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NOMENCLATURE 

E Young's modulus of elasticity 

v elastic Poisson's ratio 

U0 material creep rate parameter 

S0 material creep strength 

n creep exponent, n >_ 1 

a& equivalent stress 

Q transverse shear force per unit circumference 

u axial displacement in cylindrical shell 

8 rotation   of shell normal 

w radial   displacement of cylindrical  shell 

a , o.     stress component 

ev, eQ     strain component 
A D 

N„, NQ  components of membrane stress resultant X o 

M„, MQ     components of bending moment per unit length 
X D 

R main pipe radius 

r branch pipe radius 

s arc length of shell meridian and nominal stress in 
branch, pr/t 

S nominal stress in main, pR/T 

T main pipe thickness 

t branch pipe thickness and time 

T time or pseudo time 

p internal pressure 

vn 



x coordinate along meridian in branch 

X coordinate along meridian in main 

Dots over variables indicate rates with respect to time 

Subscript x refers to direction along meridian 

Subscript e refers to circumferential direction 

Subscript z refers to thickness direction 

Subscript m refers to main pipe 

Subscript b refers to branch pipe 

Bars over quantities indicate their values at the edge X=0, x=0, 

vm 



ABSTRACT 

The creep behavior in the crotch region of two normally 

intersecting cylindrical pipes of different diameter and thick- 

ness is treated with the aid of an axisymmetric shell model. This 

model has a transfer matrix which enforces required equilibrium 

and continuity conditions between a branch and a main pipe. The 

results by the model are checked, and it is confirmed that the 

presented model here can analyze any combination of diameter and 

thickness of a tee branch connection under internal pressure in 

both elastic and creep analysis provided the shells are thin and 

the branch pipe diameter is greater than one third the main pipe 

diameter. 

Three typical kinds of tee branch connections, which have 

radius ratio of 0.5 in branch and main, are analyzed using the 

model. The three kinds of tees are: (1) the case of equal 

strength in the branch and the pipe, (2) the case of equal thick- 

ness in both pipes and (3) the equal strength tee with reinforce- 

ment on the main pipe. 

First of all, the case of equal strength is studied in 

detail including the calculation of stress redistribution and 

stationary creep strain rate. For the other cases, the results 

are discussed in contrast to the case of equal strength. The 

effects of reinforcement are discussed, and a recommendation for 
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a design of a tee branch connection is presented. Also, it is 

shown that elastically calculated strain rates are much larger 

than stationary creep strain rates and that the former will pre- 

dict a creep rupture time very much shorter than the later. 



1.  INTRODUCTION 

Structures subjected to steady tensile loading over long 

periods of time while they are exposed to a high temperature 

environment fail by either the accumulation of excessive creep 

deformation or by creep rupture. Such damage is one of the domi- 

nant failure modes in structures which must operate at high tem- 

peratures for long periods of times, e.g., advanced nuclear 

reactors, chemical plant pipe lines, coal gasification vessels 

and solar energy "power towers." Therefore, as such structures 

operate at increasingly higher temperatures, designers then must 

consider what amount of creep damage can be tolerated during the 

required service life. 

Due to stress concentration, the time to failure of a thin- 

walled pressure vessel with unreinforced cutouts, nozzles, and 

shell intersections may be much less than that of a pressure 

vessel of the same thickness without openings subjected to the 

same loading and environment. Therefore, life predictions on 

the basis of the nominal membrane stresses of the vessel might 

lead to an unsafe design. As creep develops, the stresses in the 

regions of stress concentration redistribute and decrease. 

Furthermore, life predictions based on stresses calculated 

by elastic analysis may result in an overly conservative design 

because such elastic analysis can not account for the redistribu- 

tion of stress with increasing creep strain. If the loading 
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remains constant, the stress distribution asymptotically approaches 

a stationary state as the creep strains become dominant over the 

elastic strains. This transient takes place rather quickly and 

is essentially completed while the maximum creep strains are 

still of elastic order. Therefore, under steady loading, most 

of the creep life of the structure will take place while the 

stress state is that of the stationary state. 

