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ABSTRACT 

The subject of lubrication is of fundamental 

importance in practical mechanics.  One of the early 

investigations in this field was carried out by Mr. 

Beauchamp Tower; his first report was published in 

November, 1883. 

Consider a flat surface moving relative to a fixed 

inclined plane with the two bodies separated by a 

viscous fluid.  Mr. Tower discovered that the moving 

surface drags the viscous fluid into the gap between 

the two bodies causing a continuous fluid film to be 

maintained. 

Osborne Reynolds [1] followed on the theory of 

lubrication and its application to Mr. Tower's experi- 

ments.  Reynolds, upon reading Tower's report, thought 

that a mathematical description of the maintenance of 

the fluid film could be obtained from the equations 

of hydrodynamics.  In doing this he formulated the 

fundamental equation, which bears his name, of 

Lubrication Theory. 



Following Reynolds, in the early 1900's, Lord 

Rayleigh [2] had his own research in the field of 

lubrication.  Rayleigh introduced the step bearing 

which appears to be the form which must be approached 

if we wish to maximize the load carrying capacity of 

the bearing. 

Our object in the present thesis is to derive in 

detail and from first principles the basic Reynolds' 

equation in one dimension and hence consider different 

geometries of the fixed surface, while the moving sur- 

face is kept plane, in search of the optimum profile 

that provides a maximum load carrying capacity.  The 

numerical values appearing throughout this thesis 

as well as the graphs describing the behaviour of the 

load with the change in the maximum to minimum film 

thickness ratio have been obtained on the computer. 

In all the questions raised in this study we may 

anticipate that our calculations correspond pretty 

closely with what actually happens in practical 

application. 



SECTION I 

BASIC DEFINITIONS 

(1)  S-hear stress (T) 

A straining action wherein tangentially applied 

forces produce a sliding or skewing type of deformation 

is always denoted as shearing. 

A shearing force acts parallel to a plane as 

distinguished from tensile or compressive forces which 

act normal to a plane. 

Shearing stress is the intensity of distributed 

tangential force expressed as force per unit area. 

Examples of force systems producing shearing 

action are forces transmitted from one plate to 

another by a rivet, that tend to shear the rivet 

(Figure 1). 

With the aid of the latter example it is easier 

to extend the concept of shearing forces to fluids, 

considering the forces transmitted from one plate to 

another by a fluid film that tend to shear the film. 

(Figure 2). 

_7ZZZ 

fig. 1 



acting force 

fluid film 

restoring force 
fig. 2 

(2)  Viscosity (n) 

Viscosity is the property of fluids which causes 

them to resist variations in velocity that occur across 

a section of a flowing fluid; by causing shearing stresses 

between adjacent layers of fluid moving relatively to 

each other. 

It was Newton who first stated that the shearing 

stress in a fluid is directly proportional to the 

velocity gradient normal to the flow, that is, the 

rate at which the velocity varies across a section. 

The coefficient of viscosity  (p.)  is defined as the 

stress (force per unit area) which in a given fluid 

results from unit velocity gradient.  In otherwords it 

is the constant of proportionality in the relation 

fay-- d.i) 

where 



t = shear stress, 

u = velocity in the x-direction, 

du 

of the flow 
-r^ = velocity gradient normal to the direction 



SECTION II 

DERIVATION OF THE ONE DIMENSIONAL REYNOLDS' EQUATION . 

To derive the Reynolds' equation in one dimension, 

we shall examine the case of two parallel plates moving 

relative to each other with a constant velocity of  U. 

This case, often called the plane slider, is shown 

in Figure (3). 

It is noteworthy to mention that our calculations 

will be carried out for an infinite bearing; that is, 

the dimension of the bearing in the  z-direction is 

infinite.  This is to avoid the complications resulting 

from leakage. 

u = _u fig. 3 

(i)  Assumptions. 

1)  Flow is laminar i.e. particles of fluid move 

in straight lines parallel to the boundary, that is 

motion is everywhere parallel to x-direction (no 

velocity in  y-direction). 



2) Body forces are neglected, i.e. no extra 

fields of forces acting on the fluid. 

3) No slip at the boundary, i.e. velocity of the 

fluid layer adjacent to the boundary is the same as 

that of the boundary. 

4) Fluid is Newtonian; i.e., obeys the relation 

du T - » d7 

as discussed earlier. 

5) We assume here for simplicity that viscosity 

is constant. 

6) We are assuming a very thin  fluid film; in 

otherwords, we are assuming that -r  « 1.  Consequently 

the pressure gradient across the film is insignificant 

compared to the pressure gradient along the film. 

According to D. Dawson ["Generalized Reynolds' Eqn 

for fluid film lubrication", 1961] it can be shown 

that |E is  (h)  times |£ 

7) The whole flow of fluid is regarded as incom- 

pressible between zero and h, i.e. the density is 

constant. 



Pxdy 

*Tx 
<Tx  + "^7>d* 

dy 
(r " Vr 

Txdx 

1 dx  

•- X 

fig. 4 

(ii)  Equilibrium of a rectangular element 

Consider a general element of fluid  (dxdy)  as 

shown in Figure (4) where 

p  = pressure along the film Jx-dir^t . 

and 

T  = shear stress along the film  Jx-dir^ . . 
x (. 

According to assumptions (1), (2) and (6) the above is 

the only system of forces acting on the element. 

For the equilibrium of forces in the  x-direction 

P dy + T dx + 
"5y 

dydx 

a* 
= Txdx + pxdy + -^ dxdy. 

8 



bi dp x _ *x 

Hence, 

-57 

According to assumption (4) the fluid is Newtonian 

and thus it obeys the relation 

du 
T   ^ dy- ' 

Since we assumed that p. is constant, we have 

***   .  d2u 

-^"^d7 ' 
Ho  .   d2u m  ^x Hence, p. —7 - -^ . 

dy 

Let p  be p(x).  Then, 

^^7-^' <II'1> dyz  ax 

Equation (II.1) is directly integrable and yields 

du  Bld£ 
dy       [x ax  J 

and 

u --h^y2 + Ay + B <II2> 
where A and B are constants of integration obtained 

from the boundary conditions as follows. 

From assumption (3) 



u = -U at y - 0 

and 

u *= 0  at  y » h . 

Hence  B =• -U and A = ^ - -^- ^£ h . 

Now (II.2) becomes, 

1 dp 2 , U     1 dp,    „ 

or, 

The volume rate of fluid flow through an element 

of thickness  (dy)  is given by 

qx - u dy . 

Accordingly the volume rate of fluid flow through the 

entire film of thickness  (h)  would be given by 

f h Qx - /   u dy . 
*  w 0 

Therefore, 

or, 

"» " - & TO ' T ("•*> 

10 



According to assumption (7) the fluid flow is 

incompressible between  0 and  h; hence the density is 

constant. 

Taking the fluid mass balance in the  x  direction 

across a section of infinitisraal length  dx  as shown in 

Figure (5). 

*x + 

4dxl 

fig. 5 

The mass of fluid entering the section, denoted 

by m  y   is given by 

"x " ^x 

where  p  is the density. 

The mass of fluid leaving the section will be 

%- 

dm 
dx . 

