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Abstract 

Modern control theory is applied to a dynamic model of the 

M60 tank to investigate possible enhancement of its fire-on-the- 

move capability. Conventional analog controllers based on 

classical control theory, currently in use, are inadequate for 

firing while moving. Recent studies directed toward the 

application of stochastic optimal control have shown consider- 

able theoretical potential, but have not addressed certain 

important practical problems [2]. In this thesis, a computa- 

tionally practical control scheme is presented which attains 

high performance using simple time optimal controllers and an 

atypical nonlinear observer. 

Conventional, stochastic optimal, and time optimal control 

schemes are compared on the basis of their ability to minimize 

deviations from the desired gun position. In each case, elec- 

tric and hydraulic gun drive systems are considered. When 

employing the electric gun drives, the gun pointing errors of 

the conventional case are reduced by a factor of 15 with the 

stochastic optimal scheme and between factors of 42 and 16 with 

tne time optimal scheme. The smaller time optimal reduction 

factor occurs when significant measurement noise is added. 

Similar but not so impressive results are achieved when 

employing the hydraulic gun drives. 
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The proposed time optimal control scheme eliminates the 

problems inhibiting the use of the stochastic optimal control 

scheme by assuming simple models which neglect hull motion. 

Consequently, only a few state variables are needed for con- 

trol. A nonlinear observer which estimates only the gun point- 

ing errors is developed for this purpose; other needed vari- 

ables are directly measured. This time optimal scheme is 

fully implementable, but at a possibly excessive cost in terms 

of wear,noise and power consumption. A hybrid control scheme 

is suggested which combines the stochastic and time optimal 

schemes to eliminate their individual drawbacks while retain- 

ing high performance. 



1. Introduction 

Conventional on-board stabilization systems for the M60 

tank fail to provide the ability to fire accurately while on 

the move. The absolute pointing angle of the main gun is 

disturbed by the motion of the tank over rough ground. An 

ideal stabilization system would exert control torques on 

the gun to precisely cancel out the disturbance torques. Thus 

the gunner would not need to compensate for changes in the 

gun orientation, and the on-board balistic computer, which 

is designed to keep the gun of a moving tank on target, would 

perform its job unhindered. Modern optimal control methods 

have been applied in previous related studies concerned with 

the design of a disturbance accommodating stabilization system 

of this type 0,2]- These studies have produced a linear- 

quadratic stochastic optimal control scheme which dramatically 

improves the performance of the stabilization system over 

that of the conventional control, but requires a presently 

impractical increase in control system complexity. The object 

of this study is to develop a simple, computationally practical 

control scheme using time optimal control theory, and to inves- 

tigate its potential for improved fire-on-the-move performance. 

The proposed time optimal control scheme is compared with 

the stochastic optimal and conventional control schemes through 
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simulation on a digital computer, using the dynamic model of 

the tank derived in Chapter 2. In all cases the tank is 

moving straight ahead at 8.5 m/s (-19 mph) over rough terrain 

that- is about as severe as a very bumpy dirt road (see Fig. 4.1) 

The position of the gun is initiated at 30 degrees in absolute 

elevation and* 45 degrees in absolute traverse as shown in Fig. 

1.1. Gun pointing errors are measured as deviations from 

this starting position. 

The application of time optimal and stochastic optimal 

control theory leads to control schemes which are very differ- 

ent, both internally and operationally. For example, the 

stochastic optimal scheme contains a dynamic model of the tank 

and ground contour under the tread, enabling it to predict the 

current and future disturbances plus the gun pointing errors 

and select an accommodating proportional control. The result- 

ing performance is very impressive, much better than conven- 

tional control, but the control system is very complex, making 

the stochastic optimal control scheme practically unrealizable. 

The time optimal scheme takes another approach, seeking not 

to eliminate the disturbance torques but to .correct the gun 

position errors which result by using maximum-effort control. 

It contains a dynamic model of the turret and gun only, which 

neglects the motion of the!hull. Therefore, detailed knowledge 
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of the state of the tank and ground contour is not required, 

greatly simplifying the observer. A nonlinear observer which 

estimates only the gun pointing errors has been developed for 

this purpose. The other needed variables, such as gun space 

rates, are measured directly. The complete time optimal con- 

trol scheme which follows is developed in Chapter 3 and com- 

pared to the stochastic optimal and conventional control schemes 

with respect to structure and performance in Chapters 4 and 5. 

Unfortunately, the strict implementation of time optimal 

control causes high levels of noise, vibration, power consump- 

tion and life-shortening wear. Stochastic optimal control is 

gentle in comparison, but is currently barred from use by its 

complexity, particularly its need to adapt to changing gun 

position and tank speed [2]. Each scheme therefore has very 

different but complimentary strong and weak points. A hybrid 

scheme which combines the two to eliminate their individual 

impediments and retain high performance is proposed in Chapter 

5. This scheme has been theoretically developed but not tested. 
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2. SYSTEM MODELING 

A nonlinear model of a tank rolling over rough terrain 

has been developed to facilitate the design and simulated 

testing of proposed control schemes. This model assumes that 

the tank is moving at a constant velocity over continuous hard 

ground. The development in Sections 2.1 to 2.4 along with the 

resulting equations noted in Ref. [2] includes a complete deri- 

vation of the equations of motion based on conservation of 

linear and angular.momentum. It applies to both the hydraulic 

and electric gun drive tanks, but is used only for the hydrau-. 

lie. The model employed with the electric drives is approxi- 

mately equivalent (see Ref. [2]), but excludes the nonlinear 

coupling between the hull, turret, and gun incorporated in the 

new model by the matrix formulation of Section 2.3 

Models of the hydraulic gun drives and conventional con- 

trollers are discussed in Sections 2.5 and 2.51. Finally, 

Section 2.6 addresses the model linearizations which precede 

the design of the time optimal controllers. 

The electric gun drives are modeled as non-dynamic torque 

motors which are linear except for speed and load saturation. 

These models and -the conventional electric drive controllers 

are discussed in Ref. [1]. 



2.1 Reference Frames 

Two main reference frames are employed in the model: an 

inertia! frame of fixed orientation, Oxyz, and a rotating frame, 

Gx^yhzh, that is-fixed to the tank with its origin located at 

the vehicle e.g. (see Fig. 2.1). It is assumed (1) that the 

tank pivots about a point labeled T which is fixed with respect 

to the rotating axes and defined by the intersection of the y. 

axis and the torsion bar plane, and (2) that point T is con- 

strained to move vertically and coincides with 0 when the tank 

is in its equilibrium position. 

Three other reference frames also assist in the angular 

momentum computations which are described in Section 2.2. 

These frames, labeled AxAyftzA, BxByBzB, and Cxcycz~, are fixed 

to the hull, turret, and gun respectively with their origins 

at the e.g. of the body to which they are attached (see Fig. 2.2) 

2.2 Hull Equations 

The differential equations governing hull motion are 

derived using the fundamental equations shown below which 

relate the time derivatives of linear and angular momentum to 

external forces and moments, respectively: 

m a = E F (2.1) 

the bar signifies that this acceleration is at the mass center G. 

-8- 



Fig, 2.1 Main Reference Frames 
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Fig. 2.2 Rotating Reference Frames 
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V J 

HG - 2 MG •   ^     (2.2) 

In the present case the external forces and moments result 

only from the suspension reactions, F , and gravity, g. Since 

the suspension forces are assumed to act vertically, equation 

(2.1) reduces to 

•  mv *H = z Fs " V (2'3) 

where Y,, is the vertical acceleration of the mass center, and 

m is the vehicle mass. 

Equation (2.2), on the other hand, requires an expression 

for the vehicle angular momentum, hL. f-L is calculated by 

summing the angular momenta of the hull, turret, and gun about 

point 0, yielding HQ, and then solving for HQ using equation 

(2.4). This equation relates the angular momentum of a rigid 

body about its mass center to its angular momentum about a 

fixed point, 0. 

HQ = rQ x m v + HG (2.4)1 

Therefore, 

HG = Hh + Ht + Hg " rG x mv "v (2-5) 

All position vectors are defined with respect to point 0. 

•11- 



where H. , FL, artd H    are the hull, turret, and gun angular 

momenta about point 0, respectively. 

Equation (2.4)  is also used to calculate Hu, H., and H  . 

For a concise illustration, consider the main gun.    In this 

case 

Hg = rC x mg ^C    +  <Vc <2-6> 

where (H )~ is the gun angular momentum about its mass center. 

C.    Quring the application of equation  (2.2) the time deriva- 

tive of H    is evaluated, which is 

"g = ^Cxmg ^C + rCxmg *C + (VC 
{2J) 

The first term in this equation is zero: 

rC x mg ^c = \ x mg vc = 0   . (2.8) 

The last term is the time derivative of (H )c with respect to 

a frame of fixed orientation: 

To avoid the calculation of the time derivatives of the rotating 

unit vectors, the following fundamental equation is employed, 

(H)Qxyz = (H)0x,y,z. + n x H (2.10) 

-12- 



where Ox'y'z'   is a rotating frame which rotates with angular 

velocity n.    In frame Ox'y'z' the unit vectors are'constant so 

their time derivatives are zero.    By selecting a rotating frame 

attached to the gun and noting that v = a, equation  (2.7) 

becomes 

(Voxyz = (Vcx^zc + "g x Hg + rC x mg"aC (2J1) 

Substitution of this expression along with similar expressions 

for the turret and hull  into equation  (2.5) and then into equa- 

tion  (2.2) yields -^ 

EMG =  (Hh)AxAyAzA + nh x Hh + rA x mh aA 

+ (Ht)BxByBzB + nt x Ht + rB x mt ag 

+ (Hg)Cxcyczc + ng x Hg + rc x mg ac - rQ x my aG 

(2.12) 

Equation (2.12) is a vector equation governing the hull roll, 

yaw, and pitch angular accelerations about the rotating hull 

axes. It contains angular momentum terms, position vectors, 

and accelerations which are discussed in Sections 2.21 through 

2.23. 

2.21 Angular Momentum Computations 

Fixing individual reference frames to the principal axes 

of the hull, turret, and gun simplifies the angular momentum 

-13- 



computations because the moments of inertia become constant and 

all products of inertia vanish. This simplification is illus- 

trated by expanding the first two terms of equation (2.12) - 

that are contributed by the turret. The angular momentum and 

angular velocity of the turret about point B are given as 

(^BXgygZg = Jtx utxB ±B 
+ Jty utyB k  + Jtz wtzB ^B 

(2.13) 

and, \ 

Qt  = «txQU  + utyB k + "tzB ^8 <2'14) 

Therefore, 

^t^XgygZg = Jtx "txg h + °ty "t^ k  + Jtz *tzB 4 

(2.15) 

and 

VHt = (Jtz " V utzB 
utyB IB 

+ <Jtx " Jtz) utxB "tzg h 

+ <Jty ~ Jtx> "tyB -txB V <2-16> 

These equations are written in terms of known state variables 

and resolved onto the rotating hull axes by applying the 

following two transformations: 

(1) w.  = wh cos TR - u).z sin TR . (2.17a) 
B 
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utu = SRTR i (2.17b) 

wtz = whz cos TR + %x  s1n TR (2.17c) 
B 

(2) 2g = j_ cos TR - k sin TR (2.18a). 

