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Abstract 

Several bases for constructing error-correcting codes such 

as the matrix alternants, the Mattson - Solomon polynomial, and 

the Lagrange's interpolation, and lately the generalized inter- 

polation introduced by Man'delbaum have been proposed. 

The relationship between the generalized interpolation and 

the other approaches in constructing error-correcting codes has 

been investigated in this thesis. We have shown that most of the 

important classes of codes can be defined in terms of the gener- 

alized interpolation, which, indeed, provides a unified framework 

for the previous methods. Dual codes of these codes have also 

been derived in terms of the new interpolation. 



I.  Introduction 

Coding theory began with the work of Shannon Hamming. Since 

the first papers on information theory were published in 1948 by 

Shannon, a great deal of research has been conducted on the prob- 

lem of designing efficient schemes by which information can be 

coded for reliable transmission across noisy channels. A very 

important result which Shannon had demonstrated was that by proper 

encoding and decoding of the data, it is possible to reduce errors 

induced by a noisy channel to any desired level without sacrific- 

ing the data transmission rate. As a result, numerous papers had 

been published on the subject of constructing error-correcting 

codes using more and more sophisticated mathematical techniques 

as well as on the problem of devising an efficient decoder. A 

very powerful mathematical tool which has been extensively used 

in coding theory is the Galois field. It is possible, by associ- 

ating each symbol of certain codes with an element in a Galois 

field, to derive an algebraic equation whose roots represent the 

locations of the errors induced during transmission. The decoding 

problem is then reduced to two basic tasks, namely to set up the 

mentioned algebraic equation and compute its roots. Still, there 

exists several different approaches which one can take in defining 

error-correcting codes. Typically, codes are constructed either 



via matrix approach or through a certain transformation of the 

codeword. In the former approach, it is very  common to .first 

define an n x m parity check matrix H, n being the lenath of the 

codeword; a code c is said to belong to the code defined by H 

if and only if cH is a null n x 1 matrix. Alternatively, a 

codeword or an n-tuple of elements in a Galois field K, is first 

transformed through a predefined formula into a polynomial with 

coefficients over K, which, in turn, must satisy a certain con- 

dition. Typical examples of such transformation or interpolation 

are Mattson-solomon polynomial, Lagrange's interpolation and 

lately, a generalized method of interpolation proposed by 

Mandelbaum.^10^ 

The purpose of this thesis is primarily centered on these 

bases of constructing error-correctinn codes. Although the rela- 

tionship between the matrix approach and the Lagrange's interpola- 

tion as well as Mattson-Solomon polynomials is well established, 

neither a connection of the generalized interpolation proposed by 

Mandelbaum with the previous approaches is yet firmly identified 

nor an extensive study of all the important existing codes via 

the latter approach has been attempted. It is the goal of this 

thesis to expand on these tasks. 

An interesting point is that Mandelbaum defined error-cor- 

recting codes using the Chebyshev system of functions which is 



later referenced to as c-system. A study of existing codes 

through the above approach eventually leads to defining their 

respective generator matrices. On the other hand, it is possible 

to sho&, by extending the Langrange's interpolation formula, that 

dual codes can be easily defined in terms of their parity check 

matrices. Since the parity check matrix of the dual code is 

identical to the generator matrix of the corresponding original 

code, a direct comparison between these tv/o matrices is possible. 

Finally, it is also possible to investigate whether the dual of a 

certain class of code belongs to this class, which is the third 

task attempted in this thesis. In the following section, a review 

of important classes of codes as well as different bases of code 

construction, including the neneralized interpolation, is briefly 

presented. The first part of the third section is centered on the 

relationship of generalized interpolation with the matrix approach 

and Lagrange's interpolation; in the second part, existing codes 

are studies through the generalized interpolation. In the fourth 

section, it is shown that dual codes can be obtained from Lagrange's 

interpolation, consequently, it is possible to derive their re- 

spective parity check matrix. 



II. Preliminaries 

Of the numerous classes of random-error-correcting codes pro- 

posed to date, the class discovered by Helgert - the alternant 

codes - and first presented in one of his papers1- J in 1974 is 

one of the most extensive and powerful ones. Obtained by a small 

modification of the parity check matrix of the BCH codes, it in- 

cludes other-important subclasses, namely Goppa, Srivastava and 

Chien-Choy generalized BCH codes. 

It should be noted that the relationship between these codes 

has been studied and derived in several papers^ -1''- J n L J 

The purpose of this section is doublefold: 

i) to introduce important classes of existing error- 

correcting codes by first presenting a summarized and brief re- 

view of these codes and then indicating how one can derive a code 

from another. Such a summary will serve as a helpful reference 

for the following section. 

ii) to present different approaches of defining error- 

correcting codes as v/as mentioned previously, namely the matrix 

approach and interpolation methods. 

In the first part of the section, important families of 

error-correcting codes will be introduced following the matrix 

approach e.g. defining codes in terms of the parity check matrix. 



The other two parts are devoted to the characterization of codes 

through interpolation methods, the Laqranqe's interpolation for- 

mula and the generalized transformation proposed by Mandelbaum. 

A.  Matrix Approach 

Due to the large extent of the alternant codes it seems to 

be more appropriate to first introduce this family of codes and 

then present other codes as special cases. 

1.  Alternant codes 

The alternant code is defined by a parity check matrix of 

the form: 

alt 

yl W  ^2gl^x2^ ' " * ynW 

y1g2(
x]) y292(x2) • ■ • yng2(xn) 

(1) 

y1gt(x1) y2pt(x2). . • yngt(xn) 

where the y., 1 <_ i <_ n are any (not necessarily distinct) non- 
m zero elements of GF(q'), the x., 1 <_ i <_ n are distinct elements 

m> of GF(q'") and 

\M    -    C0k + Clkx + C2kx    +  '•• +Ct-l,l 
.t-1 (2) 



is a polynomial of degree less than or equal to t-1 with coef- 

ficients from GF(q ) for k = l,2,...t. The alternant code thus 

defined is a linear code over GF(q) with length n, minimum dis- 

tance  d >_ t + 1 and having k information symbols, k >_ n - mt. 

The matrix of form (1) can be rewritten as: 

'ALT 

g-j(x-,)  91(x2)...g1(xn) 

92(
x-|)  g2^

x2^'"92^xn^ 

g^x-,)  g^J.-.g^)- 

yl 

0  y 

0 . . . 0 

0   0 . . . yr 

By replacing each entry g.-(x-) for i = l,2,...t and j = l,2,...,n, 

it is easily seen that H can be factored into the form: 

where 

HALT = CXy 

c = 

coi cn 

c02  c12 

C0t  Clt 

't-1,1 

't-1,2 

^-1.1* 



X  = 

x1    x2 

t-1  ■ t-1 

. 1 

• x. 

y 2     2       2 

x2" . . . xn 
t-1 

and 

y = 

\ 

0 

0 .  .  . 0 

' e\     •    • 

0 

A fairly simple proof (see Appendix) shows that codes derived 

from matrices of the form (1) and the form XY, namely 

H 
ALT = 

1 1  . . . 1 

xl    x2 

t-1    t-1      t-1 
xl    *2  • • • xn 

8 

y}     0 ... 0 

0   y. 

0   0 

(3) 

. y* 



are identical. Hence both forms (1), (3) are equivalent and will 

be referenced to indicate the alternant codes, whichever form is 

more appropriate. 

2.  Subclasses of alternant codes 

a) BCH codes 

The BCH codes were first discovered by Hocquenghem in 1959 

and independently by Bose and Chandhuri in 1960. These codes are 

cyclic, namely if (vQ,v.,... 5v •,) is a codeword, then its cyclic 

shift (vn,v0,...,v , ,vn) is also a codeword. 1 2    n-1 0 

For any positive integers m and t (t < qm~ ), there exists a 

BCH code over GF(q) of length n <_ qm - 1, with minimum distance 

d >_ t + 1 and having k information symbols, with k >_ n - mt. 

Such a BCH code is generated by a polynomial g(x) over 

6F(q) having a , a  , a  "as zeroes, where a is a nonzero 

element of GF(q ) of order n and b, an arbitrary inteaer. Its 

parity check matrix, which can be derived rather easily, (see 

Appendix) is of the form: 



'BCH 

b+1 

b+2 

(a  ) ( b.n-1 

[a       ) , b+Kn-1 
•     •     \a      ) 

(a       ) 
i b+2Nn-l 
\0L            ) 

b+(t-l)  , b+(t-l)x2       , b+(.t-lhn-l 

.   . 1 

1      2 
a      a 

a 

.(n-1) 

2(n-l) 

a**"1*  a**"1*2. . . «(t-D("-l) 

0   0 

0  a   0 

0  0   a2b  . 

•    • 0 

• 0 

. 0 

•       • 

0  0   0 (n-l)b 

(4) 

The case b-1 has been referred to as the narrow-sense BCH codes. 

