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ABSTRACT 

Microprocessor-controlled Hydraulic switching valves 

offer tne potential of replacing analog servovalves with 

advantages in cost, reliability and energy efficiency. A 

nydraulic pulse-lengtn-modulated (PLM) switching valve may"' 

be connected to its load by a fluid channel exhibiting 

significant inertance and/or resistance. It is shown tnat 

if the channel which couples the valve to the load is a 

tube with a largely inertive impedance, the energy 

dissipation can be greatly reduced, while reasonable 

bandwidth is maintained and smooth performance is 

achieved. An analytical modal is developed whicn permits 

minimization of energy dissipation under appropriate 

constraints defining a broad abstract class of switching 

valves, including ootn sliding and seating types. Both 

laminar and turoulent flows are   considered in the tube. 

Universal design charts are developed, for both 

seating and sliding valves, relating the optimal *ey 

parameters of the valve and tne tube and the optimal cycle 

time to tne fluid paramaters, switching time and load 

power. Comparisons within and between families of 

geometrically similar valve designs are expedited, and 

results are given which aid the global minimization of 

energy dissipation with respect to a duty cycle. 
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1. INTRODUCTION 

Switching circuits form the basis of low-frequency 

fluid power control such as in most industrial and earth- 

moving applications, wnile analog control has been 

customary for high-frequency fluid power control such as 

in most aircraft, robot and macnine tool applications. 

Switoning circuits, however, also can oe applied to high- 

frequency fluid power control partly by using the 

microprocessor. 

Two general modes of operation are particularly 

attractive: periodic and aperiodic. Periodic operation 

implies pulse-length modulation (PLM) , which must be 

carried out at a relatively high frequency, to provide 

adequate bandwidth and to prevent excessive energy 

dissipation. The idea of pulse-length modulation 

originated years ago at the Applied Pnysics Labarotary of 

John HopKin3 University [1]. It essentially is a method 

of controlling the time-rate-change of flow to an output 

member in a manner such tnat a desired position (or 

velocity) of tne driven load is obtained. It could be 

either a two-state or a three-state control; the simpler 

two-state (bang-bang) is exclusively treated herein. 

Aperiodic operation of a two-state control implies much 

less frequent switching, and is exemplified by time- 

optimal bang-bang control [2].  Both two-state modes might 
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appropriately be applied to a given system for different 

portions of the load cycle, but this thesis concentrates 

on tne periodic mode. (Aperiodic excitation also could be 

used to advantage with tnree or four-state control.) 

A significant difference is assumed from other PLM 

valves regarding the location at which the conversion from 

discrete to analog signals takes place. This D/A 

conversion, or effective filtering of the switching signal 

to give a largely smooth output, can occur either in tae 

second 3taga of the valve, in tne fluid impedance coupling 

oetween tne valve and tne load, or in the load itself [3]. 

Conversion in the second stage of the valve was assumed by 

Murtaugn [1] and Tsai and Ukrainetz [4] and recently 

Mansfeld [5] considers D/A conversion in the fluid 

impedance coupling to the load. Brown [3]f however, 

introduces the third system (using a fluid coupling 

impedance) that can tolerate a much larger load compliance 

with le3s energy dissipation and have the advantage of 

greatly smoother behavior of the output. This thesis also 

assumes conversion in the fluid impedance. 

Both seating and sliding types of two-state three-way 

valves are considered. Each ha3 special advantages. 

fna results, however, are generic and no experimental 

results are   given.  The oDjective of the present research 
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is to specify the desired system characteristics for the 

optimal design before too much developmental effort Ls 

undertaken. 
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2. BASIC CONFIGURATION 

Tne valve configuration considered is shown in Figure 

1 . This schematic is not intended to represent a practical 

configuration, and the pilot actuating mechanism" i3 not 

shown, but rather it portrays the generic portality. The 

load is connected alternately to supply pressure and to 

tank, through the intervening fluid inertance (labelled 

"tube") and load fluid compliance (due to the cavity 

volume). As it oan be seen from Figure 2, the seating 

valve actually is the limiting case of the sliding valve 

witn ti-0. Therefore some of one definitions used in the 

analysis are Dased on tne oas3 for one seating valves, 

wnicn are simpler to analyze. The dimensionless parameter 

o is one of one Key parameters of the system to be 

optimized. Tne maximum opening for tne seating valve is a 

function of tne maximum strode, x, and tne length of the 

additional opening for the sliding valve is defined as bx. 

Tne upper effective orifice area is proportional to a3 and 

tne lower effective orifice area is proportional to at. 

The 3um of the upper and lower effective orifice areas of 

the valves is assumed to be a constant in seating valves 

(especially those with strokes that are small compared 

witn other dimensions, which may give the best response). 

This sum is denoted as aQ ; 

a0 = a0(x). (1) 

fnerafore tne maximum orifice areas for a3 and a^.. are, 
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for   sliding   valves, 

as:nax   =   atmax  =   d0 a0(1+b) 

and for seating valves, 

a smax = ac;nax = a0 • 

(2a) 

(2b) 

Note max,, tnfoughout the whole text, the aquations 

to be U3ed with sliding or seating valves only will be 

designated oy the letters a and b, respectively (as in 2a 

and 2b above). Equations with no letters apply to both 

types of valve. 

In lieu of detailed design and dynamic analysis of 

the switching, two limiting cases can be assumed, both of 

which have the switching time T3t. Tne running time is 

denoted as t, as can be seen on Figure 3« These cases are 

1. Constant velocity, n=1. 

2. Constant acceleration, n=2. 

Turning on: 

"" 0       } 

as(t) = < 

at(t) = < 

ao(l+2b)[(^-)
n 

st 

1+b 

l+2b ] 

L 

t Nn- 

st 

0<t<t. 

h^^st 

ao(l+2b)[lTTb*"(T^) ]      °itlt2 

t0<t<T , 2- - st 

(3a) 
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Turning off; 

as(t) = < 
|V1+ 0, v r 1+b   / t >.n-. 

l+2b   VT st 

at(t) = < 

st 

°ltlt
2 

2— — st 

o<t<_t1 

t,<t<T , 1— — st 

(4a) 

wnere 

t. = C u ) *T st ^2   4+2b; L st (5a) 

Tne meanings of the time limits ti and t2 might be better 

understood by referring to Figure 3.  It is also seen in 

Figure 3 that at t= (t-j+t2>/2, a3 and a^ are equal. 

Notice tnat above equations simplify to the following for 

Che seating valves 

Turning on: 

a8(t) - aQ(^)n 

st 
0<t<T 

t n 
at(t) = ao[l - .(^-) ] 

st 

st 

0<t<T , —• — st 

Turning off: 

as(t) = aQ[l - (^-)
n] 

st 

st 

0<t<T st 

0<t<T st 

(3b) 

(4b) 
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with 

t-sO, t9=T st (5b) 

Brown [3] has shown (for seating valves) that the extreme 

oases n=1 and n = 2 produce nearly the same consequences 

(assuming the same value of Tst). Since the. latter 

appears to be consideraDly more realistic, it has been 

used exclusively by the author. 

fne series fluid impedance element (normally a single 

uniform cube) nas frequency-dependent resistance, R, and , 

iner&ance, I, but is assumed to be short enough so its 

compliance (compressibility effect or wave propagation 

effect) can be neglected. This assumption is reasonable in 

that wave delay effects would complicate the behavior so 

as to compromise tne effectiveness of the control, and 

thus should be avoided. A constraint on.the length of the 

element, 1 , is used to insure small effects. In 

particular, the ratio of the wavelength of a wave of 

period T to 1,   defined as N, 

NivpT/£ (6) 

{wcxere   vp is the pnase velocity of waves,equal to 3/p) is 

Kept at or   aoove some large value 

N = N m (7) 

■-8- 



In practice, N„=20 or more is, presumaoly satisfactory [3]. 

A fluid compliance, C, is located directly between 

tne series impedance element and the input moving member 

of the load. This may ba associated with an effective 

minimum cavity volume of the output ram or motor, or may 

be increased purposefully to further decrease the filter 

frequency, a>n. 

