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ABSTRACT

Microprocessor-codtrolled nydraulic switching valves
offer tue poteatial of replaciag analog servovalives witn
advantages in cost, reliability and»energy efficisncy. A
nydraulic pulse-leangtn-modulated (PLM) switching valve may®
b; connected to its load by a fluid channel exhibiting
significant inertance and/or resistance. It is shown tnat
if the channel which couples tne valve to the load is a
tube with a largely 1inertive impedance, the eaanergy
dissipation <can be greatly reduced, while reasonable
bandwidth is maintained and smooth performance is
achieved. An analytical model is developed whicn permits
minimization of energy Jdissipation wuader appropriate
constraints definiag a broad abstract class of switching
vdlves, 1ncluding ootn sliding 4and seating <types. Both

Lamiaar aad turoulent flows are considered in the tube.

Universal design cpnarts are Jdeveloped, for ©both
s2ating and sliding valves, relating the obtimal Kay
péramecers of the valve aad tae tube and the optimal cycle
time to tne fluid paramaters, sSwitching time and load
poﬁer. Compérisons within aad Dbetween families of
Zeometrically similar valve designs arz2 expedited, and
results are given which aid the global aninimizatioa of

anergy dissipation with respect to a luty cycla.

1]



1. INTRODUCTION

f Switching circuits form the basis 'of low-frequency
fluid power concfol sucn as in most industrial and earth-
moving applications, wnile analog coatrol 1nas been
customary for high-fraquency fluid power control such as
in wost alrcraft, robot aad wmacnine tool applications.
SwWwitzcniag circuins, however; also caan o2 applied to high-
freguaacy fluid power control parctly Dby uasing thea

splcroprocessor.

Two genéral modes of operation are particularly
attracctive: periodic and aperiodic. Periodic operation
impiies pulse-length modulation (PLM), whicn must be
carried out at a relatively tizh frequenéyr to provide
adequate bandwidth and to prevent axcessive energy
dissipation. The idea of pulse-length modulatidn
originated years ago at the Applied Panysics Labarotary of
Jona Hopxins University [1]. It essentially is a method
of controllihg the timé-rate—change of flow to an output
mamoer 1in a manaer such taat a desired position (or
velocity) of vutne drivea load 1is obtaiﬁed. It could be
e¢iiher 3 twdo-stdte Or a tanrea2-state control; the simpler
LWwo-5tate (baang-baag) is exclusively ctreacted herein.
Apériodic operatvioa of a two-state control implies much
less frequent Switching, and 1is exemplified by time-

optimal bang-dang concrol [2). Both two-state modes might



.appropriately be applied to a zZivea systam for different
portions of thne load cycle, but this thesis concentrates
on tne pariodic mode. (Aperiodic 2xcitation also could be

used to advantage with threa or four-state,control.5

A significant difference 1is assumed from other PLM
valves regarding the location at which the conversion ffﬁm
discreta to analogz signals takes - place. Tnis D/A
conversion, or effective filtering of tae switching signal
Lo give a largely samooth output, can occur eitner in tue
second 3stage of tne valve, in the fluid impedance coupling
DerLwWeea tne valve and tne load, or in tne load itself [3].
Conversion in the second stage of the valve was assumed by
Murctaugzn [1] aad Tsai and Uxrainetz [4] aand recently
Maasfeld [5] considers D/A <conversion in the fluid
impadance coupling to <cthe 1load. Brown '[3], however,
introduces the third system (using a fluid "coupling
impaedance) that can tolerate a much larger load compliance
with less energy dissipation and have tha advantage of
greatly smootner behavior of the output. Tnis thesis also

assamas conversion in the fluid impedance.

Botnh szating and sliding types of two-state threa-way

valvas are considered. Eacn nas special advantageas.

[nz resulcs, nowever, dre geaeric and no experimental

"rasults are given. The oobjective of the present research



is to specify the desired system characteristics for the
optimal design before too much developmental effort 4is.

gndertaken;



2. BASIC CONFIGURATION

Tne valve configuration consideread is sﬁdwn in Figure
1. This schematic is not intended to represent a practical
configuration, and the pilot actuating mechanism®is not
‘shown, but rather it portrays the Zeneric portality. The
loéd is connected alternately to supply pressure and to
tank, througzh the intervening fluid inertance (labelled
"tube") and 1load fluid ‘compliance (du2 to the cavity
volume). As it can be seen'from Figure 2, the seatiang
valve actually is tn2 limiting case of the sliding valve
witn bzJ. Thzarefore some of the definitions used in the
ddalysis are pased on tne oaes for the ssating valves,
wnicn 4ar= simpler to analyze. The dimensionless parameter
0 18 one Oof <tthe «ey pdrameters of the system to be
optimized. T[he maximum opening for tne seating valve is a
fuaction of tuna mwaximum stroke, x, and tnhe length of the
additional opening for the sliding valve is defined as bx.
Tne upper effective orifice area is proportional to ag and
tne lower effective orifice area is proportional to ayg.
The sum of the upper and 1ower effective orifice areas of
tha valves is assumed to b2 a constant in seating valves
(especially those witn strokes that are small compared
withn obAer dimensions, which may give the bast response).
This sum is denovad as ap; o
ay = ag(x). (1)

[nerefore tne maximum orifice areas for ag aad ag.are,

S



for sliding valves,'
dspax = dgpax = 3g(1+d) - (2a)
and for seating valves, ‘

qsmax = qmax T 30 - (2p)

Note tnat, tnroughout the whole text, the aquations
Lo be‘used witn sliding or s2ating valves only will be
designated by the letters a aad b, respectively (as in 2a
and 2b above). EQquations with no letters apply to both

c}pes of valve.

In lieu of detailed design and dynamic analysis of
the switching, two limiting cases can bes assumed, both of
which have the switching time Tg¢. Tne running time is

denoted as t, as can b= seen on Figure 3. These cases are

1. Constant velocity, n=1.
2. Constant acceleration, n=2.

Turning on:

{' 0 i - Os<tsty

a (t) = < ,

° L (1+20) [ ()" = =21 . <t<T
85 T.. ~~ 132p 125 st

(3a)
1+b £t N,
Fo(1+2b)[1+ e (m )] 0ty
— st

at(t) = < .

L 0 ' tgitf_Tst
-6



Turning off;

1+b t \n
Féo(1+2b)[l+2b - (7] O<t<t,
st
a (t) = <
B 0 t2it§TSt
(U4a)
0 Oititl
at(t) = ]—
: t I b
Wwnere ’
5
_ b _ (Ltb 7y :
By = ( ) ¥t b2 = (1+2b) Tsg - (52)

1+2b

The meanings of tha time limits Lq and t, might be better
understood by referring to Figure 3. It is also seen in
Figure 3 thact at t:(t1+t2)/2, ag and a, are equal.

Notice tnat above equations simplify to the following for
the s2ating valves

Turning on:

- £y 0<t<T
as(t) = aO(T—E) Co VbRl
S (3b)
a (t) = a [l - (———) ] 0<t<Tqy
st
Turning off:
as(t) = ao[l - (——;) ] 0<t<T . _
S (lUb)
- t 0
at(t) = ao(Tst OitiTSt



with . N\
t130, to=Tgy - (5b)

Browa {3] has shown (for seating valves) that the extreme
cases n=1 and n=2 produce nearly th2 samne consequences

(assuming the same valuz of Tg.). Since the. latter
appears to Dbe consideraoly more realistic, it has been

used exclusively by the author.

[ne series fluid impedance elemeant (nbfmally a single
uaiform cube) nas frequency-dependent rasistance, R, and ,
inercance, I, but is assumed tvo b2 short enouza so 1its
compliance (compressibility effect or wave propagation‘
effect) can be aeglected. This assumption is reasonable in
that wave delay effects would complicatz the behavior so
as to compromise tne effectiveness of the control, and
thus should be avoided. A constraint dnkthe length of the
ela2ment, 2 , is used to iansure small effects. In
particular, tne ratio of the wavelengtn of a wave of

period T to g, defined as N,

NSV, T/8 (6)

(wnera Vo is thae pnase velocity of waves,equal to B/p) is
K2pL at or aoove som2 large valuz

N=N, - (7)

« B



In practice, Ng=20 or more is presumaply satisfactory (3].