*K where —^ is the rate of change of mass in the  x 

direction and  dx  is small enough to treat --^L as 

linear. 

11 



But, the mass entering the section is equal to 

the mass leaving the section.  Hence 

dm 
m  » m + —r— dx . X    X    ox 

Thus 

am -s 

-S = ° or h^-o . 

But  p  is constant and not zero.  Therefore 

* = 0 

The last equation tells us that Q  is constant.  Now 

let 

Q, - -Q . 

Then,   Equation   (II.4)     becomes 

-"--fife-1* 

or, 

g-J2£ (Q - !»)   . (II-5) 

Introducing a new constant  H given by 

Equation (II.5) reads 

v 

12 



is - ^ H 
or, (II.6) 

d£ „ . W   (h_H) 
ax     hJ 

Equations (II.6) represent the well known form 

of Reynolds' Equation in one dimension. 

Equation (II.6) is correct within a constant  H 

which we introduced earlier and which happens to have 

a physical significance.  H  is the thickness of the 

di fluid film for which ^ « 0. 

We notice that in the case of a plane slider the 

thickness  h  of the film is the same everywhere; in 

otherwords, the right hand side of the Reynolds' equation 

will remain constant.  Therefore 

H constant, 

Hence we can expect the pressure distribution to be 

linear in the x-direction. 

Now the choice of the pressure at both entry and 

exit to the slider is arbitrary since we are always 

considering gauge pressure.   . 

To simplify the mathematics we choose, without 

loss of generality, the pressure at both ends of the 

13 



slider to be zero.  Therefore  p(x) * 0 and 

in which case, from equation (II.6), 

. M (h-H) m Q 
hJ 

This implies that h «= H which justifies our previous 

explanation for the constant H. 

14 



SECTION III 

ANALYSIS OF LORD RAYLEIGH'S STEP BEARING 

Reynolds' Equation in one dimension is 

^       ( h7) 

where  H, as we stated before, is a constant that 

actually has physical significance.  Let us consider 

the entry and exit to be  a  and  b  respectively. 

Furthermore let  p(a)  and  p(b)  be zero. 

With these conditions we can evaluate H  from 

the equation 

f      dp =-6nU \  f     % - H 
J a          I J a ti 

rb dxi 
K    h^J 

i.e. 

f  dx/h2 
° a H ~ 
f   dx/h3 J a 

Using the notation 

p b m 
I   - /  ~ dx mn J a hn 

02 we may write, H = -*— . 
i03 

With this definition of H we integrate Reynolds' 

Equation from a  to x  to obtain 

15 



p(x)   * 6p.U ,r * dt    xo2   rx dt, 
Ja     hZ       X03    Ja     hJ 

(HI.l) 

Let us look now at Rayleigh's step bearing shown 

in Figure (6) 

I /// 

I 

U 

fig. 6 

hi      h 
Let  ^ = _i j p ^ ~T and let  a = ° and b * *• 

this case 

In 

1    r £l  m.   . 1    f* m I   * —  /    x dx + ——  /   x mn  h£ J0 hn J£x 

_l_r^[pnH-l^n(1.pm+ln 

dx 

1 A 
m+I 

1 

nri-1 
I n  mn 

-v. 
where  I mn [P^Al-p0*1)] . 

The pressure distribution given by equation 

(III.1)  will be 

16 



P(x) h^ i03  1 

6uU 02 
^V1 " T"TT>+X <x " 03   1 

o ^ x £ i. 

103  2 L 

(III.2) 

where  IQ2 = -\  [(3+*2(l-e)]  and  IQ3 - -^ [(3+X3(l-0) ]. 
hl hl 

The pressure distribution is sketched in Figure (7) 

P(x) 

max. 

fig. 7 

W The load per unit width, ■»-, shall in this case be 

given by the area under the triangle shown in Figure (7); 

i.e., 

W r 1     Pmax l 

with P max Thus, 

17 



This can be written as, 

W . 3^Ui2  IP(1-P)(X-1)| (IU 3) 
L h~   Ip+v'O-p)  J 

According to Lord Rayleigh the centre of pressure 

is the position through which the load acts.  It is 

given by taking moments about the origin. 

Assume the distance of the centre of pressure from 

the origin to be x.  Then 

W -   f l 
j- x = /   px dx . 

Thus, 

W fp<i-p)<vm -   r h sq U . ^02_l x2dx 
hj  I p+?^(l-p) J    J0   hj 1    103nlJ 

£1       Hl 03 l 

+ *2d - T-TT><X-*I>1 X dx x
03 2    L  J 

h^ I 0+XJ(l-0) J    3hf  x    ^"l 
2 3 

2 (ili rn    
X02 ,   £1  ri    

X02 
hz ^ z     iQ3n1    z     iQ3n1 

18 



+ x2   *3   r i        _IQ
2   i       AJi r i       iE_, 

j x03  2 J 03  2 

liii-n      -IQ
? I + X fl n      _

IQ2
 P. -     *     [1    -    ^ c~J    +   —s     [1    -    j t—] I    . 

z x03  2 l 03  2  J 

After some  algebraic  simplifications  we have, 

x   -  I ^f*- (III.4) 

19 



SECTION IV 

CASE OF INCLINED SLIDER 

We now consider the case in which the slider is 

still flat but inclined at a very small angle to the 

first surface; see Figure (8). 

We take in this case 

fig. 8 

h(x) = mx 

where tn the slope of the slider; i.e. 

m 
hl  h2 
T "T" 

h2 
Let b - a = c and define t— * 

nl 
triangles 

k.  From similar 

^ -* -k EJ  a  K ' 

Therefore m 
(k-l)hx 

20 



(k-l)h. 
Hence, h = rax =   x.  If we substitute this 

form of  h  in the Reynold's Equation we find 

& 
6u.Uc 

hj(k-l)3 

6nUc3 

3TTm 

(k-Dh, 
x  -   H. 1 

(k-l)h1       H 

ex ?   ' h^(k-l) 

Performing  the  integration,   taking  into considera- 

tion  that     p(a)= p(b)= 0,   we get 

.3 
P<x) 6uUc__ 

T7TT73 2? hj(k-l) 

where  X  is a new constant of integration 

But at  x = a, p(a) = 0.  Hence 

0 = - 
(k-1)^   H 

2? 
Therefore, 

(k-1)^   R 
ca 2a 

Also at x = b, p(b) = 0.  Hence, 

(k-1)^   H 
0 

i.e. 

X =  r—i cb 

+ -^  + X 
2bz 

H 

2b 

(t) 

(ii) 

21 



Solving equations   (i)   and   (ii)   simultaneously  for 

H    we   find, 

H        f<fc-l>t*i       <k-D"11/b2.a2 

H . (k_1)hl/|(b-^(b+a). 
a'k 

(k.1)hi/£lilS=ilik±ll 
1 azk 

or 

From this 

H 
2khx 

(k-Dh^       2khx 

—cT —" 2b*(k+l) 

hl   f(k-l) k 
T^ j    c     ■ b(k+l) a2(k+l) 

The  pressure  distribution  then becomes 

nM   - -6uUc3     f     <k'1>hl     . Jil   . p(x) =  *r ^  +  n +  —7     , 
hJ(k-l)Jl    ex       (k+l)xz  az(k+l)j 

i X   (IV. 1) 

The total load, W/L, is defined by 

£ -J*  p(x)dx . 

