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Abstract

Several bases for constructing error-correcting codes such
as the matrix alternants, the Mattson - Solomon poiynomia], and
the Lagrange's interpolation, and lately the generalized inter-
polation introduced by Mandelbaum have been prdposed.

The relationship between the generalized interpolation and
the other approaches in constructihg error—correcting codes has
been investigated in this thesis. We have shown that most of the
important classes of codes can be defined in terms of the gener;
aiized interpolation, which, indeed, provides a unified framework
for the previous methods. Dual codes of these codes‘have also

been derived in terms of the new interpolation.



I. Introduction

Coding theory beaan with the work of Shannon Hamming. Since
- the first papers on informétion theory were published in 1948 by
Shannon, a_qreat'dea1 of research has been conducted on the prob-
lem of desianina efficient schemes by which'fnformation can be
coded for re]iab]e transmission across noisy channels. A very
important result which Shannon had demonstrated was that by proper
encoding and decoding of the data, it is possible to reduce errors
induced by a noisy channe] to any desired level without sacrific-
ing the data transmission rate. As a result, numerous papers had
been published on the subject of constructing error-correcting
codes using more and more sophisticated mathematical techniques

as well as on the problem of devising an efficient decoder. A
very powerful mathematical tool which has been extensively used

in codina theory is the Galois field. It is possible, by associ-
qting each symbol of certain codes with an element in a Galois
field, to derive an algebraic equation whose rdéfs represent the
locations of the errors induced during transmission. The decoding
prob]ém is then reduced to two basic tasks, namely to set up the
mentioned algebraic equation and compute its roots. Still, thefe
exists sevéral different abproaches which one can take in defining

error-correcting codes. Typically, codes are constructed either



via matrix approach or throuah a certain transformation of the
codeword. In the former approach, it is very common to first
define an n x m parity check matrix H, n being the lenath of the
codeword; a code ¢ is said to be1ong‘to the code defined by H

if and only if cH is a null n x 1 matrix. A]ternativé]y, a
codewprd or an n-tuple of elements in a Galois field K, is first
transformed;through a predefined formula into a po]yndmia] with
coefficients over K, which, in turn, must satisy a certain con-
dition. Typical examples of such transformation or interpolation
are Mattson-solomon polynomial, Lagrange's interpolation and
lately, a generalized method of interpolation proposed by
Mande]baum.[10]

The purpose of this thesis is primarily centered on these
bases of constructinp.error—torrectinq codes. Although the rela-
tionship between the matrix approach and the Lagrange's interpola-
tion as well as Mattson-Solomon polynomials is well established,
neither a connection of the generalized interpolation broposed by
Mande]baum'with the previous approaches is yet firmly identified
nor an extensive study of all the ihportant existtng codes via
the latter approach has been attempted. It is the goal of this
thesis to expand on these tasks. |

An interesting point i§ that Mandelbaum defined error-cor-

recting codes using the Chebyshev system of functions which is



later referenced to as c-system. A study of existing codes
through the above approach eventually leads to defining their
respective generator matrices. On the other hand, it is possible
to show, by extending the Langrange's interpo1ation formula, that
dual codes can be easily defined iﬁ terms of their parity check
matrices. Since the parity check matrix of the dual code is
identical to the generatof matrix of the corrésponding original
code, a direct comparison between these two matrices is possible.
Finally, it is also possible to investigate whether the dual of a
certain class of code belongs to this class, which is the third
task attempted in this thesis. In the following section, a review
of important classes of codes as well as different bases of code
construction, including the ceneralized interpolation, is briefly
presented. The first part of the third section is centered on the
re]atiohship of aeneralized interpolation with the matrix approach
and Lagrange's'interpo]ation; in fhe second part, existina codes
are studies through the generalized interpo]atién. In the fourth
sectioh, it ié shown that dual codes can bé obtéined from Laogrange's
interpo)at{on, consequently, it is possible to derive their re-

spective parity check matrix.



I1. Preliminaries

Of the numerous classes of random-error-correcting codes pro-
posed to date, the class discovered by Helgert - the alternant
codes - and first presented in one of his papers[s] in 1974‘15
one of the most extensive and powerful ones. Obtained by a small
modification of the parity check matrix of the BCH codes, it in-
cludes other important subclasses, namely Goppa, Srivastava and
Chien-Choy generalized BCH codes.

It should be noted that the relationship between these codes
has been studied and derived in several papersp4]’[7] and [1]

The purpose of this section is doublefold:

i) to introduce important classes of existina error-
correcting codes by first presenting a summarized and brief re-
view of these codes and theh indicating how one can derive a code
from another. .Such a Summary wf11 serve as a helpful reference

for the following section.

ii) to present different approaches of defining error-
’correcting codes as was mentioned previously, namely the matrix
approach and interpolation methods.

In the first part of the section, important families of
error-correcting codes will be introduced following the matrix

approach e.g. definihg codes in terms of the parity check matrix.



The other two parts are devoted to the characterization of codes

throuah interpolation methods, the Laarange's interpolation for-

mula and the generalized transformation proposed by Mandelbaum.

A. Matrix Approach

Due}to the large extent of the alternant codes it seems to
be more appropriate to first introduce this family of codes and
then present other codes as special cases.

1. Alternant codes
The alternant code is defined by a parity check matrix of

the form:

.Y]g]‘(x]) .ng'l(xz)' . °yng](xn)

¥195(x1)  ¥59,(x5) - o Ly a5(x )

alt ~ (1)

¥19:(%9)  ¥p0. (%) - - -y gy (x)
where the Yy 1 <1 < n are any (not necessarily distinct) non-

zero elements of GF(q"), the x., 1 < i < n are distinct elements

;
of GF(q™) and

- 2 t-1
gk(x) = Cor P Ox F Cpxm Lt Ct-],kx (2)



is a polynomial of degree less than or equal to t-1 with coef-
ficients from GF(qm) for k = 1,2,...t. The alternant code thus
defined is a linear code over GF{q) with length n, minimum dis-
tance d >t + 1 and having k information symbols, k > n - mt.
The matrix of form (1) can be rewritten as: |

. T

-g](x]) 9](X2)---g](x ) y1 0... O

n
gé(x1) 92(X2)'-~92(Xn) 0 y2. .. 0

ALT ~

gf(xy)  aflxy)eeaf(x )| |0 0. ..y
! |
By replacing each entry gi(xj) for i = 1,2,...t and j = 1,2,...,n,

it is easily seen that H can be factored into the form:

Hap = €%

where




and

l

0

i

n
4

A fairly simple proof (see Appendix) shows that codes derived

from matrices of the form (1) and the form XY, namely

ALT =

(3)



are ijdentical. Hence both forms (1), (35 are equivalent and will
be referenced to indicate the alternant codes, whichever form is
more appropriate.
2. Subclasses of alternant codes

a) BCH dies

The BCH codes were first discovered by Hocquenghem in 1959
and indepéndently by Bose and Chandhuri in 1960. These codes are
cyclic, namely if (VO’V]""’Vn-l) is a codeword, then its cyclic
shift (vy.Vps...5v, 15Vg) is also a codeword.

For any positive integers m and t (t < qm']), there exists a
BCH code over GF(q) of lenath n g,qm - 1, with minimum distance
d >t + 1 and havina k information symbols, with k > n - mt.

Such a BCH code is generated by a polynomial a(x) over

GF(q) having ab, ab+1, ab+t_] as zeroes, where a is a nonzero

element of GF(q") of order n and b, an arbitrary intecer. Its
parity check matrix, which can be derived rather easily, (see

Appendix) is of the form:



('l o° (db)z

" (D112
"Ben b+2 b+2,2

11 o (a )
] b+(t-1) (ab+(t—1))2 .

- 3
11 1 O
1 a1 a2 . . a(n_])
;2 A L2(n-1)
LoD ez (D))
1 0 0 0 ]
0 o 0 0
0 0 o 0
0 0 0 . o{n-1b

(ab)n-l
(ab+1)n-1

b+2\n-1
(a )

(ub+(t-]))n-1

_J

(4)

The case b-1 has been referred to as the narrow-sense BCH codes.

Codes of length n =

10

qm-l are called primitive BCH codes.

