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ABSTRACT 

Three topics currently of interest in quantitative micro- 

analysis, related to both energy dispersive x-ray analysis (EDS) 

and energy loss spectroscopy (EELS), have been investigated to 

assess the accuracy of the respective quantitation procedures. 

Using EDS analysis, the depth of x-ray production in a thin 

Ni foil has been determined by comparing the x-ray intensity 

emitted from a Cu tracer layer covered with various thicknesses 

of Ni, with the intensity from the isolated tracer layer.  It 

has generally been assumed that the depth of x-ray production does 

not vary with thickness in thin foils, however, this investigation 

indicated a 30% increase in x-ray production over a thickness range 

0-380 nm. This result has important implications for systems 

in which x-ray absorption is significant because a knowledge of 

the depth of x-ray production is required to calculate an absorption 

correction factor. 

Another parameter that is critical to the absorption correction 

factor is the foil thickness, which is commonly measured by the 

contamination spot method.  The use of evaporated metallic foils, 

the thicknesses of which are known to + 5 nm using Tolansky 

interferometry, has permitted comparison with measurements from 

the contamination spot technique. It was found that the contamin- 

ation spot method considerably overestimated the true foil thick- 



ness by a factor of between 1.5 and 3, the error being greatest 

for foils <100 nm thick, implying that this technique may be of 

limited reliability. 

The accuracy of present EELS quantitation procedures has 

been assessed using a directionally solidified eutectic in the 

ZrCL-CaO system. Previous studies using EELS have been limited 

Ca / 
to simple two-component systems.  In the present study  '0 

ratios were determined under various operating and analysis 

conditions and showed good agreement with values calculated from 

the stoichiometry.  Systematic errors in the EELS data were attri- 

buted to difficulties in fitting the Ca edge, due to the proximity 

of other edges in the spectrum, highlighting one of the major 

problems associated with analysis of multicomponent systems. 

In addition, sharp discontinuities in the  '0 ratio were observed 

when profiling across lamellar interfaces, indicating that EELS 

shows good sensitivity to abrupt changes in composition and has 

potential for quantitative light element analysis. 



I■  INTRODUCTION 

When a high energy electron beam interacts with a thin foil 

many secondary signals are produced, as indicated in Figure 1. 

The development of the scanning transmission electron microscope 

(STEM) has enabled many of these signals to be detected and 

subsequently processed to give quantitative data, while still 

preserving the capability of high resolution imaging. 

This work deals with quantitative analysis techniques using 

two of these characteristic signals, namely energy dispersive 

spectrometry (EDS) of x-rays and electron energy loss spectros- 

copy (EELS) of inelastically scattered electrons. 

Quantitative x-ray analysis is now well established and 

is routinely performed using the STEM coupled with an energy 

dispersive x-ray spectrometer and multichannel analyzer.   Char- 

acteristic x-rays are produced when an incident electron ejects an 

electron from one of the inner shells of an atom in the specimen. 

The atom returns to its normal energy state when one of its 

outer electrons falls into the inner shell and emits energy in 

the form of x-radiation.  In thin foils x-rays are emitted uni- 

formly in all directions but since the detector only subtends 

a small solid angle at the specimen only a fraction of the x-ray 

signal can be detected.  Thus quantitation of EDS measurements 

cannot give absolute concentrations but relies on a ratio tech- 

nique to give relative concentrations of two or more species. 



In contrast, EELS is a relatively new technique which 

until recently has only been used for qualitative chemical analysis. 

EELS gives a measure of the primary inelastic scattering event 

of an incident electron.  For elemental analysis the most impor- 

tant scattering process is the ionization of the inner shell of 

an atom which is the first step in the production of a character- 

istic x-ray.  The energy lost by an incident electron in ionizing 

the inner shell electron is characteristic of the particular 

atom.  The inelastically scattered electrons have a small 

angular distribution and so the total signal can effectively 

be collected and analyzed, in contrast to x-rays. Thus absolute 

quantitation should be possible using EELS, although this is 

still in the developmental stage. 

With recent improvements in instrumentation and an increased 

knowledge of electron beam/specimen interactions, there is the 

potential to achieve even greater accuracy in quantitative analysis. 

In this xrork three topics currently of interest in this area have 

been investigated. In x-ray analysis, compositions are generally 

(2) 
determined using the Cliff-Lorimer equation   which relates the 

characteristic peak intensities I. and IR to the actual concentra- 

tion of the species in wt.%, C. and Cg, according to the relation- 

ship : 



where k.g is a constant for a given pair of elements.  In systems 

in which significant absorption of x-rays occurs, however, a 

correction factor must be applied to equation (1) to account for 

(3) the effects of absorption. Goldstein, et al.   have proposed 

the following modification to equation (1), where the term in 

large parentheses is the correction factor: 

r    C B 

C_A      .        h 
/ <(> (pt)exp (--M     cosec cc(pt)) dt 
n  B      V PUvvr I SPEC 

.A 
/ 0.(pt)exp l~^-\ cosec a(pt)| dt 

Lo  A       I PJSPEC ; 

(2) 

Pj c 

where    <f>(pt)   = the depth distribution of x-ray production 

= the mass absorption coefficient for x-rays 
SPEC 

from element i in the specimen 

p  = the density of the specimen 

t  = the specimen thickness 

a  = the x-ray take-off angle 

When equation (2), is used, the accuracy of the calculated 

composition is dependent on the accuracy of the absorption 

correction factor.  In this equation, the depth of x-ray produc- 

tion <j>(pt), is generally assumed to be equal to 1 (i.e. x-rays 

are generated uniformly throughout a thin foil). However, there 

have been no experimental measurements of <f(pt.) for thin foils 

at high accelerating voltages (> 50 kV) and evidence suggests 



that this assumption is not necessarily a valid one. Accordingly 

<Kpt) curves have been determined for thin Ni foils at 60 kV and 

120 kV to assess the accuracy of this assumption. 

Another parameter affecting the absorption correction is the 

foil thickness t, which is generally measured by the contamination 

(4) 
spot method.    A knowledge of the foil thickness is also required 

to determine the size of the activation volume for x-ray analysis 

and to obtain absolute concentrations in EELS. Although the con- 

tamination spot method is relatively simple and can be used on 

most materials, its accuracy has been brought into question.  In 

this work, therefore, thin metallic foils of known thickness 

(to within + 5 nm) have permitted a comparison to be made with 

thickness measurements made using the contamination spot method. 

Finally, in the area of energy loss spectroscopy, a more 

general topic has been studied, namely the accuracy of quantita- 

tive data obtained from a ceramic system of known composition. 

Previous work in this area has been limited to model systems such 

as MgO and BN in which only K shell interactions have been 

considered and the resulting edges are well separated.  In this 

work a more complex system, namely a directionally solidified 

eutectic of CaO stabilized ZrO- has been used to assess the 

accuracy of energy loss quantitation.  In this system, considerable 

overlap of the characteristic edges occurs and both K and L edges 

must be used for analysis.  Hence this work provides a more rigorous 

test of current energy loss quantitation techniques. 



II.  j>(pt) MEASUREMENTS 

1.  Background 

In quantitative mieroanalysis, we are concerned 

with converting measured intensity ratios into chemical composi- 

tions using either empirical or theoretical methods.  For thin 

foils it has generally been assumed that absorption and fluores- 

cence of x-rays within the specimen can be ignored and so a simple 

standardless relationship, the Cliff-Lorimer equation, can be used 

to determine the compositions C. and CR of elements A and B 

(as described in the previous section) 

Hence:       CA      I 
7T— = kATJ — (Equation 1, Section I) 
C
B 

M h 

where k  is a constant for a fixed accelerating voltage and 

I. and IR are the characteristic peak intensities above the 

continuum background. 

Although it has generally been established that fluorescence 

in thin foils can indeed be neglected, evidence suggests  that 

absorption of x-rays is often significant if the combination 

of film thickness and the difference in mass absorption coeffi- 

cients is large enough.      In such cases, the value of k.R 

will vary with foil thickness and may give rise to errors in 

(3) excess of + 10% in the calculated composition.  Goldstein, et al. 

introduced a correction term into the Cliff-Lorimer equation to 



account for the preferential absorption of one characteristic 

x-ray with respect to another. 

Hence, as given in the previous section and repeated here, 

t B 

J  ij)R (p t)exp( - H-     coseca(pt)) dt 
o V  PJSPEC ' 

/ * (pt)expf - H.1     cosec a(pt) dt 
Lo A      V  PJSPKC 

(2) 

where   Hpt) = the depth distribution of x-ray production 

f) 
= the mass absorption coefficient for x-rays 

SPEC  from element i in the specimen 

p  = the density of the specimen 

t = the specimen thickness 

a  = the x-ray take-off angle 

The absorption correction requires a knowledge of the 

distribution of x-ray production with depth, <ji(pt).  (j>(pt) 

is known to vary significantly with depth in bulk specimens 

because of the large ionization volume (Figure 2), although values 

have only been obtained for relatively low electron energies 

(8) 
(<50kV).  Early calculations by Konig   and Yakowitz and 

(9) Newbury   however, predicted that for all electron transparent 

thin foils at 100 kV, <j>(pt) is approximately equal to 1.  For 

thin films, therefore, it has generally been assumed that the 

x-ray distribution remains constant throughout the foil.  Thus 

8 



<J>A(Pt) = <f> (Pt) = 1 and equation (2) reduces to: 
A       Is 

-.A       r /H-1 ^ V 
H-     1 - exp -Ip      cosec a(pt))l 
pJsPEC I SPEC- 'J cA     I 

cT = kAB i~     S^' r r~TS H   /(3) 

" 'SPEC 
H.     1 - exp -( ]~     cosec a(pt)     ' 

Recent work,    however, has indicated that in relatively- 

thick samples in which there is a considerable amount of absorption, 

equation (3) is not an accurate description of the absorption 

correction.  This may be due in part to the assumption that <J>(pt) 

is constant with foil thickness. 

Experimental Measurements of (ji(pt) Curves 

Experimental <j>(pt) curves have been determined by a number 

(11-15) of workers       using the sandwich sample technique originally 

(16) 
proposed by Castaing and Deschamps.     The sandwich sample 

(Figure 3) consists of a thin tracer layer which is covered 

by successively thicker layers of the matrix element, for which 

the curve is determined.  The tracer layer is chosen to be one 

greater in atomic number than the matrix layer, so that its 

properties with regard to x-ray excitation may be assumed 

identical to those of the matrix but in addition it will not be 

fluoresced by the matrix.  The <f>(pt) curve is then generated by 

measuring the x-ray intensity emitted from the tracer layer at 

various depths in the matrix.  Figure 4 shows the <|>(pt) curves for 



(16} 
Al, Cu and Au at 29 kV as determined by Castaing and Deschamps. 

The curves start with a <f>(pt) value larger than unity at zero 

depth due to the contribution from backscatter in the specimen. 

The x-ray distribution then begins to increase with depth as the 

electron trajectories become progressively diffused in the sample, 

which increases their path length in the tracer layer. The curve 

finally drops off as the number of electrons penetrating the deeper 

layers decreases. 

Since absorption problems are more commonly associated with 

bulk microanalysis in the electron microprobe or SEM, all the 

<KPt) experiments to date have been performed on bulk specimens 

using relatively low accelerating voltages ( <50 kV).  For a thin 

film specimen it is necessary to measure the intensity of radiation 

emitted from tracer layers at known depths relative to an identical 

tracer layer isolated in space. However, the total thickness t 

of the film (including the tracer) should be held constant and 

a <j>(pt) curve obtained for that thickness.  Experimentally, the 

production of several thin films of a given thickness each 

containing tracer layers at various depths is very difficult. 

However, if the backscatter coefficient for electrons in these 

films is very low the effect of the material below the tracer 

layer on x-ray production in the tracer layer is very small.  In 

this case, <j>(po) = 1; that is, the x-ray emission from the tracer 

layer on the surface of the film will be equal to that of the 

10 



tracer layer isolated in space. 

Thus the major difference between the technique employed 

in this work (for thin foils) , and the original technique of 

Castaing and Deschamps    is that in the latter case the composite 

sample was always of the same thickness and the tracer layer 

moved to different depths within the matrix.  In this work the 

tracer layer always formed the base layer, and different 

thicknesses were deposited on top of the foil. 

Calculations of <ft(pt) Curves 

Several models have been proposed in which the fundamental 

interactions of electrons and atoms could be used to calculate 

(17-19) 
<j)(pt) curves.       However, calculations based on Monte Carlo 

methods have probably received the most attention since they are 

capable of describing x-ray production in three dimensions and 

are not limited to single phase materials.  Monte Carlo calcula- 

tions essentially simulate a large number of electron trajectories, 

segment by segment, based on a mean electron range for a given 

accelerating voltage and target. Although there are several Monte 

Carlo calculation methods presently in use, they all have certain 

common characteristics, described in greater detail by Kyser. 

Monte Carlo calculations of $(pt) for bulk specimens, at relatively 

low accelerating voltages, have shown good agreement with experiment 

and so the technique has been extended to include thin foils at 

high operating voltages.  The major difference between a thin foil 

11 



and a bulk specimen is that very few electrons are scattered or 

lose significant energy before emerging from a thin film. 

