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ABSTRACT 

The compressive strength of frozen coal cylinders 

prepared with varying amounts of water were studied.  The 

compressive strength increased with increasing water con- 

tent and, at high levels of water, it was much greater 

than that of ice.  For the bituminous coal studied in the 

present investigation, the key parameter affecting the 

compressive strength was the amount of water added to 

form the frozen coal samples.  The initial moisture con- 

tent as determined by ASTM D-2961 test did not have sig- 

nificant influence on the compressive strength. 

The effect of ethylene glycol, ammonium acetate, 

urea and sugar as chemical additives on the compressive 

strength of the frozen coal cylinders was also studied. 

For the concentrations of these chemical additives stud- 

ied, it has been found that ammonium acetate is the most 

effective in reducing the compressive strength of frozen 

coal cylinders, followed by ethylene glycol and then 

urea, whereas sugar did not have any significant effect 

on the compressive strength.  A study of the compressive 

strengths of ice cylinders revealed that the addition of 

ethylene glycol and ammonium acetate decreased their 

strength, whereas sugar and urea led to an increase in 

the compressive strength.  On the basis of these results, 
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it has been postulated that the decrease in the compres- 

sive strength of the frozen coal cylinders due to the 

addition of ethylene glycol or ammonium acetate is mainly 

because of the formation of the weak ice-ice bonds, 

whereas for urea it is due to the formation of weak ice- 

coal adhesive bonds. 

Studies of frozen coal cylinders containing mix- 

tures of ethylene glycol and urea showed no synergistic 

effect. 



CHAPTER-I 

INTRODUCTION 

In certain parts of the world, the freezing of wet 

coal to form intractable masses plagues coal burning 

electric power plants and other coal users every winter. 

This is due to the fact that the coal is washed at the 

mine and loaded into railroad cars while it is still wet. 

This problem is further aggravated if the coal is exposed 

to rain or sleet.  Therefore, for engineers at many util- 

ity and industrial power plants winter means a battle 

against frozen coal [Baur-1981].  Not only do the power 

plants, but the transportation industry, especially the 

railroads, suffer from frozen coal quite heavily. 

The coal when delivered in winter by rail develops 

more severe coal handling problems.  Since rail-coal is 

normally hauled to greater distances, it is exposed to 

more adverse conditions than the coal transported by 

conveyors or trucks.  Therefore, it is more likely that 

rail-delivered coal will pick up moisture and experience 

freezing conditions during transit.  As a result rail- 

roads suffer considerably from frozen coal.  They waste 

energy hauling supposedly empty cars, and also their cars 

are damaged through unbalanced loading and the efforts to 
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thaw the coal.  The average amount of frozen coal that 

remains stuck in the bottom of cars is about 2 tons per 

car and is called carryback.  This frozen coal burdens 

the railroads with hauling about 200 tons of coal on the 

return trip.  This difficulty in handling frozen coal has 

led to transportation delays, inadequate coal invento- 

ries, increased labor, maintenance and demurrage costs, 

and production facilities curtailments [Green-1982; 

Hewing and Harvey-1981]. 

Not only is unloading often a problem in severe 

winter as described above but also storage causes prob- 

lems.  The coal often is unloaded into large piles, which 

are also exposed to the weather.  The freezing of these 

piles makes it difficult to transfer the coal to the 

silos from which it is fed to the burners. 

At the user's site, only a relatively small load 

reduction at a critical electric generating power plant 

can result in enormous additional costs.  If, for exam- 

ple, at one of the electric power generator plants, fro- 

zen coal handling problems forced a load reduction of 300 

megawatts (about 13% of full load capacity) and it was 

necessary to provide power by burning oil; in 1980, it 

would have cost $600,000 per day [Rosenburg-1980].  An- 

other example can be given from the expreience encoun- 

tered by Detroit Edison's Monroe power plant, one of the 
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largest coal-fired power plants in the world, during the 

winter of 1976-1977.  Typical problems were:  pluggage 

within the cone and lower cylindrical section of the 

silos; pluggage at the outlet and in the corners of the 

surge hoppers; and buildup on the transfer chutes.  The 

silo problem was the most severe.  When coal stopped 

flowing here, it had an immediate effect on the pulver- 

izers and boilers [Moaveni and Carson-1981 ].  Therefore, 

it is clear that every winter the frozen coal situation 

has the potential for causing very high added costs. 

Problems are not confined to the users, but also 

to the producers of coal.  The frozen coal carryback 

causes increased mine inventories or production curtail- 

ments.  At the mine, the stored coal may freeze in the 

surge bins or become mixed with snow and foul the convey- 

or.  The problem may be further aggravated by loading 

this coal into snow-filled cars. 

Traditionally, the freezing of coal problem has 

been handled by heat, mechanical and chemical treatments: 

• Heating of the railroad cars by methods such as steam 

lances, fires under the cars, and infrared heating in 

warming sheds have been used to unload the frozen coal. 

However, the capital cost associated with this type of 

system limits its use to large utilities.  Moreover, it 

subjects the railroad cars to thermal stresses and this 
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may damage the car [Parks and Nimerick-1978]. 

• Mechanical methods include dislodging the frozen lumps 

with vibration and hammering, and, in some cases, even 

dynamiting has been tried.  Also air cannons which quick- 

ly inject a prescribed volume of air into coal stuck in a 

hopper have also been used.  The expanding air which 

rushes between the hopper wall and the cohesive mass, 

fractures the mass and thereby dislodges the frozen or 

clinging coal [Chironis-1979].  These mechanical methods 

can shorten the cars resistance to wear and tear. 

• Chemical methods are gaining wide acceptance because 

of their good performance and their relatively low cost. 

Some of the chemicals which have been used as freeze con- 

ditioning agents are described below. 

(1) Some inorganic salts such as sodium chloride and 

calcium chloride have been used to alleviate this prob- 

lem.  These salts are sprayed on coal as an aqueous solu- 

tion.  These salts prevent the water from freezing. 

Their effectiveness is related to their ability to de- 

press the freezing point of water.  The freezing point 

lowering AT^ is calculated by the following expression: 

ATf = 1000 Kf g/G M (1.1) 

where Kf is the molal freezing point constant, g the 
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weight of solute, G the weight of solvent and M is the 

molecular weight of the solute.  For a given concentra- 

tion of solute, the freezing point lowering depends  upon 

the ratio Kf/M. 

One of the biggest drawback of their use is that 

they are highly corrosive to steel rail cars and plant 

equipment.  Many coke plant operators refuse to use these 

materials because of the detrimental effect on the oven 

lining [Nimerick et al.-1977]. 

(2) Oils applied to coal provide some measure of 

freeze protection.  Oily liquids marketed as ice crystal 

modifiers, e.g., Ashland Permatreat, are used for this 

purpose.  The lubricant Niogrin, which is a mixture of 

cracking residue with light coker gas oil from heavy pe- 

troleum residues has been used to prevent the freezing of 

coal to the sides of railroad cars [01'kov-1979].  Light 

oils are as good as or better than glycols, but heavy 

oils are inferior to both.  The oily liquids probably 

displace the water from the surface of the coal parti- 

cles, replacing the annular rings of water with annular 

rings of non-freezing oil.  This spreading requires that 

the oily liquids wet the coal surface better than the 

water that is displaced. 

However, these oily liquids are objectionable, 

because of certain problems associated with them. 

-7- 



Certain operational problems arise when oil is used.  The 

fumes are quite irritating to workers in confined areas 

such as coal loading facilities and utility tripper 

rooms.  Also, the likelihood of an accident increases as 

the hopper cars and handling equipment become slippery. 

Furthermore, the use of oil may increase the fire hazard 

[Hewing and Harvey-1981]. 

(3) Dry, powdered water absorbent polymers such as 

Henkel corporation's SGP have also been considered.  SGP 

is a tradename for a unique family of starch derivatives, 

which absorb and retain unusually large quantities of 

water as swollen gel particles.  SGP polymer is water-in- 

soluble but it is extremely water-swellable [Henkel Cor- 

poration-1979]. 

(4) The glycols, also known as polyhydroxy alcohols, 

are perhaps the most popular class of freeze conditioning 

agents (FCA's) in use.  Various proprietary mixtures of 

water soluble compounds with major constituent being 

polyhydroxy alcohols have been marketed.  Some of the 

typical compounds which have been mixed with polyhydroxy 

alcohols are fumaric acid, urea, glycolic acid, sodium 

acetate, ammonium salts, dimethylsiloxane, and some poly- 

meric materials such as polyacrylamide [Beafore-1979; 

Glanville and Walters-1981; Montgomery-1979].  The hydro- 

carbon liquids which have freezing points less than -20 F 
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have been emulsified with 5 to 757o by weight of an aque- 

ous solution of a polyhydroxy alcohol have also been used 

[Macaluso and Michalski-1974].  Normally these freeze 

conditioning agents are added at a rate of 2 pints per 

ton of coal.  The mechanism by which these compounds 

lower the compressive strength of frozen coal is not well 

understood. 

Since these chemical compounds have proved to be 

useful, some attempts to understand the mechanism which 

leads to a decrease in the compressive strength of frozen 

coal have been made.  Also, Rosenburg has developed a 

correlation which predicts when the application of freeze 

conditioning agent is required [Rosenburg-1980].  It is 

necessary to have this information because the applica- 

tion of an FCA on a single unit train shipment may cost 

up to $10,000 [Coppola et al.-1983].  Rosenburg has de- 

fined an exposure index R„ as: 

RD=AtXh (1.2) 

where At is equal to 32 F minus average ambient tempera- 

ture during transit and h is the hours during transit. 

The chances of forming frozen coal slabs increases with 

the increase in the value of Rn.  From the analysis of 

the actual coal delivery data of the railroad cars, the 
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author provided rudimentary guidelines for when to apply 

FCA's.  A value of R~ greater than 118 dictates the use 

of freeze conditioning agents. 

Rosenburg's correlation is a simplistic one, and 

does not help in the selection of a freeze conditioning 

agent or its rate of application.  Moreover, the coal 

freezing problem ia analogous to the material's complex 

physical nature.  Due to heterogeneity of coal, its pyhs- 

ical properties vary significantly.  Coal freezing is not 

governed by just a single parameter, namely, ambient tem- 

perature below the freezing point of water.  But it is 

also a function of many other parameters, of which sur- 

face moisture, particle size, and rate of cooling are the 

significant ones.  The main source of water for the ice 

crystals that bind together frozen coal particles is the 

surface moisture.  Another significant parameter is the 

coal particle size.  Coal fines have more surface area 

and fill the voids between the larger coal particles, 

which facilitates bridging by ice crystals.  Rosenburg's 

exposure index does not account for these additional 

parameters, which also influence the mechanical strength 

of frozen coal. 

Glanville and Haley [1982] have tried to give 

mechanistic explanation for the decrease in the compres- 

sive strength of frozen coal samples due to the addition 
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of FCA's.  Generally, the ice frozen from a dilute chem- 

cal solution is mechanically weaker than ice frozen from 

pure water.  The authors used this phenomenon as the 

basis for the explanation of the reduction in compressive 

strength of a mass of frozen coal.  According to them, 

the ice-ice bonds are weaker than ice-coal or coal-coal 

bonds.  Therefore, during laboratory tests of breaking 

frozen coal, fracturing occurs along the lines within the 

ice structure.  However, there are chemical compounds 

which when added to water lead to stronger ice, and it is 

not clear whether the addition of these compounds will 

lead to a decrease in the compressive strength of frozen 

coal. 