A



It is obvious from comparina both parity check matrices of
form (3) and (4) that the BCH codes are special cases of the

alternant codes characterized by

xi = o ', i = 1,2,...,n
-~ and Yi = (cxb)n.l
= X b s 1 = 1,2, ,n

’

b) Generalized BCH codes
Let x be a primitive nth root of unity in GF(q™), then for
n- .
any a(x) = ) a.x| with 858y seeesdp in GF(q), the Mattson-
i=0 n=
Solomon polynomial - Fourier transform - a{x) with respect to o

- is defined as

n-1 .
A(Z) =T A;Z' , with A, € 6F(q), i=0,1,...,n-1
isp 1 i
where Ai = a(ai). Conversely, the inverse Fourier transform of
n-1 . .
any A(Z) is a(x) =} a1x1, where a; = n_1A(a-1), i=0,1,2,...,n-1.
i=0

Based on the Mattson-Solomon polynomial, another class of error-
correcting codes is proposed in 1975 by Chien-Choy as aloebraic
generalization of BCH codes. The aeneralized BCH code of lenqgth
n over GF(q) associated with polynomials P(Z) and G(Z) is defined
as follows - P(Z) and G(Z) being polynomials with coefficients in

GF(q) relatively prime to x"-1 with deg P(Z) < n - 1 and

11



dea G(Z) < n - 1. The code consists of all v(x) with coefficients
in GF(q) and decree less than n-1 such that the Mattson-Solomon

polynomial V(Z), derived from v(x) satisfies:

[V(Z)P(Z)]n = 0 mod G(Z)

where [V(Z)P(Z)] = V(Z)P(Z) mod x"-1. Let p(x) and g(x) be
polynomials over GF(q) associated,wfth the Mattson-Solomon poly-

nomials P(Z) and G(Z), respectively such that:

n-1

2
P(x) =py + Pyx + pox™ + ...+ p. 41X

n-1

2
g(x) =gy + gyxM g x° + ...+ g X

The parity check matrix of GBCH code with associated polynomials

P(Z) and G(Z) is derived as

-1 -1 -1 -1 -2 -1 ~(n-1)
Po% P1Sy @ P9 @ * Ppdy @

-1 -1 -2 -1 -4 -1 -2(n-1)
Po% P9 @ Pp9p @ - Pp%y @

-1 -1 -3 -1 -6 -1 -3(n-1)
P09 P19y @ P9y @ - P8y @

- -1 - -1 - -1 -t(n-
Po9%p ~ P19 @ ‘ Podp @ L P9 @ tn-1)

L

12




1 a—] a2 a_(n_])
. -2(n-1)
- ‘ X
] a-3 il a-3(n-1)
1 a-t a-2t_. .. a—t(n-])
L
i -1
Py% 0 0o ... 0
0 g, 0 0
P19 .
R (5)
0 0 P29, 0
0 0 0 b g i)
i * 00 Pp=12n-1

with t = deqg G(Z).

Notice that the GBCH code with associated polynomials
p(z) = 22*(t-1)

~lo#(t-1)

and G(z) = z¥ is the BCH code with oa™®, o (P*1),
] being the zeroes of its aenerator polynomial. In

fact, let p(x) and g(x) be polynomials associated with P(Z) and
G(Z) respectively:

p(x)=l{1+x‘[b+(t'])Jx+a'2[b+(t'1)]x2+...+a'("'])[b+(t'])]x"'1]
n
and

s e B

13



-i[b+(t-1)] -it

’,Substituting each p, = % and g, = % ;
i=0,1,2,...00-1 in Hegey, (5) yields: pg,™! = o
B P S G b |
I I
X
1 3 Gt 3T
1 ot o2t a-t(n-])
1 0 0 0
0 o (b1 0
0 o0 o 2(0-1) g
0 é ; . ;‘(“‘])(b‘])J

14



1 a‘b | a-2b ... G—(n-.l Jo
1 o (0¥ o2(b+1) Lo (T
or L o (b42) 20%2) o —(n=1)(b¥2)

;-[b+(t-1)] a-é[b+(t-1)] oo oo (n=1)[bH(-1)]

b

b -

which is identical to HBCH (4) except that o is replaced by a-].

By letting x, = a_(i-]) and y; = pi_]égll a-(i-]) in (5)
i=1,2,...,n and comparing with the matrix in (3), it is seen
that, indeed, the generalized BCH codes are subcodes of the
alternant codes.

c¢) Generalized Srivastava codésl

Another important class of a]ternaht codes are the general-
ized Srivastava‘ﬁodes.
| It is a linear code with symbols from GF(q), having the fol-

lowing parameters:

Block length: n<q® -1
Number of information symbols: K >n - mst
Minimum distance: d>st+1

agiven n + s distinct elements Cys@naeenslpsW sWnsenn s W, of GF(q™) _
and n nonzero elements z],zz,...,zn of GF(qm), t being a positive

integer. It is defined by the parity check matrix:

15



where

for £

The

1

SR ~

i i
H
Hy
GSR = |
Ky
Z] 22
a] w‘e az - wf_
I 4 5 Zy
. (ag - wp)® (ay - v,
2
i W
(Ct] - wz) (d2 - Wz)
1a2a_ ee S,

H u
G-l a2
a2 - w]

u y
(1] q2
0‘] - wz a2 - \‘.‘2

t

original Srivastava codes are the special case t=1,

r ai" for some intecer u and have the parity check matrix

(6)

(7)

(8)



m (x—wj)t
e - 34
By substituting a(, jyge (%) (xw )k and
2
JA
Yy = X for £=1,2,...,5, k = 1,2,....t and
R _

T (ai-w.)
=1t

i =1,2,...,n in the parity check matrix (1), one obtains a
‘parity check matrix identical to the one on the pfevious page (8).
This shows that the generalized Sristava codes are indeed, sub-
classes of the alternant codes characterized by these st poly-
nomials gi(x) over GF(q™) i = 1,2,...,st.

d) Goppa codes

This is an interesting subclass of alternant codes, which is
specified by a Goppa polynomial G(x) with coefficients from GF(q™)
and a subset L = {a],az,...,un} of GF(qm) such that all oy in L
are not zeroes of G(x).

The Goppa code consists of all codewords (a],az,...,an) over

GF(q) such that

‘i’ %4 = 0 mod G(x) | (9)

.and has the following parameters:
Block length: n=|L] <q" -1
Number of information symbols: k > n - mt, t = deg G(x)

Minimum distance: d>t+]1

17



The parity check matrix, derived from the above relation (9) is

defined as follows:

Goppa

0;6(s) "

(o1

+a10,)6(a;)”"

. 0
. 0
9
0
-1
G(az)
0

-1
th(an)

-1
- (9 yro 94 )6(a)

. (91+“n92+‘ 3 )G(a
]
1 1 1
a] az an X
N
n
: i
. 0
. 0 (]0)
. Gle)!

18




As is shown in the Appendix, a much simpler parity check matrix

which defines an identical code is

1 ] 1
HGoppa ) & @y a X
t-1 t-1 t-1
| ! %2 “n |
- i
G(a]) 1 0 0
-1
0 6a)! .. .0 ()
0 0 . 6o )
| n

since the matrix

is nonsingular.

19



By comparing with the parity check matrix (3), this is obvi-
ously an é]ternant code of length n with X; = aj and y; = G(ui)-],
i=1,2,3,...,n.

3.v- Re]ationship between subclasses of alternant codes

Some of the very interesting classes of code, namely the
generalized BCH codes, Goppa codes and generalized Srivastava
codes, have been reviewed and briefly discussed in the preceding
section, but in addition to beiﬁg subclasses of the alternant
codes, these error-correcting codes do exhibit certain connections
between éach other.

In this section, we consider primarily codes which are in-
cluded in several classes of codes.

a) @Generalized BCH codes and Goppa codes

Recall the parity check matrix of Goppa code‘defined in (11).

Let ay = a-(1-]) with o being a nonzero element of GF(qm) of

order n, for i = 1,2,3,...,n and the Goppa polynomial G(x) = xt.
Substitution in (11) yields:
1 1 e e o} 1 0 ...0

-1 -(n-1) t :
HGoppa=] a . . .Q 0 o ...0

I A N I T L L

20



] at . .. a(n-])t

= ] ut-] « e . a(n-])(t-])

1 1 1 1 O 0
= ] a] e a(n-]) 0 a. 0
1 a(t-]) . . a(t-])(n-]) 0 O an-]

| || -

A quick glance at the parity check matrix (4) reveals that this
is a BCH code corresponding to the case b = 1. Hence, the narrow-
sense BCH codes are contained in both the classes of generalized
BCH codes and Goppa codes.