This leads to a small fraction of backscattered electrons and 

a small x-ray source.  Thus Monte Carlo calculations are much 

simplified for thin films.  Using this technique Kyser    has 

predicted that, at 100 kV, there would be no variation in <j>(pt) 

with depth for a 400 nm Al film, but for films of Cu and Au 

(of the same thickness) 0(Pt) increases by 5% and 20% respectively. 

Although it would appear that Monte Carlo calculations 

offer a quicker and more convenient method for generating <j>(Pt) 

curves there is much uncertainty as to  the accuracy of the 

input parameters used to describe the electron interactions. 

Therefore to establish the reliability of these calculations for 

thin foils, there is a need to compare the calculations with 

measured curves, for a variety of elements and electron voltages. 

2.  Experimental Procedures 

Sample Preparation 

A series of thin film samples were prepared for the deter- 

mination of the <J>(Pt) curve for Ni, each having an initial 

layer of Cu, approximately 60 nm thick acting as the tracer 

element.  Different thicknesses of Ni were then deposited on 

the samples leaving a section of the tracer layer exposed on 

each specimen. The specimen geometry is shown in Figure 5. 

Both the tracer and matrix layers were prepared by vacuum 
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evaporation and deposition onto a 2.5 mm square single crystal 

of sodium chloride.  The Cu was deposited by thermal evaporation 

from a heated tungsten filament, and the Ni by electron beam 

evaporation. 

Film thickness measurements were made by the Tolansky 

(21) 
multi-beam interferometric technique    using glass 3lides which 

had been placed in the evaporation system at the same distance 

from the evaporation source as the specimens.  A schematic of 

the Tolansky technique is shown in Figure 6a.  The glass slides 

were partially masked so that material was only deposited on half 

of the slide.  After deposition the mask was removed and the 

entire surface covered by evaporating Al, which has high reflec- 

tivity.  The Al layer follows exactly the contour of the initial 

film, giving rise to a step on the surface of the slide with a 

height equal to the thickness of the initial deposited film. 

When this step is observed in the optical microscope using 

multi-beam interferometry, a series of stepped fringes are 

observed (Figure 6b). The distance between successive fringes 

(L) corresponds to half the wavelength of the incident light 

(monochromatic radiation from a sodium lamp, 589.3 nm).  The 

ratio of the step height (AL) to the fringe width (L) gives a 

measure of the film thickness. 

Hence: 

t   =!li ^ (4) Cfilm   2   L V J 
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Thicknesses measured using this technique are accurate to 

within + 5 nm. 

Details of the specimens used in the <|>(pt) determination are 

listed in Table I. When both Cu and Ni evaporations were complete 

the NaCl substrates were dissolved in water and the films 

floated onto 3 mm Be grids. 

In addition to the interferometry measurements the Ni film 

(22) 
thicknesses were also measured using a quartz crystal oscillator 

(23) 
(Figure 7), and by Talysurf    measurements.  A comparison of 

thickness measurements made using each technique is given in 

Table II. 

Generation of Data 

The <#>(pt) curve was determined using the Philips EM400T AEM, 

in which the electron incidence angle is normal to the sample 

surface and the x-ray take-off angle a =20°.  Intensity measure- 

ments from the Cu tracer layer beneath the Ni matrix (I ) were 

made at 120 kV and 60 kV using a probe size of 10 nm, and normal- 

ized by measuring the intensities from regions not covered by 

Ni (I ).  A total of 20 measurements were made in both the Cu/Ni 

and Cu regions to minimize the effect of minor fluctuations in 

emission current. The maximum count time at each point was 30 

seconds and in addition groups of 4 readings were taken alternately 

from the 2 regions of the specimen.  Each intensity reading was 

corrected for background and measurements made in the Cu/Ni region 

were corrected for absorption. 
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Values of <f>(pt) for each specimen were obtained by taking 

the ratio of the Cu intensity from the Cu/Ni region to that of 

the intensity from the pure Cu region. 

Considerations of Specimen Geometry 

As mentioned previously, <p(pt)  curves can only be 

determined using the technique outlined if the backscatter 

coefficient is extremely low.  In order to determine the degree 

of backscatter the thickest specimen (380 nm) was reversed 

so that the tracer layer was then on top of the foil. X-ray 

counts were then taken from the isolated tracer layer and also 

from the tracer layer on top of the Ni matrix. When the latter 

reading was markedly higher than the former, the backscatter 

coefficient was considered too high for the determination of 

the cf>(pt) curve.  In such cases only the first and last points 

could be obtained for a particular film thickness.  However, for 

thinner films at the same accelerating voltage, backscatter should 

not be a problem and so readings were taken from successively 

thinner, reversed foils until no backscatter was observed.  The 

<J)(pt) curve could then be determined for all points up to this 

foil thickness. 

To determine the applicability of this technique for dif- 

ferent accelerating voltages, the 380 nm thick specimen was also 

examined at 80 kV and 100 kV to determine the degree of backscatter, 
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Statistical Analysis 

The determination of <f>(pt) curves requires taking the ratio 

of two values (the Cu x-ray intensity from the Cu/Ni region and 

that from the pure Cu region) which are very nearly equal to 

each other.  In order to distinguish a true difference between 

the two values in question, the observed difference in x-ray 

counts must be greater than the error in the individual readings. 

This is known as the analytical sensitivity and is expressed 

mathematically by: 

/2  t1"? S 
N_N  >  V c (5) 

1 ~     n'2 

where N and N. are the mean x-ray counts from each region, S is 

the standard deviation (which is assumed to be the same for both 

1-a 
numbers since they are almost equal), t 1 is the Student t 

distribution value, and n is the number of counts taken for each 

set of numbers. 

Thus in terms of a percentage, the analytical sensitivity 

is given by: 

/2 ,>? S n-1 c 
Sensitivity (%) =   % rr ^ n JN 

In this work, the Student t value used was that for a 95% 

confidence limit using 16 measurements. 
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3.  Results and Discussion 

The experimental cf>(pt) curve for 380 nm of Ni at 120 kV 

is shown in Figure 8.  The error bars represent 95% confidence 

limits and only the first two data points (for Ni depths of 25 

and 55 nm) fail to satisfy the analytical sensitivity criterion 

(equation 5).  This is not surprising since at small depths 

<f>(pt) is very close to unity and the errors in thickness 

measurement and difficulties in obtaining a uniform film are 

the greatest. 

The <#>(pt) data vary by 30% over the thickness range 0 to 

380 nm. The curve appears to be approximately linear up to a 

thickness of 200 nm but above this value <J>(pt) increases more 

significantly with increasing depth. 

The error bars imply that up to a thickness of 80 nm the 

value of <f>(pt) does not vary significantly from a value of 1.0 

Thus below 80 nm the x-ray production throughout the specimen 

may be considered uniform.  This in turn indicates that the 

Cu tracer layer used (60 nm) was of suitable thickness that 

the x-ray production within the tracer could be considered 

uniform. 

The (fi(pt) curve for 60 kV is shown in Figure 9.  Significant 

backscatter was observed in all foils > 167.5 nm and so the 

<j)(pt) curve could only be determined'up to 110 nm. The first 

few points on the curve (for Ni depths of up to 110 nm) all 
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failed to satisfy the analytical sensitivity criterion indicating 

that there was no variation in <j>(pt) over this thickness range. 

For depths > 110 nm only the first and last points of the 

(j)(pt) curve could be determined since <j)(po) was different for 

each foil thickness.  Since the degree of backscatter should 

vary linearly with foil thickness, the data in Figure 9 has been 

plotted using a least squares fit to the original <£(po) data. 

These results at 60 kv indicate that this technique is unsuitable 

for (jjCpt) determination at low accelerating voltages since the 

contribution from backscatter is significant. 

<(>(po) values for the 300 nm foil were also determined at 

80 kV and 100 kV and the results are given in Table III. At 

120 kV and 100 kV <KPo) was effectively equal to 1 since 

the analytical sensivitity criterion was not obeyed.  Backscatter 

may therefore be considered negligible at these accelerating vol- 

tages and so <J>(pt) curves can be determined using this technique. 

Below 100 kV however, <f>(po) values Xirere always greater than 1, 

implying that considerable backscatter was occurring in the foil 

at low acclerating voltages. 

It may be concluded from this work, therefore, that this 

method for determining <Kpt) curves is only suitable for acceler- 

ating voltages of _> 100 kV, for 380 nm of Ni.  In addition, the 

significant variation in ij>(pt) at 120 kV observed in this investi- 

gation has important implications as far as thin film absorption 
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corrections are concerned. The assumption that <fi(pt) is always 

equal to 1, as is common practice, is not necessarily a valid 

one.  This work indicates that in the case of a Ni foil at 

120 kV, 0Cpt) is only equal to 1 for foil thicknesses of. ^80 nm, 

which are rarely achieved in conventional analytical microscopy. 

The results of this investigation are compared in Figure 10 

with the theoretical <j>(pt) curves determined by Kyser    and 

Newbury    based on Monte Carlo calculations.  Newbury's 

model appears to agree more closely with the experimental data 

from this work although it only predicts a 10% increase in <|>(pt) 

over the thickness range investigated.  The <j>(pt) curve 

produced by Kyser for Cu x-rays at 100 kV shows only a 5% 

increase in (f>(pt) over the same thickness range.  It would be 

expected therefore that a corresponding curve for 120 kV would 

show an even smaller increase in <f>(pt), since higher energy 

electrons give smaller variations in <J>(pt) over the same thickness 

range.  The difference in the <|>(pt) curves calculated by Kyser 

and Newbury may be attributed to detailed differences in the 

assumptions and theoretical expressions used in the two Monte 

Carlo approaches.  However, the reasons for the discrepancy between 

calculated and measured <j>(pt) curves are not fully understood. 

It may be that the Monte Carlo calculations do not accurately 

describe the scattering processes taking place in a thin foil 

and thus underestimate the variation of <j)(pt) with foil thickness. 

19 



Alternately, the experimental technique employed may not be 

accurate enough for this kind of determination. 

(25) However, as has already been discussed by Lorimer,    with 

( 36) 
reference to the initial publication by Stenton, et al.    of 

the above results, if significantly high values of cf>(pt) (e.g. 

1.3 at 380 nm in Ni) are substantiated it has important 

implications for calculating absorption corrections.  Such 

deviations of 0(pt) from unity would ultimately specify a 

thickness limit for the validity of equation 3. 
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III.  FOIL THICKNESS MEASUREMENTS 

1. Background 

Foil thickness measurements are important in several aspects 

of quantitative analysis in the TEM.  In x-ray analysis the foil 

thickness must be known to determine when correction factors for 

x-ray absorption should be applied and also their magnitude 

(Equation 2, Section II). In addition, the foil thickness must 

be known to determine the analyzed volume.  Recent progress in 

the quantitation of EELS measurements has indicated another area 

in which a knowledge of foil thickness is required.  When using 

EELS to analyze for a single element, the value obtained has 

units of atoms/cm ,     Thus, in order to compare absolute values 

from different regions of the specimen (of variable thickness) a 

knowledge of the foil thickness is required.  In addition, in 

energy loss analysis the accuracy of the thickness measurement 

is critical since the final value is extremely sensitive to this 

measurement, and suitable specimens are typically <50 nm in thick- 

ness. Thus a method capable of measuring variations in thickness 

from 0-50 nm, with high accuracy, is required. 

There are various methods for foil thickness determination, 

not all of which are applicable to particular situations.  Use of 

extinction distances (£ ) measurements under two beam conditions 

requires tedious calculation or is restricted to systems where 
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£ has been tabulated. Measurement of the projected width 

of slip traces or any planar defects requires that they be 

present in the region of interest.  The use of latex balls 

( 28) 
on either side of the foil has been suggested    but this 

requires dipping the specimen in alcohol which may encourage 

the formation of carbon contamination.  The use of Kossel- 

Mollenstedt fringes in convergent beam patterns is accurate 

if csuch fringes can be observed.  In past experience that has 

not been possible in many thin specimens of engineering materials. 

Usually, therefore, thickness is determined using the contamination 

spot separation method, since such spots can easily be generated 

on all specimens even in a Philips EM400T ion-pumped environment, 

by simply disengaging the cold finger. Although it is acknowledged 

that there are errors in such measurements (e.g. the work of Love, 

(29) 
Cox and Scott   ) the ease of the technique counters this 

drawback. Accordingly contamination spot separation measurements 

were made on a number of thin films of known thickness in order 

to determine the accuracy of the technique. 

2.  Experimental Procedures 

The films measured comprised two films of Al and a Cu film 

which were all produced by thermal evaporation from a heated 

tungsten filament onto NaCl substrates.  The film thicknesses were 

independently determined using the Tolansky technique in combina- 
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tion with Talysurf and quartz oscillator frequency measurements, 

as described previously in section II. Contamination spots were 

produced on each specimen using a 10 nm probe for several 

minutes with the specimen set at zero tilt.  The thin films were 

mounted on formvar-coated grids to give sufficient support, but 

contamination spots were only produced in regions where the support 

film was incomplete so that the values obtained did not include 

the thickness of the formvar.  The specimen was then tilted 

until the contamination spot was seen to separate into two sections 

(Figure 11). The tilt angle, magnification and spot separation 

distance were then recorded and the film thicknesses determined 

geometrically. At least ten measurements were made on different 

areas of each specimen. 

