
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1980

A program for storage allocation in
DECSYSTEM-20's DBMS.
Tung-Sheng Lai

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Lai, Tung-Sheng, "A program for storage allocation in DECSYSTEM-20's DBMS." (1980). Theses and Dissertations. Paper 2283.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228651131?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2283&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2283&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2283&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=preserve.lehigh.edu%2Fetd%2F2283&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2283?utm_source=preserve.lehigh.edu%2Fetd%2F2283&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

A PROGRAM FOR STORAGE ALLOCATION IN DECSYSTEM-20'S DBMS

by

Tung-Sheng Lai

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Computing Science

Lehigh University

1980
A

ProQuest Number: EP76559

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest

ProQuest EP76559

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

This thesis is accepted and approved in partial ful-
fillment of the requirements for the degree of Master of
Science.

/^. /9M
(date)'

Professor in Charge

-7
Chairman of Department

11

TABLE OF CONTENTS

PAGE

TABLE OF CONTENTS iii

LIST OF FIGURES v

ABSTRACT 1

1. INTRODUCTION 3

1.1 Background . . 3

1.2 Components of a DBMS k

1.3 Statement of Problem 8

1.^ Approach to the Problem 10

2. DESCRIPTION OF THE DATA BASE STORAGE ALLOCATION

PACKAGE 12

2.1 The Content of DBSAP 12

2.2 The Parsing Algorithm 12

2.3 Error Recognition and Diagnostics 30

2A Parsing Result 33

2.5 Record Occurrence Size 33

3. USER'S MANUAL 36

3.1 Introduction 36

3.2 Running the DBSAP ' . 37

3.3 The formulas used in storage calculations . . *K)

in

PAGE

4. CONCLUSION 42

REFERENCES 43

VITA 44

IV

LIST OF FIGURES

PAGE

Fig. 1. The Storage Calculation Table . . .

Fig. 2. The General Formats of Schema DDL .

Fig. 3. The Syntax Diagrams of Schema DDL .

Fig. *K The Scanner used to get next symbol

Fig. 5« Error Messages for schema parser

Fig. 6. Binary Tree used to store identifiers.

11

13

16

26

30

32

ABSTRACT

A PROGRAM FOR STORAGE ALLOCATION IN DECSYSTEM-20'S DBMS

by Tung-Sheng Lai

This thesis presents a computer package designed to help

the data base designer in the proper storage for

DECSYSTEM-2 0's Data Base Management System(DBMS). The DEC'S

DBMS is based on the 1971 CODASYL Data Base Task Group(DBTG)

proposal. Although the Schema Data Description

Language(Schema DDL) had been defined in reasonable detail

by the CODASYL committees, the Device Media Control

Language(DMCL) was left out as this is dependent on the

specifications required by the implementor.

Although storage allocation is a very critical aspect in

data base design, there is no systematic approach to it.

Due to this fact, most of the data base designers

arbitrarily assign storage much larger than is really needed

for the data base. Obviously, this is not an economical

approach. On the other hand, some data base designers simply

ignore the storage considerations, and as a result,

eventually face the situation of having to unload the data

base to increase the storage, and/or rewrite some or all of

the application programs.

The computer package presented in this thesis is designed

to help the data base designers allocate appropriate storage

for future growth of existing applications and new

applications. This package is a PASCAL program, composed of

two parts, a parser and an interactive program.

The first part is a parser, which reads the user's Schema

DDL as input, examines the syntactical structure of the

Schema DDL statements, and stores all the information that

will be used in storage calculation. The interactive program

helps the user to develop his DMCL statements by asking to

provide more information about the data base and its usage

in the future.

Information on how to access this package for use is

available from Division of Computing and Information

Science.