.m Codes of length n = q -1 are called primitive BCH codes, 

10 



It is obvious from comparina both parity check matrices of 

form (3) and (4) that the BCH codes are special cases of the 

alternant codes characterized by 

x. = a    , i = 1,2,...,n 

and    y. = (ab)1=1 

^ 1 0 

/ 

b) Generalized BCH codes 

Let x be a primitive nth root of unity in GF(q'), then for 
n-1   . 

any a(x) = T a.x with an,a,,...,an -, in GF(q), the Mattson- 
i=0        u '    n~' 

Solomon polynomial - Fourier transform - a(x) with respect to a 

is defined as 

n-1 
A(Z) = I    A.Z1 , with A. e GF(q), 1=0,1 n-1 

1=0 1        n 

where A. = a(a1). Conversely, the inverse Fourier transform of 
n-1   . ,   . 

any A(Z) is a(x) = 7 a.x , where a. = n A(a ), i=0,l,2,...,n-l. 
1=0 1       n 

Based on the Mattson-Solomon polynomial, another class of error- 

correcting codes is proposed in 1975 by Chien-Choy as alpebraic 

generalization of BCH codes. The aeneralized BCH code of lenqth 

n over GF(q) associated with polynomials P(Z) and G(Z) is defined 

as follows - P(Z) and G(Z) being polynomials with coefficients in 

GF(q) relatively prime to xn-l with deg P(Z) <_ n - 1 and 

11 



dea G(Z) <^n - 1. The code consists of all v(x) with coefficients 

in GF(q) and degree less than n-1 such that the Mattson-Solomon 

polynomial V(Z), derived from v(x) satisfies: 

[V(Z)P(Z)]n =   0  mod G(Z) 

where [V(Z)P(Z)] = V(Z)P(Z) mod xn-l. Let p(x) and g(x) be 

polynomials over GF(q) associated with the Mattson-Solomon poly- 

nomials P(Z) and G(Z), respectively such that: 

o n 1 
p(x) = pQ + p^ + p2x + ... + pn-]x " 

,^ _ ..2 ,    . .  ..n-1 
g(x)=g0 + g^x'* g2x + ... + gn_.,x 

The parity check matrix of GBCH code with associated polynomials 

P(Z) and G(Z) is derived as 

p0g0 

Pn9 030 

P090 

P191  ex p2g2 a" 

■1  n  „ -1 -2 n n  -1 -4 
P-|9-j  a P2Q2  a 

P191  ex p2g2 a 

Poqo 
n n -1 -t  n n -1 -2t 
P]9-j a    P2?2 a 

Knyn 

n „ -1 -2(n-l) 
• -^n a 

n „ -1 -3(n-l) P Q  a Knyn 

n n -1 -t(n-l) 
n n 

12 



i   -1-2 
1   a   a 

,   -2  -4 
I   a   a 

,   -3  -6 
I   a   a 

(n-1) 

■2(n-l) 

-3(n-l) 

1       a 
-2t 

a 

Po9o_1 0 

0 hgi 

0 0 

a 
-t(n-l) 

P99 
-1 

2y2 

0 

0 

0 

0 

pn-lgn-l 
■1 

(5) 

with t = deg G(Z). 

Notice that the GBCH code with associated polynomials 

P(Z) = zb+(t_1^ and G(Z) = ll  is the BCH code with cfb, a"^b+1^ 

a
_L I - )1  5eing the zeroes of its generator polynomial. In 

fact, let p(x) and g(x) be polynomials associated with P(Z) and 

G(Z) respectively: 

pW-ltHx-P**-' > W2^'*"1 »x2*.. ..a-'""1 HHt-1 )3x"-l] 

and 

g(x)=kl+a"tX+a"2tX2+...+a-
(n-1)tXn-l] 

13 



-1[b+(t-l)]        -it 
Substituting each p. = £        and g. = ~ 3     l  n 3i  n 

i = 0,l,2,...,n-l in HGBCH (5) yields: p.g."1 = a -1 . -i(b-l) 

-1 

,   -2   -4 
I   a     a 

,   -3    -6 
I   a     a 

. a -(n-1) 

. a 

. . a 

-2(n-l) 

•3(n-l) 

1   "t   -2t      -t(n-l) I   a     a    ... a     ' 

1   0 

0 

0  0 

■0>-l) 

0  0 

■2(b-l) 

0 

... 0 

-(n-D(b-l) 
J 

14 



or 

1   a 
-b -2b -(n-l)b 

■0>+l) a 

-(b+2) 

■2(b+l) 

■2(b+2) 

. . a 

. . a 

-(n-l)(b+l) 

!  0-Cb+(t-l)]  o-2[b+(t-l)] 

(n-l)(b+2) 

■(n-l)[b+(t-l)] 

■1 which is identical to HBCH (4) except that a  is replaced by a 

By letting x1 = o"^
1"1^ and y.  = P^-,^^ cT^1'1^ in (5) 

i = 1,2,...,n and comparing with the matrix in (3), it is seen 

that, indeed, the generalized BCH codes are subcodes of the 

alternant codes. 

c) Generalized Srivastava codes 

Another important class of alternant codes are the general- 

ized Srivastava codes. 

It is a linear code with symbols from GF(q), having the fol- 

lowing parameters: 

Block length: n <_ qm - 1 

Number of information symbols:  k ^ n - mst 

Minimum distance: d >_ st + 1 

given n + s distinct elements a,,a2,...,a ,w,,w„,...,w of GF(qm) 

and n nonzero elements z-,,z„,...,z of GF(qm), t being a positive 

integer. It is defined by the parity check matrix: 

15 



H GSR = (6) 

where 

h= 

a
l " w£   a2 ■ w£  * ' ' an ' "l 

2, Zp 

(a-j - W^)   (a2 - W^)  . . .(a„ - Wp) 
n  2 

(7) 

Zl Z0 Z
n '   t    c.       t       n   t 

(<*! - W^)   (a2 - W^)  . . .(ap - W^) 

for I   = l,2,...,s. 

The original Srivastava codes are the special case t = 1, 

z.. = a..y for some intener u and have the parity check matrix 

'SR 

Cti a2 

a-, - W,  a2 ~ w1  • • •  an ~ wl 

al      a2 

a-j - w2  
a2 " w2 * ' ' an " w2 

al      a2 a_ 

al " ws  a2 " ws ' ' ' an " ws 

16 

(8) 



s     t 

By substituting g(£_1)t+k (x) = J^ )k   and 

Zk X l 
y. = —  for I  = 1,2,...,s, k = l,2,...,t and 

..!,(ai-wj)t: 

0=1 

i = l,2,...,n in the parity check matrix (1), one obtains a 

parity check matrix identical to the one on the previous page (8). 

This shows that the generalized Sristava codes are indeed, sub- 

classes of the alternant codes characterized by these st poly- 

nomials g.(x) over GF(qm) i = l,2,...,st. 

d) Goppa codes 

This is an interesting subclass of alternant codes, which is 

specified by a Goppa polynomial G(x) with coefficients from GF(qn) 

and a subset L = {a-. ,ap.-.-»a } of GF(qm) such that all a- in L 

are not zeroes of G(x). 

The Goppa code consists of all codewords (a,,a«»...»a ) over 

GF(q) such that 

w   ai_ E 0 mod G(x) (9) 
X - a. I 

i = l  A   1 

and has the following parameters: 

Block length: n = |L| < qm - 1 

Number of information symbols: k >^ n - mt, t = deg G(x) 

Minimum distance: d > t + 1 

17 



The parity check matrix, derived from the above relation (9) is 

defined as follows: 

H Goppa = 

gtG(ai)
_1 

(Pt_l
+al9t)G(airl 

9tG(an) 
-1 

(9t-l+Vt)G(anrl 

(g1+o1P2+...+aJ'Jt)G(o1)'
1. . . (g1+ang2+...+cx|J"lt)G(an)'

1 

gt  o ... o 

g._,  g+ . . . 0 't-1  yt 

9l   92 * " ' 9t 

G^f1  0 

G(aJ -1 

1     1 * * 1 

al    a2   ' • ' an 

t-1   t-1      t-1 
al    a2   * ' ' an 

0 

0 

• • G(on) 
-1 

(10) 

18 



As is shown in the Appendix, a much simpler parity check matrix 

which defines an identical code is 

H 
Goppa = 

1 1   ... 1 

a,     dp 

t-1    t-1 
al    a2   * 

t-1 

G^)'1  0 

since the matrix 

gt   0 ... 0 

qt_1  qt . . . 0 

9o • • • 9i 

is nonsingular. 

. 0 

G(a9)  . . . 0 

0       0      ... G(a ) 
n 

-1 

(11) 

19 



By comparing with the parity check matrix (3), this is obvi- 

ously an alternant code of length n with x^ = a. and y. = G(a.)" , 

3.  Relationship between subclasses of alternant codes 

Some of the very  interesting classes of code, namely the 

generalized BCH codes, Goppa codes and generalized Srivastava 

codes, have been reviewed and briefly discussed in the precedina 

section, but in addition to being subclasses of the alternant 

codes, these error-correcting codes do exhibit certain connections 

between each other. 

In this section, we consider primarily codes which are in- 

cluded in several classes of codes. 

a) "generalized BCH codes and Goppa codes 

Recall the parity check matrix of Goppa code defined in (11). 

Let a. = a *1- ' with a being a nonzero element of GF(qm) of 

order n, for i = l,2,3,...,n and the Goppa polynomial G(x) = x . 

