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AN APPLICATION OF MICROPROCESSOR TECHNOLOGY 
i 

TO REMOTE STATION ANALYSIS OF SEISMIC SIGNALS 

by Robert Gregory Novas 

This thesis describes research into and implementation of micropro- 

cessor technology to minimize two present earthquake precursor monitor- 

ing limitations:  noisy and sometimes unreliable United States Geological 

Survey (USGS) transmission to a central processing site via ground links, 

and the impossibility of National Aeronautics and Space Administration 

(NASA) satellites' relaying microearthquake data in real-time due to data 

volume. Although NASA routinely relays information from remote data col- 

lection platforms (DCP's) by satellite systems, existing systems' capa- 

bilities are far exceeded by the requirements of a USGS monitoring 

network. 

A project to design and construct a microcomputer controlled testbed 

earthquake precursor detection system was approved and funded by the Geo- 

physics Branch of NASA, Goddard Space Flight Center, Greenbelt, Maryland, 

and was undertaken for submittal as a thesis. The system function was to 

pre-process seismometer data to reduce the bandwidth required to convey 

earthquake precursor information. 

The project initially surveyed the various microcomputers available 

to select a suitable hardware system.  Necessary hardware, including an 

8080 based microcomputer system, was procured. A testbed software system 

was implemented which controls collecting data from the seismometer, pre- 

setting data to a detection algorithm, and outputting results. The 
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system allows important algorithm parameters to be modified in real-time 

for experimental purposes. 

Additionally, a USGS algorithm was implemented and installed in the 

testbed.  The thesis describes this effort, documents the system imple- 

mented and demonstrates the feasibility and practicality of microproces- 

sor technology in this application. ^~~~—  
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1.  INTRODUCTION 

Earthquakes are a serious natural hazard which have caused loss of 

life and property damage with little or no advance warning. Research by 

the U.S. Geological Survey, as well as by Japanese, Russian and Chinese 

agencies, has shown that by monitoring geophysical activity in earthquake 

prone areas, it is possible to accurately predict the place, time and 

magnitude of an earthquake. 

Earthquake prediction is based upon measuring events termed pre- 

cursors > such as the.relative frequency and duration of microearthquakes, 

or disturbances in ground tilt, magnetic field, or ground water radon gas 

content. The USGS has found that conventional remote data acquisition 

schemes to collect these data via telephone lines and local radio links 

are costly and unreliable, especially during earthquake activity. As a 

result, the Earthquake Precursor Monitor System has been proposed to 

merge the geophysical work of the USGS with the satellite relay technol- 

ogy of NASA, to relay data from remote monitoring sites to a central pro- 

cessing location by means of artificial satellite. 

Initially, stations will be deployed in arrays around active earth- 

quake faults in the San Jocino Valley of California and the southern 

coast of Alaska.  Data collected at each station will be transmitted by 

satellite to a central earthquake prediction site. Each station is en- 

visioned as containing a satellite uplink transmitter and controller, 

called a data collection platform, an input processor which collects the 

various instrument readings, and the actual instruments. A typical in- 

strument complement would be: 
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-- one or more seismometers; 

— two tiltmeters; 

-- a differencing magnetometer; and 

— a tidal gauge, well level meter or radon gas detector. 

An immediate problem in implementing this system is that current 

and foreseen satellite relay systems cannot handle the expected volume 

of raw data generated by the station arrays. While most of the sensors 

need to be sampled only occasionally, producing at most a few hundred 

bits of information every six hours, the seismometers generate perhaps 

one megabit of data per precursor event. Since many seismic precursor 

events precede an earthquake, the total data volume can be enormous. The 

USGS believes the important information contained in the seismic data 

flow could be conveyed in several hundred bits if data processing could 

be done at the instrument. 

In addition, the problem of instrument control and calibration is 

of importance. A control command system, linking the central site back 

to the remote stations could be implemented, but at great expense. Tasks 

such as gain changing, instrument calibration, and status checking have 

been accomplished in the past by separate control lines, periodic visits 

by site inspection teams, or detailed data inspection. All of these 

methods are either expensive or unreliable. 

The need to solve these problems has led to the conclusion that a 

small computer system at each remote site must be part of the input pro- 

cessor. Experience with telemetered data has shown that a computer can 

reduce the volume of seismic data to manageable proportions as well as 

handle instrument control. The newly developed microprocessor technology 
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is ideal for this application because of its sophistication, size, and 

low cost. Additionally, the control of microcomputers by programs in 

read-only memory storage provides flexibility unmatched by hardwired 

data processors and controllers, and at less expense.  The control and 

processing tasks can be adapted to suit the environment of a particular4 

station without expensive and difficult hardware modification. 

The intent of this thesis is to demonstrate the applicability of 

microprocessor technology to the solution of these types of problems. 

In particular, a testbed system for processing raw seismic data is de- 

scribed.  This system was constructed as a prototype, and evaluated.  The 

testbed system incorporates a US6S microearthquake detector algorithm 

implemented in software, and so requires the processing capabilities of 

a computer.  The thesis includes: 

— Definition of a suitable system. 

-- Requirements analysis, design, procurement, and imple- 
mentation of the component subsystems. 

-5- 



2.  SYSTEM OVERVIEW 

The Microprocessor Earthquake Precursor Detector System contains 

components to: 

~ detect a seismic signal in the presence of environ-       \ 
mental noise, \\ 

— convert it to a form suitable for digital processing, 

— perform digital processing as directed by an algorithm, 
and 

— display the results. 

The syetem block diagram of Figure 1 shows the subsystems which perform 

these functions. 

Each subsystem is presented in detail in the following sections. 

Briefly, the analog signal output by a seismometer is the system input. 

The interface requirements of this device, and of the digital subsystem's 

hardware and software sections are the functional requirements for the 

analog-to-digital conversion subsystem.  This subsystem performs the 

necessary signal conversion to allow digital signal processing.  The 

digital subsystem hardware (a microcomputer), directed by the subsystem 

software, executes the microearthquake detector algorithm.  The results 

of this processing are displayed by the output subsystem. 
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Figure 1. SYSTEM BLOCK DIAGRAM 
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3.  ANALOG-TO-DIGITAL CONVERSION SUBSYSTEM 

Description 

This subsystem converts the analog voltage produced by a seismometer 

to a weighted binary number. A block diagram of the subsystem Is shown 

In Figure 2. 

The seismometer used Is a Mark Products Incorporated L4A Geophone, 

with 500 ohm coll. This unit, when properly damped, has a useable fre- 

quency response from 2 Hz to beyond 100 Hz. It is codunonly used in ex- 

plosion seismology and seismic array systems. 

The electrical balanced output of the geophone is applied to a Burr 

Brown 3600 programmable gain instrument amplifier. This device has the 

following characteristics: 

— high impedance differential (balanced) Input, 

— high common mode rejection ratio, 

— temperature stability,      —^ 
■-J, 

— low noise, \ 

— programmable gain, 

— gain accuracy and linearity, and 

— low impedance unbalanced output. 

The balanced line interface between the geophone and the instrument 

amplifier, coupled with the high common mode rejection ratio of the in- 

strument amplifier insure a high input electrical noise rejection capa- 

bility. The instrument amplifier converts the balanced geophone signal 

to the unbalanced format used by the succeeding stages of the subsystem. 
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The instrument amplifier selected also has a gain (amplification factor) 

programmable from 0 to 3840. This was considered essential for expand- 

ing the dynamic range.  As explained in the Software Subsystem descrip- 

tion, this feature was used to provide a system dynamic range of 60 db. 

The signal is next input to a Burr Brown ATF76-L8MC-35RO Low Pass 

Filter.  This filter has an eight pole, low ripple Chebyschev response, 

with a 35 hertz cutoff frequency. The filter is necessary for proper 

operation of the analog-to-digital converter. The frequency of signals 

input to the converter must be less than half the A-D conversion fre- 

quency of 80 Hz. The 35 Hz cutoff frequency was chosen to allow a gener- 

ous range of seismic signals, while filtering unwanted high\frequency 

environmental and electrical noise. 

Next, the signal is input to a DATEL SHM-1 sample and hold.  This 

device samples the signal at the conversion frequency, with an aperture 

time or sampling window of 50 nanoseconds.  The value acquired during the 

sample period is held for the remainder of the conversion interval.  This 

device improves the accuracy of the worst case analog-to-digital conver- 

sion from 1 percent of the full scale signal value to 0.001 percent. 

The signal value held by the sample and hold is input to a DATEL 

ADC-K10 10-bit analog-to-digital converter.  This converter produces a 

10-bit two's complement binary number every conversion period. The re- 

sult is directly proportional to the sign and magnitude of the sampled 

signal, weighted by the gain of the programmable gain amplifier. 

The controller/timing generator component of the subsystem generates 

the conversion frequency clock signals, and interfaces the subsystem with 

the digital subsystem.  A crystal controlled clock oscillator and digital 
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logic division circuitry produce the 80 Hz system clock.  The system in- 

terface consists of a 6-bit gain control bus, a 10-bit data bus, and a 

convert done control line. 

Implementation 

Appendix A presents a schematic diagram of this subsystem. The sub- 

system components are assembled on a perforated VECTOR board mounted in 

a 3 x 5 x 12 inch cabinet. The subsystem has the following power require- 

ments: 

+ 5 v at 350 milliamps. 
+15 v at 100 milliamps. 
-15 v   at   100 milliamps. 

A concern with this subsystem was the need to adjust and calibrate 

the electronics. The interface circuit was designed so that the Altair 

Very Low Cost Terminal (VLCT) could substitute for the digital subsystem. 

In this configuration, the VLCT keyboard commands the programmable gain 

amplifier gain factor, and the VLCT display presents the 8 most signifi- 

cant bits output by the A-D converter. 

This mode allows calibration of the system.  It also allows verifi- 

cation that the subsystem is functioning properly, independently from 

the other subsystems.  This mode was used to debug the hardware.  It will 

be used operationally to verify the subsystem, and, periodically, to re- 

calibrate it. 
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4.  DIGITAL SUBSYSTEM HARDWARE SELECTION 

This section presents a review of six microprocessors, which were 

either available or announced as soon to be available in late 1975. 

While the microprocessor field was not exhaustively studied, these units 

represent a sampling of three major technologies used in producing large- 

scale integrated (LSI) circuits.  The microprocessor selection for this 

project was made on the basis of this review.  Before the individual 

microprocessors are discussed, a brief description of microprocessors 

and microcomputers is in order. 