1. INTRODUCTION

1.1 Background

The proliferation of digital computers and the widespread

demand for timely access to data has resulted in the need to

use data bases. The term Data Base became current in the

late 1960s. James Martin(Ref.7, 22) defined Data Base as

follows:

A data base may be defined as a collection
of interrelated data stored together without
harmful or unecessary redundancy to serve
multiple appilications; the data are stored
so that they are independent of programs which
use the data; a common and controlled approach
is used in adding new data and in modifying and
retrieving existing data within data base.The
data is structured so as to provide a
foundation for future application development.
One system is said to contain a collection of
data bases if they are entirely separate
in structure.

The stages of data base design have only recently been

well defined. Some of the main approaches to data base

design-TOTAL, IMS, RELATIONAL and CODASYL(Conference on Data

Systems Languages) approaches. There are several commercial

implementations of the CODASYi; approach available, the best

known of which are Univac's DMS 1100, Honeywell's IDS/2,

Cullinane's IDMS (available on IBM machines and also on ICL

machines), Siemen's IDMS and DECsystem-20's DBMS. The latter

implementation is the main concern of this thesis. The

DECsystem-20 Data Base Management System (DBMS) is a group

of programs that enable an installation to create, access

and maintain one or more data bases. DEC's DBMS is based on

the 1971 CODASYL Data Base Task Group(DBTG) proposal(Ref.2).

1.2 Components of a DBMS

DBMS's five major components are identified as:

a. Schema Data Description Language(Schema DDL)
b. Sub-Schema Data Description Language

(Sub-Schema DDL)
c. Data Manipulation Language(DML)
d. Data Base Control System(DBCS)
e. Device Media Control Language(DMCL)

Each will be discussed in turn.

1.2.1 Schema DDL

To the DBTG, a schema may be defined as the description of

a data base. The Schema Data Description Language is a free

standing declarative language which is used to define the

structure of a data base. These descriptions are in terms of

the names and characteristics of the DATA-ITEMS,

DATA-AGGREGATES, RECORDS, SETS, and AREAS included in the

data base, and the relationships that exist and must be

maintained between occurrences of those elements in the data

base. The Schema DDL does not define the processing to be

performed on the data. It does not even allow statements to

be made concerning the amount of data to be stored in the

data base.

A DATA-ITEM is the smallest unit of named data. It is a

subdivision of a record.

A DATA-AGGREGATE is a named collection of data-items in a

record.

A RECORD is a named collection of data-items and/or data

aggregates. It is the basic retrievable unit of information

in a data base.

A SET is a named collection of record types. As such, it

establishes the characteristics of an arbitrary number of

occurrences of the named set. Each set type specified in the

Schema must have one record type declared as its OWNER and

one or more record types declared as its MEMBER records.

Art AREA is a named sub-division of the addressable storage

space in a data base. The occurrences of records are stored

in areas. In DEC-20 each area is divided into fixed-length

physical units called pages. A page logically consists of

some number of lines. Each line is a group of 36-bit words

large enough to contain a single record occurrence and its

set pointers.

1.2.2 Sub-Schema DDL

A Sub-Schema is best defined as a part of a schema. A

useful way to think about the schema and sub-schema is the

following. The schema is the overall view of the logical

structure of the data base as seen by the central authority

responsible for the data base. The sub-schema is the, view

of the data base as seen by the Appilications

Programmer(Ref.8,9). A sub-schema is defined using a

Sub-Schema DDL.

1.2.3 Data Manipulation Language(DNL)

DML is the name given by the DBTG to the collection of

statement types which must be added to an existing

programming language to enable the programming language to

be used to process the data in a data base whfch has been

defined using the Schema DDL.

1.2.4 Data Base Control System(DBCS)

DBCS is the interface between the run-unit and the data

base; i.e., it is the module that actually performs the

actions defined by the DML statements.

1.2.5 Device Media Control Languages(DMCL)

The DBTG report(Ref.2,21:22) identified the role of the

DMCL as "the assignment of areas to devices and media space,

and specifying and controlling buffering, paging, and

overflow". The above DBMS components have been defined in

reasonable detail by the CODASYL committees. However, the

DMCL was left out as it is up to each implemenator to state

his own specifications.

