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ABSTRACT 

The goal of this thesis is the identification of the major 

obstacles responsible for the slow progress in modeling 

synchronization in oscillators. A brief historical review reveals 

that a major difficulty with most synchronization models is the lack 

of analytical expressions for the nonlinear transconductance 

associated with the transistor within the oscillator. The circuit 

used for the investigation into the nature of nonlinear 

transconductance is the Synchronous Oscillator developed by Dr. 

Vasil Uzunoglu of Fairchild Industries. Experimental measurements 

via high bandwidth oscilloscope (Tektronix 7854) and network 

analyser (HP 3577A) uncovered certain clues that form the basis of a 

mathematical analysis. The analysis leads to an expression for the 

transconductance. The expression is finally simplified so as to 

become useful for analytical investigations of synchronization in 

the Synchronous Oscillator. 



1. INTRODUCTION: An Historical Perspective 

Synchronization is a concept of rarely appreciated dimensions. 

It is encountered in the natural world at every conceptual level 

from the microscopic to the macroscopic. Examples of synchronization 

behavior abound in animate and inanimate systems. Synchronization is 

the ability of an oscillating system to mimic another oscillating 

system. The most famous observation of this phenomenon was recorded 

by Huygens. He noticed that two pendulum clocks hung on the same 

supporting plank behaved in a peculiar manner. Despite a difference 

in the natural frequencies of the two clocks, they tended to 

oscillate at a common frequency with only a phase difference. 

Identical oscillation with a constant phase difference seems to be 

the common thread running through most synchronization phenomena. 

Huygens1 supporting plank was instrumental in the creation of 

conditions favorable for synchronization. In fact, it was via the 

supporting plank that the clocks were able to influence each other. 

It is implicit in any theory of synchronization that there must be a 

link through which one system may influence another. Living systems 

such as courting birds may require visual and/or audio links to 

accomplish synchronization. Oscillating heart cells require physical 

proximity to attain synchronization with other heart cells. 

Electrical systems require electromagnetic signals as the link 

needed for synchronization. 



In electrical engineering and specifically in communications, 

synchronization is a very important and useful phenomenon. The 

phenomenon is indispensible for synchronous communication between 

two systems. For example, synchronization is used in a carrier 

recovery subsystem that makes demodulation of a signal possible. 

Synchronization is also used in the extraction of timing information 

from a signal. 

The structure within a communication system responsible for 

synchronization is known as a synchronization network. This network 

tracks the carrier component of an external signal entering the 

communication system. There are two distinct approaches used in the 

design of synchronization networks. One scheme makes use of the 

"phaselock" principle. The other scheme relies on the use of 

nonlinear oscillators. 



2. SYNCHRONIZATION NETWORKS 

2.1 The Phase Locked Loop 

A Phase Locked Loop (PLL) embodies the "phaselock" principle. 

The PLL is composed of a phase detector, a low pass filter and a 

voltage controlled oscillator (VCO) as illustrated in figure 2-1. 

The phase detector compares two signals and produces an output equal 

to the sine of the phase difference between the two signals. The VCO 

is an oscillator whose frequency is controlled by the magnitude of a 

d.c. input. 

In operation, the phase detector compares an external signal.to 

the output of the VCO. The sine of the phase difference is filtered 

to remove higher harmonics and noise produced in the phase detector. 

The output of the filter is presented to the input of the VCO, where 

a change in oscillation frequency occurs. The oscillation frequency 

continues to change until the phase difference between the VCO and 

the external signal becomes minimal and constant. At this point 

steady state has been achieved and the VCO is tracking the external 

signal at a constant phase difference. The description is obviously 

oversimplified, but it serves to illustrate the conceptual 

underpinnings of the "phaselock" principle. 

PLLs are widely used in the communications field. The 

widespread popularity of PLLs is mainly due to the overall 
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Figure 2-1:      A simple system representation of 
a Phase Locked Loop. 



simplicity of the scheme.   Analysis of the PLL is very tractable 

because the "phaselock" principle is a linear concept.  Problems 

arise when one considers nonlinearities due  to most of the 

components of the PLL. For instance,   the phase detector is a 

nonlinear element that outputs more than just the sine of the phase 

difference.  The unwanted effects due to the nonlinearities are 

eliminated only at  the expense of simplicity.  Despite the increase 

in complexity PLLs remain the most modelable synchronization 

network. 

The popularity of PLLs does nothing to reduce certain basic 

shortcomings that accompany such networks.  PLLs are very susceptible 

to noise carried by the external signal. Approximately 5dB or more 

signal to noise ratio is needed  for reliable operation.     PLLs have 

relatively long acquisition times for many high frequency 

applications.   Acquisition  time is the  interval required by the PLL 

to reach steady state after an external signal is  introduced.     The 

acquisition time is inversely related  to the pull-in range of the 

PLL.  Pull-in range is the bandwidth around the natural frequency for 

which the PLL will synchronize to the external signal. High 

frequency PLLs have high Q,  small pull-in ranges and therefore large 

acquisition times. 

Solutions to the problems just mentioned are not easy to 

implement.  Such solutions can be complex, cumbersome and  costly.  One 



exception is the work of Peter Runge [1]. Runge circumvented 

difficulties of acquisition in high Q PLLs by resorting to signal 

injection. The injection site was located at the VCO. The scheme 

resulted in increases of up to two orders of magnitude in the pull- 

in range of the PLL with corresponding decreases in the acquisition 

time. 