^=1 (2.18b) 

kg = k  cos TR + i sin TR (2.18c) 

This procedure, as exemplified above, is vastly simpler 

than any which does not employ a rotating centroidal reference 

frame and is also used to expand the first two terms of equa- 

tion (2.12) contributed by the hull and gun. 

2.22 Position Vectors 

All of the points of interest (points'T, G, A, B, and C) 

are fixed with respect to the rotating frame attached to the 

body in which they are contained . Therefore, any position 

vector, rp, can be defined in terms of r-r, TR, and E. For 

example, 

rp  = rT + rp/T (2.19) 

The vehicle e.g. actually moves slightly as the turret turns 
because the turret e.g. does not lie precisely on the traverse 
axis; however, this movement is neglected and G is fixed at its 
nominal position. 
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The calculation of r-j. is completely different than the 

other position vector calculations and therefore is shown below. 

Equation (2.19) is used as follows: 

rT = rG + rT/G (2.20) 

The vertical component of rG is obtained by integrating equation 

(2.1) twice to give 

r
G ' .1 = YH 

+ K (2-21) 

The second term, ^j/r>  is a constant which is resolved onto 

the fixed axes, Oxyz, by the C_ coordinate transformation given 

in Appendix B2 of Ref. [2], 

rT/G = "YCG 1 = " YCG <Cxy I + Cyy 1 +  Czy ® <2-22> 

where Y-« is the distance from point G to point T. Since point 

T is constrained to move vertically, the vertical component of 

equation (2.20) becomes 

rT- YH+ K- Cyy • YCQ (2.23). 

The constant K is evaluated from the initial conditions: 

TT(0) = 0   YH(0) = 0   Cyy(0) = C0S(Po)     (2.24) 

Therefore, 

K = YCQ COS (PQ) (2.25). 

-16- 



and finally 

rT = YH + YCG (C0S(Po) - Cyy) '       <2-26> 

Since the derivation of rT is unique, r» is derived 

below for a complete illustration. 

rA = rT + rA/T (2.27) 

The last term, r.,T> is constant: 

rA/T = dl i+ d2 J- + d3 - (2'28) 

The first term, r-r, is resolved onto the hull axes using the 

^coordinate transformation in Appendix B2 of Ref. [2], 

<"T 
= rT Vxy 1 + rT Vyy i + rT Vzy £ (2'29) 

yielding 

rA = <rT Vxy + dl)l + <rT Vyy + d2)i + (rT Vzy + d3)k 

(2.30) 

All of position vectors which are needed are derived in this 

manner. 

2.23 Acceleration Calculations 

The calculation of the accelerations at points A, B, C, D, 

and G are based on the following fundamental equation: 

■17- 
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ap = ag +cfl x rp/Q + a  x [a x rp/g) + 2n x (^P/Q)Q 
xyz 

+ (rp/0)0 (2.31) /w wxyz 

where P is the point of interest and Q is the origin of the    v 

rotating frame QYV_. xyz 

Equation (2.31) may be simplified in our case by selecting 

point Q so that (rp/Q)qxyz = (^p/cpQxyz 
= °* This recluires tne 

definition of point B' which is located on the traverse axis 

at the level of the turret e.g. (see Fig. 2.3). By choosing 

Q so that it coincides with T when calculating a« and a^, and 

coincides with B' when calculating aB and ac,'equation (2.31) 

becomes 

ap = ag + n x rp/g + n x (n x rp/g)   (2.32) 

The application of equation (2.32) to point A yields 

a» = aT + h x r,/T + u x {a x rA/T) ■       (2.33) 

This equation requires an expression for a-p which is derived 

by again applying equation (2.32), this time to point T, yielding 

aT = aG + aJ/G (2.34) 

where 

aT/G = ^ x rT/G + fi x (^ x rT/G^ *        (2.35) 

-18- 



Noting that r-j-,G = -YCG j_, and that Q =  uihxi + u>. j_ + w. k, 

it can be shown that 

aT/G = (aT/G>x i + (aT/G}y i + (aT/G>z *■ •  (2"36) 

where 

^Wx = YCG((I>hz "-"Why* 

^T/GV 
= YCG(a,hz + %V 

(aT/G}z = " YCG((Ilhx + "hz"^ 

By assumption, point T is constrained to move vertically rela- 

tive to the moving inertia 1 frame Oxyz. Therefore, 

aT = aQ • J + aT/Q • J (2.37) 

The first term, aG«J_ is simply the vertical acceleration of 

point G, Yn (see equation 2.3). The second term, aj,n'J_, 

is derived by resolving ^T/Q onto frame Oxyz: 

aT/G-i = Cyx(aT/G)x + Cyy(aT/Q)y + Cyz(aJ/G)z  (2.38) 

Thus, 

aT = {YH + Cyx(aT/G>x + Cyy(aT/G>y + WaWz} i 

Finally, the V^ coordinate transformation is employed to resolve 

aT back onto the rotating hull axes, Gv .. _ . This transforma- 1 Vhzh 
tion produces some terms such as V  C  which are vanishingly xy xy 
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small and omitted. Therefore, 

at ='YH + Sy'csHx + »tl» V i 
+   {Y,,   +   C      Yrr((I)u      -   W,   U.     )    +   C      YroU.2   +   0). 2) 1 H  yx CGV hz   hx hyJ       yy CGV hx   hzy 

yz CGV hx  hz hy; yy — 

+ {YH + CyyYCGKx + whz)}Vzy^ (2.39) 

Now that a-j. is specified, the components of a., are easily 

derived by evaluating the cross products of equation (2.33). 

All acceleration calculations follow this same pattern. 

2.3 Matrix Formulation 

The right hand side of equation (2.12) comprises linear 

functions of x^ and nonlinear functions of x., where x  repre- 

sents the system state. A transferal of all nonlinear terms 

to the left hand side of the equation gives the following 

matrix formulation: 

3x6 

Inertia Matrix 

s 
(III 

hy 
SMP„ 

%z _ 
SX 

2Mr„ 
SRTR sy 

EM 
SRE sz 

> _ 

Nonlinear 

Terms 

(2.40) 
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This formulation is expanded by adding the turret and gun space 

rate equations; fourth and fifth rows, respectively, are added 

to the inertia matrix. These space rate equations contain 

linear functions of x^which appear in their expressions for 

the applied disturbance torques. These linear terms are 

transferred into their proper position in the inertia matrix, 

coupling the space rate equations to the hull equations. These 

disturbance torques are further described in Section 2.4. 

The vertical acceleration equation Yu, derived in Section 

2.2, is completely uncoupled and therefore can be evaluated 

separately with no loss of accuracy. This allows the terms 

represented by the sixth column of the inertia matrix to be 

moved to the right hand side of the formula, yielding 

5x5 

Inertia Matrix 

OJ hx 

V 
CO 
hz 

SRTR 

SRE 

EM 

EM 

EM 

EM 

EM. 

sx 

sy 

sz 

tn 

gn] i_ 

^16 

°26 
NONLINEAR J36 

TERMS — 
J46 

_J56 

(2.41) 

The subscript n on the turret and gun external moments signify 

that the linear terms have been removed and placed in the 

inertia matrix. 
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Finally, the time derivatives of the five coupled state 

variables are evaluated simultaneously by premultiplying the 

right hand side of equation (2.41) by the inverse of the 

inertia matrix. 

2.4 Turret and Gun Equations 

The differential equations governing the turret traverse 

and gun elevation space rates are obtained by applying equation 

(2.2) to the turret and to the gun. As in the derivation of 

the hull equations, rotating reference frames attached to these 

bodies are employed. In each case equation (2.2) yields three 

equations governing the x, y, and z components of rigid body 

angular motion. Only one component, however, is needed to cal- 

culate -TIT (SRTR) and -rr (SRE) - the yB and z~ components of 

the turret and gun equations, respectively. 

The derivation of the turret equation is simplified by 

considering the turret-gun system rather than the turret alone, 

because this system internalizes the dynamic reactions exerted 

by the gun at the trunnion and considerably simplifies the 

external moment calculation. The application of equation (2.2) 

to this two-body system then requires an approach similar to 

the derivation of the hull equations, and yields equations 

which couple the traverse and elevation space rates. This 

coupling is very  weak in the turret equation, however, and 
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neglected in the present formulation.    Therefore the turret 

space rate equation is derived as if the turret-gun system 

were a single body with mass center at point D and with vari- 

able moments of inertia that depend on the elevation angle. 

Changes in the position of point D due to variations in the 

elevation angle, E, are .negligible because the gun e.g.  lies 

only 3 mm away from the trunnion.    The turret-gun system 

moments of inertia about axes attached at D are 

Jtxn 
= Jtxn 

+ Vl2 + Jg sin2E + mgi2
2' (2.42a) 

^D VB 

tyr 

tzr 

U + m. (x-^+z-,2) + J    cos2E + m (x~2+z9
2) VA1   '*1 V*2  "-2 

- 2 - 2 
J*,    + m.x-i    + rn    X-, tZg       t 1 g    2 

(2.42b) 

(2.42c) 

where x-,,  Xo* z-,  and z2 are defined in Fig.  2.3.    The angular 

momentum of the turret about D is    therefore, 

<Ht>D ■ 

'tx 

0 

0 
ty 
0 

0 

0 

]tz 

CO tx 
Jty 
Jtz 

(2.43) 

so that the yQ component of the results of equation  (2.2) 

becomes 

(zMt\) = Jty V+ <Jtx " Jtz> wtxwtz (2.44) 
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(The D subscript has been dropped in equations (2.43) and 

(2.44) for clarity). The turret angular velocities are 

expressed in terms of known state variables using the trans- 

formation 

u>t = oan cos TR - cjhz sin TR (2.45a) 

wt = SRTR (2.45b) ' 

"tz = whx sin TR + ^hz cos TR (2.45c) 

Finally, the turret equation becomes 

(EMt)D = Jty SRTR + (Jtx-
Jtz^^hx2-Uhz2) Sin  TR C0S TR 

+ a)hx uihz cos 2TR] (2.46) 

The external moment about the yD axis of thg.turret, sMt, com- 

prises a control torque, a friction torque, and a disturbance torque. 