A fluid comp.iance, C, is located directly between
tne series impedance element and th2 input moving member
of the load. This jay be associated with an effective
minimum cavity volume of the output ram or motor; or may
be increased purposefully‘to further decrease the filter

frequency, w,.



3. EFFECT OF NON-ZERO SWITCHING TIME

The cycle time is definad as T, and the fraction of
tnz cycle for whicn tne valve is nomihally on will b2
called ao. The periodic mode introduées the4 fundamen;al
quastion of wnat constitutes an optimum switching cycle
period, T. Tne answer is simple, intarpreted from tne
vizawpoints of either Ddandwidth or Jdissipatioan, if
insvancaneous swiccning (Igy=0) 1s assumed. The smaller
tne period T cn2 better; cvne cyeling dissipation goes to
zero as [ goes to zero, and tne systam oandwidth inéreases

monatonically.

Anen tne uon-instaantansous character of the actual
switching 'is considered, hnowever, the story changes. From
the bandwidth viewpoint control would be lost if T was
seduced to the order of the switching time, Tgy - A
reasonable limit migzht be taken as

T/Tgy 2 10 . (8)
Further, from the eanergy dissipation viewpoiat, there is a
snuat leakage path througn th2 valve during switching,
causing momentarily l;rge dissipation; again on2 might

prefer to nave 4 large valus of T/Tg.

AnorLaer «Key paragdetar o ve optimized 13 che valve
3ize, as represaanted oy ay. Tne snuat leakage can be
raduced Dy wmdking the valve smaller, but tnen tna series

reasiscvance (principal porting Loss) of tna valve

-10-



increasas. Taus, iatroducing non-zero sSwitching time and
1

non-zaro valve losses implies the existence of a minimum

anergy Jdissipation for some combination of cycle time aad

‘vailva size.

In tne cdse of the sliding valves the parameter b is
added. Increasing b causes the overall switching tiﬁe to
increase but the time that both ports are open to
decrease. Therefore for a particular situation an optimum

valu2 of b exists.

In tnha followinz aanalysis tnzare are two flows which
can be considered to be independant: the flow Qg from the
supply port and the flow Q¢ tnrough tne tube. The ratura

flow to tnhne tank i3 then Qs'Qt'

The flow tarougn the impedance element, Q¢, will not
caange mucn duriang the switching cransieac, since Tgy << T
and tne inertia [ plays a dominant role. On tae other hand
g undergoes a large nraﬁsient surge. As can bz seea from
Figure N, wnanever IQtI is smaller than lQSI, Q¢ is.
negative wh2a the valve 1s being turned on (downward
motion) and positive when tne valve is being turned off
(upadard motion). The variations batw22a switching events
can be reprz2sented in terms of a, QQ (average of Qt) and

Qj, the last beiang the half amplitude.
For analysis pudrposes, the flow Q. is approximated to

~-11-



De constaiat at oOne of 1ts two =2xtram2 values throughout

‘2acn switcen. The equations of motion can be takean as

aq,  0°
I, 3¢ * —> sen Qg = P-p (9)
a
S
4 (Q-2,)° ]
I, g7 (Qg-Qu) + 2 sgn (Q,-Q.) =7p (10)

according to the usual Bernoulli orifice equation. Note

that, accordiag to Bernoulli's equation,

a = a *CdV2/p

s S
(11)
5 *
a, = ag cd¢2/o
and
%
a = a (x)
S S (12)
* ——
a, = at(X)

wnere as* and aC‘ are tne actual areas , cy is the flow
coefficient aad p is tne fluid Jdeasicy. |
IS and It in tne aoove egquation refer to inertias of
tn2 flows from th2 supply and to thz2 tank, respectively.
Tn2se inertias likely are negligible unless one purposely
makes tnem large. Even though large values can reducé tne
energy dissipation, they have been neglected during the
analysis. This is bacause Brown [6] shows (for seating

valves) that the2 use of the inertances IS and It to reduce

-12-



the flow surge aad energy dissipation is not as desirable
as it may appear. Use of a large [ leads to cavitation
just to the left of the lower valve port (and to the right
of the 1inertance element, not snown explicitlykin Figure
4) wnen the valve is turned an, and to the right‘ﬁf‘the
valve (pressure p) with it 1is curned off. Tnis problenm
can ba eliminated by lacniﬁg I1.=0 and placiag the burden
on [g. However, large [4 producs2s very large pressures in
tae upper valve port just before that port is snut off, so
tnat tne forces on the moving part and the 2rosion of the
valving surfaces could bs a major problem. Further, if
the magnitude of I4 Dbecomes comparable to the tube
inervance, I, the basic response of the system changes
Since the effective inertia is larger when the valve is on
than when it is off. Finally, tne reduction in eaergy
dissipation resulting from a substantial Ig+I, is limited
to cases with small ¢, (large valve area, as defined‘
below) and is not dramatic. It will also be seen, later,
tnat introducing o caus2s ¢, to be even larger for sliding

valves,

Afcver ctne 2limination Of the inervances the a2guations

of motioa become simply

Q 2
S
2
(Q-Q,)
_S_2t— sSgn (QS_Qt) = P - } (1“)
ag

-13-



[ne above equations can.thean be summad to eliminate p, and
solved for Qg using equations (3) and (4). The results are
Ziven in Figure 5. The energy dissipation during a single

switch, €4, then can be computed from the relation

3 ‘ 3
dES _ |QSI . ‘QS_QtI ,
dt a2 5 2

S t

(15)

A numerical integration was done in three stages (when the

valve is being turned on) to calculate

(1) egq betweea J < t < Ty

"de e, |3
sl _ t
using I - 5 (16)
a
t
(i1) eg, petween by < v < oy
3 3
: dego _ IQSI le_Qt|
using = + (17)
dt a 2 a 2
S €
(iii) egy betwezen ty < t < Tgy
3
de ., lag|
. s3 _ s
using T - 5 (18)
a
S
)

1l



and tne results are most conveniently expressed in

nondimansional terms as

ES=ES1+832+E33 (19)
aad
Es1+E33£g(b) ‘(20a)
E'SZ:E(CV,D) (21a)
wheare
a 26
Es = __9__§_§ ‘ (22)
. Tstth‘
Q .
c = t \ (23)
v a VP
@]
Y1 1
g(b) = ———l——§ [[ dy + j dy 1 (24a)
(1+2b) o (y2. Ltb 2 (v2_ b _y°
Y = T+2b Yo \Y 7 1321
with Yy = ti/TSt (i=1,2)

As it will be szen later, for the case of seating valves
3(b)=0 (24p)
giving

e - ' 2
- EgzEgo=E(c,) - (21b)

-15-



A small value of ¢, (large valve area) gives a large
surge flow and a large energy dissipation. As explained
before, if ¢, is small, the flow and the dissipation might
b2 reduced o0y introducing substaqtial inertances. Tne
2nerygy dJdissipaced waen the valve turns 2a is the samz2 as

wnen the valve turans off, assuming nd cavitation.

Tne rzamaiader of this sectioa considers the special
case of zero load flow (QQ:O), SO that ooth switches have
virctually tiae sameIIQtled (Q2 is allowed to‘be non=-zaro
in the following section). Thg normalized venergy
dissipation in tne two sSwitches per dycle under these

conditions bacomes

€
S

_ 2
m = 2CV [g(b) + E(Cv,b>] » (25a)

or for seating valvas

€
S

PQ T

2
= 2¢_“E(c.) . (25b)
d st v v

Tnis aondimensional energy dissipation is given in Figure
6 for some casas of iaterest. It can be sceen that the
larger tnhe valu2 of b, the samaller tne energy dissipatiod
wien tnere is no constraint oan tnhe control and/or the

performance.