2.2 The Nonlinear Oscillator 

A second class of synchronization networks is composed of 

nonlinear oscillators. A nonlinear oscillator will exhibit behavior 

similar to a PLL when a signal is injected into the oscillator. The 

injected signal will cause the frequency of oscillation to shift 

until the frequency of the injected signal is identical to that of 

the oscillator. There will of course be a telltale phase difference 

between the oscillator and the injected signal. This synchronization 

in oscillators is also known as entrainment. 

The mechanism responsible for entrainment in oscillators is 

assumed to be nonlinear. Analysis and modeling of this mechanism has 

traditionally been regarded as a difficult task. Difficulties with 

analysis have made oscillators very unattractive and unpopular as 

synchronization networks. However models for entrainment have been 

slowly and painstakingly developed over the past 50 years. My first 

goal is the evaluation of the applicability of such models to 

particular oscillator configurations. 



3. NONLINEAR OSCILLATOR MODELS 

3.1 The van der Pol Model 

Considerable effort has been expanded in the analysis of 

nonlinear oscillators and the identification of the mechanism 

responsible for entrainment. Different approaches have been taken to 

simplify and/or avoid the nonlinearities. There are three main 

routes that have been investigated in search of a model for 

entrainment. Van der Pol was the first to attempt an analysis of a 

nonlinear oscillator [2], His was a straightforward approach. He 

performed a circuit analysis and derived a second order nonlinear 

differential equation. 

2       2    2 
x + (yx -a)x +CL»QX =O>0 E sinCtc^t) 

Van der Pol's equation is now widely accepted as an adequate 

representation of an oscillator. It is of course only an 

approximation. A solution to this equation was found by van der Pol. 

This solution is shown in figure 3-1.  This figure forms the core of 

much subsequent work done on entrainment. The abscissa represents 

the frequency of the injected signal. The ordinate represents the 

magnitude of the oscillating output voltage. The different curves 

represent variation in the magnitude of the injected signal. 

Looking at the figure it is immediately obvious that a stable 

solution to the equation is not always possible. Two types of 

8 



Figure 3-1:  Solutions to van der Pol's equation for various input 
magnitudes. The ordinate represents magnitude of 

oscillation and the abscissa represents W/*0. Dotted 
lines signify areas where solution does not exist. 



phenomena were recognized within the stable solution of the van der 

Pol equation. These phenomena were called phaselocking (as in a 

PLL) and asynchronous quenching. Phaselock is a physical phenomenon 

where self-sustained oscillations synchronize to an injected signal. 

This behavior is similar to PLL operation. Phaselock is observed 

only for injected frequencies near the resonant frequency of the 

oscillator. Asynchronous quenching is a phenomenon where the 

injected signal destroys the self-sustained oscillations. The result 

is a passive resonator driven by the injected signal. This behavior 

is observed far away from the resonant frequency. 

A good deal of controversy has followed these two terms through 

the years. The object of the controversy has been a disagreement 

over the origins of the two phenomena. Some researchers [3] have 

insisted that quenching and phaselock are products of a single 

mechanism. Others [4] have proposed that the two are distinctly 

different phenomena. An attempt to resolve the matter resulted in a 

long and convoluted exchange between researchers in the pages of an 

IEEE journal. The dispute was finally settled by E.M Dewan [5]. At 

the conclusion of a lengthy paper, Dewan stated that phaselock and 

asynchronous quenching are physically distinct mechanisms. He also 

went a step further and subdivided quenching into active and passive 

quenching. 

The arguments over interpretation of physical phenomena 

10 



illustrate the inadequacies of the van der Pol solution. The 

solution cannot predict distinct and logically obvious mechanisms to 

satisfy the physical evidence. Dewan attempts in his article to 

explain these phenomena in terms of the van der Pol solution. He is 

however, encumbered by the severe approximations made in the van der 

Pol equation. His explanations rely heavily on mathematical concepts 

such as saddle points and poles that provide very little physical 

understanding. There is a growing need for a more accurate version 

of the van der Pol equation: a version that can better model the 

phenomenon of entrainment. 

3.2 The Adler Model 

A second study of synchronization was conducted by Robert Adler 

[6]. Adler chose a phenomenological path in his analysis of 

synchronization in oscillators. The Adler model is shown in figure 

3-2. Adler developed a scheme that eliminated the nonlinearities 

associated with oscillators. He represented all elements outside the 

tuned circuit of his oscillator by a nonlinear negative resistance. 

Over a long period of time the negative resistance would adjust 

itself so as to become equal to the positive losses of the tuned 

circuit.  The cancellation of losses would make the oscillator 

appear as a purely reactive tuned circuit. 

Adler defined two constraining conditions that described the 

region in which his solutions were valid. He stated that any 

11 
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injected frequency must be close enough to the resonant frequency of 

the oscillator to assure the following: 

1. That the phase difference between the external signal and 
the output of the tuned circuit is linear with respect to 
injected frequency. 

2. That the amplitude of the oscillation does not change 
significantly with a change in frequency when 
synchronized. 

The second condition depends greatly on the characteristic of the 

negative resistance. Adler also stated that only phase and amplitude 

information of the present would be used and no effects from 

conditions that existed previously could be allowed. Adler in effect 

linearized the problem to the fullest. 

This framework set the stage for Adler's derivation of a 

differential equation for the oscillator phase as a function of 

time. To accomplish the derivation he used a vector representation 

of the summation of various voltages at the input of the oscillator 

as shown in Figure 3-3. The result of the analysis was the 

development of the differential equation that essentially models the 

acquisition process of the oscillator. An additional result was the 

derivation of an expression that predicted a bandwidth of 

synchronization. This was a band of frequencies around the resonance 

of the oscillator where phaselock was possible. This bandwidth was a 

function of the negative resistance, the resonant frequency and the 

magnitude of the output voltage. 