Expressions for the control and friction torques are taken 

directly from the Kaminsky azimuth model [4]. This model does 

not include any hull rolling, pitching, or vertical motion, 

so a new disturbance torque expression which recognizes this 

motion is developed. This disturbance torque is caused by 

the resultant dynamic force, called FR', exerted on the turret 

by the hull. Force FR' is assumed to intersect the traverse 

axis at point B1, thereby causing a moment about the turret- . 

gun mass center at point D.  A summation of forces on the 

The traverse axis is defined as the axis of rotation of the 
turret with respect to the hull.      / 

■25- 



<s 

turret-gun consists of force Fp' and gravity: 

EFXn  =   (FB')*n  "   <mt + %)   9   (Vxv C0S  TR  -  VZV  Sin  TR) XD      v  B  'XQ xy zy 

(2.47a) 

zFzD- «VV K+mg>9  (Vzy cos TR + Vxy sin TR) 

(2.47b) 

The total acceleration of point D is known, and therefore zF 

is known by Newton's second law: 

sFxD
= K + V(iD>xD <2-48a> 

zFzD 
= K + mg)(5D)zD 

(2-48b) 

Combining equations (2.47a) through (2.48b) yields 

<FB'>-XD 
= (mt^g)".VxD 

+ 9(V cos TR" ^ys1n TR)] 

(2.49a) 

(FB')2„ = <WK5D>ZD 
+ 9(vzy cos TR + vxy s1n TR)] 

■D 

Finally, the disturbance torque is calculated; 

(2.49b) 

DSTQTR = rxFB'  = 

±o 

'11 

M) B'xr 

AD *D 
0 -d12 

0 
(FB')Z 

=  V%%U*U  ^FB,)xDd12 (2.50) 
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where d,, and d-ip are the'Xp and zD distances from point B
1 

to point D, respectively. 

At this point equation (2.50) is substituted into the fourth 

row of the matrix formulation described in Section 2.3. This 

substitution requires the transferal of all linear terms into 

the inertia matrix and all nonlinear terms over to the right 

hand side of the equation. With the exception of Jty SRTR of 

equation (2.46), all of these linear terms appear as angular 

accelerations contributing to the turret disturbance torque. 

These terms are therefore placed into the proper columns of 

the fourth row of the inertia matrix leaving only the nonlinear 

disturbance torque terms in the external moment summation. 

The derivation of the gun equation is similar to .that of 

the turret equation, but simpler because the gun is (1) a 

single rigid body, and (2) axisynmetric with a negligible x~ 

axis moment of inertia. The angular momentum of the gun about 

its mass center is, 

(Hg)C = Jg ugyc k + Jg Vc *C        
(2-51) 

As before, equations (2.2) and (2.10) are used to derive the 

governing equation, which is 

Jg SRE - (EMg)Zc - Jg „   ^ (2.52) 
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However, since 

u-.. = (whx cos TR - whz sin TR) cos E + SRTR sin E gxc 
(2.53a) 

co   = SRTR cos E - (cohx cos TR - u>hz sin TR) sin E 

-  (2.53b) 

the gun equation becomes 

J SRE = (EM )z - J {[SRTR2-(oihx cos TR-u^ sin JR)2]l sin2E 
y       y £  y 

+ (oohx cos TR - u>hz sin TR)SRTR cos2E}    (2.54) 

where the sunmation of external moments again comprises a con- 

trol torque, a friction torque, and a disturbance torque. 

Equation (2.54) becomes, after the proper placement of the 

linear and nonlinear terms, the fifth row of the matrix formu- 

lation. 

2.5 Models of the Hydraulic Gun Drives 

The hydraulic gun drives are modeled following Kaminsky 

[4], with certain simplifications. The Kaminsky model includes 

a number of elements which make it very  sensitive to high fre- 

quency excitations of the turret and gun. The effect that some 

of these elements have on the simulated control system 
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performance is negligible, however. For example, the main gun 

first mode of bending vibration has very little,effect on the 

system behavior. This was determined by examining the simulated 

results obtained by running the tank over a standard test bump 

using conventional controllers and a Kaminsky model which 

included and then omitted the gun bending; the results were 

indistinguishable [3]. This test sparked an examination of the 

remaining portions of the Kaminsky model that possessed high 

characteristic frequencies. On the basis of this examination, 

the following portions were omitted or replaced (by constants) 

in the nonlinear model described herein: 

1) Gun Bending 120 rad/sec. 

2) Rate Sensor Dynamics        157 rad/sec. * 

3) Spring-Damper model between   -100 rad/sec. 
the turret and basket 

In addition to the above, the hydraulic supply pump and 

relief valves also are omitted to further reduce the system 

order and to avoid the complicated but relatively unimportant 

transients that they produce throughout the simulations. For 

example, the hydraulic pump, which serves to fill an accumulator, 

switches on and off when the control system supply pressure 

reaches 960 and 1240 psi, respectively. Instead, the supply 

pressure was fixed at its mean value of 1100 psi. Further, the 

relief valve flow is set at zero and a flag is printed during 
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the simulations if the normal opening pressure is exceeded. 

These simplified elevation and traverse control systems are 

shown in Figs. 2.4 and 2.5. 

2.5i  Conventional Controllers 

Transfer functions and block diagrams representing the 

conventional elevation and traverse hydraulic system con- 

trollers were supplied by Ref. [4]. This traverse controller 

and a modified version of the elevation controller were employed 

in this study. The original elevation controller contained a 

pair of complex conjugate poles and zeros specifically designed 

to produce a notch filter to suppress the excitation of the 

first mode of vibration of the gun. Since this mode of vibra- 

tion was stricken from the model, the related poles and zeros 

were removed from the controller, resulting in the conventional 

elevation controller shown in Fig. 2.6. 

The conventional traverse time optimal controller has not 

been altered and is shown in Fig. 2.7. This controller claims 

to be time optimal, implying that it will employ saturation 

control (see Chapter 3), however, it selects a control which . 

is proportional in nature (see Fig. 4.4). Therefore, its 

claim of time optimality is questionable. 
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2.6 Model Linearization 

The time optimal controllers developed in Chapter 3 are 

based on simple linear models derived by linearizing small por- 

tions of the complete nonlinear model previously derived. 

These small portions are isolated by neglecting the elevation 

and traverse disturbance torques. Consequently, the turret and 

gun become completely uncoupled from the hull resulting in 

simple models comprising gun and gun drive dynamics only. 

The elevation and traverse gun space rate equations 

are gyratiohally coupled as shown by equation (2.54). This 

gyrational coupling is removed by linearization. The nonlinear- 

ities which remain occur in the gun drives. The electric gun 

drive models are non-dynamic and linear, as previously mentioned. 

As a consequence, the electric drive time optimal controllers 

are very simple and insensitive to modeling errors. The hydrau- 

lic drive models, on the other hand, are dynamic and nonlinear. 

Their linearization includes (1) the removal of all saturation 

limiters, (2) the replacement of the traverse servo valve dead- 

band limiter by a constant gain of .985 arrived at by a 

describing function analysis, and (3) the modification of the 

servo, valve flow equations. These servo valve equations are 

of the form: 

Qv = x-k-/Ps + |PL|    x-PL < 0        (2.55a) 

= x-k./Lim (Ps-|PL|).0.,Ps} x-PL>0    (2.55b) 
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in which x is the input, k is the flow coefficient, P is the 

supply pressure, P. is the differential pressure producing the 

control torque, and the Lim function is defined in Fig. 2.8a. 

The condition for equation (2.55a) applies only for very  brief 

periods of time characterized by the lag in the pressure, Pi, 

with respect to the input, x, and therefore this equation is 

discarded in the linearization. Equation (2.55b) is linearized 

by removing the limiter and by selecting the proper square 

root argument. This linearized equation is 

%  = x ' k • /Ps " PLMN <2-56) 

where P,^ represents the mean of |P, | which occurs during a 

simulation. The character of |P. | is suggested in Fig. 2.8b. 

The elevation and traverse mean pressure magnitudes are esti- 

mated using the results of the nonlinear conventionally con- 

trolled model simulation. They are 

PLEMN = 3-° x 1Q5 Pa 

PLTRMN = 25-° x 1C}5 Pa 

This completes the linearization. 

The linearized elevation gun drive system is further sim- 

plified by removing its \/ery  fast eigenvalues [2]. This is 

done,by replacing the spool position and pressure differential 
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Fig. 2.8a Limit Function 
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Fig. 2.8b Pressure Differential Magnitude, PL, and P,MN 
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loops (see Fig. 2.6) by constant gains that are calculated 

using simple block diagram reductions which assume that the 

particular time constants in question are negligible. A 

block diagram of the resulting elevation hydraulic gun drive 

system is shown in Fig. 2.9. This model and the linearized 

traverse gun drive model are employed in the development of 

the hydraulic system time optimal controllers of Section 3.2, 
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3. TIME OPTIMAL. CONTROL 

Time optimal control theory is applied to the electric 

and hydraulic gun drive systems of the M60 tank. A preliminary 

study has been reported [1]. If perfect observation is assumed, 

the quality of the control theoretically increases without 

limit as the disturbances become smaller, unlike proportional 

control. This plus its simplicity and stability make it highly 

attractive. In practice, however, the quality of the control 

is limited by imperfect observation and by errors in the assumed 

model of the system and the controller at high frequencies. 

Also, the wear, noise, vibration, and quiescent power drain of 

the valve and actuator mitigates against its use. The study 

which follows is directed at actual control performance but 

not questions of life and power consumption. (These questions 

are discussed in Section 5.1, however.) 

The performance index of the time optimal control problem 

is simply 

J =   dt (3.1) 
J o 

which is obviously an extremal when the final time is minimized. 

Time optimal controllers inherently move the state point to the 

origin at the final time, so equation (3.1) contains no explicit 

weighted combination of the state that would tend to constrain 
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the angle errors.  The control levels, on the other hand, 

must be explicitly constrained by enforcing separate limits 

on their magnitudes. In this case, there are two inputs and 

two constraints: 

hil 1 (Ui)max , 1 = 1,2 (3.2) 

Equation (-3.1) and (3.2) are employed to show that bang- 

bang (maximum effort) control is the operating mode indicated 

by the Pontriagin Maximum Principle for time optimal perfor- 

mance [5]. 

A bang-bang control function is characterized by instan- 

taneous polarity switches which allow the control to remain on 

the boundaries of the limited control range, as shown in Fig. 

3.1. The number and precise timing of the polarity switches 

can be selected to achieve time optimality. Bellman's n- 

interval theorem addresses this problem stating that the time 

optimal control of an ntn order system having only non-positive 

real poles and no zeros comprises n-1 polarity switches separ- 

ating n intervals of constant full-positive and full-negative 

control [5]. The calculation of the precise timing of these 

switches and the initial control polarity is discussed in 

Section 3.1 . 

Time optimal controllers can be designed to force the state 
onto a desired trajectory in minimum time, but only the 
regulator problem is of current interest. 
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The implementation of time optimal control in a high 

order system such as a tank\is impractical because the switching- 

time calculations tend to become very  difficult. In practice, 

therefore, time optimal controllers are based on simple low 

order approximate models. Second order models lead to very 

simple time optimal controls, and are used to develop the 

elevation and traverse electric gun drive TOCS.  For example, 

suppose that a disk (a 2n^ order system possibly representing 

a turret) must be rotated from -90 to 0 degrees with zero ini- 

tial and final velocities in minimum time. Obviously, full- 

positive torque is initially applied followed by a switch to 

full-negative-torque when the disk reaches -45 degrees. At 

the precise moment that#the disk reaches 0 degrees the motion 

has stopped and the control is turned off. The point of con- 

trol switching occurs when the state point (e,e) reaches what 

is called the switching curve (see Fig. 3.2). The branches of 

this curve separate the state plane into two regions of oppo- 

site initial control polarity. 