-16-~



In a broad range of interest, the energy Jdissipation
during these switches has been calculated and the results
[Appeadix A] show that

E(ey,b)=f(b)*E(e,) (26a)
and
E(c,,0)=E(c) (26b)
as
£f(0)=1 for seating valves.
Than, over che range of interest, these three functions

can be wall approximated by

2cV2E(cV) = aj/c, * asc, + a3cv3 (27)
10 i
f(b) = )} f,b ' (28)
) 1=0
10 1
g(b) = ) g;b (29)
1=0

[ne coefficients and tne approximatioan raanges are given ian

Appendix A.

Tne energy Jdissipated in the valve when 1t 1s not
switching 1s <calculacted assuming that the flow varies

linearly as snown in Figure 4. Even thougn the following
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Jdarivation has been made for @ =1/2, the result applies
wicvaia 97 perceacv for 0.3 < a < 0.7

2

€ y Tse . o Tét 3 Tse o :
°E = [ -2( ) 6(—=2)+8(—2%)"-U(—=2) "1 (30a)
PQdTSt (1+b)2 T T T T

- Therefore tne total average power dissipated in the valve

is
v _ €s “ns
or
Voo (20 2e(b)+(a. /e +anc ta.c 3)f(b)](3§£)
T tL Cy 8 17 v “2 v 937y T (322)
T
; o208ty 68ty 2 (755 2ou (-2 1y p

(1+b) T

Ia tne case of tne seating valves, tnis aquation raduces

Lo .

l

=P

3 T
{(a /e tasc, taze, ) (== )

(32b)

T
v 2 - 228 -6 St>2+8( T3 1258y Hyypa
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If we cnoose Qy independenﬂly (to provide an adequate
inaximuin velocity of the load) tne optimum value of ag,
represented as an optimum value of c¢,, minimizes this
power for assumned discrete values of b. The resulting
'~values of c, are plotted in Figure 7, with the labels‘of
"°q=0"’ as a function of T/Tgy. Clearly the snorter the
sWwitcning time Tg, the smaller the optimum value of ¢

v
and tne larger the orifice ar=za of the valve. Note that in

all cases the optimum ¢, must be to the left ‘of the
respective m;ghma in Figure 6. However, introducing b (for
sliding valves), we sea that for phe same switching time,
tne Optiwmum value of ¢, bDecomes larger giviag a smaller
orifice area whean compared with the »one for seating
vaives. TInis Jdifference 1is espacially aoticeable for tne
small values of [/Tg.. Tae fact cnat tne switching time
itself increases (wWw2dkly) witn valve parameters (cv and b)
complicates tne Situation,'but also serves more saarply

define the optimum size.
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4. EFFECT OF LOAD MOTION

In equavions (25), (27) and (32), che mean load floﬁ
Q

droups (&, and Db) resulted. Non-zero Q, now wWill bDe

. Was taken to be zero aand two iandependent dimensionless

introduced via another dimesnsioanless group defined as tne

ratio of Q2 to tne nalf-amplitude Qy:

O

- L
C = =

5 (33)
a " Q4 .

-~

For small values of w,T, it has ‘been shéwn (2] that an
approximate simple asymptote can be found. Assuming the
inertance dominates over the resistance (small damping
ratios or very small uw,T) and the perturbatioans of the
downstream cavilty pressures are small, the flow variations
comprise virtually linear segments as snown in Figure 4.
[ae maximam'excursiods of tne flow, tnan, can be readily

found to oe

Qy=(1-a)aTlpP/2I . . ‘ {34)
From e<equacion (34), <the right-most form corresponds
approximately to
211q, |
T ;m * (35)

Tne definition of the first dimensionless group, c,, is

nowWw generalized to
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Q
c = —L . (36)
v a VP '

(@]

fais can oe viswed as a dimensionless measure of tne
pressure drop across the valve. The optimization process
also gives a value for ¢, and b (for sliding valves), and
tnhus an optimum orifice2 ar2a and tne size of the

additional opeaings of the valve.

[he switching time, 'Tst’ also 1s normalized with

respect to T; .
. bl
T
c = St (37)
S T
witich gives
TT T C % ) . (38)
st s q '
Note tnat
TgpzTg(1+20)1/2 (39a)
wnicn reduces to
[gy=Tg | (39b)

for seating valves.

‘A small value for &ty implies considerable design

flexibility and potentially high esnergy efficiency; if Cg
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gets too large a switching circuit might not be practical
at all.

Th2 flows Q¢ during th2 two switches for each cycle

now are different:

Qe 12,42
1 [ R | (40)
Q2= -Q4
Equation (25a) becom=s
€ Qt
S 2 2
s/ = Lc ( ) + c | ==11g(b)
PQ T v vo ' Q
d’st % d (41a)
Q Qt
tl 2 2
+ E(c ,b) + c E(cy,,sb) —=—
vl Qd Vo 2 d
or for seating valves
€ Q ' Qt
S 2 t1 2 2
= c__“E(cy,) == + cy, Elcy,,b) —=— (41b)
PQqT5 vy V1’ Q4 2 2 Qg

and thes power loss in th2 orifics for the intervals in

-whicn tne valve is not switching becomes

19, o
_ ;—5?11375 [(QQ +Qd )—2(Q +3Qd ?( )] qul
gs -J o * (42a)
4 ]
(Qg, +Qt- )
1 1 2 3
c >1
q_

Ine aobove equations are approximatioas due to the

Yo



complexity of the actual formula, but 1its error |is

strictly negligible and bhey simplify to

1, | T |
g 2 2 2 2y /.8 _
€ o} : '
gs - . (42v)
a o] -
| "o
for seating valves. As a result, equation (32a) for the
toval dissipation in the valve is generalized to;
fv 3 2
5 QQ 7 = [(al/cv+a2rlcv+a3r2cV )f(b)+2mcV g(b)]cS
r c
p—3 5 7 (43a)
(1+b) a
or
: 2
v 3 v (43b)
PTq, IT = (al/cv+a2rlcv+a.3r'2cV )cs+r'3 ?i; - (43D
whare
rozl+c, 2 (4l
1 q

-23-
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v 1+3c 2 c <1

! m = { d 4- (“é)
(- 2
Lq(j+cq ). cqz 1
ro/4-2mec_ 2 c. < 1 '
ry = {2 ’ 374 14 - . (u7)
r]cq-chscq cq 2 1

Tnis expression 1is minimized with fespect to ¢y, as
before; results for ¢q=0,1,2 and b=0,0.5,1 are given in
Figure 7. It 1is apparent that, for the same switching
tim2, introducing load flow (therefore cq) causes a larger
orifice area (smaller c,) for an optimum solution. All
these results have been taken with a constant acceleration
case which appears (from considerations bayond the scope
of thnis research) to be closer to what would occur in
practice. Even thouza we get tna optimizing values for Cy

for predefined valuas for b and Cq: we =~ wish,

Ssimultaneousiy, vo find tne values of °q and b for minimum
dfssipacion. Since tae viscous dissipation in the cube is
also affected oy Sqr tais diésipation must be added to
2quation (43) oefore tne minimization is undertaken, These
tube losses ooutn in laminar and turbulant flows are

Jdiscussed in tane followiag sections.
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5. TUBE LOSSES, LAMINAR FLOW

The total dissipation in  the system <can Dbe
represented as the sum of the valve dissipation which was
found 1in the previous sections (2quation 43) plus the

dissipation in the tube.

The tube losses comprise a sSteady-flow loss plus a
surge loss.

(1) tn2 sceady-flow loss:
[ne steady'flow 103s in taminar flow becomes

st 2
2

= c.Plq,| (48)

" therefore a new dimensionless group is defined as

R|Q
C =

|
)
. 5 - : (L9)

The dimensionless group ¢, can be considered as measure of
the importance of viscous dissipation; were it the only

loss ths steady state efficiency would b2 1-c;.

Of all snapes, a round tube gives the minimum ratio
of resisvance to inertance squared. For a tube of diameter
d and leagin ¢ wivn a laminar fiow- witn assymptotically

5L0W4 perturpacions, it is fouad [2] that
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_ 128us
R = —;gﬁ— (50)

%g 4 (51)
nd '
This gives : -
onI%ulq, |
0, = (52)
20 P

(ii) the sdrge loss:

If the resiStance and inartance of the tubs were
constanc, tne surge loss, assuming the linear flow
variatioas as oa2fore, is snown to be [6]

su ~ Ct
=Ty = 5 Plel . 0?3)

3cq

The result above would be in serious error, however,
because the frequaacies are virtually always high =2aouzn
L0 cause the instanteansous resistance to flow of the tube

to exceed considerably its quasi-steady-flow value.

