every aeQ and 

this is the identity according to theorem 5.1 so 9. = 0.. 

Definition 6.1:  Let F be a field.peF is called totally 

positive if and only if p>0 under any ordering of F.  If 

F has no ordering then peF is totally positive for every 

p.  In particular, any element of a field which is not 

formally real is totally positive since this field is 

not orderable. 

Theorem 6.2:  Let F be a field.  peF is totally positive 

if and only if p is a sum of squares of elements of F. 

Proof:  If p is a sum of squares of elements F then 

p>0 under any ordering of F so p is totally positive. 

If p is not a sum of squares and if S is an algebraic 

closure of F we consider the family of subfielis of 5/F 

such that p is not a sum of squares.  This collection is 

not empty since it contains F.  Also this collection is 

inductive so it has a maximal element K.  K is for- 

mally real, otherwise every element of K is a sum of 

squares and we are assuming p is not a sum of squares. 

32 



-p is a square in K since if -p is not a square then 

K(/-p)H> K properly and so p is a sum of square in this 

field since K is maximal of those for which p is not a 
n 2 

sum of squares.  So p = J^a.+b./^p")  a.,b.eK and so 
2   — n      n  2 

p = Za. +2/:p la.b. -p 7 b. .  /^p"4K implies Za.b. _ n l       ¥ l 1   v  l      r~    c 11 = U, 

2       2-1        **  2 so p = (Za. )(1+Zb. )   where l+£b•  ^ 0 since otherwise 

K is not formally real.  This means that p is a sum of 

squares in K which contradicts the choice of K.  This 
2 

eives -p = k and so -p>0 which implies p<0 in every 

ordering so p is not totally positive.  This result 

and theorem 6.1 on the form of ordering of a finite 

dimensional extension field of the rationals imply the 

following theorem which is due to Hilbert and Landau. 

Theorem 6.3:  Let L be a finite dimensional extension 

field of the rationals and let f, ,f«,..., f  (r>0) be 

the different isomorphisms of L into the field of real 

algebraic numbers.  Let peL, p^O then p is a sum of 

squares in L if and only if f.(p)>0 for i=l,2....,r. 

33 



7.  Positive Definite Rational Functions 

One of the problems proposed by Hilbert in his ad- 

dress to the 1900 Paris Congress of Mathemations, known 

as Hilbert's 17th Problem, asks the following question: 

If Q is a rational function in n variable with rational 

coefficients such that Q(k,,... ,k ) >_ 0 for every 

k-, ,. . . ,k , where all k. are real, is Q a sum of squares 

of rational functions with rational coefficients?  By 

a rational function we mean a mapping (k, , . . . ,k ) -> 

Q(k,,...,k ) such that Q(x^,...,x ) is a rational ex- 

pression in indeterminants x. with rational coefficients. 

In 1927 Artin gave a positive answer to Hilbert's 

question and proved a more general theorem. 

Theorem 7.1:  (Artin)  Let K be a subfield of the field 

R  of ordinary real numbers. 

Let Q be a rational function with coefficient in K 

which is rationally definite in the sense that Q(k,,..., 

k ) > 0 for all rationals (k.) where Q is defined.  Then n — l       ^ 

Q is a sum of squares of rational functions with coeffi- 

cients in K.  Since K(x^,...x ) is a formally real field 

for x. ,....x transcendental-indeterminants as we have 
l     n 

seen then (by theorem 6.2) QeK(x.,...,x ) is a sum of 

squares of elements in K(x.,...,x) if and only if Q>0 

in every ordering of k(x. , ...,x_).  Theorem (7.1) will 

follow if we prove that if Q^O is rationally definite, 
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then Q>0 in every ordering of K(x.) and this follows 

from the following. 

Theorem 7.2:  Let K be a field of real numbers and let 

K(x^,...,x) be the field of rational expressions in n 

indeterminants x. , with rational coefficients.  Let 

f1(xi,...,xti),...,fk(xi, ....^EKC^) where K(*if« . ., XR) 

has an order which is an extension of the order of K. 

Then there is a rational n-tuple (a,,...,a ) such that 

for every j,l<j<k. f. (x^ , . . . , xn) is defined at (a-^, ....... a ) 

and has the same sign as f, (a, , . .. , a ) (i.e. f, (x.,...,x ) 

>^ 0 according as f, (a-, , . . . ,a ) > 0) . 
< K  1     n - 

Suppose this theorem is proved.  Let K be as in 

theorem (7.1) and Q^O be an element of K(x.) which is 

not a sum of squares then Q<0 for some ordering of K(x-) 

and since the order of K(x.) is an extension of the 

unique order of K then by this theorem there is n-tuple 

(a, , . . . , a ) of elements of K such that Q(a.,,...,a ) < 0, In ^ 1     n 

a contradiction. 

To prove the theorem we use induction on the number 

of x's.  If n=0 the result is obvious since in this case 

K(x.)=K and the functions f.'s are constants.  We assume 

the result is true for K(x.,...,x ) and we want to show 
l     n 

that it is true for K(x.,...,x y) where y is another 
l     n, 

indeterminant.  To prove this we need definition and 

two lemmas. 
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Definition:     Let F, (x. ,y) , . . . , F, (x. ,y) eK(x. ) [y]   then 
XX rC  X X 

we call a property p of this set of polynomials in y to 

be rationally specializable if there exists a set of 

elements L(x.) k, (X.)EK(X.) such that if (a,,...,a ) 

is any rational n-tuple for which k-, (a.) , . . . ,k,(a.) are 

defined and have the same sign as k, (x.) , . . . ,k, (x.) , 

respectively, then the set of polynomials F(a.,y),..., 

F, (a. ,y) has the property P. 

Lemma 1: The property that F(x.,y) = ym+c|>, (x. ,y)ym-1+. . . 

+<)> (x.) has precisely r roots in the real closure of 

K(x.) is rationally specializable. 

Proof:  What we have to show is that there is k-, , ...,k, 

in K(x ) such that if (a-,,...,a ) is any rational n-tuple 

such that k. are defined for (a,,...,a ) l<i<h and have 1 N 1     n'  — — 

the same sign as k.(x.) then the function F(a.,y) has 

r roots in the real closure of K which is the real alge- 

braic numbers.  Let F (x.,y) = F(x.,y) and F,,...,F be 

the standard sequence for F(x.,y) as a polynomial in 
m     ~ 

K(xi)[y]' and if h(xi) = (m+l)+ y<})i(x1)
z then by Sturm's 

theorem the r roots of F(x.,y) in the real closure of 

K(x.) are in (-h,h) and r is the difference in the varia- 

tion in sign of the two sequences F (x. , -h) ,F, (x. ,-h) , 

 Fs(XjL)-h) andF^x.^.F^x.^h) Fs(Xj+h).  If 

(a,,...,a ) is any rational n-tuple such that the non- 

zero coefficients of the standard sequence F.(a.,x) and 
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the quotients Q. are defined and not zero then F (a.,y), 