For the tee branch pipe connection such as shown in Fig. 1, 

the life prediction accounting for the stress redistribution is 

very costly and time consuming problem if solved by the three- 

dimensional finite element method. 

D.P. Updike and A. Kalnins showed a very simple and accurate 

method to solve a complex creep problem of intersecting equal 

diameter cylindrical shells under internal pressure [1]. 

Using the presented equation in [1], a designer can predict 

a life of such three-dimensional intersecting structure easily 

and at less cost than would be required by three-dimensional 

finite element methods. 

Here we extend the method shown in [1] to the problem of 

the structure consisting of intersecting pipes of unequal diameter 

and thickness pipe under creep behavior. To make the required 

equilibrium and continuity condition between two different dia- 

meter intersecting pipes, a special transfer matrix is needed in 

the model. 
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The validity of the transfer matrix is checked and the 

results are compared with published solution from some refer- 

ences. 

Finally, the analysis is applied to three typical kinds of 

tee branch connections of which all radius ratios are 0.5 in the 

branches and mains. These are: (1) the case of equal strength 

branch and main, (2) the case of equal thickness in branch and 

main and (3) the case of reinforced equal strength tee. 

The results are carefully studied and examined including 

stress distributions and stationary creep strain rate. The 

magnitude of stress redistribution and the effect of a reinforce- 

ment are  also discussed. 



II.    METHOD OF ANALYSIS 

In reference [2] the calculation of the peak elastic stresses 

of a tee branch pipe connection under internal pressure are shown. 

This analogy is as follows. 

Referring to Fig. 2, the tensile forces on the cross section 

CbBbABmCmJK of the structure are set equal to the resultant force 

of the pressure acting on area C^)B|DABrnCmJK.    If it is assumed 

that both the main pipe and the branch are long and that the 

stress along KJ is the nominal hoop stress, then the pressure 

times area ECmJK is balanced by the tensile force along CmJK. 

This then requires that the tensile force on CkB. AELC   balance ^ b b   m m 

the pressure times area CJ3 AB. C. E.    The force balance equation 1 m m   b b M 

then becomes 

| Nedx - pRLm-prLb = pRr (1) 

C.B.ABC 
D b   mm 

Expressions for the edge shearing forces Q      and Q .   acting 

on the cylindrical panels ABML   and AB, M, L   at the junction A 

(Fig.  1) are derived considering the equilibrium condition on 

the each shell edge [3]. 

For the axisymmetric approximation, the edge loads acting 

on the representative cylindrical panel are the loads Q~   , M    , 

and N"X0 at the edge A.    The edge load N~     is taken to be 
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Nxo - PR/2 (2) 

while the edge load Q , is calculated by considering the equili- 

brium of the cylindrical panel (Fig. 3). Thus 

a 

Q  coseRde + 2pLRsina - 2sina N0ds = 0 (3) 

where a is taken to be a small angle. The previous equation 

reduces to 

QvnR = NQds - pRL u 
(4) 

Therefore, for the structure shown in Fig. 2 

and 

V 

Qvh1" 

N0dx - PRLm (5a) 

ABmCm m m 

^xb (5b) 

AVb 

in 

NQdx - prLb 

j 

Summing equations (5a) and (5b) and invoking (1) results 

QxmR + Qxbr = PRr ^ 

For the continuity condition of the junction, the following 

conditions should be satisfied: 

Eem = eeb (7) 
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for the circumferential strain, 

dwb/dx = -dwm/dX (8) 

for the rotation of normal, 

Mxb = Mxm 0) 

for the bending moments. 

Suitable expressions for N  and N . throughout the two 

shells are 

% = pR/2 (10a) 

Nxb = pr/2 (10b) 

It is to be noted that exact matching of stress resultants 

at the crotch point A would require that 

Nxm = Qxb HOC) 

Nxb = *xm <10d> 

However, since the stresses due to the axial stress resultants 

N  and N . at the crotch point are much smaller than the xm    xb r 

stresses due to the other stress resultants, the lack of enforce- 

ment of (10c) and (lOd) in the analysis does not result in serious 

errors. 