-9- 



3- EFFECT OF NON-ZERO SWITCHING TIME 

The cycle time is defined as T, and the fraction of 

tne cycle for which tne valve is nominally on will be 

called ex. The periodic mode introduces the fundamental 

question of wnat constitutes an optimum switching cycle 

period, T. Tne answer is simple, interpreted from the 

viewpoints of either bandwidth or dissipation, if 

instantaneous switching (f3t=0) is assumed. The smaller 

tne period T tne better; one cycling dissipation goes to 

zaro as f goes to zero, and trie system oandwidth increases 

monatonicaily. 

Anea the non-instantaneous character of the actual 

switching is considered, however, the story changes. From 

the bandwidth viewpoint control would be lost if T was 

seduced to the order of the switching time, T3t. A 

reasonable limit might be taken as 

T/Tst > 10 • (8) 

Further, from the energy dissipation viewpoint, there is a 

shunt leakage path througn the valve during switching, 

causing momentarily large dissipation; again one might 

prefer to na\fd   a large value of T/Tst. 

Anotner «cey parameter to oe optimized is tne valve 

size, as represented Dy a^. Tne shunt leakage can be 

reduced by Adding the valve smaller, but then the series 

resistance  (principal  porting  loss)  of  tne  valve 
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increases. Tnus , introducing non-zero switching time and 

iion-zero valve iosses implies the existence of a minimum 

energy dissipation for some combination of cycle time and 

valve size. 

In tne case of the sliding valves the parameter b is 

added. Increasing b causes the overall switching time to 

increase but the time that both ports are open to 

decrease. Therefore for a particular situation an optimum 

value of b exists. 

In the following analysis there are two flows which 

can be considered to be independent: the flow Qs from the 

supply port and the flow Qt tnrough the tube. The return 

flow to the tan* is then Qg-Qt. 

The flow taroiiin the impedance element, Qt, will not 

cnange mucn during the switching transient, since Tst << T 

and tne inertia I plays a dominant role. On tne other hand 

Q3 undergoes a large transient surge. As can be seen from 

Figure 4, wnenever |Qtl is smaller than IQ3I, Qt is 

negative when tne valve is being turned on (downward 

motion) and positive when the valve is being turned off 

(upward motion). The variations between switching events 

can be represented in terms of a , Q^ (average of Q^) and 

Qj, the last being the half amplitude. 

For analysis purposes, the flow Qt is approximated to 

-11- 



De constant at dm   of it3 two extreme values throughout 

aaon switcn. The equations of motion can be taken as 

dQs   Qs 
Ts "dF + — Sgn Qs = P"P 

as 
(9) 

d (Q
S-
Qt} Jt dT <W +       2      sgn (W 

a+- 

(10) 

according to the usual Bernoulli orifice equation.  Note 

that, according to Bernoulli's equation, 

as = as cd^^ 

and 

at = at cd/27^ 

as  = as<*> 

at(x) 

(11) 

(12) 

wnera a3  and ac  are tne actual areas , c^ is the flow 

coefficient and p is tne fluid density. 

1 and it in the aoove equation refer to inertias of 

tne flows from the supply and to the tank, respectively. 

These inertias liKely are negligible unless one purposely 

makes tnem large. Even tnough large values can reduce tne 

energy dissipation, they have been neglected during the 

analysis. This is because Brown [6] shows .(for seating 

valves) that the use of the inertances Is and It to reduce 

-12- 



the" flow surge and energy dissipation is not as desirable 

as it may appear. Use of a large It leads to cavitation 

just to the left of the lower valve port (and to the right 

of the inertance element, not snown explicitly in Figure 

4) wnen one valve is turned on, and to the right of the 

valve (pressure p) with it is turned off. This problem 

can be eliminated by letting It=0 and placing the burden 

on ls. However, large i3 produces very large pressures in 

tne upper valve port just before that port is shut off, so 

tnat tne forces on the moving part and the erosion of the 

valving surfaces could be a major problem. Further, if 

the magnitude of I becomes comparable to the tube 

inertance, I, the basic response of the system changes 

since the effective inertia is larger when the valve is on 

than when it is off. Finally, the reduction in energy 

dissipation resulting from a substantial I3+It is limited 

to cases with small cv (large valve area, as defined 

below) and is not dramatic. It will also be seen, later, 

tnat introducing o causes cv to be even larger for sliding 

valves. 

After tne elimination of the inertances the equations 

of motion oeoome simply 

n    2 

~2 sgn Qs = P-p (13) 

(Q -Qt) S 2— sgn (Qs-Qt) = P 
at 

(IV 
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Tne above equations can then be summed to eliminate p, and 

solved for Q3 using equations (3) and (4). The results are 

given in Figure 5. The energy dissipation during a single 

switch, eg, then can be computed from the relation 

d£s        lQs'3        IVQt'3 ,     ^ —- =  —-— +  —-—-—        • (1'5) 
a a, c 

s t 

A numerical integration was done in three stages (when the 

val</e is being turned on) to calculate 

(i) £3-| between J < t < t-i 

using    -^ Y~ ^lb> 
at 

(ii) e32 between t1 < t < t2 

'   .    des2 _ IQSI
3
 , iyQt'3 (17) uslns     -at r   —2— (17) 

a
s      at 

(iii) es. between t2 < t < T3t 

des.   |QS|
3 

using     dt  =  7j~- ^l8^ 
a. 

) 
s 
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and  tne  results  are  most  conveniently  expressed  in 

nondimensional tertns as 

and 

where 

Es=Es1+Es2+Esi 

Es1
+Es3=g(b) 

E"S2 = E(cv , b) 

E  s s 

2 

TstlQt 

(19) 

'(20a) 

(21a) 

(22) 

Q. 
c = 
V a /P o 

(23) 

;(b) = 

Yl 
r 

(l+2b)' 

dY 

2  1+b 

dy -] (24a) 
2   b 

° (Y
 ~ 1+2^    Y2 (Y

 " l+2b) 

With    y±   = t./Tst (1=1,2) 

As it will be seen later, for the case of seating valves 

g(b)=0 (24b) 

giving 

Es=Es2=E(cv)  * 
(21b) 
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A small value of cv (large valve area) gives a large 

surge flow and a large energy dissipation. As explained 

before, if cv is small, the flow arid tne dissipation might 

be reduced Dy introducing substantial inertances. Tne 

energy dissipated waan the valve turns on is the same as 

wnen the valve turns off, assuming no  cavitation. 

Tne remainder of this section considers the special 

case of zero load flow (Q^=0), so that ooth switches have 

virtually the same |Q11 = Q^ (Q is allowed to be non-zero 

in the following section). The normalized energy 

dissipation in the two switches per cycle under these 

conditions becomes 

Pojr^= 2cv [s(b) + E<cv>b)] (25a) 

or   for seating valves 

d st 
(25b) 

Tnis nondimensionai energy dissipation is given in Figure 

6 for some cases of interest. It can be seen that the 

larger tne value of D, the smaller tne energy dissipation 

*ji\Q.n tnere is no constraint on the control and/or the 

performance. 

-16- 



In a broad range of interest, the energy dissipation 

during these switches has been calculated and the results 

[Appendix A] show that 

E(cv,b)=f(b)«E(cv) (26a) 

and 

E(cv,0)=E(cv) (26b) 

as 

f(0) = 1 for seating valves . 

Then, over    one range of interest, these three functions 

can be well approximaced by 

2cv
2E(cv) = &1/cv  + a2cv + a3cv

3 (27) 

10 
f(b) = I     f.b1 

i=0 
(28) 

10 
g(b) = I     g.b1 

1 = 0 
(29) 

Tne coefficients and tne approximation ranges are given in 

Appendix A. 

Tne energy dissipated in the valve when it is not 

switching is calculated assuming that the flow varies 

linearly a.3 shown in Figure 4. Even though the following 
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aenvation    has    b<z<sc\   made    for a. =1/2,    the    result   applies 

wicnia   97    percent   for  Q.j. <  a   <  0.7   • 

„   2 
'ns v 

PQdTst        (l+b)2 
[^-2(^)-6(^)2+8(-^)3-MHfV]     (30a) 

Therefore tne total average power dissipated in the valve 

is 

e    e    e „ , v _ _s_ ,  ns 
T    T    T (3D 

or 

£ T st 
nf = {[2c/g(b) + (a1/cv+a2cv+a3cv

:,)f(b)](-a-) 
(32a) 

'v   rl st 
Tsts2l0,

Tstv3 .,,Tst^ 
+  ^ [£-2(-|5.)-6(-{p-) +8(-f^) -M^)H])PQd . 