3. Results and Discussion 

Table IV shows the results of the contamination spot measure- 

ments together with the corresponding Tolansky measurements (which 

are accurate to within + 5 nm). The errors observed in contamination 

spot data are considerably greater for the thinner films both in 

terms of the variation of readings for the same film thickness and 

in the error over the Tolansky thickness. This is to be expected, 

since thin films are more likely to show slight thickness variations 

and also because the spot separation is considerably smaller for 

thin specimens and thus harder to measure accurately. 

A source of the observed error must be attributed to the 

23 



measurement of the spot separation distance after tilting, 

since such distances are relatively small. Also any error 

incurred in this measurement is greatly magnified when the 

actual thickness value is computed.  The presence of an existing 

oxide film and/or contamination layer would also contribute to 

(29) the observed difference as suggested by Love, et al. 

However, no diffraction evidence for significant surface oxida- 

tion was ever observed and it is not considered reasonable that 

a contamination layer of 100 nm thick exists. More recently 

(30) 
Rae, et al.    have suggested that the major source of inaccura- 

cy in the contamination spot method is due to the fact that the 

contamination spots are surrounded by a disc of contamination 

which is not clearly visible.  Thus the error arises from the 

selection of points on the image from which the measurement is 

made. All that can be concluded with certainty therefore, is 

that the contamination spot separation measurement technique 

significantly overestimates the actual foil thickness and appro- 

priate precautions should be taken when this is the only technique 

available to determine thickness. 
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IV.  ELECTRON ENERGY LOSS MEASUREMENTS 

1.  Background 

Electron energy loss spectroscopy (EELS) is a technique 

for obtaining chemical and structural information by measurement 

of the energy distribution of electrons which have interacted 

with a specimen but which still remain part of the primary beam. 

Electrons of a single kinetic energy (in the range of 20 keV to 

1 MeV) are passed through a thin specimen and those which undergo 

inelastic scattering are identified from their resulting energy 

loss by passing the transmitted beam through an electron spectro- 

meter. For elemental analysis the most important inelastic 

events are the ionizations of the inner shells of the atom since 

these cause discontinuities or edges in the energy loss spectrum 

at energies characteristic of the particular element.  This 

(31) 
analysis technique was initially proposed by Hillier and Baker 

in 1944 but has only recently been exploited, primarily as a 

result of improved electron optics and more efficient electron 

spectrometers. 

Equipment 

Microanalysis using EELS can be accomplished using a fairly 

simple system in which an electron spectrometer is placed below 

the camera chamber of a transmission or scanning transmission 

(32) 
(STEM) microscope (Figure 12.)     The transmitted electrons 
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are analyzed using an electron spectrometer which collects a 

large fraction of the electrons and disperses them in a focal 

plane by an amount depending on their loss of energy relative 

(33) to the kinetic energy of the incident beam.     A well defined 

spectrum from a specific area of the sample can then be obtained 

by scanning the energy information over a selecting slit.  Electron 

spectrometers generally have a resolution of 1 eV or less but 

a resolution of 20 eV is usually adequate for detection of the 

characteristic edges, even in the most densely populated region 

of the spectrum (0-700 eV).  The spectrometer analyzes all 

electrons scattered within an angular cone 0, which is set by 

(34) 
the choice of objective or intermediate aperture (Figure 13). 

The area for analysis is selected by an aperture located just 

below the viewing screen and the illumination beam angle a, is 

set by the mode of operation, TEM or STEM. Energy loss spectra 

may be recorded and processed directly in a multichannel analyzer 

(MCA), making microanalysis more convenient. 

The Energy Loss Spectrum 
MM 

A typical energy loss spectrum is shown in Figure 14    and 

is plotted in terms of the transmitted signal 1(E) as a function 

of the energy loss E.  It contains a sharp peak at E= 0 followed 

by one or more broader peaks generally in the range 10-50 eV, 

followed by the characteristic edges at higher energy losses. 

The peak at E=0 is known as the zero loss peak and is the largest 
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single component in the energy loss spectrum. This peak 

contains unscattered electrons which have suffered no inter- 

actions in passing through the sample, together with electrons 

which have interacted with the specimen but lost only small 

amounts of energy.  The peak has a finite width due to the energy 

resolution of the spectrometer, the spread of energy in the incident 

beam from instabilities in the accelerating potential and a thermal 

component if a hot source is used. 

Considerable structure is observed in the spectrum from 

0-50 eV, due mainly to the excitation of valence or conduction 

electrons, and these are known as "Plasmon" losses.  These exci- 

tations occur in metals and alloys which have a large number of 

free electrons and since many valence electrons are involved they 

are generally termed "collective excitations." The incident 

electron loses energy E  (^20 eV) if it excites a plasmon; this 

energy loss depends on the free electron density and so can be 

used to identify the material. The plasmon mean free path is 

typically 50-150 nm at 100 kV so that in thick specimens the 

electron may excite more than one plasmon and its total energy 

loss would be a multiple of E  .  In a typical specimen a large 

fraction of the transmitted electrons will have lost energy by 

creating plasmons and the signal intensity in this region may 

be comparable to that of the zero loss peak.  This was the first 

(35) 
energy loss process to be used for microanalysis    but it is 
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limited to materials showing good plasmon peaks, such as Al 

alloys. Transition metals, insulators and organic materials, 

in which the valence electrons are not free to take part in 

collective excitation show more complex profiles in the low 

energy loss region. The losses in this case are mainly due 

to the excitation or ionization of electrons from various bound 

states and are generally difficult to interpret. 

At higher energy losses (> 50 eV) the energy loss spectrum 

consists of inner shell ionization edges superimposed on a 

smoothly falling background.  The background contains no 

microanalytical information and arises from a number of effects 

such as the excitations from valence states to vacuum, multiple 

plasmon losses, and the tails of edges at lower energy losses. 

In a multi-element system, each successive edge will contribute 

to the background intensity of edges at higher energy losses, 

since unlike x-ray peaks, edges are of indefinite extent.  The 

characteristic edges of interest are superimposed on a rapidly 

changing background.  Each edge represents the energy loss 

associated with the ionization of an electron from an inner 

shell of an atom, which is the first step in the production of a 

characteristic x-ray. A large amount of analytical information 

can be obtained from the interactions associated with the excita- 

tion of inner shell electrons. For example, the energy loss at 

which the edge starts is the classical ionization energy of an 
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atom and is uniquely characteristic of that element.  These 

(36) 
characteristics energy losses have been tabulated    as shown 

in Figure 15.  In addition, the shape of the edge is affected 

by the chemical state, electronic band structure and crystal- 

(37) 
lography of the specimen.     Since the inner shell ionization 

processes are highly localized, they are especially suitable for 

studies at high spatial resolution. 

The mean free path for K x-ray excitation is proportional 

to the incident electron energy and at 60 kV lies in the 

range 3-10 ;um.  This figure is considerably larger than that for 

plasmon excitation and explains the relatively low intensity of 

the ionization losses on the spectrum.  This is usually compen- 

sated for, as shown in Figure 14, by incorporating a gain change 

in the spectrometer at ^0 eV to amplify the ionization loss 

signal. 

Shapes of Ionization Edges 

The true shape of an ionization edge can only be observed 

after stripping the background intensity from the spectrum. 

Although it is not possible to calculate the shape of the back- 

(38) 
ground from first principles, it has been found experimentally 

that the energy differential cross-section of the background has 

the form: 

ff-A-E- (7) 
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where E is the energy loss and A and r are constants depending 

on the spectrometer acceptance angle, 3.  Thus for a fixed 

value of 3 the background falls as E  (where r is in the range 

of 3-5).  The background intensity can be subtracted using a 

(37) 
method due to Egerton and Whelan,    in which the experimental 

data are plotted on a log-log scale (Figure 16). 

K ionization edges arise as a result of the excitation of 

Is electrons and are characterized by a sharp rise in intensity 

followed by a gradual decay of the signal on passing through 

C39) 
the edge energy (Figure 17a).     The shape of the K edge makes 

the measurement of its threshold energy relatively easy, and 

since this is proportional to the atomic binding energy an 

element can be readily identified from its K edge. 

L and M shell ionization edges differ from K edges in that 

they do not all display a sharp threshold but often have their 

maximum intensity at an energy loss many eV above the threshold. 

Such delayed maxima often make identification of L and M edges 

more difficult.  Excitation of the 2p electrons gives rise to 

L2o edges, the shape of which vary considerably with atomic 

number (Figure 17b),  This variation is attributed to the band 

structure of the elements and is associated with the density of 

(40) 
unoccupied states above the Fermi level.     M,c edges arise 

from the excitation of 3d electrons and generally do not show 

sharp discontinuities at the ionization edge, but display a 
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slow rise in intensity over nJtO  eV (Figure 17c). 

Edge shapes have also been derived from calculations of 

ionization cross-sections and have shown reasonable agreement 

(41,42) 
with experiment. 

Detectability Limits 

EELS is not a 'trace sensitive' technique since for a 

particular element to be detected the number of atoms of that 

element in an irradiated volume must exceed the minimum detec- 

table number (MDN). When the probe size is small, therefore, 

the element of interest must be localized, in a precipitate or 

inclusion.  If the element is distributed homogeneously, however, 

it may be necessary to probe a relatively large volume in order 

to exceed the detectable limit.  The detectability of an element 

is essentially determined by the visibility of its ionization 

edge above the background, and may be improved by increasing the 

incident electron flux or the counting time.  For a fixed value 

of the spectrometer resolution <5, the self-detection limit 

(43) 
varies widely with atomic number as shown in Figure 18a. 

This is attributed to the decrease in ionization cross-section 

with increasing values of Ev  (the energy loss at the onset of 

an ionization edge).  If the spectrometer resolution is allowed 

to vary such that ^/EK remains constant, however, the sensitivity 

can be improved for higher atomic number elements, Thus where 

possible an optimum spectrometer resolution should be used for each 
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element, to achieve the best sensitivity.  Self detection limits 

(41) 
have been determined experimentally for C and Al     and values 

of 10   g (5 x 10 atoms) and 10   g (2 x 10 atoms) respectively, 

were obtained. More often we are concerned with being able to 

detect a particular element within a matrix of a different 

(43) element. Joy and Maher   have calculated detectability limits 

for various elements in matrices of C, Si and Fe (representing 

typical biological, semiconducting and metallic systems) . 

Figure 18b shows the results for the Fe matrix. 

In general, experimental values are typically a factor of 

3 
10 worse than calculated detectability limits due to poor 

signal to background and signal to noise ratios.  Even these 

practical detectable limits are approximately equal to those 

attainable by x-ray analysis using STEM. 

Quantitation 

Much of the current interest in EELS is in its potential 

for giving rapid quantitative analysis at high spatial resolution, 

especially for elements in the first two rows of the periodic 

(38,45,46) 
table (Z _^ 12).  It has been shown by several authors 

that the electrons which have suffered an energy loss even have 

a small angular distribution around the forward direction and so 

can be readily collected and analyzed.  In addition, unlike x-ray 

or Auger techniques which require correction or standardization 
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procedure to give numerical data, the quantitation of EELS, 

in principle, is both simple and absolute. 

A quantitative estimate for the number of atoms per unit 

area of the specimen (N) is obtained from the area I- under an 

excitation edge, after extrapolating and subtracting the 

(27) background which precedes the edge: 

N = -L (% (8) 
aK  I 

In this equation, I is the incident electron current and is equal 

to the area under the entire spectrum and a.. is the total cross- 

section per atom for excitation of the K shell for a particular 

energy of the incident beam.  Similar equations can be used for 

L and M edges provided the appropriate values of a, and a„ are 

known. 

Most spectrometers, however, do not have sufficient acceptance 

angle to measure I„ while maintaining good energy resolution. 

This problem is overcome by placing an aperture (generally the 

objective aperture, in TEM mode) after the specimen to limit 

electron scattering to angles less than g (sometimes referred to 

as a by other authors),  A core loss signal I„(3) can then be 

measured with increased signalrbackground and signalrnoise ratios. 

However, in most microanalysis situations the excitation edge is 

superimposed on a large background and so the resulting statistical 

accuracy in 1^(3) is poor.  The background extrapolation may also 
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be seriously in error if excitation edges of other elements 

occur within the range of extrapolation.  These errors are 

reduced by measuring the edge intensity over an energy range 

A above E„.  Equation (8) then becomes: 

1        IKCB»A) 
N = TCFTAT I0(B,A) (9) 

where a(3,A) is the partial ionization cross-section correspon- 

ding to inner-shell losses between EK and E + ^, I„(g,A) is 

the intensity of the edge measured through the aperture 3 for 

an energy window A, and I0(g,A) is the intensity measured from 

0 eV loss to AeV (i.e. an energy window of A around the zero 

(47) 
loss peak).(Figure 19). 

Ratio Method 

If only the relative amount of two elements are required 
Nl/ (i.e.,  'N„) then a ratio technique can be used, as in x-ray 

raicroanalysis.  Provided that the two excitation edges are 

measured under the same experimental conditions (from the same 

spectrum and using the same energy window A), the intensity I (& >A) 

will be the same for both edges and therefore cancels.  The ratio 

is then given by: 

N   CTK2(3,A)    ^(e.A) 

^ = V^T '  ^(B.A) (10) 

Thus the ratio can be determined by measuring the inner shell 
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losses I C6,A) and I C6, A) provided that a    (0,A) and av  (3, A) 

are known or can be calculated. 