...,F (a.,y) is the standard sequence for F(a.,y).  Now 

let k, (x.) , . . . ,k, (x . ) be a subset of K(x-.) consisting 

of the coefficients of F.(x.) of the standard sequence 

F(x.,y) and of the quotients Q. and the elements 

Fj(X;L,-h (xl, xn) , F. Gci,h Gc-L, • . . ,x-n) *1J£S.  Then 

from Sturm's theorem if (a,,...,a ) is any rational 

n-tuple for which k. (x.. ) are defined and k.(a, a ) ^ iv1' iN   1'        '   n' 
has   the  same  sign as k. (x-,,... ,x- )  l£i£h then F(a. ,y) 

is  defined and has  r roots   in the real  algebraic numbers 

Moreover,   if we refer  to  the bound in  Sturm's   theorem 

all   the  roots   of F(a. ,y)   are in   (-h(a-, , . . . ,a   ) ,h(a, , 

,a  )).     Thus  the number of roots  is   exactly r. 
n J 

Lemma _2:  Let {F, (x. , y) , . . . ,F (x. ,y)} be a sequence of 

polynomials in K(x-) [y] and assume that the leading co- 

efficients are 1.  The property that F.(x.,y) has a root 

P. in the real closure P of K(x.) and p,<p~< . ..<p. is 

rationally specializable. 

Proof:  Since P-,-i-p->0 l_<i£t-l then (p . , •, -p . ) 2eP .  Let 

A be an algebraic extension field generated by the ele- 

ments p. and (p-,-i-p-)2 and assume that A = K(0) with 

g(x.,y) the minimum polynomial of 9.  Then p. = k.(x. ,6) 

and (pi+1-pi) 
2 = l±(x±,Q)  where cj^Cx^y), ^(x^y) 

eK(x.,y).  Since p. is a root for F.(x.,y), 

F.(x.,$.(x.',y)) has 0 as a root and since g(x. ,y) is 

the minimum polynomial of 0 so we have 
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Fk(x.,<!»k(x|)y) = Gk(x.>y) g(x.,y) (1) 

2 
From the relations p.,-i-p. = £. (x. , 0) we have 

2 
Pi+1(xi)e)-pi(xi,9)-£i (x^B) = 0.  This means that the 

2 
polynomial pi+1(x^y)-Pi(xi,y)-*i (x±,y)   = 0 has 9  as 

a root and since g(x.,y) is the minimum polynomial for 

9 so 
2 

Pi+1(xi,y)-pi(xi,y)-Jli (xi,y) = Hi(xi,y)g(xi,y) l£i<t-l 

(2) 

Also since £.(x.,0) f  0 it has an inverse m.(x-,9) in A 

and since £.(x.,0) m.(x.,9)-l = 0 so 0 is a root of the 

polynomial £.(x.,y) m.(x.,y)-l = 0.  This implies that 

Aj(xi>y)mj(xi,y)-1 =K.. (Xi,y)g(Xi,y) l<j£t-l       (3) 

Now let {k.(x..)) be a finite subset of K(x-) consisting 

of the coefficients of polynomials in y of equations 

(1) and (2) and (3) and a set of elements given in Lemma 

1 to insure that g(a. ,y) has a real root c since g(x-j >y) 

has a root 0; if the a. are chosen such that every k (a.) 

is defined and has the same sign as k (x.0 then substi- 

tuting c for y in every polynomial appearing in (1) , (2) 

and (3) is possible.  Now substituting y=c in (1) then 

F, (a. ,y) has a root b, = cf>, (a.,c).  Substituting y = c 
2 

in (2) we have bi+1-b± = <|)i+1(ai,c)-(j)i(ai,c) = £i(ai>c) 

>_  0 and from (3) %. (a. , c)m. (a. , c) = 1 so £.(a. ,c) f  0. 

Hence b.11-b.>0, so F.(a.,y) has the roots b. with l+l  i  '    j x i'y' j 

bl<b2<-'-<bf 
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Proof of Theorem 7.2:  Let P' be a real closure of 

K(x.,y) and p a real closure of K(x.) contained in P' . 

Assume that the theorem holds for K(x-, , ...,x ) .  So we 

have to show that it holds for K(x-,,...,x ,y) where y is 

an additional indeterminant.  Let F, (x.,y) be a family of 

elements of K(x.,y).  We have to show that there is 

(a-, , . . . ,a ,b) such that F, (a. ,b) is defined and has the 

same sign as F,(x. ,y), for every k. 

Let F, (x. ,y) = F(x. ,y) be an arbitrary element of 
cC   X X _ 

el the given set.  Write F(x.,y) = <j>(x, , . . . ,x )P, (x.,y)  ... 
eh Ph(xi,y)  where <j>(3t|_ . . . . ,Xn)e.K(xi) and P . (x± ,y)eK(xi) [y I 

are irreducible with leading coefficients 1 with e.>0. 

Then if (a-,,...,a ,b) has the property that <j>(a.) ,P. (a. ,b) 

are defined and have the same sign as <J>(a. ) ,P. (x.. ,y) then 

F(a,,...,a ,b) is defined and has the same sign as 

F(x.,...,x ,y).  So we can consider the family of elements 

F,(x. ,y) given, to be a finite set of elements of <b(x.) 
K.   X X 

and irreducible polynomials in K(x.)[y] with leading 

coefficients 1.  Next assume that p-, <p?<. . . <p. are the 

roots in P of the new set.  We can form a sequence 

F-, , . . . ,F from this set such that F. has the root p. 
•L        C J J 

l£j£t.  Since the F's are irreducible and of character- 

istic 0, the roots of each F in the set are distinct. 

Since the F's are relatively prime than G(x.,y) = 

F^(x y)..•Ft(xi>y) has distinct roots. 
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By Lemma 1, there exists k, , . . . ,k, eK(x-) such that 

if (a, a) is a rational n-tuple such that k (a.) is 

defined and has the same sign as k (x.) l<n<h, then 
« n 1  — — 

G(a.,y) has t distinct real roots.  By Lemma 2,   there 

exist elements k ,-,,.. .k eK(x.) such that if (a-.,..., a ) 

is a rational n-tuple for which k (a.) is defined and mi 

has  the same  sign as k  (x.) ,  h+l<m<s  then F.(a.,y)   is mi — — j     I ^ 

defined and has  a real root b.   with b,<b?<. ..<br 

l<j<t.     Now we add  to   {k, ,...,k  }   all  the  <j>'s  of the new 

constructed  set and  the discriminant  d of G(x.,y) which 

is  different  from zero since G(x.,y)  has  distinct  roots. 