(l+b) 

In tne case of tne seating valves, this equation reduces 

to: 

?= {(a1/cv+a2cv+a3cv
3)(-^) 

2rl  „,st 
TstN2, 0^

Tstx3 ,,,Tst^. +■ s  c^- 2(-p)-6(-^)"+8(-f^) J-M^r]}PQc 

(32b) 
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If we cnoose Qj independently (to provide an adequate 

maximum velocity of the load) tne optimum value of a,-», 

represented as an optimum value of cv, minimizes this 

power for assumed discrete values of b. The resulting 

values of cy are plotted in Figure J, with the labels of 

"c =0", as a function of T/T3t. Clearly the shorter the 

switching time Tst, the smaller the optimum value of c 

and tne larger the orifice area of the valve. Note that in 

all cases the optimum cv must be to the left of the 

respective minima in Figure 6. However, introducing b (for 

sliding valves), we see that for the same switching time, 

the optimum value of cv becomes larger giving a smaller 

orifice area ^hec\ compared with the one for seating 

vaives. Tnis difference is especially noticeable for tne 

small values of T/Tsc. Tne fact tnat tne switching time 

itself increases (weaKly) witn valve parameters (cy and b) 

complicates tne situation, but also serves more sharply 

define the optimum size. 
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4. EFFECT OF  LOAD MOTION 

La equations (25), (27) and (32), che mean load flow 

Q was taKen to be zero and cwo independent dimensionless 

groups (c^ and b) resulted. Non-zero Q ^ now will be 

introduced via another dimensionless group defined as tne 

ratio of Q . to tne naif-amplitude Q j : 

Cq H 4= ^ ' (33) 

For small values of wnT, it has been shown [2] that an 

approximate simple asymptote can be found. Assuming the 

inertance dominates over the resistance (small damping 

ratios or very small wnT) and the perturbations of the 

downstream cavity pressures are small, the flow variations 

comprise virtually linear segments as snown in Figure 4. 

fne maximum excursions of tne flow, tnen , can be readily 

found co be 

Qd = (1-a)aTP/2I • -(3*0 

From equation (34), the right-most form corresponds 

approximately to 

2I|Q,I 
T = —7-T "Tp-   • (35) 

a(1-a)P 

The definition of the first dimensionless group, cv, is 

now generalized to 
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Q, 
c  s   
v  a /P 

(36) 

Tnis can oe viewed as a diraensionless measure of tne 

pressure drop across the valve. Tne optimization process 

also gives a value for ov and b (for sliding valves), and 

thus an optimum orifice area and tne size of the 

additional openings of the valve. 

The switching time, Tgt, also is normalized with 

respect to T; ^ 

c  = s 
St (37) 

wnich gives 

st c c s q 
(38). 

Note tnac 

wnich reduces to 

for seating valves 

Tst = Ts(U2b) 1/2 

Tst=Ts 

(39a) 

(39b) 

A small value for cs implies considerable design 

flexibility and potentially high energy efficiency; if c 
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gats too large a switching circuit might not be practical 

at all. 

Tne flows Qt during the two switches for each cycle 

now are  different: 

Qt1=V9d 

Qt2=3£"Qd 
Equation (25a) becomes 

(HO) 

p^=[ovl
2(^--) + cv2

2|^|]g(b) 

+ cVl E(cvl,b) — + c   E(cV2,b) -Q- 

(4la) 

or for seating valves 

^d s 

2       Qtl   '  2        Qti = c   E(cv,) -7;— + cvo E(cvo,b) 
Vl ^^vi^  Q     ^V2 ^V^V2'

U^  Q_ (lib) 

and the power loss in the orifice for the intervals in 

whicn tne valve is not switching becomes 

ns 
T 

■^ j [<Qt
2
+Qd

2)-2(Qt
2
+3Q/)(H^)]  c <1 

= < 
a *(l+b) o •(12a) 

1   C  V 2 (|Qtll HQt2l
3)(^)l 

aQ
2(l+b)2 "HQ 

d 

c >1 
q- 

Tne  aoove  equations  are  approximations  due  to  the 
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complexity of the  actual  formula,  but  its error  is 

strictly negligible and they simplify to 

ns 
T 

Q 
i-  C(Q 2+Q 2)-2(Q 2+3Q 2)(^)] 

a. ■l     ^d *d ' ' T 
c <1 
q- 

o 

-2  C  V 2 -ClQtxI^lQtzl3)^)] cq>i 

(42b) 

for seating valves.  As a result, eqjation (32a) for the 

total dissipation in the valve is generalized to; 

v 
P|QA|T 

= [(a1/cv+a2r1cv+a3r2cv
3)f(b)+2mcv

2g(b)]c. 

v 

(1+b)2 Cq 
(43a) 

or 

v 
PIQJT (a1/cv+a2r1cv+a3r2cv )cs+r3 -^- (43b) 

uhzre 

r, = 1+c, (44) 

r2 = r^+4c( (45) 
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cq(
i+0q }     cq> 1 

r?/4-2mc c     c , < 1 , , N 
r„ = { d 3 q     q • (47) 
3    ricq-2mcscq cq > 1 

Tnis expression is minimized with respect to cv, as 

before; results for 0^=0,1,2 and b=0,0.5,1 are given in 

Figure 7. It is apparent that, for the same switcning 

time, introducing load flow (therefore cq) causes a larger 

orifice area (smaller cv) for an optimum solution. All 

these results have been taken with a constant acceleration 

case which appears (from considerations beyond the scope 

of this research) to be closer to what would occur in 

practice. Even thougn we get the optimizing values for cv 

for predefined values for b and cq, we wish, 

simultaneously, to find tne values of c and b for minimum 

dissipation. Since tne viscous dissipation in the tube is 

also affected oy cq, tnis dissipation must be added to 

equation (43) oefore tne minimization is undertaken. These 

tube losses ootn in laminar and turbulant flows are 

discussed in tne following sections. 
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5. TUBE LOSSES, LAMINAR FLOW 

The  total  dissipation  in  the  system oan be 

represented as the sum of the valve dissipation which was 

found in the previous sections (equation 43) plus the 

dissipation in the tube. 

The tube losses comprise a steady-flow loss plus a 

surge loss, 

(i) tne steady-flow loss: 

The steady flow loss in laminar flow becomes 

e-f- -mt
2-  etP|Qj (48) 

therefore  a  new dimensionless  group   is  defined   as 

R|Q, ' 'I 
't   -       P (49) 

The dimensionless group ct can be considered as measure of 

the importance of viscous dissipation; were it the only 

loss the steady state efficiency would be 1-e^. 

Of all snapes, a round tube gives the minimum ratio 

of resistance to inertance squared. For a tube of diameter 

J and iangtn i wiui a laminar flow with assymptotically 

slow perturDacions, it is found [2] that 
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This gives 

R = 

I = 

128u£ 

TT(3 

16  P I 

3 t? 

(50). 

(51) 

ct = 

2p2£P 
(52) 

(ii) the surge loss: 

If the resistance and inertance of the tube were 

constant, tne surge loss, assuming the linear flow 

variations as oefore, is snown to be [6] 

su 
T  " rd 

't 

3c 
2 PIQ, C5 3) 

The result above would be in serious error, however, 

because the frequencies are virtually always high enough 

to cause the instanteneous resistance to flow of the tube 

to exceed considerably its quasi-steady-flow value. 