Substitution in (11) yields: 

r 
1  1 . . . 1 

H Goppa = . a -(n-1) 

a -(t-1) . a -(n-D(t-l) 

1  0 . . 0 

0  a . . . 0 

0 (n-l)t 

20 



,   t       (n-l)t 
I   a   ... a 

1   a 
t-1 (n-D(t-l) 

n-1 1   a   ... a 

after reorderina of the matrix rows: 

1  1 

1  a1 

. . . 1 

•  •  • a (n-1) 

1  a^ . . ..(t-lHn-1) 

1  0 . . . 0 

0  a . . . 0 

0  0 ... a n-1 

A quick glance at the parity check matrix (4) reveals that this 

is a BCH code corresponding to the case b = 1. Hence, the narrow- 

sense BCH codes are contained in both the classes of generalized 

BCH codes and Goppa codes. 

Another class of codes is found to be included in both 

generalized BCH codes and Goppa codes. Consider the parity check 

matrix of the generalized BCH codes of form (5). 

21 



-1  n/ "I* -1 Substituting pi = n" P(a" ) and g.. = n"^r6(a_1) into (5) 

yields: 

i   -1      -(n-1) I   a   ... a    ' 

H GBCH = 
,   -2      -2(n-l) 

T   -t      -t(n-l) 

PdjG"1^)  0 

P(a_1)G"1(a-
1) . 0 

0 PU-^W^-1*) 

P(l)  a-1P(a-1) . . . a-^PU-^-1)) 

P(l)  cf^cf1) . . . a'^-Vpia-^h 

P(l)  cf^a"1) . . . a-^'^Pia-^h 

22 



= «"' n/_-1 •1 ^/ -i Substituting pi = n ' P(a"') and g. = n"1 G(a_1) into (5) 

yields: 

-1      .-(n-1) 

H 6BCH = 

I   a   ... a 

1   a"2 . . . a"2("-D 

1  a"* . . . «-t("-D 

Pd-JG'^I)  0 

PU'W1) 

PCa^^W^) 

P(D   a-Mcf1) • • • a-^-^PU"^-1)) 

P(l)   a^PCa"1) . . . a-2(n-1>P(a-
(n_1)) 

P(D  a'fya"1) . . . a-t(n-1)P(a-(n-1)) 

22 



G^O) 0 

G-V1) 

0 

0 

. G-V^) 

Let P(x) = xn"\ then P(a_1) = a1, i = 0,1,2 n-1 

'GB 

1  1 

1  a -1 . a -(n-1) 

a (t-1)      -(t-D(n-l) . . a 

1 G '(1)   0 

0 G-V1) . 

G-V*"-1)) 

A comparison with the parity check matrix in (11) shows that this 

is the special case of Goppa codes with a. = a * ~ ' t  for 

i = l,2,3,...,n , a being an element in GF(q ) of order n, and the 

Goppa polynomial G(x). 
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b) Goppa codes and generalized Srivastava codes 

Recall that the original Srivastava codes are the special 

case of the class of generalized Srivastava codes with z. = a.p 

and t = 1, y being an arbitrary integer and defined by the parity 

check matrix (8). It is interesting to note that a particular 

subclass of the above code, namely the one characterized by y = 1, 

is contained in the class of Goppa codes. In fact, after substi- 

tution y = 1 into (8): 

a, 

°1 Ws  a2 - ws 

al  " Wl a«  -  W-i   . • an " wl 

HSR(y=l) = 
al a2 an 

al   " W2 a«  - w«   . '   •  % ~ w2 

a 1 a. 

a - W 
n   s 

Since the row space of the parity check matrix is invariant by 

multiplication of any row of the matrix by a nonzero element of 

GF(q ), multiplying every i  row of the above HSR(y=l) by'w.. 

m, w., i = 1,2,3,...s being distinct and nonzero elements of GF(q ), 

gives: 
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a-iW n       a2wi 
a, - W,   a« - W, . 

alW2 
a?Wp 

al ~ W2  a2 " w2 ■ 

alws    a2ws 
al • ws  a2 ■ ws * 

anwl 

' an * wl 

anw2 
an "w2 

n s 

n  s 

or, since a.w. f  0 for i = l,2,3,...,n , j = l,2,3,...,s< 

1      1 1 
T   ^T    .. -1   -1 . . . .. -1   -1 w,  - a,    w,  - a« 

TT rr 

1 1 
w -1 - a -1  W -1 - a -1 ws   al   ws   a2 

wl  " an 

T   T . . . ~^T   ^T 
W2  - Q]    w2  - a2       W2  - an 

i 
W -1 - a -1 
s    n 

which is the alternate form of the parity check matrix of the 

Goppa code specified by the subset L = {a,~ ,a2~ ,...,a " } in 

'     s     -1 
GF(q ) and the Goppa polynomial G(x) = TT (X-W.~ ) (see Appendix 

i=l   1 

on the Tzeng and Zimmerman derivation). Adopting the same ter- 

minology as when we discussed the relationship between GBCH and 
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Goppa codes, we would say that the narrow-sense Srivastava codes 

are contained in both Goppa and generalized Srivastava codes. 

c) Generalized BCH and Srivastava codes 

A much larger class is found to be included in both the   _ 

generalized BCH and Srivastava codes. Consider the parity check 

matrix of the generalized BCH codes in (5) and let {z,,z2>...,z } 

be nonzero elements of GF(q') and all distincts from the a , 

i = 0,1,2,...,n-1 and the associated polynomials P(x) and G(x) be 

+i   n-1   i 
a JZ. ,  u (x-a) 

n-1   J     1J? 
P(X) = I    1^  

■n   (a -a ) 
i=0 

and 
s 

G(x) = IT (x-w.) , w, ,w9,...,w„ beinq distinct elements •_1    i    i L s 
i    -i 

from the a., i = 0,1,...,n-1. Since P(a ) = a z.+, f  0 for 

i = 0,1,2,...,n-1 , it is obvious that P(x), thus defined, is rela- 

tively prime to x - 1, hence satisfying the restriction on 

P(x). Similarly, G(ak) = * (c^-w.)* f  0, G(x) is also relatively 
i=l n 

prime to x -1. 

Substitution of PCa1) = a_1z. and G^1)    =    TT (c^-w.)* in 
1 j=l J 

the parity check matrix (5) yields: 
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1       a 
-1 (n-1) 

1       a -2 ■2(n-l) 

• • 

1       a •st -st(n-l) a 

z^-'O)        o 

Z.G'^a"1) 0 

0 0 • a<n*l>z«f1(«-(n-1)> 
n 

or 

G^O)      G-^a"1) 

G^O)       G'^a'bo'1 

G(a-(n-1}) 

G(a-(n-l))a-(n-l) 

G^d)      Gil(«-1)«-(st-1)   •   •   . Gia-^h-^^-V 
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z1  0 . . . 0 

0   z2 • • • 0 

0  0 . . . z 

= AZ. 

As was shown by Tzeng and Zimmerman (see Appendix) the matrix 

A is row equivalent to 

fl 

A, 

A. 

where 

A„ = 

1 1 
-1 

(1 - w£)   (a" - w^) 

1 1 

(1 - v^)2  (a-1 - w£)
2 

1 

(1 - W^)*   (a"1 - W^)* 

1 

(-■(n-1)-w^) 

(."^V 

(a-^'lw/ 
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for I = l,2,3,...,s , which, multiplied by z, gives: 

Hl 

Ho 

where 

h- 

0 - w£) 

(1 - w^)' 

■1 

(a  - Vit) 

(a"1 - W£)
2 

(1 - w^)*  (a"1 - w^ 

. (a W£) 

(a 

zn 

w£) 

.«v 

(a 

z • n 

w£) 

Obviously, in comparing with the parity check matrix in (7), it 

can be seen that the above matrix defines a special class of 

generalized Srivastava codes specified by: 
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zrz2"*-'zn 

, -1 -2    -(n-1)   / _ -(i-1)  ..loo   n\ 
I ,a  ,a  ,...,a va.'~a      » 1 - l.£»o,...,n; 

Wi >Wp»•..,w 

where a is an element of GF(qm) of order n. 

B.  Constructing error-correcting codes by Lagrange's interpolation 

In addition to defining error-correcting codes by means of 

the parity check matrix as we have so far presented, there are 

other basis of defining codes, namely the Lagrange's interpolation 

T3l proposed by Tzeng and Zimmerman1- J and the generalized interpola- 

tion and transformation method introduced by Mandelbaum. J 

The equivalence between the alternant codes and the general- 

ized Goppa codes, which are the generalization of Goppa codes 

based on the Lagrange's interpolation is established by Tzeng and 

T3T Zimmerman1- J; the purpose of the following section is to present 

a description of the Lagrange's interpolation formula, a proof of 

how the Mattson - Solomon can be derived as a special case as well 

as a brief summary of the relationship of generalized Goppa codes 

with other codes. 

1) Generalized Goppa codes: 

Let (a,,a2»a3,...,a ) be an n-tuple with a. in GF(q), 

i = l,2,3,...,n , q being a power of a prime, and {a,,a2>...,a } 

be a subset of GF(q ). Then the Lagrange's interpolation formula 
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associated with (a,,a2,...,a ) is defined as follows: 

n n n 
(12) 

j7i J7i 

B(x)     =     I     ai   (   ir   (x-a.)   /     TT     (a.-a.)) 
1=1      n     j=l J j=l        1     J 

This is a polynomial of degree less than or equal to n-1 over 

GF(qm) such that B(a.) = a. for i = l,2,...,n. Let 
n n 

L(x) = IT (x-cx-) and L.(x) = TT (x-a.) = L(x) , then 
1=1   n     ]     j=l   ^ x-a. 

n    L.(x) B(x> = I   ai rV) i=l 1 W 

It is rather easy to show that the Lagrange's interpolation formula; 

thus defined, (12) or (13), is the generalization of the Mattson - 

Solomon transform. 