Another class of codes is found to be included in both
generalized BCH codes and Goppa codes. Cdnsider the parity check

matrix of the generalized BCH codes of form (5).

21



Substituting p; = n~! P(a—i) and g, = n! (a-i) into (5)
yields:
1
] a-] . .. a-(n-1)
_ -2 -2(n-1)

HGBCH - 1 a .. X

1ot gt

L
p(eT(1) o

0 Pl @) .. L0
0 0 C. P(a’("'1))e‘1(a'("f]))

PA) o P(aT) . .. o (e 1)p(m(n-1)y

P(1) a_zp(a-]) .« . a-z(n-])P(a-(n-])) X

0D R TP B Ll DPYSRI U DY

22



Substituting p, = n

1

yields:
a—] . a-(n-1)
. -2 -2(n-1)
Hepen = @ ...
St -t
-1
P(1)G "(1) o
0 Pl 6 1Ty . ..
0 0

P(1)

- P(1)

P(1)

a’]P(a']) R a'("'l)P(a'("'T))

a-ZP(a-]) . .

a—tp(af]) ...

P(a«”') and g; = n-

22

o Pl T m (01D

a-Z(n-])P(a-(n-1))

a-t(n-])P(u-(n—1))

V6™ ) into (5)

]

E




6 1(1) o .. 0

0 G-1(a-]) e 0

L 0. 0 ... 6 V(-1

tet P(x) = x", then P(a™1) = o', i = 0,1,2,...,n-1.

-

. .. x

') o 0
0 6 () 0
0 0 T LYl U P

L
A comparison with the parity check matrix in (11) shows that this

is the special case of Goppa codes with o, = a'(1']), for

i= 1,2,3,...,n » o being an element in GF(qm) of order n, and the

Goppa polynomial G(x).

23



_ b) Goppa codes and generalized Srivastava codes
Recall that the original Srivastava codes are the special
case of the class of generalized Srivastava codes with z; = ai”
and t = 1, u being an arbitrary integer and defined by the parity
check matrix (8). It is interesting to note that a particular
subclass of the above cogé, namely the one characterized by p =1,

is contained in the class of Goppa codes. In fact, after substi-

tution u = 1 into (8):
[y “2 ®n
a-l - W] a2 - w] ozn - w]
a a a
HSR(U=]) = 1 2 n

Since the row space of the parity chegk matrix is invariant by
multiplication of any row of the matrix by a nonzero element of
GF(qm), multiplying every it row of the above HSR(u=1) by w,.
W is= 1,2,3,..;5 being distinct and nonzero elements of GF(qm),

gives:

24



- -
u-lw-l uzw.| a w]
a] - 1 u2 - W.I an - w.I
a1w2 a2w2 o] w2
Ay T Wy @y - ¥ % T ¥
a]ws a2ws anws
ap "W ey T W % T ¥
L. -

or, since “iwj #0 fori=1,2,3,...,n , J = 1,2,3,...,S.

i ]
1 ] 1
w]-1 - a]-] w1f1 - a2-] w]'] - qn_]
] 1 1
wz;I - a]'] w2-1 - az-] wz'] - qn'1
1 ] 1
-1 -1 -1 -1 ... -l -1
s T 9 Ws T % s T %

L - -
which is the alternate form of the parity check matrix of the
Goppa code.specified by the subset L = {a]-],az-],...,an-]} in

s

GF(qm) and the Goppa polynomial G(x)

L]

™ (x-wi']) (see Appendix
i=1 ‘
on the Tzeng and Zimmerman derivation). Adopting the same ter-

minology as when we discussed the relationship between GBCH and
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Goppa codes, we would say that the narrow-sense Srivastava codes
are contained in both Goppa and generalized Srivastava codes.
c¢) Generalized BCH and Srivastava codes

A much larger class is found to be included in both the

—

generalized BCH and Srivastava.codes. Consider the parity check

matrix of the generalized BCH codes in (5) and let {21’22""’Zn}

be nonzero elements of GF(qm) and all distincts from the o',

i =20,1,2,...,n-1 and the associated polynomials P(x) and G(x) be

n-1 .

7 (x-a')
i=0

#%'

. & . n- s s

3=0 r (oJ-a')
i=0

i#j

+J

P{x)

L]
~

and

3 »n

G6(x) = = (x-w.)t
P .i='| 1

from the oy i=0,1,...,n-1., Since P(a1) = “-121+1 # 0 for

s WysWoseoosW, being distinct elements

i=0,1,2,...,n-1 , it is obvious that P(x), thus defined, is rela-

tively prime to x" -1, hence satisfying the restriction on

s .
P(x). Similarly, G(ak) = g (ak-wi)t # 0, G(x) is also relatively
i=1
prime to x"-1.
iy _ i iy o it
-Substitution of P(a') = « z; and G(a') = 7 (a —wj) in
j=1

the parity check matrix (5) yields:
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or

.~ (n-1)

. a-Z(n-l)

_ a—st(n-])

226-1(a

h. .

e o . o(n=1)
a znG

‘1(a‘(n']))

. G(a-(n-]))

. G(a-(n-1))a-(n-1)

. G(a-(n-T))a-(n-l)(st—1)
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- i
Z3 0 0
0 z, - 0
\
L 0 0 zn

= AZ.

As was shown by Tzeng and Zimmerman (see Appendix) the matrix

A is row equivalent to

A
Ay
A3
' A
S
B
where -
- 1 1
0-w) ) @ )
1 1 1
Re=l (1 - wp) (o - wz)_2 . (m'("'”-wg)2
1 i 1
(0 -w)t @ owpt Tt
28 -

7



for £ = 1,2,3,...,5 , which, multiplied by z, gives:

where

n
U -wp) (e wy) o @y

-
o &

Z] 22 Zn~
(0 -wp)t @ owpt L@y

t
)

b

Obviously, in comparing with the parity check matrix in (7), it
can be seen that the above matrix defines a special class of

generalized Srivastava codes specified by:
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W-l ,wz,...,ws

where o is an element of GF(qm) of o}der n.

B. Constructing error-correcting codes by Lagrange's interpolation
In addition to defining error-correcting codes by means of

the parity check matrix as we have so far presented, there are

other basis of defining codes, namely the Lagrange's interpolation

[3]

proposed by’Tzeng and Zimmerman and the generalized interpola-
tion and transformation method introduced by Mande]baumE10]

The equivalence between the alternant codes and the general-
ized Goppa codes, which are the generalization of Goppa codes
based on the Lacarange's interpolation is established by Tzeng and
Zimmerman[3]; the purpose of the following section is to pre;ent
a description of the Lagrange's interpolation formula, a proof of
~how the Mattson - Solomon can be>derived as a special case as‘well
as a brief summary of the relationship of qenera]ized‘Goppa codes
with ofher codes.

1) Generalized Goppa codes:

Let (a],az,a3,...,an) be an n-tuple with a; in GF(q),
i=1,2,3,...,n , q being a power of a prime, and {a],az,...,a }

n
be a subset of GF(q"). Then the Lagrange's interpolation formula

30



associated with (a],az,...,an) is defined as follows:

—

n n
o(x) = L ay 7 (a5a;)) - (2)
J#i

This is a polynomial of degree less than or equal to n-1 over

GF(qm) such that B(a{) = a; for i = 1,2,...,n. Llet

n n
L(X) = m (X'ai) and Li(X) = ™ (X-(l,i) = L!X! s then
i=] j=1 X-a,
J#i
n L;(x)
B0 = L o)

It is rather easy to show that the Lagrange's interpolation formula,
thus defined, (12) or (13), is the generalization of the Mattson -
Solomon transform.