For different diameter and thickness intersecting pipe under 

internal pressure, the equations (6) to (10) should be also 

satisfied as shown in Fig. 4(a). 
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The KSHEL computer program [4] can analyze axisymmetric shell 

problems under symmetric loading not only elastically, but also 

in creep. With the following simplifying assumptions the KSHEL 

program can be also applied for a creep problem of tee branch 

pipe connection under internal pressure. 

1. The pipes intersect normally. 

2. The only external loading is that of uniform internal 

or external pressure. 

3. The stress and strain distributions satisfy the thin 

shell assumptions; i.e., plane sections remain plane, 

transverse shear strains have negligible influence on 

the deformation, and transverse stresses have negligible 

influence on the shell mechanical behavior. 

4. Circumferential bending strains are negligible in 

comparison with the circumferential direct strains. 

5. Near the crotch stress gradients in the circumferential 

direction are small in comparison with stress gradients 

in the meridianal and thickness directions. 

A special transformation matrix relating stress resultants and 

deformations between the edges of two different diameter cylin- 

ders is needed to enforce the equilibrium and the continuity 

conditions (Eqs. (6) to (10), refer to Fig. 4(b)). 
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The transfer matrix is derived as follows. 

fr/R 

r/R     0 

1        0 

0       0     R/r     0 

0" N f"( 2R    )P 

0 Nl -pr 

0 Ml 
+ 

0 

0 wl 0 

0 ul 0 

lj k 0 

(11) 

The first element in the column matrix on the right can be 

simulated by "Ring Load" of N = -(R2-r2)p/2r at the end of 

the branch pipe. The second can be simulated by "Ring Load" 

of Q = pR at the end of the branch pipe. 

The problem treated is one of determining the creep strains 

when they are small enough, so that thickness change may be 

neglected. By including in the model both elastic and creep 

strains, the analysis calculates the transient solution from the 

elastic stress distribution to the stationary state under steady 

internal pressure loading. The final creep solution of the 

stationary state represents the stress distribution over a sig- 

nificant portion of the life of the structure used in elevated 

temperature environment. 
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The governing equations for the deformation of an axisymmetric 

shell by nonlinear analysis are presented in [5], Only the 

stress and strain equations should be changed to account for 

creep. Then the problem is solved by repeating steps in time. 

One such step, say from t, to tp will be described. 

At t,, the meridional and hoop stresses, o •, and a,,,  and 

the accumulated creep strains, e ■,  and e „•,, are known through- 

out the shell. The object is to find the total strains at time 

tp.    The total meridional and circumferential strains at tp are 

given by 

ex2 = Allffx2 + A12ae2 + ecx2 (12a) 

:e2 = A21ax2 + A22ae2 + ece2 e„o = A01a 0 + ko0oa0 + e,.o9 (12b) 

where A-,-,, A-.^* A21> and A22 are some compliances, and the sub- 

script c denotes the creep strain.    For an elastic solution at 

the initial time, the compliances for an isotropic material are 

given by A,-, = A22 
= VE and A12 

= Ap-.  = -v/E where E is Young's 

Modulus and v is Poisson's Ratio. 

The accumulated creep strains at t? are given by the 

following equations [6]. 

ecx2 = ecxl + 

ece2 = ecel + 

f2 
Fx(ax, ae)dt (13a) 

l 

r2 

Fe(ax, oe)dt (13b) 
1 
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Assuming a power creep law [7], with the exponent denoted 

by n, then the creep strain rates are given by 

where U is the reference slope and S the reference stress of 

a standard reference creep curve, and 

°e " W + V " V,'* "5» 
Penny and Marriott [8] present creep analyses in which F 

and Fn in (14) are assumed constant based on the stresses that 
y 

are evaluated at t,.    This simplifies the analysis, because then 

the integrand in (13) is independent of time and the creep strains 

at t~ are given by 

Ecx2= Ecxl + Fx(axT ael)At (16a) 