OBJECTIVES:  Following are the outlines of the studies 

made in this thesis: 

1. The main objective of this thesis is to study the 

decrease in the mechanical strength of frozen coal by 

the addition of simple, less expensive, water solu- 

ble, pure chemical compounds. 

2. Frozen coal samples with various water contents will 

be studied to elucidate the effect of water on the 

compressive strength. 

3. The relative effect of internal as well as external 

water content on the compressive strength of a frozen 
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coal sample will also be studied. 

4. In the literature, it has been suggested that often 

the mixture of two pure compounds such as ethylene 

glycol and urea leads to lower compressive strength 

than either of the pure compounds [Parks and Nimerick 

-1978].  One of the objectives is to study this syn- 

ergistic effect. 

5. The other objective is to further study if the reduc- 

tion in compressive strength of frozen coal sample 

is solely due to weakening of ice-ice bonds.  For 

this purpose, the compressive strength of ice pre- 

pared from water containing the same chemical com- 

pounds as used for frozen coal samples will be mea- 

sured. 
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CHAPTER-II 

EXPERIMENTAL METHODS 

Before experimental methods are discussed, details 

of all the materials used in this investigation are giv- 

en. 

A.  MATERIALS USED :  The coal was ordered from Pennsyl- 

vania Power and Light Company (Greenwich coal).  This 

coal was received in 55 gallon drums and was bituminous 

coal.  The coal from the drum received in the first ship- 

ment was designated coal sample #1.  After its supply was 

exhausted, the second drum was ordered, which was named 

coal sample #2.  Similarly, subsequent shipments were 

designated coal sample #3 (Supplier's # U.F.S.-302) and 

sample #4 (Supplier's # U.F.S.-500).  In this lab, pre- 

vious researchers, Earhart and Ding [1983], used coal 

sample #1 and coal sample #2 on the freezing of coal pro- 

ject.  Throughout this investigation, coal samples #3 and 

4 have been used and were received on Nov. 17, 1982, and 

Feb. 16, 1983, respectively. 

The chemical compounds used as freeze conditioning 

agents in this work were ethylene glycol, urea, sugar and 

ammonium acetate.  High purity ethylene glycol and urea 
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were purchased from Fisher Scientific Company, Fairlawn, 

New Jersy, 07410.  The specific gravity of ethylene 

glycol at 25°C was 1.1130.  The urea used was in the form 

of prills.  Commercial, granulated pure cane sugar was 

uesd.  It was manufactured by Amstar Corporation, New 

York and is sold under the brand name "Domino".  High 

purity ammonium acetate crystals were purchased from J.T. 

Baker Chemical Company, Phillipsburg, N.J. 08865.  The 

water used through out this investigation was distilled- 

deionized water. 

B.  STUDIES WITH COAL SAMPLES :  The experimental proce- 

dure is schematically shown in Figure II-l. 

B.l.  SIEVING :  As seen from schematics, the first step 

was sieving the coal.  The size fraction of coal used was 

6-20 mesh size (particles of size greater than 0.85 and 

up to 3.35 mm).  This size range was chosen because it 

was representative of those used in the field.  During 

sieving, care was taken to prevent the sieves from becom- 

ing "blinded" by particles which stick in the holes and 

thus prevent the smaller particles from passing through 

the sieve.  This was achieved by the use of four U.S. 

Standard sieves of sizes 6, 8, 16 and 20 mesh.  Coal as 

received was placed on sieve #6 and all four sieves were 
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COAL AS 

RECEIVED 
-> 

SIEVE COAL 

6-20 

MESH SIZE 

V 
MOISTURE 

ANALYSIS 

^ 

PREPARE COAL 

FOR FREEZING 

COMPRESS FROZEN 

COAL CYLINDERS 

^L 

<r 
FREEZE PVC TUBES 

FOR 24 HRS. AT 

-20°C 

<r 

RECORD THE 

VALUES 

( l)  Add desired amount of water + FCA as determined by 

moisture analysis to coal sample which weighs 1500 gms 

in 1 gallon Nalgene containers. 

(2) Mix it well for five minutes and let it equilibrate 

for 24 hours at room temperature. 

\3J  Place this coal slurry in the PVC tubes. 

Figure II-l 
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arranged in the proper order, and were shaken on a sieve 

shaker for roughly five minutes.  The coal which was re- 

tained on sieve #8, 16 and 20 was collected in a bucket 

and was used for further experiments.  The coal retained 

on sieve #6 and in the bottom pan was not used for the 

experiments.  Use of more sieves gave better sieving 

results. 

B.2.  DETERMINATION OF COAL MOISTURE CONTENT :  The mois- 

ture content of the coal was determined in accordance 

with the ASTM D-2961 test.  According to this test, the 

sample used for the moisture determination must have a 

minimum weight of 500 gms.  Therefore, about 500 gms. of 

sieved 6-20 mesh size coal was taken in a shallow alumi- 

num pan.  This coal sample was placed in air oven at 107 

± 3°C and was periodically weighed after 1.5 hours, and 

then every 0.5 hours until the weight loss was less than 

0.05%.  Excessive heating is reported to cause oxidation 

of the coal, which would increase the weight of the sam- 

ple and thus introduce errors in the moisture determina- 

tion [Vanderhoff et al.-1982].  The moisture content was 

determined on the basis of undried coal.  The formula 

used for this purpose was: 

Moisture Content, % = [(A - B)/A] X 100  v  (2.1) 
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where A = gms. of undricd coal used. 

B = gms. of coal after heating till the weight 

loss is less than 0.05%. 

However, there is a word of caution regarding the 

moisture content as determined by drying methods.  At 

temperatures of 105°C to 110°C practically all of the 

moisture is removed from the coal.  At the same time, the 

surface which was previously covered by adsorbed mole- 

cules of water now becomes free of water.  When the sample 

is cooled before being weighed, some kind of eqilibrium 

between the surface and the molecules of gases in the 

atmosphere is established.  It is generally believed that 

the quantity of these gases adsorbed by the surface of 

coal particles is very small.  However, it has been found 

out by Swietoslawski [1942] that relatively large amounts 

of nitrogen, oxygen and other gases are adsorbed during 

the cooling of the sample after it has been dried.  Due 

to this fact, the moisture content found by the drying 

method may be too low.  Therefore, one should weigh the 

dried coal sample as fast as possible to minimize this 

error. 

ASTM D-2961 test has certain other disadvantages 

too.  It is questionable whether it measures the total 

moisture content or not.  During heating the coal at 107 

± 3°C, along with water, some volatiles which have lower 
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boiling points might also evaporate with water, giving 

higher moisture contents.  Furthermore, the quantity of 

water measured by this method comes from five sources: 

(1) decomposition of organic molecules (sometimes called 

combined water) ; (2) surface adsorbed water; (3) capil- 

lary condensed water; (4) dissolved water; (5) water of 

hydration of inorganic constituents of the coal.  There- 

fore, by this method, it is difficult to discriminate the 

relative contribution of chemically and physically bound 

water to the total moisture content. 

Glanville and Haley [1982] measured the moisture 

content of coal by drying the coal to constant weight at 

95°C instead of 107 ± 3°C as suggested by ASTM D-2961 

test.  However, one of the drawbacks of this method could 

be that all of the bound water may not come out. 

In the literature, it has also been mentioned that 

thermogravimetric analysis (TGA) could be used for the 

moisture determination of coal [Baur-1983].  In this 

method, the coal is pulverized to a size smaller than 

60-mesh, and this sample is placed on a balance pan in- 

side the thermobalance.  High-purity nitrogen is intro- 

duced into the furnace.  Then the sample is heated to 

110°C at a constant rate.  The temperature is kept con- 

stant at 110°C in a nitrogen atmosphere for approximately 

five minutes.  TGA has certain advantages, the most 
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important being that it speeds up the analysis.  However, 

one of the disadvantages of this method may be that it 

uses a very small amount of sample and may pose sampling 

problems.  This method was not used in the present inves- 

tigation . 

B.3.  DETERMINATION OF COAL SIZE DISTRIBUTION :  The size 

distribution of the 6-20 mesh coal fraction was deter- 

mined by sieving.  About 500 gms. of the sieved coal 

frction collected as described in Section II.B.l. was 

dried using the ASTM D-2961 test.  This dried coal sample 

was placed on the top sieve of a series (numbers 6, 7, 8, 

10, 12, 14, 16, 18 and 20), and was shaken for about ten 

minutes.  Then the amount of coal retained on each sieve 

and the bottom pan was weighed.  The particle size dis- 

tribution of coal sample #3 and sample #4 was determined 

by this method.  The results are given in the next chap- 

ter. 

This sieving method intrp.duce.s. .several possible 

errors:  (1) some fine coal particles may be lost to the 

atmosphere as dust; (2) additional coal particles may be 

lost in the transfer from the bottom pan to other sieves; 

(3) some fine coal particles may stick to the larger coal 

particles which are retained on the smaller number 

sieves; (4) the sieves may become "blinded" by particles 
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which stick in the holes and thus prevent the small par- 

ticles from passing through the sieve. 

To see the impact of errors on the accuracy of the 

above dry sieving method, Earhart and Ding measured the 

particle size distribution in this lab by wet sieving 

[Vanderhoff et al.-1982j.  It was found that, generally, 

the values obtained by wet sieving were in reasonable 

agreement with the average of those obtained by dry 

sieving. 

B.4.  PREPARATION OF COAL FOR FREEZING :  A bucket was 

filled approximately with 10 kgs. of sieved coal of frac- 

tion 6-20 mesh size.  This coal content in the bucket was 

mixed thoroughly to achieve homogeneous size distribu- 

tion.  The moisture content of this coal was measured. 

To each one-gallon wide-mouth Nalgene polyethylene bot- 

tle, 1500 gms. of this coal was transferred.  Then, to 

these bottles, predetermined quantities of water were 

added to give coal slurries of required water content. 

The water used was distilled-deionized water.  To each 

bottle, water was added in two steps.  First, about half 

of the water was added, and then the Nalgene bottle was 

shaken for about two minutes to allow good mixing of the 

coal and water.  Then the remaining water was added, and 

the mixture was shaken vigorously for about another four 
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minutes.  Finally, this coal-water mixture was then left 

to equilibrate for 24 hours.  Generally, six Nalgene bot- 

tles were used to allow the preparation of coal slurries 

containing six different total water contends.  Most of 

the time throughout this investigation the total water 

content varied as 10%, 12%, 14%, 16%, 18% and 20%. 

The amount of water to be added was calculated as 

follows: 

W = 1500(p - m) (2.2) 
(100 -p) 

where p is the total percent water content in the final 

slurry, m is the moisture content of the coal and W is 

the gms. of water added to Nalgene bottle containing 1500 

gms. of undried coal. 

When a freeze conditioning agent was used, an 

aqueous solution containing the desired amount of freeze 

conditioning agent was prepared.  The coal slurries were 

then prepared by the method already described, using this 

aqueous solution instead of pure water. 

The frozen coal cylinders were prepared in poly- 

vinyl chloride (PVC) tube molds.  These PVC tube molds 

were made by cutting 6-inch long PVC pipes of 2-inch 

I.D..  These tubes were slit lengthwise to form PVC tube 

molds.  These cylindrical tube molds were held together 
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by applying fibre-reinforced tapes around them.  The 

bottom end of the PVC tube was closed by a Plexiglas 

plate of the size 3 inch X 3 inch.  This Plexiglas plate 

was held in place by cementing it with caulking cord 

weather strip. 