The equations given for the resistance and the
inervance of the tube snould, then, be correétéd for the
unstz2ady flow. The effective actual resistance and
inertaace, called Ry and I4 here, depend strongly on the
nistory of the flow. Their ratios rg and ry to the static

values R and I, respectively, are plotted in Figure 8 as a
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fuaction of tne dimensionless frequency
o =gl (54)
H

wnere w 1is an actual frequency of oscillation. For & > 20

tn2 following are very close approximations,

Ra/R

i}
=3
]

R [3+2a(1+15/80)1/8 (55)

1,/1 = vy = 301+2/0-15/2(20)3 %1/ . (56)

d

1}
i
Il

These results are given in [3] and they are based on work

by.Brown [7] and Nichols (8].

These approximatioas hava bpe2n corracted for the
surge loss by Brown [6] using a Fourier approach in which
tne2 prassure dJdrop 1s vaken as a square wave, but, as a
practical matcer for optimal design such small corrections
are of little signifiééﬁce.vTherefore the results of the
previous seccibns'are used excepti for the substitutions of

Ryz=rgR for R and I4=zryI for I in the relevant equations.

It is convenient to implement this amodel Dby
introducing dynamic versions of the dimensionless groups
Cys» Cq» ©g and ¢, where b is independent of the frequency.

These Key paramesters becomne
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Coq = rr (57)
. Cqd = °q¥1 (58)
cg :
CSd = 'r,—I (59)
ta T °t"R - (60)
and tne total tube loss, ey, becomes
£t €st ®su ©ta
T =t T ey + =5l ] - (61)

3ch

Notice that ths steady-flow dissipation uses the steady-

flow group, cyg.
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6. TUBE LQSSES, TURBULENT FLOW

The valve losses given in previous sectioas do not
cnaange, assuming vcuroulent flow in th2 tube, but both
steady-state and surge losses in the tube change
dramacvically. These lossas are given balow.

(1) cthe steady-flow loss:

Tha steady-flow loss in turbulent flow becomes

e

€st

= gP|Q, | (62)

giving a new dimensionless group which replaces Cy in the

laminar case. This dimeansionless group, g, is defined as

5

g = 8700, 2/1°a7P = o (e 4)%? (63)

waere

, 3/2 ‘
3/1? [U.(;—'OL)] —l—é' .y (6u)
32v2 T g '

Cl-=-

in waicn vh2 friction facvor, f, was evaluated using the

conventional formula

= 2 1oglo(Re/?) -0

2l

(65)

-29-



(ii) thz surge loss:

Tne surge loss is taken to be

€

su _ ~ 2
= rd = rgPIQl|/3cq (66)

wilicn 1s tnz same form as equation (37) except for the

faccor r [3]. This factor is in turn factored to

F of
r==r7p = r (67)
£72  140.8686VF &

in wnich f 1is the apparent friction factor for low-
frequency (quasi-steady) perturbations and rq is a factor
to correct for the effects of non-zero frequency (as the

ratios rr and ri do in laminar flow) .

It is kanown that above a sufficiently high frequency
the surge loss is the same in turbulent flow as in laminar
flow [9,10], so that rg=r, or rgzrtf/?g. Below a
sufficieacly low frequency, by definition Qz:1' Brown (3]

nds receatly proposed a fuaztion to bridge this gap:

ro = v1+rm2 [1-0.3 exp(-0.2]ar,~-1/ar,|)] (68)
r, = rtf/fg : (69)
a = [Re’"23/1] (70)
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(Inis may s=zam more elaborate tnan the limited data and
tan2oretical models justify, obut s2ems necessary a3t least
Lo describe that data. Mihor variations in’' this model
would have insignificant consequsnces below, fortunately.)
Tné sQuare root term gives almost apbropriate continuous
olanding betwaen cae KAOWN assyuptotes, and the
axponeatial function dJdescripes a correccion due to the
observed fact taat a' phase lag in the perturbations of
eddy viscosity effectiveiy converis wnat would be a

¢
resiistanca pneaomendon into a rzactaanc2 pnenomenon [3].

Tne results above <complete tne analytical model
necessary for tha optimization. Optimization with certain
constraints is applied to this model to minimize the
energy dissipation using the appropriate aquations for thie.
system under consideratioa (namely, laminar or turbulent

flow in the tube witn seating or sliding valve in use).
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7. SYSTEM OPTIMIZATION

Tne total dissipation in th2 system (valve + tubde),
assuming laminar flow, becomzs
(sliding valves)

_ | 3 0
pa=l(ay/c qtarc gtagryc g )f(b)+ame, "g(b) Je ,

. R

r c C
vad 2

3 2,
(1+b)2 0 + ctd(l/rR+1/3 Cqd

N

~1
',_.l
o
-

+

{32dtliag valves) ‘
2

c A
= 3 bp. Y9y + 2
Py (al/cvd+a2rlcvd+a3r2cVd )cSd Ty qu ctd(l/rR l/3ch )
(710)
o
and assuming curbulent flow Decomes
(sliding valves)
p.=[(a,/c_.+a.r.c_.+ta.r.c 3)f(b)+2mc 2g(b)]c
d 177"vd "2 1°vd "3 27vd vd sd
r ¢ 2
+ 3 5 gd tof ¢ d3/2‘+ re/3c ° (722)
(14b) qd 4 q
{(s2ating valves) :
2
c
_ ‘ 3 vd + 3/2+ 2
pd—(al/cvd+a2rlcvd+a3r2cvd )csd+r3 Cqa clfch rg/3cq
(72b)
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[nz winimization problem assumes certain paraneters
4re- Knaowil whilz otners are to be chnosen to give minimun

Jdirssipaction. In particular we assume that

kg s/ﬁPTSNm/32ip2!Q£\vp (73)
is «aowa, and tanat T, a,, b(for sliding valves only),
g and d are to pe found. The choice was first used by
Brown [0] and appears to b2 reasonable. Note tnat because
tne definition of «k, uses Ty, for the analysis purposes,
rataer fhan the actual switching time (although Tst=Ts for
s2ating .valves), an iteration will be necessary in the

case of sliding valves. However, T would likely be a

S
fuaction of ag (proportional to the oae-quarter power)

anyway, 80 an 1iteration i3 1indicated in aay case.

Converzences of the iterations is rapid, fortunately.

Nocte furthar tnat, sinc2 tne results arz2 plctied as
functioas of tha siagle parameter Ky, O02 also can locate

LCts vptimal value. Tae subscitution of

[ c_ .c 1/4 - |
gqd”sd _ K Q (1+2b) (74)
a /IT—

Ctq
and

c = (75)
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equactions (45) , (40) and (47) recast as functions of'ch
and @ , and equations (55)  and (56) give the total
dissipation py as a fuactioa of c 4, Cqd» b (for sliding
valves), @ and o. The dependence on a, as can ba seen in
gquation (75), is in terms of the factor a(a-1) which is a
ﬁaraoola with a stationary point at o«=0.5 in the center of
tne region of interest. The factor changes by oanly four
percent if o=0.4 or 0.6 =2tc., and the eoffect on major
rasults of interest 1is evan less. Taus all remaining

numarical resuits aad plofs assume 0=0.5.