Therefore 

22 



b   (k-l)h,     kh.       h. 

L    hj(k-l)J Ja cx (k+l)xz  a*(k+l) 

a  a'(k+l)   'a 

l r —T[—?— in k + 7rnn-\(^ - 7) 7 (b-a)] 
hJ(k-l)J   c ^k+1> b  a   a^(k+l) 

_6nUc3_r (k-1) .  - .    khl   c     hl 

, „ 2 2 2 

hj(k-l)z        a^(k2-l)   aZ(kM) 

- 6nUc2   r -.  .      2c2  ■■ 
h£(k-iy        a2(k2-l) 

Hence 

. * ^ = h2(k-i)2 [ln k " 1^L] (IV-2) 

Now to find the centre of the load.  x we take 

moment about the origin, i.e. 

a 

Hence 

W -   f b "E x " p(x)#x dx 

23 



^Uc2   ,   Jin  k -   WMx   -    ^Uc3   ,      fb 

h2(k-l)2   C k+1     J hj(k-l)3   *a 

(k-l)h1 khx h.x     -j 

~&^~   a2(k+l)J 
dx   . 

f              2(k-:m -           c         f(k-l)hlC        kh, 
in k -   2^111   x   . C_T^     _1__ 1       ink rp^Ty ( 

2az(k+l) 
(b2-a2) 

c f-<k-.!) '. ^1 
h^k-1)  {^T-^ hlc - E+T in k - 

hL(k-l) 

c  - 
<k-l)(k+l> 

in k - i .  • 

(k-H)in k -   2(k-l)l  -      c(k-l) (k+l)-kc  in k-(c/2Xk-l) (k+1) 
^—^__j —   x =   — —'(k-i>(k+iy    — — 

- o 2c(kz-l)-2ck in k -   c(kz-l m 2(k-l)((k+l)   in k -   2(k-l)> ft 

2x   „ 2(k2-l)  -   2k  in k -   (k2-l) 
c (k2-l)   in k -   2(k-l)2 

or 

x     m      k-   1 -   2k  in k 
^T2"      (k2-l)   in k -   2(k-l)2 (IV.3) 

24 



Focusing our attention on the expression of the 

load, 

W r 6nUc2 

2„_ ,x2 '*>k - W> 
W 

hj(k-l) 

We find that U being positive the sign of •£ is that 

of in  k - ffii1)! •  If k > 1, that is ^2 > h^, 

for which y- becomes a 

this quantity is positive.  The derivative is also 

positive.  In order that a load may be sustained, the 

layer must be thicker where the liquid enters. 

So far the value of k is left open.  Reynolds 

W examined that value of k  —  J 

maximum and he found it to be 2.2.  Lord Rayleigh 

agrees with this value and accordingly, from the 

expression of the load, finds the maximum load to be; 

2 
X = °-1602n ^ . 

hl 

It is noteworthy that whatever value k assumes the 

W c load Y    varies with the square of r— .  With the 

above value of k, 

H - 1.27h 1 ' 

Thus fixing the position at which 4^ ■ 0.  With the 

same value of k we examine the distance of centre of 

pressure from the trailing edge; i.e. 

25 



o . c    k2-l - 2k In k      c x - a « j       —n j  - T-T . 
L       (k -l)/n k - 2(k-l)z  K L 

With k = 2-2 we find that 

x - a * 0.42276c . 

If we take the limit of  (x-a)  as k tends to 

infinity we find that  (x-a)  tends to zero.  This 

means that as k becomes very large the centre of 

pressure approaches the trailing edge.  As  k approaches 

unity we get 

lim  (x-a) ** -K  . 
k-1        z 

From the above, whatever the value of k, the 

centre of pressure is always nearer the narrower end 

of the fluid film. 

Numerical Analysis of W/L vs.  k. 

We have that 

hfw/L 

hj(k-l) 

1 
Let W* » —=—7  .  Then 

6nUc 

26 



w* i-j Jta u - l&p\ . 
(k-1) 

But, 
2 3 

in k ^ (k-i) - ^k;1^   + (k\l)    ... 

Therefore, 

w* =    i   , l(k-i) - (k;i>2 + (k;i)3        . 2(k-l) 
(k-l)2   I 2 +      3 '* * k+1 

o^o1 rf 
J^jyii. iMi! + iMii .. .1 k+n 

1^ jx .  1S|1 +  (^(k-1)   .   (k+l^(k-l)2 

Tk+IT 

^ I jk^u + (k»lj(k-l) . (k+l)jk-l)2 

M 1   ,   k+1 
1 + T" 

_   (k-H^(k-l)   , 1 

or 

W* $+# ft + 2k - 4 k* +. 3 ,_2 
I 

given  that 

W* 
(k-l) '*• k - W 

we have 

27 



x   l       K+i  J (k-l)J    1R  (k+l)zJ (k-l)z 

Therefore 

2 in k .   4   , 1    4   m  n. 

i.e. 

or, 

2 in k + 4(k+l)k + (k+1)
2 - 4k ^ Q 

k_1 k(k+l)2 

|„ k = (5k
2+2k+l)(k-l) 
2(k(k+l)Z) 

Hence k - 2.18873361.  Now 

d2W* „ _  4   fl _  4 
dk2    (k-l)3!^  (k+1)2 

8 

. + ^{"""^l 

(k-1)2 Ik2" " (k+l)3J 

and substituting this value of k gives 

^^-0.0058 . 
dkz 

Since the second derivative is negative, this asserts 

the fact that the maximum load is at this value of 

k = 2.18873361 which, when rounded, agrees with 

Reynolds' value of k; i.e.,  k » 2.2. 

28 



SECTION V 

ANALYSIS  OF  THE CASE    h   « rax n 

In this section we examine the case when the  h 

varies with x  in a more general form.  The profile 

of the slider in this case being given by h ■ rax , 

where n  is any number. 

A diagramitic sketch of such a profile is shown 

in Figure (9). 

As in the earlier parts we set 

and 

- b - a,  p(a) = p(b) - 0, 

*I 

y» 

i—.- 

-U 

fig. 9 

29 



Since  h, e ma  and h~ = mb , 

h0   , n   . n 
2 . SL_ « (2.)     m  k 
1  ma 

Thus 

and 

Since  m n 

,1/n . b 

:Vn . ! . bz a = £ 
a 

a = c/Ck1/"-!). 

h^kVn-i) 
m 

From Equation (II.6) we have, 

dp/dx = ^U jh_H 

where H is a constant yet to be evaluated. 