By  the induction hypothesis   there  exists  rationals 

a,,...,a    such  that  the  conditions  on k.   l<i<s,   d and In i     — — 

the (f)'s  are  satisfied,   since they  are elements  of 

K(x1(...,x ).     In P[y] we have 

FjCx.-.y) = (y-pjl)(y-pj2)...(y-pjt>) QL(y)...Qjs(y)   (4) 

where Q.'s are quadratic polynomials with leading co- 

efficients 1, and {j , , . . . , j }d{l,2 , . . . , t} .  In the field 

of real numbers and by the choice of a. we have 

F^a-.y) = (y-bu)...(y-b   ) S1(y)...Ss (y). . (5) 

S, (y) is irreducible with leading coefficients 1, l<k<S.. 
K. — — j 

Since y is transcendental over K(x.) and the p.'s are 

algebraic over K(x ).  So y ^ p., and so y belongs to one 
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of the following intervals in P1 (-00, p-,), (p, , p~),. . . (pt,°°) 

Also we notice that Q(y)>0 in P1 and S(b)>0, since they 

are irreducible quadratics. So from (4) and (5) if 

ye(pk,Pk+1) and be(bk,bk+1) then F^ (x^y) andFj(ai>b) 

have the same sign and this holds for every j.  Since 

we can find a rational in any open interval, the theorem 

is proved. 
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8.  Formalized Euclidean Algorithm and Sturm's Theorem 

The object of this section is to use Sturm's theorem 

for equations whose coefficients are parameters that take 

values in a real closed field.  This will depend on a 

parametrized version of the Euclidean algorithm for de- 

termining the greatest common divisor of polynomials that 

we are going to discuss. 

In the last few sections we shall determine a method 

for testing the solvability, in a real closed field, of 

a finite system of polynomial equations, inequations and 

inequalities whose coefficients are parameters that take 

values in the real closed field.  The main result, 

Tarski's theorem, states that given such a system we can 

find in a finite number of steps a finite system of 

polynomial equations, inequations and inequalities in 

the coefficients of the given system, such thah the given 

system has a solution in the real closed field if and 

only if one of the derived systems is satisfied by the 

coefficients of the given system. 
3 

Example 1:  Let f(x) = x +px+q, P +  0 and p and q para- 
2 

meters that may assume any real number.  f'(x) = 3x +p. 

From the equations (x +px+q) = (~-x)(3x +p)-(^-«*Tc-q) and 

(3x2+p) = (^x+ ^L)(z2Rx-q)-C4P  f7g-) we get x3+px+q, 

3   2 
3X +p, ^^j^c-q, "   ~t as t^ie standard sequence and 

4p 
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if p ^ 0 as asserted this sequence is equivalent to 

3        2 3   2 x +px+q, 3x +p, -2px-3q, -4p -27q which is a Sturm 

3   2 sequence and we notice that -4p -27q is the discriminant 

d.  Now we can use Sturm's theorem to show that f has 

a single root or three roots according as d<0 or d>0. 

If d<0 we can choose k so large that all the roots 

of f(x) are in [-k,k] and moreover the roots of f.(x) 

of the Sturm's sequence are in [-k,k] so the sign of 

f.(k) is the same as the sign of the leading coefficient 

of f. and the sign of f.(-k) is the same as the sign of 

(-l)mam where f. (x) = a^'V, . . +a .  So if d<0 then 

3        2 x +px+q, 3x +p, -2px-3q, d has the corresponding signs 
3 

+, +, the sign of -2p, - if x=k and the sign (-1) , 

(-1)2,(-1) the sign of -2p,- if x=-k.  So V_k~Vk = 2-1 =1 

if -2p>0, also V_k-Vk = 2-1 if 2p<0.  If d>0 we observe 

that V_k-V, = 3-0 since p has to be negative. 

Example 2.  fCx) = x +qx +rx+S.  We see that if L = 

8qs-2q3-r2 and d=4(4s+^)3 - 27(|qs-r2- |y q3)(d is 

the discriminant of f), by the same method as in the 

previous example we can prove that if d<0 then the number 

of real roots of f is two and if d>0, q<0, L>0,then f has 

four distinct roots and if d>0, and either q>^ 0 or L<0 

then f has no real roots.  Moreover, Tarski's method 

shows that if the coefficients of f(x) satisfy one of the 

following systems: 
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(i)  d<0 

(ii)  d>0, q<c, L>0 

(iii)  d=0, r^O 

(iv)  d=0, r=0, q<0 

then f(x) has a root in the real closed field. 

Now for A = Kttj^, . . . , tr] where K = Z or   Z/(p) , 

p a prime, let F (t^, . . . , tr ,x),  G(t1, . . . , tr ,x)eA[x] 
_. 1 

so F(tlf...tr,x) = uRx + un_xx "  +...+uQ and 

G(tr . . . ,tr.x) - v/Vv^x^V . .+vo where u.,v. 

eK[t,,...,t ].  We assume G(ti(x) f  0 and we take 

a section of G, say G^t^x) = vkx + . . .+vQ, where 

v, (t,,...t ) f  0 and k<m then by the division algorithm 
e, 

we can write (^(t^)) ^(t^x) = Qk(ti ,x)Gk(ti ,x) 

-Rk(ti,x) where e^ is an integer and is the larger of 

0 and n-k+1.  For the application of Sturm's theorem 

we need e, to be even.  So we choose e, =0 if n<k or the 

smallest even integer >n-k+l.  By the division algorithm 

this factorization is unique. 

If R is an extension field of K then if (c,,...,c ) 
(r) r 

eK   either v^c^) = 0 for every k 0<k<m and so G(c.,x) 

= 0 or there exists k 0<k<m such that vjc.) ^ 0 

v4<c-f) = ° J>k and so G(c. ,x) = v, (c.)xk+. . .+v (c). 

So G(c.,x) = Gk(c.,x), and (vk(c.)) 
kF(C;L>x) = 

Q(ci,x) G(ci,x)-Rk(ci,x) .  Now since v^c^x) +  0 and 

deg Rk(ci,x)<deg G(ci,x).  (^(c^x) and -Rk(Ci,x) differ 
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-e, 
by a non-zero multiplier (v, (c.))   from the quotient and 

remainder when dividing F(c. ,x) by G'(c ,x) .  We introduce 

the following set of systems of relations in A = 

K[tif.. . ,t ].  If G(t.,x) = v xm+...+v £ 0  then 

T = {v =0,v,=0,...,v =0}. -°°   o   1     ' m 
Tk = {vk^0' vj=0 k<Jim} if vk(ti) *  °' 

o 
For example, if G(p ,q,x) = (p+q)x +px+q then v =q, v, =p, 

v2=0, v3=p+q and T_oo = {p+q=0, 'p=0, q=0} TQ = {q^O, p=0, 

p+q=0}   Tj_ = {pfO, p+q=0}  and T3 = {p+q^0}. 

We observe that if 9 = {T  ,T, } then 8 defines a 
-co k 

cover for A = K[t-> , . . . ,t   ] in the following sense:  if F 

is a field extension of K and if we define T, (F) = 

{(c-,,...,c )eF^ '/(c,,...,c )} satisfies the relations in 

Tk> then F^ = U Tfc(F) , note that (cp . . . , c ) eTk(F) if 

and only if G(c.,x) is of degree k.  So it is obvious that 

for every (c-,,...,c ) eF , G(c.,x) has a degree 0<k<m or 

G(c.,x)=0.  In any field F a system of equations 

£■, ^0, . . . , a, ^0 is equivalent to a single equation 

1-, .I*   . . .   H^O  and if F is a real closed field a systemof 

equations JU =0, . . . , £, =0 is equivalent to a single equation 

2      2 £-, +...+£, =0, so if we add to T, the trivial equation 

0=0 and the inequation 1^0 we can assume that each T, 

consists of one equation and one inequation,  if we are 

dealing with a real closed field. 