Ece2 = ecel + Fe(axl' ael)At (16b) 

where At = tp-t,.    This means that then the elastic compliances 

A,-, to Apo remain the same at all times, which makes the calcula- 

tions simpler, but it means also that the creep strain that is 

accumulated during a time step is calculated on the basis of the 

creep strain rate at the beginning of the step. 
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Also, however, the present problem is different. Instead of the 

creep strain rates reaching a stationary state, they are expected 

to increase indefinitely at the critical time. For such problems, 

the simplified procedure was judged inadequate and the next level 

of approximation for the evaluation of the integral of (13) was 

used to obtain the results of this paper. 

According to [9], the creep strain rates are expanded in a 

Taylor's series about the stresses at t, 
3F aFx1 

Fx(ax'ae) = Fx{axl>a6]]  + ^yV^^ + ^^Vel* 
X      I D 

(17a) 

X 9 

(17b) 

and only the linear terms retained.    The subscripts 1 mean that 

the derivatives are evaluated with the stresses at t,.    Also, 

the stresses at any time within the time step are 

°x = °xl + (°x2~axl)(t~V/At (18a) 

a
e = ffel + (ae2"ael)(t"tl)/At (18b) 

Differentiating (14) as required by (17), substituting the 

stresses from (18), and then carrying out the integration in 

(13), gives the total  strain at t? as 
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A 8 

+ ccxl + V* <,9a' 

<e2 ' [fl21 + f ^lH.2 
+ tA22 + f t§],>,2 A P 

+ ccel + 9eAt <19b) 

where 

9x = FxKl'<V -l^>xl "2-^Vel       (20a) 
X 0 

Se-V'xJ'Oel'-?^"! -J^Vel      (20b) 
X 0 

This approximation for the integration of the creep strain 

rate is used by one option of the KSHEL program. 

This level of approximation does take more computer time per 

time step than the simplified approach that would use (16), 

because the elastic constants A,, to Ap?* roust be recalculated at 

every time step. However, the higher level approximation will 

require fewer time steps, in order to achieve adequate accuracy, 

and in the end may require less total computer time, than the 

simpler approach. 
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Then, constitutive relations which include both elastic 

strains and power-law creep strains in a thin axisymmetric shell 

of isotropic material  are 

ex =  (ax-v a0)/E + U^io^M/sJ (21a) 

c9  =  (ofl-v ax)/E + U0ae
n-1(afl-ox/2)/So

n (21b) 

Dots over the variables indicate differentiation with respect 

to the pseudo-time variable % of a time hardening creep theory. 

Thus, for the present study the function F   and F. are 
X 0 

given 

Fe = Uo °en~ VV2^ <22b> 

■15- 



III. ANALYSIS 

The analysis model presented here can be applied to many tee 

branch pipe connections. Any combination of thickness, radius 

and material properties between a main and branch pipe is avail- 

able if a combination satisfies the five assumptions in chapter II. 

As typical cases, the following three cases, which have the 

ratio of the branch pipe radius to the main pipe radius equal 

to 0.5 (r/R=0.5), are analyzed. 

1. Case of equal strength between both pipes 

(denoted as s/S = 1) 

2. Case of equal thickness between both pipes 

(denoted as t/T = 1) 

3. Opening compensation of No. 1; the main pipe is 

reinforced. (See Appendix II) 

(denoted as OPNC) 

In Table 1, the structural dimensions and the mechanical 

properties of the material of the above three cases are shown. 

Calculations of the required reinforcement for case 3 according to 

the ASME code [10] and the resulting thickness profile are pre- 

sented in Appendix II. 

Prior to the analysis of the three cases some sample analyses 

were performed to check the validity of the proposed model. In 
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Appendix I the results of the sampel analyses are shown.    It 

is concluded as a result of the study of the sample analyses 

that the developed transfer matrix works as expected and the 

presented model is valid in any combination of normally inter- 

secting cylindrical pipes under internal pressure. 
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IV.    RESULTS AND DISCUSSION 

First of all the case of s/S = 1 is discussed.    For the 

other cases, discussions will be presented later. 