Integrating once gives 

-Wifes-11/-* m x 

-2n+l 
-6nU [-j Hx 

m x 

-3n+l 

nT(-2n+l)  mJ(-3n+l) 
+ \) 
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where     X     is   the  new integration constant. 

p(a)   - 0, 

-2n+l a-3n+l 
0  - -2 H -2  + X 

rn   (-2n+l) mJ(-3n+l) 

and  applying     p(b)   = 0, 

,-2n+l K~3n+1 

0  = -S H -2  + X  . 
tn  (-2n+l) mJ(-3n+l) 

Solving both equations for H, therefore 

In 

3 

Applying 

r,-2n+l -2n+l b    -a 
_ ^-3^-3^ 

nT(-2n+l) ra^-On+l)  J 

or 

Hl»(-3n+"M> 
-3n+l 

-1 
J-. 

mJ(-3n+l) 

-2n+l-U^ 
r  . -2n+l  > 

mz(-2n+l) 

or 

H = 
man(- (-3n+l)|(|) 
7~TTXTT 

-2n+l 
' ' ( 'a'  

(-2n+l)|(|)-3n+1-l 

b   l/n     h^kVn-i)" 
Putting | = k1'", m - -±  

c 

an = cn/(k1/n-l)n we write 

-1 

and 

h1(k
1/n-l)ncn{k-2-|-1/n-l|(3n-l) 

H = cn(k1/n_i)n(2n-l)|k-
3+1/n-l ~~~ 

i1|k-
2+1/n-lj(3n-l) 

(2n-l)|k-3+Vn-l| 
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Thus 

,  Wn
C   il 

hJCk1/"-!)^-!)  ( 
(k-2+1/n- 
(k-3+1/n_D n-ni 

The pressure distribution then becomes 

p(x) = 6M^UJ-| 
-2n+l Hx 

3" 

-3n+l 
- X 

Un (2n-l)   tn (3n-l) 

where H and X are constants computed above. 

For the load per unit width, 

b 

a 
L =J   P(x) dx » 

we get 

r -/b 6^u<-i 
-2n+l Hx -3n+l 

ni (2n-l)   mJ(3n-l) 
- X) dx ; 

i.e. 

1 W 
"Sim r 

-X -2n+2 

ni (2n-l)(2n-2) 

b ,  H x'3"*2 

a  m3(3n-l)(3n-2) 

Calculating each term on the R.H.S. gives 

-2n+2      b    ra-
2n+2|k-2+2/n-lia2n 

in (2n-l)(2n-2) i^(2n-l)(2n-2)  J 

c2 ft-2^.^ 

(V.l) 

b      b 
- Xx 

a      a 

h2(k1/n.i)2(2n-l)(2n-2) 
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H x -3n+2 

raJ(3n-l)(3n-2) a    (2n-l)(k~3+1/n-l)h3(3n-l)(3n-2) 

h2(k1/n-l)2(2n-l)(3n-2)(k"3+1/n-l) 

and 

->oc = -~hc 
_ (k-2+1/"-l) 

h2(k1/n.i)(2n-l)l   (k-3+1/n-l)J 

Therefore 

1  W _ -c2(k-2+2/n-l) 

^ r  h2(k1/n.i)2(2n.1)(2n-2) 

c2(k-2+yn-i)(k-3+2/n-i) 
h2(k1/n-l)2(2n-l)(3n-2)(k_3+1/n- 1) 

„    c2       a  (k-2+1/"-l), 

hJCkVn.iXZn-l) U ' (k-3+1/»-i/ 

-c2 f-(k-2+2/n-l) 

h2(k1/n.i)2(2n-l) 1   <2n"2> 

, (k-2+1/n-l)(k-3+2/n-l) 

(3n-2)(k_3+i/n-l) 

rk1/" nn     (k~2+1/n-DJ 
[    ' (k-3+Vn.i)] 
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h^kVn-i)* <2n-l)<5n-2>        (k-5+Vn-l) 

(k<"2^2/n>-l) 
"     Zi^"2  } (V.2) 

Define    W* i—y    £    h2   .     Then 
6tiUc 

W*  = 

W*  = 

1 [(k-2+1/n-l)(k-3+2/n.l) 
(2n-l)(k1/n_i)2  1   (3n-2)(k~^1/n-l) 

(k-2+2/"-l)        ,.1/n 1M ,        (k-^/"-!). ) 
-        <2n-2> "   (k      'l)ll -   Jk-3+i/n.^l; 

1 f(k-2+1/n-l)(k-3+2/n-l)l 
(2n-l)(3n-2)   l(kVn.1)2^-3+l/n_1) 

1 f(k"2+2/n-l)-| 1 
-   <2n-l)(2n-2>   I'   (kV-.x,*)-   (2n-l)(kVn. 1) 

(k-2+1/n-l) 
(2n-l)(k1/n_1)(k-3+l/n_1) 

Now 

d     f (k-2-*-1/"-!)^-3^2/"-!) 
^   l(2n-l)(3n-2)(k 

Hk—/"-!) ) 1 
i;n.1)2(k-3+i/n_1))  - <2n-l)(3n-2) 

{ 
(kVn. 1)(k- 3+l/n_ 1} L - 2+l/n_ 1} (_ 3+2/n)k-4+2/n 

Vn.xxJ^-S+l/n.nZ (kx/"-l)J(k 1) 
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+(k-3+2/n_1)(_2+1/n)k-3+l/n 

(k1/n.i)3(k-3+l/n_1)2 

-(k"2+1/n_ D(k-3+2/n_1}](kl/n_1}(_ 3+1/n)k-4+1/n 

(kx/"-l)J(k 1) 

^/nXk-3+1/n.1)k-l+l/n 

(k 

d 
elk" 

1/«.i)3(k-3+l/n.1)2 

(k-2+2/n-l) 
777777777175 (2n-l)(2n-2)(k1/n.1)2]   ~  (2n-l)(2n-2) 

f(k1/n-l)(-2+2/n)k-3+2/n-(2/nXk-2+2/n-l)k-1-t-1/n 

(k 175-1)- 

d 
(2n-l)(k1/n_i) (2n-l)(kr/n-l) 

and 

d (k~2+1/n-l) _       1 
^ (2n-l)(k1/n_i)(k-3+l/n.1)       (2n-l) 

( (kVn-l) (k~3+1/n-l) (-2-H/n)k-3+V". (k^*1/"-!) 
1 (kl/»-i)2(k-3+l/ri:i)2 

|(k1/". i) (.3+l/n)k-4+1/n+(k-3+l/n. 1)Cl/n)k- l+l/n| 

Vn.n2rk-3+Vn_n2  (k^u-l)*(k" 1) 

Thus to maximize W* we add the above terms and equate 

the sum to zero; i.e. 
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^»0o .k-l+l/n^-2+l/n.^   .   (^^-3+2/n.^ 

,   .l/n..-3+l/n  n   .   3n-l   (k'2*1/"-1)Ck"3*2/"-!) 
k(k 

2k2(k-3+2/n-lUk-2+1/n-l) 
i/n_ (3n-2)(kx/"-l) 

+ k2(k-2^/"-l)(k-3^/"-l)   + ^-3+1/n^ 
(n-DCk1/".!) 

-   (2n-l)(k1/".1)  +  (3n-l)(kV"-l)<k-2^/n-l) 
Wk~J+i/n_i\ 

:2,k-2+l/n_ -  k"(k ^'"-1). (V.3) 

It is noteworthy that the previous Equation will 

yield the expression —-n- in the case of h » rax by 

placing n = 1.  However the sixth term should be 

taken by evaluating the limit since, by direct substitu- 

tion, the term becomes indeterminate. 