13 



Adler's approach was ingenious in avoiding most of the 

complications of nonlinear analysis. The price that he paid however 

was considerable. His model could not predict the steady state 

oscillation voltage of the oscillator. The model assumed that the 

nonlinearities are not important for small perturbations around the 

resonant frequency. The model is treated simply as a linear tank 

circuit around steady state. Nonlinearities manifest themselves 

within Adler's solutions in the form of an assumed oscillation 

voltage and an ill-defined transconductance of the active element. 

Finally it is impossible for the analysis to predict anything unless 

an oscillator is built and probed to ascertain the steady state 

oscillation voltage. The analysis is very useful however in the 

iterative design of oscillators. 

3.3 The Kurokawa Model 

A third approach in treating oscillators was suggested by 

Kurokawa [7]. The model used by Kurokawa is somewhat similar to 

that of Adler. A negative resistance is in series with a tuned 

circuit and an injected signal as shown in figure 3-4. The tuned 

circuit is assumed to have more than one resonance. The choice of 

models is the only explicit similarity between Kurokawa1s and 

Adler's approaches. Whereas Adler tried to avoid nonlinearities, 

Kurokawa resolved to treat them. 

Kurokawa brought the nonlinearities into his analysis in the 

14 
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Figure 3-4:  Kurokawa's model for an oscillator. 
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form of a current i(t) flowing through the active device that is 

responsible for the negative resistance. The current was assumed to 

be a sinusoid with a slow time-varying coefficient. In the analysis, 

this current was transformed to a plane similar to the complex 

plane.  The transformation was accomplished through a clever 

observation of the properties of the derivative di(t)/dt. The 

transformation was assumed to have all the linear properties of a 

Laplace transformation. 

To find the output voltage across the tuned circuit Kurokawa 

had to multiply the transform of the current i(t) to the impedance 

of the tuned circuit. The impedance was expressed in terms of the 

new transform plane. This clever use of an alternate transform is 

the key to Kurokawa's analysis. In the end Kurokawa was able to 

derive an expression for the bandwidth of synchronization just as 

Adler had done. Most importantly however, Kurokawa was able to 

predict the steady state oscillation voltage of the oscillator. 

The three studies just discussed have become the theoretical 

foundations of synchronization in oscillators. The studies 

complement each other because they have widely different approaches. 

Each study had its own motivations, goals and tactics. Adler was 

interested in the bandwidth of synchronization. He was not 

interested in the detailed description of the nonlinear negative 

resistance that induces steady state nonlinear oscillations. His 

16 



particular interests led him to an attack from the systems point of 

view. 

Van der Pol was basically looking for a general analytical 

solution to his differential equation. To accomplish this he 

approximated the equation severely without regard to the possible 

ramifications of such approximations on a subtle phenomenon such as 

entrainment. He attacked the problem of modeling an oscillator from 

the straightforward network analysis point of view. He largely 

accomplished his objectives. The model derived was a good start but 

could not satisfactorily explain the details of synchronization. 

Kurokawa attempted a middle course between Adler and van der 

Pol. He retained some form of nonlinearities and derived a 

bandwidth of synchronization. He also derived expressions for the 

steady state oscillation voltage. Kurokawa attacked the problem from 

the transformational and calculus of variation point of view. His 

approach is more complete than the others but it is also very hard 

to follow. The results are not intuitively simple or easy to 

assimilate. 

17 



4. OBJECTIVES 

The effort expanded on theoretical modeling of the classical 

van der Pol or other phenomenological oscillator models is in stark 

contrast with the almost nonexistence of experimental studies 

involving real oscillator configurations. Such a real and practical 

oscillator will be the object of this study. This is a new and novel 

oscillator christened the Synchronous Oscillator by its discoverer 

Vasil Uzunoglu, a senior research specialist at Fairchild Industries 

[8]. 

As the name implies, the Synchronous Oscillator (SO) exhibits 

synchronization behavior that is both familiar and fascinating. The 

SO operates as a typical free-running oscillator when no signal is 

injected into it. The injection of a signal transforms the SO into a 

synchronization network. The SO behaves in the familiar way of 

frequency tracking of the injected signal at a constant phase. There 

are some unusual characteristics of the SO that go beyond the 

familiar synchronization behavior. 

The curves of figure 4-1 show a standard synchronization 

response of the SO. The abscissa represents the frequency of the 

injected signal. The ordinate represents the magnitude of the 

frequency component within the output that is identical to the 

injected frequency. The ordinate also represents the phase 

18 
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difference between the injected signal and the output of the SO. 

The curves are produced with an HP 3577A network analyzer. 

The figure can be divided into three regions. Region A 

represents the synchronization region. Here the magnitude of 

oscillation is invariant and the phase difference between the 

injected signal and the SO output is linear with respect to 

frequency. Region B represents a transition region characterized by 

very sharp skirt selectivity. The sharp skirts look almost like 

discontinuities. Regions C represent distorted oscillations with a 

very small component of the output at the injected frequency. Region 

A centers around the natural frequency of the oscillator. The width 

of region A is the familiar bandwidth of synchronization. This width 

has been found to be very sensitive to the magnitude of the injected 

signal [8]. An increase of the input magnitude results in the 

increase of the bandwidth. Figure 4-2 shows the dependence of 

bandwidth on the magnitude of the injected signal. 