Case of s/S=1 

The maximum dimensionless equivalent stress versus the 

dimensionless pseudo-time parameter is given in Fig. 5. The 

ratio of the maximum equivalent stress a   to the nominal stress 

pR/T of the main pipe reaches the asymptotic value of 7.82 which 

occurs on the outside surface of the branch pipe at the crotch. 

Nondimensional stresses at the crotch point when the sta- 

tionary state is reached are given in Table 2. In this table, 

the elastic solution which is the first step solution of the creep 

calculation is also given. The maximum stress occurs on the out- 

side of the branch pipe in both cases of elastic and stationary 

state. The maximum elastic stress reduces to approximately 

sixty-seven percent in the stationary state due to stress redis- 

tribution. 

The dimensionless axial moment (6Mx/Tt)(T/pR) distribution 

along the meridianal direction is presented in Fig. 6. In both 

cases of elastic and stationary state, the moment equilibrium 

are satisfied at the crotch point. The maximum moment occurs 

at the crotch point in the branch and the point of x//RT is around 

one (1) in the main respectively. This suggests that the maximum 

meridianal bending stresses will occur at these points, 
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Fig. 7 shows the dimensionless circumferential stress result- 

ant Ne/pR, Ne/pr distribution along the pipe axis, The distribu- 

tions satisfy Eq. (1) in both elastic and stationary creep solu- 

tion. The ratio of N9 to product of the internal pressure p and 

the each radius of pipe (r,R) reaches to one (1) in the region of 

remote from the crotch. The dimensionless stress distributions 

along the pipe axis are shown in Fig. 8 to Fig. 11. Fig. 8 and 

Fig. 9 shows the meridional direction stress distribution on 

inside and outside surfaces respectively. 

As discussed in Fig. 6, it is clear that the maximum meridianal 

bending stress occurs at the crotch. The circumferential stress 

distributions are given in Fig. 10 and Fig. 11. 

Fig. 12 shows the distributions of the dimensionless stationary 

state strain rate in circumferential and thickness directions along 

the pipe axis. The stationary creep rate in the thickness direc- 

tion may be determined from the incompressibility condition 

ez - -  (ex  + ee) (23) 

Since in shell theory the strain rates c„ and ED vary linearly X 6 

with thickness coordinate, the thickness average creep rates 

are simply the arithmetric means of the value at the inner and 

outer surfaces of the shell.    In the following discussion, the 

symbol  e   will refer to the average value. 
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The eQ in the branch has the maximum value near the crotch, 

which is greater than the maximum thickness direction strain 

rates and the E in the main. Also, Fig. 12 shows that the 

thickness of the branch reduces faster than the main by approximately 

1.4 times and the creep rupture due to creep deformation would 

occur on the branch side of the crotch point. 

The eQ and e, calculated from the elastic solution are also 6      Z 

shown in parentheses in Table 3.    The elastically calculated 

strain rates are more than two times and five times in the main 

and branch, respectively,  than the stationary state strain rates. 

Case of t/T=l 

The normalized stresses at the crotch point are given in 

Table 2. The stress values in the main and branch are almost the 

same. This is apparent from the dimensional reasoning; the ratio 

of each pipe r/R is 0.5 and the ratio of each thickness t/T is 

1.0. These stresses are almost half or less than those of the 

case of s/S=l. From the strength design point such stress condi- 

tion is preferable to the case of s/S=l. The stationary state 

strain rates are reduced, especially at the branch the thickness 

direction strain rates reduces to approximately twenty percent 

of the case of s/S=l as shown in Table 3. In Fig. 13 and Fig. 14 

the dimensionless stationary strain rate distribution is shown 
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in the circumferential and the thickness direction respectively. 

These figures indicate that in the case of equal thickness a 

symmetric creep deformation to the crotch point will be expected 

in the both pipes. 

The elastically calculated stationary strain rates are shown 

in Table 3.    The strain rates in both pipes are more than three 

times as large as the stationary state strain rates. 

