
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1984

Productivity aids for software development.
Lester L. Zern

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Zern, Lester L., "Productivity aids for software development." (1984). Theses and Dissertations. Paper 2220.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228650873?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2220&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2220&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2220&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=preserve.lehigh.edu%2Fetd%2F2220&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2220?utm_source=preserve.lehigh.edu%2Fetd%2F2220&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

PRODUCTIVITY AIDS
FOR

SOFTWARE DEVELOPMENT

by
LESTER L. ZERN

A The&i«
F'tspnted to the Graduate Committee

of Lehign University
m Candid#cv <or the Degree o*

Master o* Science
i n

CoTuting Science

Lehigh University
1984

ProQuest Number: EP76495

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest

ProQuest EP76495

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

ChRT IFIlATt OF APPROVAL

J
Vu<. thpsis is <»i cppti»d and approved in partial fulfil Imefit

<-'f tl.f;' rt-qun cmiTit". for the degree of Master of Science.

oil, 3Q /#<?
(f1 a t f

C"

Professor in Charge

■ r^ •'
Chairman o*» Department

t 1

TABLE OF CONTENTS

Abstract J

Introduc 11 on -. 2

Produc tivlty Ai d» *

OHic» Automation 5

Desi gn and Codi nq . , 8

Test inq - 11

Productivity Aids for Sc r een Desiqn 1".

Display Terminal Interface 1"

Terminal Dial og 1 ?

Elements of a Dialog 20

Formatting of Displays 21

DfcC'Forms Management System 23

DEC/FMS Dialog Development 25

DEC/FMS Dialog Management 28

I BM ' Inter ac: t i ve System Productivity Facility !-0

ISPF Dialog Development "2

I5f-'F Dialog Management 3'

Statistical Analysis SyiteA/full Screen-Product w<?

•Cone 1 usi on 4f»

Bi b 1 l ograph> 4 /■

Candidate Bi ogr ,iphy 49

ABSTRACT

Productivity is one of the most tal ted about subjects in

data processing today. It seemingly is the concern of

everyone from the board of directors, to the manager of data

processing, to the software designers, and programmers.

Litewi-ai?, there is a new .<war entsc that productivity is more

than just volume. It includes the quality and reliability -

of the software pr odui t and the efficiency with which the

product is produced.

This paper reviews a class of tools that affect the

whole environment of software development! productivity

«uda. Since software development 1 s becoming more 1 i I e a

software factory, productivity aids play a vital part in

increased productivity. These tools are what may be called

"captured intelligence". They represent the cumulative

I riowl edge arid effort of many people. Various tools have

evolved out of <* need to improve the quality and consistency

of the software svstem being developed. Software

engineer my ha a improved our software development

techniques. Productivity aids <<rp one way in which one can

implement man, of these techniques.

Productivity aids and their application to specific

rtr e««s of software development »r e reviewed. After this, a

di«t \\] I'd r ev i ew of product i vi ty aids f or d l sp 1 ay t er ml nal

screen design is presented. %

PRODUCTIVITY AIDS FUR SOFTWARE DEVELOPMENT

In the early 1960s computerization bee ante a growing

♦actor in business. In the same time span the national

productivity level, which had been growing at about 3.2

percent yearly since World War II, suddenly started to drop.

It bottomed out at less than 1 percent in the late 1960s and

has not regained its growth rate since that time. Many

f actors contributed to the decline in productivity. The

computer , as the perfect replacement for many routine jobs,

may have accelerated the decline by alienating many workers.

However, without the advent of computers, national

productivity would be far lower.

With the arrival of computers an extensive set of new

carpers was established. Thousands of jobs in the

manufacture, mai ntai nance , and pr ogr ammi nq ^of computers were

created. One area of computing that is currently recervinq

much attention is the productivity o< the software

development wffort.

Productivity is the ability to create a quality software

product in a "specified period of time with finite resources.

The way i r. which the different phases of software

development are completed affect?, the overall productivity

of the software development effort. Typically, this

development i»ffort includes a proposal, feasibility studies,

system definition *nd design, programming, implementation,

and maintenance. How we interface with the computer system

on which a software system is bemq developed and what tool*

are available for our use can affect the ultimate product

and the productivity of the system development effort.