The equations given for the resistance and the 

inertance of the tube should, then, be corrected for the 

unsteady flow. The effective actual resistance and 

inertance, called Rd and 1^ here, depend strongly on the 

history of the flow. Their ratios r^ and r-j- to the static 

values R and 1, respectively, are plotted in Figure 3 as a 
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function of tne dimensionless frequency 

2 

fl 
_ 0)0 

1*7 (5*0 

wtiere w is an actual frequency of oscillation. For ft > 20 

tne following are very close approximations, 

Rd/R = rR = [3+2n(l+15/8n)]/8 (55) 

3/2 Id/I = rz  =   3[l+2/ft-15/2(2fi)J/"]/4 .      (56) 

These results are   given in [3] and they are based on work 

by.Brown [7] and Nichols [8]. 

These approximations have Deen corrected for the 

surge loss by Brown [6] using a Fourier approach in which 

tne pressure drop is caKen as a square wave, but, as a 

practical matter for optimal design such small corrections 

are of little significance. Therefore the results of the 

previous sections are used except for the substitutions of 

Rj = rRR for R and I^sr-j-I for I in the relevant equations. 

It is convenient to implement this model by 

introducing dynamic versions of the dimensionless groups 

cv, cq, c3 and ct where b is independent of the frequency. 

These key parameters become 
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c 

'vd   rT 
(57) 

c , = c rT qd    q I 
(58) 

'sd  r. (59) 

ctd  ctrR 
(60) 

and trie total tube loss, et, becomes 

ft _ 1 
T 

st ,  SU ~ + 
T     T [ct + 

'td 

3c 2]PIQ£ 
qd 

(61) 

Notice that the steady-flow dissipation uses the steady- 

flow group, ct. 
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6. TUBE LQSSES, TURBULENT FLOW 

The valve losses given in previous sections do not 

cnange , assuming turoulent flow in the tube, but both 

steady-state  and  surge  losses  in  the  tube  change 

dramatically. Tnese losses are given below, 

(j.) ohe steady-flow loss: 

The steady-flow loss in turbulent flow becomes 

^= gPlQ, (62) 

giving a new dimensionless group which replaces ct in the 

laminar case.  This dimensionless group, g, is defined as 

g = SfpQ^/TrVp = C^Cc^)372 (63) 

wnere 

c -, = - 3/^ 
32/2 

ra(l-a ) -i 
3/2 

(64) 
s. 

in waxen tna friction factor, f, was evaluated using the 

conventional formula 

/f. 
=   2   log10(Re/f)   -   0/8 (65)   , 
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(ii) the surge loss: 

The surge loss is taken to be 

su 
T = rd ^rgP|Q£|/3cq< (66) 

wnicn is tne same form as equation (3?) except for the 

factor r [3J.  This factor is in turn factored to 

f         2f r = -TT r  =   r 
f n       1+0.8686/f  n 

(67) 

in wnich f is the apparent friction factor for low- 

frequency (quasi-steady) perturbations and r is a factor 

to correct for the effects of non-zero frequency (as the 

ratios r^ and r-r do in laminar flow) . 

It is known that above a sufficiently high frequency 

the surge loss is the same in turbulent flow as in laminar 

flow [9,10], so that i*g=rt or rn=rtf/fg. Below a 

sufficiently low frequency, by definition r =1. Brown [3] 

nas recently proposed a function to bridge this gap: 

rQ  = /l+rra
2 [1-0.3 exp(-0.2|ar00-l/ar00| )] 

rro = rtf/fg 

a = [Re°-23/4] 

(68) 

(69) 

(70) 
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(Tnis may seam more elaborate tnan the limited data and 

tneoretical models justify, but seems necessary 3t least 

to describe tnat data. Minor variations in this model 

would have insignificant consequences below, fortunately.) 

The square root term gives almost appropriate continuous 

Dlending between one Known ussymptotes, and the 

exponential function describes a correction due to the 

observed fact tnat a phase lag in the perturbations of 

eddy viscosity effectively converts what would be a 

resistance pnenomenon into a reactance pnenomenon [33• 

Tne results above complete the analytical model 

necessary for the optimization. Optimization with certain 

constraints is applied to this model to minimize the 

energy dissipation using the appropriate equations for t'12 

system under consideration (namely, laminar or turbulent 

flow in the tube with seating or sliding valve in use). 
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7. SYSTEM OPTIMIZATION 

The total dissipation in the system (valve + tube), 

assuming laminar flow, becomes 

(sliding valves) 

Pd=^al/cvd+a2rlcvd+a3r2Cvd3)f(b)+2mCvd2g(b)]c sd 

2 

+   3—^ -^~  +  c.,(l/r„+l/3   c     2) "*-ifli 
(1+b)2    Cqd td R qd W±dj 

(seating   valves) 
2 

Pd=(al/Gvd+a2rlCvd+a3r2Cvd   )csd+r3   ^7+Ctd(1/rR+1/3cqd   } 

(71b) 

i 
and assuming turbulent flow becomes 

(sliding valves) 

3 2 p, = [(a-,/c ,+a~r,c -,+a0rnc , )f(b)+2mc , g(b)]c , *a L  1  vd  2 1 vd  3 2 vd vd to    sd 

2 

+  ^ 9 -^-+Clf c  3/2 + rg/3cn
2 (72a) 

(1+b)2 Cqd   1        qd q 

(seating valves) 
2 

Pd=(al/cvd+a2rlCvd+a3r2Cvd3)csd+r3 "^7+ ClfCqd/2+rS/3cq2 

(72b; 
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fne minimization problem assumes certain parameters 

are Known while others are to be chosen to give minimum 

dissipation.  in particular we assume tnat 

kQ =\/yPTaNTn/327Tp^|Qjl|vp s m (73) 

is Known, and tnat T, a^ , b(for sliding valves only), 

£ and d are to be found. The choice was first used by 

Brown [6] and appears to be reasonable. Note that because 

the definition of K_ uses TQ, for the analysis purposes, 

ratner than the actual switching time (although T3t=T3 for 

seating valves) , an iteration will be necessary in the 

case of sliding valves. However, Ts would likely be a 

function of aQ (proportional to the one-quarter power) 

anyway, so an iteration is indicated in any case. 

Convergence of the iterations is rapid, fortunately. 

Note further that, since tne results are plotted as 

functions of tne single parameter Kd, one also can locate 

its optimal value, fne substitution of 

and 

c ,c 
"Id 
c 
S^sd = k fl U±2b! 

"td    a    /^ 

=  
ct^l" 

'qd   6-rra (1-a ) 

1/4 
(7*0 

(75) 
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equations (45) , (46) and (47) recast as functions of c qd 
and ft , and equations (55) , and (56) give the total 

dissipation p^ as a function of cyj, c ^, b (for sliding 

valves) , ft and a. Tne dependence on a , as can be seen in 

equation (75), is in terms of the factor a(a-1) which is a 

paraoola with a stationary point at a=0.5 in the center of 

tne region of interest. The factor changes by only four 

percent if a=0.4 or 0.6 etc., and the effect on major 

results of interest is even less. Thus all remaining 

numerical results and plots assume a=0.5. 

After tne value of a is onosen , only four variables 

remain, e ^ , c^j, b and.ft . A four-parameter (numerical 

Newton-rtapnson) optimization is carried out. Tne resulting 

optimal system is expressed in terms of r/T30, b and two 

newly-defined dimensionless groups (which are more 

convenient than previous cQj and cvj). These groups are a 

valve size group 

3v 

a /P o 
cqdCvd 

(76) 

and   a   tube-diameter   group 

ad  "   vT_,        „   2   /n      N,_   2 st        3TT   a(l-a)k&   c   . 
(77) 

Two associated optimal properties of interest, ft and 
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tne dimensionless dissipation pj , also can be given as 

functions of x. A third, the Reynolds number for tne 

time-mean flow  Q ,  cannot,  but  definition  of  th? 

normalized viscosity y (more in Section 8) 

Sy s y/vp/pNmPQ* 
(78) 

wnich depends on    a    subset of the parameters giving ka, 

gives 

Re = (J2,3  gd  g^)"
1 

(79) 

As can oe seen from Figures 9 and 10, whetner cne 

flow is laminar (Re<2JJ0) or turbulent depends almost 

exclusively oa g . It is seen that \fg^'Ka is almost a 

constanc for a specified gy . For the optimal solutions, 

turbulent flow occurs virtually whenever g <1.3*10~ , and 

laminar flow results otherwise. Practical limits for p, 

v , y and Ncn therefore imply, through equation (78), that 

laminar flow is indicated only for fairly low power (small 

PQ ) applications. 