Case of OPNC 

In this case, it is expected that the reinforcement in the 

main reduces the branch stresses and strain rate of the s/S=l. 

The normalized stresses and the strain rates in stationary state 

are shown in Table 2 and Table 3 respectively.    The strain rates 

are greatly reduced from those of the case of s/S=l, and the reduc- 

tion rate is ninety percent in the circumferential direction and 

eighty   percent in the thickness direction of the branch. 

Such large reductions can not be expected even in the case of 

t/T=l.    The stationary state stress distributions are shown in 

Fig.  8 to Fig. 11 for this case with the case of s/S=l  for com- 

parison.    These figures indicate that the reinforcement reduces 

not only the stresses in the branch greatly but also the stresses 

in the main itself within the reinforcing zone. 
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A main reason for the reduction of the stresses and the strain 

rates are considered as follows, 

Due to the reinforcement in the main around the crotch point, 

the radial  and the circumferential deformation of the main is 

much more restrained than the case of s/S=l. 

In Fig. 6 the crotch point stationary state bending moments 

are shown for the both cases of OPNC and t/T=l for a comparison. 

From this comparison it is clear that a reinforcement in the main 

reduces the bending moment to less than half but a reinforcement 

in the branch the moment reduction is much less,    This is reason- 

able from the discussion just before.    It seems that in the case 

of t/T=l the increased rigidity of the branch produces larger 

bending moment than do the other two cases to make the continuity 

condition at the crotch. 

Therefore, from the foregoing discussion it is concluded that 

in a tee branch connection a reinforcement in a main pipe will 

reduce stresses and stationary state strain rates more than 

reinforcement in a branch pipe. 

The elastically calculated strain rates are shown in 

Table 3.   The strain rates are more than   two times and six 

times in the main and branch respectively than the stationary 

strain rates. 
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V.  CONCLUSIONS 

An axisymmetric replacement model has been developed to 

describe the creep behavior in the crotch region of different 

diameter and thickness intersecting pipes under internal pressure. 

Three kinds of typical tee branch connections were analyzed by 

the model. The model predicts that significant redistribution of 

stress takes place in this region, as the creep strains increase 

from the initial zero value to values of elastic order. Therefore, 

predictions of the creep life on the basis of stresses calculated 

by elastic analysis would be too conservative in the case of 

materials following a highly nonlinear creep law. 

An effect of reinforcement of hole was examined. The rein- 

forcement according to the ASME code reduced the creep strain 

rates significantly in the studied case. 

For a design purpose, equal thickness in both pipes or a 

reinforcement in a main pipe would be recommended rather than a 

design of equal strength in both pipes. A reinforcement in a 

main pipe reduces stresses and strain rates much more than in the 

case of equal thickness. 
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Fig. 2. Section used for Calculating Forces in 
the Overall Equilibrium Equation 
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Table 1.    Dimensions and Material  Properties 

i 
oo 
CO 
I 

Case r/R R/T r/t s/S(» t/T E V n Uo So 

s/s = 1 0.5 50 50 1 0.5 TO6 0.3 3 0.001 20 

t/T = 1 0.5 50 25 0.5 1 106 0.3 3 0.001 20 • 

OPNC 0.5 
(2) 

22.2 50 1 0.5 106 0.3 3 0.001 20 

Note: 

(1)    s -f, S —   where p is internal pressure. 

(2)    This ratio is available within the reinforcing zone 
(see Appendix II)  . 
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Table 2.    Nondimensional Stresses at Crotch Point 
Elastic and Stationary Creep Solution 

i 
CO 

i 

Case 
Main                     Pipe Branch               Pipe 

oxT/pR a0T/pR oxT/pR a0T/pR 

Inside Outside Inside Outside Inside Outside Inside Outside 

o 
•r— 

(/) 

LU 

s/S = 1 -2.72 3.72 4.47 6.40 -12.38 13.38 1.57 9.30 

t/T = 1 -4.33 5.33 2.04 4.94 - 4.58 5.08 1.96 4.86 

OPNC 0.28 0.16 2.78 2.74 - 5.74 6.74 0.97 4.72 

S
ta

ti
o
n
a
ry

 
C

re
ep

 

s/S =  1 -2.22 3.05 2.97 5.35 - 8.53 8.90 -2.81 5.80 

t/T = 1 -4.02 4.44 -0.43 3.55 - 4.11 4.31 -0.56 3.54 

OPNC 0.37 0.07 2.19 2.06 - 3.43 3.81 -0.85 2.63 
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Table 3.    Dimension less Average Equivalent Stress 
and Strain Rate at Crotch Point in 
Stationary State. 