After tae value of a 1is c¢cnosen, oaly four variables
remaia; Cgdr Cvgo b aad. 9. A four-paramever (numerical
Nawiloa-Rapason) oprimizatioa 18 carried out. Tn2 resulting

opcxmaﬁ syscam is expressed in terms of I/T, b and two

3L
aewly-defiaed dimeansionless groups (which are more
convenient thaa previous ch and cvd)' These groups are a

valve size group

ao/ﬁ 1 (76)
g = = 7
v U  %qava |
aad a tube-diameter group
. 2 r .
By = o = : : -

vT P P
st 3n a(l—a)ka qu

I'wo assoclated optinal properties of interast, Q and
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a2 dimensioqless dissipation py, also can be given as
fuactions of K,. A third, the Reynolds number for tne
time-mean flow’ Qz’ cannot, but definition of the

normalized viscosity uy (more in Section 8)
=
g, u/vp/mePQQ (78)

wnich depeands on 4 subset of the parameters giving K,,

gives

3 -1
Re = (/ 2m g4 guka)

(79)

A3 can 0e¢ sean from Figures 9‘and 10, wheatner -tane
flow 1is laminar (Re<29J09) or cturbulent depends almost
exclusively oa gp. -It 13 saeen that Jggka is almost a
coastant for a specified g,. For tne optimal solutioas,
curbulenp flow occurs virtually whenevér gu<1.3*'10"u , and
laminar flow results otherwise. Practical limits for 0y
"vp, nwoand N theréfore imply, tnrougn 2quation (78), that
laminar flow is indicated only for fairly low power (small

PQR) applications,.

Tne total dissipation fuactions py above were
minimized for particular values of %J and k, to give
optimal values of I/Tg¢, &y, 84, 0 and 0. A Newton-Rapnson

iteratioan procedure wds used, wnich raquired considerable
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effort particularly in cturbulent flow because of the
complexity of tns needed first and second partial
derivatives of py. Coavergeace, nowever, was rapid from a

oroad range of stdrting guesses. Tne iteration of 2 was
nandled seperately and interactively to avoid excessive

analytical complicacion.

Ihe optimization process nas been applied to both
séacing and sliding valves for botnblaminar and turbulent
fiow. Four d;fferent values of gu (1.3*10‘“, 10‘“, 10'5,
10‘6) nave been used (which can alssr bz interpreted as
four dJdifferent levals of 'turbulence).‘ Even though the
region of principal interest, from bandwidth
considerations, is expected to be 10 £ T/Tg, < 40, the
energy dissipation nas also beesn minimized (when a minimum
exists) witn n> conscraint imposed on the bandwidth.
Larger values of T/Tgy, however, Jould mean longer cycle
Cimes and less Dbandwidth since Tgq, 1is prodbably nearly
Ficed Dy tne valve design (more ia Section 8) and the
constraiacs for T/T, . < 10 anave already beea Jdiscussed
vefore. [he * "no-conscraint" minimizavion for seating
valves nas givea c¢ane results plotted in Figures (115
tarougn (14). Tae corresponding optimization attempts for
tn2 sliding valves snowed tnat the minimizing values of b
are mostly out of the range of practical interest

& -

(0. < b < 2.); therefore tne results are not plotted.
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For all ths minimum dissipation solution plots (with
Or Wichout coanstraints), cae following range for X, has

opeain 2nosen.

yx107" < k, < 0.04

In2 results are not snown for K; > J.04 since the losses
ara2 excessively large. They are also not shown for
Kk, < 4*10“u slnce sSimple wextrapolation applies there.
Coaseguently, the curves represant virtually all cases of

poteatial interest,

In Figures (11) through (14) which give the '"no-
constraint" minimizatioan rasults for seating valves , the
dissipated power can pe seen to bz less for laminar flow
tnan turdulent flow if k, 1is fixed. This may be
mislzading, however. If the viscosity p is decreased while
tnzs ocwnar para@euers in <, are h2ld constant, both £, and
éu decreasae. dWaza gu r2aches about 1.3*10"u the flow
oecoimas turobaient, and Tne operacing point jumps from
Laminar to curpulent flow with gu=1.3*10‘u. Tne jump in
Une J4i1s8sipacioa 1s modest, nowever, and continued decrease
in y reduces the losses below tne laminar minimum. Tnus
deep penenracion into tne turbulaat regime Zives less loss

vaan nign Reynolds number laminar flow.

One could extend tne useful range of laminar flow by
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using two Or more parallel tubes, or better by using a
rectangular cross-sectioan witn adsquate aspect ratio. Such
a costly possipilicty would have a very restricted domain
of advantagz over the outright use of turbulent flow in a
single tube, hnhowever [3]. Excessivk transitioan between
laminar and turbulent regimes, which might result froa
cnanging load flow Q,, ouznt to be avoided. Nz2vertheless
sucn a4 traansition snould cause a rather small effect on
tne concrol dyaamics, presumably less thaa is apparent for
the dJdissipation, since the Jdyanamics depand more on I
(wnich  cnanges little) tnan R (whicn' affects tne

dissipacion). _ b

Reducing K, 4130 ré&sulus in larger values of T/Tg
for opotn laminar and turbulent flows. For the reasons
discussed above, however, these plots ars useful ia a
ratner aarrow range of Kg valuz2s.The baadwidth gets very
small for K < 0.903, especially when laminar flow is
being used. For very hiéh Reynolds aumbar turbulent flow
(gU=1O'6), howaver, the optimal bandwidth valu=s
(therefore T/Tgqy) are quits appliczable (going into the
ragion wita [/Tg¢ < 10 18 aot recomm2nded, however). The
frequency of oscillatioas,w , and the valve size, ag, also
dre quite seasitive to the Reynolds naumber. For high
Raynolds naumb2r cturbulent flows (small gu) tne valve

oecomes swmaller for laminar flow, whilz2 tne diameter of

La2 Lude S2e2s L0 SLay aearly ctne same for potn flo4s in-
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tha reagion of principal interest. Iﬁ should be noticed,
however, that vwnen the transition from laminar to
turbulent flow (or betweea different levels of turbuleace)
occurs due to tae d2crease in uw, this regioa of interest,

L20, cnanges (oecduse K, is also changing).

As szea above, Qne "no-coastraint" minimizacion
gives, for mosnﬂ of cue region of interest, excessively
large values of T/Tg, (too small a bandwidth). For sliding
valves, tnis wminimizacion becomes <even less relevant
becaus2 of the impractical values of b. This suggests,
taea, tnat tne designer should specify T/Tg, (or at least
a raage) before the aminimization of dissipation is carried
aut, trading dissipation for bandwidth or viable
modulation. Furtner results are obtained, then, tnrough
an optimization with a constraint on T/Tgy. In the region
that seems to Dbe pracctical, the author has carried the
optimization with T/T3t=10,25,30,u0. Tne results for the
Seating valves are plotted in Figures (13) thnrough (34).
For sliding valves, tne results, whica 4re possible to
ootain in this case, are-plocted in Figures (35) tarougn
(o4). ALl une results optained for consctrained T/Ig,, for
poLn lawminar and turbulent flows ~and witn

gu=1.5*10‘“,10‘“,10‘5,10'5, are given in 40 plots.

After specifying the type of the valve, the type of

tae flow (g ) and K,, wnich represeants tne fluid to be
u
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used (u,p) aand some of the system characteristics (Tg, P,
Q

valu2s for tne remaining paraneters Dy using one of these

g Npo» VB), tne designer =2asily can g2t the optimizing

plovs.After -tae choices mentionéd above; the aumber of
relevadt plots reduces co four. 5ither ne uses one of
these plots direccly, or n2 uses a simple interpolation
accordiang ©¢o nis canoice of oandwiqtn. If he is using
seating valves, ne also nas the option of wusing the
Figures (11) througn (14) as long as the results give an

acceptable value of T/Tg.

The first 20 plots, which are for seating valvas show
that the optimal valve sSize stays nearly the same for aay
g, and K4, once the bandwidth is cnosen.(This is
especially true for samaller k,, as ths curves approach to
Liie sSama asymptote for laminar and turbﬁlenc flows.)
However, .tne smaller the bandwidth (larger T/Ig.), the

larger utnese asympcotes.

[}

Tae Jdissipated power curves, for a specified T/Tgy
and smaller values of Ky, agaia have tne sam2 asymptotes
for ootn lamianar and turbulent flows. Tne cases with
large values of Kk, give such large iosses as not tobbe of
interest. When the oandwidtn is decreased (larger T/Tgy)

tha asymptotic values for py get smaller.