Assume C = {S-, , . . .S. } is a cover of A and T is a 

finite set of equations and a single inequation determined 
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by elements of A, if we define T^J' l£Jlt to be the set 

having the equations of T and S. and the inequation which 

is the product of the inequations of T and S., then we 

see that T^(F) = S. (F)fjT(F) and since US. (F) = F(r) so 

T(F) = UT(:i)(F).  If we have 

C = 'fT1,T2 , . . . ,T£} is a cover of A 

then {T[
1)
,T[

2),...,T£3),T2,...,T£} 

is a cover which is a refinement of 

the first one. 

Definition 8.1:  If f(x), g(x)eR[x] 

where R is a field then by the 

Euclidean algorithm we can determine 

a greatest common division of f ,g by constructing a se- 

quence of polynomials f.(x) 0<i<s such that f (x) = f(x), 

f^x) = f(x) and f^Cx) = qi(x)fi(x)-f.+1(x),fs+1(x)=0. 

We shall call the sequence f.(x) the Euclidean sequence 

for f(x), and g(x). 

If g=0 then the Euclidean sequence for f,0 by de- 

finition is f,0,0. 

Theorem 8.1:  Let F,G ^ OeA[x],  Then we can construct 

in a finite number of steps a cover C = {S, ,...,S, } 

which is a refinement of the cover determined by the co- 

efficients of G, and sequences of polynomials F.  = 

F,F.-,,...,F.  eA[x] l<j<h.such that for any field ex- 

tension F of K and any (c,,...,c )eS.(F) the terms of the 
■L        ~    J 
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sequence F^Cc^x) .F.. 1(ci ,x) , . . . ,Fj fc (c± , x) ,F^ k  (c^x) 

= 0 differ by a non-zero .multiplier from those of the 

Euclidean sequence of F(c.,x),G(c.,x) and the multipliers 

are positive if F is real closed. 

Proof:  If C = {T_oo,Tk> and if k +  -~ we determine Qk and 

-R, by dividing F by G, = v,x +. . «+v by the Euclidean 

algorithm if -\=0 then F,  = F,F, , = G, and F, 2 
= 0 satis- 

fies the stated condition. 

If -R, f  0 then from F = QiC^-Ru we see that the 

sum of degree of Q, and -R, is less than that of F and G,, 

so using induction we can assume the result for Q, and 

-R, .  So we can assume that we have a cover C, = {S, -i , 

S, 2 > • • • > Si s } and sequences of polynomials F, .   '^"v-o i »• • • » 

F, .  , satisfies the stated conditions of the theorem. 

If we refine the cover C = {T^.T,} by defining TAJ; to 

be the set of equations of T, and S, . and of the inequa- 

tion which is the product of the inequations of T, and 

S, . then with each T?  we associate the sequence of func- 

tions F, . ,F, .-,,... ,F, .   .  For the term T  we associate 
Kj O  K] 1       KjS, • -°° 

the sequence {F,0,0} then C with this sequence satisfies 

the conditions stated in the theorem. 

Example:  Let F(p,q,x) = x +qx+q and GCp^.x) = F'Cp.q^x) 

= 3x2+p.  Now v =p, v1=0, v2=3, so P_oo = {P=0, 3=0} and 

TQ = {P^0,3=0}, T2 = {3^0,0=0} and we have 

C = {{P=0,3=0},{P^0,3=0}, {3^0,0=0}}. Since 3/0 cannot 

47 



hold T_M(F) = (J> and TQ(F) = <f» and we have C ={{3^0,0=0}} 

= {{1^0,0=0}}.  Now we consider F and G2 = 3x
2+p.  When 

we divide F by G2 we have -R2 = -(6px+9q).  Since -R^O 
9 

we consider the pair of functions F = G? = 3x +p and 

G = -R = (-6px-9q).  We have C' = {T^.T^.T } = 

{{p=0.q=0,l7t0},{p^0,0=0},{q^0,p=0}}.  p^O in ^ so when 
2 dividing F = 3x +p by G, = -6px-9q we have -R = 

-9(4p +27q ).  For T^ we have the cover d-, = {T_OT,T } 
3    2 corresponding to G(p,q,x) = -9(4p +27q ) which is 

{{4p3+27q2=0, lfO}, {4p3+27q2^0, 0=0}} with correspondence 
2 2 sequences of polynomials 3x +p,-6px-9q,0 and 3x -fp, 

-6px-9q,4p3+27q2,0. 

For TQ we have p=0, qfO, so F = 3x2+p and G = 

-9q, and when we divide F by G we have remainder 0, so 

we have the refinement of C into C1 such that 

C = {T_ro,T{
1),Tp),To} 

= {{p=0,q=0.1^0},{p^0,4p3+27q2=0},{p(4p3+27q2^0,0=0}, 

{q^0,p=0}} where {T^ ,T[2)} is the refinement of T-L  by 

the cover C, and the corresponding sequences are 

for T_co: x3+px+q, 3x2+p, 0 . 

for Tj ^: x3+px+q,3x2+p,-6px-9q,0. 

for Tp^: x3+px+q,3x2+p,-6px-9q,-9(4p3+27q2) ,0 

for TQ: x
3+px+q,3x2+p,-9q,0. 

We can now state the parameterized version of Sturm's 

theorem, 
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Theorem 8.2:  Let FCt^x) = u xn+u _1x
n~1+...+u eA[x] 

where u. (t.)eA = Z[t-, t   ],   the t. , and x indeterminants. 

Then we can determine in a finite number of steps a fi- 

nite set of polynomial relations of the form 0=0. C 0, 

C^O where CeA such that for any real closed field R the 

statement F(c.,x) = 0 for c.eR has a solution is equiva- 

lent to the validity for t. = c. of every relation in 

any Tk< 

Proof:  Let GCt^x) = F'Ct^.x)  = nunx
n"1+(n-l)un_1x

n"1 

+ ...+U-, .  If G = 0 then F(t. ,x) = u eA and the result of 

the theorem is trivial.  If G(t.,x) ^ 0 so we can apply 

theorem 8.2 to obtain a cover d = {S.} and sequences of 

polynomials F.-,,...F.  eA[x] such that if (c1)...,c„) 

eS.(R) then F.,(c.),...,F.  (c.) differ by a non-zero 
J J 3   j 

multiplies from the standard sequence for F(c.,x).  If 

we take one of these S. and assume (c, ,...,c )eS.(R) 

then either u (c. ) = . . .=u1 (c-, )=0 or there is l<m<n such n I      11 — — 

that u (c.) £  0 and u.(c.) = 0 m<j<n, then the roots of 

F(c.,x) = 0 are in the interval (-k,k) when k = 
m-1 « o 

(m+1) + I u. (cp . . . ,cr) 
u
m(
ci-• • • »cr)" •  Since the 

o -1 

terms of the sequence F. (c.,x),...,F.  (c.,x) are positive 
J J j 

multiples of those of the standard sequence for F. (c. ,x) 