1.3 Statement of Problem

The development and implementation of a data base system

is much difficult than that of a conventional system. The

complexity is in both hardware and software. Even if one

restricts one's view to just the software, there are many

facets to the problem of data base design. Among other

things the designer must concern himself with sound logical

design, data integrity, privacy control, backup and storage

allocation. It is this last aspect, storage allocation in

the data base, which is the subject of this thesis.

Although storage allocation is a very critical aspect in

data base design, there is no systematic approach to it. Due

to the above fact, most of the data base designers

arbitrarily assign a storage which is much larger than is

really needed for the data base. Obviously, this is not an

economical approach. On the other hand, some data base

designers simply ignore the storage considerations, and as a

result, quickly face the situation of having to unload the

data base to increase the storage, and/or rewrite some or

most of the application programs.

The best available technique to overcome the above problem

is by using the storage calculation table as shown in Fig.

1. The data base designer uses the table to calculate the

data items and/or data aggregates of each type according to

its location mode and its relationships with other records.

All these calculations are done manualy. In a simple data

base, all these calculations could be done in a few hours.

If the data base is huge and the set relationships is

complicated, this task would be tedious and time consuming.

Moreover, the accuracy of the results could be doubtful.

1.4 Approach to the Problem

It is the aim of this thesis to provide a computer package

(named: Data Base Storage Allocation Package-DBSAP) that

will help data base designers allocate storage in the data

base for future growth of existing applications and new

applications. This package is a PASCAL program, composed of

two parts, a parser and an interactive program. The first

part is a parser, which reads the user's Schema DDL as

input, examines the syntactical structure of the Schema DDL

statements, and stores all the information that will be used

in storage calculation. The interactive program helps the

user to develop his DMCL statements by asking him to provide

more information about the data base and its usage in the

future.

10

UOT^BZTUBSjtO

o
H
cd
o

aSBj ■SP

liq.MOJtO

saouaaonooo ITV

pjtooaH J-Bd spaojvi

T3
a

> o

O
O
a>

pBaqaaAO Te%o&

Jtap-ean BUX<I

aoTjy; oq. pa^uxi

aaUMO oq. pa^irr}

JtaquiaW

aauMo

OIBO

spaoM jo aequiriM

sjEaq.o-e.reu.0

jo aaquinM

saouaxinooo
jo Jtaqunnw

R
E

C
O

R
D

-T
Y

P
E

—1

Fig. 1. The Storage Calculation Table

11

2. DESCRIPTION OF THE DATA BASE STORAGE ALLOCATION PACKAGE

2.1 The Content of DBSAP

DBSAP is composed of two parts. The first part is a

parser, which reads the user's Schema DDL as input examines

the syntactic structure of the Schema DDL statements. This

chapter will concentrate on how this parser is developed.

The second part is an interactive program, which will be

discussed in the next chapter.

2.2 The Parsing Algorithm

Parsing is the process of determining the syntatic

strucrs;e associated with an input sentence (Re-f.l,56-57).

The method used in the parsing algorithm of DBSAP is

top-down left to right parsing which consists of

reconstructing the generating steps from the start symbol to

the final sentence (Ref.5,Ref.6).

There are two essentially different techniques that can be

applied to the top-down left to right parsing

12

a. SCHEMA NAME IS schema-name.
b. AREA NAME IS area-name-1

fcREA IS TEMPORARY)

PRIVACY LOCK FOR EXCLUSIVE! fUPDATE K UPDATE "\
RETRIEVALS

IS lock-
PROTECTED 1 RETRIEVAL

c. RECORD NAME IS record-name-1

DIRECT identifier-1 ?Spseudonym-f

CALC USING data-name-1 LOCATION MODE IS
data-name-2 ...