One might be tampted to generalize from these rgsults
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for small values of ky, that if one specifies a small
bandwidth and fixes all tne Femaining paraméters of the
system, increasing the size of ‘the valve (larger g,)
alkays decraases eanergy dissipation. This 1is wrong,
nowaver. Wa2n a smaller bandwidth is specified, a longer
cycle time T is obtained and the actual energy dissipation

becomas larger since

according to tae definition.

Tne optimal ctube diameter, on tne otner hand, is aot
~affected mucn by the bandwidth specification and the type

of the flow in use.

Tha quest for futher minimizations in the anergy
dissipatioa makés the idea of wusing sliding valves Vefy
attractive., The next step, then, is to apply the same
optimization on the sliding valves. The coastraints on the
pandwidth and tne very same range for Kk, are maintained
(even though the definition of k,; includes Tg, the
principal range of interest would change very little,

nowever) .,

A quick Zlaace oa thne remaining 20 plots, show, first

ot all, taat tae optimail pérameters of tne valve (except
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o) and the tube are quite similar to those obtained by
using sa2ating valves. Anotaner interesting and important

whatever the value

resuict is utnatv, for large valuzs of k,,

of tne pandwidtn, the optimum values of b are so small the
valve 1s virtually a seating valve. Making b large enoughn
to warrant cone name "sliding valve" would incresase the
losses walca are already large., For these cases the
designer miznt well use the rasults given in Figures (11)

tnrouzn (34).

Wnen tne g, curves are examinead carefully, it can be
seen that g, stays nearly the same throughout the whole
range of k, for both types of flows. Tne.additional valve
paramater b, however, is quite sensitive to changes in k,.
The smaller k,, the 1érger b. Increasing T/Tsh gives even-
larger values for cthe optimal b (for smaller k;); these
curves 4o not depead on the type of the flow. Decreasing
tiae bandwidbtn also caduses g, (or ao) to increase as it is

tae case for seating valves.

In vne region dh2re sliding valves are actractive
(€3 < 0.02) and T/Tg is relatively small, tne optimal aj
5ets~larger taan its value for sz2ating valves even thougn
using cthe sliding valve increases the effective orifice
ar2a. This 1s aot the generél trend, however, When the
Sizes of'tne two types of optimal valves are compared, it

is seen that this 1incr=ase gets smaller with a larger

4o



[/Tg, (waicn gives a larger o).

Tne curves for wminimum py have the same shape for
ooth seacingl énd sliding valves revealing less energy
dissipation for smaller K;. For a larger k,, there is
Simply a0 way to get futher wminimization than already
obtained wWwith sezating valves. The curves again approach
tn2 same asymptote indepeadent of the type of the flow. It
is clear that py Dbecomes less by specifying a larger
constraint for T/Tg¢ via using a larger b. We do not want
to have too small a bandwidtnh or too large a b, however;
tnis trade-off is discussed further 1in Section 8. The
curves for tne dimensionless frequancy Q and the optimal
cube diameter d r2main more or less tna same when tney are
compdred Lo tne respactive oanes for seating valves,

altanougn tne cnaanges in  are not insiganificant.

Tne value of the compliance ¢ is the final issue to
be resolved. The D/A coaversion occurs because of the

natural frequeacy

o= (81)

wnare I is tne inertia of the narrow channel and C is

oo (82)

™| <]
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winere V is tne volume of tne load chamber and B is the

effective bulk modulus.

If woT is small (wal < 2), tue pressure in the cavity
does aot vary wmuch in a siagle cycle, compared witn P, so
it can pe said tnat D/A coanversion occurs in the fluid
impedance [3]. The bzhavior then is relatively simple_and
prediccable, which 1s crucial from a control point of
view, and the 1losses are small, especially when the
resistance and consequently ¢ are small. Thus we are left

with oaly tha requirement

(83)

(@]
| v
i

Examined more closely, the maximun change in the load
pressudra decreases as C 1s wmade laréer. If this change is
Loo large (violatss the inequality) tna assumptions for
the analysis bpecome invalid and the acﬁual benavior
becomes excessively complicated. [f on the other hand the
cnaage Ls very small, tne 3ystem bandwidth suffers
directly. Tn2 best compromisz might b2 about C=T2/I (this
corresponds to w,T=1 aad the corresponding flow is given
in Figure 2b of (3]), altnough other considerations also
can eater. These considerations include the minimum load
volume the designer is stuck with, and the load stiffness

whicn is inversely proportional to C.
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3. APPLICATION TO GEOMETRICALLY SIMILAR VALVES

A cdaracﬁerization of geomecriéally similar wvalves
permits tne virtuz of different designs to be compared,
independent of thne 1individual size or material, and
permits a particular valve to bz scaled optimally for a
particular application [11]. For this purpose, some
cnaracteristic leangth (pernaps a Key diameter) of members
of sucn a family and tae macerial density are defined as
245 and pg, respectively. Tane asw dimeqsionless groups are
defined oy Brown [11], as follows: |
A dimeasionless group Whicn relates the valve opening

pardaster a3 Lo &, 1s defined as

g, aO/E/!aO2 . < (84)

N
Anothar Jdimensionless group 138 souznt to characterize

the switening time, Tg.. Tae mass of the moving part is
proportional to OSQ03, tne force pron¢ing motion is
proportioaal to onz, and the Gtotal displacement 1is
proportional to 20. Assuﬁing constant écceleration, then,

tne dimensionless group is taken as

g, = Tst/ﬁ/ﬂo/g— . | (85) -

S
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Ld

Tna virtuz of these dimensionless groups is that they
ramain constant as 20 ~cnanges. They cannot be wused

directly to compare different designs, but the ratio

gs//ég = Tst/?//aops/a ' (86)

can pecaus2 it is independeat of tha2 (arvitrarily defined) -
L2ngun fg. Tane smaller this ratio, tne faster tae valve
for d'given affecrive size.

Iv is convenient Lo naxge furtner nondi-

yd

m2n3i00a4l124L40aS witn respeact to parameterg tnat are most
likely predetermined 1in a particuiar application. These
parameiers are taken to o2 tha f{luid properties p aad
B and L2 power (PQy) .- Ine quantities being
nondimansionalized are tne length L9 the pressure P, the

cycle time T, the viscosity u and ‘the density of the

moviag part pg. Tney have been defined in [11] as follows:

g, = 1,8% /e R, = aylv 3oseq, (87)

g = P/B (88)
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g, = 187" /03/ PG, = /v Po/pq, (89)

03
i

/4, 3/ )
L E uB /p \/NmPQ2 = u\/Vp/onPQ2 (90)

g'p z DS/D (91)
The predefined k, cthen becomes
v 3/2
N g.8
_ m S°u 1/2 3/2
k= (g g g,) (92)
a 3om(142p) 12 TP p "t

The wminimum dissipation at particular values of

T/ Tgys g, and «, implies a particular valve size

a8 8, - ‘(93>
Tnus, 1if obotn g, and“gp are assumed given, only a uniqu=2
value of 31 will give vune proper value of g,, and tne

solution i3 unique. (Tae same is true 1if 8 is assumed

given; thea a uaique value of &, results.) Note that once
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P aad L4 are known, Ty is fouand from the knowledge of gg,
and [ from tna Knowiedge of T/Tst' Note also that as tne
ratio /T4 1s varied from its lower limit of about 10 to
1ts upper tumit of cone unspacified value, T gets longer
(undesired) waile tne efficiency iacrzases (desired). Tais

i3 tne crade-off pbecween pandwidth aad efficiency.