The advance* 1 ri electronic technology have Improved t .he

cost performance of hardware well beyond the improved cost

performance of software engineering. Today we see that

machine cost is the major cost tor less than ?J percent of

the man-machine interactions. On the other hand, human time

is twenty times more expensive than machine time for over 9*

percent of the man machine interactions. Current

projert1 on* indicate that this trend will continue with

higher human costs in the future. Therefore, improving

these man-machine interactions will improve the overall

productivity of the software development effort.

Another need arises out of the problems observed in the

software systems developed. Many of them are not responsive

to the end user s needs; they do not meet specifications.

Thsir r»lt»ftthtv •** uncertain end their co«t* are excestive

and unpredictable. Many delivered systems *re not easily

modified;, software maintenance is comply , costly, and error

prone. Ihp system is often delivered late and is less than

promised,. In addition, the process of system devel opement

is too often inefficient and does not male optimal use of

the a J ti 1 1 at) 1 e rompi it er r esour c es .

Software development is Decom'inq liKe a software factory.

Analysts design software systems and programmers manufacture

rind repair them. Modules are put together like parts, of a

car. With maintenance cost* consuming 50-8(9 percent of data

processing budgets, one can see that the way in which these

modules <*re designed and programmed is very important.

Software engineer 1nq has developed new design and

programming techniques for software development. High level

languages f,uch as PASCAL and Ada implement manv ot these

techniques. There are new ways to interface with the

computer, siich as light pens, digitizing tablets, touch

sensitive screens, jov stirts, optic scanners, and voice.

AI1 of these improve our ability to deliver a quality

product and improve o<ir productivity.

The software development environment needs to have a

coordinated r-et of tools tor software devel opment . These

tools should support the entire software life cycle. In

such an environment the designers and programmers can

effectively communicate thoughts and ideas between

themselves and the end user, lhey will be able to write

system speciticatons, document the software system, develop

software models, write the program code, and test the end
-■>. .. .

product. Unfortunately, most environments do not have such

a set of productivity aids. Using the computer as a life

cycle tool for software development will then have limited

sure ess.

Productivity Aids

Hardware interfaces to the computer have improved over

the y»ar«. The standard interface for input and output has

changed from cards and printers to display terminals. Some

terminals are equipped with touch sensitive screens, optic

scanners, and digitizing tablets. Software development has

evolved from wired boards to high level languages.

Productivity aids have been developed to tale advantage of

these changes. They can be applied to every Ar ea of

software development. The judicious use of these aids can

improve the software development process by improving the

productivity of software designers and programmers.

These software tools, or productivity aids, represent

what might he called raptured intelligence. They represent

thn combined I m^wledge of many software developers in trying

to improve Mir- productivity of software development.

F'r ndur t i v i t v aids include within them techniques and

procedures that address specific, problems in software

JwvklopiAiinL. Hi.t«U LWIOM Arm a uumaiuufa bat of toolfc that

wi 1 I improve the usefulness of the computer as a tool in the

1 i li' cycle of software development.

Q ' * '.£«? 6>u t<3ma \ L yo

"Word processors" automate almost every I i nd of typed

document. Since software designers and programmers ^re

already familiar with tomputer terminal leynoards, word

processing can be a useful ekten-iion of their tsyinq stills.

Instead of writing, they can type* their thouqhts directly-

into machine readable form. With the burden of writing

simplified the livelihood of better documentation of

specifications, system changes, and user procedures will

improve. Document preparation can be further simplified b/

providing sleletons of the documents required. This

improves document readability, completeness, and accuracy.

"Electronic mail" improves the communication of thoughts

and ideas between designers and programmers. A Boore and

Alien study found that telephone callu reach the intended

per-son about half the time. Return tails fare no better.

Electronic mail ran automatically \eep trad' of mail sent

and when it was received and read. The receiving parties

c.ui review and rpjrt their mail when it best tits their

*£>; hedu 1 e. This reduces■1nterruptiohs and still allows them

ID r e^ponrj in ,» timel. fashion to the more important mail.

1 Js i rig elect r on u m*« l 1 , spec l t i c at l ons , software prob 1 ems or

it-her relevant ml or matron ran easily be transferred between

designers ami programmers. Ttn >s, wi.ll improve the end

pr c.cli.ii. t t) >• the timely and accurate interactions of designers

and programmers ^s the software product is being developed.