Microprocessor and Microcomputer 

A microprocessor is generally considered to be an implementation of 

a computer system's Central Processor Unit (CPU) on a small number of LSI 

circuits or chips. A CPU is the portion of a computer that contains the 

control and computational circuitry to execute a program residing in the 

computer's memory. A simple stored program computer structure has an 

input/output (I/O) unit for communication with the outside world, a CPU, 

and memory unit.  Instructions for the computer are contained in the 

memory, and specify operations that occur between the I/O unit and the 

CPU, or the CPU and the memory, or elements internal to the CPU.  In this 

simple structure, the I/O unit and memory cannot directly interact, but 

must communicate through the CPU. 

A single chip microprocessor can be contained in a 2.1" by 0.514" 

LSI package.  The package may have as many as 40 connector pins which 
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serve to interface to the rest of the system. A multi-chip (or chip set) 
* 

microprocessor may consist of four to ten LSI packages connected exter- 

nally to provide similar or superior performance to a single chip unit. 

Although the more complex chip set microprocessors are faster and have 

greater processing capabilities, a penalty is paid in material cost, de- 

sign complexity, power requirements, and perhaps reduced reliability. 

A microcomputer is defined as a computer built using a microproces- 

sor as the CPU. A CPU can be the most complex part of a computer system; 

in a microcomputer it can be as small as a single LSI chip. While it is 

not easy to draw a functional distinction between microcomputers, mini- 

computers, and large-scale computers, several characteristics of micro- 

computer applications set them apart. 

Microcomputer Applications 

A microcomputer can serve as a sophisticated device controller, re- 

placing hardware logic circuitry.  In comparison to hardwired logic, a 

microcomputer controller is more versatile, and often smaller and less 

2 
expensive.  An example is the Intelligent Typewriter System based on 

the Signetics 2650 microprocessor.  This one hundred dollar, six package 

microcomputer system replaces a several hundred dollar, 75 package cir- 

cuit, built of medium scale integration (MSI) parts.  The microcomputer 

system coupled with an I/O device performs as a basic typewriter, but 

additionally contains a character memory and text editing capabilities. 

These features allow typing to be entered in rough form, edited, and then 

finish copy typed in one operation.  Since the system is actually 
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programmed on only one of the six microcomputer packages, a modification 

to the features of the system is made by replacing that one package. 

Many scientific applications could use the advantages of computer- 

based control but cannot bear the price of. a dedicated minicomputer, 

which can cost $50,000 or more. The low cost of microcomputers allows 

them to be used in such dedicated applications where a full-size mini- 

computer would not be cost-effective. 

A microcomputer used in this fashion, dedicated to a particular 

task, stores its instructions in permanently programmed (non-volatile) 

read only memory (ROM). This form of instruction storage would be im- 

practical for mini- or large-scale computers. Such storage is ideal for 

an unattended dedicated computer, as it means that a microcomputer system 
< J ( 

can survive power failures with no loss of program. A microcomputer can 

be programmed to automatically re-initialize on power-up. Operator in- 

tervention, even in unusual circumstances, is unnecessary. 

Other applications exist in which the power of the microcomputer 

seems far greater than required by the simplicity of the application. A 

traditional minicomputer user might feel that in this type application, 

a microcomputer would be an unsuitable choice of solutions. However, the 

criteria governing the choice of solution can now be the versatility and 

simplicty of the microcomputer, rather than the expense, as that will be 

small. 

Microcomputer applications can be distinguished from hardwired or 

minicomputer applications by speed. Microcomputers often do not have the 

speed necessary for truly high speed operations. This is very apparent 

in the single chip microprocessors reviewed. These not only are slow, 
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but are hampered by limited (8-bit) data paths. Operations with data 

larger than the data paths allow must be done in repeated, smaller steps. 

This restricts simple microprocessors from applications requiring high 

speed real-time data processing. 

All of the features of microcomputers, including others not dis- 

cussed such as low power requirements, imply that a microcomputer is a 

feasible alternative to fixed control logic in unattended field instru- 

ment packages. The low cost incurred allows microcomputers to be consi- 

dered for other applications which previously could not afford automatic 

control of any type. It is just this low cost versatile control that 

this project is hoping to exploit. 

Microprocessor Directions 

The microprocessor field has split in several directions.  In one 

aspect, the trend is toward smaller package count, dedicated controller 

units. As an example, the Rockwell PPS-4/1 chip is a 4-bit microproces- 

sor with 50 instructions, 10,752 bits of program storage read only mem- 

ory, 384 bits of data storage read/write memory, and 31 input/output 

3 
ports. This unit is a complete microcomputer on a chip.  The PPS-4/1 

costs less than ten dollars, and represents an effort to reduce the 

"overkill" situation mentioned previously. A characteristic of this 

branch is the high relative proportion of I/O capability to computational 

capability. 

A different direction is represented by the single chip 8- or 16-bit 

microprocessor which requires additional memory and I/O support to 
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function as a microcomputer. While not yet up to the level of minicom- 

puter capability, this variety of unit is much less restricted in memory 

capability than the microcontroller.  The personality of the chip - its 

instruction set, I/O, and control capabilities - is set by the manufac- 

turer.  This type of chip generally is structured to look very much like 

a minicomputer, and has replaced the minicomputer in some nondemanding 

applications. 

The third direction is that taken by the chip set microprocessors, 

which can compete with minicomputers.  In one alternative, the data mani- 

pulating capabilities of the CPU are broken into 2- or 4-bit processing 

elements (each on a single chip) called bit slices.  These can be confi- 

gured in as wide a word size microprocessor as desired by paralleling the 

bit slices.  These units require the additional support of control read 

only memory, to contain the microprograms determining the interpretation 

of machine instructions, and a control sequencing unit, which steps 

through the microprogram in the execution of a single instruction cycle. 

These units allow the personality of the machine to be custom-tailored 

for an application by changing the microprogram in control memory. Micro- 

programming is a very powerful feature.  For example, it can permit the 

exact emulation of other computers.  It is a mixed blessing, however, as 

it adds another level of complexity to the program design. 

Another alternative exists, in which the microprocessor is split in- 

to functional blocks.  These can be configured, building block fashion, 

to produce a system of the required capacity. This type is restricted to 

a particular word size and personality by the central processor component. 
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It is expandable in terms of memory, I/O, or interrupt capability, with 

additional components. 

Factors Considered in the Microprocessor Selection 

The factors used to compare the six microprocessors reviewed here 

■ '.       *■ 

are listed in Figure 3, and discussed in this section. 

Figure 3. MICROPROCESSOR SELECTION FACTORS 

1. Data Bus Size 

2. Address Bus Size 
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Data Bus Size 

The size of the data bus determines the basic word size of the 

microprocessor. Only 8- and 16-bit word size machines were considered 

for this application because at least 8-bit precision was required for 

the input data. An arithmetic operation performed in one instruction 

upon two's complement data can generate a result that does not fit in 

the word size of the machine. An arithmetic operation performed to 

greater significance requires multiple precision, implemented as a num- 

ber of machine instructions, which costs space and time. The 16-bit . 

microprocessors have an obvious advantage in any analysis application. 

Address Bus Size 

The memory capacity of a microcomputer is determined by the number 

of bits it can use as an address in accessing memory. The address bus 

size, except in the case where paging is used, is fixed by the number of 

address pins physically supplied on the microprocessor chip. An 8-bit 

microprocessor generally has 15 or 16 pins for this purpose, and so can 

directly access about 32 or 65 thousand 8-bit words of data and program 

storage. This is generally more than adequate. 

Number of Program Useable Registers 

In a single address computer (all the microprocessors considered 

here are single address units) one memory location can be specified by' 

one instruction. Any data manipulation takes place between this memory 

location and a CPU register.  In the simplest case, only one register is 

available, called the accumulator. More convenient machines have other 

registers available for use in data access or manipulation. 
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An Important factor in the power of a microprocessor is the number 

and type of additional registers. Next in power to an accumulator are 

the general purpose registers.  These can be used for logical and arith- 

metic operations upon data, but are more restricted in scope than the 

accumulator.  The least powerful registers for direct data manipulation 

are the index registers.  These are used, in conjunction with the accu- 

mulator, for referencing memory locations.  In some machines, a general 

purpose register can also be used as an index register. 

Size of Instruction Set/Number of Branch Instructions 

The number of different instructions available is a factor in solv- 

ing an application problem.  For example, if a single instruction multi- 

ply or divide is not available, the operation will probably be performed 

in a subroutine, consisting of many instructions, which take more room 

and time to execute. Additionally, because any software routine requires 

conditional branch capability, a machine with a simple branch instruction 

set may result in cumbersome coding and slow execution speed. A compu- 

ter's decision making power comes from its conditional branch instruc- 

tions. Thus, such instructions must be considered important in the 

instruction set. 

Instruction Execution Time 

The time required for the execution of a single instruction varies 

from one instruction to another. Although the clock frequency provides 

a basic indication of microprocessor speed, each instruction requires a 

different number of integral clock cycles to execute.  The instruction 
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execution time is best specified as a minimum/maximum range, and provides 

some indication of expected processing speed. 

Multiply/Divide Time 

Most microprocessors do not have multiply or divide instructions 

provided.  Software multiply and divide subroutines were coded and.hand 

timed at maximum clock frequencies to obtain a problem execution time for 

the microprocessors examined here. This time provides a fairer compari- 

son of different microprocessors, as it combines the power of the instruc- 

tion set with the instruction execution time. 

Listings of the code/written appear in Appendix B.  Since an assem- 

bler was not available, the code may not be error free.  The logic has 

been carefully inspected, and the timing and memory requirements should 

be very close to actual. 

A problem with this technique is that the same algorithm was coded 

using the various assembly languages.  This may not be the optimal algo- 

rithm for a particular machine.  The coding task did provide an oppor- 

tunity to gain familiarity with each instruction set. 

Push Down Stack Capability 

A push down stack is a very useful programming mechanism. For ex- 

ample, a re-entrant routine is program code which may be executed on a 

shared basis by several levels of program. More than one program level 

may be using a re-entrant routine concurrently in interrupt driven pro- 

cesses. A push down stack is a necessary means for data storage in this 

case. A push down stack is also desirable for subroutine cali nesting. 

The stack provides extremely convenient return address storage. 
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Some microprocessors provide an on-chip stack of limited size use- 

able only for return address storage. This feature has been claimed to 

be an advantage useful in simple applications.  If a system can be imple- 

mented with all data manipulation taking place within microprocessor re- 

gisters, no read/write memory is required for data storage. The return 

address stack provides a means for nesting subroutine calls, and so the 

system can be configured with only ROM. This is a restrictive technique 

in that it provides little room for future system enhancement. 