Tne dimensionless cycle time becomes

(28 y (T ”f‘><gpw> (9h)
g, = \—I)\F— ]
t @ TSt gV g 5/ .

p

I'ne first factor in parantnaSis is an exclusive function
of the design of the valve but is independent of its size,
as pointed out in tne vext referring to eguation (67).
Over most of tae region of interest, g, is almost
exclusively Jependenﬁ\on T/Tgy, so the second factor in
parantinesis is almost a function of T/Tg¢. The =aquation,
tnz2a, clearly reveals now pressure’(tnrougn gp) affects
Laz cyclie time,

T

Ine dLSSipduion nusmoer py is a function of T/Tgy,

éu and K, . For mucn of tne region of interest, however,
particularly for tne smaller values of gu, the values of
py are asymprotic to a simple function of T/Tg.. In this

"

case, therefore,
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5/4
£ 8, :
/Eg (g5/7e,)

py = vl (95)

[nese functions v [ ], for bota seatidg and sliding valves,
are plotted in Figure 53 and represeant tne wminimum
possiole dissipacion. A trade-off between minimum enargy
dissipation and cycle vtime 1is clearly revealed by these
plots. Tne effect of tne othar parameters is indicated by

tne definition of the abcissa.
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9. CONCLUSION

J

Tnis res=sarch is iancended to specify a system (valve-

plus tude) to satisfy reasonable requirzments of dynamic
respons: and energy Jdissipation. Differeat classes of
swic;uing valves nave been used 4and the idea of the D/A

cvoaversion 1n tne fluid impedance coupling batween the

valve and ctne load [3] nas oeen adapted.

Dissipation (witn smobtn performance and acceptable
oandw;dtn) is affected largzely by tnhe viscosity of the
fluid in use., Tnerefore a very broad range of viscosity is
tr2ated, including both laminar and turbulent " flow
regimes, SO tnz2 results can be applied to any high or low

power system.

Handling the turbulent flow is not a simple endeavor,
nowWever, for the resistances become highly nonlinzar and
tnz role of inertance 1s sSubstantially reduced. The
analytical model for wWave propagation in tubes with
turpbuleac flow proposad oy Brdwn, whicn was never done

completely in tne literature before, has been used.

Anotner Jdominant factor in the 2aergy Jdissipation, - in
addicvion Lo tane viscosity - wnich nas already bean
mentioned, 13 tne switching time, and the small
dissipation 13 made possible oy small values of Tg..

Tnerefors using an appropriately designed tube connecting
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an appropriately sized and sufficieatly fast switcuing
valve t©td a Lload caa deliver significantly ’igaer power

tanan use of tne dJ2dvious alternatives.

Taa aor« nas‘used oo2tn 32atingz 3ad sliding valves.
[n2 Jdesire > grezactly reduce or eliminate tne short-
circait flo4 patn pdetwe2a supply and taak lanerent in the
3>13C04aL-4rea-san valves (seating valves assum2d nerein)
Latroduce taz2 as2 of ;Liding valves. Tne Eesulcs indizate
aa advaacdge , paruvicularly waea <3 is small, for slidiang
valves; ctne ra2al proolam 13 economical Jdesizga, naowever
(3.mall advaatages aigat o02- outwa2igned, of course, by
praccilcal dJdesign coasideracioas). dnén K; 3ats large
2adugn tae losses pacome 24cessive {even for tne wminimua
accaptanle valua of T/Tst) waether a sliding or se2ating
valve is usad, altnougn tae latier 13 <close to the
Jptiaun. The tradz-off o2tw2en tne afficiency and
acoanomical 'desiga, aowWever, 13 not tne subject Of the
researca. Tnerafore ad prejudice against seating valves is

inteadad.

All tn2  resalcs qotdined ia  tae ressarca ara
exprasiad 1a cerans of dimensiocoalass groups of parameters.,
ne2 Jaaiversal esiga cadarts  are asad oy <c¢ados3ing the
predefiaed paraamciers «,, gp ([6,12) respectively) aad
I/Tg.. [> specify tas opuimal 3yscem, tae desigaer

daceraliaes tae aczcepcadble ranges for taese paraanzters, aad

-51-



thnen pinpoints the optimal design on the given charts om

wnich thne remaining parameters are deduced.

Thé next step 1in the developmant of optimizabtion
procedures présumably would be the extension of the
studies to 2atire anticipated duty cycles, using equations
(71) and (72) and related equations to predict the energy
dissipation including the d:n—optimal conditioas. Somea
cnaracceriscizs of tne cnanges 1ian acctual instantaneous
flow aave be2n obtainad by wmalviplying the equation (71)
oy QQ/QEF, waare er 13 a coastantc reference load f;ow for
tne optimal or design condicvion and Qg 1is the actual
insvaantaneous flow. Note tnat ctne definition of the

noandimensional dissipated power now changes to

Dy = Pq, T (96)

Tne changes in py have been examined for low power systems
(laminar flow), which is the easier case. Figures (56)
aad (538) for seating and sliding valves, respzctively,
siiow tnat tne dissipation is less wnen the system is in
its aull state. Figures (57) and (53), on the other nand,
reveal that for 0 < QQ/er < 2 , the ratio of e/¢g, (of
P3/P4,) remain almost ctn2 same for any K,. The results
witil seating valves (Figures 55 and 57) nava been obtained
wimxvnalconsnrainc on tne pandwidtn of tna system. Tne

onz23 witn sliding valves (Figures 53 and 59), howevar,
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have opeen obtained by imposing a constraint on bandwidth
(T/Tg¢=40). As can be seen from Figure 59, in the range
for Ql/er diven above, an important deviatioh occurs for
large «, values-and tnis is betause tne constraint used is
far froﬁ baing oprimal for ctnose large wvalues of K-
Figures (35) tarougn (33) show tnat the optimal bandwidth
for large values of K, is much larger (T/Tst§10) even

thougn losses are still unacceptable.

Figures 37 aad 59 (to be used with the asymptotic
null state values obtained from the previous ones) might
‘simplify the process of finding the global minima of the

dissipation regarding the entire duty cycle.

The analysis, however, mignt be extremely difficult
for rturbulent flow, sSiance chaaging inwould cnange both
8, and .the zZoverning eguations (as laminar flow would

propaoly occur at null).
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FIGURES 1-59
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APPENDIX A: ENERGY LOSS IN THE VALVE (ZERO LOAD)

Aftear tne eguations of motion (=2quations  (13) and

(14)) are summed to eliminate p, substituting equation

(23) gives >
m
: 2
. mlgsgn(Qs-Qt)—/ﬁlu—m3m12[8gn(Qs—Qt)— ;35 (1+20)°]
[go)=M= o -
t 3
(97)
wneare -
m, = (y2 - ljzb) (98)
my, = (7 - 52) (99)
= m.°sgnQ. + m.°sgn(Q_-q.) (100)
My = My SENkg 1 58 st

Note cnat vtn2 sign cnange for Qg occurs wihen Yz2Yor

. l+b—cV
Yor VN Tmm (101)

Tne energy dissipations egq, €42, €33 during a single

wilgre

-116~



¢

SWwitcn,” taen, are computed using equatioas (16), (17) and
(18) respectively.
gEquation (15) gives
g . " . 3’
€ Q
St (102)
a, (1+2b) My

o

d

Suostituting equation (23) aand, then, integrating eguation

(102), one gets

I

Y1 .
. , .
sl 2 J dy
_SL - 6 (103)
PQdet v (1+2b)2m22 '
and use of equation (22) gives
Y1
B, = 1 5 [ dg - . (104)
s (1+20)° 7/ m,

Rep=2acting the same with 2quation (18) gives

1

By = s J L (105)
(1+2b) m
Yo 1
Wwilica gives

Egp *+ Es3 =»g(b)
giving equation (24a) in the text.

-Tne dissipation whan both ports are open 1is more

-117-



~coamplicated, however.‘Equation (17) gives

f ] |
dego QU [(absM)3 N [gbs(M-l)]3]

it~ _ 2 p) 2 >
ag (1+2b) | my 5

(106)

m
and similarly, tne rasult is obtained as

2 Y

2
£ c 3 3
- ;2 _ v S ! [(ab;M) + [abs(g—l)] Jdy (107)
d st + (1+42b) Y, my ' my”
or < 7
Y2 3 3
B, = 1 . f [(absg) . [abs(Mgl)] Jay - (108)
s (1+2b) m m
Y1 1 2 .

Note that M includes the valve parameter, c¢ The above

vl
2quation 1is givean 1in the text as equations (21a) and

(210) .

Tnese equations have b22n derived while the valve was
curning on and similar derivations have been applied while
viie vdlve was turaing off. Tne results snow tnat Eg
ramains tne sdme if no cavictatioa is assumed. |

Tnerefore

Ve

E, = 2[g(b) + E(cv,b)]

willca is equation (254) in tne text.