4=» 
o 
I 

Case 
aeT/pR ^6  ,so^n 

U0 
[ PR ; 

ez    SQT n 
Un 

( PR ) 
Main Branch Main Branch Main Branch 

s/S = 1 
4.58 

(5.93) 
7.68 

(12.56) 
82.5 

(185) 
82.6 
(863) 

49.2 
(96) 

70.8 
(376) 

t/T = 1 
3.94 

(5.39) 

3.92 

(5.40) 

22.1 

(97) 

22.1 

(100) 

16.8 

(50) 

13.8 

(39) 

OPNC 
2.03 

(2.66) 

3.24 

(6.14) 

8.3 

(19) 

8.3 

(100) 

4.8 

(11) 

8.2 

(56) 

Note:    Elastically calculated values are shown in (  ) 
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Appendix I 

The following problems are calculated for the purpose of 

checking the transfer matrix of Eq. (11) in chapter II. 

Problem No. 1: Elastic, equal diameter and thickness, compared 

with the results of [1]. 

Problem No. 2: Elastic, different diameter and thickness, 

compared with the results of [2]. 

Problem No. 3: Creep, same as No. 1 

Problem No. 4: Creep, two cases which is mirror image to the 

other respectively, checked the difference of the 

results of integration direction. 

From the next page, the model of each problem is shown 

including dimensions, material properties, calculation model and 

the results with the reference data. 
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Problem No.  1 [Elastic] 

r/R=i, R/T= r/t= 100> t/T=1)S/s=1 

-E_LjO!_^LJL_oi3____ ___ 

t=0.1 

* 0 
r=!0 

- _i 
x=0 

T=0.1 

P=0.0f 

R=10 

"*V^ = 0.05 

s = BL= i 

S = &R = ! 
T 

x=5 x=10 

Q =p R = 0.1 »-(^,p-0 

Results 

[1] 

End of partfi) 

PxT/PR 

In out 
-11-17      12.17 
-11.17      12.17 

Start of part (3) 

axT/pR 

in out 

-11-17      12.17 
fl] -11.17      12.17 

oeT/pR 

in out 
3.926      10.93 
3.93        10.93 

a0T/pR 

in out 

3.926      10.93 
3.93        10.93 
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Problem No. 2 [Elastic] 

r/R = 0.5, R/T = 50,  r/t = 50,  t/T = 0.5, s/S = 1 

E = 1.0 , b = 0.3 

® 
t= 0.1 

r=5 

_L 

®*Q 

Q) 

T=0.2 

p=1.0 

R=10 

N, = H« = DR 
2 

s = t 

T 

5 

50 

50 

x=0 x=3.5356 x=11.5356 

Q = pR = 10, N = -(^^-)p = -7.5 
2r 

Results 

End of part© (Branch) 

axT/pR a0T/pR 

in               out in               out 

-619.0         669.0 78.47            464.9 
271.685 (average) 

[2]               -618.8         668.8 271.7 

Start of part(D (Main) 

axT/pR oeT/pR 

in               out in               out 

-136.0          186.0 223.4            320 
271.7 (average) 

[2]             -135.95        185.95 271.7 
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Problem No. 3 [Creep] 

r/R = 1, R/T = r/t = 100, t/T = 1, s/S = 1 

E = TO6, v = 0.3, n = 5,  U0 = 0.001, S0 = 1 

Same as Problem No.  1 

axT/pR 

in out 

8.615 8.876 

8.53 8.80 

Results:    Stationary creep solution 

a0T/pR 

in out 

-2.259 6.303 

[1] -8.53 8.80 -2.03 6.46 

Note:    End of part 0 and start of part ©are completely the 

same. 