Operating Conditions 

Although the equations in the preceding section are not 

exact,  they can be made sufficiently accurate by the correct 

choice of operating conditions and careful sample preparation. 

(a) Spectrometer acceptance angle ( 3) ; The background 

energy losses have a broader angular distribution than the inner 

shell excitation signals and so the signal to background ratio 

can be improved by decreasing the size of the acceptance angle 

of the spectrometer (.0). Egerton et al.    indicated that there 

is an optimum collection aperture for each characteristic 

energy loss.  In general, however, $ should be ^10 mrad for K 

(47) 
shell excitations of the first row elements. 

(b) Energy window (A): The choice of a suitable range 

of A for the integration of the characteristic signal is determined 

by two opposing considerations.  As A is decreased below 50 eV the 

accuracy of equations (9) and (10) is decreased and the signal and 

the signal:noise ratio are worse for small energy windows. As A 

is increased, however, the accuracy of the background subtraction 

becomes poorer since there is a greater probability of excitation 

edges of other elements appearing within the range of integration. 

For most situations an energy window between 50 and 150 eV is 

recommended. 
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(c) Specimen orientation:  For single crystal or 

polycrystalline specimens the accuracy of equations (9) and (10) 

depends on the location of any strong diffraction spots relative 

to the objective aperture.  The maximum error occurs when a 

strong diffraction spot, falls just outside or just inside the 

(51) 
aperture.     Strong Bragg reflections should also be avoided 

since they remove electrons from the main beam and so reduce the 

characteristic loss signal. 

(d) Specimen thickness: Thick specimens may cause 

large discrepancies in quantitation because it is likely that the 

incident electrons will interact more than once with the sample 

before they leave.  Such plural scattering reduces the signal." 

noise   ratio and so makes identification of edges difficult and 

in some cases may alter the shape of the edge significantly.  It 

is, therefore, recommended that the specimen thickness should 

be less than the mean free path for plasmon excitation (A ), or 

more generally, the mean free path for the inelastic scattering 

peciir 

C53) 

(52) 
events.     For most materials this implies that the specimen 

thickness should be less than 100 nm. More recent work, 

however, has suggested that the optimum thickness for quantitative 

analysis is ^0.2 A which is considerably less than the thickness 

of conventional TEM samples. 

Determination of Partial Ionization Cross-Sections 

Quantitative analysis is only possible if values for the 

36 



partial cross-section o (3 , A) are known or can be calculated. 

Total ionization cross-sections have been calculated by a 

variety of methods and have been measured experimentally from 

x-ray and Auger analysis. Partial cross-sections, however, 

have not been tabulated at all, owing to the large number of 

values which would be necessary to cover all parameters relevant 

to EELS.  There are three main methods by which cr( g, A) can be 

(27) 
determined, as outlined by Joy, et al.     The most commonly 

used method is to calculate values of cr£ 3? A) from a simple 

model which relates the partial cross-section for any elemental 

species to that of the hydrogen atom. For conditions normally 

used in TEM energy loss analysis, this hydrogenic approximation 

gives results which are in good agreement with experimental data 

for K shell losses. Values for a((3,A) can be rapidly calculated 

(54) 
using a short Fortran program (SIGMAK).     The only inputs 

required are the threshold energy E„, the energy window A, the 

accelerating voltage E , the scattering angle 3, and the atomic 

(55) 
number Z. A similar program SIGMAL    can be used for L shells 

based on the same approximation with some minor corrections. A 

(42) 
more sophisticated technique has recently been suggested    which 

gives more accurate values of o( 3, A) for L losses and is also 

applicable to M shell losses. 

Partial cross-sections may also be determined by the "effi- 

(27) 
ciency factors" method    in which the variables 3 and A can be 
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treated separately in terms of their effect on a(g,A) such 

that: 

a (3,A)  = aT ng ^ (11) 

where a is the total ionization cross-section and n  and n 
T S     A 

are the efficiency factors relating to the spectrometer accep- 

tance angle and the energy window respectively. Values for n 
p 

and n . can be determined analytically from the shape of the 

edge. Alternately, a($»A) can be determined by using a separate 

(27) 
experiment on a standard specimen. 

Quality of Experimental Results 

There are three main criteria for establishing the quality 

of a particular quantitation technique: 

(a) The measurement of N should remain constant when 

the experimental parameters are varied. 

(b) Measurements of the composition of compounds of 

known stoichiometry should agree with the expected results. 

(c) The value of N should agree with measurements made 

by independent quantitation methods and also with similar 

measurements made on different instruments. 

If only the first two criteria are satisfied, the technique 

may be used for relative quantitation, but standards would be 

required to obtain absolute values.  If all three criteria are 

obeyed, however, the technique may be considered an absolute 
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quantitative method. 

(27) 
Joy, et al.    tested the applicability of each of these 

three criteria to the quantitation of 'standard' specimens, using 

EELS.  The accelerating voltage and spectrometer acceptance angle 

are generally fixed by the mode of microscope operation in 

EELS and so the stability of N with respect to different experi- 

mental parameters was tested by varying A.  it was found that N 

remained stable to within 5% for A between 30 to 300 eV for K 

shell ionization using the SIGMAK program.  Similarly, the SIGMAL 

program for L shell ionizations gave values of N which were 

stable to. $13% between 50 to 500 eV.  It was, therefore, concluded 

that the calculated cross-sections method satisfied the first 

criterion for both K and L edges. 

The accuracy of elemental ratios was determined using two 

standard compounds containing light elements, namely BN and 

MgO. The calculated cross-sections method gave values of N for 

Mg and 0 which remained stable with A and gave a resultant atomic 

ratio (Mg:0) of 0.93 +0-03, which is in good agreement with the 

expected value. Thus elemental ratios involving K losses were 

obtained with an accuracy of 10% or better. 

In theory, absolute quantitation by EELS should be fairly 

simple since no corrections for absorption or fluorescent yield 

are required.  This aspect was examined by comparing results with 

those obtained from the same specimen area by independent tech- 
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niques.  The general level of agreement between the EELS data 

obtained using the calculated cross-sections technique, and 

independent measurements was good, although a systematic dis- 

crepancy of ^25% was observed between values obtained at 80 and 

100 kV.  It was not possible to assess which acclerating voltage 

gave the more accurate result, since the density of the carbon 

film could not be determined sufficiently accurately. The error 

may be attributed to the instrumental artefacts or the limited 

knowledge of ionization cross-sections at high voltages but is 

more likely to be due to specimen defects such as thickness 

variations, carbon contamination, or loss of mass. 

In summary, therefore, Joy, et al. nave shown that under 

suitable conditions a stability of + 5% with respect to variations 

in experimental parameters is attainable, a relative accuracy of 

10% or better can be expected when analyzing compounds and an 

absolute accuracy of + 20% should be possible. 

Comparison of Energy Loss and X-ray Analysis 

The major differences between energy loss and x-ray analysis 

may be summarized as follows: 

(a) Energy loss measurements are concerned with the primary 

excitation of electrons whereas x-ray production is a result of 

the secondary decay of these excitations. 

(b) For light elements energy loss analysis becomes more 

efficient as the atomic number decreases due to an increase in 
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the ionization cross-sections for light elements.  X-ray detec- 

tion from light elements is very poor, however, because only a 

small percentage of the K shell ionizations produce x-rays (the 

rest produce Auger electrons) and many of the x-rays produced 

are absorped by the window and Si dead layer of the detector. 

(c) Energy loss analysis is less efficient for high 

atomic number elements due to the decrease in the ionization 

cross-sections and the poor signal to noise ratio at higher 

energy losses. X-ray analysis is, therefore, recommended for 

high atomic number elements. 

(d) Electrons which have undergone ionization are 

scattered through very small angles only and so most of 

the signal can be detected and recorded. X-rays, however, 

are emitted uniformly in all directions and the detector 

generally only subtends a small angle at the specimen and so 

the collection efficiency is very poor. 

(e) Since almost all of the ionization events are measured 

in EELS it is possible to detect the presence of very low 

—18 
concentrations (<v 10   g) . 

(f) Although energy loss quantitation has the potential 

for giving absolute concentrations, analysis of multi-component 

systems is not very accurate due to the contribution of edges 

at low energy losses to the background intensity of subsequent 
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edges.  This is not a problem in x-ray analysis, however, since 

x-ray peaks have a relatively small, finite width. 

(g)  Specimens for EELS must be extremely thin (generally 

<50 nm) to prevent plural scattering events which lower the 

signal to background ratio. Thus more careful preparation of 

samples is required than for x-ray analysis. 

(h)  In EDS analysis, using STEM, the x-ray spatial resolu- 

tion is ^50 nm, whereas in EELS a spatial resolution of 10 nm 

is attainable. 

2.  Experimental Procedures 

Specimen Preparation 

The material used in this investigation was a directionally- 

solidified eutectic in the calcia-zirconia system which had 

been grown in a commercial crystal growing furnace,    at 

a rate of 0.8 cm/hr.  The initial composition of the melt was 

^77 wt% ZrO„ which gave rise to a eutectic consisting of CaZrO, 

and Zr02 solid solution containing CaO (subsequently referred to 

as Zr02(- .) in accordance with the recent phase diagram due to 

Stubican and Hellman    (Figure 20). 

Thin foils were prepared by sectioning the directionally 

solidified eutectic perpendicular to the direction of growth 

and grinding the sections down to <50 Urn using SiC powder (320 

through 1000 mesh). The sections were then ion-beam thinned in 

argon at 6 kV at an angle of 13° and coated with a thin layer 
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of evaporated carbon or aluminum to prevent charging in the 

microscope. 

EDS Analysis 

CaZrO- is a stoichiometric compound phase of fixed composi- 

tion whereas ZrO„. . is a nonstoichiometric solid solution phase 

2+      4+ 
with a defect fluorite structure. Substitution of Ca  for Zr 

2_ 
in the solid solution gives rise to anion (0 ) vacancies, in 

order to maintain charge neutrality. The general formula for 

Zr02(- s is therefore given by: 

Ca Zr,   0o (12) 
x  1-x 2-x 

Prior to EELS analysis it was necessary to use EDS to determine 

the exact compostion of the Zr0„r    » phase and also to determine 
2(ss) 

whether or not local cation segregation was occuring particularly 

at the lamellar interfaces. Thus x-ray analyses were performed 

on a Philips EM400T microscope with an EDAX 9100 energy disper- 

sive detector. 

(a) Determination of K„ 

Calculations indicated the x-ray absorption was 

negligible in both phases of this system (Appendix I) and so 

(2) 
the standardless ratio technique using the Cliff-Lorimer 

equation could be applied. This method involves measuring the 
ZA/ 

x-ray intensity ratio  'IR of two elements A and B in a thin 

foil simultaneously. This intensity ratio can be related directly 
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to the ratio of the mass concentrations  'C„ such that: 
D 

CA      ZA 
p— = k.„ Y~ (Equation (1) , Section I) 
B       B 

The constant kA13, known as the "k factor" varies with the 
AD 

operating voltage and to a certain extent with the instrument used 

(due to variations in detector geometry and contamination 

characteristics) but it is independent of the composition. 

Although k factors can be calculated theroetically from consid- 
C58) 

erations of the x-ray production in the thin foils, recent work 

has suggested that these values are somewhat in error, especially 

when using L or M shells.  It is advisable therefore that the k 

factor be determined accurately for the individual system of 

interest and that identical conditions be used for analysis. 

The k factor for Ca-Zr was determined using the CaZrO- phase, 

since the exact composition could be determined assuming fixed 

stoichiometry. A total of 25 spectra were collected at random 

points throughout the CaZrOo phase using a probe size of 10 nm 

and obtaining a minimum of 10,000 counts in each peak. However, 

regions close to the CaZrOo/ZrO_. . interface were avoided 

to eliminate regions of possible cation segregation.  Integrated 

intensities under the Zr-L and Ca-K peaks were obtained using 

the Tracor Northern MTF program.  All intensities were normalized 

with respect to Zr and the concentration ratio of the elements 

was used to obtain a value of k„ „ .  The relative error in the Ca-Zr 
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k factor value was determined using an equation due to Gold- 

n-1 

„ • C59) stem 

%  error = 
C95 ° 

L/n  k avg 
x 100 (13) 

n —1 
where tgi- is the student t value for n readings at a 95% 

confidence limit, a is the standard deviation for n readings and 

24 
k    is the average k    value.  For 25 values tQC. = 2.064 avg. Lia*—/£r yo 

(from statistical tables), and so the value of k  „ using a ca**^r 

95% confidence interval was determined to be: 

kn    _ = 0.692 + 0.007 
Ca-Zr       — 

(b) Determination of the Composition of ZrOg ,    •. 