Tne total dissipation functions p^ above were 

minimized for particular values of g. and ka to give 

optimal values of T/T3t» gv, gj , b and 9, . A Newton-Raphson 

iteration procedure was used, wnich required considerable 
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effort particularly in turbulent flow because of the 

complexity of tne needed first and second partial 

derivatives of pj. Convergence, nowever, was rapid from a 

oroad rac\£Q of starting guesses. Tne iteration of ft was 

nandled seperately and interactively to avoid excessive 

analytical complication. 

The optimization process has been applied to both 

seating and sliding valves for botn laminar and turbulent 

flow.  Four different values of g  (1.3*10~4, 10~\ 10~5, 
y 

10" ) have been used (which can also be interpreted as 

four different levels of turbulence). Even though the 

region of principal interest, from bandwidth 

considerations, is expected to be 10 < T/T3t < 40, the 

energy dissipation nas also i>eac\ minimized (when a minimum 

exists) witn no constraint imposed on the bandwidth. 

Larger values of T/T3t, however, would mean longer cycle 

times and less bandwidth since T3t is probably nearly 

Pixed by tne valve design (more in Section 8) and the 

constraints for T/Tst < 10 nave already tiaen discussed 

oefore. The "no-constraint" minimization for seating 

valves has given tne results plotted in Figures (11) 

tnrougn (14). Tne corresponding optimization attempts for 

tna sliding valves snowed tnat the minimizing values of b 

are mostly out of the range of practical interest 

(0. < b < 2.);   therefore the results are not plotted. 
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For all the minimum dissipation solution plots (with 

or witnout constraints), tne following range for ka has 

oaan chosen: 

4*10_i| < k  < 0.04 . 
—  3. 

Tiie results are not snown for Ka > 0.04 since the losses 

are excessively large. Tney are also not shown for 

Ka < 4*10" since simple extrapolation applies there. 

Consequently, the curves represent virtually all cases of 

potential interest. 

In Figures (11) through (14) which give the "no- 

constraint" minimization results for seating valves , the 

dissipated power cat\   oe seen to be less for laminar flow 

tnan  turbulent  flow  if is  fixed.  This  may  be 

misleading, however. If the viscosity y is decreased while 

tne otner parameters in <a are, held constant, both <a and 

g decrease, tinea g reaches aDout 1.3*10 the flow 

oecomes turbulent, and tne operating point jumps from 

laminar to turDulent flow with g =1.J*10~ . The jump in 

tne Uissipation is modest, nowever, and continued decrease 

in y reduces the losses below tne laminar minimum. Thus 

deep penetration into tne turbulent regime give3 less loss 

tnan nign Reynolds number laminar flow. 

One could extend tne useful range of laminar flow by 
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using two or more parallel tubes, or better by using a 

rectangular cross-section with adequate aspect ratio. Such 

a costly possiDility would have a very restricted domain 

of advantage over the outright use of turbulent flow in a 

single tube, however [j]. Excessive transition between 

laminar and turbulent regimes, which might result from 

changing load flow Q£ , ought to be avoided. Nevertheless 

sucn a transition should cause a rather small effect on 

Una control dynamics, presumably less than is apparent for 

one dissipation, since tne dynamics depend more on I 

(wnioh cnanges little) tnan R (whicn affects the 

dissipdtion) . i 

Reducing Rd also results in larger values of T/T3t 

for ootn laminar and turbulent flows. For the reasons 

discussed above, however, these plots are useful in a 

ratner narrow range of Ka values.The bandwidth gets very 

small for k_ < 0.003, especially when laminar flow is 

being used. For very high Reynolds number turbulent flow 

(g =10"^), however, the optimal bandwidth values 

(therefore T/T3t) are quite applicable (going into the 

region wita r/Tg^ < 10 is not recommended, however). The 

frequency of oscillations, w , and the valve size, ag , also 

are quite 'sensitive to the Reynolds number. For high 

Reynolds number turbulent flows (small g ) the valve 

oecomes smaller for laminar flow, while tne diameter of 

tna tuoe seems to stay nearly tne same for both flows in 
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the region of principal interest. It should be noticed, 

however, that wnen the transition from laminar to 

turbulent flow (or between different levels of turbulence) 

occurs due GO the decrease in v , this region of interest, 

coo, cnanges (oeoause *a   is also changing). 

As seen above, the "no-constraint" minimization 

gives, for most of one region of interest, excessively 

large values of T/T3t (too small a bandwidth). For sliding 

valves, tnis minimization becomes even less relevant 

because of the impractical values of b. This suggests, 

tnen, tnat the designer should specify T/T3t (or at least 

a range) before the minimization of dissipation is carried 

out, trading dissipation for bandwidth or viable 

modulation. Further results are obtained, then, through 

an optimization with a constraint on T/T3t. In the region 

that seems to be practical, the author has carried the 

optimization with T/T3t=10,20 ,30 ,40. The results for the 

seating val/es are plotted in Figures (15) through (34). 

For sliding valves, tne results, whicn. are possible to 

oDtain in tnis case, are plotted in Figures (35) tnrough 

(54). All tne results ootained for constrained T/T3t, for 

Dotn   laminar   and   turbulent   flows   and   witn 
,-4 g =1.3*10  ,10  ,10"^ , 10~° , are  given in 40 plots 

After specifying the type of the valve, the type of 

tne flow (g ) and Ka , which represents the fluid to be 
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used (y,p) and some of the system characteristics (Ts, P, 

Qz, NJJ, vp, tne designer easily can get the optimizing 

values for tne remaining parameters by using one of these 

plots.After tne choices mentioned above, the number of 

relevant plots reduces to four. Either ne uses one of 

these plots directly, or ne uses a simple interpolation 

according to nis cnoice of Dandwidtn. if he is using 

seating valves, he also nas the option of using the 

Figures (11) through (14) as long as the results give an 

acceptable value of T/T3t. 

The first 20 plots, which are for seating valves show 

that the optimal valve size stays nearly the same for any 

g and k,, once the bandwidth is chosen. (This is 

especially true for smaller Ka, as the curves approach to 

cue same asymptote for laminar and turbulent flows.) 

However, . cne smaller the bandwidth (larger T/Tst), the 

larger these asymptotes. 

The dissipated power curves, for a specified T/T3t 

and smaller values of Kd, again have the same asymptotes 

for ootn laminar and turbulent flows. Tne cases with 

large values of Ka give such large losses as not to be of 

interest. When the oandwidtn is decreased (larger T/Tst) 

the asymptotic values for p^ get smaller. 

One might be tempted to generalize from these results 
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for small values of ka, that if one specifies a small 

bandwidth and fixes all the remaining parameters of the 

system, increasing the size of the valve (larger gv) 

always decreases energy dissipation. This is wrong, 

however. Wnen a smaller bandwidth is specified, a longer 

cycle time T is obtained and the actual energy dissipation 

becomes larger since 

e   =  pd*P|QjT (80) 

according to one definition. 

Tne optimal cube diameter, on tne otner hand, is not 

affected much by the bandwidth specification and the type 

of tne flow in use. 

The quest for futher minimizations in the energy 

dissipation makes the idea of using sliding valves very 

attractive. The next step, then, is to apply the same 

optimization on the sliding valves. The constraints on the 

Dandwidth and tne very same range for Ka are maintained 

(even though the definition of ka includes T3, the 

principal range of interest would change very little, 

nowever) . 

A quiOK glance on the remaining 20 plots, show, first 

of ail, tnat tne optimal parameters of the valve (except 
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o) ansd tha tuba are quite similar to those obtained by 

using seating valves. Anotner interesting and important 

result is that, for large values of Ka , whatever the value 

of tne bandwidtn, the optimum values of b are so small the 

valve is virtually a seating valve. Making b large enough 

to warrant tne name "sliding valve" would increase the 

losses wnicn are already large. For these cases the 

designer raignt well use the results given in Figures (11) 

tnrougn (34). 