Recall that the Mattson - Solomon polynomial of the poly- 
n • i 

nomial a(x)    =    I    a.x "   with coefficients a. in GF(q ), or of 
i=l 

the n-tuple (a,,ap>-•.>a ) is: 

n-1 
A(x)    =    I   A.xJ 

j=0    J 

where A. = a(aJ), a being a primitive n  root of unity in GF(qm) 
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Thus: 

n-1 n 
A(x) = I      I    a.a 

j=0 k=l K 

n -'  n-1 

J(k-l)vj 

k=1 K j=0 

n   n-1 

J(k-l)J 

k-1 I a I    (cT'x) 
k=l K j=0 

k-l^n 
t  x; 

k=l  N ak_1X - 1 

V a (a  x) - 1 
i- ak  k-1. 

n-1 / k vn  , 
y a (« x)" - 1 

u n k+l k . k=0 a x - 1 

Let a" be the n  root of unity for i = 0,1,2,... ,n-l, then 

(ak X)" - 1  _  (akX-l)(qkX-a~1) . , 
k   . k  , 

a X - 1 a X - 1 

(a X-a    ') 

_  k(n-l) n'] .      -(i+kh 
= a    'it     (x-a    ') 

i=l 

or, changing the index: 

n-1    ,• 
u (x-a ^ 

i=0 

- ^k 

"   -k(n-l) 
(14) 

Since ^ (xn-l) = nx n-1 

^[(x-l)(x-a"1)...(x-a"(n-1))] 
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n-1 n-1 
-     I       ir     (x-ct"1) 

k=0 1=0 
1*k 

it follows that letting x = a     gives 

or 

n -k(n-l)    _ n_1  , -k    -i\ na =     it     (a     -a     ) 
i=0 

-k(n-l)       _    1    TT     (a K-a ') 
a n i=0 

i7k 

Substitution into (14) yields: 

-l 

(akx)n - 1 

akx -  1 

n-1 
TT        (X-O"') 

1=0 
n    iyk  

n_1  t "k     -U n     (a    -  a     ) 
1=0 
i*k 

Hence: 

-l 

n-1 

£    ak+l        k 
k=0    K+l     ax -  1 

(« X)"  -   1 

\l *"♦' "-1 

n-1 
TT        (X-Cf') 

1=0 

i -k    -i, 
it     la    -a    ) 

i=0 
i7k 



and after replacing k + 1 by i and l + 1 by j 

" (x-a-"-1)) 

n j=l 
=  "  I  an  n ■ .• i i n i=l ' " , -(i-1) -(j-lh 

■n   (a   v   '-a w ') 

j = l 

-(k-1) 
Let a v     ak ^or ^ = l»2»3,...,n , one gets: 

n 
ir (x-a.) 

j=l  J 

A(x) - n I a. &  
i=1 

TT (a.-a.) 
j=l  n  J 

#1 

and from (12) = B(x). This shows that the Mattson - Solomon 

polynomial is a special case of the Lagrange's interpolation by 

restricting a. = a~'1- , for i = l,2,3,...,n, where a is the 

primitive n  root of unity. 

Let P(x), G(x) be polynomials over GF(qm) of degree less 

than or equal to n - 1 and relatively prime to L(x). The general- 

ized Goppa codes are defined as the set of (a, .a^j.-^a ) over 

GF(q) such that 

[B(x)P(x)]L(x) 5 0 mod G(x) (14) .^x) 
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where B(x) is the Lagrange's interpolation formula of the n-tuple 

(a,,ap,..•,a ) and 

B(x)P(x) s [B(x)P(x)]L(x) mod L(x) 

Let (p,,p2,...,p ) and (q,,g_,...,Q ) be the n-tuple obtained by 

the inverse Laorange's interpolation formula of P(x) and 6(x) 

respectively, the generalized Goppa code described by (14) is 

specified by the parity check matrix. 

al a2 

1 

a_ 

al 
t-1 a2 

t-1 a n-1 

Pi9 
•1 

lyl 

L'Co,) 

0 P2g2 

L'(a9) 

p g pnsn 

(15) 

where deg G(x) = t. Comparing with (3), it can be seen that the 

equivalence between the generalized Goppa codes and alternant 

codes is easily established by lettina x. = a. and 

-1 p.q 

L'Ca^ 
for i = 1,2,3,...,n (16) 

35 



Applying the Lagrange's interpolation on both sides of (16) 

yields: 

Y(X) = Pfe£i(xl. (17) 
L'(x) 

Y(x) being the Lagrange's polynomial associated to the n-tuple 

(yi,y2»....y )• Relation (17) can be rewritten as: 

P(x) = Y(x)L'(x)G(x) mod L(x) (18) 

Given the alternant codes as specified by the parity check matrix 

(3), one can construct the equivalent generalized Goppa codes as 

fol1ows: 

i) Select the subset {a,,a2>...,a } as defined by (3). 

ii) Then select a polynomial G(x) of degree t with coef- 
n 

ficients in GF(q ) which is relatively prime to L(x) = TT (x-a.) 
i=l   1 

An easier way to define G(x) is: 

t 
G(x) = TT (x-3.0 

i=l   n 

with 3. e GF(q ) - {a-j .oo,, • • • .a } 

iii) Compute P(x) as 

P(x) = Y(x)L'(x)G(x) modulo L(x) 
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where 

Y(x) = [y^ 
1=1 ] n 

ir (x-a.) 
k=l   K 

MI- 

TT (a^-a. ) 
k=l 1 K 

Mi 

Since L'(x) is relatively prime to L(x) and Y(x.) = y. t  o for 

1 = l,2,3,...,n, hence Y(x) is also relatively prime to L(x), 

P(x) = Y(x)L'(x)G(x) is relatively prime to L(x) as required. 

Thus the equivalence between both codes is completely 

established. 

2.  Subcodes of the generalized Goppa codes 

a) Goppa codes 

Let P(x) = L'(x) , then 

P^r1 _ rhis-1^) . G-i(- > 
TTT^l VT^Y 

and the parity check matrix (15) becomes: 

G''(ai)   0 0 

al a2 
,-l 0     G"l(a2) ...  0 

t-1 
a2 

t-1 
• tx. 

t-1 
. . . G (an) 

37 



This is the Goppa codes specified by the subset L = {a,,ap,...,a } 

of GF(qm) and the Goppa polynomial g(x) = G(x) over GF(qm) of 

degree t. The relation defined in (14) thus becomes: 

[B(x)L'(x)] L(x) 0  mod G(x) 

If one restricts the a. to be a' 

.th 

b) Generalized BCH codes 

, with a being a prim- 

itive n1"" root of unity, then the Lagrange's polynomial becomes 

= na 
I 

The parity check matrix in (15) thus becomes: 

the Mattson - Solomon polynomial and L'(a.) = na. n-1 _ _.+(i-l) 

1  1 

-1 a 

Pi9 
-1 

rji 

P2g2 
-l 

na +1 

0 

1 

a (n-1) 

.-(t-1)     -(t-l)(n-l) . . . a 

^n3n 
-1 

na ̂ wn 
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or 

I   a   ... a ■(n-1) 

n x ■■2(n-l) 

-t -t(n-l) 

P^l 

0 

-1 0 

P292 
-1 .  0 

Pn^n n n 
-1 

(19) 

where p.-.g.- i = l,2,...,n are coefficients of the polynomials 
n-1   ' -1 n-1    . 
I   p. ,x , 7 gn-.iX

J associated with the Mattson - Solomon poly- 
j=0 J+l   j=0 J+l 

nomials P(x) and G(x) respectively. 

After multiplying the parity check matrix in (19) by n , 

which leaves its row space invariant, it is easily seen that the 

above matrix defines the generalized BCH codes specified by the 

subset {l.^.a'2,.../'"*1'} in GF(qm) and the pair (P(x),G(x)) 

both being polynomials over GF(qm) and den P(x) <_ n - 1 deq g(x)=t. 

Since the BCH codes are contained in the Generalized BCH 

codes, it is obvious that they are also subcodes of the genera- 

lized Goppa codes. 
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C.  Method of generalized interpolation and transformation 

proposed by Mandelbaum 

Another approach, which was introduced by Mandelbaum recent- 

ly   , in defining error-correcting codes is based on Chebyshev 

system which is essentially a set of selected polynomials over 

6F(q ) called the generating polynomials of the codes. 

In a sense, codes generated by this method can be regarded 

as a generalized version of polynomial codes proposed by 

Goethals.^ 

1.  Polynomial codes 

Let a,,a9,a-,...,a be n distinct elements of GF(q ) and 
n1 c    J    n 

" ,-Z-i (x-a.). Let F(x) be a polynomial with coefficients 

in GF(q ) and denote F(x), the reduced form of F(x) modulo L(x). 