The transfer of the coal slurry to the PVC tube 

was done in the following way.  First, all the coal 

slurry from Nalgene polyethylene bottle was taken out in 

a big shallow aluminum pan and was divided into six equal 

parts, and..each part was transferred to one PVC tube by a 

stepwise addition.  In the stepwise addition, two table- 

spoons full of wet coal was added to the PVC tube and was 

compacted by fifteen light poundings by the base of a 

graduated cylinder.  This procedure was repeated with the 

rest of the coal, until all the required quantity of the 

slurry was transferred to the PVC tube.  Normally, after 

the tube was filled, it had about an inch of empty space 

at the top, to allow for the possible expansion of water 

after freezing.  To get good reproducibility in the re- 

sults, it was necessary to follow the above steps strict- 

ly.  One of the disadvantages of this method could be 

that the addition and compaction of the coal slurry was 

done by hand (manually) and therefore the compactness of 

the wet coal in the PVC tube might have varied from sam- 

ple to sample.  Therefore, it is more desirable to use a 
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machine to fill and compact the wet coal in the PVC tube, 

but in the present investigation no such machine was 

used. 

After a PVC tube was filled, its top end was 

closed by another 3 inch X 3 inch Plexiglas plate.  This 

Plexiglas plate was held in place by a rubber band.  Six 

PVC tubes were used for every Nalgene bottle.  These 

tubes were then placed in the freezer at -20°C for 24 

hours.  Throughout this investigation, the freezing tem- 

perature used was -20°C.  The freezer had a small fan 

which circulated the air inside, to keep the temperature 

same throughout the freezer. 

After 24 hours, the PVC tubes were removed from 

the freezer, one by one; the rubber band was removed; the 

fiber-reinforced tape was cut; the mold was opened, and 

the frozen coal cylinder was placed on an aluminum pan 

for compression testing.  The dimensions of PVC tubes 

were chosen so as to give frozen coal sample cylinders of 

diameter and height much greater than the largest coal 

particle size present in the sample. 

B.5.  MEASUREMENT OF COMPRESSIVE STRENGTH OF FROZEN COAL 

CYLINDERS :  The mechanical strength of frozen coal 

cylinders was measured in terms of the compressive force 

needed to fracture the sample.  The compressive force was 
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applied along Che length of the cylinder (perpendicular 

to the two flat ends).  All of the compression testing 

was done on a Dillon Model-LW tester machine.  This ma- 

chine had a 2000 lbs. maximum load capacity.  It was 

possible to use various rates of loading.  With the 

slower rate, the frozen coal specimens failed by rela- 

tively slow crumbling and gave higher compressive 

strengths, whereas, with the faster loading rate, the 

frozen coal specimens failed catastrophically and gave 

lower compressive strengths.  In the present work, the 

loading rate of 1.0 to 1.1 inch per minute was used. 

Once the compressive force needed to break was measured, 

it was divided by the cross-sectional area of the cyl- 

inder to give the compressive strength in pounds per 

square inch.  Since the radius of the cylinder was one 

2 inch the cross-sectional area was equal to IT in . 

It should be pointed out that other means to mea- 

sure the mechanical strength of frozen coal samples have 

also been used in the literature.  Ellman et al. [1965] 

have studied the degree of agglomeration of coal due to 

moisture by the gas pressure required to inflate a simu- 

lated ballon imbedded in the sample.  In this method a 

rubber tube which is internally located in the center of 

the frozen coal sample is inflated to a pressure so as to 

cause the rupture of the sample.  However, such a test 
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may not simulate the real field situation.  Walk [1980] 

and Kehoe et al. [1980] have used the drop impact shear 

test.  In the drop impact shear test, the samples of 

frozen coal are dropped onto a metal grating from a pre- 

determined height.  The amount of the coal which passes 

through the grating is collected and weighed.  The 

dropped coal which did not pass through the grating is 

also collected and then dropped from a higher height. 

So, the proportion of the coal breaking into pieces small 

enough to pass through the grating could be used as a 

measure of the relative ease with which the samples frac- 

ture.  Glanville and Haley [1982] designed an apparatus 

to measure the push-down flexural strength of frozen coal 

sprcimens. 

However, it has been pointed by some researchers 

[Kugel-1980] that a higher degree of reproducibility is 

obtained by compression testing, rather than by drop 

impact shear test.  Probably, in principle, both the 

methods should be used together to measure the mechanical 

strength of the frozen coal.  But, in the present work, 

only compression testing was used. 

C. MEASUREMENT OF COMPRESSIVE STRENGTH OF ICE CYLINDERS 

The compressive strength of ice cylinders with and with- 

out chemical additives were also measured.  The ice 
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cylinders were prepared in the same PVC Cube molds de- 

scribed in Section II.B.4.. Distilled-deionized water 

was used to make the ice cylinders. 

Water when frozen in a PVC tube develops strong 

adhesive bonds with the PVC surface.  Furthermore, at 

times there are leak problems from the joints of the PVC 

molds.  To overcome these problems, water was filled in a 

polyethylene bag, which was placed in a PVC tube.  The 

size of polyethylene bag was 6^ inches long and the width 

was chosen such that the water filled polyethylene bag 

would have approximately the same diameter as that of the 

PVC tube.  Since the circumference of the PVC tube was 

about 6.3 inches and therefore the approximate width of 

the polyethylene bag chosen was about 3.1 inches.  The 

PVC tube and its bottom end were secured as described in 

Section II.B.4.  The polyethylene bag was then placed in 

the PVC tube and about 250 ml. of water was added.  The 

top end of the PVC tube was then closed and it was kept 

in the freezer at -20°C for 24 hours. 

When a chemical additive was used, an aqueous 

solution containing the desired amount of the chemical 

was prepared.  The polyethylene bag was filled with this 

aqueous solution instead of pure water. 

After twenty four hours, the PVC tubes were taken 

out of the freezer, one at a time.  The PVC tube and the 
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polyethylene bag were removed from the ice cylinder and 

its compression testing was done immediately as described 

for frozen coal cylinders in Section II.B.5. 

-27- 



CHAPTER-III 

RESULTS AND DISCUSSION 

The evaluation of freeze conditioning agents re- 

quires the measurement of physical properties of ice 

containing these agents as well as those of coal-ice 

composites.  In the literature, it has been speculated 

that, since ice-ice bonds are weaker than coal-coal, the 

compressive strength of frozen coal samples is determined 

by the strength of ice [Glanville and Haley-1982]. 

Therefore, it has been suggested that a chemical compound 

which lowers the compressive strength of ice, would also 

be  effective as a freeze conditioning agent for frozen 

coal samples.  To check this hypothesis, and to gain 

some more insight, the compressive strength of ice along 

with the frozen coal samples have also been studied. 

A. STUDIES WITH ICE : The compressive strength results 

of pure ice are first discussed and are then followed by 

ice containing chemical compounds. 

A.l.  PURE ICE :  The compressive strength of ice cylin- 

ders was determined by the method described in Chapter 

II.  Table III-l gives the compressive strengths of pure 
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TABLE III-l 

Compressive Strength of Pure Ice Cylinders 

Tube Compressive Strength, psi 

Number  Test: 1 2     3 4 5 

1 134 239  255  146 271 242 156 251 

2 111 404  115  207 213 124 290 185 

3 280 277  271 331 201 137 226 

4 166 296  258 178 204 290 201 

5 143 105  306 194 194 226 191 

6 92 127  258 178 213 210 

X 210 228 196 220 211 

86 61 39 72 25 

Overall: X = 212 psi 

<r = 67 psi 

n = 43 
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ice of five series of experiments.  Series 1 had twenty 

samples, series 4 had five samples, whereas the other 

series had six samples each.  All the series were done on 

different dates.  The overall average (X) of all 43 

samples was 212 psi with a standard deviation (a ) of 67 

psi.  The averages for these five series range from 196 

to 228 psi and the standard deviations from 25 to 86 psi. 

Therefore, the statistical analysis was applied to deter- 

mine whether the values measured in each series were 

actually measures of the same quantity or whether differ- 

ences between each series were statistically significant. 

The F-test was applied [Herdan-1960].  The calculated 

F-value was 0.17 as compared with the critical value at 

957o probability level of 2.63 (i.e., this value will be 

exceeded only 5 out of every 100 times if the values are 

measures of the same quantity).  Thus it is reasonable to 

assume that all the values are measures of the same quan- 

tity and that the overall average (212 psi) and standard 

deviation (67 psi) can be taken as representative of the 

compressive strength of pure ice measured in this way. 

Inspection of Table III-l reveals some scatter in 

the values of the compressive strength of pure ice.  The 

possible reasons for the scatter could be the foolowing: 

(1) Though distilled-deionized water was used for prepar- 

ing ice cylinders, presence of trace quantities of 
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impurities such as dust particles cannot be ruled out. 

These particles could act as nucleus of crystal growth 

and might lead to polycrystalline ice.  It is known that 

the two samples of polycrystalline material, while having 

the same structure at the unit cell level, can differ in 

the number and orientation of their microcrystals.  Also, 

the dust particles can accumulate at the grain boundaries 

between the ice crystals [Pounder-1965].  All these 

factors can have a very great effect on the compressive 

strength of ice cylinders and might have contributed to 

the scatter in the data. 

(2) Possible entrapment of the small air bubbles could 

also contribute to the scatter in the measured compres- 

sive strengths. 

(3) In most cases, the ice cylinders showed little cracks 

on their surface and this might have been one of the 

causes for the scatter (however, later on, when the ex- 

periments were done with the chemical additives, the 

surface of the ice cylinders were fairly smooth and no 

cracks were visible). 

Therefore, large number of tests were done, so 

that a reasonable confidence level could be achieved in 

the final average value of the compressive strength of 

the ice cylinders. 

■31- 



A. 2.  ICE CONTAINING PURE COMPOUNDS :  The binary solu- 

tions of water with ethylene glycol (EG), sugar (SUG), 

urea (UR) and ammonium acetate (A Ac) were prepared. 

These solutions were then frozen at -20°C for 24 hours. 

The compressive strength of the ice cylinders formed were 

measured to see the effect of these additives on the 

mechanical strength of ice. 

Table III-2 gives the results of the compressive 

strength of ice containing various chemical additives. 

The concentrations in this table are in weight precent 

of the solution.  Figure III-l shows the variation of 

compressive strength with percent additives for these 

compounds.  As can be seen from this figure, at high 

concentrations, both ethylene glycol and ammonium acetate 

decreased the compressive strength of ice cylinders, 

whereas urea increased the compressive strength drasti- 

cally.  Sugar also increased the compressive strength of 

ice cylinders but to a lesser extent. 

These results were analyzed statistically using 

the t-test, which assesses the probability that two sets 

of data are measures of the same quantity.  The t-value 

is calculated from the difference between the averages of 

the two data sets and the scatter of the individual data 

points, and the number of data points (the degree of 

freedom (DF) is the total number of measurements minus 
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TABLE III-2 

Compressive Strength of Ice Containing Pure Compounds 

ETHYLENE GLYCOL 

Percent Co mpressive Stren '8th> psi 

EG  Tube: 1 2 3 4 5 6 ave. sigma 

0.00 178* 194* 178* • 271 213 331 228 61 
0.25 213 417 175 274 188 293 260 90 
0.50 315 191 296 242 251 232 255 45 
1.00 166 207 210 159 175 137 176 28 
2.00 111 105 127 111 140 92 115 17 
3.00 86 38 70 73 73 95 73 19 

*  specimens failed; values taken from two other 
series, nine of which failed. 