The synchronization curve of the SO is certainly unusual. The 

sharp corners and adaptive behavior of the bandwidth indicate 

important nonlinear mechanisms. No previous theoretical analysis has 

produced such a synchronization response. Van der Pol's solution in 

figure 3-1 cannot even begin to approximate the curves of figures 

4-1 and 4-2. There are a few familiar characteristics within the SO 

curves. Region A is suggestive of the "phaselock" phenomenon and 

20 
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region C is reminiscent of the asynchronous quenching that Dewan 

tried to classify within the van der Pol solution. In the SO curves 

the phaselock and quenching regions are distinct and sharply 

defined. In the classical solution of figure 3-1 the regions are 

not intuitively distinct and rely on mathematical constructions such 

as saddle points and poles for definition [5]. The behavior of the 

SO in response to a change in injected magnitude also differs 

distinctly from the classical solution. 

The SO curves may also seem familiar to Adler's analysis. Adler 

defined his synchronization region almost as if he had the SO in 

mind. The SO synchronization bandwidth is characterized by a 

constant amplitude and a linear phase difference with respect to 

frequency.  This characterization also constitutes the founding 

assumption of Adler's analysis. Some of Adler's results do seem 

relevant to the SO. The expression for the synchronization bandwidth 

derived by Adler is proportional to the magnitude of the injected 

signal [6].  The SO shows similar dependence in Figure 4-2. 

Adler's bandwidth is dependent on the transconductance of the 

active element in the oscillator. The analysis however says very 

little about the structure of this transconductance, which is a 

nonlinear unknown. Descriptions of this transconductance and the 

negative resistance that results from it have always been the weak 

point of any analysis of nonlinear oscillators. 

22 



Understanding the role played by the negative resistance in 

oscillators remains the only path not yet substantially explored. 

The goal of this study is the derivation of an expression for the 

nonlinear transconductance. The form of this expression is revealed 

through the observation of certain changes in the dc operating 

conditions within the SO circuit. 

23 



5. EXPERIMENTAL INVESTIGATION 

The SO is a unique nonlinear oscillator capable of 

synchronization performance unmatched by any previous oscillator 

configuration. The unusual qualities of the SO are the driving force 

behind this investigation. A natural direction of inquiry is the 

development of a nonlinear model that can emulate the behavior of 

the real SO. It was made clear earlier in this study that a 

nonlinear analysis is the only route not substantially explored by 

researchers in the search for oscillator models. 

Theoretical analysis of the SO cannot proceed without a basic 

physical understanding of the network. Figure 5-1 shows an 

oscillator that was constructed at Fairchild Laboratory of Lehigh 

University. This oscillator has a natural frequency of about 10 MHz. 

Figure 5-2 shows an oscillator that was assembled from parts 

provided by Fairchild Industries. This oscillator has a natural 

frequency of about 100 MHz. 

There are basically two methods that are used at Fairchild 

Laboratory to probe the oscillators,, The first and simpler method 

requires a large bandwidth oscilloscope such as the Tektronix 7854 

with appropriate high impedance probes. This setup is useful in the 

observation of waveforms at various nodes of the SO. A more 

sophisticated method involves the use of a network analyzer such as 

24 



Figure 5-1:  Oscillator built at Lehigh Univ. 

Figure 5-2:  Oscillator assembled at Lehigh Univ. 
with parts provided by Fairchild Industries. 
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the HP 3577A. The analyzer is instrumental in the demonstration of 

synchronization behavior. The experimental setup of the network 

analyzer is shown in figure 5-3. A single frequency signal generated 

by the analyzer is injected into the SO. The frequency of the 

injected signal is swept by the analyzer between two limits that are 

set by the operator. The output of the SO is continuously monitored 

by the analyzer. The analyzer extracts from the SO output the 

frequency component that is identical to the frequency of the 

injected signal. This component is displayed on the screen of the 

analyzer. 

A sample of experimental measurements with the network analyzer 

setup is shown in figure 5-1*. The oscillator of figure 5-1 is used 

for these measurements. Notice the characteristic flat top and 

linear phase difference within the synchronization region. 

Adaptivity of the bandwidth of synchronization is displayed in 

figure 5-5. The change in bandwidth is due to a change of input 

signal magnitude. 

The measurements obtained with the analyzer give insights and 

characteristics of the SO as a system. These measurements tell very 

little about the behavior of particular elements within the 

oscillator.  To understand the inner workings of the SO an 

oscilloscope is indispensable. The oscilloscope probes the circuit 

at various points. Observation of waveforms at these points can 
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SOURCE 

RFCFIVER 

X' COS U)i 
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Vo   COS(CL)t-MP) 

INPUT 

OUTPUT 

PLOTTER 

Figure 5-3:  Scheme for Synchronization measurements 
using the network analyzer. 
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REF LEVEL 
-5. OOOdBV 
0. Odug 

/DIV 
5. OGOdB 
45. OOOdag 

MARKER   10 
MAG <R> 
MARKER   10 
PHASE(R) 

661 000.OOOHz 
-19. 588dBV 

661 000. OOOHz 
-3.299dog 

-GAIN 

- 

r 
>»\ 

PHASE 

CENTER   10   661   500.000Hz     SPAN   200   000.OOOHz 
AMPTD   -60.OdBV 

Figure 5-4:      A Gain-Phase plot of the oscillator 
in figure 5-1. 
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REF LEVEL   /DIV      MARKER 10 661 000.000Hz 
-5. OOOdBV   5. OOOdB    MAG (R)     -19. 558dBV 

II 

- 56 dBV 

62  dBV 

CENTER 10 661 500.000Hz  SPAN 200 000.OOOHz 

INJECTED SIGNAL AMPLITUDES:  -56 dBV,  -58 dBV,  -60 dBV,  -62 dBV 

Figure 5-5:  Adaptivity of bandwidth due to 
changes in the amplitude of injected signal. 
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improve understanding and identify the elements that are important 

for the mathematical analysis. 