Recall that the Mattson - Solomon polynomial of the poly-
n

nomial a(x) = J aix1'] with coefficients a, in GF(q™), or of
i=1
the n-tuple (a},az,...,an) is:
n-1 .
A(x) = 7} A.x9
j=0 Y

where Aj = a(o’), o being a primitive nth root of unity in GF(qm)..}
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Thus:

n-1 n .
A(x) = z 2 aka‘](k_])XJ
J=0 k=1
n n-1 .
- a, I QI (k=1).3
k=1 j=0
n n-1 J
= ¥ a3 (T
- k=1 j=0
i} g . (ak-lx)n -1 nil ) (akx.n -
k=1 k ak-]x -1 k=0 k+1 ukx -1

1t

Let o ' be the nth root of unity for i = 0,1,2,...,n-1, then

(ak x)n.- 1 (akx-])(akx-a-]) C . . (akxéa-(n-]?)
dk x -1 ax -1

k(n-1) n-

m

1 (x—a-(i+k))

i=1

or, changing the index:

(14)

, d ,.n o n-1
Since Ix (x'-1) = nx "

4 LD (x-a™Y) L (xea” (7))
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n-1 n-1

= 7w (x-a7)
k=0 i=0
i#k

it follows that letting x = oK gives:
| n-1 .
nq"k(n"]) , = (a-k-a-1)
a-k(n—l)

or

Substitution into (14) yields:

n-1 -

T (x-a )
i=0
akx N_q1 = n itk
3 n-1

aXx -1 i (a—k_ a—1)

i=0
ifk

Hence:




and after replacing k + 1 by i and i + 1 by j

n (xea 0371
n J=]
= n ) a, 71
IR 2 (a-(1-1),a—(j?1))
| 3=1 |
J#i

and from (12) = B(x). This shows that the Mattson - Solomon
polynomial is a special case of the Lagrange's interpolation by
restricting a; = a-(i-]), for i = 1,2,3,...,n, where o is the
primitive nth root of unity.

Let P(x), G(x) be polynomials over GF(qm) of degree less
than or equal to n - 1 and relatively prime to L(x). The general-

ized Goppa codes are defined as the set of (a1,a2,...,an) over

GF(q) such that

[B(X)P(X)JL&x) = 0 mod G(x) (14)
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where B(x) is the Lagrange's interpolation formula of the n-tuple

(a],az,...,an) and

B(x)P(x)

[B(x)P(x)]L(X) mod L(x)

Let (p],pz,...,p ) and (q],gz,...,gn) be the n-tuple obtained by

n

the inverse Laorange's interpolation formula of P(x) and G(x)

respectively, the ceneralized Goppa code described by (14) is

specified by the parity check matrix.

1 1 T p]g]'] 0
L.(a-l)
a-l (12 s o o an -1
Pr9

. 0 zlz ..

. L (az)
a]t-] o t-1 o n-1

2 n

0 0

-1
Pn9n

(15)

L'(anl

where deg G(x) = t. Comparing with (3), it can be seen that the

eqdiva]ence between the generalized Goppa codes and alternant

codes is easily established by letting X5 = oy and
-]
P;9;

Yy = -0 for i = 1,2,3,...,n
L'(ui)
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Applying the Lagrancge's interpolation on both sides of (16)

yields:

-]
Y(x) = Eﬁf)iz—)ffl a7
X

Y(x) being the Lagrange's polynomial associated to the n-tuple

(yi,yz,...,yn). Relation (17) can be rewritten as:
P(x) = Y(x)L'(x)G(x) mod L(x) (18)

Given the alternant codes as specified by the parity check matrix

(3), one can construct the equivalent generalized Goppa codes as

follows:
i) Select the subset {a],aza...,an} as defined by (3).
ii) Then select a polynomial G(x) of dearee t with coef-
n
ficients in GF(q™) which is relatively prime to L(x) = = (x-ai).
i=1

An easier way to define G(x) is:

I 2R c+

G(x) = : (X‘B.i)

i
. m
with 31- € GF(q ) - {a],az,...,an}

iii) Compute P(x) as

P(x) = Y(x)L'(x)G(x) modulo L(x)
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where

n (xea)
™ (X-a
kK
M) = )y
1= m (a.-a )
k=1 ik
k#1i

Since L'(x) is relatively prime to L(x) and Y(xi) =y; # o for
1 =1,2,3,...,n, hence Y{x) is also relatively prime to L(x),
P(x) = Y(x)L'(x)G(x) is relatively prime to L(x) as required.
Thus the equivalence between both codes is completely
established.
2. Subcodes of the generalized Goppa codes
a) Goppa codes

Let P(x) = L'(x) , then

P Plasey) 67 (a;)
L' (o) L'(ui)

and the parity check matrix (15) becomes:

1 1 R | G—](a]) 0 ... 0
o ap ... 0 G-i(az) .. 0
a b1 azt_] o ant“ L 0 0 6 (o)
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‘

This is the Goppa codes specified by the subset L = {a],uz,...;an
of GF(qm) and the Goppa polynomial a{(x) = G(x) over GF(qm) of

dearee t. The relation defined in (14) thus becomes:
[B(X)L‘(x)]L(x) = 0 mod G(x)

b) Generalized BCH codes
If one restricts the di to be a-(i-]), with « being a prim-

itive nth root of unity, then the Lagrance's polynomial becomes

n-1 _ o t0-1)

the Mattson - Solomon polynomial and L'(“i) = na;

The parity check matrix in (15) thus becomes:

1 1 R

1 -1 . . . a_(n—])

1 ol (e e

-1
P19 0
n
-1

P29,
0 +1 0

Nao

R pngn-]
L ° ° na+(n-]) :



or

1 u-] a_(n-1)
n x 1 a-z . e aiz(n-]) X
1 ot a-t(n:])
[ bt 0 0
0 9,7 0 m
P2% - (19)
-1
|0 0 C POy
wh?re Pis9; 1 7 1,2,...,n are coefficients of the polynomials
n- .. n- . : _
'ZO pj+]x3, 'ZO gJ.HxJ associated with the Mattson - Solomon poly-
= J.‘:

nomials P(x) and G(x) respectively.

After multiplying the parity check matrix in (19) by n'l,
which leaves its row space invariant, it is easily seen that'the
above matrix defines the aeneralized BCH codes specified by the

subset {],a-],a-z

,...’a-(n—I)} in GF(q™) and the pair (P(x),G(x))
both being polynomials over GF(q™) and dea P(x) <n -1 deq a(x)=t.
Since the BCH codes are contained in the ceneralized BCH

codes, it is obvious that they are also subcodes of the genera-

1ized Goppa codes.
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C. Method of geheralized interpolation and transformation
proposed by tlandelbaum -

Another approach, which was introduced by Mandelbaum recent-
1y[]0], in defining error—correcting codes is based on Chebyshev
system which is essentially a set of selected polynomials over
GF(qm) called the generating polynomials of the codes.

In a sensé, codes generated by this method can beAreéarded
as a generalized version of polynomial codes propoéed by
Goetha]s.[gj
1. Polynomial codes
Let z],az,a3,...,an be n distinct elements of GF(qm) and

~

Lx) = i)' Let F(x) be a polynomial with coefficients

in-GF(qm) and denote F(x), the reduced form of F(x) modulo L(x).

i:] (X-a

Then, from the Chinese Remainder Theorem,

F(x)

n
iZ] F(ai) Li(X)/Li(ai) (20)

where

Li(x) , 1 =1,2,3,...,n

(Notice this is the Lagrange's polynomial associated with the

n-tuple (F(u]),F(az),...,F(an)). Hence, the set of n polynomials
L.

{ni(x) = [%{ilj" i=1,2,3,...,n} form a basis of the polynomial

it
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algebra GF(q™W[x]/L(x), where GF(qm)[x] is the set of polynomials
with coefficients in GF(qm), on the other hand, any polynomial
F(x) is uniquely expressed in GF(qm)[x]/L(x) as a polynomial of

degree less than n:

- n-1 . . :
F(x) = § cix1 | (21)
i=0

Thus, equating (20) and (21):

n .
121 F(a].)n].(?() = zo c.x’ (22)

The relation (22) describes the transformation between two basis,
namely the basis {ni(x), i=1,2,...,n} and the one {xi,
i=20,1,2,...,n-1}; in other words, relatively to the basis
{ni(x), i=1,2,...,n} F(x) has as coordinates with respect to
the basis {xi, i=20,1,2,...,n-1} take the values Ci»
i=20,1,2,...,n. Let I = {11,12,...,ik} be a subset of the set
of integers {0,1,2,...,n-1} and {F(x)} be po]ynémia]s with coef-

ficients in GF(qm) such as:

F(x) = ¥ cix1
iel

The polynomial codes specified by the subsets L = {a1’a2""’an}

and I = {11,12,...,ik} consist of codewords (F(a]),F(az),...,F(an))