Other microprocessors implement a stack pointer and stack instruc- 

tions en chip, and require the stack to be in memory. This technique 

provides the most versatile capability as it allows for return address 

and data storage, limited only by the amount of memory available. 

Interrupt Capability 

An interrupt is a signal generated external to the current process- 

ing task which causes a computer to execute a different section of pro- 

gram, generally without disturbing the interrupted section's process 

flow.  Interrupts are usually caused by infrequent, high priority pro- 

cesses which require immediate servicing.  Interrupt servicing is common- 

ly related to managing Input or Output operations proceeding asynchro- 

nously to the program processing flow. After an interrupt request is 

serviced, the original processing stream is continued with no detrimental 

effect. 

In most microprocessors, the status of the machine, contained in a 

program status word, is saved automatically by hardware upon responding 

to an interrupt. Any registers which will be disturbed by the interrupt 
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service routine must be specifically saved by the routine.  This Insures 

that the interrupted program can be restarted at the end of the interrupt 

routine processing. 

The simplest interrupt structure is a single level interrupt where 

triggering an input line causes the CPU to transfer to the interrupt ser- 

vice mode.  In this mode, the interrupt routine software may need to save 

the current machine status, and poll the system devices to determine the 

cause of the interrupt. This is termed a software vectored interrupt. 

Then a branch to the appropriate service routine is executed. The inter- 

rupt processing is terminated by restoring the original machine status 

and continuing the interrupted task. An alternate interrupt process, 

termed a hardware vectored interrupt, requires an interrupting device to 

supply a device specific address called an interrupt vector address. 

This address is used to branch to a service routine at that location. A 

similar type of vectored interrupt uses the interrupt level to determine 

the location of an interrupt vector address in memory. The next micro- 

processor instruction is executed at the location contained in the inter- 

rupt vector address. The first technique allows several devices on a 

common interrupt line to vector to unique service routine addresses.  The 

second technique allows the program to specify the interrupt level set- 

vice routine address, and is common on multi-level interrupt systems. 

When a single interrupt level may be activated by several different 

devices desiring services, and each device service request is of varying 

urgency, the interrupt routine may be coded so as to allow concurrent 

processing to occur. This would then be a re-entrant interrupt, as it 
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could be entered several times before completing the Initial service re- 

quest.  In this case, it would be necessary to preserve the machine 

status on a push down stack. 

DMA Capability 

DMA or Direct Memory Access capability is necessary if a device is 

to access memory without using the CPU as an intermediary.  During the 

device's memory access, the CPU must be locked out of memory to avoid 

address or data bus conflicts (the device requiring a bit to be high, 

the CPU, low).  Since the CPU accesses memory relatively infrequently, 

and can operate internally without accessing memory for some time, DMA 

can allow devices to use memory and only minimally impact CPU execution 

speed.  Once a microprocessor system is operational, the necessity of DMA 

capability is determined by the I/O requirements of the application, and 

may be superfluous.  However, while the same system is in the debugging 

phase, a DMA capability is required for looking at the contents of mem- 

ory from a debug console or front panel. Otherwise, there is no visi- 

bility into the memory which does not disturb the state of the CPU.  This 

lack of visibility is the major problem in microprocessor system develop- 

ment, as it severely hinders the debugging of the system. 

Available Software Support 

Any system support available "off the shelf" is a definite asset in 

software development. Assemblers, compilers, editors, loaders, and pro- 

gram debugging software are necessary for application program develop- 

ment.  Manufacturers may provide resident assemblers, which require the 

target microprocessor system to run, or cross assemblers which run on a 
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different, available computer, so that software and hardware development 

may proceed in parallel. They may also provide a simulator program 

which can mimic the execution of software intended for a target system 

on a different computer. 

Additionally, a library of tried and tested application routines 

such as an arithmetic package with multiple precision add, subtract, 

multiply, and divide is invaluable. A software application which uses 

debugged routines for processing has a much better chance of quick suc- 

cess than one in which every line of code must be debugged.  System soft- 

ware, such as a monitor with peripheral device support, is another 

valuable support item. Such software is traditionally difficult to im- 

plement. 

Available Hardware Support 

Just as for software, hardware support is necessary for system de- 

velopment. Manufacturing support varies from providing CPU components 

only, to offering development systems with CRT, teletype, line printer, 

and floppy disk peripherals. Another tool is the hardware emulator, 

which is a module plugged into the target system's microprocessor socket. 

In addition to acting identically to the desired microprocessor, as if it 

were plugged in the socket, the emulator establishes full debug visibil- 

ity for elements internal to the microprocessor (it is very difficult to 

observe operations inside a single chip microprocessor). 

It should be noted that the major cost in a microprocessor applica- 

tion development will be "up\fyront" in the development system.  The final 

application package may well be a minimum cost configuration, but the 
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system development is easiest accomplished on a full development system 

structured for visibility and debug capability. 

Simplicity of Hardware Implementation 

Unless an application has complex, high technology requirements, the 

quickest success will be achieved with the system simplest to implement. 

This approach is valid if the application falls into the area where a 

microprocessor represents an overkill solution. As an application be- 

comes more complex, more care must be taken in analyzing application re- 

quirements versus hardware capabilities. 

A good estimate of hardware complexity can be made by observing the 

number of additional support components required by a microprocessor to 

form a microcomputer. A single chip microprocessor examined on this ba- 

sis may not be simpler to implement than a chip set unit.  The single 

chip microprocessor may require extensive circuitry to interface with the 

rest of the system, while a well integrated chip set microprocessor may 

avoid this problem. 

Another factor affecting the difficulty of debugging a hardware im- 

plementation is whether the microprocessor uses static or dynamic logic. 

A CPU implemented with static logic can retain its status indefinitely 

with the machine clock/ stopped.  In this state, the system can be in- 

spected for problems a single cycle at a time, with all logic signals 

steady.  This is simpler than debugging a dynamic CPU which requires con- 

tinuous clock pulses to retain its state.  Equipment such as logic ana- 

lyzers and in-circuit emulators is available for dynamic systems, and 

makes this less of a concern. 
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As an alternative to the hardware development task, a packaged 

microcomputer, effectively a single module, may be used to reduce hard- 

ware implementation complexity. 

Power Supply Requirements 

The microprocessor power requirements are critical in several ways. 

In a field installation, a single limited capacity power supply will be 

used for the field instruments and the microcomputer. A microprocessor 

must have a low power requirement so as to minimize the drain on the 

field power supply. A microprocessor with a low power drain that re- 

quires several different supply potentials is still undesirable because 

of the power cost of producing the various voltages.  Each additional 

supply required is also another possible failure point, decreasing the 

system reliability. 

Technology 

The "technology" describes the process used to manufacture a micro- 

processor. Each technology has been optimized for certain capabilities, 

with resulting trade-offs in other capabilities.  For example, the bi- 

polar technology has the fastest execution time, but also the greatest 

power requirements.  N or P channel MOS technologies are slower and less 

power hungry.  A technology has inherent characteristics such as a power- 

delay product, reliability, radiation hardness, and cost. Differences 

are due to manufacturer, complexity, or the maturity of a technology. 

New technologies and advances in old ones quickly change the microproces- 

sor picture, and this report does not consider this area in great detail. 
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Microcomputer Comparison 

The six microprocessors were evaluated on the points presented In 

the above section. A discussion of each microprocessor Is given in this 

section. Appendix C provides a quick comparison reference to the micro- 

processors in a standard format. Appendix B contains the multiply and 

divide subroutine coding used for the multiply/divide time measurement. 

Intel 8080 
g 

The 8080 is currently the most popular 8-bit microprocessor.  The 

unit results from enhancements to the original 8008 microprocessor, and 

is available with further improvement as the 8080A. 

The processor registers directly available for program use are an 

8-bit accumulator, six 8-bit general purpose registers, and a 16-bit 

last-in/first-out (push down) stack pointer. Most data manipulation is 

performed by the accumulator. An important set of single byte instruc- 

tions specify operations occurring between the accumulator and a 16-bit 

memory reference address.  In these instructions, two general purpose 

registers are used to specify the 16-blt memory reference address. 

Otherwise, a three byte instruction would be required to contain the in- 

struction operation code and the memory address. 

The push down stack addressed by the stack pointer register can re- 

side anywhere in read/write memory.  The stack is used by the processor 

for return address storage in subroutine calls and next instruction ad- 

dress storage in interrupt service procedures.  The program may also use 

the stack for register and data storage.  This is a very versatile and 

powerful feature of the microprocessor. 
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The processor provides a single interrupt request input. When an 

interrupt request is acknowledged by the processor, the interrupting de- 

vice must specify one of eight fixed vector addresses.  The processor 

pushes the program status onto the stack, and obtains its next instruc- 

tion at the vector address location.  If more than eight levels of inter- 

rupt are to be serviced, the software must vector to the service routine. 

Extensive software and hardware support is available from the manu- 

facturer and other sources.  Drawbacks to the 8080 are the moderately 

complex minimum microcomputer configuration, and the three voltage power 

requirements. 

Motorola 680C 

The M6800 microprocessor design allows a six package microcomputer 

implementation.  The processor has a simple internal organization with a 

register complement of two 8-bit accumulators, a 16-bit index register, 

and a 16-bit stack pointer.  Data manipulation may take place between 

memory and an accumulator, or between the accumulators.  The index regis- 

ter is used only for indexed addressing or incrementing. 

The four interrupt levels are restart, non-maskable interrupt, soft- 

ware interrupt, and maskable interrupt. Each level is associated with a 

fixed pair of memory words which contain the interrupt service routine 

address.  There are two interrupts available for I/O device use, only one 

of which can be inhibited.  Software interrupt vectoring is mandatory for 

any but the simplest I/O requirements.  Interrupt recognition, except for 

the restart interrupt, automatically saves the contents of the program 

counter, index register, accumulators, and condition code register on the 
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push down stack. While this totally frees the software from explicitly 

saving and restoring any machine status, it poses an additional overhead 

on each interrupt recognition. 

The software and hardware support for this chip is not as extensive 

as for the 8080.  Its simplicity and single voltage power requirements 

still make it a very popular microprocessor. As evidenced by the soft- 

ware coded for the multiply and divide routines, it is also a moderately 

fast unit. 

Signetics 2650 

This microprocessor is designed for hardware simplicity. The unit 

references up to 32K memory on a 15-bit address bus. The two high order 

address pins are multi-purpose, and are alternately used for I/O control 

signals during I/O instruction execution. The processor references mem- 

ory in 8192 byte pages, and a special branch must be executed to traverse 

page boundaries for either instruction or data access. Any memory refer- 

ence by an instruction controls the low order 13 bits of the address bus. 