Third and fourth order models are used to develop the 

elevation and traverse hydraulic gun drive TOCS, respectively. 

Therefore, in the case of the elevation control, there are two 

switches. One switch occurs when the state point reaches the 

switching surface, which separates the three-dimensional state 

Time optimal controllers are sometimes referred to as TOCS. 
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space into two regions of opposite initial control polarity. 

The second switch occurs when the state point reaches the switch- 

ing curve, which is contained within the switching surface. 

Finally, the state point follows the switching curve to the 

origin (see Fig. 3.4). The behaviour of the fourth-order tra- 

verse time optimal control is similar except for an additional 

switch which occurs-when the state lies in a particular four- 

dimensional sub-state-space. 

3.1 The Switching-Time Method 

The time optimal control of a dynamic system can be 

implemented in one of the following two ways: (1) by a.con- 

tinuous monitoring of the state point within the state space 

and execution of control polarity switches when the monitored 

point intersects a switching surface, or (2) by a calculation 

of the control polarity switching-times based on the initial 

state and the system model, assuming no further disturbance. 

The second case is employed in the tank because it distinguishes 

the processes of control calculation (performed by a micro- 

processor on board the tank) and control execution (the actual 

controller implementation of the previously calculated control). 

As mentioned above, time optimal controllers based their con- 

trol selection on the present state. Microprocessors, however, 

require a finite time interval to perform the control 
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calculations, and during this time interval the state changes. 

Therefore, an extrapolation of the state is required in con- 

junction with a delay between control calculation and execution. 

This deliy, although not recognized in the present study, is 

a natural extension of the second case. 

The switching-time method is used to determine the control 

polarity switching-times for time optimal control [6]. To 

develop this method, the following Laplace Transformation theorem 

is employed: 

If the transformable and bounded func- 
tion x(t) is truncated, that is, if 

x(t) = {f(t)   t0 < t < tf 

0    t < t0, t > tf ' 

then its Laplace transform, X(s), is 
entire (i.e. analytic for all finite; 
values of s). 

In other words, if the state point x(t) is to move from its 

initial condition x(t0) to the origin, x(tf) = {0}, within"a 

finite interval of time (i.e. x(t) is truncated), then each 

component of X(s) is entire. 

The Laplace transformation of a linear state equation, 

x = A x + b u, 

is, 

X(s) = *(s)x(0) + 6(s)U(s) (3.3) 
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where ^(s) is the resolvant matrix, x_(0) is the initial state, 

U(s) is the Laplace transform of the control u, and G(s) is 

a vector of transfer functions relating the control to the 

state. Since bang-bang control applies, 

U(s) ->£[! - 2e-TlS + 2e_T2S - ... 
S- (3.4) 

+2(-l)n-1 e"Tn-lS+ (-l)
n e'TnS ] 

where k is the control magnitude, Tn- (i = l,2,...,n-l) are 

the unknown control switching-times, and Tp is the unknown 

control shut-off time. To satisfy Bellman's n-interval theorem, 

the index n is set equal to the system order. Since the ele- 

ments of G(s)  have n poles, n conditions can be imposed for the 

n unknown switching-times. Finally, the initial polarity of 

U(s) is selected so that the switching-times which result are 

real and positive. 

3.2 Application to the Hydraulic System 

A precise application of time optimal control to the 17tn 

order hydraulic gun drive tank is highly impractical. Solving 

seventeen nonlinear switching-time equations in addition to 

somehow accommodating the effects of ground disturbances 

would be extremely complex. Instead, the elevation and 

traverse TOCS are based on crude third and fourth-order models, 
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respectively. These crude models assume that the turret and 

gun and their controlling hydraulic systems are autonomous. 

In other words, the disturbance torques caused by hull motion 

are neglected. 

Time optimal control switching-time equations are derived 

for the elevation and traverse hydraulic systems in Sections 

3*.21 and 3.22, respectively. Attempts to solve the traverse 

switching-time equations failed, however, because of severe 

numerical convergence problems, so the development of the 

traverse TOC is as yet incomplete. The elevation switching- 

time equations, on the other hand, are easily solvable, giving 

the complete development of an elevation TOC. This controller 

is tested in conjunction with the Kalman filter type iterative 

observer of Ref. [2]. 

A measurement and control sequence consists of (1) an 

observer estimation of the present state, (2) solution of the 

switching-time equations which are functions of the state, 

and (3) the execution of the selected time optimal control. 

Time optimal control, polarity switches are commonly executed 

during the time interva.l before the next observation, causing 

a problem in the Kalman filter observer which assumes constant 

control over the entire interval. This problem is remedied by 

giving the time-average control during the interval to the 

observer, w.hile estimating the servo motor current with the 
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exact step-wise control and the linear lag model of the servo 

motor.    The errors resulting from use of the time-averaged 

control  in the remainder of the observer are not too large. 

The use of the stochastic optimal  Kalman filter observer 

with the elevation TOC is very inefficient.       The 

Kalman filter estimates the entire seventeen element state 

vector in adttition to estimating 51  ground contour states and 

six axle forces, but only three of these states are needed 

by the elevation TOC.    Therefore, this observer   can be 

replaced by the simpler nonlinear gun position observer of 
if 

Section 3.3, which estimates the needed angle error. The 

second needed estimate is of the elevation space rate. This 

is measured directly, and we propose direct use of the measure- 

ment rather than a complicated but marginally improved Kalman 

filter version thereof. The third variable is the servo motor 

current, which is easily calculated. Thus, all the needed 

state variables are specified. This simpler observation 

scheme was developed after the testing of the elevation hydrau- 

lic system TOC, however, and is not examined further. 

A final point to be made concerns the accuracy of the 

control polarity-switch timer. This timer receives the switch- 

ing-times at the start of a time interval from the switching - 

time equation solver (microprocessor), Jmd then proceeds to 

signal polarity switches when a -switching-time is reached. 
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However, the timer  cannot be expected to signal  switches as 

precisely as the m digit accuracy of the on-board equation 

solver.    Therefore, the switching-times are rounded to their 

nearest 0.001 seconds, which becomes the assumed timer accuracy 

and is one-tenth of the controller time interval.    This round- 

ing obviously introduces some suboptimality. 

3.21    Elevation Hydraulic System Time Optimal  Control 

The elevation TOC is based on the elevation gun dynamics 

and simplified elevation hydraulic gun drive system shown in 

Figures 3.3 and 2,9,  respectively.      The pertinent differential 

equations are 

-4- UN = -L (GTM-ELVV -  UN) (3.5) 
az ME 

~ SRE = (TQEL - FTQEL + DSTQEL)/Jg        (3.6) 

■$£ AE = SRE (3.7) 

These equations govern the elevation servo motor current, gun 

elevation space rate, and absolute elevation angle error, 

respectively. In addition, ELVV is the elevation controller 

System parameters are listed and defined in Appendix A. 
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output voltage, TQEL and FTQEL are the control  and friction 

torques, and DSTQEL is the neglected disturbance torque.    All 

other terms are system parameters.    Equation  (3.6)  is expanded 

by expressing TQEL and FTQEL in terms of system parameters 

and variables, yielding 

■jft SRE = {(C3-Ap-C0N-   GV/KQ   )IIN -  (C32-Ap
2/C0N)DE 

-  (CFE)DE}/Jg (3.8) 

In this expression, DE (the only new undefined variable)  is 

the relative angular velocity between the gun and hull  in ele- 

vation, and CON (an undefined system parameter) represents 

the term    in the largest block of Fig.  3.3.    Equations (3.5), 

(3.7), and (3.8), written in state space form, become 

AE 

IIN 

SftE 

0 0 1 AE 0 0 

0 A 0 IIN + 0 DE + D 

p B 0_ _SRE_ _c_ _0_ 

ELVV    (3.9) 

where A, B,  C, and D represent groups of parameters. 

The switching-time method is applied to equation  (3.9) 

by forcing its Laplace transform, X.(s)» to be entire.    This 

is accomplished fully by forcing X-j (s), the first element, to 

be entire.    This element is 

xn(0)      B x«(0)      x,(0)   . r 

+ 5W u<5> 
(3.10) 

■52- 
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where U(s) = L{ELVV(t)}, R(s) = UDE(t)}, X^s) = UAE(t)}, 

and where x-,(0), x2(0), and x3(0) are_J\E(0), IIN(O), and 

SRE(O), respectively. The control, ELVV(t), is to be time 

optimal. Therefore, 

U(s) = + | [1 - 2e"TlS + 2e"T2S - e'T3S]      (3.11) 

The remaining function, DE(t), is unknown, but its value is 

estimated by the observer. Using these estimates the average 

value of DE(t) over the next time interval is estimated. This 

average value, called DEH, is assumed to approximate DE(t) 

over the interval, so that 

R(s) -M [] . e-
TS] (3.12) 

Using these expressions for U(s) and R(s), equation (3.10) 

becomes 

{x-,(0)s2(s-A) + Bx2(0)s + x3(0)s(s-A) 

x (s\ = JB-D-K[1-2e" 
]S+2e 2S-e" 3S]+C-DEH(s-A)[l-e~ S]> 

1 s3(s-A) 

(3.13) 

Finally, the switching-time equations are derived by forcing 

X-j(s) to be analytic at s=A and s=0. This is accomplished 

by setting the numerator equal to zero with s=A, and the first 

and second derivatives of the numerator with respect to s 

equal to zero with. s=0. The equations are: 
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B-A x2(0) + B-D-K[l - 2e"T] + 2e"TzA - e" 3 ] = 0 

(3.14a) 

B x2(0) - A x3(0) + B-D-K [2Tr2T2+T3] - C-DEH-A-T = 0 

(3.14b) 

-2A x3(0) + 2 x2(0) + B-D-K [-2T-,
2 + 2T2

2 - T3
2] 

+ C-DEH [A T2 + 2T] = 0 (3.14c) 
■      O. 

These equations must be solved for the switching-times. The 

last two equations were solved for T2 and T3 in terms of T-, 

and inserted into the top equation yielding a single nonlinear 

equation of the form: 

f(^) = 0 (3.15) 

This function is solved numerically for its only positive real 

root. The numerical approach employed consists of three parts: 

(1) a preliminary search routine to locate a region containing 

a root, (2) a complex-to-real switch routine to determine the 

value of f(T-j) at the point that it initially becomes real, 

so that a real root is not missed, and (3) a Newton's method 

routine to quickly and precisely find the root after the pre- 

liminary search.  To determine the initial control polarity; 

the preliminary search routine executes a parallel evaluation 

The related computer coding will be given in "Modern Control 
Concepts Applied to Disturbance Accommodation of Tank Turrets- 
Phase III.'' 
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^ 

of f(T-|) using both possible polarities, f-i(T-,,+K) and 

^(T-JJ-K). The region containing the positive real root cor- 

responds to one of these functions, and thereby determines the 

initial polarity. 

Occasionally the switching-time equations become impossible 

to solve numerically because of catastrophic cancellation (a 

numerical problem characteristic of digital computation). Spe- 

cifically, the preliminary search routine fails to locate a 

region containing a root. When this occurs, the three switch- 

ing equations are abandoned in place of two switching-time 

equations based on a model which neglects the servo motor 

current lag. This problem occurs only about 0.5% of the time. 