Then, from the Chinese Remainder Theorem, 

F(x) = I    F(a.) I Ax)/.   ,    ) (20) 
i=l   1 ^       LVai} 

where 

Li(x) = T^T ' 1 = 1'2'3'---'n 

(Notice this is the Lagrange's polynomial associated with the 

n-tuple (F(a-j ),F(a2),... ,F(a )). Hence, the set of n polynomials 

{n.j(x) = ^ ) ;
T , i = l,2,3,...,n} form a basis of the polynomial 
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algebra GF(qm^[x]/L(x), where GF(qm)[x] is the set of polynomials 

with coefficients in GF(qm), on the other hand, any polynomial 

F(x) is uniquely expressed in GF(q )[x]/L(x) as a polynomial of 

degree less than n: 

_    'n-1 
F(x) = I    c.x1 (21) 

i=0 1 

Thus, equating (20) and (21): 

n n-1 
I    F(a )n (x) = I   c.x1 

1=1     1     :      i=0  1 
(22) 

The relation (22) describes the transformation betv/een two basis, 

namely the basis {n..(x), i = l,2,...,n} and the one {x1, 

i = 0,1,2,... ,n-l}; in other words, relatively to the basis 

{n.(x), i = l,2,...,n} F(x) has as coordinates with respect to 

the basis {x1, i = 0,1,2,...,n-l} take the values c., 

i = 0,1,2,. ..,n. Let I = {i, ,ip>- • • >\)  be a subset of the set 

of integers {0,1,2,...,n-l} and (F(x)} be polynomials with coef- 

ficients in GF(qm) such as: 

F(x) = I    c.x1 

iel n 

The polynomial codes specified by the subsets L = {a,,a2>-..,a } 

and I = {i, ,1'pj-•• >ik) consist of codewords (F(a, )»F(a2)>... ,F(a )) 
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with F(a.) being element of GF(q ), i - l,2,...,n. Goethals called 

these codes the images of subspaces of GF(q )[x]/L(x) with respect 

to the Lagrangian basis (n.(x), i = l,2,...,n}. Since 

^(O = I c-iak > k = l,2,...,n, it can be seen that: 
lei 

(F(a1),F(a2),...,F(an))  = 

a, 

V C. , C. jC. »•••jC. ) 
nl n2 ^    \ 

al a, 

a. a. 

(23) 

= c x G 

If one considers the coefficients c_. , j = l,2,3,...,k as the k 

information symbols, then the polynomial code has the following 

.m 
parameters: 

Block length: n <_ q"' - 1 

Number of parity check symbols:  n - k 

Minimum distance: d >_ k + 1 

having as generator matrix, the matrix G. 
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2.  Mandelbaum's codes 
i. 

Let's generalize each of the x J into gj(x) i = 1,2,3,...,k 

v/ith g-(x) being polynomial over GF(qm). An additional requirement 

is that these g^(x) are independent functions and that no non- 
J      k 

tivial function (}>(x) = I   c.q.(x) , e.a. not all the c.'s are 
1=1 1 1 1 

zeroes, has more than k - 1 different roots in GF(q ). Hence, 

from (23): 

(F(a1),F(a2),...,F{on)) = 

1 '^*?* * * * '**k' 

Q-\(<*-\)       9^(a2) • • • 9-l^an) 

92(
ai)  92^a2^ g2(«n) (24) 

gk(ttl)  gk(a2) . . . gk(an) 

The codes, as defined in (24) by Mandelbaum,  -* are characterized 

by the following parameters: 

Block length: n <_ qm - 1 

Number of parity check symbols:  n - k 

Minimum distance: d >_ k + 1 

as in case of polynomial codes. In a sense, polynomial codes are 

said to be special cases of Mandelbaum's codes (24). Mandelbaum 

called the set of the above k functions, as defined previously, 
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a c-system (Chebyshev system).    If one allows the. original  c- 

system {g,(x),g2(x),...,g.(x)} to be lengthened to a larger c- 

system (g1(x),g2(x),...,gk(x),gk+1(x),...,gn(x)}, then the rela- 

tion  (24) can be rewritten as: 

0^(0^) + c2g2(ai) + ...-+ cngn(ai) - F(ai)    =   0 

c1g1 (ct2) + c2g2(a2) + ... + cngn(a2) - F(a2)   =   0 

clgl(an) + c292(an) + •" + cngn(an} ' F(an}    =    ° 

c^U)   + c2g2(x)   + ... + cpgn(x)    - F(x)     =   0 

(25) 

This is the set of n + 1 homogeneous equations having nontrivial 

solution (c, .c^Cg,... ,cn,-l). The determinant must then vanish. 

g^^) g2(a-|) . . . gn(a-|) F(a-j) 

9l^a2^  92^a2^ * ' ' gn^a2^  F^a2^ 

9lK)  92(«n) . . . gn(an)  F(an) 

g-,(x)  g2(x) . . . gn(x)  F(x) 

= 0 
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Expanding on the last row gives: 

DF(x) 

9-|(a2) 

g2(a1 ) . . . gn(a1 )   F(a.j) 

g2(a2) • 9n(
a2)  F^a2^ 

gl(an} h^  ' ' ' 9n
(an}  F(an) 

g^x)  g2(x) . . . gn(x)   0 

with 

g-j(a-j) g2(
a]) • • • 9n(

ai) 

g1(a2) g2(a2) . . . gn(a2) 

gl(an)  92(an) ' ' • W 

Solving for F(x) after expanding (26) on the last column: 

(26) 

F(x) - '+ J F(a.) v.(x) 
i=l   1  1 

(27) 

with 
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g-j (oi-j)       g2(
a-|) '  9n

(ol) 

v^xH-D^V1 

9l(a1-l)        92(o1-1) Vai-1} 

gl(ai+l)       g2((W VW 

gl(an} 

g^x) 

S2(«n) gn(an} 

g2(x)        .   .   . gn(x) 

(28) 

Hence, the basis of constructing error-correcting codes proposed 

by Mandelbaum is another form of interpolation which maps the 

n-tuple (F(a,),F(a2),...,F(a )) relative to the basis 

{v,(x),v2(x),...,v (x)} into the n-tuple (c,,c2,...,c ) relative 

to {g1(x)sg2(x),...,gn(x)}. 

The purpose of the next section is to identify the relation- 

ship between both interpolation formulae; namely the ones prop- 

osed by Tzeng, Zimmerman and Mandelbaum (13), (28). Once the 

relationship is established, codes constructed on these basis will 

be shown to be equivalent; furthermore, since the connection be- 

tween the alternant codes and the generalized Goppa codes is al- 

ready identified, establishing the equivalence between Mandelbaum's 

codes and the alternant codes is rather straight-forward. 
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III. Relationship Between Codes Based on Lagrange's Interpolation 

and Generalized Interpolation 

A.  Generalized Srivastava codes as subcodes of generalized 

Goppa codes 

Several important classes of codes have been identified by 

Tzeng and Zimmerman1- J as subcodes of generalized Goppa codes, 

including Goppa codes, generalized BCH codes as well as BCH codes. 

There is, however, an important class of codes which has not been 

explicitly mentioned among subcodes of generalized Goppa codes, 

namely the class of generalized Srivastava codes. 

Recall that by letting y. = —  , i = l,2,3,...,n 

jl, ^"^^ (29) 

and 
t 

* (x-w.) 
i~l 

g^_-jjt+k (x) = ^ £— for I  = 1,2,3,. ..,s, and 
'/ 

k = l,2,...,t (8), it was shown that the generalized Srivastava 

codes are subcodes of the family of alternant codes. "On the 

other hand, the equivalence betv/een the alternant and general- 

ized Goppa codes implies that the latter must also contain the 

generalized Srivastava codes as its subclass. 
s     t 

Let G(x) = -n    (x-w.) and y(x) be the Laqranoe's poly- 

nomial associated with the n-tuple (y,,y2».••»y ) as specified 

in (29). 
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Let P(x) = y(x)L'(x)G(x) mod L(x) where L(x) denotes the familiar 
n 

polynomial TT (x-a.) over GF(q ). 
i=l   1 

The qeneralized Goppa codes specified by (G(x),P(x)) and the 

m, subset L = {oi.api....^} of GF(q ) have as parity check matrix 

(from (15)): 

al 

n^r 

0 

a. 

a2 

P292" 

a3 

st-l   st-1   st-1 
a1     a2     a3 

plgl 

. 1 

a 

• a_ 

• • a_ 

• a. 

pn9n 
-1 

' '^nT 

st-1 

(30) 
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Let P(x) and G(x), as defined above, be the pair of poly- 

nomials of generalized Goppa codes. Then: 

P.g."' P^jG-^a.) 

= y(^) 

■n     (a.-W.) 

j=l  '  J 

for i = 1,2,3,...,n. 

Substitution into (15) yields: 

1 1 

t t 
TT   (a,-W.) u   (a«-W.) 
i=l      '     J j=l     d     J 

al al 

OCi 
St-1 

a2 
st-1 

1 

TT   (a  -W.) 

j=l     "     J 

°1 
t 

IT   (a,-W.) TT   /a yt   .   .   .     ir  (a -w.) 
j=l     '     J J=l(  2 V i=l     "    J 

a_ 
St-1 

A'vV1  j=i<vw/-- -j^vV* 

z,    0 ... 0 

0     z. 

• • 

0 

0     0 .   .   . z. 