The SO network is presented in figure 5-6. It is essentially a 

modified Colpitts oscillator. Bipolar transistor Q^ is the 

oscillator transistor that is characterized by high frequency 

response and high gain, e.g. £ = 160. Bipolar transistor Q2 is 

characteristically similar to Q.. and performs two very important 

functions. First, it acts as a very high ac impedance from node 1 to 

ground. Second, Q2 allows for the clean injection of an ac current 

into the high impedance node 1. It is clear this node is vitally 

important to the oscillator. The dc bias of the oscillator is 

adjusted via resistors R^ and R2 so that node 1 is at a dc operating 

point of about VQ2=1.5 volts with respect to ground. 

A concrete understanding of the role played by Q2 can be 

obtained by observing the IQ2 vs Vg2 characteristics of the 

transistor in figure 5-7. This characteristic is obtained via an HP 

4145A Semiconductor Parameter Analyzer. The oscilloscope is used to 

probe node 1 of the oscillator in figure 5-6. Observation reveals a 

small (mV) ac signal riding on a 1.5 volt dc as indicated in figure 

5-8. Notice that the oscillator is undriven during this experiment. 

Voltage VC2 of transistor Q2 in figure 5-7 shows that for such an 

oscillation in voltage there is appreciable dc current (mA) but very 

little ac current (uA). The ac current is due to the "Early Effect" 
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THE   SYNCHRONOUS   OSCILLATOR 

Vcc 

Figure 5-6:  The Synchronous Oscillator circuit. 
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. 8000 
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.00 30 
4. 000 

VC2 .5000/div  C V) 

Figure 5-7:  Collector current versus collector 
to emitter voltage of transistor §2' 
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,5 volts/div. 

The dc component 

of this voltage 

is called V „ 

• 0 volts 

100 ns/div. 

Figure 5-8:  Oscilloscope probes node 1 
of oscillator with 10X probe. 

1 volt/div. 
  0 volts 

100 ns/div. 

Figure 5-9:  Sum and difference voltages 
from nodes 2 and 4. 
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conductance of the transistor. A small driving signal impressed on 

the base of Q2 adds to the ac current a component S^V^Ct) where 

gmi is the small signal transconductance of Q^. 

Further examination of the circuit in figure 5-6 reveals two 

feedback paths. One feedback connects node 4 to the base of Q^ via 

the large capacitor C^. This capacitor acts as an ac short between 

the two nodes. The second feedback comes from the resonating tank 

into node 1. The evidence of an ac short across C. comes from 

probing nodes 2 and 4. Figure 5-9 compares the sum and difference of 

the ac voltages at the two nodes with respect to ground. The 

difference is practically zero when compared to the sum. 

Observations of the voltage Vg«(t) across the base-emitter 

junction of transistor Q- reveal an important attribute of the SO. 

Transistor Q- is operating in class C mode. Figure 5-10 indicates 

the operation is characterized by a base-emitter junction which is 

reverse biased for a major part of each cycle of oscillation. The 

collector current of Q. is released in bursts as the base-emitter 

junction becomes forward biased. The class C operation forces the dc 

operating point of vB^(t) to become negative. As the peak to peak 

magnitude of vB^(t) changes, the operating point also changes. 

The crests of the oscillation Vg-(t) are pinned at the 

rectification voltage of about .7 volts. The troughs of the 
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.r-r^WSwSrisSSvnv " -■ 

I 1 volt/ div. |: ♦ 0 volts 

100 ns/div. 

Figure 5-10:  The base-emitter voltage of transistor Q^ 

_.ifo^fiiiiM<**:i*!*'t.l>(iW'„-^*'-: — >.»."t-j-»ygT>' 

1 volt/div. 
4 0 volts 

100 ns/div. 

Figure 5-11:  Voltage across base-emitter junction of Q^ 
for different magnitudes of oscillation. 
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oscillation change when the peak to peak magnitude of Vg^(t) 

changes. Figure 5-11 demonstrates the phenomenon. When the peak to 

peak magnitude becomes less than twice the rectification limit, the 

operating point becomes positive, indicating class A operation. The 

conclusion is that the oscillating transistor Q- adopts class A, B 

or C mode of operation depending on the peak to peak magnitude of 

vB1(t). The voltage vB1(t) can be modeled by 

VBl(t) " VB1 + Vbl(t) 

with 

V, , (t) = Vcos U)t 
D1 

The phenomenon of varying operating point will become of central 

concern during the mathematical analysis of the SO. 
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6. THEORETICAL ANALYSIS 

Basic observations about the behavior of the voltage vB-(t) 

across the base-emitter junction of Q« hold the key to a sucessful 

understanding of the prevailing dc operating conditions within the 

SO. The fundamental clue used in this mathematical treatment is the 

fact that Q. is operating in class C mode. 