In Table I we give the maximizing values and the 

maximum values of W(k)/L as n ranges from 0.01 to 

100.  These values were obtained by finding a zero of 

W'(k).  Such a zero would be an absolute maximum if 

W(k)  were concave downward.  As we can not prove that 

we give in Figures 10, 11 and 12 selected graphs of 

W(k)  to suggest that W(k) is indeed concave downward. 
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W/L h? 
Tabulated  values   of maximum  load    W* -  w 

. 6uUcz 

2 and k*  (ratio T— giving maximum load) at various 
nl 

values   of    n     in    h  = mx11. \ 
V 

Table   (I) 

n 
h 

k*  =  (U)* 
nl 

h2 

max        NStHJ       7' max c 

0.01 1.90 0.00072466 
0.02 1.90 0.00151773 
0.03 1.90 0.00238589 
0.04 1.90 0.00333656 
0.05 1.90 0.0043 7699 
0.06 1.90 0.005509 75 
0.07 1.90 0.00672540 
0.08 1.90 0.00799983 
0.09 1.90 0.00929904 
0.10 1.90 0.01058724 
0.11 1.90 0.01183355 
0.12 1.90 0.01301521 
0.13 1.90 0.01411801 
0.14 1.90 0.01513507 
0.15 1.90 0.01606504 
0.16 1.90 0.01691032 
0.17 1.90 0.01767561 
0.18 1.90 0.01836687 
0.19 1.90 0.0189905 7 
0.20 1.90 0.01955318 
0.21 1.90 0.02006093 
0.22 1.90 0.02051959 
0.23 1.90 0.02093446 
0.24 1.90 0.02131031 
0.25 1.90 0.02165141 
0.26 1.90 0.02196155 
0.27 1.90 0.02224409 
0.28 1.90 0.02250200 
0.29 1.90 0.022 73 789 
0.30 1.90 0.02295408 
0.31 1.90 0.02315259 
0.32 1.90 0.02333523 
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n k* W* max 
6.33 1.91069389 6.623564 73 
0.34 1.9223 7116 0.02366401 
0.35 1.93349994 0.02381384 
0.36 1.94410964 0. 02395493 
0.37 1.95422840 0.02408789 
0.38 1.96388305 0.02421331 
0.39 1.97309910 0.02433173 
0.40 1.98190074 0.02444364 
0.41 1.99031088 0.02454949 
0.42 1.99835116 0.02464969 
0.43 2.00604200 0.02474463 
0.44 2.01340264 0.02483466 
0.45 2.02045121 0.02492011 
0.46 2.02 720475 0.02500127 
0.47 2.03367930 0.02507843 
0.48 2.03988993 0.02515183 
0.49 2.04585078 0.02522172 
0.50 2.05182072 0.02530178 
0.51 2.05707554 0.02535180 
0.52 2.06236366 0.02541239 
0.53 2.06745053 0.02547025 
0.54 2.07234650 0.02552554 
0.55 2.07706128 0.0255 7841 
0.56 2.08160400 0.02562899 
0.57 2.08598325 0.02567743 
0.58 2.09020711 0.02572384 
0.59 2.09428316 0.02576833 
0.60 2.09821855 0.02581101 
0.61 2.10202000 0.02585197 
0.62 2.10569385 0.02589131 
0.63 2.10924607 0.02592912 
0.64 2.11268228 0.02596547 
0.65 2.11600778 0. 02600044 
0.66 2.11922758 0.02603410 
0.67 2.12234642 0.02606652 
0.68 2.12536874 0.02609775 
0.69 2.12829877 0.02612786 
0. 70 2.13114050 0.02615690 
0.71 2.13389 771 0.02618492 
0.72 2.13657395 0.02621197 
0.73 2.13917261 0.02623810 
0.74 2.14169690 0.02626335 
0.75 2.14414986 0.02628775 
0.76 2.14653436 0.02631135 
0.77 2.14885314 0.02633418 
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n k* max 

0.78 2.15110879 0.02635628 
0.79 2.153303 79 0.02637768 
0.80 2.15544046 0.02639840 
0.81 2.15752105 0. 02641849 
0.82 2.15954767 0.02643 796 
0.83 2.16152234 0.02645684 
0.84 2.16344698 0.02647515 
0.85 2.16532342 0.02649293 
0.86 2.16715341 0.02651018 
0.87 2.16893860 0.02652694 
0.88 2.17068060 0.02654321 
0.89 2.17238090 0.02655903 
0.90 2.17404097 0.0265 7440 
0.91 2.17566218 0.02658935 
0.92 2.17724586 0.02660389 
0.93 2.17879326 0.02661804 
0.94 2.18030561 0.02663180 
0.95 2.18178404 0.02664520 
0.96 2.18322968 0.02665826 
0.97 2.18464357 0.02667097 
0.98 2.18602675 0.02668335 
0.99 2.18738018 0.02669542 

1 2.18873361 0.02670719 
2 2.25192894 0.02720732 
3 2.27191770 0.027335 71 
4 2.28170422 0.02739231 
5 2.28751025 0.02742380 
6 2.291353 72 0.027443 76 
7 2.29408582 0.02745 751 
8 2.29612770 0.02 746754 
9 2.29771159 0.02747517 
10 2.29897603 0.02748118 
11 2.30000882 0.02748602 
12 2.30086827 0.02749001 
13 2.30159464 0.02749335 
14 2.30221663 0.02749619 
15 2.30275522 0.02749864 
16 2.30322613 0.02750076 
17 2.3036413 7 0.02750262 
18 2.30401026 0.02750427 
19 2.30434015 0.02750573 
20 2.30463691 0.02750705 
21 2.30490529 0.02750823 
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n k* 
* 

max 

22 2.30514918 0.02 750931 
23 2.3053 7179 0.02 751028 
24 2.3055 75 78 0.02751118 
25 2.305 76340 0.02 751200 
26 2.30593654 0.027512 75 
27 2.30609682 0.02751345 
28 2.30624561 0.02 751409 
29 2.30638411 0.02 751469 
30 2.30651335 0.02751525 
31 2.30663424 0.02 751577 
32 2.30674754 0.02 751626 
33 2.3068539 7 0.02 751672 
34 2.30695411 0.02 751715 
35 2.30704852 0.02751756 
36 2.30713 768 0.02751794 
37 2.30722200 0.02751830 
38 2.30730188 0.02751864 
39 2.3073 7765 0.02751897 
40 2.30744962 0.02751928 
41 2.30751808 0.0275195 7 
42 2.30758327 0.02 751985 
43 2.30764542 0.02752011 
44 2.30770474 0.02752036 
45 2.30776142 0.02752060 
46 2.30781564 0.02752084 
47 2.30786754 0.02 752106 
48 2.30791727 0.02 752127 
49 2.30796497 0.02752147 
50 2.30801076 0.02752166 
51 2.308054 75 0.02752185 
52 2.30809 705 0.02752203 
53 2.30813 775 0.02752220 
54 2.30817693 0.0275223 7 
55 2.30821470 0.02752253 
56 2.30825111 0.02752268 
57 2.30828624 0.02752283 
58 2.30832015 0.0275229 7 
59 2.30835292 0.02752311 
60 2.30838459 0.02752325 
61 2.30841523 0.0275233 7 
62 2.30844487 0.02752350 
63 2.30847357 0.02752362 