The two high order address bits stay fixed until modified by a special 

instruction. 

The register complement is one accumulator, and six general purpose 

registers, accessible in two sets of three. A programmable bit in the 

machine status register determines which set is active.  Another bit in 

this status register determines if arithmetic operations and shifts are 

performed with or without carry. A third bit determines if comparisons 

are made in logical or arithmetic mode. Thus an application which re- 

quires both possibilities of a certain bit spends a number of instructions 
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modifying the machine status register.  Other microprocessors resolve 

these possibilities with distinct instruction operation codes.  The dou- 

ble duty instructions used by 2650 allow a smaller instruction set but 

pay a time penalty when switching modes. 

The push down stack is useable only for subroutine or interrupt re- 

turn address storage.  Eight levels are available on-chip, with no pro- 

vision for expansion. While eight levels are adequate for subroutine 

nesting, a re-entrant interrupt structure cannot be accommodated. A po- 

tentially serious debug problem exists if the push down stack limit is 

exceeded, as this cannot be detected. 

The interrupt scheme allows a device to directly specify 128 vector 

addresses in a one byte interrupt acknowledge response. Alternately, a 

two byte indirect response can specify any location in memory as the vec-^ 

tor address.  This is an unusual capability for a microprocessor. One 

of the two register banks can be devoted to interrupt servicing tasks, 

thus speeding the restoration of the original machine status, as only the 

accumulator and machine status need be saved.  The lack of a push down 

stack suitable for data storage is a disadvantage, however. 

The microprocessor has a well developed I/O instruction set includ- 

ing an on-chip serial data interface.  There are three alternate methods 

of accomplishing parallel I/O:  non-extended, extended, and memory I/O. 

In particular, the extended mode allows up to 256 I/O units to be ad- 

dressed independently from memory.  The I/O capability of the chip is 

very well developed, and includes a special set of I/O control instruc- 

tions. 

\ 
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This microprocessor was the simplest unit reviewed. A single volt- 

age power requirement, static logic implementation, and on-chip serial 

interface all contribute to ease of use. The faults of the microproces- 

sor lie in the restrictive on-chip push down stack, and the use of the 

machine state flags to modify the instruction set, both of which will ad- 

versely impact software simplicity. 

National PACE 

The PACE is a single chip 16-bit microprocessor.  In order to fit 

into a 40-pin package, the memory and data bus are multiplexed onto a 

common 16-pin set. An additional 4 pins are used to control the bus in- 

terface. This immediately requires additional hardware to de-multiplex 

the address and data lines. 

The processor provides four accumulators. One is designated the 

principal accumulator, and two are useable as index registers. This con- 

stitutes a powerful structure, controlled by fixed length single word 

instructions, very similar to minicomputer architecture. 

'. v  The push down stack is limited to ten 16-bit entries on-chip. How- 

ever, a stack full/stack empty interrupt allows software to manipulate 

entries to and from external memory. The stack is available for data 

storage, and is a very powerful feature. 

The six level priority interrupt structure uses the push down stack 

for program counter storage.  Six fixed locations are defined in memory 

for interrupt vector addresses.  Interrupt processing is ordered in pri- 

ority by on-chip hardware. This microprocessor has the most complex and 

powerful interrupt structure of the units reviewed. 
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Extensive software support is available for this unit as an offshoot 

of the IMP-16L support. An advantage to this unit is that software devel- 

opment can be done on the versatile IMP-16L development system, and then 

transferred to actual production microcomputers using the lower perfor- 

mance, lower cost PACE chip.  The PACE microcomputer implementation is 

complex, but very powerful due to the 16-bit data format, and minicomputer 

chip architecture. 

National IMP-16L 

The IMP-16L is a packaged microcomputer made from National's IMP 

microprogrammable bit slice chip set. The basic unit is microprogrammed 

to be very similar to the single chip PACE microprocessor. An optional 

control read only memory chip is available which provides multiply/divide 

and other instructions. A user can microprogram the IMP chip set to any 

desired implementation, but the IMP-16L Implementation is a very nice 

example of what is possible.  Additionally, the IMP-16L provides a pack- 

age with front panel control, built-in power supplies, and extensive 

hardware and software support. 

The basic IMP-16L package differs from the PACE chip only in a 16- 

level hardware push down stack, and faster instruction execution. With 

the addition of the expanded instruction set, the unit offers excellent 

scientific program support. 

Intel 3000 r-> 
   // 

The Intel 3000 series chip set microprocessor features a high-speed 

and powerful architecture.  This unit may be used in two ways.  The ap- 

plication may be programmed directly in the microprogramming language. 
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In this case, the programmer is working with the lowest level language 

possible, and the most difficult to use, correct, or modify. Alternately, 

a microprogram may be written to define a machine language programmable 

machine. Then the application may be programmed in the defined machine 

language. 

Either approach presents more difficulty than any other micropro- 

cessor reviewed. After determining the low level of support, and the 

high degree of implementation complexity with this unit, it was not fur- 

ther considered for this project. 

Microprocessor Selection 

The 8080 microprocessor was selected for use in the project. The 

disadvantages of the unit are a slow divide routine execution time, a 

single level interrupt, and a three voltage power requirement.  The first 

two disadvantages are not serious. A faster divide routine can be coded. 

The single level interrupt can be expanded to an eight level vectored 

interrupt by a single commercially available chip. The biggest disad- 

vantage is the power requirement, which in a field installation could be 

a fatal one. 

The advantage of the 8080, and the reason it was chosen, was the 

software and hardware support available.  In addition to the support 

shown on the comparison sheet, an INTEL MDS development system was lo- 

cally available for use by this project. A NASA contract with the Uni- 

versity of Tennessee will provide an additional 8080 system in the near 

future. A cross assembler for the unit has been installed on the GSFC 
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360/91 computer, and is useable by this project. These are all important 

features. 

Rather than implement a microcomputer from basic parts, an Altair 

8800 packaged microcomputer was ordered.  This system is based on the 

8080 microprocessor. The characteristics of the particular unit sped- 
l 

fied are shown in Figure 4. 

Figure 4. ALTAIR 8800 MICROCOMPUTER 

1 !- Assembled Altair 8800 including 

Mainframe 
CPU boards 
Power supply 
Front panel interface 

1 - Assembled expander board 

1 - Cooling fan 

1 - 2K static random access memory board 

1 - 2K programmable read only memory board 

' « 3 - Parallel Input/Output interface boards 

1 - Very low cost terminal (VLCT) 

f 
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5.  SOFTWARE SUBSYSTEM 

Requirements Analysis 

The software subsystem requirements are determined by the following 

system concerns: 

— controlling data acquisition, 

— Implementing the event detector algorithm, and 

— displaying the algorithm results. 

These are discussed next. 

Data Acquisition 

Controlling the data acquisition depends upon the characteristics 

of the Analog-to-Dlgital Conversion Subsystem.  These are: 

— 80 Hz conversion frequency, 

— 0 to 3840 amplifier gain factor, 

— +5 volt A-D converter signal input range, and 

— 10-bit binary two's complement A-D converter output. 
\ 

The system clock which drives the A-D conversion functions indepen- 

dently from the Software Subsystem.  The data acquisition task must ac- 

cept a new digitized signal value 80 times a second, regardless of the 

other concerns of the software.  This necessitates the use of an inter- 

rupt driven acquisition process, and a first-in/first-out data buffer. 

These guarantee data acquisition and event detector processing indepen- 

dence as long as the long-term average data processing rate for the event 

detector is not exceeded by the signal acquisition rate. 
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The Analog-to-Digital Conversion Subsystem programmable gain ampli< 

fier and 10-bit A-D converter allow representation for signal voltages 

over a 63 db voltage range, as shown below: 

minimum representable 
signal voltage 

Likewise: 

quantization step of A-D 
maximum amplifier gain 

(10 volts/210 steps) x 1 step 
3840 

2.54 x 10"6 volts. 

maximum representable    10 volts 
= olO ..    x 511 steps 2      steps r signal voltage 

Therefore: 

dynamic range 

« 4.99 volts. 

4.99 
10 log 2.54 x 10 

rj = 63 db. 

Using the full range of programmable amplifier gain factors is cum- 

bersome and redundant. By only commanding amplifier gain factors corre- 

sponding to powers of two, the gain factor can be used as a binary 

weighting factor for the digitized sample. This is implemented as a 

binary shift operation on the sample value. The dynamic range of the 

system loses not quite 3 db in the implementation, a loss more than com- 

pensated for by the simplicity of the weighted binary number representa- 

tion. This dynamic range was judged adequate for the event detector 

algorithm. 

Aj\ additional requirement of the data acquisition software is to 

manipulate the gain of the programmable gain amplifier for two purposes. 

One (see above) is to maintain the significance of the digitized sample 
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value as high as possible. There exist several digitized representations 

of the same signal value, with different weights (amplifier gains) and 

consequent "number of significant bits. Maintaining the highest signifi- 

cance requires keeping the amplifier gain as high as possible without 
/ 

causing the A-D converter input to exceed + 5 volts. The other purpose 

is to control the amplifier gain to automatically adjust for different 

background (environmental) noise levels. To accomplish this, the data 

acquisition software must, in effect, implement an automatic gain control. 

Event Detector Algorithm 

The intent of the earthquake detector algorithm is to accurately 

determine the time of occurrence of an earthquake event. Also of impor- 

tance is the magnitude and duration of the event detected. 

The earthquake detector algorithm was chosen more for. its reasonable 

processing requirements than for any claims as to its efficacy. The al- 
ls 

gorithm used is described by Steward et al. 

The algorithm described requires three to four division operations, 

depending on data, per data sample. Division was known to be time con- 

suming, especially for the multiple precision integer number format con- 
/ z 

templated. The analysis presented in Appendix D, which also describes 

the detector algorithm, was performed to demonstrate the feasibility of 

eliminating two division operations.  These were replaced by division by 

a nearby power of two, implemented as an arithmetic right shift.  The 

time saving gained by this substitution was necessary for the processing 

timing required. 
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Display Subsystem 

The display of algorithm results should minimally indicate the start 

and stop time of an earthquake event, and its magnitude.  In a fully 

operational system, earthquake onset would, trigger additional processing 

such as a permanent record of the earthquake in a form suitable for sat- 

ellite relay.  In the current implementation, the display subsystem was 

modified to indicate the state of a binary flag specifying an earthquake 

event happening. The magnitude of the event was also displayed. The 

binary flag value can later be recorded on a strip chart along with a 

t 
time track and the seismic signal treoe to permit direct comparison. 