Removal of feedback capacitor Cj in figure 5-6 causes 

oscillations to stop. Figure 6-1 shows the dc paths of the non- 

oscillating circuit.  Currents 1^- and IQ2 
mav be easily obtained by 

summation of currents flowing into node 1. Current IC2 is 

aV (V       -  V     ) V 
IC2 =  IS2e    B2=       CC

R/
2     (1+V^2 «'» 

The early voltage V"A of Q2 is about 120 volts neglecting the 

conductance term. Notice that IQO is defined by physical parameters 

such as IS2, R2t Vcc and the gain of Q2- Similarly the current Ic^ 

may be expressed as 

-T           _   
aVBl   (VCC - *B1 ~ W n (6.2) 

JC1 " :S1 e    -  R^  h 

where Vg^  is the "rectification" voltage across the base-emitter 

junction of Q^   (about  .7 volts).   Realizing that 
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THE   SYNCHRONOUS   OSCILLATOR 

DC  CIRCUIT 

Vcc 

R 

R 

® 
1/ 

ci 

Q 

I    \   l v 
Bl 

\ I C2 

© 

Q       v 

T V      V   2        C2 
B2 

Figure 6-1:  The dc paths of the non-oscillating circuit. 
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(V  - V  - V ) 
I  =i   i ^ CC   VB1-  VC2; (6.3) 
C2   Cl R. 

j 

allows for the expression of V^ as 

R S 
VC2 " (VCC " V ~  R^ <VCC ' 

VB2>      <6'4> 

The above equations define the do currents and voltages of the non- 

oscillating circuit in terms of known quantities. 

The introduction of capacitor C. back into the circuit results 

in the resumption of stable oscillation. Reexamination of the dc 

component of vB-(t) reveals that it is not .7 volts. We observe that 

VB1 <   \l  " -7 Volts (6.5) 

Consequently the dc current through the collector of Q^ should be 

less than Ic^. Let us denote a new dc current I^ that corresponds 

to the case where VB1 < .7 volts. Figure 6-2 shows the dc voltages 

and currents for the oscillating circuit. Now, summing currents at 

node 1 yields 

T   , (VCC - VB1 - VC2}        (6.6) 
C2 ~ Cl R, 

Substitution for IC2 into equation (6.3) yields 
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THE   SYNCHRONOUS   OSCILLRTOR 

DC  CIRCUIT 

Vcc 
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R 

® 

ci 

V 
r\°, 
v 

Bl 

© 

\i I 
C2 

V 
B2 

Q       v 
\  2        c 

1/ 
Figure 6-2:  The dc paths for oscillating circuit. 
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=   , (VCC - VB1 - 
VC2>   T   , <VCC - VB1 - VC2> 

XC1 +      R" XC1 + R    (6-7) 

where Ipg remains the constant, independent of the existence of 

oscillations. Finally 

V V 
T     -5i = T     -51 (6'8) 
Cl " R^    Cl ~  Rx 

where 

7    T  °^B1 (6.9) 
"Cl " ^l6 

Equation (6.8) relates the oscillatory dc collector current IQ. to 

the dc base-emitter voltage Vg^ of Q^. 

Another expression for IQ^ in terms of VB^ can make equation 

(6.8) very useful in subsequent analysis. Toward this end, it was 

pointed out earlier that during oscillation the voltage Vg^(t) 

across the base-emitter junction of Q- is 

VU<" " V + *„!<" C6"10) 

where 

vbl(t) = Vcos ait (6.11) 

The collector current induced in Q- due to this junction voltage is 
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icl(t)   =   Isle
aVBl(t)  =  Islea(VBl + vbl(t)) (6-12) 

The time varying exponential may be expanded into a series of 

harmonics.    If only the do and fundamental harmonics are retained, 

ig^(t)  may be expressed as 

W0   "  ^ B1(VaV)   + aIQ2(aV)vbl(t)) (6<13) 

where 

n=0 (n!) 

and 

2n 
i02(av) = i0(av) - i2(«v)=Jo (f)   ^ryr (6-15) 

1 

The functions IQ(OV) and IQ2(<KV) are modified Bessel functions. 

Appendix I provides a detailed account of the derivation for iQ-(t). 

Now it becomes apparent that Vg..(t) produces a dc component of 

iQ-(t) that may be expressed as 

■ aVBl lCl  " :S1 e    VaV) (6-16) 

while the ac component may be expressed as 
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icl(t)  = aIsleaVB1  I02(aV)  vbl(t) «-^ 

Substitution of IQ^  into equation (6.8)  yields 

T."5"! - !5i .  !     e°
VBl  ,   (aV)   . V (6.18, 

SI Rx Sle V     ' R 

Transcendental equation (6.18) indicates a relation between the dc 

and ac magnitudes of vB^(t). Simplification of this equation yields 

°^B1       aVRl 
xsie        =Isie        VaV> (6-19) 

which results in 

Bl   VB1       a 

Notice that as oscillations stop, V—> 0 and Vg.—> Vg«. This 

relation is observed experimentally as shown in figure 5-11. Now 

let us define Gm from equation (6.17) as 

Gn'^U7- 'hi '    E1 V°«     <6-21) 

If equation (6.19) is substituted for Vg^ in (6.21), Gm can be 

expressed as 
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G» ■ "'si •""" ^ <«■«> 

Simplified versions of Gm are derived in appendix II. Finally, the 

simplest way that G can be modeled is 

for V < (2/«)      G = g  = aIQ1 e^
81 = £- 7       ^'^ 

m  "ml    SI        kT Cl 

and 

for V > (2/a) Gm = 8mi (_|_) 

as illustrated in figure (6-3). 
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Figure 6-3:  R(V)is the ratio Gm/gmr 
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7. CONCLUSION 

Research literature devoted to the study of synchronization in 

nonlinear oscillators is very limited. The literature that does deal 

with synchronization is predominantly phenomenological in the 

structure of its analyses. Analytical models of synchronization 

based on actual oscillator circuits are almost nonexistent. The 

cause of the scarcity of models can be traced to difficulties in 

treating nonlinear quantities in these oscillator circuits. Such 

nonlinear quantities are frequently lumped into a single term called 

the negative resistance. Lack of knowledge about negative resistance 

is the prime impediment to further progress in modeling 

synchronization. The focus of this study was to give some form to 

the elusive negative resistance. 