(31) 

=    AZ 
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A comparison with (11) shows that the matrix A, as defined by 

(31), is, in fact, the parity check matrix of the Goppa code ^ 
s     t 

specified by the Goppa polynomial G(x) = v    (x-w.) and the 
j=l   J 

subset L = {a,,a2,...,a }. Such Goppa code is the intersection 

of the codes with G.(x) = (x-w.) for j = l,2,3,...,s. 

Hence, the matrix A is row equivalent to: 

1 

where 

V 

1 

ll 

1 

a2 

t-1        t-1 
al a2 

1 

(«! ~\)1      (ag -.w^* ' ' " («„-**,/ 

(«! " Wk)*  (a2 - wk)
t " ' ' (an - W,/ 

t-1 

(«! "W^*.  (a2 -W^)* (an " wk ̂ J 
for k = 1,2,3,...,s, which in turn, is row equivalent to (see 

Appendix): 
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Ak= 

1 1 

h - wk)   (a2 - wk} 

i i 

(al " wk)2 <a2 " \)2 

K - wk} 

K - wk} 

(a
l "Wk}t (a2-wk}' K " Wk> 

for k = l,2,3,...,s. Consequently, codes defined by AZ are ident- 

ical to those defined by the following parity check matrix: 

H = 

where 

H 
1 

V 

(<*! - Wk)    (a, - Wj -1     "k' 

1 

h • wk)2   <a2 • wk)2 

z
l        z2 

(an " wk} 

x n  k' 

(oi - w. )   (o9 - w. )     (on - w. ) n  "k' 
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for k = l,2,3,...,s, which is dentical to (7). It shows that 

this is, indeed, the generalized-Srivastava code specified by 

a,,a?,...,a ,w.,w?,...,w , all distinct elements in GF(q ) and n 

nonzero elements z,,Z2>...»z of GF(q ). Hence, the code is a 

subclass of generalized Goppa codes. 

B.  Connection between generalized interpolation and Lagrange's 

interpolation formula 

1)  A special case of generalized interpolation 

Recall the interpolation formula introduced by Mandelbaum 

in (27) 

F(x) = I    F(a.)v.(x) 
i=l   1 n 

where 

F(x) = I   c.g.(x) 
i=l 1 1 

A special case of generalized interpolation, namely that all the 

functions g,(x),g2(x),... ,g (x) are restricted to be polynomials 

of degree n - 1 or less over GF(qm) will be considered in this 

section. 
n-1   k 

Let each q.(x) = I    o, .x where ob. are coefficients in 
-i      k=0 Kl        Kl 

GF(qm) for i = l,2,3,...,n and k = 0,1,2,...,n-1. Then v^x), 

as defined in (28), is reduced to: 
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v.j(x) = (-1) 
n+i 

1  a, 

•     • 

• Oti 

, 2      n-1 
1  «i.!  «i-! • • • ai_! 

, 2      n-1 
1  «i+1  «.+1 ... a.. 

1   a. 

1   X 

1  a, 

1   a. 

•      • 

1   a. 

n 

2 

li+l 

n-1 
xn 

.n-1 

2 
al  * 

a2 

a n-1 t 

1 

n-1 a, 

n-1 a 

Notice that the numerator of v.(x) is a Van der Monde determinant 

and vanishes v/henever x = a., j = 1,2,3,...,i-l,i+l,... ,n, it 

must contain as factor the difference product: 

v     (x-a.) 
j=l     J 

#1 
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On the other hand, the denominator can be obtained from the 

numerator after exchanging the i  and n  rows and substituting 

x by a.. Since interchanging the rows in a determinant leaves 

its absolute value invariant, the denominator also contains as 

factor the difference product. 

n 
*  (a,--an-) 

j=l   1 J 

jVi 

Then: 
n 
ir (x-a.) 

j-1   J 

v,(x) = (-l)n+i M 
T (a.-a.) 

j=l  1 3 

J7i 

and the interpolation polynomial (27) is,reduced to: 

n 
■n     (x-a.) 

j=l    J 

F(x, . j F(0j) x m  
TT  (a,.-a,.) 

= 1 
i  i 

or 

n      L.(x) 

■■A^ w (32) 
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This is the familiar formula of the Lagrange's interpolation 

which v/as presented previously. In particular, since ck+-. = 

ck+2 = **• = cn = 0"anc' each g. (x) is a polynomial over GF(q"') 

of degree k - 1 or less, for i = l,2,...,k. 

m. 

Let 

n     L.(x) 
deg [F(x) = £ F(a.) fV-y ] < k - 1 

i=l  1 LrV 

-1   3 

Then    L.j(x) = 

L(x) = T a.x1 and L.(x) T ia.x 
i=0 n       n   j=0 J 

L(x) - L(a.) 

X - a. 

n    xJ - a3. 
-   I  ai (x~rv-) 

j=l  J x    ai 

j=l J m=0 n 

= al 

+ a2 (c^.+x) 

2    2 
+ a- (a. +a.X+X ) 

.    / m-1. m-2 . m-3 2,  ...m-l\ am 'ai   i    i   +«--+x  ) 

n 'ai   i    i   +...+X  ; 

n-1  n    m-(j+1) 
I ( I 

j=0 m=j+l ' i- < X- - Vi  >*J 

(33) 
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which shows that: 

?      ni-(j+l) ,-.y 
i°i = I   Vi (34> J   m=j+l m  n 

for f = 1,2,3,...,n and j = 0,1,2,... ,n-l. 

The restriction on F(x) in (33) implies, on the other hand, 

that 

for j = k,k+l,...,n-l. By noticing that 

^L(x) - l'(x) 

and L^ctj) = 0 if i ?  j, it follows that L(a.) = L'^) for 

i = l,2,3,...,n. Whence, after substitution into (35): 

The parity check matrix of the above code would be: 
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lak 

lak+1 

lon-1 

2ak 

2ok+1 

2on-l 

riak 
UJ^J rr^T • • • vr^rj 

nak+1 
PTvT 

nan-1 

or 

lak 2ak 

lok+1       2ak+l 

lon-1      2an-l 

nak 

nak+1 

nan-1 

LTCT 
0 

ir^y 

nly 

=    A K 

After substitution of iaj, in (34), into A: 

'k+1      uk+2 n-1        n .   .  1 

A = 'k+2      uk+3 al 

.    0 
n-k 

al 
n-k 

•   a_ n-k 
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= BX 

It is obvious that B is nonsingular since det B f  0. In fact 

det B = a n-k n 

= 1 (Vl) 

Hence, the parity check matrix AK is row equivalent to XK where 

XK = a. 

t-1   t-1 

1 

• cx_ 

P^T 

rr^r 

t-i 

. o 

,r^l 

(36) 

t = n - k + 1 

Comparing with the parity check matrix in (15) shows that codes 

defined by (36) are special cases of generalized Goppa codes 

having the following parameters: 
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.m, 
i) the subset L = {a,,00,, •..,a } of GF(q ) 

ii) p-g," = 1 for i = l,2,...,n or P(x) = G (x) 

iii) deg G(x) = t 

= n - k + 1 

.m> where G(x) is any arbitrary polynomial of degree t over GF(q ) 

and relatively prime to L(x). Notice on the other hand that the 

parity check natrix in (36) depends only on the subset L and 

degree of G(x). 

2.  A more general relationship between two classes of codes 

Without restricting (g-(x)} to be polynomials over GF(q') 

a more general relationship betv/een codes constructed by genera- 

lized interpolation and generalized Goppa codes can be derived. 

Recall that the generalized Goppa codes defined by a pair 

(P(x),G(x)) are the set of n-tuples (a, ,a2,...,a ) such that: 

[B(x)P(x)]L(x) = 0  mod G(x)   (14) 

where B(x) is the Lagrange polynomial associated with 

(a,,a2,...,a ). In order to satisfy the above relation, there 

must exist a polynomial K(x) over GF(qn) such that: 

[B(x)P(x)]L(x) = K(x)G(x) 
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and degree K(x) < n - dea G(x) - 1. Whence: 

[B(x)P(x)G_1(x)]L(x) = K(x) 

and deg [B(x)P(x)G_1(x)],,j < n - dea G(x) - 1 (37) 

By  noticing that k(x) is any arbitrary polynomial over GF(q ), 

it follows that the last relation,(37), is another equivalent form, 

besides the one in (14), of defining the generalized Goppa codes. 

Let c be the code generated by k independent functions 

{g.(x)} over GF(qm) and the set of n distinct elements a.,a ,...,a 1 l 2    n 
in GF(q ). Let (f,.fp*.•.,f ) be a codeword in c; then 

k 
fi    = I e.g.(a.) , i = l,2,3,...,n i   j=1 J J i 

where c,,c2,...,c. are coefficients in GF(qm). 