40 



n k* 
* 

W max 

64 2.3085013 7 0.02 7523 74 
65 2.30852832 0.02752385 
66 2.30855445 0.02752396 
67 2.30857980 0.02752407 
68 2.30860440 0.02752417 
69 2.30862828 0.0275242 7 
70 2.30865149 0.0275243 7 
71 2.30867404 0.0275244 7 
72 2.30869596 0.02 752456 
73 2.30871728 0.02752465 
74 2.30873803 0.027524 73 
75 2.30875822 0.02752482 
76 2.30877788 0.02752490 
77 2.30879 702 0.02752498 
78 2.30881568 0.02752506 
79 2.30883386 0.02752514 
80 2.30885159 0.02752521 
81 2.30886888 0.02752528 
82 2.30888575 0.02752535 
83 2.30890221 0.02752542 
84 2.30891828 0.02752549 
85 2.30893397 0.02752556 
86 2.30894929 0.02752562 
87 2.30896427 0.02752568 
88 2.3089 7890 0.02752574 
89 2.30899320 0.02752580 
90 2.30900719 0.02752586 
91 2.30902086 0.02752592 
92 2.30903424 0.02752598 
93 2.30904733 0.02752603 
94 2.30906015 0.02 752608 
95 2.30907269 0.02752614 
96 2.30908497 0.02752619 
97 2.30909 700 0.02752624 
98 2.30910878 0.02752629 
99 2.30912032 0.02752634 
100 2.30913164 0.02752638 
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LORD  VS.   H2/H1   N=Q.Q1 
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fig.II 
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K 

LOAD  VS*   H2/H1   N=100. 
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SECTION VI 

ANALYSIS OF CASE WITH h - ePx 

In this section we further generalize the profile 

to be of the form h » ep  where  3  is any real 

number.  Let 
h2 

and 

c = b-a 

Since h = ePx, hx = e^
a , h2 « e

Pb , and 

k -S^ . e0(b-a) „e(3c 

Thus  pc ■ in k. 

By direct  integration  of   (II.6)  we have 

-6uui- 

Since     p(a)   = p(b)   = 0  , 

dx 
- H  /- 

J 

dx + 
e2Px e3ex 

e-2px 

2p 
+ 

He-3Px 

3e 

- 

• + X • 

and 

e-23a      He-3fia 
A 2p 3p 

e-2Pb      He-3fib 

*      "TP 3T~~ 
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Thus 

.  H_ {e-3Pb.e-3eaJ . .   1^ |e-2eb.e-2PaJ 

and 
e-3paL-3pb e+3Pa-1|       e-2paL-2pb e2pa_1| 

Since     in k  ■ Pc     and    h,   - e^a   , 

3hx    k3jl-k2|       3    h1k(k2-lX 

Accordingly, 

{l-k3}k
2       2"0?-D 

1       1—1 1  «     1      Jfel)   1 
ph2   lk2+k+lJ       2ph2   l(k3-l)J 2?h 

Hence, the pressure distribution becomes 

,  , ,  ,J    e"2^   .   3hxfc(fc2-l)     -3Px 
p(x)   - -6\xU-> yo- +  *  e 

I 2p 6p(k3-l) 

S fr—11 • (VI-1} 
ihf   lkz+k+lJJ 

+ 
2phx 

Now the load per unit width is given by 

w   rb    . 
t -j. pdx • 

Therefore 
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i  w. i  rbe-2e*dx   
hik(k "1} rbe-30x. 

Sim r - la   '    e     dx - OQ/u3 1N   „     e     dx 

x  fk-1 ) 
2ph? lk3-l) 

2p(kJ-l) 

b 

a 

or 

1 W 

^L  4p2h2k2  6f32h2k2  2ph2(k3-l) 

1  , i<^-l) . (kM) . 0k2 (k-l)c| 

,1  . J(^-l) + P(k2-k3)cj 
2p2h2k3 I  6      (k3-l) 

Since  in k « pc  (or p in k ), we obtain by subs- 

tituting this in the above expression, 

W =  3uUc
2     [k2-1 _ k2(k-l)in k 

Z      h2k2(in k)2 I 6      (k3-l) 
(VI. 2) 

Let us try to determine the value of k giving maximum 

W value to j-  . 

hfw/L 
Define    W*  = —-—j .     Then 

W* 

3nUc 

1 
kz(in k) 

2 
2 1~* 

k^-1 _  k*(k-l)/n k) 
k3-l J 
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and 

dW* d   [     k2-l (k-1) 
~"3k"    "3k" iTTTTrTT? ",,_ ,Jj >6(k  in k)*     (in kXkJ-l)J 

1   f2k(k  in k)2-(k2-l)   2(k  in k)(l+in k)   \ 
* t (k  in k)4 ) 

_   |k  in k(k3-l)-(k-l)(k3-l)Ok3(k-l)in k 
I k(in k)2(kJ-l)T 

k  in k-(k2-l)-(k2-l)in k 
3k3(in k)3 

.   k(in kXk3-l)-(k-l)(k3-l)-3k3(k-l)in k 
k(k3-l)2(in k)2 

k(k3-l)2in k-(k2-l)(k3-l)2-(k2-l)(k3-lfa k 
3k3(k3-l)2(in k)3 

-3k3(k3-l)(in k)2+3k2(k-l)(k3-l)in k 
3k3(k3-l)2(in k)3 

+9k5(k-lHin k)2 

3k3(k3-l)2(in k) 

2 

3 

Equating  to zero and  solving  for    k    we have, 

k  = 2.31023078. 

Substituting  this  in    W*,   where, 
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W* -    "\     - 1 T i^l -   kz(k-l)/n k| 
3nUc2L      k2(*n k)Z   I   6 kT-l 

gives 

W* » 0.05506206   . 

Thus 

W 
T 0.16518618    £}£■ 
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SECTION VII 

A SUCCESSION OF INCLINED LINES, (r  REPETITIONS) . 

After examining the various cases, namely the step 

bearing, plane inclined slider, profile with general 

equation h = raxn, and finally the case  h « e^x, we 

find that there was some improvement though not too 

much. 

It is of our interest now to investigate the 

case of r repetitions of the same curve, mainly what 

kind of improvement is to be gained regarding the 

maximum load per unit width. 

A schematic sketch of the aggregate is shown in 

Figure 13. 

y* 

/    •■//• 

/           , '                '         /                           / 

- r 
hi 

h2 

a 
-U 

b  - I + a 

d ■  (r-l)i + a 

f  - r£ + a 
fig. 13 

- X 
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Let I   = length of a single member, and define 

h2 

Let the first member be represented by h ■ mx. The 

other members will have the same slope m yet with 
(k-l)h, 

different equations.  Since  m =  j , from discussion 

of inclined slider, the general equation for the  r 

member shall be 

h = mx - mi(r-l) . 

Notice that for r « 1 (single pad)  h *= mx. 

From the Reynolds' equation 

£ " '** " £} 
we get 

f dp + J     dp + j     dp = -6nU[ r  (hjH) 
d P f 

b ° d 

d ,. „      p f 

b h"     ° d  h" 

dx 
a  h" 

+ f  (^r)dx + f (^) dx ]. 