UREA 

Percent Compressive Stren gth, psi 

UR  Tube: 1 2 3 4 5 6 ave. sigma 

0.00 242 124 201 204 194 213 196 39 
0.25 372 427 471 398 462 398 421 39 
0.50 417 449 433 576 357 592 471 93 
1.00 414 411 560 379 458 630 475 99 
2.00 519 500 369 538 484 478 481 59 
3.00 541 427 477 598 589 468 517 70 

SUGAR 

Percent Compressive Stren igth, psi 

SUG  Tube: 1 2 3 4 5 6 ave. sigma 

0.00 156 290 137 290 — —.—. 226 220 72 
0.25 404 226 296 274 156 302 276 83 
0.50 277 286 325 449   290 325 71 
1.00 226 490 309 404 299 286 336 95 
2.00 465 321 325 474 242 369 366 90 
3.00 344   293   226 267 283 49 

Continued on next page 
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TABLE III-2 (ConCinued from earlier page) 

Compressive Strength of Ice Containing Pure Compounds 

AMMONIUM ACETATE 

Percent Co mpressive Stren ■8th, psi 

A Ac Tube: 1 2 3 4 5 6 ave. sigma 

0.00 251 185 226 200 191 210 211 25 
0.25 207 245 309 194 258 280 249 43 
0.50 210 251 321 207 350 286 271 59 
1.00 331 255 162 200 283 172 234 67 
2.00 67 124 255 194 67 118 137 74 
3.00 89 67 70 70 76 57 72 11 

LEGEND: 
EG : Ethylene glycol 
UR : Urea 
SUG : Sugar 
A Ac : Ammonium acetate 
ave. : average 
sigma : standard deviation 
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1 2 

PERCENT ADDITIVE 

Fig. III-l Variation of compressive strength 

with percent additive for ice 

cylinders. 

LEGEND: 

°   Ammonium acetate 

A   Ethylene glycol 

D   Sugar 

O   Urea 
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two).  This calculated t-value is compared with theoret- 

ical values for different probabilities.  In this work, 

the critical t-value used is that for 95% probability, 

i.e., the critical t-value that will be exceeded only 5 

times out of 100 if the two data sets are measures of the 

same quantity.  Table III-3 gives the calculated t-values 

and the critical t-values for 95% probability for the 

compressive strengths of ice cylinders containing 

ethylene glycol, sugar, urea and ammonium acetate. 

For the ethylene glycol, the compressive strengths 

were about the same over the 0.00-0.507o concentration 

range, and then decreased gradually to 73 psi at 3.00% 

ethylene glycol concentration.  The t-values for 0.00- 

0.25%. and 0.25-0.50% pairs were much smaller than the 

critical values for 95% probability, indicating that 

these values may be measures of the same quantity.  This 

was confirmed by the F-test, which gave F = 0.39 as com- 

pared with the critical value of 3.68 for 95%, probabili- 

ty; the overall average compressive strength over this 

0.00-0.50% concentration range was 248 psi and the stan- 

dard deviation was 64 psi.  Above 0.50% concentration, 

the compressive strength decreased progressively with 

increasing ethylene glycol concentration.  The t-values 

for the 0.50-1.00%, 1.00-2.00% and 2.00-3.00% pairs were 

greater than the critical values for 957o probability of 
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TABLE III-3 

Statistical Comparison of Samples of Various Concentrations 

Ice Cylinders Containing Ethylene Glycol 

Percent EG X calcd. t  crit. t(957,) 

0.00-0.25 228-260 0.72 2.23 
0.25-0.50 260-255 0.12 2.23 
0.50-1.00 255-176 3.65 2.23 
1.00-2.00 176-115 4.56 2.23 
2.00-3.00 115-73 4.04 2.23 

Ice Cylinders Containing Sugar 

Percent SUG X calcd. t  crit. t(9570) 

0.00-0.25 220-276 1.18 2.26 
0.25-0.50 276-325 1.04 2.26 
0.50-1.00 325-336 0.21 2.26 
1.00-2.00 336-366 0.56 2.23 
2.00-3.00 366-283 1.67 2.31 

Ice Cylinders Containing Urea 

Percent UR X calcd. t  crit. t(957.) 

0.00-0.25 196-421 9.99 2.23 
0.25-0.50 421-471 1.21 2.23 
0.50-1.00 471-475 0.07 2.23 
1.00-2.00 475-481 0.13 2.23 
2.00-3.00 481-517 0.96 2.23 

Ice Cylinders Containing Ammonium Acetate 

Percent A Ac X calcd. t  crit. t(95%) 

0.00-0.25 211-249 1.87 2.23 
0.25-0.50 249-271 0.74 2.23 
0.50-1.00 271-234 1.02 2.23 
1.00-2.00 234-137 2.38 2.23 
2.00-3.00 137-72 2.13 2.23 

X is the average compressive strength in psi 
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2.23, indicating Chat these values may not be measures of 

the same quantity. 

For sugar, the compressive strength increased to 

an apparent plateau at 0.50-3.00% (Fig.III-1).  Table 

III-3 gives the calculated t-values along with the 

critical t-values for 95%, probability.  All of the cal- 

culated t-values were below the critical t-values for 

95% probability, indicating that all of them may be 

measures of the same quantity.  This was confirmed by 

F-test which gave a value of F = 2.26 for all samples 

averaged together as compared with a critical value of 

2.59 for 95% probability; this corresponded to an overall 

average of 304 psi and a standard deviation of 88 psi. 

The samples in the 0.50-3.00%, concentration range gave a 

value of F = 0.85 as compared with the critical value 

for 95% probability of 3.20; this corresponded to an 

average compressive strength of 332 psi and a standard 

deviation of 75 psi.  Thus sugar in 0.50-3.007o concen- 

tration gives a compressive strength higher than that of 

the control (pure ice). 

For the urea, the compressive strength increased 

strongly with increasing urea concentration to a plateau 

value significantly greater than that for the control. 

Table 1II-3 gives the calculated t-values along with the 

critical t-values for 95% probability.  The calculated 
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t-value  for the  0.00-0.257. pair was  much  greater  than 

the  critical  value  for  957, probability.     All   other  t- 

values   were   smaller  than  the  critical  value.     Thus   the 

compressive  strengths  of  the  samples  in  the  0.25-3.007o 

concentration range  may be  measures   of  the   same   quantity. 

This  was   confirmed  by  the   F-test,   which gave  a  value  of 

F =  1.23  for the  473  psi  overall  average   (sigma   =  77  psi) 

compared with  the  critical  value  of  2.76   for  95% proba- 

bility.     Similarly,   the  samples   in  the  0.50-3.00% concen- 

tration range gave  a  value  of F  =  0.39  for  the   486  psi 

overall   average   (sigma  =   79  psi)   compared   with   the 

critical  value  of  3.10  for  957o  probability.     Thus   the 

addition of urea   to water makes   strong ice,   with  a  com- 

pressive   strength ca.   2257, of  that  of  the   control. 

For ammonium acetate,   the  compressive  strengths 

were  about  the  same  over  the  0.00-1.007. concentration 

range  and  then decreased gradually  to   72  psi  at   3.007, 

ammonium acetate  concentration.     The   t-values   for  the 

0.00-0.25%,   0.25-0.50% and  0.50-1.00% pairs  were   smaller 

than  the  critical   t-value  for  95% probability,   indicating 

that  these values  may  be measures  of  the  same  quantity. 

This  was   confirmed by  the  F-test,   which gave  F  =   1.47  as 

compared  with  the  critical  value  of  3.10  for  957. proba- 

bility;   the overall  average  compressive  strength  over 

this  0.00-1.007, concentration range  was  241  psi   and  the 
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standard deviation was 48 psi. Above 1.00% concentra- 

tion, the compressive strength decreased progressively 

with increasing ammonium acetate concentration. 

For the foregoing tests, the compressive strengths 

of the controls (pure ice) were similar:  228 psi for 

ethyiene glycol; 220 psi for sugar; 196 psi for urea; and 

211 psi for ammonium acetate.  The F-test, used to deter- 

mine whether the controls of each series were measures of 

the same quantity, gave a value of F = 0.42 as compared 

with the critical value (95% probability) of 3.10; this 

corresponded to an overall average of 213 psi and a 

standard deviation of 48 psi.  This value of control was 

in excellent agreement with overall average value of 212 

psi with a standard deviation of 67 psi for pure ice. 

An inspection of Figure III-l reveals that ethyi- 

ene glycol and ammonium acetate give similar decreases in 

the compressive strengths.  To check this observation, a 

statistical comparison was done between them.  Table 

III-4 gives the calculated t-values along with the criti- 

cal t-values for 95% probability.  It is seen from the 

t-test that, within the experimental error, the compres- 

sive strength of ice cylinders containing ethyiene glycol 

were essentially the same as those of ice cylinders con- 

taining ammonium acetate.  A similar comparison between 

urea and sugar has also been made and their results are 
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TABLE III-4 

Statistical Comparison of Ice Cylinders 

Ethylene Glycol With Ammonium Acetate 

Compressive Stren gth, psi 

Percent Ethylene Glycol Ammonium Acetate Calcd. Crit. 

Additive ave. sigma ave. sigma t t(957o) 

0.00 228 61 211 25 0.63 2.23 
0.25 260 90 249 43 0.27 2.23 
0.50 255 45 271 59 0.53 2.23 
1.00 176 28 234 67 1.96 2.23 
2.00 114 17 137 74 0.74 2.23 
3.00 73 19 72 11 0.11 2.23 

Urea With Sugar 

Compressive Strength, psi 

Percent Urea Sugar Calcd. 

t 

Crit. 

Additive ave. sigma ave. sigma t(95%) 

0.00 196 39 220 72 0.71 2.26 
0.25 421 39 276 83 3.87 2.23 
0.50 471 93 325 72 2.86 2.26 
1.00 475 99 336 95 2.48 2.23 
2.00 481 59 366 90 2.62 2.23 
3.00 517 70 283 49 5.76 2.31 
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also listed in Table III-4.  It is seen that compressive 

srengths of urea were significantly different from those 

of sugar, except for the control, which was the same 

within experimental error.  The compressive strengths of 

ice cylinders containing urea were higher than those of 

ice cylinders containing sugar. 

The reason for the decrease in compressive srength 

of ice cylinders which contained ethylene glycol and 

ammonium acetate may be due to the fact that the ice 

becomes polycrystalline.  There is no homogeneous nucle- 

ation, but rather a heterogeneous nucleation [Fletcher- 

1970, Gilpin-1978].  The water freezes with multiple 

centers of nucleation and the individual crystals grow 

together.  According to Pounder [1958,1965], if an aque- 

ous salt solution is frozen extremely slowly, the foreign 

ions remain in the solution and perfectly pure ice is 

formed.  This is due to the fact that the growing ice 

lattice rejects impurities and these impurities are con- 

centrated at grain boundaries or in the liquid phase be- 

tween growing ice crystals.  In order to completely 

freeze the solution, one must decrease the temperature 

below a certain value called the "Eutectic Temperature". 