it follows that F(c.,x) has a root if and only if 

F. (c.,-k),...,F.  (c1(-k) exceeds those of F. (c.,k),. . . , 
J U   l Jb.i. J <J   X 

F. s(cifk).  We now write g^Ct^^, ... ,tr) = um 
K 

J j J 
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m-1       _2 2n, 
Fk(tifnri-1+ I  u.u; )   and hjk(tl, . .. , tr>   = um F.^, 

o 
m-1 2  -2 -(m+1) - I  u. u ) .  n, is the degree in x of f., so 

gjk(ci),h.k(ci) differ from F.k(ci,k), F^Cc^-k) by 

positive multipliers.  So for (c,,...,c )eS.(R) F(c.,x)=0 

has a root if the number of variation in sign of h. (c), 

• • • .hjgjCc^) exceeds that of &AQ(
C

±) 'SA^C^ , . . . ,g..(c±) , 

so we consider all possible orderings g. <0, g.,<0, g <0, 
JO      J K      S 

h. >0, h.,<0, h. <0 l<k<j  -j   and we form all possible 

collections of g's and h's such that the number of varia- 

tion of h's sequences exceeds that of g and we obtain a 

collection of relation for T, and we do this for all the 

other elements of the cover.  We can still apply this 

theorem for the existence of roots of F(t.,x) = 0 in 

(-c,c).  Just replace k by c and we obtain a corresponding 

collection {T-, , . . . ,T }.  Each consists of a finite set of 

relations of the form C=0, C>0, C^O, CeA. 

9.  Elimination Procedures  Resultants 

We need to generalize theorem 8.2 to a system of equa- 

tions, inequations, and inequalities with several un- 

knowns.  Before this we need the following: 

Lemma 9.1:  Let f.(x) l<i<m,g(x)£F[x], F is a field and 

let d(x) be the greatest common divisor of the f.(x) then 

there is a p in some extension field of F such that 

f. (p) = 0, l5_i£m and g(p) f  0 if and only if either all 
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f. (x) = 0 and g(x) ^ 0 or d(x) +  0 and d(x) is not a 

factor of g(x)deS d(x). 

Proof:  If fi(x) = 0 for every i and g(x) ^ 0 then the 

result is obvious.  Since we can choose p not a root of 

g(x) since g(x) has a finite number of roots then f.(p)=0 

and g(p)^0.  Assume that not all f.(x)=0 l£i£m then there 

is a greatest common divisor d(x) of f.(x) and d(x)^0 

for all i in some extension field of F if and only if 

d(p) = 0.  So if some f.(x)^0 l<i<m then the statement of 

the theorem holds if and only if d(x) is of positive degree 

and there is an irreducible factor of d(x) which is not 

a factor of g(x), for if this is true and p(x) is such a 

factor and 9 is a root of p(x) then d(0)=O and f.(9)=0, 

g(6)#).  On the other hand, if d(x)=l.. then f. (x)=0 

l^ifm has no solution.  If every irreducible factor of 

d(x) is a factor of g(x) then if d(p)=0 in some extension 

field then g(p)=0 since p(x)/g(x) where p(p)=0 and p(x) 

is an irreducible factor of d(x) and also no solution of 

f.(x)=0,g(x)^0 exists.  Since d(x)=l or every irreducible 

factor of d(x) divides g(x) is equivalent to d(x)/ 

g(x)degd(x) 

Remark:  Since g, (x^O, g9 (x)^0, . . . ,g (x)^0 is equivalent 
1 s 

to g(x)^0 where g(x) = n g.(x) then Lemma (9.1) can be 
1 x 

stated more generally with g-, (p)#0 ,. . . ,g (p)^0  substituted 

for g(p)#0. 
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Lemma 9.2:  Let F(ti(x), G(ti,x),...,H(t.,x)eA[x] where 

A = Klt^, . . . ,t ] and K = Z or Z/(p),  p is a prime then ..< 

we can find in a finite number of steps a cover C = 

{S,,...,S, } and for each S, a polynomial D, (t. ,x) eA[x] 

such that for any extension field F of K and any (c, , . . . , 
(r) cr)cFK  J   such that (^ , . . . , cr) eS^CR) then Dk(c.,x) is 

a.greatest common divisor of F(c. ,x) ,G(c. , x) ,. . . ,H(c. ,x) . 

Proof:  If every polynomial is zero then the result is 

trivial and if the number of polynomials is one it is also 

obvious since D-,(t.,x) = F(t. ,x) works.  If we have two 

polynomials F(t.,x), G(t.,x) then by theorem 8.1 the 

result follows immediately.  So we use induction and assume 

that the result is true for polynomials F, (t.,x),F„(t.,x), 

•...F (t.,x).  Assume we have F ,,(t.,x) in addition 
n l n"t"J- I 

then we can assume that we have a cover C1 = {T-, , . . . ,T } 

and polynomials E, (t.,x) satisfying the stated condition 

for F, , ...', F . We can apply theorem 8.1 to each pair, 

Ek(ti,x) and Fn+i(
cj_ »x) , and obtain a cover C^ = {S^} 

and corresponding polynomials E, . such that (c,,...,c ) 

eS, .  E, (c ,x) is a greatest common divisor of E,(c.,x) 

and F .-i(c. ,x), hence a greatest common divisor of 

F,,...,F .  Now we refine the cover C' by replacing each 

T, by T>  .T£  »••• determined by the cover C, and so we 

have the cover C = {T, }  and the corresponding E, . satis- 

fying the theorem. 
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Theorem 9.1:  Let K = Z or Z/(p),p is prime and let A = 

K[t.,..., t ] and B = A[x,,...,x ], x.,t. indeterminants. 

Then if F,,...,F , GeB, one can determine in a finite 

number of steps a finite collection {T,,T«,...,T } where 

T. = {f., ,f .„ ,f. ,g. }e: A such that if F is an extension 
J    J ■*-  j ^  J''' J- 

field of K and (c-. , . . . , c )eFv '   then the system of equa- 

tions and inequations F, (c, ,...,c ,x, , . . . ,x ) = 0, 

2  1' ' ' ' ' Cr' Xl' ' ' ' ' Xn  =   ' ' '  ml' ' " ' 'cr'xl' * ' ' ' Xn 

= 0, G(c, , . . . ,c ,x,, . . . ,x ) f  0...(1), has a solution in 

some extension field E of F if and only if the system of 

equations and inequation f.,(c,,...,c ) = 0,..., 

f. (c1, . . . ,cr) = 0, g. (c^ . . . ,cr) +  0 is solvable for 

some l£j£s . . . (2) . 

Proof:  Assume that n=l, then there is a cover C={S.} 
  J 

and, for each S., a polynomial D.(t.,x)eA[x] such that if 

(c-^, . . . ,cr)£S. (F) then D. (c1, . . . , c^ ,x) is a greatest 

common divisor of F,(c.,x),...,F (c.,x), and such that for 

every (c^, . . . ,cr)eS. (F) either D. (c^x) =0 or D. (ci,x)^0 

for every (c,,...,c )eS.(F) and in this case there is 

R. (t.,x)eA[x] such that for (c, ,...,c )eS.(F),R.(c.,x) 

differs by a non-zero multiplier in F from the remainder 
deg D. 

when dividing G(c.,x)   x ^ by D.(c.,x). 