[DUPLICATES ARE {NOT] ALLOWED]

VIA set-name-1

>

WITHIN area-name-1 [area-name-2...AREA-ID IS ,
identifier-2 {%pseudonym-2j L

d. 02 data-name-3X#Pseudonym-3l/~PICTURE'\ IS picture-string
I PIC

DISPLAY
USAGE IS DISPLAY-6

DISPLAY-7
DISPLAY-9

[OCCURS integer-1 TIMES]. j_

e. 02 data-name-3[^Pseudonym-3l SIZE IS integer-2
r WORDS

DISPLAY
USAGE DISPLAY-6

DISPLAY-9
(OCCURS in-feeger-1 (TIMES]

f. 02 data-name-3 I^pseudonym-3]

DISPLAY-7

r

FLOAT]
< FIXED

TYPE IS
DBKEY

DECIM

"}' 1DEC
fBINARY "I
IBIN /

REAL
COMPLEX

integer-3 , integer-4-L [OCCURS integer-1 TIMEs]x

Fig. 2. The General Formats of Schema DDL

13

g. SET NAME IS set-name-1

MODE IS CHAIN (LINKED TO PRIOR]

'FIRST!
■\

ORDER IS<

ALWAYS

SORTED

j LAST I
NEXT '
PRIOR

WITHIN RECORD-NAME
BY DATABASE-KEY^

DUPLICATES ARE
FIRST
LAST
NOT

ALLOWED

IS
OWNER IS fr e cord-name -

SYSTEM i}W

h. MEMBER IS record-name-1 /MANDATORY] fAUTOMATIC 1
^OPTIONAL J ^MANUAL j

(LINKED TO OWNER)

ASCENDING "1
DESCENDING

KEY IS data-name-1 (data-name-2J..

ASCENDING RANGE
DESCENDING RANGE

(DUPLICATES ARE
FIRST
LAST
NDT

ALLOWED]

SET OCCURRENCE SELECTION IS THRU
fCURRENT OF SET

I
f LOCATION MODE OF OWNER

USING data-name-2 data-name-3 ...
ALIAS FOR data-name-^ IS identifier-1

^pseudonym-1 ..K W

Fig. 2 (Continued)

14

algorithm (Ref. 9", 288) . One is to design a general top-down

parsing program valid for all possible grammars. In this

case, to provide a basis for the operation of the program,

particular grammars are to be supplied in the form of some

data structure. This general parser is controlled by the

data structure and the program is then called table-driven.

The other technigue is to develop a top-down parsing program

which is specific for a given language and to construct it

systematically according to a set of rules which map a given

syntax into a sequence of statements, i.e. into a

program(Ref.9,288). The later technigue is used in the

DBSAP parser. There are two steps in developing the DBSAP

parser:

Step 1: Constructing Syntax Diagrams

Fig. 2 lists all the general formats of Schema DDL

statements. These formats plus their technical notes(Ref.

3,4-1:4-23) form the syntax of Schema DDL.

A better way to represent the syntax of Schema DDL is

15

o o
H

I
>> o
>
•H

6,

T
f

>»
fc

>» ■P
u C

■p <D
G l
<D -o

1 fc
cd o
o o

i—
u

Fig. 3. The Syntax Diagrams of Schema DDL

16

I
>>
o

>
•H

Fig. 3 (Continued)

17

Fig. 3 (Continued)

18

Fig. 3 (Continued)

1'9

"V

/N 4s*

o o

A CO
CO Rj •a
ft

1 CO

W) &
d o
to o
3 o

Fig. 3 (Continued)

20

Fig. 3 (Continued)

21

Ml

W

i
c
I

Q)

e
e

"fc~i rwr rwT hm

T LJZ
-p
c
a)
i

+>
Q)
CO

Fig. 3 (Continued)

22

Fig. 3 (Continued)

23

!»

>»
<D U
i +»

fc C
<D a)
,0 i e +> a) 0
6 CO

A9> fs) s M
M Q
g
W o
o w w w

O* \B/

v^
V r y

Fig. 3 (Continued)

24

X

■N

o\

00

*o

^y
<r\

CM

U
a>
bD
a>
-p
•H

S
•H

CO

Fig. 3 (Continued)

25

presented in Fig. 3 in the form of 15 diagrams. Fig. 3 is a

convincing example of the expressive power of these graphs

which allow formulation of the syntax of an entire Schema

DDL in such a concise and readable form.