A time optimal control of the elevation system with hull 

disturbances omitted is shown, in Figure 3.4. Since the eleva- 

tion controller design arises from this third-order system, 

the time optimal control is exact and the state point reaches 

the origin precisely. The presence of hull disturbances 

would produce some error, however. Control switches occur at 

Q-i and Q2 when the state point reaches the switching surface 

and switching curve, respectively. 

3.22 Traverse Time Optimal Control 

The uncompleted development of the traverse time optimal 

controller is based on a fourth-order model comprising the 
/( 

t ■     • 
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traverse hydraulic system and turret dynamics. This develop- 

ment parallels the approach leading to the elevation time 

optimal controller. However, two additional problems are encoun- 

tered  which greatly complicate the solution of the resulting 

switching-time equations. First, the traverse torque motor 

differential pressure responds more slowly than the elevation , 

actuator differential pressure, and cannot be eliminated from 

the list of dynamic variables (i.e. replaced by a non-dynamic 

algebraic relation). Therefore, the traverse model is fourth- 

order rather than third. Second, a strong oscillatory coupling 

exists between the torque motor differential pressure and 

the traverse space rate, introducing a pair of lightly damped 

complex conjugate poles. Because of these poles, Bellman's 

n-interval theorem does not strictly apply. However, it has 

been shown that the switching-time method (which incorporates 

Bellman's n-interval theorem) yields optimal switching-times 

if the damping ratio of the complex poles exceeds 0.1 [7]. 

Unfortunately, the damping ratio of the traverse system com- 

plex poles is 0.07. This low damping ratio and the high sys- 

tem order mentioned above drastically reduced the odds of 

developing a successful traverse time optimal controller. An 

attempt which failed is described below. 

The pertinent traverse system equations are: 

■$£  IVMA = J- (GVA-VIN - IVMA) (3.16) 
\J L 
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^ PLTR = {(^-.985/P    - PLTRMN)IVMA 

- KL-PLTR + DSPM(GR12 + 1)SRTR}2emV0LTR 

"(3.17) 

■^ SRTR = (TQTR - FTQTR + DSTQTR)/J. (3.18) 

■gg AT = SRTR (3.19)1 

These equations govern the traverse servo motor current, torque 

motor differential pressure, space rate, and gun angle error. 

In addition, VIN is the traverse controller output voltage, 

TQTR and FTQTR are the control and friction torques, and DSTQTR 

is the neglected disturbance torque. When expressed in terms 

of system parameters and variables, equation (3.18) becomes 

4- SRTR = {-(GR12-DSPM)PLTR - DHT-DTR 
dt (3.20) 

- SIGN (CFT,DTR)}/Jt 

This new variable, DTR, is the relative velocity between the 

turret and hull, and is related as shown to the viscous and 

coulomb friction torques. The characteristic roots of equa- 

tions (3.16), (3.17), (3.19) and (3.20) are 0, 125, and -1.70 

+ 23.7. These roots are calculated by setting DTR '= 0, since 

This'equation is modified in Section 3.4, 
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the related friction torques were to be added as a constant 

bias over the interval like friction torques in the elevation 

system. 

At this point the switching-time method is applied yield- 

ing four complex nonlinear switching-time equations. Two of 

the switching-times can be eliminated leaving two equations 

of the form 

^(T-,, T2) = 0 (3.22a) 

f2(Tr T2) = 0 (3.22b) 

These equations reflect the light damping of the system, making 

them very difficult to solve. Initially, Newton's method was 

applied without success (Newton's method only works for well- 

behaved functions). Secondly, the method of steepest descent 

was applied also without success. The presence of the lightly 

dampled complex poles allows several solutions to exist and 

makes the selection of the non-extraneous solution \/ery diffi- 

cult. A second approach which may relieve these numerical 

problems is discussed in Chapter 5. 

3.3 A Nonlinear Gun Position Observer 

A time optimal controller bases its control selection on 

the present condition of the entire state vector. In the 

current applications^" however, the time optimal controllers 
\ 
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are based on simple second or third-order models and require 

only two or three state variables. Therefore, only a few 

elements of the tank system state vector are required; the 

rest of the states estimated by the Kalman filter observer of 

Ref. [2] are not used, representing unnecessary computation 

time and observer complexity. To simplify the system, 

an observer is devised which estimates only the gun position 

errors. This observer bases its observation only on gun angu- 

lar rotation rates. As a result, a \zery  simple and yet versa- 

tile gun position observer is developed. 

Equations for the "gun elevation and traverse position 

errors, AE and AT, depend on the gun direction cosines as 

shown here. 

AE = SIN"1 (GCY) - AEO (3.23) 

AT = TAN"1 (- !£|) - ATO (3.24) 

GCX, GCY, and GCZ are the x, y, and z gun direction cosines 

with respect to a non-rotating reference frame herein called 

OXYZ, and where AEO and ATO are the desired elevation and 

traverse gun angles also in frame OXYZ. These gun direction 

cosines are unknown •, but their time derivatives are known and 

governed by the relationships derived below. This derivation 

requires the definition of a rotating frame, Oxqyazq> which 

is attached to the gun as shown in Fig. 3.5. Note that GC, 
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Fig. 3.5 Nonlinear Observer References Frames 
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the gun direction, is a unit vector along the axis of the 

gun and represents the vector sum of the gun direction cosines. 

The time derivative of GC with respect to the fixed frame 

equals the time derivative of GC with respect to the rotating 

frame plus ft x GC, where ft is the angular velocity of the 

rotating frame. That is, .        j 

(GPJOXYZ = (^0Xgyg2g 
+ * x ^ (3.25) 

Since the rotating frame is attached to the gun, (GC)nv v _ 
^g-yg^g 

{0}, and ft is the angular velocity of the gun, therefore 

(GC) OXYZ =   0) 
gz -g "sy*g 

(3.26) 

(Notice that to  and w  are the elevation and traverse rate 

gyro measurements.) Equation (3.26) is useTess in its present 

form because the directions of ;L and Je are unknown. There- 

fore, a coordinate transformation is performed using the C 

matrix shown below, which relates the rotating reference frame. 
,1 OxqygZg, to the fixed frame, OXYZ. 

GCX 

GCY 

GCZ 

xx 

'yx 

zx 

xy 

yy 

'zy 

xz 

yz 

0 

V 
zz :v 

(3.27) 

T Pars, A Treatise on Analytical Dynamics, pg. 104. 

V 
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Where 

C C C xx xy  xz 

C C C 
yx yy    yz 

Czx Czy Czz 

cos Pg cos Yg - sin Pg sin Rg sin Yg 

sin Pg cos Yg + cos Pg sin Rg sin Yg 

cos Rg sin Yg 

-sin Pg cos Rg 

cos Pg cos Rg 

sin Rg 

cos Rg sin Yg + sin Pg sin Rg cos Yg 

sin Pg sin Yg - cos Pg sin Rg cos Yg 

cos Rg cos Yg 

(3.28). 

The sin-cosine arguments are the roll, yaw and pitch angles 

of the gun with respect to frame OXYZ. But like the gun direc- 

tion cosines, these angles are unknown . Instead, their time 

derivatives are known, and related to the gun angular velo- 

cities by equation (3.29). 

Rg 

Yg 

Pg 

cos Yg 

sin Rg sin Yg 
cos Rg 

_ sin Yg 
cos Rg 

0 

1 

sin Yg 

sin Rg cos Yg 
cos Rg 

cos Yg 
cos Rg 

l1bid, pg. 106-107. 

CO gx 

U) 
gy 

Liz, 
(3.29) 

^° 
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Unfortunately, equation (3.29) employs to , which is the gun gx 

spin rate about its axis of symmetry. Consequently, the non- 

linear observation scheme will require a third rate gyro in 

addition to the two already employed for conventional control. 

Transducer requirements are compared and discussed in Chapter 

5. 

Finally, the derivatives of the gun angles and direction 

cosines can be integrated simultaneously, yielding the three 

direction cosines needed to solve for the gun pointing errors. 

The nonlinear gun position observer based on the above deriva- 

tion is pictured in Figure 3.6. Relations Rl and R2 repre- 

sent equations (3.29) and (3.27) respectively. In addition, 

the six 1/D terms represent six continuous time integrations 

which can be performed digitally or using analog equipment. 

When the nonlinear observer is switched on, the  non- 

rotating frame is fixed in its present position, which at 

that instant coincides with the rotating frame.    This 

yields the following initial conditions: 

Pg = o. Yg = 0. Rg = 0. 

GCX = 1. GCY = 0. GCZ = 0. 

J 

Until the observer is restarted, the absolute gun position       j> 

errors are defined with respect to this fixed frame. Defining 

the errors in this manner produces some inconsistency, however. 

For example, suppose that the main gun is pointing straight 
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ahead and the tank is moving horizontally along a hillside 

sloping 45 degrees to the right when the observer is switched 

on. And as the tank proceeds the hillside levels out followed 

by a hillside sloping 45 degrees to the left. At this time 

the observer signals a traverse position error of +0.001 radians. 

This error is defined with respect to  the  frame 

tilting 45 degrees to the right and therefore can be presently 

corrected by a -0.001 radian change in gun elevation. To 

accommodate this effect and remove the inconsistency, the 

absolute position errors of the fixed frame are resolved onto 

the rotating frame using the C_ coordinate transformation matrix 

as shown here. 

{Abs Err}n     = [C]T {Abs Err}nYV7        (3.30) 
°xgygzg  "        

0XYZ 

This is possible because the two position errors define a three- 

dimensional vector in space. 

The beauty of the nonlinear gun position observer lies 

in its versatility. Since it is not based on a linearized 

model it works for any gun position, and since it is not 

directly affected by hull motion it works at any tank speed, 

while changing speed, or even while changing direction. Its 

performance is limited only by the accuracy of the rate gyros. 

C is an orthonormal matrix, therefore C  = C 
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One disadvantage, therefore, is its inability to filter out 

measurement noise. The possible development of an unconven- 

tional filtering algorithm has not been examined, but the , 

effects of measurement noise are discussed in Chapter 5. 

3.4 Applications to the Electric System 

A precise, application of time optimal control to the 12tn 

order electric; drive tank is impractical for the same reasons 

noted for the hydraulic drive tank. Instead, crude low order 

models are employed-. The electric drive system is much simpler 

than the hydraulic drive system, because the electric controllers 

exert control torques directly on the gun, unlike the hydraulic 

controllers. Therefore, both elevation and traverse TOCS are 

based on simple 2nd order models. 

The electric drive TOCS described herein employ the non- 

linear gun position observer for state variable estimation. 

The Kalman filter observer of Ref. [2] could have been used, 

however, only four of the twelve estimated state variables 

are needed, so the nonlinear observer received precedence. As 

before, a control polarity-switch timer with a 0.001 second 

resolution time is assumed. 