This fillows from Lemma (9.2) since we can construct 

a cover C = {T,}and polynomials D, (t. ,x) such that for 

(c-,,...,c )eT, (F) , D, (c. ,x) is a greatest common divisor 
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of F1(ci,x) , . . . ,Fm(ci,x) , and for each D^t^x) f  0 there 

is a cover Ck = {S^^} such that for (c,,...,c )eSk„(F) 

either Djjc^x) = 0 or for all (c^ 'cr
)ESk£(F),Dk(ci'x) 

+  0 then we can apply division algorithm to find poly- 

nomials Rk£(ti,x)eA[x] such that (c^,...,c  )eS,£(F) then 

R, (c. ,x) differ by non-zero multiplier from the remainder 
k£ X degD. 

on dividing GCc^.x)   •' by D.(c.,x) and finally we refine 

the cover T = {Tk> by substituting each Tk by fl^
1) ,T£2^ , 

...} defined by the cover {Sk }.  So we have the cover 

C = {S.} and polynomials D.. 

Next we consider all (c,,...,c )eS.(F) and we begin 

to find for which (c,,...,c ) the system (1) has a solu- 

tion, first if D. (c-,,...,c ) = 0 then (1) has a solution 

if G(c.,x) f  0 by Lemma (1) and so if the coefficients of 

a power of x in G(c.,x) is not zero.  If D.(c.,x) f  0 

then a solution for (1) exists in some extension field of 

F if and only if R.(t.,x) f  0 since by Lemma 1 we need 
1 X deg D, 

D.(c.,x) is not a factor of G(c.,x)    and so this is 

true if some coefficient of a power of x in R.(t.,x) is 

not zero.  We see also that the two cases G(t.,x) = 0 and 

R.(t.,x)=0 implies that (1) has no solution. So by ex- 

cluding these two cases we can obtain the system (2) by 

multiplying the inequations defining S. by a non-zero 

coefficient of G(t.,x) if D.(c.,x) = 0 and by a non-zero 

coefficient of R. (ti,x) if D-Cc^x) ?  0  so this 
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inequation together with the equations defining S. forms 

one of the system (2) and doing this for all S. we obtain 

the system (2). 

Now we proceed by induction on n and we assume n>l so 

we can consider t*,X.~,...,t   ,x, ,...,x _, as parameters 

and apply the previous result to obtain a finite set C = 

{A.} where A. consists of polynomial equations and in- 

equation with coefficients in K in the indeterminant 

t-,. . . , t ,x, , . . . ,x , satisfying the conditions for one 

unknown x .  Then using the induction hypothesis we can 

assume that for each A. we have a finite number of systems 

of polynomial equations and an inequation with coeffi- 

cients in K in the indeterminant t-> , . . . , t , if M, , . . . ,M 

are the systems obtained then this satisfied the condi- 

tions of the system (1), for if (c-,,...,c ) eFv '   has the 

property that (1) has a solution (p, ,...,p ) in some ex- 
„ i „  "I 

tension field E of F then (c,....,c ,p,,...,p  ,)EE 

has the property that for this choice of (t-.,...,t , 

x-,,...,x -,) (1) has the solution p  so (c,  c , 

p, ,...,p ) satisfies one .of the systems p. and consequent- 

ly one of ML .  Conversely, if (c, ,. . . , c ) ,c. eF satisfies 

one af the systems M, , then there exists p. in an exten- 

sion field E of F such that one of the systems is solvable 

for p-i,...,p  i in E so there is an extension field E' of 

E and consequently of F such that (p-,,...,p ) is a solution 
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for (1) for t. = c. and so M, are the required systems. 

Next we have the following criterion for the existence 

of a common factor of positive degree of two polynomials. 

n, ti-1, Theorem 9.2.  Let f(x) = a x +a  -,x  +. . ,+a  and g(x) =   n   n-l o 
m-1, 

m   m-i +...+b where n 0, m 0 and put 

Res(f.g) 

an an-l '••  • 

0  an  an-l • 

b  b  ..... m  m-1 
0  b™  K  i m   m-1 

• • «   3. o 

a. 

a   a  -, n   n-l 

b  b  , m  m-1 

. . . b„ o 

o 
u 

Then Res (f ,g) = 0 if and only if a = 0 = b  or f(x) 

and g(x) have a common factor of positive degree. 

Proof:  If a = 0 = b  then the first column of the 
       n       m 

determinant is zero so Res(f.g) = 0. 

Next assume that f(x) and g(x) have a common factor 

h(x) of positive degree and either an f  0 or bm £  0, then 

by symmetry if an f  0 then we can write f (x) = f-i (x)h(x) 

and g(x) = g1(x)h(x) and f->(x) f  0, and if degree h(x)=k 

then deg f, (x) = n-k;if g(x) = 0 then gi(x) = 0 or from 
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the equation, f(x)g.(x) = g(x)f, (x) we conclude that deg 
■n 1 

g-,(x) <_ m-1.  In any case, we can write f-, (x) = -c _-,x 

-cn_2x
n~ -...-co,g1(x) = dm_1x

m~ +...+dQ and some c^ f  0 

since f-, (x) f  0, we can substitute for fg, = gh, and we 

have 

(axn""1+...+a„)(dTT1 ^""V.-.+d ) + (b sm+...+b ) n o  m-1 o   m       o 

(cn_1x
n_1+...+co) =0... (4) 

If we equate the coefficients of the x's we get a system 

of equations  ad , + b c -,   -  0 n n m-i   m n-1 

n m-2   n-1 m-1 + be  0+bm ,c    0   =  0 ... (5) m n-z m-1 m-Z 

ad + b c =0 o o   o o 

We  can  consider  this   sytem as  a  linear  equation  in  the 

c's   and d's  in  the order d     i>d _?,...,d   ,c  _-!,••. c   , 

since this  system has   a non-trivial  solution  since not 

all   the  c's  and  d's  are  zeros  so  the determinant  of  the 

coefficient matrix =  Res(f,g)   = 0.     Conversely assume 

Res(f,g)   = 0  then from equations   (4)   and   (5)  we  conclude 

that  there  exist f-.(x)   and g, (x)   such that f(x)g-,(x)   = 

g(x)f-,(x)   and deg f,<n-l,deg g,<m-l  and not both f,   and 

g,   are zero.        If we  assume  f-,   f 0   then  if gi(x)   = 0 

we have  fg-,   = gf,   implies  that g =  0  so b     = 0.     Hence 

either a    = 0  or f(x)   is  a non-zero  common  factor  of  f 

and g.     If f,   ^  0  and g,   f 0   then either  g = 0   and hence 

bm =  0  and so  either an = bm = 0 or   there  is a  common 
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factor of positive degree of f(x) and g(x).  Finally, if 

f^x) f  0, g-^x) f  0 and g(x) +  0 then either a  = b^ = 0 

or a ^ 0 or a ^ 0 and in this case deg f,(x) <  n-1 and 

from f(x)g, (x) = g(x)f-,(x) and factoring both sides into 

irreducible factors we see that one of the irreducible 

factors of f(x) must divide one of the irreducible fac- 

tors of g(x) and conversely.  So f(x) and g(x> have a 

common factor of positive degree. 