-118~
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It has been sean that in the 'principal range of
iaverest ( 0<cy<0.9 ; 0<p<2 ), the classical separation of
variable tecaanique can b2 applied to give aquations (26a)

and (20b).

Tae approximations are, then, given 1in terms of
simple functions and tne coefficients of =quations (27),

(23), (29) are given below:

a; =0.343
ay =1.08
a3 =0.8
£y =1.0
f, =10.42
fj :-‘41.03
£, =101.84
f5 :—]59-1’4
f, =-101.64
fd :u0.0I
f9 =-3.33
f10:0085

i 30 :000
g1 =5.32
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82 :"3“-22

gy =128.12
gy =-237.62
g; =441.86
g5 =-425.55

} g7 =264.26
gg =-101.99 ‘m%v
g9’=22.23 W
819=-2-09

The respective arrors in these approximations are quite
negligible in the range where the previously mentioned

separation applies.

Derivation of tha energy Jdissipation when tne valve
is not switching 1is given in Appendix B for the most
genaral case (QQJO), and the reasult for zero load flow is

1
gZiven in 2quation (30a).
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APPENDIX B: ENERGY LOSS IN THE VALVE (NON-ZERO LOAD)

Introduciang the load flow via equation (33) and
caaaging cune definition of ¢, througn equation (36)
enables one to write tne governing equations in the. most

general way. The aew definitions

Q
c,q = tl (109)
ao/§ :
and
Q
c,p = te (110)
ao/F
dive _
S | | (111)
—— = M X
Qe 1
and
Q X
5 = M, (112)
Qo .
respectively.
Notice tnat
My = M (eyqs B)
" (113)

M, = My(c 5, b)

Tnea egq and €33 (for turning oan) are given as

-121-



dy :
€ = [ —= (114)
s1 (1+2b)° o myC
2 1
_ Peyot I, [Ty dy (115)
£s3 2 2 >
(1+2b) v my
2
giving
S Q
sl “s3 2 to
= ¢ |==| g(b) . (116)
~ PQdet ve Qd
Similarly, for turning off, w2 get
e_qte Qg
st = e fgPem - (117)
d st d

Finally, Egp (ror turning on) is derived using

3 3
de Q. 53 (absM,) [abs(M,-1)]
s2 _ ¥ 2 2
It - T2 [ >— * . (118)

. 2
a [1+2b) my | m,

and pecowmes

3 o i
52 2 2

: = c_ ,E(c_,,b) - (119)

QuTay | Gg V2 w2
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Similarly, €45 for turaning off becomes

©s2 - Uy .
PQdTSt Qd vl

b)) . (120)

E(Cvl’

"Tne energy dissipation in the valve during switching
for a complete cycle, e¢g, i3 taen obtained by summing the

above results to Zive equatioas (41a) and (41b).

Using equations (33), (36), (109) and (110), the

- above eguations can be simplified via definitions

- +1) | 121
1 cv(cq 1) ( )

]

v2 cv(cq—l) . | (122)

Jn2 can also dafina

a

1 1 3
E(Cvl) = 2(0 +1)2 [c (c +l)-+a c (cq+1)+a3c (cq+1) ]
d (123)
E( ) = 1 [ "1 -+a c (c —l)+a c 3(c -1) ]
Cve 2o )2 e e D) q
q

(124)

by wmaking use of tne approximations given in equation
(27 .

Than, equations (116) and (117) add to bacome
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+¢c

°s1 °83 _ ;. 2, 4183.. 2 2 .
PO, [Cwacq+1) te, (cq—l) Icq—lI]g(b) (125)
st : :
or
2 2

2c_“(1+3c_“)g(b) c <1
€517 €83 _ J_ Y : : (126)

Halst | o0 o B(3ee,Dg) e 21

_2cge, g )8 .

Equations (119) aand (120), however, give

€ a
28— = 2 3 2,2,
PO T ¢ = 5;~+a2cv(1+cq )+a3cv [(1+Cq,)“'“cq

27 . (127)

Finally, the energy dissipation when the valve is not

sSditening, €ngs 15 derived assuming that the flow varies

linearly as snown in Figure 4. Tnis assumption gives

2Q
d ,t
[_ o * 5 (7 Ocbzel 28)
Q (t) =~1_ 2yt | .
Qo * o1y [7~1] aT<t<T
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Tharefore,

de Qs3

ns _
dt

(129)

A

2 2
a, (1+b)

is integrated in the following ranges:

(130)

aT + 5

Jdne snould bé careful, however, adout tne integration when
cq < 1. Tne final results, unfortunately, are quite
’cbmplex and some -approximation 1s necessary. The results
after the approximation (usiang o =1/2) are given in
aquations (42a) and (42b). Using equations (33), (3%),
(33) and

4 Lo 2 2 2.2
(—ZQd(3Q22+Qa2) cqst
3 3 _
191 17+19Q; 5| ’<‘ - (132)
2 2 '
| 2Q,(Q,7+30,) ezl

aloag Qitn équauions (1206) and (127) gives the total
dissipavion in vwane valve, wnichh 1is given 1in eguations
(43a) and (U43b), and tnez related equa?}pns (44) througn
(7). |
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APPENDIX C: NOMENCLATURE

symool

(@]

®q°qd

C31Cgyg

C¢rCed

CyrCyd

Cvir©v2

m2aning

valve orifice area
tocval valve orifice area
for seating valves
Jdpper drifice araa

lower orifice area

ratio of lengthn bf additional
opening to maximum stroke
compliance of fluid volume
orifice flow coefficient
ratio mean:perturbation flows
nondimensionalized switching
timea

nondimensionaiized tube
rasistance
nonJimenSionalized valve
flow’ |

¢, for respacuive switches

v

tubz2 diameter

-126-

aquation of

definition

or first use
1

1

27

82
1

33,58
37,59

49,60

23,517
109,116

63 ’
50



nondimensionalized eg

nondimeasionalized energies,
5115321533
friction factor

perturpatvion friction factor

loss facvor,turbulent flow
valve orifice area norméﬁiied
to valve size h
normalized tub2 area
normalized valve size
aormalized supply pressure
normalized switching Cima
normalized period

valve orifice area
normalized to flow

normalized viscosity

normalized density of solid
tube inertaace

dynamic lianertaace of ctube

valve port inertances

_127_

19
19

67
28
62
34

1
87
83
85
89
76

78
31
29
34
56
3,10



Ky . independent dimensionless 73

gquantity

L leagtn of tube | - b
%9 characteristic valve leagth 34
MMMy, : 97,111,112
a T | 043
@505 ,0 g . - 98,99,130
N ratio wavelengtn:tubea leagth 5
Ng ' minimum acceptable value of N 1
a 3
P supply pressurse | 9
p pressure at valve-tube junction 9
P4 nrrmalized power dissipation 71
Y amplitude flow perturbations 25
QQ m2an load floWg 33
Qor referance load flow 96
Qs supply flow 9
Qg - volume flow througn tube ‘ 10
R Q¢ for respacrive switcnes ' 49
i resistance of tube 43
Re tude flow Reynolds number 70
Ry dynamic resistance of tuoe - 55
r. surge loss coefficieat | 67
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N
3

cr

Y;Y13Y2

ns

€s1°%s2°%33

l

ratio dynamic:steady
tube inertance

ratio dyna&ic:steady

tube resistance

period'of’cycle"
switecning time for
Sz2ating valves
switching time for
sliding valves

runaning time

load chamber volume
pnase velocity of waves
proportion of tima valve on

fluid bulk modulus

energy dissipated while
valve is aot switching
energy Jdissipated in

valve switen

-129-
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3 A
34
82
101,
24

30
15

16,17,13



steady flow loss in tube

surge l1oss in tube

energy dissipated in tube.

ﬁotal valve energy dissipation
fluid viscosity

Kinematic viscosity

fluid densicy

density of solid : S
inertive Ciame constént

winimun dissipation function
dimensionless frequency

ac¢tual frequeacy

natural frequency

© -130-
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