"Information r «--t r i «?va 1 " , using database management

s/stems and Fngli«,h life query languages, can provide quick

,UHJ eas/ iHi.e';'; t o information relevant to the software

de. el op ment effort. This can he espec I a 1 1 y uset u 1 wher e t tie

system being developed n large and involves many designers,

and programmers. A database of specl*icat 1ons, current

problems, and other relavant information can be used to keep

a journal of the so+tware development effort. The designers

and programmers can then access this information by using

information retrieval systems. It is important that the

database management system used be simple and ver'v user

friendly. If not, any benefits gained by having a central

repository of information will be lost in the complexity of

accessing the* information.

Another important productivity aid is "personal time

management". In any software desel'opment effort there will

bo meetings between designers and programmers. At times,

t he-,e people may be unavailable for meetings due to

vji(.ition, business trips, -conferences. Or seminars. At the

samp t i me , t hero will a 1 =.o be meet, i nqs with t he

customer/users to review the software developed. Scheduling

meetings to arcomodate these people can be quite difficult.

It a calendar of eat h person i «-> nnl inp, it becomes a much

*tmpl»r ta*k* fhr-migh normal management- ruprarchlPS or

security systems, upper management too Id directly update

calendars of subordinates without interrupting already

scheduled events. F'eer s could review each other s schedules

which will help in planning future meetings. This will

improve the interaction of the software development team and

improve the overall productivity of the software development

ef for t.

Obviously the ust of these tools requires a new way of

doing business. The gains can be significant but not

without investment. It will require ttme to learn the new

procedures and hardware to support the needs.

Q1?* • QD .#0.^1 Coding

There are three major parts to any software system:

input, output, and the internal logic. The input is the

data or requests needed for the software system to operate.

The output is the result of running the SvStem. Thirdly,

the internal I og 1 i of the system is the instruction1",

required to meet the specifications of the system. In most

uases, the inter rial logic, of the system is left to t he

soft war** «.1es i ijn«T «, r>rid pr oqr ammer s to es t at> 1 1 sh . The 1 og i c

and pr'jcjr C»ITI tli>w must , n* rourse, meet t he requirements .*nd

• pf •! i ♦ i <• a ♦ I ■ ifi s of the software sy s t em he i rig dfvpl oped . The

input ,-iii| i nit put definition and format requires t tie

i ;t*--r ,-<r t i on of designers, end users, and programmers. In

the »c heme o* sv-.tem development , software developers need

♦■o m*n*i ♦He enrt "«iw how f-het r input"nutptit may Inov in ttip

t i n i shed >. ■, s t eni. This is an 1 t er a t i v e pr fj(ess ami may

' (■()■' l r •> HHII, prototype ififmt • r>iit pi't f or ma t s t o ps t ab 1 1 Sh t he

,jr >po- rJi<r,pl t , inter *.u ••. T t. i •-. pr ei ess is very important

t r? .-u-ue f''t> :utf.r I.JI ,. wi 'h I lii' system ran determine the

■ ur . r",', or t.u lure f j f .. s y st em.
t

'he ; ■ >|.,i» ift«.r<aie is l tip. <r t a" t her .*use it is the first

H

place riat* or r equest s that have been entered c an be rhw (en

<or errors. If the input, format it complicated or

confusing, the end user will ma>e additional mistaies and

t)»roA» frustrated with the <sv*tem. In thi«i wav, the overall

effectiveness of the system wj11 be reduced, and the

livelihood of erroneou'.. data bei nq entered into the r.vstem

1nrreased.

The ouput -interface is also very important because the

end user must interpret what the system has presented to

him. I* the output format is complicated or confimnq, the

end user may interpret the output incorrectly.

As I mentioned earlier, the internal logic is, in most

cases, left to the designers and programmers to establish.

The end user has set forth the requirements and

specifications of the system. The internal logic to meet

those specifications is determined by the software

developers.

"Screen design" tools offer a way in which a designer or

programmer can prototype the screen format very quietly.