Taking the Lagrange's transform of (f, ,fo». • • >0> one  gets: 

n L.(x) 
F(x)    =    I    fi    LVT i=l    i    Li(V 

n     k                    L.(x) 
=    V      7    c.q.(a.) r-^7 r fa fa yy i; LTI^T 

after interchanging indexes i, j 

k    n      L.(x) 
F(x) = I    c. I    g.(a.) rV-y 

k 
= I    c.g.(x) 

j=l J J 
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In order that the n-tuple (f-. ,f2>. •. ,f ) is a codeword of the 

generalized Goppa codes defined by (P(x),G(x)), F(x) must satisfy 

the relation (37): 

deq [F(x)P(x)G_1(x)]L(x) < n - deg G(x) - 1 

or 

k 1 
deq [J c.gj(x)P(x)G (x)]L(x) ± n - deg G(x) - 1 

Since c,,c2>...,c are arbitrary coefficients in GF(qm) 

deg [gj(x)P(x)G"
1(x)]L(xj < m 

f.. 
where m = n - deg G(x) - 1. An obvious solution can be obtained 

as follows 

k = m + 1 

.1-1 and    gi(x)P(x)G"
1(x) = x1 

1-1 -1 
or     g^x) = x 'P(x)G(x), 1 = 1,2,3,... ,n-deg G(x)    (38) 

To complete the identification, one still has to show that the 

set of m + 1 functions, defined in (38), form a c-system; in 

other words, any linear combination of (q^x)} can have no more 

than m (or k-1) roots in the subset L/= {a, ,a2,.. .v,a } of GF(qm). 

Let <f>(x) be an arbitrary linear combination of m + 1 functions 

g-|(x),g2(x),...,q p+1(x). 
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m+1 
♦(x) = I    c.g.(x) 

1=1 ] 1 

m+1
   i 1 -1 = I    CV-'P 1(x)G(x) 

1=1 

!      P+l   1-1 
= P_,(x)G(x) I    c.x 

i=l 1 

where ci'c2'■••'cm+l are coefficients in GF(q ). Since both 

polynomials P(x) and G(x) are relatively prime to L(x), 

1 m+1   1 1 
P (a.)G(a.) is nonzero for i = 1,2,3,...,n I    c.x  , hence 
_1      f^1   i-i i=l 

P" (x)G(x) I    c.x   = (j)(x) can have no more than m roots in 
i=l 

L = {a-j jap, • • • »ot }. 

Hence, the set of m + 1 functions (g.(x)}, as described in 

(38), does, indeed, form a c-system. It sollows that every  code 

which is constructed based on the Lagrange's transform can be 

described in terms of the generalized interpolation. 

C.  Relationship between alternant codes and codes constructed 

via generalized interpolation. 

Let A be alternant code described by the parity check matrix 

(3). 

Recall that the relationship between the alternant and 

generalized Goppa codes was previously established by: 

P(x) = y(x)L'(x)G(x) (39) 
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It is very  straightforward to extend the connection to codes con- 

structed on the generalized interpolation. 

From (18) 

X^OOL'Nx) = P(x)_1G(x) 

After replacing in  (38): 

%M    =    x^yML"1'^), k = l,2,...,n-t 

It is a rather simple matter to verify that the set of {g.(x)} 

does also form a c-system by noting that y" (a^)L~ '(a.) = 

is nonzero, for i = l,2,3,...,n. 

D.  Subcodes of Mandelbaum's codes 

Since important classes of codes, such as the BCH codes, the 

generalized BCH codes, the Goppa codes, etc. are contained in the 

family of alternant codes, and of generalized Goppa codes, it' 

would be interesting to describe these codes in terms of the 

generalized interpolation and henceforth, derive their respective 

generator matrix. 

1.  BCH codes 

It was shown that the BCH code generated by a polynomial 

r>r-t  ni\ u     b b+1     b+t-1 ..     • -i over GF(q ) having a  ,a  ,...,a    as zeroes is the special 

case of alternant codes having as parameters: 
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a. = a ^       , i = 1,2,3,...,n 

and    y^ = (a )   , i = 1,2,3,...,n 

It follows from (39) that the above code can be generated by a 

set of n - t functions {g^x)} over GF(qm); each of the g.(x) is 

defined as follows: 
~%- 

g,(x) = xU\-bV-»L-l<W 

for i = 1,2,3,...,n-t, the subset L of GF(qm) consisting of all 

n  roots of unity, namely l,a,a ,a ,...,a ~ . Note that 

n-1 
L(x) = TT (x-a.) 

i=0   n 

= xn-l 

and    L'(x) = nx11"1 

= nx"1 

*«  • i   2    n-2 tor X = I,a,a ,.. . ,a 

Whence: 

g^x) = x
i(1"b)+b , i = l,2,3,...,n-t 

ignoring the constant n~ . 

The generator matrix of the BCH code is: 
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BCH 

1  1 

1  6 

. . . 1 

,n-l 

1  e^"1 . . . ^-TKn-t-1) 

1  0 

0  a . . . 0 

0  0 ... a n-1 

(40) 

1-b 
where 3 = a 

In particular, if n is prime and b  different from 1, there 

exists an integer b1 such that (l-b)b' = 1 mod n and a = 3 . 

Whence: 

'BCH 

1 1 1 

,n-l 

l en"t_1 . . . e(
n-"|)(n-t-1) 

1  0 

0  3 •   •   • 

0 

0 

0  0 3 (n-l)b' 

(41) 

2.  Generalized BCH codes 

Following the same procedure as in the previous section, it 

can be shown that the generalized BCH codes specified by the pair 
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of polynomials (P(x),G(x)) over GF(q ) are generated by the set 

of n - t q.(x) functions having coefficients in GF(qm), t beinq 

the degree of G(x), and the subset L = {a,,a2>...,a } of GF(qm) 

defined as follows: 

g^x) = X^VMGCX) , i = l,2,3,...,,n-t 

and     o.  = a"^0-1^     , j = l,2,3,...,n 

The codes are defined by the generator matrix: 

GGBCH = 

P'1 (0^)6(0,)        P_1(o2)G(a2)'     ... P*1(«n)G(an) 

o^P'V^G^)      a2P'\a2Ma2) ... c^P"1 («n)G(an) 

a^p-^a^GC^)  a2
1-t-V1(a2)G(a2) ... a^V* (an)G(ap) 

which, after substitution of a., becomes: 
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1    1 

1   a 

• • 

1   a' 

-1 
a -(n-1) 

(n-t-1) -(n-t-D(n-l) 

-1 
Poqo   ° ' 

-1 
o  P1q1 • 

o o 

o 

o 

-i 
VlVl 

(42) 

n-1   .   n-1   . 
where I   p.x and I    q.x are polynomials associated with P(x) 

1=0 1     1=0 1 

and G(x), respectively. 

3.  Goppa codes 

Let G(x) be the Goppa polynomial of dearee t over GF(qm) and 

L, the subset of GF(qn1) consisting of a, ,ap5. • • >a . The Goppa 

code having the above parameters is also generated by the follow- 

ing set ofcn - t)g.(x): 

q.(x) x^GM/L'fx) 

i = 1,2,3,...,n-t 

and is specified by the generator matrix: 
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Goppa 

G^K'-V-,) G(a2)L'
_1(a2) 

^(ci^L''1^) 

...   G(ctn)L'_1(an) 

•••   anG(an)L'_1(oJ n  x IT 

fi^GCa^L'"1   a,)     ^t_1G(o2)L'
_1(a2)   ...^Gla^L'-1^) 

or 

1 1 

al a2        ' 

n-t-1      n-t-1 
al a2 

.   . 1 

n-t-1 .   .   a 
n 

-1 

0 
-1 

G(a2)L'(a2) 

0 

0 

■  GK^(an) 

(43) 

68 

/ 



4.  Generalized Srivastava codes 

The last important subcode is the generalized srivastava 

code. Let the code be defined, as in (6), (7), by a given set of 

n + s distinct elements a, ,a«v • »«n»w1 »Wp,w3>... ,w , and n non- 

zero elements z, ,Zp,...,z of GF(qm). 

Recall that is was already shown'that the generalized 

Srivastava code is a subcode of the generalized Goppa codes speci- 

fied by: 

s     t 
G(x) = IT (x-w.) 

j-1   J 

and     P(x) = y(x)L'(x)G(x) 

r"\ S 
where y(x) is the Lagrange's polynomial associated with n-tuple: 

Zl Z2 
s      t » s      t ' '•• s      t 
ir  (a,-W.)     7T  (a,-W.)        TT  (a-W.) 

j=l   '  J    j=l   2 J        j=l   " J 

Again, it is rather straightforward to prove that the generalized 

Srivastava code, thus defined, is a subcode of Mandelbaum's code 

generated by the following n - st functions g.(x): 

i"1 -1  -1 g^x) = x1 Vy VjL'-M 

for i = 1,2,3,...,n-st. 

The generator matrix is defined by: 
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Gen. Sriv. = 

1      1 

al 
a2 a 

n-st-1  n-st-1 
a,      ap 

n-st-1 
an 

TT  (cu-W.) 
j=l     J 

ZjL'U,) 
0 

t 
TT  (a„-W.) 

Z2L'(a2) (44) 

The generator matrix of the original Srivastava code can be 

obtained by letting t = 1 and Z. = aV for i = 1,2,3,...,n. 

5.  Alternant codes 

The derivation of the generator matrix of the alternant codes 

defined in (3) is straightforward from relation: 
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9k(x) = x^V^xjL'fx), k = l,2,...,n-t. 