An additional requirement was that certain of the earthquake detec- 

tor algorithm parameters be settable from the Output Subsystem display 

device (Altalr Very Low Cost Terminal).  This was specified so that modi- 

fication of algorithm parameters could be made in a test environment 

without re-assembling the algorithm software and reprogramming the PROM. 

Software Description 
t 

Overview 

The software is divided into two processing tasks. All data acqui- 

sition processing is performed in an interrupt task. All earthquake de- 

tector algorithm processing is performed in a non-interrupt task. The 

Analog-to-Digital Conversion Subsystem interrupts the detector algorithm 

processing task 80 times a second. The interrupt is serviced by the 

data acquisition task. This processing is transparent to the earthquake 

detector task. 
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The two tasks interface through a first-in/first-out (FIFO) data 

buffer. When the data acquisition task acquires a new digitized sample, 

it enters the sample in the FIFO. Whenever the earthquake detector task 

can process a new sample, it fetches one from the FIFO. If no sample is 

available, the task continues to attempt fetches until a sample is 

fetched. This occurs immediately after the data acquisition task inter- 

rupts and enters a new sample in the FIFO. 

Data Acquisition Task 

This task executes in response to the data available interrupt gen- 

erated when the Analog-to-Digital Conversion Subsystem has digitized a 

new sample. The task also polls the Altair VLCT, and accepts operator 

input. This input modifies certain earthquake detector algorithm para- 

meters.  Figure 5 presents pseudo-code for the control routine of the 

task, the interrupt handler INTRP. 

A-D Data Processor. This routine controls the acquisition of digi- 

tized samples from the Analog-to-Digital Conversion Subsystem.  It calls 

a-series of routines which do the actual work. Pseudo-code for this 

routine is shown in Figure 6. 

The system clock is a 24-bit counter incremented each time this 

routine executes. The clock therefore has a granularity of 1/80 seconds. 

The clock rolls around to zero approximately every 29 hours. 

Data Input Routine. The Data Input routine, DATIN, reads a 10-bit 

sample from the A-D I/O port. The raw sample is left justified, zero- 

filled, and stored in the two byte storage cell RAWDT for further pro- 

cessing. 
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figure 5.       DATA ACQUISITION TASK INTERRUPT HANDLER 

INTRP 

save machine state 

IF A-D data available 

THEN 

call A-D DATA PROCESSOR 

END-IF 

IF VLCT data available 

THEN 

call VLCT DATA PROCESSOR 

END-IF 

restore machine state 

return 

END 

Figure 6. A-D DATA PROCESSOR 

ADATA 

increment system clock 

call DATA INPUT ROUTINE 

call JjCALE DATA ROUTINE 

call FIFO LOAD ROUTINE 

call GAIN ADJUST ROUTINE 

return 

END 
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Scale Data Routine. The scale data routine scales the raw data by 

the previous amplifier gain factor.  This factor Is always a power of 

two.  Scaling Is accomplished by arithmetic right shifting the data n 

times, where n = log2 (gain factor).  The scaled data is left in the 

three byte storage cell NORDT. 

FIFO Load Routine.  The FIFO Load Routine places the data sample in 

NORDT in the FIFO.  The FIFO is 500 data entries long.  Since the detec- 

tor algorithm can keep up with the data acquisition task, the FIFO stores 

6 seconds of detector historical data.  Pseudo-code for the routine is 

shown la Figure 7. 

Gain Adjust Routine.  The Gain Adjust Routine sets the gain factor 

of the programmable gain input amplifier.  The gain setting applies to 

the next sample digitized.  The gain setting depends on the range of the 

present sample, and the previous state of the gain adjust algorithm. 

The algorithm examines the present sample, and assigns it a range of 

too high, acceptable, or too low. The state of the algorithm is deter- 

mined by the previous data range.  If the data range is too low n times 

in a row, the algorithm increases the gain factor of the programmable 

gain input amplifier, and vice versa.  Pseudo-code for the algorithm is 

shown in Figure 8. 

VLCT Data Processor.  This routine reads an 8-blt value from the 

Altair Very Low Cost Terminal.  The most significant bits of data indi- 

cate one of three parameters the routine is to modify.  The 6 or 7 re- 

maining bits are the new parameter value. 
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Figure 7. FIFO LOAD ROUTINE 

STORD 

IF FIFO IN = FIFO OUT and 

LAST OPERATION = ENTER 

THEN 

branch to system error reset 

END-IF 

move the data entry NORDT into FIFO 

increment FIFO IN 

IF FIFO IN £ FIFO END 

THEN 

FIFO IN = FIFO START 

END-IF 

LAST OPERATION = ENTER 

return 

END 

-42- 



Figure 8. GAIN ADJUST ALGORITHM 

GAINA 

determine DATA RANGE of NORDT 
IF STATE - LOW and DATA RANGE - LOW 
THEN 

increment LOW COUNT b 
IF LOW COUNT £ LOW THRESHOLD 
THEN 

call INCREASE GAIN ROUTINE 
STATE - OK 

END-IF 
ELSE-IF STATE = LOW and DATA RANGE - OK 
THEN 

STATE - OK 
ELSE-IF STATE = LOW and DATA RANGE - HIGH 

L 

THEN 
STATE - HIGH 
HIGH COUNT = 0 

ELSE-IF STATE = OK and DATA RANGE - LOW 
THEN 

STATE = LOW 
LOW COUNT = 0 

ELSE-IF STATE = OK and DATA RANGE - HIGH 
THEN 

STATE = HIGH 
HIGH COUNT = 0 

ELSE-IF STATE = HIGH and DATA RANGE - LOW 
THEN 

STATE - LOW 
LOW COUNT = 0 

ELSE-IF STATE = HIGH and DATA RANGE - OK 
THEN 

STATE = OK 
ELSE-IF STATE ■ HIGH and DATA RANGE « HIGH 
THEN 

increment HIGH COUNT 
IF HIGH COUNT £ HIGH THRESHOLD 
THEN 

call DECREASE GAIN ROUTINE 
STATE - OK 

END-IF 
END-IF 

END 
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The parameters and indicator bit values are: 

— Alpha event threshold 10XXXXXX 

— Beta event threshold 11XXXXXX 

— Alpha Time Out delay OXXXXXXX. 

Earthquake Detector Task 

The Earthquake Detector Task continually attempts to fetch a data 

sample from the FIFO. When a fetch is successful, the task calls the 

Earthquake Detector Algorithm routine to perform the digital signal pro- 

cessing. Pseudo-code for the control routine is shown in Figure 9.  The 

Display Status Routine is discussed in the Output Subsystem section. 

Earthquake Detector Routine. A description of the earthquake detec- 

tion algorithm implemented is given in Appendix D.  Pseudo-code for the 

routine is shown in Figure 10. 

Output Subsystem 

The software routines ONSET and OFFSET are called by DETEC to signal 

an earthquake start and end.  The routines do nothing but return.  Even- 
( 

tually, they can be coded to perform all the event detected processing 

required. 

Extensive hardware for the Output Subsystem was not available.  The 

VLCT was therefore utilized as shown in Figure 11 to indicate the status 

of the earthquake algorithm.  This provides a useful diagnostic display. 

The VLCT is driven by the Display Status Routine called from the Earth- 

quake Detector Task. 
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Figure 9.      EARTHQUAKE DETECTION TASK CONTROL ROUTINE 

START 

IF a system error has occurred 

THEN 

set the system error display flag 

ELSE 

reset the system error display flag 

END-IF 

perform all system initialization 

REPEAT forever 

call DISPLAY STATUS ROUTINE 

call FETCH FIFO ROUTINE 

IF a sample value'is available 

THEN 

call EARTHQUAKE DETECTOR ROUTINE 

END-IF 
i 

END-REPEAT 

END 
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Figure 10. EARTHQUAKE DETECTOR ROUTINE 

DETEC 

A 

DX - |XK - XKMl| 
XKML - XK 
WX * 7/8 * WX + 1/8 * DX 
ZX - 255/256 * ZX + 1/256 * WX 
IF ZX >  WX 
THEN 

ZX - 3/4 * ZX + 1/4 * WX 
END-IF 
IF BETA-HI = FALSE 
THEN 

IF ALPHA-HI = FALSE 
THEN 

ALPHA ■ DX/ZX 
IF ALPHA >   ALPHA-THRESHOLD 
THEN 

ALPHA-HI = TRUE 
ALPHA-DELAY = 0 

END-IF 
ELSE 

IF ALPHA-DELAY > ALPHA-TIME-OUT 
THEN 

ALPHA-HI = FALSE 
ELSE 

BETA = WX/ZX 
IF BETA >   BETA-THRESHOLD 
THEN 

BETA-HI = TRUE , 
DURATION = 0 
call ONSET ROUTINE 

ELSE 
increment ALPHA-DELAY 

END-IF 
END-IF 

END-IF 
ELSE 

BETA = WX/ZX 
IF BETA > BETA-THRESHOLD 
THEN 

increment DURATION 
ELSE 

call OFFSET ROUTINE 
ALPHA-HI = FALSE 
BETA-HI = FALSE 

END-IF 
END-IF 

END 
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Figure 11. OUTPUT SUBSYSTEM DISPLAY 
ALTAIR VERY LOW COST TERMINAL 

B B B VLCT 7 segment 
readouts 

us |5|6|7|      Bit number of 
t        output byte 

Auto Range Gain 

Fault: FIFO Overflow 

BETA-HI True 
(Earthquake) 

ALPHA-HI True 
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The VLCT indicates an earthquake when the BETA-HI bit is on. The 

magnitude of the detected event is indicated by the current auto-ranging 

gain factor displayed. 

The output parameters derived by the algorithm are: 

— earthquake onset time, 

( 
— earthquake duration, and 

— earthquake magnitude. 

All three are available internally to the ONSET and OFFSET routines. A 

six second history of data samples is also available to ONSET. This is 

intended to be used for storing the trace beginning with the ALPHA-HI 

true transition. 

Implementation 

The software was coded in the 8080 assembly language.. This was 

entered into an INTEL MDS development system. The system contained the 

following hardware: 

— terminal, 

i    — line printer, 

— floppy disk, 

-- in-circuit emulator, and 

— PROM programmer. 

The choice of 8080 hardware just for the use of this development system 

capability was fortunate. 

Extensive use was made of the macro capability of the assembler. 