Remark:  In theorem 9.1 the system of equations and in- 

equation of the form (1) is solvable if and only if the 

following system involving one more indeterminant x.,, 

is solvable. 

i1 -i QC-t , . . . , C , X. , . . . , X )    = ... = rCC-j,..., C , X, , . . . , x ) — 

0 and x ,-. G(c, , . . . ,c ,x, , . . .x )-l = 0.  Since x , , 

G(c,,...,c ,x,,...,x )-l = 0 is equivalent to 

G(c, ,...,c , x-,,...,x ) f  0, by this case we get rid of 

the inequation in the theorem and consider only a system 

of equations. 
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10.  The Decision Method for an Algebraic Curve. 

This section will give a method due to A. Seidenberg 

for deciding whether or not an equation f(x,y) = 0, 

f(x,y)eR[x,y] has a real root, R a real closed field. 

This will depend on the simple fact that if f(x,y) = 0 

has a real root, then it has a root nearest the origin 

9f and this root is also a solution of g(x,y) = x(—) 
9y 

3f -y(-r—) =0.  If (a,b) is such a solution, then a is a 
oX 

root of h(x) where h(x) is the resultant of f(x,y) and 

g(x,y) as  polynomials in y.  These two results are 

codified in the following two lemmas. 

Lemma 1:  Let f(x,y)eR[x,y], R a real closed field, x,y 

indeterminants.  Then if f(x,y) = 0 has a solution in R, 

it has a solution (a,b) nearest the origin. 

Proof:  We consider the intersection of f(x,y) = 0 with 

2  2   2 x -y = c ,CER.  Our hypothesis implies that we have a 

non-empty intersection since there is a solution (a,b) 

of f(x,y) = 0,(a,b) is a solution for x2+y2 = ((a2+b2)^). 

Now let S = {ceR/f(x,y) = 0 meets x2+y2 = c2,c>0}.  We 

first show that S is the same as the set of c>0 such that 

g(c,x) has a root in [-c,c] where g(t,x) is the resultant 

2 2  2 with respect to y of f(x,y), and x -y -t as polynomials 

in R[t,x,y]. 

If CES and (a,b) is a point of intersection of 

x2+y2 = c2 and f(x,y) = 0, then f(a,y) and y2+a2-c2 
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have a common factor.  Therefore g(c ,a) = 0; hence g(c,x) 

has a root a, with -c<a<c.  On the other hand, if c>0 such 

2  2  2 that g(c,x) has a root a with -c<a<c then y +a -c  and 

f(a,y) have a common factor of positive degree by the 

2  2  2 theorem or resultants.  Since the factors of y +a -c = 0 

2 2^" are y+b where b = (c -a )2 then (a,b) or (a,-b) is a point 

2  2   2 of intersection of f(x,y) = 0 and x +y = c , hence ceS. 

If S' is that subset of S consisting of that ceR such 

that g(c,x) has a root in the open interval (-c,c) then 

by the remark on theorem 8.2 we see that S' is the union 

of a finite number of sets defined by finite systems of 

polynomial equations p(c) = 0, inequations q(c)>0 and 

inequalities r(c)>0 where p(t), q(t) and r(t) eR[t]. 

If we look at the loci in R of p(t) = 0, q(t) $  0, 

r(t)>0 we see that the set of points c such that c>0, 

p(c) = 0, q(c) f  0, r(c)>0 is the union of a finite number 

of open sets which might be open, closed, half open, 

single point or extend to <».  So S' is a subset of R of 

this form and since q(c,-Hc) = 0 is either a finite set 

or all of R then S has the same structure as S'.  Now if 

we show that the complement of S in the non-negative real 

numbers is the union of open intervals then S is the union 

of a finite number of closed intervals so it has a minimum 

element.  Let d£S then g(d,x) -d<X£d has no solution. 

Write g(t,x) as a polynomial in x and (t-d),g(t,x) = 8Q(
X) 
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.m + g1(x)(t-d) + ...+gm(x)(t-d)"' then gQ(u) +  0, -d<u<d 

and so there exists d'>d such that g (u) 4  0 -d'<u<.d'. 

Then there are b>0 and B>0 such that |g (u)|>b,|g.(u)|<B 

ue[-d',d'] by the fact that g-(u) are polynomials on 

closed intervals and hence bounded.  Then if |c-d| 

<%,Jc-d|<|g and ue[-d',d'],|g(c,u)|>|gQ(u)|-lgl(u)(c-d) 

+ ...+gm(u)(c-d)
m| > b-2B|c-d|>b- \ = \ . 

If c>0  is such that |c-d|<%, |c-d|<rg, c<d' then c is in 

the complement of S.  This means that if deS then there 

is an open interval containing d such that this interval 

is in the complement of S.  So S is the union of closed 

intervals as required. 

Definition:  A point (a,b) on the curve C:f(x,y) = 0 is 

called a simple point if ((||)(ab),(||) (fl b)) f   (0,0). 
3f In this case the normal vector to C at (a,b) is ((«—)/  KN oX \B., D ) 

3f 
(T—),    us) and the tangent line to the curve at (a,b) has 

the equation (||)(a>b)(x-a) + (||) (y-b) =0.  Let (a,b) be 

a point on C:f(x,y) = 0 nearest the origin.  We want to 

show that b(||)(a)b)-a(||)(a)b) - 0.  If (a,b) = (0,0) 

or (a,b) is not a simple point then this is obvious 

otherwise the equation we want to prove says that the 

vector joining the origin to (a,b) and the normal vector 

to C at (a,b) are linearly dependent or C and the circle 

2  2 k with center at the origin and radius (a +b )^ has the 

same tangent line at (a,b).  If this is not the case then 
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the tangent to the curve C at (a,b) would contain interior 

points to the circle and C doesn't since (a,b) is nearest 

point of C to (0,0).  The following lemma shows that this 

is impossible. 

Lemma 2;  Let p be a point of intersection of a circle and 

a curve C.  f(x,y) = 0.  Assume p is a simple point of C 

and the tangent at p to C contains points interior to the 

circle.  Then C itself contains points interior to the 

circle. 

Proof:  By suitable choice of axis we may assume that 

p = (0,0) then f(0,0) = 0.  And if we choose the x-axis 

af to be the tangent to the curve C at p then (—) /r.  n> = 0 

af and we may assume (f—),Q  Qv = 1. We note that the center 

of the circle is not on the y axis so we may denote it as 

(a,b) with a +  0.  Then we have f(x,y) = f(0,0) + (||)(Q Q) 

+2T <ff>(0,0)X + <0>*2 + 2<fxjy>(O,0)^ 
+ ^(0,0)^ 

+... and this can be written as f(x,y) = y(l+h(x,y)) 

af +g(x) since (f—)/Q Q\   
=  1 and from this equation h(0,0)=0 

2 
and g(x) is a polynomial divisible by x .  Since h(0,0)=0 

we may choose d>0 such that |h(x,y)|£% if |x|£d, |y|<.d 

so %<l+h(x,y) < | and j  <d(l+h(x,d)< -^ and - ^ 

- ^<-d(l+h(x,-d))<- | -d<x<d. 