Above the eutectic temperature there is always some 

liquid phase between the ice crystals.  Therefore, if the 

freezing temperature is above the eutectic temperature, 

-42- 



then, depending upon the ultimate temperature and the 

amount of the solute present, there will be some liquid 

in the grain boundary regions of the ice crystals.  The 

reduction in strength of ice results from the presence of 

liquid layers separating the crystals and permitting 

them to slide fairly readily with respect to each other. 

These intercrystalline layers can be of microscopic 

thickness, in which the solution contains too high a con- 

centration of additives to freeze.  It may be that for 

both ethylene glycol and ammonium acetate the eut.ectic 

temperature is below -20°C and therefore might have led 

to a decrease in compressive strengths.  For ethylene 

glycol, it is known in the literature that a solution of 

54 wt% has a freezing point of -45°C [Perry and Chilton- 

1973].  Therefore, it supports the view that, in ice 

cylinders containing ethylene glycol, some liquid phase 

very high in ethylene glycol concentration may exist be- 

tween the ice crystals. 

In the literature, it has also been suggested that 

freezing of the solution below eutectic temperature may 

lead to an increase in the mechanical strength of ice. 

This has been attributed to the reinforcement of the 

mechanical strength of the ice by the deposit of solid 

additives in it [Pounder-1965].  The eutectic temperature 

for either urea or sugar were not available, but, if they 
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were higher than -20°C, then this could be one of the 

possible explanations for the increase in the compressive 

srength of ice. 

An alternative explanation for the decrease in 

compressive strength by the compounds such as ethylene 

glycol and ammonium acetate has been provided by Copeland 

[1980].  It has been argued that, in the presence of 

these compounds, the completely frozen ice is structur- 

ally weak.  The glycol and other compounds that are water 

soluble are not soluble in ice.  The additives therefore 

separate from the ice as it freezes, which prevents the 

ice crystals from fusing together.  Therefore, the ice 

formed is structurally weak and any solid material it 

binds together is weakly consolidated. 

B.  STUDIES WITH COAL :  Having talked about the compres- 

sive strength of ice and ice containing various addi- 

tives, the compressive strength of frozen coal samples 

are now discussed. 

B.l.  MOISTURE CONTENT :  The moisture content of the 

coal sample #3 was determined using the ASTM D-2961 test. 

Table III-5 gives the results for two determinations of 

the coal collected from the top part of the drum on Jan. 

8, 1983.  For both runs, the weight loss during the 3.0- 
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TABLE III-5 

Moisture Analysis of Coal Sample #3 (6-20 mesh) 

Heating Run #1 (107°C) Run #2 (107°C) 

Time, hrs. Wt.(gm) % Water Wt.(gm) % Water 

0.0 526.3   519.7   

1.5 494.8 5.99 488.7 5.96 

2.0 493.5 6.23 487.4 6.22 

2.5 493.1 6.31 486.9 6.31 

3.0 492.7 6.38 486.7 6.35 

3.5 492.6 6.40 486.6 6.37 
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3.5 hour heating period was less than 0.057o, so the 

average of the 3.5 hour samoles, 6.387o, was taken as 

representative of this coal sample.  However, the mois- 

ture contents of samples taken at later dates were dif- 

ferent.  Table III-6 gives the moisture contents of 

samples taken over a four-month period.  The moisture 

content varied according to the date of sampling the coal 

sample and the part of the sample taken. 

It is seen from Table III-6 that, with the lapse 

of time, the moisture content of the coal sample #3 

decreased and finally stabilized to an approximate value 

of 4.50%.  One of the possible reasons could be that, in 

winter, the air in the lab is relatively dry.  The drum 

could not be closed seal tight and therefore the coal 

might have lost its moisture with the passage of time. 

The other reason could be that the coal in the top por- 

tion of the drum probably had higher moisture content 

than the one at the bottom. 

After the supply of coal sample #3 was exhausted, 

the remaining experiments were done with coal sample #4. 

The moisture contents of the coal sample #4 were also 

measured and are summarized in Table II1-7.  It is ob- 

served from this table that, for the duration of its use, 

the moisture content was relatively constant. 
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TABLE III-6 

Moisture Contents of Coal Sample #3 (6-20 mesh) 

Date of Measurement 

1/08/83 

1/22/83 

2/11/83 

3/22/83 

5/13/83 

5/25/83 

Moisture Content, % 

6.38 

5.34 

4.80 

4.95 

4.52 

4.50 
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TABLE III-7 

Moisture Contents of Coal Sample #4 (6-20 mesh) 

Date of Measurement 

6/21/83 

7/21/83 

8/8/83 

Moisture Content, °k 
4.17 

4.06 

4.06 
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B.2.  PARTICLE SIZE DISTRIBUTION OF THE COAL SAMPLES : 

Table III-8 gives the particle size disribution for both 

coal samples #3 and 4.  These results are also plotted in 

Figure III-2.  The distribution curves are similar (uni- 

modal); however the fourth coal sample had slightly less 

small coal particles than the third coal sample. 

B.3.  COMPRESSIVE STRENGTH OF FROZEN COAL CYLINDERS 

WITHOUT ANY CHEMICAL ADDITIVES :  The compressive 

strengths of frozen coal cylinders were determined as 

described in Sections II.B.4 and II.B.5.  In this work, 

the frozen coal cylinders without any chemical additives 

are referred to as "CONTROL".  For coal sample #3, the 

compressive strengths as a function of percent water are 

listed in Table III-9.  The percent water includes the 

added water plus the initial moisture present in the 

coal. 

For the first set of experiments in Table III-9, 

the moisture content was 6.38%.  Later, a second set of 

experiments were also done, and this time the moisture 

content was 4.95%.  These results are also plotted in 

Figure III-3.  It is observed that the compressive 

strength of coal frozen with different water contents 

increased with increasing water content, linearly from 

107o to 167c water and more rapidly thereafter, reaching a 

-49- 



TABLE III-8 

Size Distributions of Coal Samples #3 and #4 

By Sieving of Dried Coal 

Sieve 

C< Dal Retained on Sieve 

Sieve Coal Sample #3 Coal S; ample #4 

Number Opening (mm )   Wt.(g) Wt. (7o) Wt.(g) Wt.(7o) 

6 3.35 1.6 0.32 2.0 0.40 

7 2.80 39.3 7.89 41.9 8.40 

8 2.36 34.8 6.99 42.3 8.48 

10 2.00 41.9 8.41 ' 49.4 9.90 

12 1.70 47.5 9.54 52.6 10.54 

14 1.40 37.0 7.43 51.2 10.26 

16 1.18 36.9 7.41 35.9 7.20 

18 1.00 34.8 6.99 48.7 9.76 

20 0.85 44.7 8.97 62.5 12.53 

20 0.85 179.6 36.06 112.4 22.53 

Total 498.1 100.00 498.9 100.00 
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TABLE III-9 

Compressive Strength of Frozen Coal Cylinders Prepared 

From Coal Sample #3 Sampled at: Different Times 

(Controls) 

Moisture Content = 6.3870 

Percent Compressive Stren ■Rth, psi 

Water Tube: 1 2 . 3 4 5 6 ave. sigma 

10 35 32 35 32 35 35 34 2 

12 64 54 80 54 67 54 62 10 

14 64 76 86 89 102 99 86 14 

16 134 124 156 95 121 131 127 20 

18 207 239 197 213 166 181 201 26 

20 420 255 264 372 452 341 351 80 

Moisture Content = 4.95% 

Percent Compressive Stren >pth, psi 

Water Tube: 1 2 3 • 4 5 6 ave. sigma 

10 54 51 51 60 45 54 53 5 

12 89 86 95 95 102 80 91 8 

14 111 102 105 102 105 80 101 11 

16 162 131 185 156 137 178 158 22 

18 258 251 216 226 236 248 239 16 

20 353 395 474 344 299 398 377 60 
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Fig. III-3:  Variation of compressive strength of frozen 
coal cylinders with percent water for two 
different samples of coal sample#3. 
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value at 20% water which is greater than the value of ice 

alone.  The initial linear increase may be attributed to 

the increasing size of the annular ice rings arond the 

points of contact between the particles, and the more 

rapid increase to the filling of the interstices between 

the packed particles.  Another accompanying phenomenon 

may be that, at very low water content, all the ice 

contacts may not have been made between the coal parti- 

cles and therefore some of the initial linear increase 

might be due to the formation of more of these ice 

contacts. 

It is seen from Figure III-3 that, for the same 

totat percent water, the coal sample containing 6.38% 

water gave slightly lower compressive strengths than that 

containing 4.95% water.  Moreover, Table 111-10 shows 

that the differences were statistically significant 

except possibly for the samples containing 14% and 207o 

water.  The differences between the two curves of Figure 

III-3 along the percent water abscissa (average 1.2%) 

were approximately equal to, or slightly smaller than, 

1.43% difference in moisture content.  Thus these results 

suggest that the initial water content has less influence 

on the compressive strength of the frozen coal cylinder 

than the amount of water added to the sample to make up 

the total water content to the desired value. 
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TABLE 111-10 

Statistical Comparison Between Frozen Coal Cylinders 

Prepared From Coal Sample #3 Sampled at Different Times 

(Controls) 

Moisture 
Content =  6. 38% 4. 957, 

Compressive Strength, psi 

Percent Control Control Calcd. 

t 

Crit. 

Water ave. sigma ave. sigma t(9570) 

10 34 2 53 5 8.64 2.23 

12 62 10 91 8 5.55 2.23 

14 86 14 101 11 2.06 2.23 

16 127 20 158 22 2.55 2.23 

18 201 26 239 16 3.05 2.23 

20 351 80 377 60 0.64 2.23 
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B.3.1.  EFFECT OF WATER CONTENT :  To test the foregoing 

hypothesis, the data in Table III-9 were replotted in 

Figure III-4 as a fuction of the amount of water added 

per 100 gm of "as is" coal.  It is observed that all the 

points fell on the same continuous curve.  The coinci- 

dence of these points may be due to two possible rea- 

sons:  (i) the moisture initially present in the coal 

does not contribute significantly to the compressive 

strength of the frozen coal cylinders; (ii) most of the 

added water remains as external water and only a negli- 

gible amount fills the pores of the coal particles. 

Therefore, the added water forms annular rings around the 

contact points between the coal particles which, when 

frozen, contribute to the compressive strength of the 

frozen coal cylinders. 

This latter explanation is supported by the ad- 

sorption on the coal particles of nitrogen at liquid 

nitrogen temperature and water vapor at 25°C.  Nitrogen 

adsorption showed that the specific surface area of the 

coal was 2.2 m^/gm, a relatively small surface area. 

The water vapor adsorption studies showed that 0.0179 gm 

water/gm coal was adsorbed on a sample which had been 

evacuated at 25°C for 24 hours at 10~  torr.  Since the 

surface area and pore volume of the coal particles are 

small relative to the amount of water added to prepare 
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the frozen coal cylinders, only a negligible amount of 

the added water goes into the coal particles and the 

major part remains on the surface as external water. 

This conclusion was confirmed by another experi- 

ment in which the coal paticles retained on sieve #6 

(opening 3.35 mm) were blown with air to remove any 

loose carbon particles clinging to their surface, 

weighed, and placed in a beaker with an excess of deion- 

ized water for 24-48 hours.  The coal particles were then 

removed from the beaker, dried by rolling them on blot- 

ting paper, and reweighed.  The amount of water absorbed 

was negligible (zero within experimental error).  In 

another experiment, coal particles of the same size were 

dried at 107 C for 3 hours (ASTM D-2961), weighed, then 

immersed in water and dried using blotting paper as de- 

scribed above.  The amount of water absorbed was 1.927o, 

in good agreement with the 1.797o found by adsorption of 

water vapor.  These experiments confirm that the water 

added to the coal remains as external water and forms 

annular rings at the contact points between adjacent coal 

particles which, when frozen, increases the compressive 

strength. 