4



with F(ai) being element of GF(qm), i=1,2,...,n. Goethals called
these codes the images of subspaces of GF(qm)[x]/L(x) with respect

to the Lagrangian basis {ni(x), i=1,2,...,n}. Since

Fla,) = C ai , k=1,2,...,n, it can be seen that:
k . 17k .
jel
(Floq)sFlap)seensFlog)) = !
u11 i a1]
1 % - n
i i i
2 2 2
(€. +€. +C. 5...5C. ) a a C e e Q (23)
i1771,7 7, T ] 2 n
a1k alk aTk
1 2 n
= ¢xG

If one considers the coefficients c, , j = 1,2,3,...,k as the k

J
information symbols, then the polynomial code has the following

parameters:
Block length: | n 5_qm -1
Number of parity check symbols: n - k
Minimum distance: d>k+1

having as generator matrix, the matrix G.
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2. Mandelbaum's codes .
i.
Let's generalize each of the x J into aj(x) i =1,2,3,...,k
with gj(x) beina polynomial over GF(q"). An additional requirement

is that these gj(x) are independent functions and that no non-

k
tivial function ¢(x) = ]} vcigi(x) , e.a. not all the ci's are
i=]
zeroes, has more than k - 1 different roots in GF(qm). Hence,
from (23):
(Flag)sFap)s.rvsFla,)) =
g] (u]) g] (012) .« v e g](an)
(C19C23-.'3Ck) 92(0!]) gz(az) « e gz(un) (24)

g ley)  gplan) o .. Qk(an)

The codes, as defined in (24) by Mande]baum,[]oj are characterized
by the following parameters:
Block length: n g_qm -1
. Number of parity check symbols: n - k-
Minimum distance: d>k+1]
as in case of polynomial codes. In a sense, polynomial codes are
said to be special cases of Mandelbaum's codes (24). Mandelbaum

called the set of the above k functions, as defined previously,
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a c-system (Chebyshev system). If one allows the original c-
system {g](x),gz(x),...,qk(x)} to be lengthened to a larger c-
system {g](x),gz(x),...,gk(x),qk+](x),...,gn(x)}, then the rela-

tion (24) can be rewritten as:

¢y91(a) + €p8(eq) + o ¥ g (ay) < Flag) = 0
¢191(ep) * Cpylan) * .o+ c g (ay) - Flay) = 0
| (25)
19 (ay) + cpfyla)) + o+ g (o) - Fla) = 0O
19 (X) + cp9,(x) + ...+ ca(x) -F(x) =0

This is the set of n + 1 homogeneous equations having nontrivial

solution (c],cz,c3,...,cn,-1). The determinant must then vanish.
g](a]) gz(a]) ¢ e . gn(G]) F(G])

0(e)  Gplag) - - . g (a)  Floy)

9y (en)  gplan) g lay)  Flap)

91(x)  gy(x) ... g (x) F(x)

a4



Expanding on the last row gives:

DF(x) =
g](a]) gz(a]) . e gn(a]) - F(u])
g](uz) ‘ gz(az) I gn(02)' F(az)
9 (ey)  gpla)) o v g (e)  Fla)
91(x)  gp(x) ..o gn(x) 0
with N
gq(eq) gz(a]) .. gn(a])
(o) (a) « . . g (a,)

p= |B1t2 S22 Intez (26)

g](an) gz(an) o s s gn(an)
~ Solving for F(x) after expanding (26) on the last column:
. n

F(x) = +izl f(ai) vi(x) (27)

with
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g](a]) \ gz(a-l) o s gn(a])
g](ai—]) 92(01_1) ;gn(ai—'l)
v =DM g ey gplag) g (0yq) | (28)
9y(a,) 9 () 9, (o)
g9 (x) gp(x) . . . (x)

Hence, the basis of constructing error-correcting codes proposed
by Mandelbaum is another form of interpolation which maps the
n-tuple (F(a]),F(az),...,F(ag)) relative to the basis
{v1(x),v2(x),...,vn(X)} into the n-tuple (c],cz,...,cn) relative
to {gy(x)>9,(x),....g (x)}.

The pukpoée of the next section is to identify the relation-
ship between both interpolation formulae; namely thé ones prop-
osed by Tzeng, Zimmerman and Mandelbaum (13), (28). Once the
relationship is established, codes constructed on these basis will
be shown to be equivalent; furthermore, since the connection be-
tween the alternant codes and the generalized Goppa codes is al-

ready identified, establishing the equivalence between Mandelbaum's

codes and the alternant codes is rather straight-forward.

|
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ITI. Relationship Between Codes Based on Laarange's Interpolation

and Generalized Interpolation

A. Generalized Srivastava codes as subcodes of generalized
‘Goppa codes
Several imbortant classes of codes have been identified by

[3]

Tzeng and Zimmerman as subcodes of generalized Goppa codes,
includina Goppa codes, generalized BCH codeé as well as BCH codes.
There is, however, an important class of codes which has not been
explicitly mentioned amona subcodes of generalized Goppa codes,

namely the class of generalized Srivastava codes.
z.

Recall that by lettina y, = — 1 . i=1,2,3,...,n
t

n (a;-w,)

j:] 1] (29)
and S .
. u (X'Wj)
=1 - ,

9e-1)t+k ‘X) (x-wz)k for £ = 1,2,3,...,5, and

k =1,2,...,t (8), it was shown that the generalized Srivastava
codes are subcodes of the family of alternant codes. On the
other hand, the equivalence between the alternant and general-
ized Goppa codes implies that the latter must also contain the
generalized Srivastava codes as its subclass.

Let G(x) = .§ (x-wJ.)t and y(x) be the Lagrance's poly-
nomial associatedJ;}th the n-tuple (y1,y2,...,yn) as specified

in (29).
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\
Let P(x) = y(x)L'(x)G(x) mod L(x) where L(x) denotes the familiar
polynomial 'g (x'“i) over GF(qm).

The qe;;la]ized Goppa codes specified by (G(x),P(x)) and the
subset L =.{a],a2,...,an} of GF(q™) have as parity check matrix
(from (15)):

-

1 1 1 c.a ]

a a o o
1 2 3 0

a2 0‘2 2 2 X
] 2 @3 “n
3 3 3 3

a] a2 Q3 an

st-1 st-1 st-1 st-1

d] ('12 0.3 (ln
-1
El%l—y 0 0
Ll (l-l
-1
P292
0 m . e 0 (30)
-1
P.g
n n
0 0 . L| a
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Let P(x) and G(x), as defined above, be the pair of poly-

nomials of generalized Goppa codes.

psg;”t pla)6 (a))
L"ai) ; L'(ap
= .Y(a.‘)
z,
- i
S
) ie (or.i-w )t
=1 J
for i = 1,2,3,...,n
Substitution into (15) yields:
] ]
S : S
S M CA L
=1 J =
! °‘1
« o)t
T (o =W, T Q4 t
=i VT 5 Gog)
a.st-] st-1
] % .
S S
t w t .
LJ](oz w,) ja1 (apy J)
= AZ

49

Then:

~—

. t
j=1 (U-n‘wj) |

.st-l -

(31)




-

A comparison with (11) shows that the matrix A, as defined by

(31), is, in fact, the parity check matrix of the Goppa code _
¢ :

specified by the Goppa polynomial G(x) = =«

j=1

Such Goppa code is the intersection

(x-wJ.)t and the

subset L = {ay,a55...50 ).

of the codes with Gj(x) = (x-wj)t for j = 1,2,3,...,5.
Hence, the matrix A is row equivalent to:

- 1

M

A

AS

where h

1 1 1

(@) = w )" oy - w)" (o, - W)
* *2 : ®n

] . .
M g - w)dt (e - W)t (o, = #,)°
t-1 t-1 t-1

* @2 *n
B t . t . . . —————‘_t'

(o = )" (ap = wp) (8 = W) |

for k = 1,2,3,...,s, which in turn, is row equivalent to (see

Appendix):
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.(a] - wk) (az - wk) S (u

A= (o (oy = Wy

(0 =W )" (o, - Wk)t (e

for k = 1,2,3,...,s. Consequently, codes defined by AZ are ident-

ical to those defined by the following parity check matrix:

Hy
H = "2
L HS A
where . 3
'21 Zy 2
(ag = W) oy - w) (an - W)
= a 2 5. —— \
(a] = wk) (a2 - wk) (an = wk)
2 Z, z,
t
(a] - wk) (a2 - wk)t (an - wk)t J




for k = 1,2,3,...,s, which is dentical to (7). It shows that
this is, indeed, the ceneralized:-Srivastava code specified by
s . m
al’°2""’an’wl’w2""’ws’ all distinct elements in GF(q ) and n
nonzero elements z];zz,...,zn of GF(qm). Hence, the code is a

"subclass of generalized Goppa codes.