The elevation and traverse electric drive TOCS are almost 

identical, and therefore are discussed in parallel. Their 

pertinent equations in state space form are 
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x'l 0 1 xl 
+ 

0 
u + 

0 

x2 0 0 x2 1/J 1/0 

(3.31) 

where x-, is a position error (AE or AT), x2 is a space rate 

(SRE or SRTR), u is a control torque, T is any additional 

torque (Coulomb friction, disturbance torque, etc.), and J is 

an inertia (gun elevation inertia or turret traverse inertia), 

Since u(t) is a time optimal bang-bang control, 

■T2s. 
U(s) =±^[1 -2e"TlS + e ] (3.32) 

where U(s) = Uu^t)}, and Tm is the saturation control torque. 

The remaining unknown, T (t), is the sum of a disturbance tor- 

que, gun drive coulomb friction, and, in elevation, a clock- 

spring torque. The disturbance torque is neglected, however, 

allowing T to be represented as 

TQ(s) = i [1 - e"TS] (3.33) 

where TQ(s) = L{Tq(t)}. That is, the controller assumes that 

Tq(t) is constant over the time interval of T seconds. This 

approximation is appropriate because a coulomb friction by 

definition remains constant except for changes in polarity. 

Tachometers which measure the elevation and traverse rates *\ 

relative to the hull are employed to determine the coulomb 

friction torques; the clockspring torque is a simple function 
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of the relative elevation angle which can be estimated by a < 

gunner or monitored by direct integration of the elevation 

tachometer signal. Therefore, the- average additional torque 

over the next time interval, Tf, is easily estimated by extra- 

polating the monitored coulomb or coulomb-clockspring torques 

to the midpoint of the next time interval. Finally, the 

following two equations result from the application of the. 

switching-time methodr 

/ 

T, m TfT x2^°) ±T ^W + ~3~= ° (3-34) 

Tm r OT 21T 2n  
TfT .2x^0) ±-f [-2^C+J2'] - -3-= 0 (3.35) 

Solving these equations for T, and T2 yields ___.._. -J_J._1.' __j 

T1    = ^(x^O), x2(0), +Tm, Tf, J) (3.36) 
Wit] 

T2 = f2(x1(0), x2(0), + Tm, Tf, J). "(3.37) 

where T-]. represents the two roots of a quadratic, such 

that Ti/-j\ = A + /B and Tw2x = A - /B.    It turns out, however, 

that T-|/2\  is always extraneous, and can be eliminated from 

the TOC calculations.    The resulting switching-time equations 

are 

2Z2J        / ,Z2Jx2 . 4zljl 

T,  4 {,T +   hW ♦ T   ) (3-38) 1      ' m V      'm 'm 
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Z2J , 
T0  = 2T, + 4- (3.39) 

c ' "" 'm 

where 2 

Zl = xl(0) " I^T~ ' (3'40) 

and 

Z2 = x2(0) +-J- (3.41) 

Equations (3.38) through (3.41) represent the entire eleva- 

tion and traverse electric drive TOCS. The initial control 

polarity is determined by requiring that the switching-times 

are real and positive. 

The state space representation shown as equation (3.31) 

assumes that x^ = x« (i.e.. the time-derivative"of the angle 

error equals the space rate). However, this is strictly true 

only in elevation. To show this, derivativesof the angle 

___ —-^^errors~are'evaTuated (see equations (3.J 

4 AE =  ]-    GCY 
dt           /I-(GCY)2 

d   nT _            1          GCX-GCZ-GCZ-GCX 
dt Al          1+/GCZx2          (GCX)* 

(3.42) 

(3.43) 

Since the nonlinear gun position observer resolves the angle 

errors onto the current rotating reference frame, their 

derivatives are evaluated with respect to the fixed frame 
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coinciding with the rotating frame at the beginning of the 

time interval. In this frame, GCX « 1, and GCY « GCZ =0. 

Also, equation (3.26) indicates that GCX = 0, GCY « u , and 

GCZ = -wav. (Approximate signs are used because the two 

frames coincide only at the start of each interval.) There- 

fore equations (3.42) and (3.43) become 

-rr AE = ___ dt    gz (3.44a) 

arAT = v (3.45a) 

or equivalently 

dt AE = SRE (3.44b) 

i- AT = SRTR cos E - (w. cos TR - „h sin TR)sin E 

.__-  _____  — (-3^5bjL_. 

Equation (3.44b) indicates that the elevation switching- 

time equations are correct as derived. On the other hand, 

equation (3.45b) reveals that the traverse switching-time 

equations must be modified. That is, SRTR must be replaced 

by _  in equation (3.41), yielding 1^ ~ aj
gy*+ TfT/J. This 

causes the traverse TOC to reduce AT and _  to zero rather 

than AT and SRTR. Block diagrams of the elevation and traverse 

gun position dynamics as assumed by the time optimal controllers 

are shown in Figures 3.7 and 3.8 . 
V 
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3.41 Incorporation of Measurement Noise 

The nonlinear gun position observer and time optimal con- 

trollers use variables which are directly measured; there is 

no (optimal) filtering performed to reduce the adverse effects 

of measurement noise. Fortunately, the nonlinear observer 

integrates these measurements, tending to smooth out the noise 

and lessen its ill effects. To assess the degredation in 

control system performance, gaussian white noise sequences are 

added to the measurements during a test simulation. 

The five measurements employed by the electric drive time 

optimal control system comprise three rate gyro measurements 

and two tachometer measurements, such that 

Yl - ^x + Ynl 

Y2 " "gy + Yn2 

Y3 = V + Yn3 (3.47) 

Y4 = E + Yn4 

Y5=TR+Yn5 

where Yn- are the measured signals and Ynn- are the measurement 

noises. The representation of these continuous white noise 

signals within a digital computer is impossible, however. 

Therefore, they are eactrapproximated by a multistage random 

sequence which produces an equivalent covariance matrix, J*(t), 
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where RU) = E{x(t) - x(t)Mx_(t) - x.(t)} . This equivalence 

is satisfied when 

JJ(t) = X(k)At (3.48)1 

where Q(t) = E{u(t) - ffl(t)'Hw(t) - w(t)}T, X(k) = E{u(k) - 

u(k)}{w(k) --u(k)} , u(t) and u(k) are the continuous and 

multistage noise processes respectively, and At is the time 

interval of the sequence. In general, £(t) and X_(k) are 

diagonal matrices containing only noise variances. 

The pertinent noise sequence variances used in the design 

of the stochastic optimal control system of Ref. [2] are 

listed in Table 1 and used to determine the equivalent vari- 

ances for the time optimal control simulation. Since equal 

noise levels are assumed for both control schemes 

*S0AtS0 = *T0AtT0 (3'49) 

where AtSQ = 0.01, the time interval of the stochastic optimal 

controller, and At-™ = 0.0005, the step size of the integra- 

tion algorithm used to simulate the time optimal control sys- 

tems. Therefore, X_JQ =20 X^Q, as reflected in Table 1. 

Five separate zero mean gaussian sequences having the 

vlriartces listed in column 2 of Table 1 are added to Wg, 

Bryson, Ho, Applied Optimal Control, pg. 343, 344. 
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TR, and E during a'time optimal control system simulation. 

The results are presented in Section 3.4. 

v. 

A 
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TABLE 1 

Measurement-Noise-Sequence Variances 

Vari ance 

Transducer 
Stochastic Opti 

Control 
imal Time Optimal 

Simulation 

Elevation Rate Gyro 1.79xl0"7 3.57x10"6 

Traverse Rate Gyro 6.01xl0"9 
i 

1.20xl0'7 

Axial Spin Rate Gyro N/A 3.57xl0"6 

Elevation Tachometer 4.93xl0'6 9.86xl0"5 

Traverse Tachometer N/A 9.86xl0"5 

<a». 
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4. RESULTS 

The control systems discussed herein are evaluated in 

terms of the design objective of minimum gun pointing errors. 

Three control schemes are discussed in this section (the con- 
1 

ventional and time optimal hydraulic system control and time 

optimal electric system control). A total of six control 

schemes are compared, however (the conventional, stochastic 

optimal, and time optimal control of both electric and hydraulic 

systems) . Two methods of comparison are employed: (1) the 

graphical comparison of systems excited by the same random 

ground input, and (2) the comparison of performance indices. 

The common right side ground input is shown in Figure 4.1; 

the left side is not excited, as mentioned previously^JJnfor-— 

tunateTyT~however, the conventional control electric system 

simulation employed a different right side ground input. 

Nevertheless, a comparison is valid because both ground inputs 

possess equal statistical properties. 

The results are condensed and compared in Table 2 using 

two performance indices: (1) the standard deviations of the 

gun pointing errors (cr), and (2) the average fractions of 

saturation control (w). 

The results for the stochastic optimal hydraulic system plus 
the conventional and stochastic optimal electric systems are 
taken from Ref. [2]. 
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Fig.  4.1    Right-Side Ground Input 
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The standard deviations are computed in the normal 

fashion, 

1 n   2 
°=  n if1 

ei       (4.1) 

using the n computer outputted angle errors called e.    The 

average fractions of saturation control, on the other hand, 

are defined by 

-   Z    \u  I *■ ,, - n i=l  '  i1 ,„ 0x 
w"~dT5      • (4'2) 

Equation 4.2 employs the n outputted control magnitudes, |u. 

and the saturation control, 

are discussed in Chapter 5, 

"^ and the saturation control, (u)max- The results in Table 2 

4.1 Hydraulic System with Conventional Control 

The nonlinear and linearized conventionally controlled 

hydraulic system models are graphically compared in Figures 

4.2 and 4.3. The intrinsic dissimilarities between the two 

models become apparent in their behavioral differences, sug- 

gesting one possible source of error in the stochastic opti- 

mal control system which is based on the linear model. The 

time optimal controllers»_however, incorporate only the model 

prelinearizations described in Section 2.6, and neglects hull 

disturbances. Therefore, these hull motion linear model errors 

have no effect on their performance. 
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Note: Curves without diamond - Nonlinear Model 
Curves with diamonds - Linear Model 
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TIME (SEC) 

Fig. 4.2 Hull Pitch and Roll Angles, Conventional Control, ^ 
Linear and Nonlinear Models, Hydraulic Gun Drives. 
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Note: Curves without diamond - Nonlinear Model 
Curves with diamonds - Linear Model 
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Fig. 4.3 Hull Yaw Angle and Verticle Position, Conventional 
Control, Linear and Nonlinear Models, Hydraulic 

! Gun Drives. 
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Time histories of the traverse and elevation controller 
r 

outputs and angle errors are shown in Figures 4.4 and 4.5, 

respectively. The bandwidths of the controller outputs are 

obviously narrow and situated in the lower frequency range, 

especially in elevation. Therefore, the angle, errors wander 

in patterns having similar bandwidths and large amplitudes. 

A considerable tightening-of the motion by controller output 

bandwidth widening occurs with the time optimal control schemes 

examined in ,£he following sections. 

4.2 Hydraulic System with Time Optimal Control 

The time optimally controlled hydraulic drive tank 

employs the time optimal controller of Section 3.21 in eleva- 

tion and the stochastic optimal controller of Ref. [2] in 

traverse. In addition, both use the Kalman filter observer 

of Ref. [2] for state variable estimation. 