Having determined a value for k  „ , the exact 

composition of the cations in ZrO™. v could then be found using 

the Cliff-Lorimer relationship (equation 1),  A total of 25 

spectra were collected from random points in the ZrO_,, N 2(ss) 

phase (avoiding lamellar interfaces) using a probe size of 

10 nm and a count time of 100s.  The composition was determined 

using the Tracor Northern MTF program after inputting the previously 

determined value of k    .  The relative error in composition 

was determined using equation (13) and, in terms of the cation 

concentration, the composition was: 

10.04 + 0.06 wt% Ca 

89.96 + 0.06 wt% Zr 
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Since conventional EDS is not capable of detecting 

elements with atomic numbei <11 the oxygen content in ZrO„,  N 2(ss) 

was determined from equation (12) based on considerations of 

charge neutrality.  In terms of mol% the composition of the 

ZrO„ , . phase was determined to be: 
2(ss) 

20.23 + 0.12 mol% CaO 

79.77 +0.12 molZ Zr02 

Cc) Profile Across a Lamellar Interface 

EDS profiles were performed across CaZr0.,/Zr0„ .. .. 

lamellar interfaces to determine if any cation segregation was 

occurring in these regions.  In each case, care was taken to 

orient the interface parallel    to the electron beam and analy- 

ses were made along a line perpendicular to the interface at 

120 kV, using a probe size of 10 nm.  Calculations of beam 

broadening in the two phases are given in Appendix II. For a 

typical thin foil (^200 nm thick) the beam broadening was 

found to be 32.2 nm in CaZrO„ and 37.1 nm in Zr02/- •*, assuming 

the electron beam to be a point source, However, since a probe 

size of 10 nm was used, this value should be added to the calcula- 

ted values of beam broadening to give a better estimate of the 

total beam broadening.  To ensure there was no overlap between 

the regions analyzed therefore, the probe was moved in 50 nm 

steps across the interface. The data were converted into weight 
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percentage using the Tracor Northern MTF program using a value 

of 0.692 for k„ „ . 
Ca-Zr 

X-ray counting statistics obey Gaussian behavior and so 

the relative error in each analysis is given by cr = /N, where 

N is the number of accumulated counts.  Thus the relative 

standard deviation in a single measurement of N counts is: 

/N 
rel   N (14) 

At a 95% confidence level the percentage relative error is given 

by: 

%  Error . = X=r^-   x 100 (15) 
rel   N 

Since the Cliff-Lorimer equation utilizes the x-ray intensity 
ICa/ ratio   /l„ the relative error involved is the sum of the 

Zr 

errors in I„    and I„ . Values for the relative errors in 
Oa     Zr 

Ir and I  were calculated for a 95% confidence level using 

equation (15). 

In addition, there is also an error associated with the 

experimentally determined k factor, k  _ , and this was also 

added to the relative error in IQ3 and I„ . 

The horizontal errors representing the spatial resolution 

of the x-ray information were calculated from the sum of the 

probe diameter and the calculated beam broadening in the specimen. 
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Although beam broadening is a function of specimen thickness, 

it was assumed that the specimen was 200 nm thick at all analysis 

points in the profile, since the only suitable method for 

measuring specimen thickness in the present case (the contamina- 

tion spot method) has been shown to be susceptible to inaccuracy, 

(section III). 

EELS Analysis 

(a) Energy Loss Analysis on the Philips EM400T 

Energy loss analyses were performed on the Philips 

EM400T fitted with a Gatan 607 energy loss spectrometer. 

Details of the spectrometer design and operation mode are given 

in the Gatan Instruction Manual.     All analyses were performed 

in the TEM imaging mode in which a normal image is formed on the 

viewing screen while the projector cross-over contains a small 

diffraction pattern. This mode of operation permits the selection 

of a small specimen area for microanalysis while a large area is 

being illuminated. Hence the TEM imaging mode is particularly 

useful for specimens which are beam-sensitive or prone to carbon 

contamination. 

After setting up the spectrometer (described in detail in 

the Gatan Instruction Manual) the region to be analyzed is 

selected by the spectrometer entrance aperture located below the 

viewing screen. This corresponds to a region 5 mm in diameter at 

the center of the viewing screen. The actual area of material 
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analyzed is then governed by the magnification setting (i.e. 

at a higher magnification a smaller area is analyzed).  The 

spectrometer acceptance angle, g, is governed by the size of 

the objective aperture. Details of converting the aperture 

diameter into the semi-angle 3, are given in Appendix III and 

listed in Table V. Having set the specimen at 0° tilt (to 

minimize the thickness of specimen through which the electrons must 

travel) and positioning the area of interest at the center of the 

viewing screen the beam is condensed on the region of interest 

and the viewing screen lifted.  Spectra can then be acquired 

using the Tracor Northern 2132 ELS program. 

It is generally recommended that several sweeps across the 

energy spectrum be performed in order to improve the signal to 

noise ratio of the spectrum.  However, it was found that the 

energy calibration drifted significantly between sweeps and so 

the edge information became distorted. Thus only one sweep was 

performed at each analysis point and the dwell time on each 

channel was increased to 1 or 2 seconds, to improve the signal 

to noise ratio. 

The energy loss data w=re quantified using the Tracor Nor- 

thern TN-2132, Version 2, ELS program. At the present time this 

program only permits complete quantitation of K edges via the 

SIGMAK program. However, the program can also be used to determine 

the integrated counts under other types of edges,  Therefore, by 
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obtaining values of 07(3>A) from an independent SIGMAL program 

(due to Joy   ), L edges can also be analyzed using equation 9. 

Ca (b)  Determination of ' /0 Atomic Ratios 

The  '0  ratios in each of the phases in the CaZrO-/ 

ZrO„ ,    . eutectic system can be calculated independently of the 

EELS measurements.  In the case of CaZr0„ the  '0 ratio can be 

calculated directly from the stoichiometry and in the case of 

ZrCLr •, it may be determined from EDS measurements in combination 

with considerations of charge neutrality.  Thus by comparing 

the experimental ratios obtained from EELS with the calculated 

Ca/ /0 ratios the accuracy of the present EELS quantitation tech- 

nique may be assessed. 

A minimum of 25 EELS spectra were collected from each phase 

of the eutectic for each operating condition.  Regions close to 

the lamellar interfaces were avoided and spectra were generally 

collected from areas adjacent to the ion-thinned hole, since these 

were the thinnest regions of the specimen. All spectra were 

collected at an operating voltage of 120 kV and a magnification of 

20,000 which corresponds to an analysis area 250 nm in diameter. 

The spectrometer acceptance angle 3, was varied by using different 

objective aperture sizes and the spectra were analyzed using 

different values of A (the energy range of integration) for both 

the background fit and edge intensity. 

Since it was necessary to coat the specimens to prevent them 
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NCa °K Ox   C0'A> ^Ox (3,A) 

N0x °L Ca  (3,A) ^Ca (3,A) 

from charging in the microscope, EELS analyses were performed on 

both carbon and aluminum coated specimens.  Since both these 

elements have edges which lie in the same energy range as the 

major edges from the elements in the sample (Figure 15), they 

may affect the accuracy of the quantitation. 

A complete list of the operating and analysis parameters 

used for each set of analyses is given in Table VI. The  '0 
NCa ratios (  /Nn ) were determined by substituting the appropriate 

parameters into equation (10) to give the following expression: 

(16) 

where ° (3, A) and a    (3, A) are the partial ionization 
* Ox L Ca 

cross-sections for the oxygen K shell and calcium L shell, 

respectively and IR   (3, A) and j (3} A) are the integrated 
Ox Ca 

intensities under the corresponding edges. 

The integrated intensities were obtained using the Tracor 

Northern ELS program and the partial cross-sections were obtained 

(61) 
from the SIGMAK and SIGMAL programs due to Joy.     Complete 

listings of the partial cross-sections for the oxygen K shell 

and calcium L shell, for various values of 3 and A9 are 

given in Tables VII and VIII respectively. 

(c) EELS Profiles 

Ca / In addition to obtaining average  '0  ratios from each 
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phase, as described in the previous section,  '0  ratios were 

also determined from EELS profiles across lamellar interfaces. 

Such profiles would test the sensitivity of the quantitation 

Ca / method to a relatively large change in the  /0 ratio at the 

interface. 

Profiles were taken in regions of the specimen where a 

CaZrOo/ZrCL, , interface intersected the ion-thinned hole, by 

acquiring spectra along the edge of the hole passing from one 

phase to the other.  Spectra were collected under a variety 

of operating conditions, listed in Table IX, at a magnification 

of 20,000 and moving in steps of 500 nm across the interface. 

Ca / 
/0 ratios were determined from the integrated intensities 

under the appropriate edges, as described in the previous 

section. 

The vertical error bars were determined from the counting 

statistics based on a 95% confidence level, using equation (15), 

In addition, a further estimated error of 10% was added, to 

account for the errors in the calculated partial cross-sections. 

The horizontal error bars represent the diameter of the area 

analyzed plus an additional 20% of this value to account for 

estimated errors in the step size. At this time, there appears 

to be no more definitive means of calculating these estimated 

errors, but rather they are felt to be reasonable values based 

on operator experience. 
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3. Results and Discussion 

Microstructure of the Eutectic 

A low magnification photomicrograph of a section of the 

directionally solidified eutectic cut perpendicular to the 

direction of growth is shown in Figure 21.  This micrograph 

was taken from a petrographically thinned section using 

optical transmission microscopy.  The lamellae have a very uniform 

spacing ( ^ 7 \aa)',   the light phase being CaZrO, and the dark 

phase ZrO„,  ... Figure 22 shows the same structure observed r       2(ssj    ° 

in TEM. The ZrO„,  » phase shows darker contrast because it 
2(ss) 

has a higher Zr content and higher atomic number elements, such 

as Zr, absorb electrons more readily. 

Oi)  Zr0o. N Phase  2(ss)  

Figure 23 shows a [100] diffraction pattern from the 

ZrO„r , phase, confirming the cubic nature of the solid solution. 

However, this pattern was not typical of those generally obtained 

from the ZrO_r , phase; more often the diffraction patterns 

contained diffilse "donut" shaped features as shown in Figures 24a 

and 24b. The appearance of these diffuse diffraction features 

appeared to be associated with the observation of a mottled contrast 

effect in the bright field image, Figure 25.  However, attempts 

to produce centered dark field (CDF) images corresponding to the 

diffuse features on the diffraction pattern failed to reveal 

any useful information. Both the diffuse diffraction features and 
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the mottled contrast have been observed by other workers in both 

partially and fully stabilized CaO-Zr02 systems.   ~    Similar 

effects have also been observed in zirconia systems containing 

,..,...     •   (63, 68) other stabilizing cations. 

(62) (63) 
Carter and Roth    together with Schoenlein, et al. 

have attributed this effect to the cooperative ordering of oxygen 

ions on the oxygen sublattice at low temperatures. Allpress 
(64) 

and Rossell,   however, proposed that the effect was due to 

domains of the ordered compound CaZr,0. , embedded coherently 

C65) 
in the cubic matrix. Hudson and Moseley    showed that the 

diffuse scattering was of greatest intensity at 20 mol% CaO, 

adding further evidence to the CaZr,0q domain theory. However, 
(66) 

Cohen, et al.    calculated the intensities for diffuse scat- 

tering, assuming the presence of CaZr,CL domains of appropriate 

size, and found that these did not agree with the observed 

C67) 
intensities.  Furthermore, Rossell    has observed the diffuse 

intensity in specimens quenched from high temperatures (also 

observed in this investigation). The formation of microdomains 

of CaZr.Og during quenching is unrealistic because the order/ 

disorder temperature is 1000°C (Figure 20) and the Ca ions could 

only move 0.05 nm s  at this temperature. When such quenched 

specimens showing diffuse diffraction features are annealed for 

long periods at 1400°C, however, the diffuse features become 

groups of spots corresponding to crystallites of CaZr.Og.  It 
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would appear, therefore, that the diffuse features are in some 

way associated with the formation of CaZr,Og and may be due 

to local ion displacements in the structure which contribute 

to the formation of CaZr,0g on annealing. 

Cxi) CaZrOo Phase 

The major feature of the CaZrOo phase was the presence 

of numerous boundaries such as those seen in Figure 26.  In 

some cases these were believed to be low angle boundaries, since 

such features as bend contours remained almost continuous across 

the interface, Figure 27.  In most cases, however, a very distinct 

fringe contrast was observed at the boundary.  These fringes were 

asymmetrical in bright field, Figure 28a, and symmetrical in dark 

field, Figure 28b, showing the major characteristics of 6  boun- 

daries.     6 boundaries are defects separating two regions of a 

crystal with different values of s or ^ for the same operative 

reflection. These boundaries have been reported in several oxide 

(70-72)   . .  c .  . 
systems      and generally arise from an ordering process 

which gives rise to differently distorted regions within a crystal. 

(72) 
Similar features have been observed in BaTiO-    which is 

isostructural with CaZrOo.  In the case of BaTiOo, the boundaries 

arise from lattice deformations accompanying the spontaneous 

polarization of this ferroelectric material; CaZrOo however is 

not ferroelectric. The cause of the <5 boundaries in CaZrO^ is 

unknown,  although selected area diffraction patterns (SADPs) 
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taken from various regions of this phase have revealed at least 

three variations in the crystallography.  In some areas the high 

temperature ordered, cubic form of CaZrO- had been retained, 

Figure 29. In other regions, however, cubic diffraction 

patterns with a larger lattice parameter have been recorded, 

Figure 30.  In other regions diffraction patterns have been 

recorded which appear to be non-cubic, Figure 31.  This suggests 

that the 6 boundaries may be associated with regions of different 

crystallography, however, further investigation of this phenomena 

is required before the exact nature of the boundaries in CaZrCU 

can be determined. 