B. Connection between generalized interpolation and Lagrange's
interpolation formula |
1) A special case of generalized interpolation
Recall the interpolation formula introduced by Mandelbaum
in (27)
F(x)

n

where

F(x)

n
Hes-13S

. cigi(x)

i
A special case of generalized interpolation, namely that all the
functions g](x),gz(x),...,qn(x) are restricted to be polynomials
of degree n - 1 or less over GF(q™) will be considered in this
section.
n-] k )
Let each g.(x) = ) o,:x where o, . are coefficients in
_ i k=0 ki ki ,
GF(qm) for i = 1,2,3,...,n and k = 0,1,2,...,n-1. Then vi(x),

as defined in (28), is reduced to:
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a., Cl] a]
1 a 2 an-]
%5-1 i-1 e P
] a 2 n-]

I P R Y

] a a 2 an_1
n n n
nei |1X %2 xn']
vilad = (1) ] 2 n-T
a o s ]
1 ] 1
) 2 n-1
@2 a2 %2
1 a a 2 ozn-.l
n n n

Notice that the numerator of vi(x) is a Van der Monde determinant
and vanishes whenever x = aj,»j = 1,2,3,...,1-1,i+1,...,n, it

must contain as factor the difference product:

1 (x"aj)

i

3 S

J
]
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On the other hand, the denominator can be obtained from the

th and nth

numerator after exchanginag the i rows and substituting .
x by oy Since interchanging the rows in a determinant leaves
its absolute value invariant, the denominator also contains as

factor the difference product.

v (a-e,)
T e =0
=1 1
it O
Then:
n -
jZ](x-aj)
vilx) = (M A
i1 (a.-a.)
=1 '
it

and the interpolation polynomial (27) is, reduced to:
(x-aj)

F(x)

% F(ai) X JF
i=] (ai'uj)

or

L) | (32)

n
-
11~
)
-n
—
[+]
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This is the familiar formula of the Lagrange's interpolation

which was presented previously. In particular, since Cre] =

= = = W : . m
Chs2 .= Cp 0’ and each qi(x) is a polynomial over GF(q )

of degree k - 1 or less; for i = 1,2,...,k.

n Li(x) '
deg [F(X) = iZ] F(ui) E;TE;T']'f_k -1 (33) |
. n 1- n-1. J-
Let L(x) = izo o;x  and Li(x) .=01ojx
L(x) - L(as)
- j
Then Li(x) = X T
0 K-
) jzl 5 &= “1)
n J-1 .
= z o Z uQ']'mxm
j=1 J w0

+ o, (ai+x)

+

oq (a12+aix+x2)

+ g (um-]+u?-2x+a?-3xz+...+Xm-])

m ‘i
+ o (uQ‘]+ n-2x+an-3x2+ +xn-1)
n ‘i j
n-1 n m-(j+1)
= (3 O X
j=0 m=j+1
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which shows that:
n .
g, = z oam-(‘]ﬂ)

. (34)
J m=j+1 ™

for 1 = 1,2,3,...,nand j = 0,1,2,...,n-1.
The restriction on F(x) in (33) implies, on the other hand,

that

A

n io. ’
iZ] F(a.i) —-(-J—TLi o = 0 (35)

for j = k,k+l,...,n-1. By noticing that

g;-L(x) L'(x)

L;(x)

"
ne~13

=l

and Li(aj) =0 if i # j, it follows that L(ai) = L'(ai) for
i=1,2,3,...,n. Whence, after substitution into (35):

n io.
J =

The parity check matrix of the above code would be:
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or

= AK

1ok 20k nok
L (a]) L T&Z) L an
lok+] 20k+] nok+1
L'(a-l) L'@z) T L'zan;
Ton-1 2on-1 non-1
LT(a]) L r(az) R .
17
lok- 20k . nok 1
L'(a]5
Tok+1  20k+1 . . . nok+l
0

lon-1  20n-1 . . . non-1

S 0

After substitution of ioj, in (34), into A:

k1

A =] %k+2

o

L n

0k+2 - . . Gn—]
Ok43 ¢ ¢ -
0 0
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= BX

It is obvious that

. det B

B is nonsinaqular since det B # 0. In fact

] 1
XK = a'l °~2
at-] at—]
L 1 2
———7] 0
LI((I]
1
0 )
L ay
L 0 0
t = n-k+1

-4

(36)

Comparing with the parity check matrix in (15) shows that codes

defined by (36) are special cases of generalized Goppa codes

having the following parameters:
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i) the subset L ='{a],a2,...,an} of GF(qm)

-1

11) pia;™ =1 for i = 1,2,...,n or P(x) = 6 1 (x)
iii) deg G(x) = t
=n-k+1

where G(x) is any arbitrary polynomial of dearee t over GF(qm)

and relatively prime to L(x). MNotice on the other hand that the

‘parity check natrix in (36) depends only on the subset L add

degree of G(x).

2. A more general relationship between two classes of codes
Without restricting {gi(x)} to be polynomials over GF(q")

a more general relationship between codes constructed by genera-

lized interpolation and ageneralized Goppa codes can be derived.

RecaTl that the generalized Goppa codes defined by a pair

(P(x),G(x)) are the set of n-tuples (a],az,...,an) such that:
[B(x)P(x)JL(X) = 0 mod G(x) (14)

where B(x) is the Lagrange polynomial associated With
(a],az,..;,an). In order to satisfy the above relation, there

~ must exist a polynomial K(x) over GF(q™) such that:

[B(x)P(X)]L(X) = K(x)G(x)
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and degree K(x) < n - dea G(x) - 1. \!hence:
[BOP()ET (0] () = K(x)
and deg [B(x)P(x)G-](x)JL(x) <n - dea G(x) - 1 (37)

By noticinag that k(x) is any arbitrary polynomial over GF(qm),
it follows. that the last relation,(37), is another equivalent form,
besides the one in (14), of defining the generalized Goppa codes.
Let ¢ be the code acenerated by k independent functions

m)

{gi(x)} over GF(q ) and the set of n distinct elements a,,a s...,a

172 n
in GF(qm). Let (f],fz,...,fn) be a codeword in c; then

k
fi = jZ] cjgj(ai) , i=1,2,3,....n

where C13Cps-..sCy are coefficients in GF(qm).
Taking the Lagrange's transform of (f]’fZ""’fn)’ one gets:

L.
F(x) ;(x)

]
-,
HnNes13
-
-

e

-

Q

k Li(x)

1

"
~13

after interchancina indexes i, j:

k n | Li(x)
R A o)
k
= L et
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In order that the n-tuple (f]’f2’°"’fn) is a codeword of the
generalized Goppa codes defined by (P(x),6(x)), F(x) must satisfy
the relation (37):

dea [F(x)P(x)6™ (x)] () < - deq 6(x) - 1

or

kK
dea [ ] ¢

69 (xIPOGT 0] <0 - deg 6(x) - 1
J:

Since CysCpseersC are arbitrary coefficients in GF(qm)
-1
deg [gj(X)P(X)G (X)]L(x) <m

§
where m = n - deg G(x) - 1. An obvious solution can be obtained

as follows
k=m+]
and gi(x)P(x)G"](x) = xi-1
or  g.(x) = X TTR()G(x), 1 = 1,2,3,...,n-deq G(x)  (38)

To complete the identification, one still has to show that the

set of m + 1 functions, defined in (38), form a c-system; in

other words, any linear combination of.{gi(x)} can have no more

than m (or k-1) roots in the subset L’= {a],uz,..ﬂ,an} of GF(qm).
Let 4(x) be an arbitfary linear combination of m + 1 functions

93 (x),95(x)5. .. hap 1 ().
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m+1

¢(x) L c;9;(x)

m+1

Z e P (x)6(x)

e

I pt1 i-1
P (x)G(x) ) c;X
=T

where Cy3€ps-+sC are coefficients in GF(qm). Since both

mt+1
polynomials P(x) and G(x) are relatively prime to L(x),

-](a )G(a ) 1s nonzero for i = 1,2,3,...,n .Z cixi'1, hence

](x)G(x) Z c; x1 -1 = ¢(x) can have no more than m roots in
L = {al,az,?;T an}.
Hence, the set of m + 1 functions {gi(x)},“as described in

(38), does, indeed, form a c-system. It sollows that every code
which is constructed based on the Lagrange's transform can be

described in terms of the generalized interpolation.