Low level mathematical subroutines "were  always called by macro subroutine 

drivers. This insures that the data representation implemented is 
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independent of the detector algorithm. A different data representation 

can be implemented by only recoding the mathematical subroutines and sub- 

routine drivers. 

The software was debugged using the In-Circuit Emulator (ICE-80) 

capability of the MDS.  The Altair Very Low Cost Terminal (VLCT) was sub- 

stituted for the Analog-to-Digital Conversion Subsystem in the software 

debug phase.  (Note that the VLCT has already been discussed as substi- 

tuting for the computer and software while debugging the A-D subsystem, 

as well as serving as the Output Subsystem display device.)  In this mode, 

the VLCT keyboard can input the 8 mos-*: significant bits of a manually 

digitized sample trace.  The VLCT display indicates the gain setting cur- 

rently being sent to the A-D subsystem by the gain adjust algorithm. 

The ICE-80 capability was used to find software errors as input was 

manually entered. 

A listing of the Software Subsystem is available from the Lehigh 

University Computer Center Librarian. 
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6.  CONCLUSIONS 

The implementation of the Microprocessor Earthquake Precursor Event 

Detection System was a success.  System operation has been demonstrated 

at several table-banging sessions.  The hardware and software success of 

the system do not really test the success of the earthquake detector al- 

gorithm; however, the system has been proved as an algorithm testbed. 

The system has the following characteristics: 

— field debug capability, 

-- wide dynamic range input, 

~ algorithm independence, and 

— expandability. 

A field debug capability is provided by the use of the Altair VLCT 

to substitute for the various subsystems in checking out the others.  The 

VLCT substitution also provides the necessary means to calibrate the 

Analog-to-Digital Conversion Subsystem in the field. 

The 60 db dynamic range of the Analog-to-Digital Subsystem, and the 

data representation scheme provide ample capability to automatically ad- 

just to varying background noise levels.  This is valuable, as noise 

levels vary widely even at a single location. 

The system was carefully separated from the algorithm implemented 

in a well-defined manner.  There will be no difficulty implementing a 

different algorithm, within the capabilities of the Digital Subsystem. 

The system is extremely expandable.  The entire 8080 computer of the 

Digital Subsystem occupies 6 of 20 available card slots in the computer 

mainframe.  The memory size can be expanded from the current 2K FROM, 
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2K RAH to a combined total of 64K. The algorithm execution speed can be 

improved by a factor of 1.5 - 2.0 by substituting slightly more expensive 

PROM memory chips. 

The only drawback to the field operation of the present system is 

the performance of the earthquake detector algorithm chosen. The system 

will be tested in the field, at a seismic observatory in the immediate 

future. Recent work suggests that a somewhat different algorithm might 
Q 

improve noise immunity.  However, an algorithm very similar to the algo- 

q 
rithm implemented here is currently in operational use by the USGS. 

The system has certainly demonsirated its stated objective of pro- 

ducing a testbed microprocessor system for processing raw seismic data 

to detect microearthquake events. 
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APPENDIX A 

ANALOG-TO-DIGITAL CONVERSION SUBSYSTEM 

SCHEMATIC DIAGRAM 
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APPENDIX B 

SOFTWARE MULTIPLY/DIVIDE ROUTINE CODING 
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Intel 8080 - Binary Multiply Subroutine (from Intel manual) 

PURPOSE: This routine forms the product of an 8-bit unsigned multiplier in 
the A register with an 8-bit unsigned multiplicand right justified 
1n the D and E registers. The result and intermediate partial 
products are formed in the H and L double register. Routine is 
entered using the CALL instruction, with all arguments pre-loaded 
in registers. The B register is left at zero. 

CALLING SEQUENCE: 

Clock 
Cycl es Bytes 

17 3 

ROUTINE CODING: 

Clock 
Cycles Bytes 

10 3 
• 7 2 
10 1 
4 1 
10 3 
10 1 
7 2 
5 1 

10 3 
10 1 

MPY: 

LOOP: 

DEC: 

Coding 

CALL  MPY 

Coding 

LXI H,0 
MVI B,8 
DAD H 
RAL 
JNC DEC 
DAD D 
AC I 0 
DCR B 
JNZ LOOP 
RET 

Comments 

Multiply D,E by A, result in H,L 

Comments 

Zero partial product 
Preset loop counter to 8 
Shift partial product T bit left 
Rotate multiplier into carry 
Test carry, jump if not set 
Add multiplicand to partial product 
Clear carry (superfluous) 
Decrement B, set zero flag 
Jump if B f  0 
Return to next instruction in M.P. 

18 

TIMING: Maximum time (at maximum clock frequency) - 238 uS 
Minimum time (at maximum clock frequency) - 170 uS 
Average time (at maximum clock frequency) - 204 uS 
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Intel 8080 - Binary Divide Subroutine 

PURPOSE: This routine returns the result of dividing a 16-bit unsigned divi- 
dend 1n registers H and L by an 8-bit unsigned divisor in the A 
register. If the division is performed successfully, the quotient 
1s returned in the L register, the remainder in the H, and the carry 
Is reset. If the division is not performed, either because the 
divisor is zero or the high order 8 bits of the divident are great- 
er than or equal to the divisor, the carry is set upon return. 
Registers B and C are also affected. The routine is entered by 
the CALL instruction, with all arguments preloaded in registers. 

CALLING SEQUENCE: 

Clock 
Cycles 

17 

Bytes 

3 

Coding 

CALL  OIVD 

Comments 

Divide H.L by A, result in H.L 

ROUTINE CODING: 

Clock 
Cycles Bytes Coding Comments 

4 1 DIVD: CMP H 
10 3 JC ERRC Error - divisor LT H.O. dividend 
10 3 JZ ERRN Error - divisor EQ H.O. dividend 
7 2 CPI 0 

10 3 JZ ERRN Error - divisor EQ zero 
5 1 MOV C,A Save A in C 
7 2 MVI B,8 Preset loop counter to 8 
10 1 LOOP: DAD H Shift H,L left, zero L.O. bit 
4 1 CMP H Compare divisor with H.O. div. 
10 3 JC SUBT Divisor LT HO dividend 
10 3 JNZ NOSB Divisor GT HO dividend 
7 2 MVI H,0 Force result = 0 

10 3 JMP AD2L Skip subtract 
4 1 SUBT: SUB H A = A-H 
4 1 CMA A ■ not A 
5 1 INR A A = A+l (two's compl.) 
5 1 MOV H,A H = H-A 
5 1 MOV A,C Restore A 
5 1 AD2L: INX H Set quotient L.O. bit 
5 1 t NOSB: DCR B Decrement loop counter 

10 3 JNZ LOOP Loop if not zero 
7 2 ACI 0 Reset.carry if finished successfully 
10 1 ERRC RET Return 
4 1 ERRN STC Set carry 
10 3 JMP ERRC Go to return 

45 

TIMING: Maximum time (at maximum clock frequency) - 614 JJS 
Minimum time (at maximum clock frequency) - 462 uS 
Average time (at maximum clock frequency) - 540 JJS 
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Motorola 6800 - Binary Multiply Subroutine 

PURPOSE:    This routine forms the product of two 8-b1t unsigned numbers and 
returns a 16-bit result.    The arguments are contained In a 4-word 
block of memory pointed to by the index register.    The block format 
1s: 

Index register +0 
♦1 
♦2 
+3 

multiplicand 
multiplier 
H.O. partial product 
L.O. partial product 

The partial product must be set to zero before entry to the rou- 
tine. The routine is entered by the BSR or JSR extended instruc- 
tion. 

CALLING SEQUENCE: 

Clock 
Cycles Bytes Coding 

8 2 BSR MPY 

9 3 JSR MPY 

ROUTINE CODING: 

Clock 
Cycles Bytes Coding 

5 2 MPY: LDAA =8 
7 2 LOOP: ASL.l 3 
7 2 R0L.1 2 
7 2 ASL.l 1 
4 2 BCC TEST 
5 2 LDAP.l 0 
5 2 ADDB.l 3 
6 2 STAB.l 3 
4 2 BCC TEST 
7 2 INC.l 2 
7 2 TEST: DECA 
4 2 BGT LOOP 
5 1 RTS 

Comments 

Routine 1s within relative range 

Routine is outside relative range 

Comments 

Load ace A with 8 
Shift L.O. partial prod, left into C 
Shift C left into H.O. P.P. 
Shift multiplier left into C 
Check high order bit of multiplier 
Load ace. B with multiplicand 
Add L.O. partial product 
And replace 
Check for carry 
Add carry to H.O. partial product 
Decrement loop counter 
Iterate 8 times 
Return to F1.P. 

25 

TIMING: Ilaximum time (at maximum clock frequency) - 514 uS 
Minimum time (at maximum clock frequency) - 293 uS 
Average time (at maximum clock frequency) - 406 uS 
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Motorola 6800 - Binary Divide Subroutine 

PURPOSE: This routine divides a 16-bit unsigned dividend by an 8-b1t divisor 
and returns the quotient and remainder. The data is passed to the 
routine in a three-word block pointed to by the index register, as 
defined below. 

Index register +0 
+1 
♦2 

high order dividend 
low order dividend 
divisor 

The routine returns the remainder in the word occupied by the high 
order dividend, and the quotient in the low order dividend with the 
carry bit reset if the divide is performed. If the divisor 1s zero, 
or less than or equal to the high order dividend, the routine re- 
turns with the carry bit set. The routine is entered by the BSR, 
or JSR extended instruction. 

CALLING SEQUENCE: 

Clock 
Cycles 

8 
9 

Bytes 

2 
3 

Coding 

BSR  DIVD 
JSR   DIVD 

Comments 

Routine is within relative range 
Routine is outside of relative range 

ROUTINE CODING: 

Clock 
Cycles 

5 
4 
5 
4 
2 
5 
7 
7 
5 
4 
5 
2 
6 
2 
7 
6 
4 
2 
5 
2 

Bytes 

1 
2 
2 
2 
2 
2 
3 
2 
2 
2 
2 
2 
1 
2 
1 
2 
3 
2 
1 
1 
1 

40 

Coding Comments s 

CTR:  RES 1 Reserve a location for loop counter 
DIVD: LDAB.l 2 Load ace. B with divisor 

BEQ ERR Zero divisor error 
CHPB.l 0 Compare divisor with H.O. dividend 
BLE ERR Divisor LE H.O. dividend error 
LDAA =8 Load.all A with an 8 
STAA CTR And preset CTR for loop 
ASL.l 1 Shift L.O. dividend left into carry 

LOOP: R0L.1 0 Shift carry into H.O. dividend 
CMPB.l 0 Compare divisor to H.O. 'dividend 
BGT CARY Jump if GT - carry is reset 
LDAA.l 0 Load ace. A with H.O. dividend 
SBA Subtract divisor from H.O. dividend 
STAA.l 0 And replace 
SEC Explicitly set the carry 

CARY: R0L.1 1 Shift L.O. dividend and insert carry 
DEC CTR Decrement loop CTR 
BGT LOOP Iterate 8 times 
CLC • Explicitly clear carry 

RET:  RTS Return from subroutine 
ERR:  SEC Set carry on error 

BRA RET And return 

(at maximum clock frequency) 
(*  

TIMING: Maximum time 
Minimum time (at maximum clock frequency) 
Average time (at maximum clock frequency) 

503 jiS 
303 uS 
403 >iS 
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National  Pace - Binary Multiply Subroutine (from National mariual) 

PURPOSE:    This routine multiplies a 16-bit unsigned multiplicand in R2 by 
a 16-bit unsigned multiplier in RO.    The 32-bit result high order 
bits are left in RO, the low order bits in Rl.    R3 is left at zero. 