The traverse stochastic optimal controller output is - 

virtually unaffected by the change from stochastic optimal 

to time optimal elevation control. Figure Bl of Appendix B 

is therefore not repeated. The elevation time optimal con- 

troller output, however, is shown in Figure 4.6. The upper- 

most plot of this figure represents the time history of the 

initial control voltages (i.e., the control at the start of 

each time interval); the three lower plots comprise the three 
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Note: Curves without diamond - Nonlinear Model 
Curves with diamonds - Linear Model 

TIME (SEC) 

Fig. 4.5 Absolute Traverse and Elevation Pointing Errors, 
Conventional Control, Linear.and Nonlinear Models, 
Hydraulic Gun Drives. *' 
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Fig. 4.6 Elevation Controller Output, Time Optimal Elevation 
Control, 10V Saturation Voltage, Hydraulic Gun Drives. 

-86- 



control switching-times. These four plots fully define the 

continuous elevation bang-bang control signal which would 

resemble a solid black rectangle if plotted on this time scale. 

In this case, the elevation saturation control magnitude is 

10 volts. 

The switching-time plots reveal that, in general, only 

the first control switch is executed within the .01 second 

time interval. The remaining control switches are outside 

the time interval and therefore never reached, indicating 

that the elevation controller time interval possibly could be 

increased without significant adverse effect. 

The traverse and elevation gun angle errors are shown 

in Figure 4.7. The elevation errors are approximately 66% 

of those in the conventional case, and twice those in the 

stochastic optimal case. The traverse errors are also twice 

those of the stochastic optimal case even though the same 

stochastic optimal traverse controller is employed. This 

increase is attributed to the observation errors resulting 

from the elevation control averaging assumed by the observer 

(see Sec. 3.2). 

Simulation results corresponding to a 1 volt elevation 

saturation control magnitude are shown in Figure 4.8. All 

three of the switching-times (not shown) increase due to the 

decrease in control magnitude. In general, the first switching- 
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Note: Curves without diamonds are actual values. 
Curves with diamonds are Kalman filter 

estimates. 
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Fig. 4.7 Absolute Traverse and Elevation Pointing Errors, 
Time Optimal Elevation Control, 10V Saturation 
Voltage, Hydraulic Gun Drives. 
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time, T-j, exceeds the .01 second time interval. Therefore, 

the average elevation control over the interval equals the 

actual control and the additional traverse angle error is 

"eliminated. The elevation angle errors, on the other hand, 

are of about the same magnitude as the 10 volt case. 

Any increase in the elevation errors due to the control 

magnitude decrease are insignificant in comparison to the 

errors in the Kalman filter estimates. The elevation time 

optimal controller (like the stochastic optimal ..controller) 

is obviously drastically limited by the Kalman filter observer 

performance. 

• The hull motion is hardly changed from the conventional 

case so no new plots are given. Any significant dependence 

of the hull motion on the controller output should appear in 

comparisons of these extreme cases - conventional and bang- 

bang control. Evidently, only the ground disturbance inputs 

significantly affect the hull motion of the hydraulic gun drive 

tank. 

4.3 Electric System with Time Optimal Control 

Simulated results of the electric gun drive tank employing 

time optimal controllers and the nonlinear gun position obser- 

ver are presented in this section. Two cases, with and without 

measurement noise, are examined. In both cases, the elevation 
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s 
and traverse bang-bang control magnitudes are set at the 

saturation levels of their respective motors: 

TQEL = 6997  N-m 

TQTR = 15877 N-m / 

The elevation and traverse controller outputs corresponding 

to the noise-free case are shown in Figures 4.9 and 4.10. As 

before, the uppermost plots represent the initial control 

inputs at the start of each time interval, and the lower plots 

represent the switching-times selected for execution during 

the time interval. Two features concerning the switching- 

times are evident. First, both sets of switching-time plots 

(especially in Fig. 4.9) display the coarseness resulting 

from the control polarity-switch timer, which collocates the 

controller selected switching-times at increments of .001 

seconds, the switch-timer resolution time. Second, the tra- 

verse switching-times are about twice the elevation switching- 

times on the average, reflecting the greater power-to-load 

ratio in elevation. In fact, the average elevation switch-off 

time, T2, is about 0.005 seconds, or one-half the controller 

time interval. During the time remaining between T2 and the 

start of the next interval, the gun drifts under no elevation 

control. Therefore, the elevation control magnitude probably 

could be decreased, to save power and spread the control 
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over the entire interval, without much degredation in perfor- 

mance. The average traverse switch-off time, on the other hand, 

is approximately 0.01 seconds, indicating that the traverse 

control magnitude of 15877 N-m appropriately accommodates 

the ground input disturbances employed during this simulation. 

The elevation and traverse actual and estimated angle 

errors are shown in Figure 4.11. These results are compared 

to the stochastic optimal and conventional results^which also 

assumed no measurement noise (see Appendices B and C). The 

elevation and traverse errors are about 25% and 2% of those 

in the conventional case, and about 35% and 40% of those in 

the stochastic optimal case, respectively. 

In the noise-free case being considered, the nonlinear 

gun position observer identifies the angle errors precisely. 

Therefore, the actual and estimated error curves appear as a 

single curve in both plots. Consequently, the case of noise- 

free measurements with the nonlinear observer is consumate 

to having deterministic angle errors. The consequence is 

excellent performance by the time optimal controllers. This 

is an ideal case, however, because measurement noise is sure 

to exist. 

Time histories of the elevation and traverse rate gyro 

measurements are shown in Figure 4.12. The integral relation- 

ships derived in Section 3.4 between these measured angular 
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rates and the angle errors of Figure 4.11 are illustrated by 

the common trends shared by the corresponding curves. 

Changes in hull motion due to the application of bang- 

bang control are evident in Figures 4.13 and 4.14 when com- 

pared to Figures Dl and D2 of the stochastic optimal case (see 

Appd. D). The large differences occur primarily in the roll 

and yaw motions and are caused by the traverse motor saturation 

control torques exerted early in the simulation, when the linear 

quadratic stochastic optimal control torques are still rather 

small. 

Figures 4.15 to 4.18 comprise the simulated results cor- 

responding to the case with measurement noise. These results 

differ from those of the noise-free case in two respects: (1) 

the elevation and traverse switching-times are slightly longer 

due to larger angle errors, and (2) the nonlinear gun position 

observer estimates are not exact, allowing the gun to drift. 

The results are still very good, however. 

The noisy rate gyro measurements are shown in Figure 

4.18. These plots display only part of the noisy measurement 

signals, however. Unfortunately, the descrete point plotter 

used to create these plots eliminates a major portion of the 

noise. The actual signals occurring in the simulation are 

much denser with measurement noise than the signals shown. 
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5. DISCUSSION 

Three basic accomplishments have been made. First, an 

improved mathematical model of the tank was established which 

includes all important nonlinearities and cross couplings. 

Second, a set of near-time-optimal controllers were developed 

for the hydraulic and electric gun drive systems. And third, 

a nonlinear gun position observer was derived to estimate the 

gun pointing errors based on continuous measurements of the 

gun angular rates. The time optimal controllers and nonlinear 

observer compose an entire control scheme which is therefore 

compared to the stochastic optimal control scheme of Ref. [2]. 

The conventional control is employed as a basis of comparison. 

The optimal control schemes being examined employ a fixed 

time interval of 0.01 seconds. Control actions are selected 

based on feedback information at the start of each interval, and 

executed in an open loop fashion during the interval. The 

near-time-optimal scheme neglects hull disturbances which occur 

during the interval, so it would not be truly time optimal unless 

time interval became infinitesimal. Suf f i c i enttijne, must be 

allowed for microprocessor control computations, however. The 

designation near-time-optimal results from the use of a small 

but finite time interval. 
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Although the control action is computed only once for each 

0.01 second time interval , the action is based on an assumed 

instantaneous processing of the most recent measurements from 

the feedback instruments. The same is true of the previous 

studies [2]. In practice a short delay between measurement 

and control decision would be necessary. This is not a par- 

ticularly difficult change to implement, but a small deteriora- 

tion of performance is inevitable. 

Standard deviations for the gun pointing errors corre- 

sponding to conventional, stochastic optimal, and time optimal 

control are listed in Table 2, as mentioned previously. In all 

cases, the pointing error minimization performance of the elec- 

tric system exceeds that of the hydraulic system by nearly 

half an order of magnitude. Evidently, the lag between controller 

input and control torque execution present in the hydraulic 

system severely hinders gun drive effectiveness. -As a result, 

fire-on-the-move ability will be more readily achieved with 

the electric gun drives. - , 

The stochastic optimal and time optimal control schemes 

being compared consist of two fundamental parts: an observer 

and controller. Previous studies of the stochastic optimal 

scheme [2] reveal that controller performance is limited by 

errors in the Kalman filter observer estimates (i.e. deviations 
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between the actual and estimated states), which result primarily 

from modeling errors unavoidably incorporated in the pseudo- 

linear model built into the observer. Quasi-optimal estimates 

are attained, nevertheless, by summing the model predicted 

state and the Kalman correction term, which is based on differ- 

ences between transducer measured and model predicted output 

variables and known measurement noise levels. Eight trans- 

ducers are employed: three rate gyros measuring the absolute 

elevation and traverse rates and the absolute hull rate about 

a horizontal axis perpendicular to the gun, one tachometer 

measuring the elevation rate relative to the hull, and two 

position and velocity sensors measuring the front wheel motion 

relative to the.hull. A pseudo-linear model is employed because 

practical observation schemes do not exist for nonlinear systems 

of high order. Linearization forces the observer to assume one 

particular nominal gun angle. Therefore, a realizable observer 

would be expanded to incorporate a step-wise linearization 

which allows its coefficients to be modulated by gun position. 

In addition, the stochastic optimal observer presently can 

accommodate one tank speed and single-side ground excitation; 

the observer coefficient matrices are speed dependent and 

unrealizably large if both-side excitation is accommodated. 

These restrictions make the stWiastic optimal observer 
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impractical; their removal is a topic of ongoing study. 

The nonlinear gun position observer used in the near-time- 

optimal control system eliminates these restrictions by avoiding 

the use of the usual dynamical model. Instead, it employs 

exact kinematical expressions (derived in Sec. 3.3) which relate 

the absolute pointing errors to the gun angular rates. Three 

rate gyros are employed to continuously measure the gun eleva- 

tion,' traverse, and axial spin rates. The consequent observer 

is very simple and versatile (unrestricted), making it yefy 

attractive in comparison to the stochastic optimal observer; 

however, without the embodiment of a dynamical model of some 

sort, it defies most applications of typical filtering algorithms. 

Consequently, direct measurements*are employed resulting in 

observation error. The actual and estimated gun pointing errors 

diverge, as shown in Fig. 4.17, and the gun slowly drifts off 

target. The purpose of the control, however, is to relieve the 

gunner of the need to compensate for rapid changes in gun angle. 

Instead, the gunner must compensate for a very gradual drift. 