EDS Analysis 

Despite the anomalies in the microstructure of the two 

phases (i.e. the mottled contrast in Zr0o/ ,. and the boundaries r 2(ss) 

in CaZrOo) EDS analysis indicated that both phases were chemically 

very homogeneous.  Typical spectra from each phase are shown 

in Figure 32. The compositions (in terms of wt% of cations), 

determined from a total of 25 readings from random points in 

each phase gave the following results. 

CaZrCL 30.53 + 0.31 wt% Ca 

Zr0o/ . 10.04 + 0.06 wt% Ca 
2(ss) — 

The relative errors (determined for a 95% confidence level 

using a student t value for 25 readings) are very small, indica- 
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ting a high degree of homogeneity. 

The results of an EDS profile taken across a lamellar inter- 

face are shown in Figure 33. As discussed previously, the vertical 

error bars represent the sum of the errors in the counting sta- 

tistics for each element and the error in the experimentally 

determined k factor. The horizontal error bars represent the 

spatial resolution of the x-ray information; that is, the sum of 

the probe diameter and the beam broadening. This profile indicates 

that there is no appreciable segregation of cations in the region 

of the CaZrC^/ZrCL ,  , interface. This implies that there would 

be no segregation of oxygen ions at the interface either, since 

this would give rise to regions of local charge imbalance which 

would have to be reflected in a change in cation concentration 

since both cation species have only one stable valence. 

EELS Analysis 

(i) Visual Comparison of Spectra 

Figures 34a and 34b show typical EELS spectra from the 

CaZrO- and ZrCL, , phases, respectively. The two spectra show 

distinct differences for example, the CaT  edge is much larger 
L23 

in the CaZrO, phase, and the ZrM  and ZrM  edges are somewhat 
J M45     M23 

smaller, as would be expected from the compositions.  The large 

carbon edge is due to the carbon coating on the foil. 

Figures 35a and 35b show the effect of the objective 

aperture size on the spectra. Figure 35a is a spectrum taken 
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from the CaZrO- phase using the 100 pm objective aperture 

(corresponding to a spectrometer acceptance angle 3 of 9.73 

mrads) . Figure 35b is a spectrum taken from the same area using 

the 50 urn objective aperture (3 = 4.86 mrads). Comparing these 

two spectra it can be seen that the use of a smaller objective 

aperture increases the height of an edge relative to the 

background signal.  In addition, the shape of the Zr edge is 

more easily distinguished using the 50 um aperture. These 

effects are even more pronounced in the corresponding spectra 

taken from the ZrO„, . phase. Figure 36a shows the spectrum 

obtained in this phase using the 100 pm objective aperture and 

Figure 36b is the spectrum from the same area using the 50 ym 

objective aperture. 

The reason for the improved peak  to background ratio 

at a smaller aperture size is associated with the angular distribu- 

tion of the core-loss and background signals.  The core-loss 

signal (due to the inner shell excitations) has a relatively 

narrow angular distribution (a few mrads) whereas the angular 

distribution of the background losses is somewhat broader. 

Thus when a smaller objective aperture size is used the core- 

loss signal remains essentially unchanged but the background 

signal is limited by the aperture and this results in an improved 

signal to background ratio. 
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Typical spectra from the Al coated specimens are shown in 

Figure 37.  Figure 37a is the spectrum from the CaZrO- phase 

and Figure 37b is from the Zv0of    , phase.  The major Al edge 

occurs at the low energy loss end of the spectrum, at 'WO eV 

(not visible in Figure 37) and it would appear that the tail of 

this edge has almost completely masked the information from the 

Zr,.,  and ZrM  edges.  The CaT  and Q    edges are still clearly 
M23      M45 L23     K 

visible however. 

(ii) Evaluation of a/(3 Ratios 

Ca / 
From considerations of stochiometry the  '0 ratio 

in CaZrO., is 1/3 (0.3333). EDS analysis of the ZrO„. , phase 
-» 2(ss) r 

indicated that it contained 10.04+ 0.06 wt% Ca (in terms of 

the cations only) corresponding to ^20 atomic% Ca.  From considera- 

tions of charge neutrality and the oxide stoichiometry in the 

system, this gives the following fomula for the Zr02<- \ phase: 

Ca0.2 Zr0.8 °1.8 

Hence the C&^0  ratio for Zr00.  . is 1/9 (i.e. 0.1111). 2(ss) 

The experimentally determined  '0 ratios from EELS analysis, for 

different operating and analysis conditions are given in Table 

X.  Inspection of these experimental results indicate 

that the '0  ratios for CaZrO, are consistantly higher than the 

corresponding Zr0?(.  ^ ratios, as predicted, and both sets of 
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numbers show the correct order of magnitude. The errors were 

calculated for a 95% confidence level using a student t value 

for 25 readings. 

(a) Effect of Objective Aperture Size 

The spectrometer acceptance angle 3 is governed by the 

objective aperture size, as discussed previously.  Table XI 

shows the effect of the objective aperture size on the  '0 

ratios, when all other experimental parameters were maintained 

constant.  Despite the improved signal to background ratio 

observed using the 50 ym aperture (g = 4.86 mrads), the aperture 

size appeared to have little effect on the resultant  '0 ratio. 

From Table XI it can be seen that the a^0  ratio remained un- 

changed for the CaZr03 phase whichever aperture was used. 

Slight variations in the ratio were observed in the ZrO ,    „ 
2(ss) 

phase but these were attributed to scatter in the experimental 

data rather than a systematic variation due to the aperture size. 

(b) Effect of Energy Window 

Different energy windows for both the background and 

edge fits were selected for the analyses. Under ideal conditions 

the  >0  ratio should not vary with A, since for any change in A 

there is a corresponding change in o(B,A) . This was found to be 

Ca / 
so in the case of the carbon coated specimens, where the  /0 

ratio appeared to be unaffected by a change in A.  For the Al 

coated specimens, however, the choice of energy window had a 
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marked effect on the a/o ratio.  In particular the a/o 

ratios from the ZrO_, . phase showed considerable discrepancies 

when a 50 eV edge window was used rather than a 20 eV window. 

In the former case, the ratio was a factor of 10 lower than 

the predicted value and there was also considerable spread in 

the data, indicated by a relative error of 38/L 

The reason for these discrepancies is attributed to the 

background fit to the Ca   edge.  The TN-2132 ELS program 
L23 

used to analyze the spectra is not able to strip out edges prior 

to the edge of interest.  Therefore, when setting up energy windows 

for the background extrapolation, the background was chosen as 

the region immediately prior to the onset of the edge.  For 

the oxygen edge at 531 eV this did not present any problems 

because the background intensity falls fairly smoothly over a 

wide energy range prior to the onset of the 0,. edge (Figure 38) . 

However, the background fit to the CaT  edge (at "^350 eV) was 
L23 

complicated by the presence of the ZrM  edge at o-340 eV. Since 
23 

there was no means of stripping the ZrM  edge out of the spectrum 
M23 

the background fit was considerably distorted by the presence of 

edge, as seen in Figure 39.  This gave erroneous numbers for the 

integrated intensity under the Ca edge and corresponding errors 

in the final  '0 ratio. 

It might be expected that the problem of the background fit 

to the Ca edge would be even greater for the carbon coated 

specimens, due to the presence of a large C„ edge at 285 eV (Fig- 
K 
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ure 35). However, it was found that fitting the Ca background 

window to the C edge gave a reasonable background extrapolation 

to the Ca edge, Figure 40 (since the major contribution to the 

Ca background intensity is the tail of the C edge).  In addition, 

the presence of the CR edge tended to mask the effect of the 

ZrM  edge, and so there was little distortion to the background 
23 

fit. 

(c) Deviation from Predicted Values 

Although the experimentally determined  '0  ratios 

remained relatively stable to changes in $ and A as discussed 

above, they showed considerable deviation from the predicted 

values. For the carbon coated specimens the ratios from the 

CaZrO- phase were considerably higher than the predicted value 

(0.333) whereas the ratios for the Zr0o, N phase were lower 2(ss) 

than predicted. 

These discrepancies were again atrributed to the background 

fit to the CaT  edge. As discussed in Section IV.1 the background 
L23 

extrapolation is carried out assuming that the background inten- 

sity falls according to A^E"r. For a smoothly falling background 

(such as that prior to the 0K edge) this is a valid assumption 

and gives an accurate background extrapolation.  However, for 

the CaZrOo phase in a carbon coated specimen, the background 

to the Ca edge was fit to the C edge. The resulting extrapolation 

tended to underestimate the background intensity under the Ca 

edge, thus overestimating the counts in the Ca edge and increasing 
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Ca / 
the   '0 ratio. This implies that when the background intensity 

is largely due to the tail of an edge at a lower energy loss, 

the background cannot be accurately extrapolated using the form 

A.E_r. 

In the CaZr0o phase the Zr.,  edge was so small that it had 
3 M23 

little effect on the background extrapolation.  In the Zr02/- \ 

phase, however, the ZrM  edge was considerably larger and made 
M23 

a significant contribution to the background extrapolation. 

In this case the extrapolation, modified by the Zr   edge, 
W23 

tended to overestimate the background intensity under the Ca 

Ca 
edge causing a decrease in the  '0 ratio. 

The  '0 ratios for the CaZrOo phase in Al coated specimens 

agreed closely with the predicted value, especially when a small 

value of A was used. Observations of the background extrapolation 

to the CaT  edge, however, showed the extrapolation to be 
L23 

extremely inaccurate.  Furthermore, when EELS was used to analyze 

a thin Al film which was deposited and maintained under the same 

conditions as the Al coating, a small 0„ edge was observed, Figure 

41.  This implied that the Al coating had probably oxidized and 

so any analysis for oxygen in the specimen would include a con- 

tribution from the oxidized coating and give rise to errors in the 

'o ratio.  Thus all the  /o ratios determined from the Al 

coated specimens were probably in error. When analyzing for oxygen 

in non-conducting materials, therefore, coating the specimen with 

Al is not recommended. 
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(iii)  Evaluation of EELS Profiles 

Ca 
The results of the  /0 profiles across a lamellar 

interface are shown in Figures 42 and 43.  Figure 42 shows the 

results obtained using the medium objective aperture (J3 = 4.86 

mrads) and using two different values of A for the edge integra- 

tion (namely 20 eV and 50 eV). Figure 43 shows the profiles 

across the same interface using the large objective aperture ($   = 

9.73 mrads) and the same two values of A ( 20eV and 50 eV).  The 

error bars are shown for one data point in each phase only.to 

simplify the plot. 

These profiles show a distinct change in the '0  ratio on 

passing from the Zr0o/  , phase to the CaZrOo phase.  In addition 

Ca / 
the *-■  /0 ratio remained approximately constant in either phase 

over a large distance, in agreement with the predictions from 

the EDS data, Figure 33.  The objective aperture size appeared to 

have little effect on the data but a systematic error was observed 

when using a 20 eV window for the edge integration as opposed 

to a 50 eV window. The exact cause of this systematic error is 

C73) 
unknown, although it has previously been suggested    that 

the accuracy of the equations used for quantitation decrease 

considerably when energy windows•< 50 eV are used.  Deviations 

Ca/ from the predicted  '0 ratios were again observed and were 

attributed to the inaccuracies in the background fit to the Ca 
L23 

edge,  as discussed  previously.    Despite these discrepancies 
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however, these results indicate the quantitative energy loss 

analysis shows good sensitivity to sudden .changes in composition, 

(iv) Errors in Quantitative EELS 

Since EELS is a relatively new technique there are still 

many problems associated with the quantitation which give rise 

to errors in the analyses and which are often difficult to 

quantify.  In this work the only source of error which could be 

accurately quantified was that due to the counting statistics, 

long dwell times and relatively large energy windows were used 

and these errors were, therefore small, typically of the order 

3-4%.  However, the spectra analyzed in this work showed deviations 

from the predicted values of ^20%. 

One major source of error is probably due to the errors in 

the calculated partial ionization cross-sections, since there is 

( 61 ^ 
little experimental data to support such calculations. Joy 

has suggested that the relative error for an individual cr(g,A) 

value, obtained via the SIGMAK or SIGMAL program is of the order 

10-15%. but that when two such values are ratioed, (when deter- 

Ca/ 
mining  '0  ratios, for example) the resulting error is predicted 

to be lower.  Thus, the 10% relative error for cr(0,A) used in this 

work was, therefore, probably an overestimate, 

A major factor which should not be overlooked when assessing 

the accuracy of EELS quantitation, obtained using a sample of 

known composition, is the validity of the assumption that the 
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composition of the sample is known.  In this work for example, 

the CaZrO- phase was assumed to be stoichiometric.  Based on 

this assumption, a k factor for the Ca-Zr system was determined. 

The composition of the ZrO , . phase was then determined using 

Ca / 
this experimental k factor. In addition, the  '0 ratios were 

also predicted based on the assumption that the CaZrOo phase 

was stoichiometric. Since many systems undergo mass loss under a 

high energy electron beam there was no simple means of testing 

the validity of this assumption, especially in the chamber of 

the microscope. However, there was no visual evidence to suggest 

that differential mass loss was occurring in this system. 
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V.  CONCLUSIONS 

The major conclusions from this work may be summarized 

as follows: 

(1) Determination of a 4>(Pt) curve for Ni at 120 kV 

gave values of unity for <KPt) for foil thicknesses up to 80 nm 

but for thicker foils <t>(Pt)  increased to a value of 1.3 for 

a foil thickness of 380 nm.  This indicates that the assumption 

that <KPt) is always equal to unity for thin foils is not 

necessarily a valid one, and its use may give rise to errors 

when corrections for x-ray absorption are required. 