Since g(0) = 0 there exists a d' ,0<d'<d such that 

f(x,d) = d(l+h(x,d)) + g(x)>0 and f(x,-d)<0 if -d'<x<d\ 

So by the mean value theorem for every x ,|x |<d' there 
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exists yQe[-d,d] such that f(x ,y ) = 0 and hence 

yQ = -s^^vV)"1 an? (a-xo)2+<b-y0
)2 = <a-xo>2 

)2                       2         g(x)o     2 + (b-y ;  + (a-xn)
Z + (b+  °-  ^ 

l+h(xo,yo)
2 

2+K2   ,   4.  2 + 2bS<xo>   .,    gW2 

= a +b  - 2ax + x  + T7, v v +  ! r o   o   l+h(x , y )   /i,u/    \\2 o,jro'   (l+h(xo,yo)) 
2 

Since g(x ) is divisible by x  , if we chose x small so 

2      2   2 2 that a x„ is positive then (a-x ) +(b-y )  < a +b o oo   — 

and this means that (a,b) is a point interior to the 

circle.  We have seen that if C:f(x,y) = 0 has a solution 

2 3f   3f in R then C:f(x,y) = 0 and D:y ■=—■ -x^— = 0 have a common 

point and more generally if C:f(x,y) = 0 has a solution 
2 

in R and (0,0) is replaced by (c,d) then C and D: 
f       3f (y-d)— -(x-a)-srr = 0 have a common point.  We shall use 

this fact to obtain Seidenberg method for deciding the 
2 

solvability of f(x,y) = 0 in R .  First let f(x,y) eR[x,y], 

Using the Euclidean algorithm we can determine a greatest 

common divisor of the coefficients of y of f(x,y) and if 

d(x) is the greatest common divisor we can write 

f(x,y) = d(x)f,(x,y) where f,(x,y) is not divisible by 
2 

a polynomial in x.  If f(x,y) = 0 is solvable in R  then 

either d(x) is solvable or f,(x,y) is solvable and the 

converse is also true.  This means that we can reduce our 

problem to that of primitive one in R[x,y] as polynomials 

in y since d(x) = 0 can be decided by Sturm's theorem. 
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Next if f(x,y)eR[x,y] is a primitive polynomial in 

y we can determine by Euclidean algorithm a greatest 

af common divisor of f(x,y) and —  f(x,y) in R(x)[y] and 9y 
we can write that as u(x) v(x)~  d(x,y) where R(x) is 

the field of fractions of R[x] and d(x,y) is y primitive 

then we see that g(x,y) = f(x,y) d(x,y)  has the same 

roots as f(x,y) and no multiple roots exist and the 

solvability of f(x,y) = 0 is equivalent to that of 

g(x,y) = 0 for the same reason.  So we notice that this 

reduces the problem to polynomials which are y primitive 

with no multiple factors of positive y degree and this 

means that f(x,y) and (^—)(f(x,y)) has no common factor 
3y 

of positive y degree in R(x)[y].  Consider f(x,y) and the 

polynomial defined by g(t,x,y) = y—— - (x-t)— and let 

h(t,x) be their resultant as polynomials in y.  Now 

h(t,x) £  0.  Otherwise h(c,x) = 0 for every ceR, which 

means that f(x,y) and g(c,x,y) have a common factor of 

positive degree in y and since we have a finite number of 

factors of f(x,y) this means that there is c^^Co such 

that g(c. ,x,y) , g(c2,x,y) and f(x,y) have a common factor 
t, £ - 1 

which  implies   that we have  f(x,y)   and ~ =  (c-^-C2) 

[g(c,,x,y)-g(c?,x,y)]   have  a non-trivial  common factor, 

a  contradiction with  the  choice  of  f(x,y);  hence h(t,x) 

f 0.     Let  c be  chosen such  that h(x)   = h(c,x)   f 0   and 

write g(x,y)   = g(c,x,y)   = y(||)-(x-c)(||).    We  see  that 
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these two polynomials have no common factor of positive 

degree in y since h(x) f  0 and since f(x,y) is primitive 

y polynomial so they have no common factor in x alone. 
2 

Since we have seen  that if f(x,y)   = 0 has   a root in R 
3f 3f then  also   f (x,y)   = 0  and g(x,y)   = y^— -   (x-c)-r— =  0 has 
oX       dy 

2 
a common point in R and this means that if (a,b) is 

such a point then f(a,y) and g(a,y) have the common 

factor y-b which implies that h(a) = 0 so h(x) = 0 has a 

solution.  In fact this result is convertible also so 

if h(x) has a root a then f(x,y) and g(x,y) have a common 

factor.  This can be proved provided that we choose the 

generators x,y of R[x,y] suitably.  So the main result 
2 

we have is that f(x,y) = 0 has a root in R equivalent 

to that h(x) which is the resultant of f(x,y) and 

g(x,y) = y -^=-  - (x-c)-r— has a root and this can be de- 
dX        dy 

cided by Sturm's theorem.  There is an extension of this 

procedure to the case of f(x,y) = 0 restricted by g(x)^0. 

We can assume as before that f(x,y) is y primitive as a 

polynomial in y and we assume that degree g(x)>0, other- 

wise it is trivial case since g(x) will be a constant. 

So let t(y) be the resultant of f(x,y) and g(x) as poly- 

nomials in x, t(y) f 0 since f(x,y) is primitive y poly- 

nomial.  Let ceR be chosen such that t(c) f  0 and we re- 

place f(x,y) by f-,(x,y) = f (x,y+c) .  Now f(x,y) = 0, 

g(x) f 0 is solvable if and only if the system 
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f,(x,y) = 0, g(x) ^ 0 is solvable, we notice that the 

resultant with respect to x of fi(x,y) and g(x) is t(y+c) 

and this is different from 0 for y = 0 so f, (x,0) and 

g(x) have no common factor in R[x].  If we put fo(x,y) = 

f-, (x,g(x)y) then f-,(x,y) = 0, g(x) f  0 is solvable in R 

if and only if fp(x,g(x)y) is solvable in R, since if 

(a,b) is a solution of the first system then f2(a,g(a b)) 

= f,(a,b) = 0.  On the other hand, if F2(a,c) = f,(a,g(a)c) 

= 0 then g(a) $  0.  Otherwise, if g(a) = 0 then g(x) 

and f-. (x,0) have a common factor (x-a) . a contradiction 

with the fact that f(x,0), g(x) have  no common factor. 

Now if b = g(a)c then (a,b) satisfies f-,(x,y) = 0, g (x) 

^ 0.  So this case, which is the solvability of f,(x,y) 

= 0, g(x) f  0, turns out to be a problem of deciding the 

solvability by Sturm's theorem of their resultant and 

the problem of solvability of f(x,y) = 0, g(x) f  0 is 

reduced to the problem of solvability of h(x)eR[x]. 
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