Since p(b-O) = p(b+0)  and p(d-O) - p(d+0), the 

i.h.s. becomes (remembering that inlet and exit 

pressures are taken to be zero) 

f 

J a 
dp - 0 . 
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The above equation becomes 

/.b(*-'?>wb
a$->« 

+/df*-?)d--0- 
From this equation we calculate H.  For mathe- 

matical convenience let r ■* 3.  Then the equations 

of the inclined lines shall be 

h = rax, 

h - m(x-i) , 

and 

h = m(x-2i) . 

Performing the integration 

fh dx _Hrb dx + rd   dx 
Ja     m2x2 ^a     m3x3      Jb    m2(x-^)2 

.   H   r d dx I   f f dx H   f f     ,  dx 
J
b    m3(x-£)3      ^d    m2(x-2i)2 ^d     m3(x-2i)3 

- 0 , 

we  get 
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m[ I a  ■   b" T^iy T^rr + j(d-2i) •   (F-22)}} 

Hr ( 1   .    1 )   +   (     1 1        )   +   ( L_ 1  
2    a2       b2 (b-£) (d-i)2 (d-2/)2       (f-2/)2 )3 

But,   using Figure  13, 

J,b-a   ,   9ra+£-a     ]   = Hrb*-a*   ,   nr (a+l)*-a'S, m|<-^ + 2L^iTD]j    ^^r + 2^a2(a;£)2 n. 
2   _2 2  .2 

1  a
2k **     J azkz azkz 

and 

*   f(k-D)       3H   ,k2-lx 

Hence    H  -  /£+■[)    with    ma  = h^;   i.e. 

2kh, 
H E+T 

We notice that this value of H is the same as the 

value for a single member. 

The above tells us that since the geometry of the 

members is identical and since H  is the same for 

every member of the aggregate, then from Reynolds' 

Equation we have dp/dx  is the same for all members. 

53 



Now, since the load is given by 

W/L - / 
b rb 

p dx * - ;   x dp/dx dx, 
i J a 

- /   x dp/dx dx = j-  « - \ x dp/dx + /  x dp/dx dx 
J 0 I J 0 J I 

nri 
/      x dp/dx dx 
J (r-"v " Di 

But 

r £    r 2i p r£ 
/  dx = /   dx ■. . . ■ /      dx . 
J0    J £ J (r-l)i 

Hence 

rl 
W/L - -r/«. x dp/dx dx . 

° 0 

This shows that the load for the whole aggregate 

is  r times the load for one single member. 

Now, if we imagine that the inclined lines are 

spread over the entire length we obtain a single 

inclined line of length r£.  Recalling that the load 

W/L is proportional to the square of the pad length, 
2 

we find that the load now will be r  times the load 

for an inclined plane of length I. 

Comparing the latter result with the one obtained 

for r repetitions we find that repetitions of inclined 

lines is highly unfavorable for loads. 
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It must be noticed that we are dealing with two 

dimensions.  If we were to extend our study to three 

dimensions, that is, considering the width of the pad 

as well, we may find an increase in the length of the 

pad inadequate. 

Up till now we have considered cases where the 

variation of h with x was rather mathematically 

convenient.  It remains open to find a form which 

according to Reynolds' equation will maximize the 

load, subject to the conditions of a given pad length 

and a given minimum film thickness h,. 

55 



SECTION VIII 

STATIONARIZING THE LOAD 

Let us examine the problem of finding the profile 

that provides maximum load from the variational 

calculus point of view. 

When we first considered Lord Rayleigh's step 

bearing we derived an expression for the constant 

H.  This expression reads 

o=/b4|.„/b^ 
Ja hz    Ja    hJ 

Let h(x)  represent the profile that provides 

maximum load.  Examine the case that h becomes 

(h+eBh) where  6h is an infinitismal variation in 

h and  e  is any real numberj notice that for 

e ■ 0 we regain the original profile h(x). 

With these considerations the above expression 

becomes, 

o ■ rb    d* z - H fb    d* 3 Ja  (h+€5h)
z    Ja  (h+€6h)

J 

Considering all integrations being always over the 

length we can dispense with using any specified limits 

at this moment. 
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Differentiating with respect to  «  and then 

setting €  « 0 we have, 

0-2/*dx-3H/ Jdx+«/ J 

Hence, 

„  ,|v^r2h+3H)6hdx/|   dx 

Similarly, the load W/L was given by 

W/L - - /  x dp/dx 

Hence, 

dx 
a 

M? Jo 
x dx  u T   x dx 
*"" HJ'   TT" ' a   Yf ^a   h 

Letting h become  (h+e5h)  we get 

W/L _ f x dx    - H r  x dx 
^  J  (h+eCh)2 "  J (h+€6h)3 

Again by differentiating with respect to  e  then 

setting  e » 0 we have, 

-5^1-/ * (-2h+3H)x dx - «/ 2-£ 

Substituting  6H in the above expression gives 
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/ 
xh~3dx 

W1' ■ f $ lx -f-T—}(h • * H)dx    <""•l> h
 .   /  h"J dx J 

For the variation in the load to vanish regardless of 

any variation in h we demand that over the whole 

range either, 

dx /„-'„ 

/"■ 

-3 *, 

or 

h - 3/2 H . 

But this is not the requirement postulated.  It 

suffices here to have the coefficient of  Bh, on the 

right hand side of the equation, vanish over the part 

where h > h,  and that it be negative when h « h, 

so that a positive  oil in this region will result in 

a decrease in W/L, a negative  6h being excluded 

apriori. 

The above conditions may be satisfied if we make 

h = h,  from x = 0 to x « /,  where I  > /. > 0, 

and h « 3/2 H over the remainder of the length that 

is from x = £,  to x = i2 where £,   + £~   " I     is 

the whole length concerned.  See Pigure 1A. 
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h h„ - 

x«0 x-/. x-1 

-U 

!« 

fig. 14 

From the first condition, and recalling the value 

of H for a step bearing, 

2 . 
3 h2 H 

I0      
dX/hl +Ih   dl</h2 

Hence 

2 _ 1^1 + l/hjj -   i^/hjj 

T    2       Vhl +  V"2 -   Vh2 

Letting    k  » h?/h,     gives 

^/hj + l2/h\ 

l^hl +  l2/hl 

*2/
£i  " k2(2k-3)   . 

To satisfy this  relation is   to insure  that    h  - 3/2 H 
3H over the range where h = h«.  When h « h,, h - -TC- 

is negative and the second condition over the range 

[0, £,]  requires that 

{ 
Jxh"3dx 

/ 

-  x 
h"3dx }>• 
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with  4,  the largest possible value of x; i.e. 

(h~3x dx - £x   J h"3 dx > 0 

or 

/ h"3x dx > £1 J 
r   h-3 dx 

Hence 

iT/
1xdx+ir/       x 

^   J n hi   J I, hj   °0 
dx 

'2    *i 

> *ii-4 fi dx+\ r dx 
Mh?    J0 hi   J i, 2       *1 

This  gives 

4   , <W3 
 T   +   5  
2hf 2h^ 

£1       *1   ,   i2Xl   .   *1 
—j > —j +       3    + -3 
2h»       h-, h« h~ h2 

£i   + 2ii^2 + ^    h      h^ + Vi 
~~T~      —3" ~ ~~ ^ 2h« 2h« 2h»       2ho       2h, h« 

or 

11 I1 12 >  gl 

Hence 

2hJ       2hx 

£0  2 h0  3 

151 nl 
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or 

k3 < (t2/i{>2 

But we have found before that 

i2/
li  " k2(2k-3) 

Therefore the condition is 

k(2k-3)2 > 1 

If k is chosen to satisfy this condition, every 

admissible variation in h  diminishes  W/L . 