(2) A discrepancy of 20% was observed between the ^(Pt) 

values determined in this investigation and those obtained from 

Monte Carlo calculations, for the same conditions. Monte Carlo 

calculations indicated only a 10% increase in 0(Pt) over the 

0-380 nm thickness range. 

(3) The experimental technique used to determine <KPt) 

curves in this work was suitable only for measurements at 

accelerating voltages >100 kV. At lower electron energies back- 

scatter became a significant problem. 

(4) Thickness measurements using the contamination spot 

method were shown to overestimate considerably the true foil 

thickness. The discrepancy between contamination spot measure- 

ments and those measured by a highly accurate independent tech- 
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nique (Tolansky Interferometry) was always >5U% and was 

greatest for foils ^100 nm in thickness. These errors have been 

attributed to the difficulties associated with measuring the 

contamination spot separation distance, since the true base of 

the cone of contamination is often invisible. Thus, this work 

indicates that, where possible, other techniques should be used 

when an accurate measure of the foil thickness is required, 

(5) '0 ratios determined by EELS for both phases of a 

directionally solidified eutectic, CaZr0~/Zr0 , , showed good 

agreement with the values predicted from stoichiometry. The 

systematic deviations from the predicted ratios were attributed 

to problems associated with fitting the background to the CaT 
L23 

edge, which was complicated by the presence of the Cv  and Zr„ K     M23 

edges. 

Ca / 
(6) /O ratios obtained using the currently available 

quantitation technique were shown to be independent of the spectro- 

meter acceptance angle (g) but systematic variations were observed 

when using a 20 eV edge window rather than a 50 eV window. 

(7) For the ZrO„-CaO system, the use of 4.86 mrad 

spectrometer acceptance angle (corresponding to the 50 Mm 

objective aperture) as opposed to a 9.73 mrad angle (100 ym 

aperture) gave an improved edge signal above the background 

intensity. 

(8) Carbon coating of the specimen, to prevent it from 
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charging in the microscope, was shown to be preferable to Al 

coating, for the purpose of EELS analysis.  In the latter case, 

the Al edge masked much of the edge information from the specimen 

and in addition, the Al coating was susceptible to oxidation, 

giving rise to erroneous values when analyzing for oxygen. 

(9) EELS Profiles across a lamellar interface showed little 

variation in the '0  ratio within each phase (in agreement with 

Ca 
EDS data) but showed a sharp discontinuity in the  /0 ratio at 

the interface.  This indicates that energy loss analysis shows 

good sensitivity to sudden changes in composition. 

CIO) This investigation indicates that quantitative energy 

loss analysis of a multicomponent system is considerably complica- 

ted by the presence of extra edges in the spectrum which contri- 

bute to the intensity of edges at higher energy losses. 

Extreme caution should, therefore, be exercized when interpreting 

results from a multicomponent system of unknown composition, since 

the errors associated with such an analysis are often peculiar 

to the system of interest.  Such analyses could be greatly 

improved by the incorporation of an accurate edge-stripping 

routine in the quantitation program. 
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TABLE I 

Specimen Thicknesses forcp(pt) Determinations 

Cu thickness (nm)   Ni thickness (nm) 

59+5 25.0 +5 

55.0 + 5 

80.0 + 5 

110.0 + 5 

167.5 + 5 

200.0 + 5 

260.0 + 5 

310.0 + 5 

380.0 + 5 

_2 
p t(mg cm    ) 

for Ni 

0.022 

0.049 

0.072 

0.099 

0.150 

0.179 

0.233 

0.278 

0.341 

69 



TABLE II 

Comparison of Techniques for Thin Foil Thickness Measurements 

Tolansky 
Quartz Talysurf In ter f er ome ter 

Oscillator (nm) + 10 nm + 5 nm 

100.8 110.0 107.1 

188.6 200.0 186.8 

350.3 380.0 368.7 
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TABLE III 

Variatic 
^ of ♦CPO) with Accelerating Voltage at 380 

nm 

Accelerating Voltage 

120 kV 
1.030 + 0.064 

100 kV 
1.023 + 0.046 

80 kV 
1.183 + 0.051 

60 kV 
1.293 + 0.051 

^^Ltic^l_Sensitivity 
(Eqn.   5) 

X 

X 

/ 

/ 
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TABLE IV 

Comparison of Thin Foil Thickness Measurements 

Film Thickness 
(Tolansky) 

Thickness 
(Contamination spots) 

Discrepancy 

Al 117 + 5 nm 190 + 31 nm 62% 

Al 177 + 5 nm 270 + 40 nm 54% 

Cu 59 + 5 nm 170 + 33 nm 189% 
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TABLE V 

Relationship Between Objective Aperture Diameter 

and Spectrometer Acceptance Angle (3) 

Objective Aper 
Diameter 

ture Spectrometer Acceptance 
Angle (6) 

100 yin y.73 mrad 

5U ym 4.86 mrad 

20 Mm 1.95 mrad 
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TABLE VI 

or Operating and Analysis Parameters Used f 

the Evaluation of Ca/0 Atomic Ratios 

Coating 8 .      , 
A edge A background 

1. C 9.73 mrad 20 eV 
2. C 9.73 mrad 50 eV 
3. C 4.86 mrad 20 eV 
4. C 4.86 mrad 50 eV 
5. Al 9.73 mrad 20 eV 
6. Al 9.73 mrad 50 eV 
7. Al 4.86 mrad 20 eV 
8. Al 4.86 mrad 50 eV 

40 eV 

50 eV 

40 eV 

50 eV 

40 eV 

50 eV 

40 eV 

50 eV 
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TABLE VII 

CT (6,A)  for  the o^g^ K shen ^ 
120 kV 

A  (eV) 
I^ZJ^I^^   °  <fl - 4.86 mrads) 

10                   1-8184 * 10'22 9.5995 x 10-23 

20                   3'4"6 * 10""22 1.8405 x 10-22 

5.0559 x 10-22 2.6493 x 10-22 

6.4979 xlO-22 

7.8358 x ID"22 4.0777 x  10-22 

9.0781 xlO"22 4.7088 xlO"22 

70                   1-°233 X ^"21 5.29n x 10-22 

80                   ^"O8 * la"21 5.8290 x  10-22 

90                   1'2309 * 10~21 6.3263 x  HO"22 
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TABLE VIII 

a(0,A) for the Calcium L Shell 

A(eV) 

at  120 kV 

lill^l!!^. °   Cfl - 4.96 rarad) 

1.1303 x 10~21 7.2690 x lo-22 

20                     2.2983 xlO"21 ,.*«,., _in-21 

30                       o   Qooi   „  -,o-21 
1.4695 x 10" 

3.3891 xlO"21 2.1549 xlO"21 

40 4'3948 X ™21 2.7799 x 10~21 

50 5'317a x 10"21 3.3471 x  10-21 

60 6"1631 x W"21 3.8609 x  10-21 

70 6.9367 xlO"21 4.3261 xlO"21 

80 7'6448 * !°~21 4.7475 x  10'21 

90 8.2931 xlO"21 s. „„,       _-21 
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TABLE IX 

Operating and Analysis Parameters Used for EELS Profiles 

Profile 9 Coat ing 3 (mrads) A edge A background 

1 C 4.86 2U eV 50 eV 

2 C 4.86 50 eV 50 eV 

3 C 9.73 20 eV 20 eV 

4 C 9.73 50 eV 50 eV 
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TABLE X 

00 

COnPa"S°n °f E*P«^ntally Detemlned Ca/o 
Ratios Under Di«erent Analysls ^^ 

^"^       efarads,       4edge(ev)       ^^^ Ca/0( 

1 C 9.73 20 40 
2 C 9.73 50 50 
3 C 4.86 20 40 
4 C 4.86 50 50 
5 Al 9.73 20 40 
6 Al 9.73 50 50 
7 Al 4.86 20 40 
8 Al 4.86 50 50 

CaZrO, 
Ca/o 

ZrO 
2(ss) 

0-392+0.012      0.077+0.006 

0.401 + 0.007       0.080:+ 0.017 

0.394+0.018 0.097+0.007 

0-401+0.018 0.075+0.017 

0.336+0.024 0.077+0.006 

0.252+0.034 0.013 +0.005 

0.341 + 0.023 0.060^+0.00/ 

0-252 + u.017 0.014+0.002 



TABLE XI 

^fect of Objective Aperture Size on 
C*/0 Ratio 

(Carbon-coated Specimens) 

J^!fl      Ca/0 (6 - 4.86 .nrads)   <*/0 . 
— —- _     ° v3 = 9.73 mrads) 

CaZr0
3        0.394 + 0.018 TZ 

0.392+0.012 

0.401±0.018 0.401+„.o„7 

2r°2<-' °-°"± 0.007 0.077 + 0.006 
2rt>2(ss> 0.075 + 0.017 0.080+0.0X7 
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TABLE XII 

Effect of Energy Window, A,   on Ca/0 Rat 

(Carbon-coated  Specimens) 

Ca/ 
/0 Ratios 

Phase A  bgd = 40 eV A edge = 50 eV 
A bgd = 50 eV 

0.392 + 0.012 

- 

CaZr03 
0.401 + Q.007 

ZrO 
2(ss) 

CaZr03 

0.077 + 0.006 

0.336 = 0.024 

0.080 + 0.017 

0.252 + 0.034 
ZrO,. , 

2(ss) 0.077 + 0.006 0.013 + 0.005 
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electron* 

X - ray* 

Visible light 

Reflected electrons: 
Elastic 

Inelastic 

Secondary electrons 

Augar electrons 

Hot* - alactron pair* 
(semiconductors) 

Absorbed electrons 

X - rays 

Transrnittad (or scattered) alactron*: 
Elastic 
Ineiaatic 

Primary alactrons 

Figure 1   - Signals generated as a result of  the 
interaction of an electron beam and a thin specimen. 
[From Joy and Maher *■ '] 
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Incident 
Electron 
Beam 

Film 

/ \ 

X-Ray 
Emission 

3 - 

\m       Volume Ionized 
1 in Thick Target 

Figure 2 - The x-ray emission volume  in a thick 
target relative  to that in a  thin foil. 
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Element  A 

,Thin layer 
element B 

Figure 3  - Sandwich sample used to measure   4>(pt). 
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Figure 4 - The <f>(pt)  curves  of Castaing and 
Deschamps   C16' measured at  29 kV. 
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SPECIMEN GEOMETRY 

FOR 0(pt) DETERMINATION 

SIDE  VIEW 

Ni FILM 
Cu FILMv^ 
NaCI 1 

SUBSTRATE 

i 
IT 

•2-5 mm- 

-60 nm 

TOP VIEW 

Ni FILM 

V^-Cu FILM 

Figure 5  - Specimen geometry used  in determination 
of  <Kpt).  Thicknesses  of Ni varying from ^25  to 
380 nm were deposited on top of the Cu film 
leaving portions exposed. 
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TOLANSKY MULTIPLE-BEAM   INTERFEROMETRY 

COUJMATED 
MONOCHROMATIC 
LIGHT 

DEPOSITED   FILM 
THICKNESS 

AL 
| 

D*- 

OBJECTIVE OF 
MICROSCOPE, EYE,  OR 
GENERAL  IMAGE 
FORMING   SYSTEM 

HALF-SILVERED 
MIRROR 

PARTIALLY TRANSPARENT, 
HIGHLY REFLECTIVE 
COATING ON PLANAR 
REFERENCE  PLATE 
(FIZEAU PLATE) 

EVAPORATED, OPAQUE, 
HIGHLY REFLECTIVE 
COATING 

RESULTING 
INTERFEROGRAM 

"V 

tammm 

♦fnl^...   ,i    „»» 

+A*mm*ym*im*mim 

|m , , till **- .^   iAL 

■» **» m ,m**<*i+**mr+mim0*p+ 

Figure 6  -   (a)  Schematic:     principles  of 
Tolansky interferometry  (b) Typical 
interferogram. 
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QUARTZ   OSCILLATOR 

DEPOSITION 
OSCILLATOR 
    f 

CRYSTAL 

SHUTTER 

REFERENCE 
OSCILLATOR 

fo 

'WJ!/ 
? —°B 

r-C=^E=> 
SOURCE 

-TO o —o 

t=Af/CFpFILM 

(CF-CRYSTAL CONSTANT) 

FREQUENCY 
COUNTER 
Af = f-f0 

c- 
C 
C 

-oA 

L.T. 