When the g curves are examined carefully, it can be 

seen that gv stays nearly the same throughout the whole 

range of ka for both types of flows. The additional valve 

parameter b, however, is quite sensitive to changes in ka. 

The smaller ka, the larger b. Increasing T/Tat gives even 

larger values for the optimal b (for smaller ka) ; these 

curves do not depend on the type of the flow. Decreasing 

tae bandwidth also causes gv (or 3Q) to increase as it is 

tne case for seating valves. 

In tne region where sliding valves are attractive 

(Ka < 0.02) and T/T3t is relatively small, tne optimal a0 

gets larger tnan its value for seating valves even though 

using the sliding valve increases the effective orifice 

area. This is not the general trend, however. When the 

sizes of tne two types of optimal valve3 are compared, it 

is seen that this increase gets smaller with a larger 
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f/Tst (wai°n gives a larger d). 

Tne curves for minimum p^ have the same shape for 

doth seating and sliding valves revealing less energy 

dissipation for smaller ka. For a larger ka, there is 

simply no way to get futher minimization than already 

obtained with seating valves. The curves again approach 

tne same asymptote independent of the type of the flow. It 

is clear that pd becomes less by specifying a larger 

constraint for T/T3t via using a larger b. We do not want 

to have too small a bandwidth or too large a b, however; 

tnis trade-off is discussed further in Section 8. The 

curves for tne dimens.ionless frequency n and the optimal 

cubs diameter d remain more or less tne same when they are 

compared to tne respective ones for seating valves, 

althouga tne cnanges in n  are not insignificant. 

Trie value of che compliance C is the final issue to 

be resolved. The D/A conversion occurs because of the 

natural frequency 

1 
n /IC 

(81) 

where I is tne inertia of the narrow channel and C is 

C= I (82) 
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wnere V is trie volume of the load chamber and 

effective DUIK modulus. 

is tine 

if WnT is small (u>nT < 2), trie pressure in the cavity 

does not vary much in a single cycle, compared with P, so 

it can De said tnat D/A conversion occurs in the fluid 

impedance [3]. The behavior then is relatively simple and 

predictable, which is crucial from a control point of 

view, and the losses are small, especially when the 

resistance and consequently E, are small. Thus we are left 

with only the requirement 

T2 
C 1 Tfi (83) 

Examined more closely, the maximum change in the load 

pressure decreases 33 C is made larger, if this change is 

coo large (violates the inequality) the assumptions for 

the analysis become invalid and the actual benavior 

becomes excessively complicated. If on   the other hand the 

cnange  is  very  small,  tne  system  bandwidth  suffers 
p 

directly. Tne best compromise might be about C=T /I (this 

corresponds to ^nT= 1 and the corresponding flow is given 

in Figure 2b of [3]) , although other considerations also 

can enter. These considerations include the minimum load 

volume the designer is stuck with, and the load stiffness 

whicn is inversely proportional to C. 
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6.   APPLICATION TO GEOMETRICALLY SIMILAR VALVES 

A cnaracterization of geometrically similar valves 

permits tne virtue of different designs to be compared, 

independent of the individual size or material, and 

permits a particular valve to be scaled optimally for a 

particular application [11]. For this purpose, some 

characteristic length (pernaps a Key diameter) of members 

of such a family and tne material density are defined as 

£Q and ps, respectively. Tne new dimensionless groups are 

defined oy Brown [11], as follows: 

A dimensionless group which relates the valve opening 

parameter a-j .to £;j is defined as 

g =  a   /p/z ba o   o 
(84) 

Another dimensionless group is sought to characterize 

the switcning time, Tat. Tne mass of the moving part is 

proportional to p
s \) > x,as force producing motion is 

proportional to P£Q^» and the total displacement is 

proportional to £Q. Assuming constant acceleration, then, 

tne dimensionless group is taken as 

; =   T , /P/£ /p- 

's    st    o  s (85) 
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Tne virtue of these dimensionless groups is that they 

remain  constant  as changes.  They  cannot  be  used 

directly to compare different designs, but the ratio 

-s'^ = T
st
/F//vv^ • (86) 

can because it is independent of the (arbitrarily defined) 

lengtn £«j.» Tna smaller this ratio, the faster tne valve 

ror   a  given effective size. 

It is convenient to inaxe further nondi- 

mensionalizations witn respect to parameters tnat are most 

iiKely predetermined in a particular application. These 

parameters are taken to oe the fluid properties p and 

6 and tne power (PQ£).- The quantities being 

nondimensionalized are tne length IQ, the pressure P, the 

cycle time T, the viscosity y and the density of the 

moving part p3. Tney have been defined in [11] as follows: 

g, ~=   «08
3/
VP

1/
'

,
/PQ; = t0Wp

J»/PQt / (87) 

=   P/3 (88) 
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,5/4/  3/4 gt   =   T8^ YpJ/    /PQ^   =   T/VpWPQj, = T/A (89) 

g     E   yB1/i,/p3/i|
v/NmPQ     =   p/v  /PN  PQ„ °y v   m  ^a v   p   K   m     £ (90) 

gp E ps/p (9D 

The predefined k_ chen becomes 

k  = a ~ ^1/2 (SP
1/2 Sp3/2g^ 327r(l+2b) 

(92) 

Trie  minimum  dissipation  at  particular  values  of 

T/fst,* S 7 and *d implies a particular valve size 

3/2  2 
3v  &a&p  &£ (93) 

Tnus, if ootn ga and g are assumed given, only a unique 

value of g will give tne proper value of gp and tne 

solution is unique. (Tne same is true if g. is assumed 

given; then a unique value of g  results.) Note that once 
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P a.-ij ZQ are Known, T3t is found from the Knowledge of g3 , 

and r from tne Knowledge of T/Tst. Note also that as tne 

ratio £/T3C is varied from its lower limit of about 10 to 

its upper limit of tne unspecified value, T gets longer 

(undesired) wnile tne efficiency increases (desired). Tnis 

is one trade-off oetween Dandwidtn and efficiency. 

Trie dimensionless cycle time becomes 

gt = (-^)(T 
'g a st %)(^57* (9*0 

Tne first factor in paranthesis is an exclusive function 

of the design of tne valve but is independent of its size, 

as pointed out in tne text referring to equation (67). 

Over most of tne region of interest, gv is almost 

exclusively dependent on T/T3t, so tne second factor in 

paranthesis is almost a function of T/T3f The equation, 

onen , clearly reveals how pressure (tnrough gp) affects 

tne cycle time. 

Tne dissipation number pj is a function of T/T3t, 

g  and Kd. For mucn of tne region of interest, nowever, 

particularly for tne smaller values of g , the values of 
y 

p^ are asymptotic to a simple function of T/T3t. In this 
r'.i 

case, therefore , 
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= *c 
stsp 

5/4 

^   (gs/v/S? 
(95) 

fnese functions ^L ], for ooca seating and sliding valves, 

are plotted in Figure 55 and represent tne minimum 

possiole dissipation. A trade-off between minimum energy 

dissipation and cycle time is clearly revealed by these 

plots. Tne effect of tne other parameters is indicated by 

tne definition of the abcissa. 
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9. CONCLUSION 

Tnis research is intended to specify a system (valve 

plus tube) to satisfy reasonable requirements of dynamic 

response and energy dissipation. " Different classes of 

switching valves nave been used and the idea of the D/A 

conversion in trie fluid impedance coupling between the 

valve and the load [3] nas oeen adapted. 

Dissipation (with smootn performance and acceptable 

Dandwidtn) is affected largely by tne viscosity of the 

fluid in use. Therefore a very broad range of viscosity is 

treated, including both laminar and turbulent flow 

regimes, so tne results can be applied to any high or low 

power system. 

Handling the turbulent flow is not a simple endeavor, 

however, for the resistances become highly nonlinear and 

tne role of inertance is substantially reduced. The 

analytical model for wave propagation in tubes with 

turbjlent flow proposed Dy Brown, which was ne^/sr done 

completely in tne literature before, nas been used. 

Anotner dominant factor in the energy dissipation, in 

addition to tne viscosity which nas already been 

mentioned, is tne switching time, and the small 

dissipation is made possible by small values of T3t. 