Notice that I     is fixed but the ratio  ^2/^i 

is still at our disposal (within limits). 

In terms of I    and k we write 

1  l+2k -3kz 

i     - i(2k3-3k2) 
z  l+2kJ-3kz 

Recalling that the load W/L  for a step bearing is 

given by 

W/L - ^  fp(l-B)(X-l)) 
h|   lp+*J (1-0) J 

where 0 = ij/^i"*"^ * ^2^ and * * k   we 8et 
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3l2   f|^j(i^i) (k.1) 

3/2   ,y   (k-1)   , 

h*   U(k3/1+£2) 

Substituting  the  values   for     £,     and     £9     gives 

^ 
hi 

 3(k-l).l2(2k3-3k2) 

d+2k3-3k2)2.4-kJ^(Y-Y; 
l  (l+2kJ-3kz)J 

I2 (k-l)3l2(2k3-3k2) 
h*  (l+2k3-3k2)£23k2(k-l) 

4|_^-3  1.4, f(k) 
h2 ll+2k3-3k2J  hj 

2k-3 where  f(k) »  * 5— .  Now we find the value of 
(l+2kJ-3kz) 

k at which  f(k)  is maximum.  From 
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we get 

f.(k) - 2(l+2k3-3k2)-(2k-3H6k2-6k) . Q 

(l+2k3-3k^K 

(k-l)(4k2-8k+l) - 0 

which has the roots k - 1, k = 1.87, and k - 0.134. 

Since 

f„(k) _ -(12k2-24k+9)(l+2k3-3k2)2 

(l+2k5-3k2)4 

+2(l+2k3-3k2)(6k2-6k)(4k3-12k3+9k-l) 
(l+2k3-3k2)4 

the values  k * 1 and k = 0.134 are not going to give 

a maximum.  Thus the maximum of  f(k)  occurs at 

k = 1.87 with  f(k) = 0.2062673 7.  Moreover, k = 1.87 

satisfies the requirement, 

k(2k-3)2 > 1 . 

Notice that 1. 87 is a critical value since it maximizes 

the load and satisfies the above inequality, the 

following Table shows some neighboring values which 

are of interest for comparison: 
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k f(k)k(2k-3)2 

1.86 0.20624 &7TO  
* 1.87 0.20626 1.024 

1.88 0.20617 1.086 

Finally, 

W/L « 0. 20626    ^|- 
hi 

and  the  ratio 

*2/*i   - 2.588  . 

This defines the form of the slider which gives 

the maximum load per unit width of the slider when 

the minimum thickness and total length are prescribed. 

The distance x of the centre of pressure from 

the narrow end is given by 

-  my) _ *<1+V'> ■ ™i 
x    3      3     —3— • 

But 

Hence 

h l+2k3-3k2 

X    -   I 2+2k3-3k2 

O  /I -Lll.J       Ol    *\ 

= 0.42625i for k - 1.87 . 
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APPENDIX A 

THE RATIO OF THE TOTAL FRICTION (F) 

TO THE LOAD W/L 

In our previous discussions we have sought the 

profile that would maximize the load carrying capacity 

of the bearing.  Up to this point we have not discussed 

friction on the surface, yet, frictional forces are 

one of the major factors in the design of a bearing. 

Our objective in this section is to derive an 

expression for the total friction at the surface in 

terms of the same parameters used in load expressions; 

and hence obtain the ratio of the total friction to 

the load W/L for two specific profiles, namely, the 

inclined plane slider and Lord Rayleigh's step bearing. 

It should be noticed that one could seek the 

profile that would minimize the friction to load ratio 

rather than maximize the load.  The former approach 

will not be discussed in detail, but it is worthwhile 

saying that it does not appear to make much practical 

difference. 

Derivation of the total friction expression. 

When we were deriving the Reynolds' Equation we 

obtained the expression 
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u  - *-$■    dp/dx -   U(l - $ 

Hence 

|H . 1_ dp/dx  2y - ^ dp/d, + »  . 

and  at     y  » 0 

du  =      h     J„/JV   .   U 
Hy — -ZM: dp/dx    H • 

In which case the shear stress on the surface will be 

given by 

T * ^ ^7 = " 1  dp/dx + ^ • 

(Naturally if we put y ■ h we receive some expression 

for T with a different sign which is a characteristic 

of shear stresses).  Since 

6LLU dp/dx = - 2U&  (h-H) , 
hJ 

we have 

T - + &%  (h-H) + Jj» ; 
h 

= 3nU(h-H)4uUh 0 3nUh-3nUH+uUh 
h2 P~~- 
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or 

1   - M.U( *-) . 
hz 

The total friction accordingly will be given by 

F - J T dx 

or 

Now we analyze these for different geometries, 

a)  For an inclined plane slider with h ■ tnx 

Hence we have 

F  » A f  dx   -IU f   dx ini-S.  «- 3HJa  ^7 

Letting 

* {* v.) - 3 {^} 
(k-l)^        2khx 

m _   ,  H = -^^ and 

k - h2/hx - b/a 

we may write 
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F     . 4a   ,     .  , 3Hc 
nu   Kj[ in b/a - iqiq 

6kh,c 4c In  k 
(k-1)^ "(k+1)kh2 

c [4ln k At 
= c  [4(k+l)ln k - 6(k-l) 

S.   1    (k2-l) 
The ratio of friction to load W/L will be 

c/hi I *<"•!)*; k-6<k-1)| 

F/W/L =     , l_    ^'l) j 

6 cVhf 
(k-1) kTT 

1 1 f4(k+l)in k-6(k-l)l 
T"5  1(k+i)lnk  '  

1  k-i 2  J 

hl [2(k2-l)in k-3(k-l)2 

T |3(k+i)in k-6(k-i) 

For k * 2.1877 the ratio of the total friction at 

the surface to the maximum load is given by 

F/W/L = 4.7063 hj/c . 

b)  The Case of Lord Rayleigh's step bearing 

Here 
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^^0*1 ^0      h* Ji1
K2 % 

dx 

3 
Sr'i-^'i + ^KJ-SK' 

h- 

4h,-3H 4h9-3H 
- I      2    ]^ + L      2    )l2 

hl h2 
But 

we have 

Hence 

1  l+2k3-3k2  '   2  l+2k3-3k2 

H «* ■*■ h2  and  kh, = h2 

 2-^5 *- J2-k+2k2-3kl 
h1(l+2k

J-3kz) I J 

^   (k-1)2     .   4i 
*!  (k-l)2(2k+l)   (Zk+U^ 

4i/h1(k-l)
2(2k+l) 

F/W/L = -^-4  
iVni(2k-3)(2k+l) 

4h1(k-l)
2 

" i(2k-3) 
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For     k  -  1. 87 

F/W/L 4.091  hj/f 
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