STEP 2: Translate The Given Syntax Into a
Program

A program which accepts and parses Schema DDL is readily

derived from its deterministic syntax graph. The graph

essentially represents the flowchart of the program. In

developing this program the seven given translation

rules(Ref. 9, 292) were strictly followed.

PROCEDURE GETSYM;

VAR
Ir J, K: INTEGER;

Fig. 4: The Scanner used to get next symbol

26

PROCEDURE GETCH;

BEGIN
IF CC = LL
THEN ^

BEGIN
LL := 0;
CC := 0;
WHILE NOT EOLN(INPUT) DO

BEGIN
LL := LL + 1;
READ(CH);
WRITE(CH);
LINE[LL] := CH

END;
WRITELN;
LL := LL + 1;
LINE[LL] := • •;
READLN;

END;
CC := CC + 1;
CH := LINEfCC];

END (*GETCH*);

BEGIN (*GETSYM*)
EOS := FALSER-
WHILE CH = ■ 'DO

GETCH;
K := 0;
REPEAT

IF K < AL THEN
BEGIN

K := K + 1;
A[K] := CH;

END;

Fig. 4 (Continued)

27

GETCH;
UNTIL CH = ' ';
IF (A[K] = '.') AND (K > 1)
THEN

BEGIN
A [K] : » •
K := K - 1;
EOS := TRUE;

END
ELSE

IF (A[K] = •.') AND (K = 1) THEN
EOS := TRUE;

IF K >= KK
THEN

KK := K
ELSE

REPEAT
A[KK] := ' ';
KK := KK - 1;

UNTIL KK = K;
ID := A;
I := 1;
J := NORW;
REPEAT

K := (I + J) DIV 2;
IF ID <= WORD[K] THEN

J := K - 1;
IF ID >= WORD[K] THEN

I : = K + 1 ;
UNTIL I > J;
IF (I - 1) > J
THEN

SYM := WSYM[K]
ELSE

SYM := IDENT;
END (*GETSYM*);

Fig. 4 (Continued)

28

The basic symbols are sequences of characters, such as

SCHEMA,RECORD,etc. As in Fig. 4 a scanner is used to take

care of the representational or lexical aspects of the input

sequence of symbols. The scanner is conceived as a

procedure GETSYM whose task is to get the next symbol. The

scanner serves the following purposes:

a. It skips separators(blanks).
b. It recognizes reserved words,such as

AREA, PICTURE, etc.
c. It recognizes non-reserved words as

indentifiers.The actual identifier is
assigned to a global variable called
ID.

In order to scan the input sequence of characters,

procedure GETSYM uses a local procedure GETCH (see Fig. 4)

whose task is to get the next character. Apart from this

main purpose,procedure GETCH also

a. Recognizes and suppresses end-of-line
information.

b. Copies the input (Schema DDL) into
output file, thus generating a program
listing.

29

The Scanner constitutes the necessary one-symbol

lookahead. Moreover, the auxiliary procedure GETCH

represents an additional lookahead of one symbol plus one

character.

2.3 Error Recognition and Diagnostics

The DDL parser was written on the basis of the syntax of

the Schema DDL. It can detect 38 errors. Fig. 5 lists a set

of possible diagnostic messages. During the parsing, as soon

as an error is discovered,the error message will be printed

out and the excution is stopped. A user can use the system

editor,EDIT,to make the necessary correction before a rerun.
(1). "SCHEMA" expected
(2). invalid schema-name
(3). "." expected at previous statement
(4). "AREA" expected
(5). invalid area-name
(6). duplicate identifier
(7). unexpected identifier
(8). "TEMPOARY" expected
(9). invalid area-name or unexpected