Therefore using an   appropriately designed tube connecting 
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an appropriately sized and suf f iciently fast switching 

valve to a load can deliver significantly higher power 

tnan use of tine oovious alternatives. 

Tne wor<< has used ootn seating and sliding valves. 

Tne desire to greatly reduce or eliminate tne short- 

circuit flow patn oetween supply and tanK innerent in the 

constant-area-sum valves (seating valve3 assumed nerein) 

introduce tne jse of sliding valves. Tne results indicate 

aa advantage , particularly rf.ien <a is small, for sliding 

val/es; tne real proolem is economical design, no*iever 

(small advantages oiignt oe- outweigned, of course, by 

practical design considerations). jfnen ka gets large 

enougn tne losses become excessive (even for tne minimum 

acceptable value of f/T3t) wnetner a sliding or seating 

valve is used, altnougn tne latter is close to tne 

opti.ou.n. Tne trade-off oetween the efficiency and 

econo.nical design, aoweier, is not tne subject of the 

ressaroa. Therefore no prejudice against seating valve3 is 

intended. 

All tne results obtained in tne researcn are 

expressed in terms of dimensionless groups of parameters. 

Tne universal design cnarts . are used oy cnoosing tne 

predefined parameters ■<,, g (C6.12J respectively) and 

r/T3t. To specify tne optimal system, tne designer 

determines tne acceptable ranges for tnese parameters, and 
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then pinpoints the optimal design on the given charts N\om 

which trie remaining parameters are deduced. 

The next step in the development of optimization 

procedures presumably would be the extension of the 

studies to entire anticipated duty cycles, using equations 

(71) =*nd (f2) and related equations to predict the energy 

dissipation including the non-optimal conditions. Some 

cnaracteristios of trie changes in actual instantaneous 

fiow nave been obtained by multiplying the equation (71) 

oy Q /Q r, wnere Q^r is a constant reference load flow for 

trie optimal or design condition and Q ^ is the actual 

instantaneous flow. Note that the definition of the 

nondimensional dissipated power now changes to 

Pd = PQ£rT 
(96) 

Tne changes in pj have been examined for low power systems 

(laminar flow), which is the easier case. Figures (56) 

and (58) for seating and sliding valves, respectively, 

show tnat the dissipation is less when the system is in 

its null state. Figures (57) and (59), on the other nand, 

reveal that for 0 < Q /Q£r < 2 , the ratio of e/en (or 

p,j/pjn) remain almost tne same for any ka. Tne results 

witu seating valves (Figures 55 and 57) have been obtained 

wic.il no constraint on the Dandwidth of tne system. The 

ones witn sliding valves (Figures 53 and 59), however, 

-52- 



have Dean obtained by imposing a constraint on bandwidth 

(T/T3t=40). As can be seen from Figure 59, in the range 

for Q /Q^r given above, an important deviation occurs for 

large «<a values and tnis is because tne constraint used is 

far from being optimal for tnose large values of ka. 

Figures (35) tnrough (33) show that the optimal bandwidth 

for large , values of Ka is much larger (T/Tst=10) even 

tnougn losses are still unacceptable. 

Figures 51 and 59 (to be used with the asymptotic 

null state values obtained from the previous ones) might 

simplify the process of finding the global minima of the 

dissipation regarding the entire duty cycle. . 

The analysis, however, might be extremely difficult 

for turbulent flow, since changing Q£ would change both 

g and the governing equations (as laminar flow would 

probaoly occur at null). 
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Figure 22. Minimum Dissipation Solution, T/T .=^0 
g 1.3*10-^, Seating Valve. 
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Figure 26.  Minimum Dissipation Solution, T/T ,=1!0 
g = 10~ , Seating Valve 
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T? igure 27. Minimum Dissipation Solution, T/Tc,1_ = 10 
b -10~'^, .Seating Valve. 
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Figure 32. Minimum Dissipation Solution, T/T ,=20 
g_ =10~°, Seating Valve 
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Figure 37. Minimum Dissipation Solution, T/Tst=30 
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Figure 39. Minimum Dissipation Solution, T/T ,=10 
g =1.3S10-1{, Sliding Valve. 
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Figure 4 0'. Minimum Dissipation Solution, T/T ,=20 
g =1.3*10-;, Sliding Valve. 
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Figure 43. Minimum Dissipation Solution, 
g =1CT\ Sliding Valve. 
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Figure ^4. Minimum Dissipation Solution, T/T^-2 0 
g =10_ij, Sliding Valve. 
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Figure 50. Minimum Dissipation Solution, T/T ,=^0 
g =10-^, Sliding Valve 
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Figure 51. Minimum Dissipation Solution, T/T , =10. 

g =10~6, Sliding Valve. 
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Figure 52. Minimum Dissipation Solution, T/Tc,t = 20 
K =10-6, Sliding Valve. 
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Figure 53. Minimum Dissipation Solution, T/Tst=30 
g =10-^, Sliding Valve. 
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APPENDIX A: ENERGY LOSS IN THE VALVE (ZERO LOAD) 

After tne equations of motion (equations (13) and 

(14)) are summed to eliminate p, substituting equation 

(2j) gives  :  

i1
2sgn(Qs-Qt)-/m1

4-m3m1
2[sgn(Qs-Qt)- -^ (l+2b)

2] 

[i]=M=  = ^-  
V m3 

wnere 

Woce cnat tne sign ^nange for Q3 occurs dftan  Y=Ycr 

tfaere 

Y cr ~ V l+2b 

(97) 

ml " <*2 ~ I*k> (98) 

m
2 ^ <T* - IT2T> (99) 

m3 = m2
2sgnQg + m-^sgnCQg-Qj.) (100) 

1+b-c 
X (101) 

The energy dissipations e3-|, 
es2> es3 during a single 

-116- 



switcn,°  tnan, are computed using equations (16) , (17) and 

(18) respectively. 

Equation (15) gives 

3 
(102) 

de si Q* 
dt    ao

2(l+2b)2m2
2 

Suostitucing equation (2$)   and, then, integrating equation 

(102) , oaa  gets 

si  =   2 
PQdTst " °V 

dy 

0 (l+2b)
2m2

2 
(103) 

and use of equation (22) gives 

Jsl  (l+2b)2 
dy 

2 
o m2 

(104) 

Repeating tne same with equation (13) gives 

8     E 
s3        (l+2b)2 

dy 
2 

m, 
y2      l 

irfiiion  gives 

(105) 

Esl + Es3 =s(b) 

giving equation (24a) in the text 

Tne dissipation w-hen both ports are open is more 
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complicated, however. Equation (17) gives 

de s2   Qt p(absM)3  +  [abs(M-l)33-j 

~dt aQ
2(l+2b)2 n^2 m2

2 
(106) 

and similarly, trie result, is obtained as 

2   Y. 
s2 V 

PQdTst • (l+2b),2 
(   E(absM)

3 + [abs(M-l)r]dY   (107) 

Y-.   1 

or 
,Y2 

Js2   (l+2b)2 
j-(absM)3 + [abs(M-l)]

3
]dy 

m, 
Yl    1 

m. 
(108) 

Note that M includes the valve parameter, cv. The above 

equation is given in the text as equations (21a) and 

(21D). 

. Tnese equations have been derived while the valve was 

turning on  and similar derivations have been applied while 

cue  valve  was  turning off.  The results show tnat E3 

remains trie same if no cavitation is assumed. 

Tnerefore 

■   Es = 2[g(b) + E(cv,b)] 

wnion is equation (25a) in tne text. 
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It has been seen that in the "principal range .of 

interest ( 0<cv<0.9 ; 0<D<2 ), the classical separation of 

variable tecnnique can D.e applied to give equations (26a) 

and (26b) . 

Tne approximations are, tnen, given in terms of 

simple functions and the coefficients of equations (27), 

(23) , C29) -are given below: 

a^   =0/343 

a2 =1.08 

a3 =0.8 

f0 =1.0 

f1 =-2.11 

f2 =10.42 

f3 =-41 .03 

fn =101.64 

f3 =-159.14 

f6 =159.16 

fj   =-101.64 

fd =40.or 

f9 =-8.33 

f10=0.85 

, g0 =0.0 

g1 =5.32 
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g2 =-34.22 

g3- =128.12 

g4 =-297.62 

g3 =441.86 

g6 =-425.55 

gy =264.26 

g8 =-101.99   ->: 

g9'=22.23 

g10=-2.09 

The respective errors in these approximations are quite 

negligible in the range where the previously mentioned 

separation applies. 