The compressive strengths of frozen coal cylinders 

prepared from coal sample #4 were also determined and are 

given in Table III-ll.  The moisture content of this coal 
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TABLE III-ll 

Compressive Strength of Frozen Coal Cylinders (Control) 

(Coal Sample #4) 

Moisture Content = 4.17% 

Percent Compressive Strength, psi 

Water Tube:  1 2 3 4 5 6 ave. sigma 

10 76 92 70 76 83 83 80 8 

12 86 86 86 86 76 102 87 8 

14 111 105 115 105 108 118 110 5 

16 134 162 115 124 185 169 148 28 

18 201 194 169 216 201 220 200 18 

20 201 251 255 236 201 185 221 30 
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sample was 4.17%. 

Encouraged by the observations for the coal sample 

#3 in Figure III-4, the compressive strengths of all the 

controls from various coal samples were plotted as a 

function of the amount of water added per 100 gm coal in 

Figure III-5.  This figure also contains the results for 

the coal sample #2 collected by the earlier investigators 

in this lab [Earhart and Ding-1983].  Within experimental 

error, the results for all the coal samples #2, #3 

(three different samples), and #4 fell on the same curve, 

confirming that the factors determining the compressive 

strength of frozen coal cylinders are essentially the 

same for different coal samples from the same source but 

with different moisture contents. 

Regression analysis was used to fit the data of 

Figure I1I-5 to the following equation, 

Y = beax - b (3.1) 

where Y is the compressive strength in psi, x is the gm 

water added per 100 gm coal, and a and b are constants 

with values of 0.0690 and 118, respectively.  The curve 

of Figure III-5 calculated from equation 3.1 fits the 

experimental points well.  The average error was -2.427o 

and the mean absolute error was 16.457o.  These errors are 
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defined as follows, 

% error = [100(calcd - exptl)/calcd], (3.2) 

average error = £ % error/n, (3.3) 

mean absolute error = ( Z |7D error|)/n, (3.4) 

where n is the number of data points.  Equation 3.1 was 

chosen such that when the amount of water added is zero, 

the calculated compressive strength would be zero.  The 

other feature of this equation is that for low amounts of 

added water it provides an approximate linear relation 

with the compressive atrength (Y s bax).  Furthermore, 

for high values of x, it provides an exponential growth 

of the compressive strength.  This equation may be used 

to predict the compressive strength of frozen coal cylin- 

ders containing up to 22 gm added water/100 gm coal. 

A word of caution about the effect of moisture 

content on the compressive strength of frozen coal cylin- 

ders is in order.  In the present investigation, the 

coal used had very low surface area and pore volume. 

However, in the literature, coals with high surface areas 

and pore volumes of the order of 10-23 ml/100 gm of coal 

have been reported [Fuller-1981, Mahajan and Walker- 
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1978].  For these coals with high surface areas and high 

pore volumes, the influence of initial water content 

(moisture content) on the compressive strength of the 

frozen coal cylinders is uncertain, whereas, in the 

present investigation, it has already been seen that the 

influence of moisture content on the compressive strength 

is negligible. 

Experiments were also conducted with coal sample 

#3 to find the amount of water added for which the frozen 

coal cylinders, when taken out of PVC tube, would crum- 

ble.  For this purpose, compressive strengths of frozen 

coal cylinders with 4.95, 3.8, 2.7 and 1.6 gm of water/ 

100 gm of coal were measured.  The moisture content for 

this coal was 4.507„.  The coal cylinder with 1.6 gm 

water/100 gm coal crumbled, whereas the others with 4.95, 

3.8 and 2.7 gm water/100 gm coal gave compressive 

strengths of 68 ±  7,   57 ± 4 and 21 ±   3 psi respectively. 

These results were also plotted in Figure III-5. 

B.3.2.  COMPARISON OF COAL SAMPLE #3 AND 4 :  The com- 

pressive strengths of frozen coal cylinders prepared from 

coal sample #4 (4.1770 moisture content) are compared with 

that of coal sample #3 (4.95% moisture content) in Table 

111-12.  The coal sample #4 gave higher compressive 

strength at 10% water;  This may be because coal sample 
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TAB1E 111-12 

Statistical Comparison Between Frozen Coal Cylinders 

Prepared From Coal Sample #3 And #4 

(Control: 3) 

Moisture 
Content 4. 95% 4. 177o 

Compressive Strength, psi 

Percent Coal S iample #3 Coal S ample #4 Calcd. Crit. 

Water ave. sigma ave. sigma t t(95%) 

10 53 5 80 8 7.01 2.23 

12 91 8 . 87 8 0.87 2.23 

14 101 11 110 5 1.82 2.23 

16 158 22 148 28 0.69 2.23 

18 239 16 200 18 3.97 2.23 

20 377 60 221 30 5.70 2.23 
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#4 had more larger-size coal paricles than coal sample 

#3.  As a result, for the same mass of coal, sample #4 

had less total external surface area than coal sample 

#3.  Therefore, it may be that, at 107. water level, suf- 

ficient wat^r was not available to form all the ice con- 

tacts for the sample #3 and gave compressive strength 

lower than sample #4.  When the percent water was in- 

creased above 107o, it is observed that the compressive 

strengths were roughly the same within experimental 

error.  However, for 187, and 20% water contents, the com- 

pressive strength of coal sample #3 was higher than that 

of coal sample #4.  This may be explained on the basis 

that, for coal sample #4, there were more larger-size 

particles and therefore, overall, there were fewer ice 

contacts, even though they may be thicker than those of 

coal sample #3.  It may be that, owing to more ice con- 

tacts, coal sample #3 gave higher compressive strength at 

187o and 207> water.  Similar conclusions have been drawn 

by Lebedev et al. [1976]. 

B.3.3.  EFFECT OF RATE OF LOADING :  As described in 

Section II.B.5., all of the compression testing was done 

at the loading rate of 1.0 to 1.1 inch per minute.  For 

coal sample #4 with 207. water content, the compression 

testing was done at loading rates of 1.07 inch per 
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minute and 2.34 inch per minute.  The moisture content 

was 4.06%.  For a loading rate of 1.07 inch/min, the 

compres^ive strength was 221 ± 20 psi, and for a loading 

rate of 2.43 inch/min, it was 166 ± 19 psi.  Therefore, 

an increase in loading rate by a factor of 2.2 resulted 

in a decrease in compressive strength by 257o.  It was 

observed that, with the slower rate, the frozen coal 

specimens failed by relatively slow crumbling rather 

than by massive fracture.  With the faster loading rate, 

the frozen coal samples failed catastrophically. 

B.4.  COMPRESSIVE STRENGTH OF FROZEN COAL CYLINDERS WITH 

CHEMICAL COMPOUNDS AS ADDITIVES :  The chemical com- 

pounds which have been used as an additives are ethylene 

glycol, urea, sugar and ammonium acetate. 

B.4.1.  STUDIES WITH ETHYLENE GLYCOL :  The compressive 

strength of frozen coal cylinders containing 2 pints 

ethylene glycol/ton coal were measured; since the density 

of ethylene glycol is 1.113 gm/cnH, this concentration 

amounts to 2.32 lbs/ton coal.  These results are listed 

in Table 111-13, and have been compared with control in 

Table 111-14.  These results were compared with control 

of moisture content 4.95%. rather than 6.38% because 4.95% 

was closer to 5.347o.  It is seen from the Table 111-14 
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TABLE 111-13 

Compressive Strength of Frozen Coal Cylinders 

Containing 2 pints Ethylene Glycol/ton Coal 

(Coal Sample #3) 

Moisture Content = 5.347o 

Percent Compressive Stren Lgth, psi 

Water Tube: 1 2 3 4 5 6 ave. sigma 

10 13 13 16 13 13 19 14 3 

12 51 57 48 38 45 54 49 7 

14 118 121 99 108 76 115 106 17 

16 159 159 191 229 140 178 176 35 

18 255 229 216 277 213 264 242 27 

20 427 407 433 436 455 506 444 34 
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TABLE 111-14 

Statistical Comparison of Frozen Coal Cylinders 

Containing Ethylene Glycol With Control 

(Coal Sample #3) 

Moisture 
Content 5. 34" 4. 9 5% 

Compressive Strength, psi 

Percent Ethylene Glycol* 

ave. sigma 

Control Calcd. 

t 

Crit. 

Water ave. sigma t(95%) 

10 14 3 53 5 16.38 2.23 

12 49 7 91 8 9.68 2.23 

14 106 17 101 11 0.60 2.23 

16 176 35 158 22 1.07 2.23 

18 242 27 239 16 0.23 2.23 

20 444 34 377 60 2.38 2.23 

Ethylene glycol is used in concentration equivalent 
to 2 pints/ton of coal. 
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that the compressive strength of the frozen coal cylin- 

ders were smaller for the ethylene glycol-containing 

samples at 10-12% water and roughly the same at 14-18% 

water and greater at 20% water.  Thus the addition of 

ethylene glycol in 2 pints/ton coal concentration at 107o 

water gave a compressive strength only 26% of that of 

the control; the same concentration at 12% water gave a 

compressive strength 54% of that of the control.  Further 

dilution with increasing water contents gave compressive 

strengths statistically similar to those of control at 

14-18% water and about 18% greater at 20% water. 

To verify the increase in compressive strength of 

coal samples containing ethylene glycol over those of 

control at higher percent water, the data are plotted as 

a fuction of amount of water added/100 gm coal in Figure 

II1-6.  The continuous curve shown in Figure III-6 is 

same as drawn in Figure III-4.  Thus it is seen from 

this figure that, while, at low water contents, the de- 

crease in compressive strength due to ethylene glycol is 

real, at higher water contents, within the experimental 

....exr.QX.J...._th_ere.„.is no difference between the control samples 

and those containing ethylene glycol.  These results are 

not unexpected because the ice cylinders containing 

ethylene glycol gave compressive strengths which de- 

creased with increasing ethylene glycol concentration or, 
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in other words, with increase of water content, the com- 

pressive strength increased. 

The decrease in the effectiveness of ethylene 

glycol with increasing water content is expected because 

the amount of ethylene glycol was held constant while the 

water content was increased, so that the ethylene glycol 

was effectively diluted.  For example, the concentration 

of ethylene glycol in the solution used to prepare frozen 

coal cylinders with 107, water was 2.04 wt7o, whereas this 

concentration dropped to 1.05 wtT, for frozen coal cyl- 

inders with 147> water.  Furthermore, it is seen from 

figure III-l that ethylene glycol is effective in reduc- 

ing the compressive strength of ice cylinders only when 

added in concentrations greater than 1.5 wt7o.  Thus it is 

not a great surprise that, for water contents greater 

than 147., the use of ethylene glycol in concentration of 

2 pints/ton of coal is ineffective in reducing the com- 

pressive strength. 