"." at previous statement
(10). privacy-lock (a identifier) expected
(11). "TEMPOARY" expected or "." expected

at previous statement

Fig. 5: Error messages for schema parser.

y

30

(12). unexpected "." at previous statement
(13). record-name expected
(14). "LOCATION" expected
(15). "DIRECT" or "CALC" or "VIA" expected
(16). "USING" expected
(17). "WITHIN" expected
(18). "02" expected
(19). a data-name expected
(20). "PICTURE" or "PIC" or "SIZE" or "TYPE"

expected
(21). picture-string expected
(22). invalid picture-string
(23). a integer expected
(24). "WORDS" or "USAGE" or expected
(25). "USAGE" or "OCCURS" EXPECTED
(26). "DISPALY" or "DISPALY-6" or "DISPALY-7"

or "DISPLAY-9" expected
(27). "OCCURS" expected
(28). "MODE" or "ORDER" or "OWNER" expected
(29). "CHAIN" expected
(30). "ORDER" or "OWNER" expected
(31). "OWNER" expected
(32). "SYSTEM" or a record-name expected
(33). record-name not defined in Record Entry
(34). "MEMBER" or "SORTED" expected
(35). "MEMBER" expected
(36). "MODE" or "OWNER" expected
(37). "ORDER" or "MODE" expected
(38). a record-name expected

Fig. 5 (Continued)

As soon as a symbol is read, it performs the binary search

on the array of reserved words(see Fig. 4). IF a symbol is

not in the array it is considered as an identifier.

31

Identifiers are stored in a binary tree structure(see Fig.

6). If an identifier name is already in use(found in the

tree) then a syntactical test is performed to determine

whether duplication is allowed.

PROCEDURE CHECKDULPIDENT(VAR TREE: LINK;
VAR DULP: BOOLEAN; NEWINDENT: SYMB);

BEGIN
DULP := FALSE;
IF TREE = NIL
THEN

BEGIN ~* ' ' .
NEW(TREE);
WITH TREE" DO

BEGIN
LEFT := NIL;
RIGHT := NIL;
DATA := NEWIDENT;

END;
END

ELSE
WITH TREE" DO

IF NEWIDENT < DATA
THEN

CHECKDULPIDENT(LEFT, DULP, NEWIDENT)
ELSE

IF NEWIDENT > DATA
THEN

CHEGKDULPIDENT(RIGHT, DULP, NEWIDENT)
ELSE

DULP := TRUE;
END (*CHECKDULPIDENT*) ;

Fig. 6: Binary tree used to store identifiers.

32

The DDL parser can detect only one error, during one

runtime; that is, no error-recovery is performed since the

rest of the DDL is affected by the erfor.

2.4 Parsing Result

Besides syntax recognition, the parser can also recognize

and store the following information:

a. AREA names.
b. RECORD names.
c. LOCATION MODE of a record type,i.e. how

a record occurrence is physically
stored in the data base.

d. Area where occurrences of the record
will be stored.

e. Data-item and data-aggregate sizes
based on the calculation.

f. Identification of relationships between
record types, i.e. which is the owner
and which is/are the member(s).

g. The overhead for every record type.

There will be a more detail discussion on c,e,f and g in

next section. All the information is stored in two

different linked lists.

2.5 Record Occurrence Size

33

A record occurrence contains (l)data (2)record overhead to

hold all the linkage information. Separate discussions on

how to calculate the storage for them are presented here.

And these two calculation are done by the DDL parser

automatically.

A. Data Size:

There are three formats which one may use to name a

data-item or data-aggregate (see Fig. 2). In the DBMS

Administrstor's Procedure Manual (Ref. 3, 4-8:4-10) there is

a complete explaination of how a data-item or a

data-aggregate is calculated.

In a record-type, there are several possible kinds of data

entry formats. Where different formats use different units

for the storage, the solution to this situation is to

translate all the different units into the the lowest unit

of measure - the bit. After summing up the number of bits

for all the data-items in a record type, the corresponding

number of words (1 word = 36 bits) is calculated.