C. Relationship between alternant codes and codes constructed

via generalized interpolation.

Let A be alternant code described by the parity check matrix
(3).
Recall that the relationship between the alternant and

generalized Goppa codes was previously established by:
P(x) = y(x)L'(x)G(x) - (39)
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It is very straightforward to extend the connection to codes con-
structed on the generalized interpolation.

From (18)
VL) = P06
After replacing in (38):
gk(x) = xk']y'](x)L']'(x), k=1,2,....n-t

It is a rather simple matter to verify that the set of {gi(x)} )

does also form a c-system by noting that y-1(a.)L']'(a.) =
i i
1 . .
i is nonzero, for i = 1,2,3,...,n.
yit (o)

D. Subcodes of Mandelbaum's codes

Since important classes of codes, such as the BCH codes, the
generalized BCH codes, the Goppa codes, etc. are contained in the
family of alternant codes, and of generalized Goppa codes, it’
would be interesting to describe these codes in terms of the
ageneralized interpolation and henceforth, derive their respective
generator matrix. | |
1. BCH codes ,

It 'was shown that the BCH code geherated by a polynomial

b b+l ab+t—1

over GF(qm) having a ,o ... as zeroes is the special

case of alternant codes having as parameters:
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J

. = oL, i=1,2,3,....n

1,2,3,...,n

-
[y
1]

and Y5

It follows from (39) that the above code can be generated by a
set of n - t functions {gi(x)} over GF(q™); each -of the qi(x) is

defined as follows:

-

5, () = ML IO R DS P

for i = 1,2,3,...,n-t, the subset L of GF(qm) consisting of all
th 2 3 0Ln—2

n~ roots of unity, namely l,a,0",0",... Note that
n-1
L(x) = = (x'“i)
i=0
and L'(x) = nxn'1
= nx!
for x = 1,a,a2,...,an—2
Whence:
g;(x) = x1TOME 5oy 55, inet

ignoring the constant nl.

The generator matrix of the BCH code is:
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Gy = | 1 ® oL g 1o a...0 o)

-1 {n-1)(n-t-1) n-1
1ot LDt ) g gL

“where g = a]—b

In particular, if n is prime and b different from 1, there
]

exists an integer b' such that (1-b)b' = 1 mod n and o = sb

Whence:

- n-1
Ggey = | ! B B X

1 Bn-t-'l o B(n-])(n—t-])

0 8 0 (41)

0 0 ... gln-1p!

N -

2. Generalized BCH codes
Following the same procedure as in the previous section, it
can be shown that the ceneralized BCH codes specified by the pair
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of polynomials (P(x),G(x)) over GF(qm) are generated by the set

of n - t qi(x) functions having coefficients in GF(q™), t beina
the degree of G(x), and the subset L = {a],az,...,an} of GF(qm)

defined as follows:

g;(x) 1PN x)6(x) L = 1,2,3,....n-t

)

and o

J ’J=]32,3,-..,n

The codes are defined by the generator matrix:

G

GBCH ~
= - ' R
P (a.' )G(a]) p (az)G(az) ... P (an)G(an)
-] -] -1
a]P (a.l )G(a-l') a2P (az)G(qz)_ anP (cxn)G(an)

—t-1,-1 —t-1,-1 1.1
aq P™ (0q)6(ay) ag P (ay)6(ay) ... P e V6 ()

-

which, after substitution Of.ai’ becqmes:
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1 -1 -(n-1)

a « o o O X

; a—(n-t-l) ; o a?(n;t-l)(n-l)

- i
[ -1
Po% 0 0
-1
0 P19y - - - 0 _ (42)
L 0 o0 ... Pn-]gn-1 _
n‘] | .i n_] 1‘ .
where ] p.x  and ] a.x' are polynomials associated with P(x)
i=0 i=0

and G(x), respectively.
3. Goppa codes
Let G(x) be the Coppa polynomial of dearee t over GF(q") and

L, the subset of GF(qm) consisting of a],az,...;a The Goppa

n
code havino the above parameters is also generated by the follow-

ing set of(n - t)gi(x):

i-1

a; (x)  x"7G(x)/L" (x)

i=1,2,3,...,n-t

and is specified by the generator matrix:
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._GGoppa

~

or

6(a T (o)

=1
a]G(a])L (a])

1 . 1
* @2
n-t-1 n-t-1
* %2

-1

G(a])L'(a])

n-t-1 -1 n-t-1;
a G(a])L .(é]) Gy

e(az)L"‘(aZ)

=1
(a,)L" 7 (ay)

68

=

8(ap)L (o) .

. G(qn)L'(an)

-1

(43)



4. Generalized Srivastava codes

The last important subcode is the generalized srivastava
code. Let the code be defined, as in (6), (7), by a aiven set of
n + s distinct elements 01305 e s s oWy sWosWas. . W, and n non-
zero e]ements ZysZpseeesZy of'GF(qm).

Recall that is was already shown that the generalized
Srivastéva éode is a subcode of the generalized Goppa codes speci-

fied by:

G(x) (x-wj)t

1}
fH =3 n
—

J
and P(x)

y(x)L' (x)G(x) |
N
where y(x) is the Lagrange's polynomial associated with n-tuple:

Z] 22 ¥4

> s
™

n

H=auw

t s s
(az'wj)

(.a] 'wj)t .
j=1 Jj

n = wn

t
(a_-w.)
j=1 LY

Again, it is rather straightforward to prove that the generalized
Srivastava code, thus defined, is a subcode of Mandelbaum's code
generated by the followina n - st functions gi(x):
. Ty -1
0;(x) = Xy L (x)
for i = 1,2,3,...,n-st.

The generator matrix is defined by:
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G

Gen. Sriv. =
" - R
1 1 1
u] az' an X
n-st-1  n-st-1 n-st-1
“ %2 n ]
- S .
‘lr(a]-W)t
j=1 0 0
Z]L (a])
S
t
T (a,-w;)
0 =1 23 0
22L (az) | - (44)
S .
 (a -w.)t
0 0 . E I
ZnL (an)

The generator matrix of the original Srivastava code can be
obtained by letting t =1 and Z, = a# for i = 1,2,3,...,n.
5. Alternant codes

The derivation of the generator matrix of the alternant codes

defined in (3) is straightforward from relation:
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gk(x) = xk']y'](x)L'(x), k=1,2,...,n-t.

1 1 v o]
GA]ter= (1] 0.2 « o e an X
n-t-1 n-t-1 n-t-1
* %2 %n
L J
-1 -1
.Y]L'(a]) 0
-1 A .
0 _YZL'(GZ) « o 0 (45)
-1 :1
] 0 0 . ynL (an) )

6. Generalized Goppa codes
Lastly, the generalized Goppa codes defined by (P(x),G(x))
are génerated by the set of functions

ék(x) = xi']P'](x)G(x)

[ \'\\ :
for k = 1,2,...,n-t, t being deg of G(x). Its generator matrix

is:
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GGen. Goppa

_ =
1 1 ]
a] az an X
n-t-1 n-t-1 n-t-1
1 %2 “n
i i
"O
b, 0 0
0 pzﬁz L0 (46)
00w

IV. Dual Codes of Generalized Goppa Codes

In this section; we will investigate the dual codes of
generalized Goppa codes and show how one can derive their parity
check matrices.