Therefore, another series of experiments were done 

in which the concentration of ethylene glycol was main- 

tained at a constant 2 wt7« based on added water solution, 

while the water content in the frozen coal samples was 

increased from 107. to 207>.  Table 111-15 gives the com- 

pressive strengths of frozen coal cylinders.  Figure 

III-7 shows the variation of compressive strength of 
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TABLE 111-15 

Compressive Strength o£ Frozen Coal Cylinders Containing 

2 wt7o Ethylene Glycol Based on the Water Solution Added 

(Coal Sample #3) 

Moisture Content = 5.347o 

Percent Compressive Strength, psi 

Water Tube:  1 2 3 4 5 6 ave. sigma 

10 22 16 25 25 25   23 4 

12 38 45 38 48   25 39 9 

14 86 :  70 70 57 64 69 11 

16 131 115 99 115 131 140 118 13 

18 181 175 162 191 223 156 187 23 

20 258 296 353 328 255 239 298 43 
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frozen coal sample^ with gin added water/100 gm coal for 

two different control samples and the sample containing 

ethylene glycol.  A statistical comparison of these 

results along with the percent reduction in compressive 

strength due to ethylene glycol is given in Table 111-16. 

It is concluded that the compressive strengths of the 

ethylene glycol-containing samples were all smaller than 

those of the controls; 2 wt7o ethylene glycol based on 

added water gave smaller compressive strengths than the 

control at all water contents upto 20%. 

In all composites, the ultimate physical strength 

depends upon the cohesion of the adhesive and its ad- 

hesion to the filler or substrate.  When a composite 

fails, it is not always obvious whether the mechanism of 

failure is cohesive or adhesive.  In the present -case, 

the coal is the filler and the ice is the adhesive.  The 

cohesion of the ice is represented by its compressive 

strength.  Yancey and Geer [1968] have reported compres- 

sive strengths of coal-coal bonds which are much higher 

than the compressive strength of frozen coal composites 

observed in these experiments.  Therefore, the compres- 

sive strength of frozen coal composites is represented 

by the combination of cohesion of ice and its adhesion 

to coal. 

The addition of ethylene glycol to water* makes 
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TABLE I11-16 

Statistical Comparison of Frozen Coal Cylinders 

Containing Ethylene Glycol With Control 

(Coal Sample #3) 

Moisture 
Content 

5. 34% 4. 95% 

Compressive Strength, psi 

Crit. 

t(95%) 

% 

in 

Percent Ethylene Glycol* 

ave. sigma 

Control Calcd. 

t 

Reduction 

Water ave. s i gma i Strength 

10 23 4 53 5 10.81 2.26 56 

12 39 9 91 8 10.15 2.26 57 

14 69 11 101 11 4.80 2.26 31 

16 118 13 158 22 3.83 2.23 26 

18 187 23 239 16 4.55 2.23 22 

20 298 43 377 60 2.62 2.23 21 

" The concentration of Ethylene glycol in solution is 2 wt%. 



weaker ice and hence weaker frozen coal composites. 

Therefore, the mechanism of failure can be cohesive, 

i.e., the presence of the ethylene glycol during freezing 

makes weaker ice, which will fail even if the ice-coal 

adhesive bond is strong.  However, it is not clear 

whether the addition of ethylene glycol would also lower 

the adhesive strength of ice-coal bonds and contribute to 

the decrease in compressive strength of frozen coal 

composites. 

It may. be concluded that ethylene glycol can be a 

possible choice as a good freeze conditioning agent. 

B.4.2.  STUDIES WITH UREA :  In order to study the com- 

pressive strength of frozen coal cylinders containing 

urea equivalent to 2 pints/ton of coal, the amount of 

urea used was 2.32 lbs/ton of coal.  The urea was used in 

the form of prills.  Since the calculation of the amount 

of urea needed to be equivalent to 2 pints/ton of coal 

requires the density of urea, and it was not clear 

whether to use the true density or the packing density of 

the urea prills; therefore, the amount used was same as 

for ethylene glycol, i.e., 2.32 lbs/ton of coal.  This 

was done to provide a good comparison on the weight basis 

between the results of ethylene glycol and urea.  The 

results for urea are given in Table 111-17. 
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TABLE 111-17 

Compressive Strength of Frozen Coal Cylinders 

Containing Urea Equivalent to 2.32 lbs/ton coal 

(Coal Sample #3) 

Moisture   Content   =   6.38% 

Percent Compressivo.  Strength,   psi 
Water Tube: 1 2 3 4 5 6 ave. sigma 

10 6   10 6 13   9 3 

12 41 48 38 38 45 48 42 4 

14 105 95 70 73 70 102 86 17 

16 169 159 194 137 137 162 160 22 

18 245 299 197 306 321 309 280 48 

20 462 420 414 433 446 516 448 37 
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Table 111-18 gives the stacistical comparison of 

the frozen coal cylinders containing urea with those of 

the control cylinders.  Figure IIi-8 shows the variation 

of compressive strength with the amount of water added/ 

100 gm of coal.  The addition of urea in a concentration 

equivalent to 2 pints/ton coal gave compressive strengths 

only 26% and 68% of those for the control at 10% and 12% 

water, respectively, the same value as the control at 

14% water, and 26%, 39%, and 28%> greater values at 16%,, 

18% and 20% water, respectively.  The actual increase in 

compressive strengths were 33, 79 and 97 psi at 16%, 18% 

and 20% water, respectively.  Thus the compressive 

strengths were unexpectedly low for 10% and 12%, water, 

considering that the addition of urea to water gave much 

stronger ice than the control (pure ice). 

As seen from Table 111-18, for the overall water 

contents greater than 12%, urea was ineffective in lower- 

ing the compressive strength.  This was probably due to 

dilution effect as described for ethylene glycol, i.e., 

the concentration of urea was kept constant based on the 

coal and not on the amount of added water.  Therefore, 

with the increase of overall percent water, the concen- 

tration of urea decreased and was probably ineffective in 

lowering the compressive strength.  As a result, another 

set of experiments similar to those of ethylene glycol 
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TABLE 111-18 

Statistical Comparison of Frozen Coal Cylinders 

Containing Urea With Control 

(Coal Samcle #3) 

Moisture 
Content 

=  6. ,387c 6. 387, 

Compressive Strength, psi 

Percent Urea* Control Calcd. 

t 

Crit. 

Water ave. sigma ave. sigma t(957o) 

10 9 3 34 2 15.98 2.31 

12 42 4 62 10 4.55 2.23 

14 86 17 86 14 0.00 2.23 

16 160 22 127 20 2.72 2.23 

18 280 48 201 26 3.54 2.23 

20 448 37 351 80 2.70 2.23 

Urea is used in concentration equivalent to 
2.32 lbs/ton of coal. 
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were done with urea.  The concentration used this time 

was a constant 2 wt7o based on the water solution added 

and not on coa2 .  Table 111-19 gives the compressive 

strengths of frozer. coal cylinders containing 2 wtT, urea. 

The moisture content of the coal used was 4.80%. 

The results of Table 111-19 are compared with the 

control for which the moisture content was 4.95% in Table 

111-20.  From the t-tests, it is seen that up to 12% 

water content the reduction in compressive strength was 

quite significant, but from 14% water content and higher, 

the difference in compressive strength was statistically 

insignificant.  Probably for urea, a higher concentration 

would be more effective in reducing the compressive 

strength. 

Figure III-9 shows the variation of compressive 

strength with percent water of frozen coal cylinders 

containing 2 wt7. urea based on. the added water solution 

and the controls containing 4.95% and 6.3870 moisture. 

The points for the urea containing samples virtually 

coincided with those of the control containing 4.95% 

water while those for the control containing 6.387o water 

were lower.  Figure 111-10 shows the same data plotted 

against the amount of added water/100 gm coal, as well as 

those for 2 wtTo ethylene glycol based on water solution. 

The curves for both controls virtually coincided, whereas 
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TABLE 111-19 

Cornpressive Strength of Frozen Coal Cylinders Containing 

2 wt7o Urea Based on the Water Solution Added 

(Coal Sample #3) 

Moisture Content = 4.80% 

Percent Cornpressive Strength, psi 

Water  Tube:  1 2 3 4 5 6 ave. sigma 

10 35 29 25 29 35 35 31 4 

12 54 76 67 83 80 80 73 11 

14 86 102 108 115 80   98 15 

16 156 108 143 153 159 194 152 28 

18 226 255 299 245 277 267 262 26 

20 420 350 414 363 232 328 351 69 
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TABLE 111-20 

Statistical Comparison o£ Frozen Coal Cylinders 

Containing Urea With Control 

(Coal Sample #3) 

Moisture 
Content 4. 807. 4.95% 

Compressive Strength, psi 

Percent Urea" Control Calcd. 

t 

Crit. 

Water ave. sigma ave. sigma t(95%) 

10 31 4 53 5 8.42 2.23 

12 • 73 11 91 8 3.24 2.23 

14 98 15 101 11 0.38 2.26 

16 152 28 158 22 0.41 2.23 

18 262 26 239 16 1.85 2.23 

20 351 69 31l' 60 0.70 2.23 

* The concentration of Urea in solution is 2 wt7<>. 
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the curve for urea fell below that for the controls, and 

that for ethylene glycol fell below the curve for urea, 

thus confirming that the compressive strength is deter- 

mined by the amount of water added rather than the total 

water content. 

As discussed earlier, the compressive strength of 

frozen coal composites is determined by the combination 

of the cohesion of ice and its adhesion to coal.  Urea 

forms strong ice, but weak frozen coal composites. 

Therefore the mechanism of failure of frozen coal compos- 

tes must be adhesive, i.e., the presence of urea during 

freezing process gives a weak ice-coal adhesive bond. 

As discussed in Chapter I, Glanville and Haley 

[1982] attributed the decrease in compressive strength of 

frozen coal samples due to the addition of FCA's solely 

to the weakening of cohesive strength of ice.  While 

their reasoning does explain the decrease in the com- 

pressive strength of frozen coal composites due to the 

addition of ethylene glycol, it fails to explain the de- 

crease due to the addition of urea.  In the present 

investigation, it has been demonstrated that, while the 

addition of a chemical compound may increase the strength 

of ice-ice bonds, it can also simultaneously decrease the 

strength of ice-coal adhesive bonds, leading to an over- 

all decrease in the compressive strength of frozen coal 
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composites. 

B.4.3.  STUDIES WITH ETHYLENE GLYCOL AND UREA MIXTURES : 

Both ethylene glycol and urea lower the compressive 

strength of frozen coal cylinders.  Ethylene glycol forms 

weak ice; urea forms strong ice but weak ice-coal adhe- 

sive bonds.  The possibility of a synergistic interaction 

between the two compounds was investigated by measuring 

the compressive strengths of frozen coal cylinders (coal 

sample #3).  Several solutions in water were prepared 

such that the total amount of ethylene glycol and urea 

in solution was 2 wt%.  The relative amounts of urea and 

ethylene glycol were different for each solution.  The 

frozen coal samples were prepared with these solutions 

such that the final water content was 167o.  The results 

are summarized in Table 111-21 and are also plotted in 

Figure III-ll.  It is seen from the figure that there is 

no synergistic effect observed.  The variation of com- 

pressive strength with composition was linear from 127 

psi for ethylene glycol to 171 psi for urea.  The com- 

pressive strength can be easily described by a best-fit 

straight line.  The data were fitted by the regression 

equation, 

compressive strength = c.w + c«(l - w)      (3.5) 
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TABLE 111-21 

Compressive Strength of Frozen Coal Cylinders Containing 

2 wt% Ethylene Glycol-Urea Mixture at 16% Water Content 

(Coal Sample #3) 

Moisture Content = 4.52% 

Relative Amount 

of UR (%) 

Relative Amount_ 

of EG (%) 

Compressive Strength, psi 

Tube: ave. sigma 

00 
00 
I 

100 

75 

50 

25 

0 

0 

25 

50 

75 

100 

172 143 159 166 204 181 171 21 

166 169 162 150 137 166 158 12 

127 178 137 140 150 153 147 ' 18 

140 131 111 140 140 124 131 12 

105 131 131 137 134 124 127 11 

Pure Water 216  232  213  213  245  220  223 13 

UR Urea, EG : Ethylene Glycol 



PERCENT UREA IN ETHYLENE 
GLYCOL-UREA MIXTURE 

Fig. III-ll; The effect of relative amount of urea and 
ethylene glycol on the compressive strength 
(X ± 1*-) of frozen coal samples containing 
16% overall water content. Total concentra- 
tion of ethylene glycol + urea in solution 
is 2wt%. 
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where w is the weight fraction of urea in the ethylene 

glycol-urea mixture; c< and c? are constants with values 

of 170 and 124 psi, respectively. 