34

B. Record Overhead

For each record type defined for the data base, the

following criterion may be used to decide the amount of

overhead in words for each record occurrence:

a. location mode is CALC 1 word
b. owner of set types 1 word per set
c. member of set types 1 word per set
d. LINKED TO OWNER in the set types 1 word per set
e. LINKED TO PRIOR in the set types 1 word per set

The overhead is the result of the calculation from the

above plus 1 word for the line header.

35

3. USER'S MANUAL

3.1 Introduction

DBSAP is a PASCAL program aimed at aiding the Data Base

Adminstrator in the development of his Device Media Control

Language (DMCL), e.g., to enable the user to select

individual areas, assign them to files, and allocate storage

to them. There are two type of DMCL entries that the user

can use to:

a. Specify parameters that apply to the SCHEMA as a whole,

e.g., the number of records on a page and the name of the

journal (Environment Entry).

b. Assign area to files and specify the physical

characteristics of these file (Area Entry).

DBSAP consists of two parts. The first part is a parser

that reads the user* s Schema DDL as input and examines the

syntactical structure of the Schema DDL statements. Besides

syntax recognization, the parser can also recognize and

36

store all the information needed to be used to develop

user's DMCL statements. Refer to the discussion in the

previous chapter. The second part is an iteractive program

that helps the user to develop his DMCL statements by asking

him to provide more information about the data base and its

usage in the future.

3.2 Running the DBSAP

a. Use the system editor, EDIT, to create the Schema DDL

file. Instructions on how to use the system editor is

available from Decsystem-20 User GUIDE (Ref. 4).

b. Once the user has created the file containing the

description of the schema, he can run the DBSAP program to

develop his DMCL statements. To do so, the user must run

DBSAP and give a command string as follows:

0EXECUTE (FROM) DBSAP.PAS
LINK: Loading
[LNKXCT DBSAP Execution]
INPUT
OUTPUT
DMCL

file-name.1
TTY:
file-name.2

37

/

File-name.1 is the name of the file that has been assigned

to the Schema DDL. The User must type this in when "INPUT :"

appears. Type in "TTY:" after "OUTPUT :" appears. This will

print out on the terminal you are on your input file the

error messages(if any), the parsing result and interative

questions. When the "DMCL :" appears, type in a variable

name file-name.2 that will be assigned to the file that will

store the output DMCL file.

c. During the parsing, as soon as an error is discovered,

the error message will be printed out and the execution will

be terminated. A user can use the system editor, EDIT, to

make the necessary corrections before a rerun.

d. When the parsing is completed, and no error is

detected, the following information will be listed:

(1). Number of areas
(2). Area names
(3). Number of records
(4). Record names
(5). Record data size
(6). Record overhead
(7). Total record size
(8). Details of overhead

38

e. After the above information has been printed out. The

user is requested to assign the occurrences of each record

type and its expected growth percentage. It is important to

emphasize, that the above information should be as precise

as possible, and it it should be obtained after conducting

careful system analysis studies.

f. DBSAP will use the information obtained from the parser

and from step e to provide the user with a table of the

total occurrences of each record type.

g. DBSAP will help the user develop his DMCL statements by

giving him all the alternative statements according to DMCL

syntax (Ref. 3), and asking to choose the ones which are

more suitable to his needs. If the input for the user's

choice is valid, a DMCL statement followed by an "[OK]" will

be printed out, to indicate that the statement has been

accepted and has been stored in the output file-DMCL. If the

input is invalid, one of two possible situations may occur.

First, if the error is detected by DBSAP then it will give

the user the warning "wrong input! try again". For example,

39

if the choice is "<1 or 2>" and it reads "3" as input, then

the same question will be asked. The other situation is when

an error is detected by the PASCAL compiler. In this case,

the excution will stop, and an "? invalid format", message

will be printed out.

h. When DBSAP gives the message that all the DMCL

statements have been completed, all these statements are

stored in the file which the user specified for the output

file-DMCL. The user has to append the Schema DDL file

Subsequently file. Subsequently, the user can use EDIT to

key in the Sub-Schema statements.