In Fig. Al, the relationship between a dimensionless 

equivalent stress of crotch point versus a dimensionless time 

parameter is shown. 
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Problem No. 4 [Creep] 

r/R = 0.5,  R/T =  r/t = 50,  t/T =  1, s/S = 0.5 

E = TO6, v = 0.3, n = 3, U0 = 0.001, S0 = 20 

Case A 

t=0.14142?      p 

N" 
r=3.5355 

!__ 

T=0.14142 

,HTR^|v-o.o707ii 

faiM |U— R=7.0711 

x=0        x=5.3033    x=10.3033 

Q = pR = 0.1414 

2r 
N = -(R2-r2)p = -0.1061 

Case B 

T=0.14142 

©t 
pr p=0. 

R=7.0711 

@ 
p=0.02|   t=0.14142 

r=3.5355 

_J__ 
0.03536 

x=0 x=5.0        x=10.3033 

Q = pr = 0.070711 
2      2 

N = -(^f-)P = -0.05303 

Results 

In Table Al, the relationship between a dimensionless 

equivalent stress of crotch point versus a dimensionless time 

parameter is shown.    It is clear from Table Al  that the two 

cases result in the mirror image of the other respectively. 

Therefore, negligible differences occur depending 

on the integration direction. 
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Table A1.    Dimensionless Equivalent Stress 
Versus Dimensionless Time Parameter 

Time 
Step 

(1) 
a 

aeT/pR 

Case A      ^ Case B      (2) 

1 0.0 
5.817 

(©- 5.303) 
5.818 

(©- 0.0) 

2 0.009 
5.073 

(©- 5.303) 

5.073 

(®- o.o) 

3 0.033 
4.514 

(®- o.o) 
4.615 

(CD- 5.0) 

4 0.092 
4.280 

(©- 0.0) 

4.280 

(®- 5.0) 

5 0.239 
4.116 

(©- o.o) 
4.116 

(0- 5.0) 

6 0.608 4.081 

(0- 0.0) 
4.082 

(CD- 5.0) 

7 1.529 
4.068 

(0- o.o) 
4.069 

((D- 5.0) 

8 3.831 
4.074 

((1- 0.0) 
4.075 

(©- 5.0) 

Note: 

(1) a  = UoTt(pR/S0T)  (ET/pR) 

(2) Location of the maximum aeT/pR is shown in (  ). 

ex:  (Q - 5.303) means at x=5.303 of part  0 
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Appendix II 

The opening compensation method of pressure vessels or 

pipes is given in a design code such as ASME Boiler and Pressure 

Vessel Code [10]. 

A reinforcement design according to NC-3643.3 of [10] is 

shown in Fig. A2.    In designing the reinforcement it is assumed 

here that the required thickness of the main and the branch 

(Tmn and Tmb) are the same as the nominal  thickness of the both 

pipes (Tn and Tb). 

In the following, the reinforcement design calculation 

is shown. 

Required Area A0 = 1.07 (Tmh)(d-|) 

= 1.07 x 0.14142 x 7.0 = 1.06 

Al  = d2(Tn-Tmn) = 7.0 x (0.14142 - 0.14142)  = 0 

d2 = Min[D0Ds Max (dlf Tb + Th + d]/2)] 

= Min [7.1417, Max  (7.0, 3.677)] 

= 7.0 

A2 = 2L(Tb-Tmb)  = 2 x 1.768 x (0.070711-0.070711) = 0 

L = 2.5 Tb = 2.5 x 0.070711  = 0.1768 

A3 = L(2d2-Dob)= 0.1768 x (2 x 7.0 - 7.1417) 

= 1.213 
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Therefore, 

A1  + A2 + A3 = 1.175 > A0 = 1.048 

The dimensions of reinforced tee branch connection are shown 

in Fig. A3. 
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