The observer counterparts, called controllers, employ the 

observer estimates. Fortunately, both the stochastic and time 

optimal controllers are very simple, requiring only a matrix- 

vector multiplication in the stochastic case, and the solution 

of switching-time equations in the time optimal case'. Both 

see Ref. [1], pg. 63. 
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operations employ less than ten lines of computer code . The 

stochastic optimal controller, however, has two notable advan- 

tages: linearity and sophistication. A portion of the stochas- 

tic control action is based on 51 state variables representing 

the ground contour under the tread. The controller, therefore, 

anticipates the effect of propagating ground disturbances, giv- 

ing it a preview feature [2], Linearity, on the other hand, 

implies proportional control, or small control action for small 

disturbances. This matches the need well and saves power. 

Unfortunately, however, the controller, like the observer, 

assumes one particular nominal gun angle, the tank speed, and 

single-side excitation. The necessary overcoming of these 

limitations will substantially increase complexity. 

The time-optimal controller, on the other hand, is versatile, 

nonlinear, and unsophisticated. Speed and gun angle restrictions 

are nonexistent because the hull motion and ground disturbances 

are neglected in the controller formulation. A very simple 

controller which is insensitive to modeling errors results. 
V 

In essence, the sophistication and power efficiency of preview 

control are exchanged for the simplicity, muscle and relative 

This appliesto the electric system only. The solution of the 
hydraulic switching-time equations is more extensive in eleva- 
tion and thus far is unaccomplished in traverse. 
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inefficiency of nonlinear bang-bang control. A total of five 

transducers are employed (instead of the eight for the sophis- 

ticated system): three rate gyros attached to the gun and two 

tachometers measuring the elevation and traverse rates relative 

to the hull. 

The time optimal controllers recognize all friction torques 

as external forces which modify the switching curve. Coulomb 

friction torques are included in this manner, since to leave 

them in the models on which the controllers are based would ruin 

the necessary linearization. The viscous friction torques 

present in the hydraulic system model were also removed, for 

convenience, and their estimates added to those of the coulomb 

frictions. Friction torque magnitudes are estimated by extra- 

polating the tachometer measurements to the midpoint of the 

next time interval. The controller assumes that these torques 

are constant over the interval with these extrapolated values. 

This assumption is appropriate because the angular velocities 

of the gun relative to the hull are strongly dependent on the 

hull motion which usually is not significantly altered during 

one time interval even with bang-bang control. 

The development of the traverse hydraulic system time 

optimal controller is unfinished. Two conditions were imposed 

in the derivation of the related switching-time equations: 
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(1) that there is n-1 control switches, and (2)  that the state 
a. 

is transferred to the origin. This does not produce a unique 

solution because of the strong oscillatory behavior of the 

lightly-damped traverse model. The damping was made small, 

however, by removing the coulomb and viscous friction torques 

from the model, as mentioned previously. Hopefully, reinser- 

tion of the viscous frictions would increase the damping in the 

switching-time equations sufficiently to eliminate or at least 

reduce the number of extraneous solutions, and to simplify 
i 

associated convergence problems. Even if some ambiguity remains, 

time optimality would be assured by selecting the solution 

possessing the smallest non-negative control switch-off time. 

It seems likely these modifications will succeed. 

Both the time optimal and stochastic optimal hydraulic 

system elevation controllers can employ the Kalman filter obser- 

ver, while the nonlinear gun position observer can be used only 

in the time optimal case. Equal observation errors unfairly 

hinder the time optimal controller, which probably would do 

better with the nonlinear observer. These controllers, therefore, 

are not compared in isolation from the observers. The entire 

time optimal control scheme including the nonlinear observer 

was tested with the electric gun drive tank. The corresponding- 

performance indices listed in Table 2 reveal that the time 
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optimal scheme is (1) high performance, performing slightly 

better than the stochastic scheme in the noise-free case, 

(2) relatively noise sensitive, shown by the performance deter- 

ioration in the case with noise, and (3) power inefficient, 

employing control magnitudes several times larger than those 

in the stochastic case to achieve comparable results. The 

average fractions of saturation time optimal control are not 

identically one because some control switch-off times occurred 

before the end of the time interval, producing regions of zero 

control rather than saturation control. This result is dis- 

cussed further in the next section. 

5.1 Conclusions and Recommendations 

The time optimal control scheme which was investigated 

has two salient features: simplicity and versatility. This 

versatility implies that the performance is unaffected by 

changes in the nominal gun angle, tank speed, or other operator 

selected parameters. Simplicity implies that practical imple- 

mentation using a digital microprocessor is possible. An 

undesirable feature, on the other hand, is the inappropriate 

matching of large control action to small disturbances. This 

is unnecessarily inefficient and may cause undesirable vibration 

and shorten life. As disturbances become smaller, the time 
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optimal switching-times become shorter, producing regions of 

zero control, as previously mentioned. These regions could 

be eliminated by shortening the time interval and consequently 

tightening the control as the disturbances become small, how- 

ever, this would not provide the finite time required for 

control calculations. Alternately, the control magnitude could 

be decreased to increase the switching-times, spreading the 

control over the entire fixed interval, saving power, reducing 

vibration and extending life. The following procedure is sugges- 

ted to implement this idea: (1)  calculate the average switch- 

off time using the switching-times of the last m time interval! 

and (2) adjust the control magnitude so the average switch-off 

time tends to equal one time interval in length. The value of 

m should be chosen large enough so control magnitudes do not 

oscillate, yet small enough so that changes in the disturbance 

magnitudes are rapidly compensated. The lag between disturbance 

change and control magnitude adjustment might still be excessive. 

If so, it could be avoided altogether by appropriately varying 

the current control magnitude and iteratively calculating the 

switching-times until a satisfactory switch-off time is reached. 

Or, if the simple electric drive TOCS are employed, the control 

magnitude can be directly calculated by setting the switch-off 

time equal to the time interval in the switching-time equations. 
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This calculated magnitude would apply only if it is less than 

the control saturation levels, of course. In any case, the 

time optimal control could adapt itself to various terrain 

configurations and use full saturation control only when strictly 

needed. 

The strengths and weaknesses of the time optimal and 

stochastic optimal controls are rather different. The time 

optimal scheme is simple and versatile but power inefficient; 

the stochastic optimal scheme is sophisticated and therefore 

power efficient, but restricted and sensitive to modeling errors. 

A scheme which combines time optimal and stochastic optimal con- 

trol may result in a superior design, blending reasonable sim- 

plicity, insensitivity and efficiency with high performance and 

versatility.  Since the time optimal schemes work well alone, 

the complexity of the stochastic control scheme could be sub- 

stantially reduced. A hybrid control scheme has been proposed 

which combines the time optimal scheme in its present form with 

a modified stochastic optimal scheme which eliminates the gun 

angle change and tank speed change problems. A portion of the 

overall control action is allotted to each scheme: the time 

optimal control acts on the gun pointing errors measured by 

the nonlinear observer; the stochastic optimal control accommo- 

dates the disturbance torques excited by the ground roughness. 
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•This differs from previous stochastic control [2] which also 

acted on the gun pointing errors. 

The ground contour representation and preview feature 

will be retained in the modified stochastic scheme to increase 

the power efficiency of the hybrid scheme. A simplified model 

of the tank which lumps the turret, hull, and gun into one 

rigid body will be assumed by the stochastic optimal observer. 

Observer estimates of the hull vertical velocity, angular rates 

and the axle forces, in addition to tachometer measurements of 

the relative turret and gun rates can then be employed to cal- 

culate and accommodate the disturbance torques which are and 

wiTJ_barg%erted--on the gun. Consequently, the portion nf the 

control action governed by the time optimal scheme may be 

reduced, lessening the adverse effects which accompany bang-bang 

control. 

Alternate methods for the design of optimal controllers 

with preview action for combination with the time optimal scheme 

may follow from Ref. [10]. A preliminary study of hybrid control 

is given in Ref. [1], and current research on this topic may 

be reported in the Phase III portion of "Modern Control Concepts 

Applied to Disturbance Accommodation of Tank Turrets." 

The final of a series of three reports presently comprising 
references [1] and [2]. 
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Recommendations for further work include, in light of the 

above: 

(1) Development of an algorithm which would vary the time 

' optimal control magnitude levels, giving the time optimal 

scheme an adaptive feature. 

(2) Development of a measurement noise filtering scheme for 

the nonlinear gun position observer (this may be unnecessary 

if low noise is anticipated). 

(3) Simulation studies of a modified time optimal control scheme 

which accounts for the delay between observation and control. 

(4) Development of a numerical approach for solution of the 

traverse hydraulic drive switching-time equations which 

explicitly include the viscous friction torques. 

(5) Development of time-optimal controllers for the electric 

drives with motor lags included. Preliminary studies neg- 

lected these lags, which have 0.004 second time constants, 

because of their negligible effect on the conventional con- 

trol [1], Their incorporation in the design of the faster 

time optimal controllers is imperative, however. The new 

controllers would be third order, having a structure iden- 

tical to that of the elevation hydraulic drive time optimal 

controller. 
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(6) Simulations studies of the time optimal control scheme 

including rate gyro dynamics. These dynamics were removed 

because they had no effect on the measurements occurring 

during conventional control (see Sec. 2.5). Measurement 

signal bandwidth is increased by time optimal control, 

however, so these gyro dynamics may be significant. 

(7) Development and evaluation of the hybrid time-optimal 

stochastic-optimal controller as described above. 
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APPENDIX B:    Hydraulic System with Stochastic 
Optimal Control 
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Fig. Bl Traverse (VIN) and Elevation (ELVV) Controller 
Outputs, Stochastic Optimal Control, Hydraulic 
Gun Drives, 
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Note: Curves without diamonds are actual values. 
Curves with diamonds are Kalmin filter estimates. 

TIME (SEC) 

Fig. B2 Absolute Traverse and Elevation Pointing Errors, 
Stochastic Optimal Control, Hydraulic Gun Drives 
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APPENDIX C: Electric System with Conventional Control 
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Cl    Traverse  (TQEL) and Elevation  (TQEL) Controller 
Outputs,  Conventional  Control,  Electric Gun Drives. 
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Fig. C2 
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APPENDIX D: Electric System with Stochastic 
Optimal Control 

Note: Curves without diamonds are actual values. 
Curves with diamonds are Kalman filter estimates, 
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6.0 

TIME (SEC") 
Fig.  Dl    Hull  Pitch and Roll Angles, Stochastic Optimal 

Control, Electric Gun Drives. 
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Note:    Curves without diamonds are actual values. 
Curves with diamonds are Kalman filter estimates. 
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Fig, D2 Hull Yaw Angle and Vertical Position, Stochastic 
Optimal Control, Electric Gun Drives. 
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Fig. D3 Traverse (TQTR) and Elevation (TQEL) Controller Out- 
puts, Stochastic Optimal Control, Electric Gun Drives. 
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Note: Curves without diamonds are actual values. 
Curves with diamonds are.Kalman filter estimates. 
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D4    Absolute   Traverse and Elevation Pointing Errors, 
Stochastic Optimal, Control, Electric Gun Drives. 
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