. . 1 

'Alter" • • ot_ 

a n-t-1   n-t-1 1     a2 

r.i-i 
yf^) 

-1 -1 
y2L'(«2) 

n-t-1 
X 
n 

. .  0 

. .  0 

-1 -1 

(45) 

6.  Generalized Goppa codes 

Lastly, the generalized Goppa codes defined by (P(x),G(x)) 

are generated by the set of functions 

gk(x) = x1"1P"1(x)G(x) 

'* \ ■ 

for k = l,2,...,n-t, t being deg of G(x). Its generator matrix 

is: 
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3Gen. Goppa = 

al 

^1 

a2 

n-t-1   n-t-1 
al     a2 

n-t-1 
xn 

0 . . .  0 

o P~212 ... o 

n~n 

(46) 

IV. Dual Codes of Generalized Goppa Codes 

In this section, we will investigate the dual codes of 

generalized Goppa codes and show how one can derive their parity 

check matrices. 

As validation, a check of the parity check matrix of the 

dual codes against the generator matrix of their original codes 

is made, which has been derived through the set of defined 

(g^x)}. 
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Recall that the generalized Goppa codes associated with 

(P(x),6(x)) can be described either in terms of a parity check 

matrix H as in (15) or by the relation (37): 

deg [B(x)P(x)G"1(x)]L(x) ± n - deg G(x) + 1 

where B(x) is the Laqrange's polynomial of the codeword (b, ,b2> 

...,bn). 

A codeword c = (c,,c2»...»c ) is in the dual of the genera- 

lized Goppa code if it is contained in the row space of H, or 

equivalently. 

c = (d<i>a<t j... >aj._-j)  H 

where   t = deg G(x) and a0,a,,...,a._, are elements of GF(qn) 

and H, parity check matrix defined in (15). Then: 

t;1 k Pi9!'"1 
ci    =   I    a\fai    ML v     for 1 = 1.2,3,...,n 1        k=0    K 1    L  ^ai; 

i t-1 . 
or p. giL'(a.)ci    = JQ aka. 

Taking the Lagranqe's transform of both sides gives: 

.  P"1(x)G(x)L,(x)c(x) = A(x) 

t-1   . 
where A(x) = I   a.x and deg [A(x)] <_ t - 1 = n - (n-t) - 1. 

k=0 K 

Whence: \ 
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deg [c(x)P_1(x)L'(x)G(x)] <_ n - (n-t) - 1 (47) 

Let GA(x) =  6-1(x) mod L(x) and Pr(x) =  P(x)-1L'(x). Obviously, 

den Gf(x) = n - t = t' and, from (4 ): 

deg [c(x)P1(x)G1"1(x)] <. n - t' - 1 

Notice also that since P(x), G(x) and L'(x) are all relatively 

prime to L(x), it follows that PA(x) and G^x), as defined above 

are also relatively prime to L(x). The codeword c = (c,,c2,..-» 

c ) must then be in the generalized Goppa code associated with 

polynomials PA(x) and GA(x); the subset L = {a,,cu,...,a } re- 

mains unchanged. The dual code has as parity check matrix: 

'dual 

1 1 . . . 1 

a n-t-1 
1 

n-t-1 n-t-1 

r
Pl1 pigi 0 . . .  0 

plk ' 

.P:1 n"n 
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A check against the generator matrix in (46) shov/s that both 

matrices are identical, which was expected as: 

dual c "  c 

G being the generator matrix of an arbitrary code c. 

Dual of alternant codes 

It is very straightforward to extend the result over the 

class of alternant code from the relation (17) which established 

the equivalence between the alternant codes and generalized Goppa 

codes. 

The parity check matrix of the dual codes is: . 

1 

al 

[ 
n-t-1 

*1 

1 

Or 

n-t-1 
a2 

1 

. a n 

n-t-1 
xn 
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w^ 0 

1 

•   •   • 

y2L'(a2) 

0 

0 

0 vw J 

which is identical to the matrix derived in (45). Whence, the 

dual of alternant codes associated with the n-tuple (y-i »y2> • • • > 

y ) is also an alternant code; the n-tuple of which is, however, 

y     -  < y^'Ccx-,) ' y2L'(a2) ••••• ynL'(an) 
} 

B. Dual of BCH codes 

Extending the procedure of defining dual codes to BCH codes 

obviously gives a parity check matrix which is identical to the 

generator matrix in (40) since the codes are subcodes of genera- 

lized Goppa codes. 

Particularly, if b f  1 and n is prime, it is possible to 

express a in function of 6 and obtain the parity check matrix of 

the dual code identical to the one in (41). It follows then that 

the dual of the BCH code as defined in (4), e.g. generated by a 

polynomial over GF(q ) having a ,a  ,...,a    as zeroes, is a 
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BCH code having following parameters: 

Code length: n 

Minimum distance:  d ^ n - t + 1 

and being generated by a polynomial over GF(qm) having as zeroes 

e
b',B

b'+,,...,6b,+(n-t'-1,with6
b'=a 

C:  Dual of generalized BCH codes 

Note that in case of generalized BCH codes, a. = a  for 
n n 1 

i = l,2,3,...,n and L(x) = x - 1. Consequently L'(x) = nx  . 

Hence, from (47), the dual of the generalized BCH code defined by 

the pair of polynomials (P(x),G(x)) is also a generalized BCH 

code associated with (P (x),G (x)) such that: 

P (x) = P(x)_1L'(x) 

= P(x)"1nxn-1 

or simply P (x) = xn_1P(x)_1 

— 1 n 
and    G (x) = G~ (x) mod (x -1), from (5), its parity check 

matrix is: 
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H 
dual  GBCH 

1      a' .   a (n-1) 

1        a" a ■2(n-l) 

1       a -(n-t) -(n-t)(n-l) 
•      •     •     Ct 

CO 

0        aPlgl   .   .   . 0 

0 0 (n-l)n -1 
1 Pn_l9 n-lyn-l 

n-1 -1 
since P (x)    =    x    'P(x) 

=    x 'P(X) (xn=l) 

78 



or: 

1  1 

1  a 
-1 

0   P 

. . 1 

. a -(n-1) 

-(n-t-1)      -(n-D(n-t-l) 
la        ... a 

Po^o    ° • ' '  ° 

/ 

PI ' * * 0 

-1 0    ° • • • VlVl 

which is identical to the generator matrix of the original code 

defined in (42). 

D.  Dual of Goppa codes 

This is the special case of generalized Goppa codes with 

P(x) = L'(x). It is very easy to show that the dual of the Goppa 

code specified by the Goppa polynomial G(x) is also a Goppa code; 

the Goppa polynomial of the dual code is defined as: 
(/• 

G (x) = L'CxjG-^x) 
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The derived parity check matrix of the dual code is, as expected, 

identical to the one in (43). 

E.  Dual of generalized.Srivastava codes 

Finally, repeating the procedure of finding the dual code 

based on (47) on generalized Srivastava code leads to a parity 

check matrix of the dual code, which, again is identical to the 

matrix in (44). 

Unfortunately, unlike other classes of code, whether the 

dual of the generalized Srivastava code remains to be determined, 

although the dual code does belong to the family of generalized 

Goppa codes. 

The dual of the original Srivastava codes can be obtained by 

letting t = 1 and z,- = a,-y> in (44), i = l,2,...,n and p, an 

arbitrary interger. However, it still remains to determine 

whether the dual of the Srivastava code is also a Srivastava code. 
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V.  Conclusion 

We have shown that codes constructed on the basis of gener- 

alized interpolation proposed by Mandelbaum include many im- 

portant error-correcting codes discussed in this thesis. It is 

also shown how these codes can be defined in terms of the gener- 

alized interpolation which is characterized by a Chebyshev systems 

of functions over GF(qm). Particularly, if these functions are 

restricted to be polynomials of degree less than or equal to n-1, 

the generalized interpolation is reduced to Laorange's interpola- 

tion; since many important codes discussed in this thesis can be 

constructed via Lagrange's interpolation, in general case, it is 

expected that the codes constructed via generalized interpolation 

include other codes. But it still remains to determine how ex- 

tensive and powerful these codes are. 
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Appendix 

A.  If c is a nonsingular matrix, then codes defined by parity 

check matices cxy and xy are exactly identical. 

Proof: 

Let A, A being codes defined by cxy and xy, respectively. 

It is obvious that A'cA since, for any veA' v(xy) = vy x =0 
T T T T 

implies that vy x c = 0 = v(cxy) . 

Assume now that A£A'. Then there exists a codeword vQ such 

that VQ is in A, but not in A" or, equivalently: 

vQ(cxy)
T = 0  and  vQ(xy)

T f  0 

T    T T T     T T T 
Thus, vQ(xy) = vy x = vQ' f  0. However, vQ(cxy)    = Vgy X C = 

T T 
v0'c = 0 implies that c , hence c, is singular, which is a 

contradiction. 

A must then be contained in A', whence: 

A = A*- 

Q.E.D. 
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B.  Let H be a matrix of the form: 

H = 

g" (a}) a" (o2) 

g  (a-j)a^     a  (a2)a2 

-1# % r-1   -l,    x r-1 9     \a^)a^ g  (a2Ja2 

' ' 9 (an} 

9 KK 

g (Van 

where g(x) is a polynomial over 6F(qm) of degree r and a,,a2, 

o are elements of GF(qm) distinct from the roots of g(x). 
r. 

Particularly, if g(x) = g.(x) = (x- .) , then: 

H. = 
l 

(V^)"'1 
(a2-B1)"

ri 

-r. 
(a}-3.)     ^     (a2-B.)  ^ 

(a1-B1)"
riai

ri"1  (o2-B1)"
ria2

r1"1 

which is row equivalent to: 
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