The object of the study was a novel type of network called the 

Synchronous Oscillator (SO). The structure of this oscillator lends 

itself easily to an analytical attempt toward unraveling the form of 

the negative resistance. In the SO, nonlinear resistance comes in 

the guise of a nonlinear transconductance (Gffl) of a transistor. The 

analysis in chapter 6 yielded an expression for the G that is 

intuitively simple and consistent with the small signal g of a 

transistor. 

The Gm is a function of the amplitude of oscillation. Small 
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oscillations show G to be equal to the widely known small signal m 

g =-9- I Bm  kT C 

Large oscillations force the Gffl to decrease inversely proportional 

to the amplitude of oscillation. This decrease in Gm explains the 

fact that the oscillator eventually must reach steady state. Adler 

explains [6] that the Gm must decrease until it just cancels out the 

resistive losses in the oscillator, at which point steady state is 

achieved. 

The derived G can now be used in an ac analysis to ascertain 

three expressions: 

1. An expression can be derived that predicts the magnitude 
of oscillations in the Synchronous Oscillator. 

2. An expression must be derived that shows the magnitude of 
oscillation as a function of an injected input. 

3. The transfer function in 2 must be used to obtain an 
expression of the bandwidth as a function of the input 
magnitude. 

These issues provide ample material for future investigation. These 

and other issues pertinent to synchronization in Synchronous 

Oscillators are briefly illustrated in appendix III. 
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I. EXPANSION OF COLLECTOR CURRENT AS A HARMONIC SERIES 

Given the current i^t), 

aV 
iCl(t) = xsi e 

Bl I       (aVbl(t))n      (I.D 
n=0     n! 

where 

v  (t) = V COS U)t (1.2) 

the formulas needed to transform powers of a cosine function into 

series of harmonics are: 

for odd powers, 

2n-l       1 
COS    0) t = —T7 r-r- < 

22(n-l) 
cos(2n-l)o>t + 

2n-l 

_ 1 _ 

2n-l 

1 

cos(2n-3)(ut + . 

cos 0)t (1.3) 

for even powers 

2n     1 
cos ut = 2n 

2n 

+ ""2n_i <cos 2njt + 
2n 

1 
cos(2n-2)iut + 

2n 

n-1 
COS 2yt >  (1.4) 

where 

1*8 



n 

k k!(n-k) (1.5) 

Observe that the odd powers of the cosine contribute only to the odd 

harmonics and the even powers contribute only to the even harmonics. 

As pointed out earlier in this study, the dc and fundamental 

frequency terms are sufficient for this analysis. 

Each even power cos "wt contributes 

1 
,2n 

2n 
(1.6) 

to the dc term of the current iQ^(t). Each odd power cos   Wt 

contributes 

,2(n-l) 

2n-l 

n-1 
COS U)t 

(1.7) 

to the fundamental frequency term of iQ-(t). Separation of the odd 

and even terms within the collector current (1.1) results in 

.even.,   T   ^Bl  r  (aV)
2" 

n=0 
LC1 SI 

2n 
COS    tot (1.8) 
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and 

.odd, .       °VB1 r  (aV)2n -1   2n-l t       M Qx 
^1 (t) - ^1 6    j=1  (2n-l)l  

C°S    Ut       °-9) 

Now if the cos2n_1Wt in (1.9) is replaced by (1.7),  the fundamental 

frequency component of iQ-(t) can be written as 

W> ' i»i •""   V<«> j0 (f f ^ITT    (I-10) 

If the cos    Wt in (1.8)  is replaced by the term (1.6),   the dc 

component of iri(t)  can be written as LC1 

otV_n     °° ,  „s2n 
T       -  T Bl     r (aV) /r   ti\ 
hi       hi  e *n 92n.   n2 (I'U) 

n=0 2     (n!) 

where 

V°« - I (f) 
2„       1 

n=0    "        (n!) 
2 (1.12) 

and 

I02(aV)   =   I0(aV)   -  I2(aV)   -   I    (f)0^ 
n=0 (n+1)! (1.13) 
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II.  SIMPLIFICATION OF NONLINEAR TRANSCONDUCTANCE 

It has been established that 

aV. 
Gm - aISl   e I02(aV) 

Bl ,      x (II-1) 

and that 

V       -  V Bl Bl 

ln[I0(oV)] (n.2) 

The transconductance can be expressed as 

where 

Gm=gmlR(V) (II.3) 

aV 
Bl _       - (II.4) 

ml SI Cl 

and 

Ino(aV) 
R(V)   =-^|  (II.5) M   ;        I0(oV) 

The central focus of this appendix is the development of a simple 

expression to replace the function R(V).   Figure  (II-1)  illustrates 

the form of R(V).   Notice that  for large V,   R(V)~1/V,  while for 

V—>0,  R(V)—>1.     A simple function that exhibits similar behavior 
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Figure n-i  The function R(V) decreases 
as 2/ttV for large V. 
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is 

"R<V> = ^ 
1 - e if) (II.6) 

and is plotted in figure (II-2). In turn the expression for R(V) 

can be simplified further to a piecewise continuous form if it is 

assumed that 1/e is approximately zero. 

R(V) = U(- - V) + -?; U(V - -) (II.7) 

The above equation (II.7) is plotted in figure (II-3). Using this 

simple expression I define a simplified transconductance. 