3.3 The formulas used in storage calculations

The following is the list of the formulas used in storage

calculations:

a. ph = 2
b. po = ph + nocalc
c. as(i) = lps(i) - po(i)
d. grpp(i) = as(i) / srec(i)
e. lrpp[i,j] = as(i) / rs(i)
f. to[i,j] = poc[i,j] * (1 + perct[i,j] / 100)
g. pages[i,j] = to[i,j] / lrpp[i,j]

40

i. ar(i) = pages[i,j]
j. lp(i) = fp(i) + ar(i) - 1

where i: i = l,....,n i is the number of the
areas in this data base.

[i,j]: The j•th record type in i'th area,
ph: Page Header,
po: Page Overhead,
nocalc: Number of CALC chains,
as: Available Size in a certain area that can be

used to store Record occurrences,
lps: Logical Page Size is the maximum number

specified by the user that can be used
to stored record occurrences,

grpp: RECORD-PER-PAGE is the maximum number of
records that can be stored on a page for
an individual area,

srec: The smallest record size among an
individual area,

lrpp: The number of record occurrences which can be
stored in one page for an individual
record type,

rs: Record Size,
to: Total Occurrences of an individual record

type in an area,
poc: The occurrences of an individual

record type,
perct: Growth Percentage of an individual

record type,
pages: The number of pages required to store all the

occurrences of an individual record type,
ar: The number of pages for an individual area,
lp: Last Page of an individual area,
fp: First Page of an individual area.

41

4. CONCLUSION

This thesis has presented a package designed to help the

data base designer in the selection of the appropriate

storage allocation for his data base. Using this package

helps to avoid arbitrary storage assignment which may most

likely lead to waste in storage or to insufficient storage

as may be required by future expansion.

Even though, DBSAP is designed to help the data base

designer to develop his DMCL statements, it does not provide

an optimization module for the storage allocation. The last

aspect is a direction for further investigation and

development.

42

REFERENCES

1. Aho, Alfread V. and Ullman, Jeffery D. The theory
of Parsing Transition and Compiling. Volume I:
Parsing, Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1972.

2. Conference on Data Systems Languages (CODASYL).
Data Base Task Group Report April 1971,
Association for Computing Machinery, New York,
1971. f

3. Digital Equipment Corp. DATA BASE MANAGEMENT
SYSTEM Admistrator's Procedure Manual, Maynard,
Massachusetts,1977. "

4. Digital Equipment Corp. DECSYSTEM-20 User's
Guide, Maynard, Massachusetts, 1978.

5. Knuth, D.E., "Top-down syntax Analysis",Acta
Information, 1, No.2 (1971), pp. 79-110.

6. Lewis, P.M. and Stearns, R.E., "Syntax-directed
Transduction", J. ACM. 15, No.3 (1968), pp.
465-88.

7. Martin, James. Computer Data-Base Organization
(2nd ed), Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1977.

8. Olle, T William. The codasyl Approach to Data
Base Management. John Wiley & Sons, New York,
1978.

9. Wirth, Nicklaus. Algorithms + Data Structure =
Programs, Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1976.

43

VITA

Tung-Sheng Lai was born on Octeber 28, 1954 in Ping-Tung,

Taiwan, Republic of China. It was there that he received his

pre-collegiate education. From 1972 to 1976, he attended the

College of Chinese Culture in Taipei, Taiwan. In 1978, he

decided to continue his education with graduate study in the

United States. In the fall of the same year he begin his

studies in the Division of Computing and Information Science

at Lehigh University.

44

	Lehigh University
	Lehigh Preserve
	1-1-1980

	A program for storage allocation in DECSYSTEM-20's DBMS.
	Tung-Sheng Lai
	Recommended Citation

	tmp.1451580486.pdf.tR0eu