CALLING SEQUENCE: 

Clock 
Cycles Words Coding 

5 1 JSR MP4 

ROUTINE CODING: 

Clock 
Cycles Words Coding 

_ CONST : WORD X'FFFF 
4 MP4: LI R1,0 
4 LI R3.16 
5 CAI R0.1 
4 LOOP: RADD Rl ,R1 
4 RADC RO.RO 
5/6 BOC CARRY,T1 
4 RADD R2.R1 
4 SUBB RO, CONST 
5/6 Tl: AISZ R3.-1 
4 JMP LOOP 
5 RTS 0 

Comments 

Jump to multiply subroutine in range 

Comments 

Zero partial product 
Loop counter 
Complement multiplier 

Shift carry into H.O. partial product 
Branch on no add condition 
Add multiplicand to partial product 
Add carry to H.O. partial product 
Decrement loop CTR 
Iterate 16 times 

12 

TIMING: Maximum time (at maximum clock frequency) - 994 uS 
Minimum time (at maximum clock frequency) - 775 uS 
Average time (at maximum clock frequency) - 885 uS 
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National Pace - Binary Divide Subroutine 

PURPOSE: This subroutine divides a 32-bit unsigned divisor with high order 
bits 1n AC! and low order bits in AC2 by an unsigned 16-bit divi- 
dend ,1n AC3. If the divide is performed, the carry is reset, and 
the l6\bit remainder is returned in ACL, the 16-bit quotient irt 
AC2. ITS an error is detected, the subroutine returns with carry 
set. ACd is used as a working register. 

CALLING SEQUENCE: 

Clock 
Cycles   Words Coding 

5      1 JSR DIVD 

ROUTINE CODING: 

Clock 
Cycles   Words Coding 

•             1 CTR: RES 1 
4       1 DIVD: RCPY 3,0 
5/6      1 BOC REQO.ERR 
5       1 CAI 0,1 
4       1 RADD 1,0 
5/6      1 BOC PSIGN.ERR 
4       1 LI ' 0,16 
4       1 ST CTR 
8       1 SHL 2,1,1 
8       1 LOOP: ROL 1,1,1 

4       1 RCPY 3,0 
5       1 CAI 0,1 
4       1 RADD 1,0 
5/6      1 BOC NSIGM,N0SB 
4       1 RCPY 0,1 
5       1 SFLG LINK 
8       1 NOSB: ROL 2,1,1 

9/10      1 DSZ CTR 
4       1 JMP LOOP 
6       1 PFLG CARRY 
5       1 RTN: RTS 
5       1 ERR: SFLG CARRY 
4       1 4k. JMP RTN 

Comments 

Jump to divide in range 

Comments 

Reserve a loop CTR 
Copy divisor to RO 
Branch if divisor EQ 0 
RO =  - divisor 
RO = divisor - H.O. dividend 
Branch if divisor LT H.O. dividend 
Initialize 
Loop CTR 
Shift L.O. dividend left into link 
Shift link onto H.O. dividend, 

zero into link 
Set up RO for test 
RO =  - divisor 
RO = H.O. dividend - divisor 
If GE do subtract 
Make result stick 
And set the link 
Shift link into L.O. dividend 
Decrement CTR, skip if zero 
Iterate 16 times 
Reset carry 
Return from subroutine 
Set carry 
JMP to return 

23 

TIMING: Maximum time (at maximum clock frequency) - 1,912 uS 
Minimum time (at maximum clock frequency) - 1,656 uS 
Average time (at maximum clock frequency) - 1,784 ^iS 
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Slgnetics 2650 - Binary Multiply Subroutine 

PURPOSE:    This routine multiplies an 8-bit unsigned multiplicand in R2 by an 
8-bit unsigned multiplier in Rl.    The 16-bit result is produced with 
high order bits in Rl and low order bits in R0.    R3 is left at zero, 
and the with carry flag is set. 

CALLING SEQUENCE: 

Clock 
Cycles Bytes 

3 

Coding Comments 

BSTA.3 MP4     Branch absolute unconditional 

ROUTINE CODING: 

Clock 
Cycles Bytes| Coding 

3 2 MPY: PPSL      8 
2 Z LODI.O 0 
2 2/ L0DI.3 8 
2 2 EORI.l  X'FF 

.   2 2 LOOP: ADDI.O 0 
2 1 RRL.O 
2 1 RRL.l 
3 2 TPSL      1 
3 2 BCTR.O NOAD 
2 1 ADDZ      2 
2 2 SUBI.l  X'FF 
3 2 NOAD: BDRR.3 LOOP 
3 1 RET,3 

Comments 

Set with carry flag 
Zero low order partial product 
Initialize loop CTR 
Complement multiplier 
Reset carry 
Rotate LOPP into carry , 
Rotate multiplier into carry 
Test carry bit 
Branch if carry is set 
Add multiplier to LOPP 
Trick - this adds carry to HOPP 
Iterate 8 times 
Unconditional return 

22 

TIMING: Maximum time (at maximum clock frequency) - 394 uS 
Minimum time (at maximum clock frequency) - 316 uS 
Average time (at maximum clock frequency) - 355 uS 
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Slgnetics 2650 - Binary Divide Subroutine 

PURPOSE: This routine divides a 16-b1t unsigned dividend with high order bits 
In RO and low order bits 1n Rl by a divisor 1n R2. The quotient Is 
returned 1n Rl with the remainder 1n RO and the carry reset, or the 
routine returns with carry set If an error 1s detected. 

CALLING SEQUENCE: 

Clock 
Cycles Bytes Coding Comments 

3 3 BSTA.3 DIVD Branch absolute uncondit 

ROUTINE CODING: 

Clock 
Cycles Bytes Coding Comments 

_ 1 CTR: RES 1 Loop CTR 
3 2 DIVD: BRNR.2 DOK Divisor HE 0 
3 2 BCTR.3 ERR Take error return 
2 1 DOK: COMZ 2 H.O. dividend GE divisor 
3 2 BCFR.2 ERR Is an error 
3 2 PPSL X'A Preset W.C. and com. 
2 2 LODI,3 8 Load loop 
2 2 ADDI.3 0 Reset carry 
2 1 RRL 1 Rotate L.O. divd. into C 
2 1 LOOP: RRL 0 Rotate C into H.O. divd. 
3 2 STRR.3 CTR Save CTR 
2 1 STRZ 3 Temp, save RO 
2 1 SUBZ 2 Subtract divisor 
3 2 BCFR.2 SKIP Branch on GE 0 - C set 
2 1 LODZ 3 Restore RO 
2 1 SKIP: RRL 1 Shift C into L.O. divd. 
3 2 L0DR.3 CTR Restore loop CTR 
3 2 B0RR.3 LOOP Iterate 8 times 
2 2 ADDI.3 0 Reset carry 
3 1 RTN: RET, 3 Unconditional return 
3 2 ERR: PPSL 1 Set carry for error flag 
3 2 BCTR.3 RTN And return 

35 

TIMING: Maximum time (at maximum clock frequency) - 475 uS 
Minimum time (at maximum clock frequency) - 436 uS 
Average time (at maximum clock frequency) - 456 uS 

-67- 



APPENDIX C 

MICROPROCESSOR COMPARISON SHEETS 
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MICROPROCESSOR: 

DATA BUS SIZE: 

ADDRESS BUS SIZE: 

USEABLE DATA REGISTERS: 

Intel 8080 

8 bits 

16 bits 

one 8-bit accumulator 
six 8-bit general purpose 

INSTRUCTIONS/BRANCH INSTRUCTIONS: 

EXECUTION TIME (MIfi/MAX): 

MULTIPLY/DIVIDE TIME: 

PUSHDOWN STACK: 

INTERRUPT CAPABILITY: 

DMA CAPABILITY: 

SOFTWARE SUPPORT: 

72/28 

2/8.5uS 

204/540 JJS 

1) one 16-bit hardware stack pointer 
2) stack limited to available memory 
3) stack available for general use 

1) single level 
2) up to 8 vector addresses specified 

by interrupting device 

hold and hold acknowledge pins 

1) *assembler 
2) *cross assembler 
3) *loader 
4) *monitor 

5) *text editor 
6) *library 
7) PL/M compiler 
8) simulator 

HARDWARE SUPPORT: 

IMPLEMEriTATIOM SIMPLICITY: 

POWER REQUIREMENTS: 

/ 

TECHNOLOGY: 

l)*development system 
2)*emulator 
3)*floppy disk 
4)*prom programmer 
5)*paper tape reader/ 

punch 

1) minimum configuration 
2) dynamic logic 
3) assembled systems available 

1.5 w: 

+12 v * 5%, 70 mA 
+ 5 v t 5%, 80 mA 
- 5 v t 5%,    1 mA 

N Channel MOS 

6)*line printer 
7) special  purpose 

hardware chips 
8) memory components 

20 packages 

* Available locally. 
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MICROPROCESSOR: 

DATA BUS SIZE: 

ADDRESS BUS SIZE: 

USEABLE DATA REGISTERS: 

Motorola 6800 

8 bits 

16 bits 

two 8-bit accumulators 
one 16-bit index register 

INSTRUCTIONS/BRANCH INSTRUCTIONS: 

EXECUTION TIME (MIN/MAX): 

MULTIPLY/DIVIDE TIME: 

PUSHDOWN STACK: 

INTERRUPT CAPABILITY: 

72/23 

2/8 pS 

406/403 j;S 

1) one 16-bit hardware stack pointer 
2) stack limited to available memory 
3) stack available for general use 