5
m " smi "

R(v) 
(II.8) 

This is the final form for Gm. 
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Figure II-2   This is a continuous 
approximation of the function R(V). 
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Figure n-3   This is a piecewise continuous 
approximation of the function R(V). 
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III. INTRODUCTION TO THE THEORY OF SYNCHRONOUS OSCILLATORS 

This appendix represents a technical presentation given at 

Fairchild Industries on November 30, 1984. The author is my advisor 

Dr. Marvin H. White, endowed professor at the Fairchild Center for 

Solid State Studies of Lehigh University. The presentation 

summarizes Dr. White's results from a linear analysis of the various 

open issues in the theory of the Synchronous Oscillator. This linear 

analysis forms the basis for subsequent nonlinear analysis to be 

done using the nonlinear transconductance derived in this study. 

OUTLINE 

(1) INTRODUCTION 

(A) FUNCTIONAL DESCRIPTION 

(B) NONLINEAR OPERATION 

(2) LINEAR ANALYSIS 

(3) PHASE MODULATION 

(A) DRIVEN AND UNLOCKED 

(B) DRIVEN AND LOCKED (SYNCHRONIZED) 

(4) ADAPTIVE 'TRACKING' BANDWIDTH 

(5) PHASE ACQUISITION 

(6) HARMONIC PUMPING 

(7) CONCLUSIONS 
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LINEAR ANALYSIS 
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PHASE MODULATION IN THE 

SYNCHRONOUS OSCILLATOR 

U1 

LINEAR EQUATION:  V„ + w'0V = HHVJ  (SIMPLIFIED NOTATION) o 

ASSUME SOLUTION:   VQ - V0EXP[J(WJT + 0O)] V{ = VJEXPJJC^T + 9j)J 

DEFINE:  0 = 0O(T) - Ql    INSTANTANEOUS DIFFERENTIAL PHASE 
Aw = u>0 - o)j  INSTANTANEOUS 'TRACKING' RANGE 

TRANSFORMED EQUATION: 

CONDITION FOR 
SYNCHRONIZATION: 

0 = - 3K ( SIN0 - Aw ) 

WHERE K = GMM   INJECTION CONSTANT 
2CV   F0R THE SYNCHRONOUS OSCILLATOR 

AW < 1 (LOCK-IN) 
IT" 

OPERATIONAL MODES:  (1) DRIVEN BUT UNLOCKED AW > i 

(2) DRIVEN AND LOCKED AW < l 
IT 



TRANSFER FUNCTION (GAIN-PHASE) FOR THE 

SIMPLE SYNCHRONOUS OSCILLATOR CIRCUIT 
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ADAPTIVE 'TRACKING' BANDWIDTH FOR THE SYNCHRONOUS OSCILLATOR 
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PHASE ACQUISITION IN THE SYNCHRONOUS OSCILLATOR 

0(T) 

-1 
0SS = SIN   (WK) 

EFF 
K^ 1 - </WK)2 

Aw  =   w     -   O). 
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HARMONIC 'PUMPING' OF THE SYNCHRONOUS OSCILLATOR 

0) 

ANALYSIS INDICATES: 

en 
<J0 

PUMPED S.O. ( GAIN 

SIMPLE ! / 
S.O, ! 1 

« 
Is* 
V 

FREQ. 

(1) INCREASE IN INSTANTANEOUS 'TRACKING' 

BANDWIDTH BY FACTOR OF 'K\l OVER SIMPLE S.O, 

(2) IMPROVED SELECTIVITY (FILTERING) BY THE 

RATIO OF ^1 = Q OF THE S.O. 
Aw 

(3) FOR SMALL DEVIATIONS IN INSTANTANEOUS 'TRACKING' 

BANDWIDTH THE PHASE ACQUISITION IS IMPROVED BY 

A FACTOR OF 'N' OVER SIMPLE S.O. 

(4) FOR SMALL DEVIATIONS IN INSTANTANEOUS 'TRACKING' 

BANDWIDTH THE PHASE SHIFT IS REDUCED BY A FACTOR 

OF 'N' OVER SIMPLE S.O, 



CONCLUSIONS 
(1) THE SIMPLIFIED LINEAR ANALYSIS PROVIDES INSITE INTO THE OPERATION 

OF THE SYNCHRONOUS OSCILLATOR IN THE FOLLOWING AREAS: 

(A) CRITERIA FOR SYNCHRONIZATION (LOCKING) 

(B) ADAPTIVE 'TRACKING' BANDWIDTH 

(c) PHASE ACQUISITION 

(D) TRANSFER FUNCTION FOR SIMPLE AND HARMONICALLY PUMPED S.O.'S 

(2) THE BASIC S.O, HAS SUPERIOR PERFORMANCE WHEN COMPARED WITH CONVENTIONAL 

APPROACHES (E.G. PLL'S) BECAUSE OF THE FOLLOWING FACTORS: 

(A) HIGH INTERNAL GAIN (NONLINEAR GM) 

(B) UNIQUE SIGNAL INJECTION METHOD (TRANSCONDUCTANCE MULTIPLIER) 

(c) HIGH REGENERATION IN THE OSCILLATIONS (MULTIPLE FEEDBACK) 

(D) EFFICIENT HARMONIC PUMPING TECHNIQUE 

(3) FUTURE RESEARCH SHOULD CONCENTRATE ON THE FOLLOWING AREAS: 

(A) ANALYSIS OF S,0, CONFIGURATIONS SUITABLE FOR INTEGRATION ON A CHIP 

(B) EXTENSION OF THE NONLINEAR METHOD TO UNDERSTAND S,0, OPERATION 

(c) CONTINUE EXPERIMENTAL CHARACTERIZATION AND MODELING 
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