-oA 

Figure  7 - Schematic :    measurement of thickness  of 
deposited  film of density   p by determining frequency 
shift  (Af)  of quartz  oscillator. 
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EXPERIMENTALLY DETERMINED 0(pt) CURVE FOR Ni (120 kV) 

0.1 0.2 0.3 

DEPTH (pt) MG-CM*2 

Figure 8 -Experimental data showing increase in 
<|>ipt) with mass  thickness   for thin films  of Ni 
upto 380 nm thick using 120 kV electrons. 
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Figure 9 - Experimental  <Kpt) data  for thin films 
of Ni up to 380 nm thick, at 60kV. 
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Figure 10  - Comparison of experimental data from 
present investigation with Monte Carlo calculations. 
(Work of Newbury  is  for Ni at 120 kV, while data of 
Kyser is  for Cu at 100 kV.) 
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Figure 11 - Contamination spots creatPri „„ 
upper and lower surface of an Al foil 
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Incident beam 

X-ray detector 

Sample 

En-E 

Figure 12 - Schematic illustration of a 
combined electron microscope and micro- 
analytical facility. The incident beam 
is focused to a spot on the thin sample 
and either x-ray or energy loss spectra 
can be collected for microanalysis. 
[from Joy and Maher (30).] 
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Figure 13  - The geometry of energy  loss 
spectroscopy in the electron microscope, 
showing  the scattering angle    0,the 
spectrometer acceptance angle (3  and  the 
incident beam convergence angle    a . 
[from Joy (32).] 
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Figure 14 - Typical ELS spectra from Si at 100 kV 
showing  the zero loss peak  ,   the plasmon peaks and 
a gain change of 50  followed by the  SiTOO edge, 
[from Joy (.32) ] L23 
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Figure 15 - Position of ionization edges in energy- 
loss range 0-700 eV.  [From Joy and Maher(34)] 
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Carbon 20nm 

Log E 3.0 

Figure 16 - Log-log plot of an energy-loss spectrum 
showing subtraction of background intensity.  [After 
Egerton and Whelan(35)] 
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Figure 17 - Ca) Typical shape of a K ionization 
edge,  (b) Typical shapes of L23 ionization edges, 
(c) Typical shape of an M45 edge.  [After Menzies 
and Bricknell(37)] 
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Figure 18 - (a) The calculated self-detection limits for an ELS 
system operating at 100 kV with an acceptance angle of 3 mrad. 
(b) Minimum detectable number of atoms for various elements in 
50 run thick Fe foil under the same operating conditions.  [From 
Joy and MaherC^D] 
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ENERGY LOSS 

Figure 19 - Schematic illustraMon  * 
spectrum indicating the quantiti^   *" ^^  loss 

titation.  [From Joy and^er^)] ^^ f°r *»*- 
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Figure 21 - Low magnificat 
ion transmission optical „ -tJ.Uu ui.ansmission optical 

photomicrograph of the CaZr03/ZrC>2(ss) directionally 
solidified eutectic. 

101 



Sectioti^-"Sl°efc^:.CaZr03/2-HSS) 

102 



Figure 23 - [100] diffraction pattern from the Zr02(ss) 
phase. 
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Figure 24 - (a) and (b) Diffraction patterns from 
Zr02(ss) Pnase showing diffuse "donut" shaped features. 
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Figure 28 -  6 boundaries  in CaZrO,   (a\   A 
fringe contrast in bright fieiT     rH?)e^yimnetr 

rringe contrast in dark field. 

ical 
(b)   Symmetrical 
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Figure 31 - Non-cubic diffraction 
pattern from CaZrCL 
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VFS«ei92 

Figure 32  -  (a)  Typical EDS  spectrum from  CaZrO^ 
phase.     (b)   Typical EDS specf-mm   c—   -»-- J 

phas spectrum  from ZrO 
2(ss) 
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Figure 33 - EDS Profile across a lamellar interface 
showing no appreciable cation segregation at  the 
boundary. 
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Figure 34 - (a) Typical EELS spectrum from CaZrO- 
phase.  (b) Typical EELS spectrum from Zr02(ss) 
phase. 
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Figure 35 - Effect of objective aperture size on 
spectra from CaZrC>3 phase.  (a) Spectrum using 
100 urn aperture (3 = 9.73 mrads).  (b) Spectrum 
using 50 um aperture (3 = 4.86 mrads)showing 
improved edge to background signal. 
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Figure 36 - Effect of objective aperture size on 
spectra from ZrOo/- s   phase.  (a) Using 100 um 
aperture (6 = 9./3 mrads).  (b) Using 50 jjm aperture 
(6 = 4.86 mrads) . 
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VFS = 32768     10 e-o 

Figure 37 - Typical EELS spectra from  A, 
specimen.     r«\   ——      -      peCtra from Al coated (a)   CaZrO-  phase. (b)  Zr02(ss)   Phase. 
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Figure 38 - Portion of FFTS 
b.ckgr„„nd flt to L^LTed™ sh°»*°S 

118 



Figure 39 - Portion of EELS spectrum from Al 
coated specimen showing poor fit to the calcium 
edge. 
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Figure 40 - Portion of EELS spectrum from C coated 
specimen showing a reasonable fit to the caTr***™ 
edge. the calcium 
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Figure 41 - Portion of EELS spectrum from an 
evaporated Al film maintained under the same 
conditions as the Al coated specimen, showing 
a small oxygen edge. 
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Ca / Figure 42 -       '0 profiles  across a lamellar  interface 
using medium objective aperture  (|3  = 4.86 mrads)  and 
energy windows of 20  eV and 50 eV.     (Dashed lines 
represent the Ca/o ratios calculated from the stoi- 
chiometry.) 
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Ca / Figure 43 -      /O profiles across a lamellar inter- 
face using large objective aperture (6 = 9.73 mrads) 
and energy windows  of 20  eV and  50 eV.     (Dashed  lines 
represent  the Ca'o ratios  calculated from the stoi- 
chiometry.) 
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Figure 44 - Low index diffraction pattern from 
Al superimposed with image of objective aperture. 
[Courtesy S. F. Baumann ] 
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APPENDIX  I 

Calculation of X-Ray Absorption 

The Cliff-Lorimer equation can be used  to determine concen- 

trations  providing  there  is no significant absorption of x-rays 

in the system of interest.     If absorption is  significant  then it 

is necessary to apply a correction factor to  the value of k.     in 

order  to  obtain the  true concentrations.    The  following correction 

(3) 
factor has  been proposed by Goldstein et al. 

CF= SPEC 

-I Tl - exp  /- - esc a(pt)) 
t    PJsPEC '_ 

-.A 
1 - exp /- —I esc a(pt)| *-) 

P  SPEC        u v     KJSPEC 
where  p  is   the specimen density,   t  the foil  thickness  in cms, 

a is   the x-ray take-off angle and |jt/p] is  the mass absorption 
• SPEC 

coefficient  for x-rays  of element A  in the specimen.     In a multi- 

component specimen |j«/p] is given by the  following equation: 

-\ A -iA ,,T A 

=    H-]        CA + H.1       CR + H.1        C    etc. 
PJ A       A      pj        B      pj C 

1A 

"I PJSPEC H-'A      "      KJB       "       HJ C 

where C.   is the weight fraction of element A   in the specimen. 

Providing the absorption correction factor is   s 1.1 for any 

given foil  thickness x-ray absorption may be considered negligible. 

Hence the absorption correction factor was determined  for both 

phases  of the eutectic assuming a foil thickness  of 500 nm (which 

is  thicker  than most conventional TEM foils). 
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(a) CaZrCL 

Ca wt. fraction C. = 0.224 A 

Zr wt. fraction C_ = 0.509 
D 

0 wt.   fraction    C    = 0.268 

1 ZrL 
^ = 845.8 x C.   + 700.9 x C    + 614.3 x C„ 
pi ABC K-" spec / 

= 752.13 
CaK 

^1     = 139.4 x C. + 1155.8 x Cn + 115.8 x C„ p A B C KJ spec 

= 650.56 

752.13       f"l-exp(-650.56 esc  20  (pt))1 
650.56       U-exp(-752.13 esc 20  (pt))J 

PCaZr03 
= 4-32 S/Cm3 

Assuming a foil  thickness  of 500 nm  (5 x  10      cm) 

rv =  i   isfi    l-(exp - 8206.4 x 5 x  10"5) 
3       l-(exp  - 9487.7 x 5 x  10°) 

CF = 1.0301 

Absorption  is negligible in CaZrOj 

(b) ZrCL,     .   (Assuming 20 mol % CaO) 

Ca wt.   fraction    C.   = 0.073 

Zr wt.   fraction    0.  = 0.665 
a 

0 wt.   fraction    C    = 0.262 

1 Zr 
k = 700.9 x C.   + 845.8 x C„ + 614.3 x C„ p A B C rj spec 

=  774.57 
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a. 
p 

-1 Ca 

Jspec   =  139-4XCA+I155-8XCD+I15 8 x  C, 

= 809.12 

2(88) 

Ass iSUming a foil  thickness  of 500 nm. 

CF =  1.012 

Absorption 

■2(88) 
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APPENDIX II 

Calculation of Beam Broadening 

The beam broadening in a thin foil can be calculated using 

a single scattering model in which it is assumed that electron 

scattering occurs at the center of the foil. Goldstein et 

(3) 
al.   have proposed the following equation for relating the 

beam broadening b to the operating voltage E and the foil thick- 

ness t: 

b = 6.25 x 105^- (p     t3/2 (1) 
o 

where b and t are in cms; Z is the atomic number, A the atomic 

weight and p the density of the material and E is the acceler- 

ating voltage in eV. 

When the foil is composed of more than one element the 

values of Z, A and p must be the weighted averages of each 

parame ter. 

(a) CaZrO 

Z   = Z., xwt. fraction Ca+Z_ x wt. fraction Zr+Z xwt.fractLon 0 avg   Ca Zr o 

= 20x0.223+40x0.509+8x0.268 

= 26.96 

A = A„   xwt.fraction Ca+A„   x wt. fraction Zr+A   x wt. frac tion 0 avg        Ca Zr o 

= 40.08 x 0.223+91.22x0.509 + 16x0.268 

= 59.656 
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p = pc   xwt. fraction Ca + p„   xwt. fraction Zr + pQ x wt. fraction 0 

= 1.55x0.223+6.49 x 0.509 + 1.14x0.268 

= 3.954 

Substituting in Equation  (1) 

h - fi   ->*       in5     26.96 3.954    2   ,.3/2 bCaZr03 " 6'25 x 10    Ii0lT03  x   3X66 t 

bCaZr03 =36-15  fc3/2 

i.e.,  For a foil  thickness  of 200 nm,  b  = 32.3  nm 

(b)    ZrQ2,     .     (Assuming 20 mol70 CaO) 

Z = 30.156 avg 

A = 67.779 avg 

p =4.728 

Substituting in Equation  (1) 

3/2 w, ,= 41-48 c 
2(ss)  

i.e.,  For a foil  thickness  of 200 nm,  b = 37.1 nm 
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APPENDIX III 

Determination of Spectrometer Acceptance Angle  B 

The  spectrometer acceptance angle  B is  a  function of the 

objective aperture size.     On  the  Philips EM400T  there are  three 

objective aperture sizes which may be  selected,  having diameters 

of either 20 p,m,  50 ^m or  100 )j,m.    These diameters may be con- 

verted into a semi-angle  P by means  of a standard diffraction 

pattern,  as outlined below: 

(1) Obtain a low index diffraction pattern  from a standard 

specimen,   such as Al. 

(2) Select one  of the  objective apertures and re-expose  the 

plate  to superimpose  the  image of the aperture  on the 

diffraction pattern  (Fig.  44). 

(3) Index  the diffraction pattern and calculate  the  semi-angle 

between a given set  of planes  using  the following equation. 

X = 2 <W  S±n 6 

At 120 kV X = 0.0335 

d, . .   is  obtained  from tables, htoc, 

e.g.,   For Al  {220} 

0.0335 = 2(2.025) sin 9 

sin 0  = 0.00827 

For small angles    sin 0-9 

9 = 0.00827 rads 

20  = 16.54 mrads 
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(4) Measure  the interplanar spacing on  the diffraction pattern 

corresponding  to this angle. 

e.g.,  For Al {220}  the  interplanar spacing is   12.75 mm 

i.e.,   12.75 mm corresponds  to 16.54 mrads 

(5) Measure  the diameter of the objective aperture  image  on 

the diffraction pattern. 

Relate  this  to an angle  2(3 using the conversion  in  (4) 

e.g., The  20 ^m  objective aperture measures 3 mm on the image. 

3 
23 = '      7q x  16.54 mrads 

= 3.89 mrads 

(3 = 1.946 mrads  for  the 20 y,m aperture. 

Since  the  relationship between aperture   size and  0 is  linear 

the  other values  of g corresponding to  the 50 jj,m and  100 jj,m 

aperture sizes  can be easily calculated. 

137 



VITA 

Nicola Stenton was born to Betty and Robert Stenton on 

November 29, 1958, in Beverley, England. After attending 

various local schools, she completed her secondary education 

at Beverley High School with 3 A-levels and 9 O-levels. She 

obtained her Bachelor of Science in Materials Science, in the Fac- 

ulty of Science at Manchester University, Manchester, England, 

in 1980, graduating with 1st Class Honors.  Since this time 

she has been a graduate student in the Department of Metallurgy 

and Materials Engineering at Lehigh University. 

138 


	Lehigh University
	Lehigh Preserve
	1-1-1982

	Aspects of quantitative microanalysis using energy dispersive spectrgmetry and electron energy loss spectroscopy.
	Nicola Stenton
	Recommended Citation


	tmp.1451580486.pdf.wp97W