1) four level 
2) single vector address  for each  level 

DMA CAPABILITY: 

SOFTWARE SUPPORT: 

halt and bus available pins 

1) cross  assembler 
2) simulator 

HARDWARE SUPPORT: 1) evaluation board 
2) emulator ■ 
3) special  purpose hardware chips 
4) memory components 

IMPLB1ENTATI0N SIMPLICITY: 

POWER REQUIREMENTS: 

TECHNOLOGY: 

1) minimum configuration 
2) dynamic logic 
3) 

6 packages 

assembled systems available 

1.2 w: 

+ 5 v, 240 mA 

N Channel MOS 
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MICROPROCESSOR: 

DATA BUS SIZE: 

ADDRESS BUS SIZE: 

USEABLE DATA REGISTERS: 

INSTRUCTIONS/BRANCH INSTRUCTIONS: 

EXECUTION TIME (MIN/MAX): 

MULTIPLY/DIVIDE TIME: 

PUSHDOWN STACK: 

INTERRUPT CAPABILITY: 

DMA CAPABILITY: 

SOFTWARE SUPPORT: 

Slgnetlcs 2650 

8 bits 

15 bits 

one ^-blttaccumulator 
six 8-bit general purpose registers 

accessible three at a time 

75/22 

4.8/9.6 pS 

355/456 JJS 

1) 15-bit hardware return address stack 
2) 8 levels deep 
3} available only for subroutine addresses 

1) single level 
2) up    to 128 vector addresses specified 

by interrupting device 

run/wait and bus enable pins provided 

1V cross assembler 
2) simulator 
3) program library 

HARDWARE SUPPORT: 1) protyping board 
2) memory components 

IMPLEMENTATION SIMPLICITY: 1) minimum configuration; six packages 
2) static logic 

POWER REQUIREMENTS: 

TECHNOLOGY: 

.5 w: 

■■■+' 5 v t 5%,  100 mA 

Ion Implanted'' Channel Silicon Gate 
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MICROPROCESSOR: 

DATA BUS SIZE: 

ADDRESS BUS SIZE: 

USEABLE DATA REGISTERS: 

0> 

INSTRUCTIONS/BRANCH INSTRUCTIONS: 

EXECUTION TIME (MIH/MAX): 

MULTIPLY/DIVIDE TIME: 

PUSHDOWN STACK: 

INTERRUPT CAPABILITY: 

DMA CAPABILITY: 

SOFTWARE SUPPORT: 

National Pace (IPC-16A/500D) 

16 bit 

16 bit 

one 16-bit principal accumulator 
three 16-bit auxiliary accumulators 

45/13 

8/14 /iS 

885/1784 pS 

1) 10 word hardware stack with stack full/ 
empty interrupt 

2) stack available for general  use 

1) six level 
2) single vector address for each  level 

\) 
additional bus controlling logic required 

1) assembler 
2) cross assembler 
3) loader 
4) debug program 
5) software is upward compatible 

with'IMP-16 

HARDWARE SUPPORT: memory components 

IMPLEMENTATION SIMPLICITY: 1) minimum configuration: 12 packages 
2) dynamic logic 

POWER REQUIREMENTS: 

TECHNOLOGY: 

.7 w: 
+ 5 v 5% 
+ 8 v 5% 
-12 v 5% 

SI Gate P Channel Enhancement Mode 
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MICROPROCESSOR: 

DATA BUS SIZE: 

ADDRESS BUS SIZE: 

USEABLE DATA REGISTERS: 

IMP-16L 

16 bits 

16 bits 

./one 16-bit principal accumulator 
(, three 16-bit auxiliary accumulators 

INSTRUCTIONS/BRANCH INSTRUCTIONS: 

EXECUTION TIME (MIN/MAX): 

MULTIPLY/DIVIDE TIME: 

PUSHDOWN STACK: 

60/12 

4.9/13.5 pS (basic set) 

171/213 uS (hardware) 

1) 16 level hardware stack 
2) stack available for general use 

INTERRUPT CAPABILITY: 1) four level 
2) single vector address for each level 

DMA CAPABILITY: 

SOFTWARE SUPPORT: 

v/ 
HARDWARE SUPPORT: 

control  pins provided 

1) *assembler 
2) cross assembler 
3) *loader 
4) debug program 
5) *proqram library 
6) monitor 

1) card reader 
2) teletype. 
3) prom programmer 

4) floppy disk 
5) line printer 
6) CRT 

IMPLEMENTATIOM SIMPLICITY: packaged microcomputer 

POWER REQUIREMENTS: 120 V a.c. 

TECHNOLOGY: S1 Gate P Channel, Enhancement Mode 

* Available locally. 
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MICROPROCESSOR: 

DATA BUS SIZE: 

ADDRESS BUS SIZE: 

USEABLE DATA REGISTERS: 

Intel 3000 

2 n bits (n=l,2,3,...) 

2 n bits (n=l,2,3,...) 

one accumulator 
ten general purpose registers 

INSTRUCTIONS/BRANCH INSTRUCTIONS: 

EXECUTION TIME (MIN/MAX): 

MULTIPLY/DIVIDE TIME: 

PUSHDOWN STACK: 

100 nS Clock Cycle 

INTERRUPT CAPABILITY: 

DMA CAPABILITY: 

SOFTWARE SUPPORT: cross microprogramming assembler 

HARDWARE SUPPORT: 1) special purpose hardware chips 
2) emulator 

IMPLO-1ENTATI0M SIMPLICITY: 

POWER REQUIREMENTS: 

minimum configuration: 
static logic 

5 v 

50 packages 

TECHNOLOGY: Schottky BiPolar 
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ALGORITHM ANALYSIS 

Algorithm Description 

Referring to Figure 12, the algorithm can calculate five quantities 

for each digitized sample input. The symbols for these quantities are 

taken from Steward et al., 1971. DX^ is referred to as the conditioned 

seismic trace, W^ as the short-term average, and Z^ as tne long-term 

average. 

For every sample input, DXk, %, Zk, and otfc are calculated.  If Z^ 

exceeds W^ after this calculation, Z^ is set equal to Zfc - (Z^ - Wfc)/4. 

If oCfc exceeds an «<■ threshold, the sample time k is taken to be a possi- 

ble earthquake event start. The value of ^ is calculated when this is 

true, instead of *k.  If Afc does not exceed a A threshold within a 

certain time limit, the possible event start is discarded, and the fl^ 

calculation resumed.  Otherwise, the event onset is confirmed. The fi^ 

calculation is performed until £fc no longer exceeds the fi threshold. 

The period of time the /3 threshold was exceeded is taken to represent 

the event duration.  This is not necessarily a good measure of duration; 

however, Steward (1977) points out that it is a convenient measure. 

The equations of interest are numbered 3 and 4 in Figure 12. If the 

divisions by 10 and 250 are replaced by 8 and 256, the software Imple- 

mentation is as a shift. This is necessary to avoid the time required 

for the division specified. 
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Figure 12. ALGORITHM EQUATIONS 

1. *k   " Seismic trace sample at 

2. DXk  - K - Xk-il- 
3. wk  « "k-i + <Dxk - wk-i>/i0 

4. Zk   * 
Zk-1 + (^ - Zk-i)/250 

5. *k  " DXfc/Zfc. 

6. £k  " 

Digital Filter Analysis 

The analysis of the effect of modifying these factors is not com- 

plete, but is taken far enough to show that no drastic changes are caused 

10,11,12 
by the modification made. If the sampled trace of a signal is 

represented as: 

X(t) = xo$(t) + XlS(t-T) + x2S(t-2T) + . . . 

then the Z transform is: 

X(Z) = x0 + XjZ"
1 + x2Z"

2 + . . . 

The transfer function of a system is defined: 

G(Z)  U(Z) ' 

where V(Z) is the response of the system to input U(Z).  This function is 

most conveniently determined for U(Z) = 1.  Equation 3 (or 4) of Figure 

12 can be written as: 

\  - P    '  **-l  + (1 -/})\, 

where 0 < ft < 1, X^ is the input.  This is usually diagrammed as shown 

in Figure 13. ° 
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Figure 13. DIGITAL FILTER DIAGRAM 

The response of this system to U(Z) = 1 is: 

-1 F-2 v(z) = ii-/B+ /2>(i-j»z  + £ (l-^z"^ + . . (i -*> 
1 - fit '   z ̂T 

Therefore: 

G(Z) = 
U(Z) ~1- /§• z-1 

To apply a general sinusoidal input to this filter, it must first be 

transformed to the Z-plane.  Sampling f(t) = e^wt at period T: 

f*(t) = S(t) + ejWTS(t-T) + e2jwTf(t-2T) + . . . 

Transformed to the S-plane: 

F*(s) = 1 + e^e'sT  4- 2^e'2sT  + . . . 

Substituting to the Z-plane: 

F(Z) = 1 + e^Z"1 + e^^Z-2 +.....  !_. . 
1 - e^Z'1 
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Note that this is a causal signal, since it is sampled from t » 0 on. 

Finally: 

V(Z) - U(Z) ' G(Z) -  Z2 (1 -6)       . 
(Z-eJ*1) (Z-0) 

The inverse Z transform is evaluated using the Cauchy Integral Theorem, 

or by partial fractions. 

If the Z transform is defined: 

X(Z) =^   X(n)Z_n, 
,j n=-*» 

then the inverse Z transform of V(Z) above is: 

V(t) = 1     (i -0) [.<»">**-J<-»t . 
n=0 e^)- 0 

Referring this to equation 3 of Figure 12, /3 ^ 1/10, modified to /} = 1/8 

is a change in value of 25 percent. This causes a definite change in the 

characteristics of the filter. The frequencyxresponse, phase response, 

and transient response are all slightly affected.  The amount of proces- 

sing saved by this change made it mandatory, however.  In the case of 

equation 4, where f>   was changed from 1/250 to \l25b,  the change is much 

smaller. 
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VITA 

Robert Gregory Novas, the son of Robert Anthony and Antoinette 

Glacinto Novas, was born in Englewood, New Jersey on Decenber 2, 1951. 

He is married with a seven year old daughter and resides in suburban 

Washington, D.C.  He attended Lehigh University, receiving his Bachelor 

of Arts degree in Mathematics in June of 1972. Currently, he is a con- 

puter applications analyst with General Electric Company - Space Division, 

based in Beltsville, Maryland. 

The involvement with NASA, Geophysics Branch came about through 

Will Webster, a fellow amateur radio operator, while working for the 

LANDSAT project in 1975. 
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