As validation, a check of the parityrcheck matrix of the
dual codes against the generator matrix of their original codes
is made,'which has been derived through the set of defined

{gi(x)}.
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Recall that the aeneralized Goppa codes associated with
(P(x),6(x)) can be described either in terms of a parity check

matrix H as in (15) or by the relation (37):
deg [B(x)P(x)&" ()] 4y < n - deg G(x) + 1

where B(x) is the Laarange's polynomial of the codeword (b],bz,
""bn)' |
A codeword ¢ = (CJ’CZ""’Cn) is in the dual of the genera-

lized Goppa code if it is contained in the row space of H, or

equivalently.
c = (ap.ays...5a, ) H
where t = deg G(x) and 83875+ .-58; 7 Are elements of GF(q")

and H, parity check matrix defined in (15). Then:

-1
c. = ti] wark L tor 4 = 1,2,3,...0n
i Lo kKM L) 23T
"] 1 t-1 k
or p; gL (ai)ci = kzo a o

Taking the Lagrange's trahsform of both sides givesi#

PV (x)6(x)L' (x)c(x) = A(x)

t-1 ‘
where A(x) = ]} akxk and deg [A(x)] <t -1=n- (n-t) - 1.
k=0

Yhence: \
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dea [c(x)P T ()L (x)6(x)] < n - (n-t) - 1 (47)

G-](x) mod L{x) and P*(x) = P(x)-1L‘(x). Obviously,
deqa G*(x) =n -t =1t'and, from (4 ):

Let G (x)

deg [c(x)P‘(x)G*-](x)] <n-t'" -1

Notice also that since P(x), G(x) and L'(x) are all relatively
prime to L(x), it follows that‘P*(x) and G*(x), as defined above
are also relatively prime to L(x). The codeword ¢ = (c],cz,...,
cn) must then be in the generalized Goppa code associated with
polynomials P*(x) and G*(x); the subset L = {aysaps..esa } re-

mains unchanged. The dual code has as parity check matrix:

1 1 1
Hdual = % e, <oy ‘ X
an-t-] an-t-] cln-t—1
1 2 n.
p{lﬁ 0 0
- pé&z co.
0 0 .
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A check against the aenerator matrix in (46) shows that both

matrices are identical, which was expected as:

Hdua] c %

Gc being the generator matrix of an arbitrary code c.
A. Dual of alternant codes

It'is very straiahtforward to extend the result over the
class of alternant code from the relation‘(17) which established
the equivalence between the alternant codes and generalized Goppa
codes. |

The parity check matrix of the dual codes is: .

1 1 1

a] az an X
n-t-1 n-t-1 n-t-1

*1 *2 *n ]
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1 0 0
ykL'falj
0 1 0
I CV
0 0 L ——411——7- h
ynL an J .

which is identical to the matrix derived in (45). Whence, the
dual of alternant codes associated with the n-tuple (y],yz,...,

yn) is also an alternant code; the n-tuple of which is, however,

1 1 1
.y = ( ) ) ] 50009 1 )
yit (a) * yol () yL e )

B. Dual of BCH codes

Extending the procedure of defining dual codes to BCH codes
obviously gives a parity check matrix which is identicgﬁ to the
generator matrix in (40) since the codes are subcodes of genera-
. lized Goppa codes.

Particularly, if b # 1 and n is prime, it is possible to
express o in function of g8 and obtain the parity check matrix of
the dual code identical to the one in (41). It follows then that
the dual of the BCH code as defined in (4), e.g. generated by a

b+1 ’ab+t-1

polynomial over GF(qm) having ab,a . as zeroes, is a
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BCH code having following parameters:
Code length: n
Minimum distance: d>n -t +1
and being generated by a polynomial over GF(qm) having as zeroes

Bb ’Bb +].’...,Bb +(n-t)-1’ Ylith Bb = q

C. Dual of generalized BCH codes

Mote that in case of generalized BCH codes, a; = a1'] for

i=1,2,3,....n and L(x) = x" - 1. Consequently L'(x) =Jnxn'1.
Hence, from (47), the dual of the generalized BCH code defined by
the pair of polynomials (P(x),G(x)) is also a generalized BCH

code associated with (P (x),G (x)) such that:

P(x) = P(x)7L'(x)
= P(x)-.lnxn-1
or simply P (x) = xn-]P(X)-]

and G‘(x) G'](x) mod (x"-1), from (5), its parity check

.
matrix is:

1
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H

dual GBCH ~
1 a-] -(n-1)
. ~2(n-1)
1 -(n-t) . a-(n-t)(n-])
p;§0 0 0
0o °P9 0
* (n-1)_ -1
I 0 0 ... Pn-19n-1
. n-1 -1
since P(x) = x 'P(x)
RYaLLe
= xTp(x) (x"=1)
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or:

- | . ol

; ot) (0 (n-t-1)

p;bo 0 0
0 p;&] 0
0 0o ... pgllgn_]
L B

which is identical to the generator matrix of the original code

defined in (42).
D. Dual of Goppa codes

This is the special case of generalized Goppa codes with

P(x) = L'(x). It is very easy to show that the dual of the Goppa

code specified by the Goppa polynomial G(x) is also a Goppa code;

the Goppa polynomial of the dual code is defined as:

6 (x) = L'(x)6" ' (x)
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The derived parity check matrix of the dual code is, as expected,

jdentical to the one in (43).

<

E. Dual of generalizéd.Srivastava codes

Finally, repeating the pracedure of finding the dual code
based on (47) on generalized Srivastava code‘]eads to a parity
check matrix of the dual code, which, again is identical to the
matrix in (44). |

Unfortunately, unlike other classes of code, whether the
dual of the génera]ized Srivastava code remains to be determined,
although the dual‘code does belong to the family of generalized
Goppa codes.

The dual of the original Srivastava codes can be obtained by
letting t = 1 and zy = a%“, in (44), i = 1,2,..;,n and u, an

arbitrary interger. However, it still remains to determine

whether the dual of the Srivastava code is also a Srivastava code.
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V. Conclusion

We have shown that codes constructed on the basis of aener-
alized interpolation proposed by Mandelbaum include many im-
portant error-correcting codes discussed in this thesis. It is
also shown how these codes can be defined in terms of the aener-
alized interpolation which is characterized by a Chebyshev systems
of functions over GF(qm). Particularly, if these functions are
restricted to be polynomials of degree less than or equal to n-1,
the generalized interpolation is'reduced to Laorange's interpola-
tion; since many important codes discussed in this thesis can be
constructed via Lagrange's interpolation, in general case, it is
expected that the codes constructed via generalized interpolation
include other codés. But it still remains to determine how ex-

tensive and powerful these codes are.
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Appendix

A. If ¢ is a nonsinqular matrix, then codes defined by parity
check matices cxy and xy are exactly identical.
Proof:

Let'A, A being codes defined by cxy and xy, respectively.

)T T.T

It is obvious that A°cA since, for any veA” v(xy) = vy x =0

implies that vyTxTcT =0 =,v(cxy)T.
Assume now that AcA“. Then there exists a codeword Vo such

that Vo is in A, but not in A or, equivalently:

vo(cxy)T'= 0 and vo(xy)T 0

T e
Thus, vo(xy) = vyTxT = vy" # 0. However, vo(cxy)T = voyTxTcT =

”

Vo CT =0 imp]ies that cT, hence ¢, is singular, which is a

contradiction.
A must then be contained in A“, whence:

A=A

Q.E.D.
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B. Let H be a matrix of the form:

~

| 1
o) ae) .. g (a)
H = g—](a])a] g-](az)az . g—](an)an
L 9-1(a])a¥-] 9—1(a2)a5-1 - .(]-‘I(cltn)m:.1

where g(x) is a polynomial over GF(q") of degree r and a;,a,,

o are elements of GF(qm) distinct from the roots of g(x).

. r.
Particularly, if g(x) = gi(x) = (x- 1.) 1. then:
H, =
1 ? - -
-r, -r. -r,
i i i
(a] -Bi) (az"si) (an'B.i)
-r‘]. -r_i .—ri
(a] "81-) . a] (az"B,i) 0-2 e o o (an-Bi) U.n

-r, r, -r. Tr. B
. - i- -
(o=83) ag 1T (apm8y) ey b (ag85) o ]

L

which is row equivalent to:
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=T -r, -r,
AQ._lm.mv ! AQNw.ma.v ! .« . .AQZImd.v !

...1“. 11* l«.,m
Agdlm.mv AQ._lm.mv Alema.v AQ.NIm,mv S .AQ_..lm.mv AQ:|m.~V
og-By) egosy) 1T (apBy) Mapoy) 1 (egy) (o)

r -

. 11* 11* l_‘..m
?J:m.mv AQmumd.v . . Aps..m.mv
-A1¢-dv -A1¢|~v -A1¢-dv .
?J..md.v Apmum.mv ... Apssmd.v
CoA B -1
AQ._lm.mv AQNIw.mv e e Aﬂslw.mv

The above result was derived by Tzeng and Zimmerman,
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