B.4.4.  STUDIES WITH SUGAR :  The compressive strengths 

of frozen coal cylinders containing a constant 2 wt% 

sugar based on the water solution added were also mea- 

sured.  The results are given in Table 111-22.  The 

moisture content of coal used was 4.067..  The results of 

this experiment were compared with the control for which 

the moisture content was 4.17% and are given in Table 

111-23.  Both these experiments were done coal sample #4. 

These results are plotted in Figure 111-12.  Also in this 

figure, the coal samples containing ammonium acetate are 

plotted, which are discussed in the next Section 

(B.4.5.). 

The compressive strengths of the frozen coal cyl- 

inders containing sugar were generally about the same as 

those of the control.  The average values at 107,, 167., 

and 207o water were the same within experimental error; 

the values at 127o and 147. water may or may not be mea- 

sures of the same quantity; those at 187. water were 

smaller than those of the control.  The differences in 

compressive strengths for 127. and 147. water were only 11 

and 13 psi, respectively, with the values for the sugar- 
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TABLE 111-22 

Compressive Strength of Frozen Coal Cylinders Containing 

2 wt7o Sugar Based on the Water Solution Added 

(Coal Sample #4) 

Moisture Content = 4.067o 

Precent Compressive Strength, psi 

Water  Tube:  1 2 3 4 5 6 ave. sigma 

10 64 67 99 80 60   74 16 

12 95 102 86 111 99 95 98 8 

14 118 118 115 140 134 111 123 12 

16 172 137 134 134 191 156 154 24 

18 143 194 153 140 175 166 162 21 

20 216 143 166 220 185 232 194 35 
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TABLE 111-23 

Statistical Comparison of Frozen Coal Cylinders 

Containing Sugar With Control 

(Coal Sample #4) 

Moisture 
Content 4. 06% 4. 17% 

Compressive Strength, psi 

Percent Su gar* Control Calcd. 

t 

Crit. 

Water ave. sigma ave. sigma t(95%) 

10 74 16 80 8 0.81 2.26 

12 98 8 87 8 2.38 2.23 • 

14 123 12 110 5 2.45 2.23 

16 154 24 148 28 0.40 2.23 

18 162 21 200 18 3.37 2.23 

20 194 35 221 30 1.43 2.23 

* The concentration of sugar in solution is 2 wt% 

-92- 



8 12 16 

Gm  ADDED  WATER/100   Gin COAL 

20 

Fig. 111-12: Variation of compressive strength of frozen 
coal cylinders with gm added water/100 gm 
coal for control, sugar and ammonium acetate. 
Sugar and ammonium acetate have been applied 
in constant 2 wt70 based on the water solut- 
ion added. All this data is from coal sample 
#4. 
LEGEND: 

□ Ammonium acetate 

O  Control 

O  Sugar 

-93- 



containing samples being the higher in both cases.  Thus 

the addition of sugar to the water did not decrease the 

compressive strength of the frozen coal cylinders. 

Similar to urea, sugar forms stronger ice-ice 

bonds, but is probably unable to weaken the ice-coal 

adhesive bonds to give an overall decrease in the com- 

pressive strength of the frozen coal composites.  There- 

fore, sugar is not a good choice as a freeze conditioning 

agent. 

B.4.5.  STUDIES WITH AMMONIUM ACETATE :  Table 111-24 

gives the compressive strength of frozen coal cylinders 

containing a constant 2 wt7o ammonium acetate based on the 

water solution added.  The moisture content of coal used 

was 4.067o.  In Table 111-25, the results of this experi- 

ment have been compared with the control for which the 

moisture content was 4.17%.  Both these experiments were 

done with coal sample #4.  It is seen from Table 111-25 

that, for all levels of water contents tested, the 

constant 2 wt% ammonium acetate solution reduced the com- 

pressive strength of frozen coal samples considerably. 

The percent reduction in compressive strength for various 

level of water is also given in this table.  Figure III- 

12 shows the variation of compressive strength with the 

amount of water added/100 gm coal.  As seen from this 
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TABLE 111-24 

Compressive Strength of Frozen Coal Cylinders Containing 

2 wt% Ammonium Acetate Based on the Water Solution Added 

(Coal Sample #4) 

Moisture Content = 4.06% 

Percent Compressive Strength, psi 

Water Tube:  1 2 3 4 5 6 ave. sigma 

10 35 41 51 51 35 48 44 7 

12 54 54 45 48 48 48 49 4 

14 51 70 51 54 48 70 57 10 

16 70 54 80 76 67 89 73 12 

18 99 95 95 80 86 83 90 8 

20 92 86 99 86 99 102 94 7 
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TABLE 111-25 

Statistical Comparison of Frozen Coal Cylinders 

Containing Ammonium Acetate With Control 

(Coal Sample #4) 

Moisture 
Content 4. 06% 4. 17% 

C ompressive Strength, psi 

Crit. 

t(95%) 

% Red 
in St 

Percent Ammonium 

ave. 

Acetate" 

sigma 

Control Calcd. 

t 
uction 

Water ave. sigma rength 

10 44 7 80 8 8.30 2.23 45 

12 49 4 87 8 10.41 2.23 44 

14 57 10 110 5 11.61 2.23 48 

16 73 12 148 28 6.03 2.23 51 

18 90 8 200 18 13.68 2.23 55 

20 94 7 221 30 10.10 2.23 58 

* The concentration of ammonium acetate in solution is 2 wt%. 



figure, ammonium acetate is very effective in reducing 

the compressive strength of frozen coal cylinders. 

Ammonium acetate behaves like ethlene glycol in 

reducing the compressive strength of ice, as well as 

frozen coal cylinders.  Therefore, the mechanism for 

lowering the compressive strength seems to be the same 

for both of these chemical compounds.  A comparison of 

Table 111-16 with Table 111-25 reveals that, at higher 

percent water levels, ammonium acetate is more effective 

than ethylene glycol in reducing the compressive strength 

of frozen coal cylinders.  Therefore, ammonium actate is 

a good choice for use as a freeze conditioning agent. 
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CHAPTER-IV 

CONCLUSIONS 

1. The coal used in the present investigation had a very 

small surface area and pore volume.  As a result, 

most of the added water remained as external water. 

The moisture content of the coal sample varied from 

one part of the sample to another; the water deter- 

mined by ASTM D-2961 is internal water, which does 

not affect the compressive strength.  Therefore, the 

compressive strengths of frozen coal cylinders 

depended upon the added water and not the overall 

water content. 

2. Frozen coal cylinders prepared from undried coal are 

strong.  Depending on the water added, their compres- 

sive strengths can be 75% greater than those of ice. 

3. The compressive srengths of frozen coal cylinders of 

coal samples #2, #3 and #4 of varying water content 

followed the same smooth curve when plotted against 

the added water content.  An analytical equation was 

fitted to this curve by regression analysis. 

4. An increase in loading rate by a factor of 2.2 over 

the usual rate of one inch per minute resulted in a 

decrease in compressive strength of frozen coal 
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cylinders by 257o.  At the slower rate, the frozen 

coal specimens failed by relatively slow crumbling 

as against by massive fracture at the faster loading 

rate. 

5. For coal samlpe #3, it was found that, when the 

amount of water added was 1.6 gms/100 gms of coal, 

the frozen coal cylinders crumbled as they were taken 

out of the PVC tubes. 

6. The compressive strengths of frozen coal cylinders of 

sample #4 were smaller than those of coal sample #3 

at 18% and 20% overall water content, greater at 10% 

and within the experimental error same at 127o, 14% 

and 16%.  The differences were attributed to the fact 

that coal sample #4 had less smaller-size particles 

as compared to coal sample #3. 

7. The compressive strengths of ice cylinders contain- 

ing ethylene glycol or ammonium acetate were lower 

than those of the control, but those containing sugar 

or urea were greater; ethylene glycol and ammonium 

acetate form weaker ice, but sugar and urea form 

stronger ice. 

8. It is found that ethylene glycol was only effective 

in reducing the compressive strength of frozen coal 

cylinders when its concentration is greater than 1.5 

wt% in the water solution added.  Thus, when 
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ethylene glycol was used in concentration of 2 pints 

per ton of coal, it was effective only for 10-127o 

water; and at higher amounts of water, the compres- 

sive strengths of frozen coal cylinders were roughly 

same as those of control.  When experiments were 

done with 2 wt7o ethylene glycol, as expected, the 

compressive strengths were lower at all the water 

contents studied.  Ethylene glycol forms weaker ice 

and ice-coal adhesive bonds of indeterminate 

strength.  Therefore, the possible mechanism of 

failure seems to be weak ice-ice bonds. 

9. At 2 wt% concentrations, ammonium acetate was highly 

effective in reducing the compressive strength of 

frozen coal cylinders.  At higher levels of water, it 

was even more effective than ethylene glycol.  Since 

ammonium acetate also formed weaker ice, the mecha- 

nism of failure seems to be the same as that of 

ethylene glycol. 

10. The compressive strengths of frozen coal cylinders 

containing the equivalent of 2 pints urea/ton coal 

were lower than those of the control at 107o-127o water 

and slightly greater at higher amonunts of water. 

Urea was more effective when used at concentrations 

of 2 wt7o based on the water solution.  However, it 

was less effective than either ethylene glycol or 
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ammonium acetate at the same concentration Level of 

2 wt7o.  Urea forms stronger ice.  Therefore, it seems 

that the decrease in the compressive strength of 

frozen coal cylinders is due to formation of weak 

ice-coal adhesive bonds. 

11. The variation of compressive strength of frozen coal 

cylinders containing 2 wt7o of varying ethylene 

glycol-urea mixtures based on water solution were 

also studied at 167o water level.  No synergistic 

effect was observed.  The compressive strength-com- 

position variation was linear from 127 psi for 

ethylene glycol to 171 psi for urea. 

12. The compressive strengths of frozen coal cylinders 

containing sugar were equal to, or greater than, 

those of control.  It seems that sugar forms stronger 

ice without weakening the ice-coal adhesive bonds, 

substantially to give an overall lower compressive 

strength. 

13. The effectiveness of urea as a freeze conditioning 

agent demonstrates the complex relationship that the 

compressive strength of ice containing chemical addi- 

tives is not a good measure of their effectiveness, 

and indeed, may give misleading results. 

14. Ethylene glycol, ammonium acetate and urea are prom- 

ising candidates for use as freeze conditioning 
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agents. 
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