Derivation of the energy dissipation when tne valve 

is not switching is given in Appendix B for the most 

general case (Q-/0), and tne result for zero load flow is 

given in equation (30a). 
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APPENDIX B: ENERGY LOSS IN THE VALVE (NON-ZERO LOAD) 

Introducing the load flow via equation (33) and 

cnanging tne definition of cy through equation (36) 

enables one to write tne governing equations in the-most 

general way.  Tne new definitions 

and 

give 

ana 

a 
c . = ^_tl" (109) 
vl  ~ /P o 

c 0 = —Si. (no) 
v2  a /P o 

Q; 
— = Mn (in) 

Qti" x 

— = M„ (112) 
Qt2 '  2 

respectively. 

Notice that 

Ml = Vcvl> b) 

M2 = M2(cv2, b)  .  - 

Then e3-| and E3T (for turning on) are given as 

-121- 

(113) 



Pcv22|^2lTst   Yl 

si 
dy 

(l+2b)t 

Pcv22|Qt2l
Tst f1 

o  2 

s3 (l+2b)' 

,dy 

Y2   1 

(114) 

(115) 

giving 

£sl+£s3     2 ,5t2,  ' .. 
PQdT   ; 

Cv2  lQdl S^> (116) 

Similarly, for turning off, wa get 

PQdTst    vl  Qd § 
(117) 

Finally,   e3^   (for   turning  on)   is  derived   using 

's2 Qt;2
3 

dt ? P 
a     (l+2b) o 

(absM0)
3       [abs(M0-l)]3 

[ I— +   § ] 
m. m. 

(118) 

and oecoines 

s2 
?QdTst 

Qt2    2 
^T Cv2 E<cv2'

b) (119) 
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Similarly, e32 for turning off becomes 

PQjf^ " iq  cvl E(cvl'b >  • (120) 

"Tne energy dissipation in the valve during switching 

for a complete cycle, e3, is then obtained by summing the 

above results to give equations (41a) and (41b). 

Using equations (33), (36), (109) and (110), the 

above equations can be simplified via definitions 

c ,■ = c (c +1)  ■ (121) vl    v  q 

c 0 = c (c -1)  - (122) v2    v  q 

One can also define 

E(Cvl}   =   2c   2(c
X 2   ^^Tiy + a2Cv(V1)+a3Cv3(V1)3] 

v        q (123) 

E<cv2>   =   p      2/      n2   ^¥-T^TT + a2Cv(cq-1)+a3Cv3(C^1>3] 

v        q V     q 

(124) 

by making use of tne approximations given in equation 

(27). 

Then, equations (116) and (117) add to become 
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ffff - [s2,<v1)3+cv2(v1)2|v1|]e(b) (125) 

or 

si  s3 _ 
PQdTst 

2cv
2(l+3cq

2)g(b) 

2cqCv2(3+Cq2)g(b) 

c <1 
q- 

c >i 
q- 

(126) 

Equations (119) and (120), however, give 

PQ^ " ^ + a2Cv(1+Cq
2)+a3Cv3^1 + Cq2)2^C

q^ (127) 

Finally, the energy dissipation when the valve is not 

switoning, ens, is derived assuming that the flow varies 

linearly as shown in Figure 4.  Inis assumption gives 

Q (t) = < 
3 

2Qd t Qt2 + -±   (|) 0<t<aT 

2Qd   t 
(128) 
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Therefore, 

de ns 
dt 

V 
aQ
2(l+b)2 

(129) 

(130) 

is integrated in Che following ranges: 

T T 
-|* < t < <xT --§*• 

aT + -4p- < t < T--p  • 

One snould be careful, however, aoout tne integration when 

c < 1. The final results, unfortunately, are quite 

complex and some approximation is necessary. The results 

after the approximation (using a =1/2) are given in 

equations (42a) and (42b). Using equations (33), (36), 

(33) and 

QtlH2
i*   =   2[(Q*2+Qd2> + 1|Q*V] (131) 

Qtll
3+|Qt2l

3 =< 

2Qd(3Q,
2+Qd

2: 

2Q„(Q 2+3Q 2) 

c <1 
q- 

c >1 
q- 

. (132) 

along witn equations  (126)  and (127)  gives the total 

dissipation in tne valve, wnicn is given in equations 

(43a) and (43b), and tne related equations (44) through 

(47). * 

-125- 



APPENDIX C: NOMENCLATURE 

equation of 
symbol      meaning definition 

or first use 

a valve orifice area 1 

dQ total valve orifice area 1 

for seating valves 

as upper orifice area 2 

at lower orifice area 2 

ai , &2 , a^ 

:1 

27 

b ratio of lengtn of additional 2 

opening to maximum stroke 

C compliance of fluid volume 82 

cd orifice flow coefficient 11 

c ,c ^      ratio mean:perturbation flows 33 »58 

cs,c3j      nonJiraensionalized switching 37,59 

time 
* 

cc,ctG|      nondimensionalized tube 49,60 

resistance 

cv,cv^      nondimensionalized valve 23,57 

flow' 

cv1,ev2     cv for re3Peot'ive switches       109,110 

63 

d tube diameter 50 
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f 
Esl'Es2'Es3 

f 

f 

f J»' *'f10 

& 

g 

*S 

gv 

J 

°p 

eSj » • • > 

1 

*d 

V I t 

*1J 

nondimensionalized e3 19 

nondimensionalized energies, 19 

es1'es2'es3 

friction factor 63 

perturoation friction factor 67 

23 

loss factor.turbulent flow 62 

valve orifice area normalized 34 

to valve size 

normalized tube area J7 

normalized valve size 37 

normalized supply pressure 88 

normalized switching time 35 
'i 

normalized period 39 

valve orifice area' 76 

normalized to flow 

normalized viscosity ,78 

normalized density of solid 91 

29 

tuDe inertance 34 

dynamic inertance of tube 56 

valve port inertances 9,10 
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Ka independent dimensionless 73 

quantity 

£ length of tube *   6 

IQ characteristic valve length 34 

M,M1,M2 97,111,112 

in 43 

m1 ,^2,^3 98,99,100 

N racio wavelengtn:tube length 6 

Nin minimum acceptable value of N 7 

a 3 

P supply pressure v 9 

p pressure at valve-tube junction  9 

p^ n >rraalized power dissipation 71 

Qd amplitude flow perturbations 25 

Q^ mean load flo#J£ 33 

Q£r referance load flow 96 

Qs supply flow .9 

Qt volume flow through tube 10 

^u1 '^i2 ^0   ^or  resPaccive switches 40 

H resistance of tube 43 

Re tube flow Reynolds number 70 

Rj dynamic resistance of tuoe 55 

r surge loss coefficient 67 

•12? 



L 

T 

rs, 

c 

tl"'t2 

V 

6 

Y ' cr 

e 
ns 

ratio dynamic:steady 

tube inertance 

ratio dynamic:steady 

tube resistance 

period of'cycle 

switcning time for 

seating valves 

switching time for 

sliding vaive3 

running  time 

load chamber volume 

pnase velocity of waves 

proportion of time valve on 

fluid bulk modulus 

energy dissipated while 

valve is not switching 

energy dissipated in 

valve switcn 

55 

55 

43 

6 

39 

esl'es2'es3 

3 

3 

82 

6 

34 

32 

101, 

24 

30 

15 

16,17,13 

.r 
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St 

su 

v. 

p 

Pc 

T 

n 

steady flow loss in tube     "*   48 

surge loss in tube 53 

energy dissipated in tube , 61 

total valve energy dissipation   31 

fluid viscosity 50 

Kinematic viscosity JJ 

fluid density 11 

densicy of solid         ' 85 

inertive time constant 33 

minimum dissipation function }j> 

dimensionless frequency 54 

actual frequency 54 

natural frequency 81 
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