Working with t*»» »r»d u«er , tney can review many <M 4+#»r»*vt

screen formats to insure that the man-machine interface is

correct 1, and accurately designed. This ran occur long

before any code is generated and helps to reduce the number

and complexity of changes once the system i c> developed. It

also encourages t tie user to tale greater responsibility for

proper man-machine intorf ;«c e design by showing them the

terminal interactions. Screen design tools can be used for

both input and output depending on the type and volume of

data to be requested or displayed. The detailed aspects of

some screen design software products aro descrtbed"Iater in

this report.

"Report generators" can provide a facility in which the

end user is shown different types of reports of data from

the system being developed. The software developers can

prototype various reports to help the end user determine

e actly what types of reports may be needed. This will help

insure that the final reports established will meet the

needs of the end user and not be complicated or confusing.

This effort will improve the overall quality of the system

and reduce the complexity and number of changes that may be

required to the report section of the software system. When

J
the reports are established they can be coded in the

language of the software system. In some cases the software

used for prototyping may be adequate enough to be included

in the system being developed.

"Application generators' cat) provide the basis for sound

programming. A comple. system that worts is often derived

trom a simple system that worts. As personnel costs

continue to rise, more and more companies try to fill the

productivity gap by using application generators. A number

of software companies offer these software productivity

<*ids, essentially power tools for programmers. Application

10

generators use program sl>eletons that include standard

structures for such things as input/output, data definition,

and control logic. They include a set of variables that are

used to customize the code to specific applications. The<sp

program or command procedure steletons have been tested and

■ ire nearly error free. They are a good start 1 nq point for

iTc«nv frequently used structures in pr agr amitil ng. A

significant, improvement in productivity can be achieved

because these skeletons eliminate much of the design and

programming associated with starting from scratch.

■ Some forms of application generators include the

ne(.PB.s,iry procedures for documenting the programs being

developed. The, provide program flowcharts. These ar&

developed using the program code as input to a flow charting

program. this program developes a logic flow diagram from

the program rode. These same tools provide cross-reference

listings of program /ar i.ibles and subroutines. Some

documentation programs read the comments and qenerate a

pseudo dor iiment of each module.

the final phase of software development is testing.

E.ith function of .the developed system must meet the

•■■Pacification-; and requirements established b. the end uiser .

The Svstem is then tested for interaction of all the

functions th.it matt- up the complete system.

"Sottw^rp drivers" may be used to test the system.

1 1

These soUwitre drivers are script files which represent

typical requests of the system. These 4i1es can bo used to

stress the system by varying the volume of requests and the

e-treme values in expected data. Thpse tests can provide a

systematic and standardised method of software testing. In

this M,V, any inaccuracies in system results will be brought

Dllt .

"F:-. ecut i or i analyser**", on the other hand, are used to

test the execution characteristics of an entire system or

specific parts ot a system. First, performance testing

involves testing whether the performance criteria specified

for the system have been met. The performance crijerua for

the system may be tested by running a controlled environment

in whirh the load provided by the scripts is representative

of the planned workload. Fur e ample, the system may be

required In proies^ 100 transactions per hour with a mean

response t l me of .." seconds. The scripts may be set up to

provide this wrifUojd. Second, execution analysis of

program code will show where time is being consumed in the

%y«t«Mn, Prom tHi «i i n-f nrmmtt rm, ot\& can cfftpritilnu where rode

may need In be rewritten or redesigned to improve the

over a 1 I s y s t en, e-f f i < i enc /.

1 .'

Productivity Aids <or Screen Design

Most software systems being developed today *re>

interactive, online computer systems. The display terminal

1 ••» the main interface with such systems. The format of the

information displayed on the terminal plays a significant

part in the success of the system. It must be well

' f structured and easily understood. The terminal interface is

also the fir^t place erroneous data can be screened from the

system.

Display T»r mina1 _ Int§r f age

The display terminal can be used as an interface with

i

the system in either line mode or full screen mode. In line

mode the e.change of information with the software sy«tem is

restricted to one line at a time. This method is relatively

inefficient in that only a small amount of information is

exchanged with each computer system interaction. In

addition, it is difficult to structure requests for data

that relate to one another. For example, if you were

building a personnel -file, you would wunt to incKfdf? each

persons name, address, phone number, number of dependents,

a»nd social security number. In line mode each prompt would

r pqiVfP'snme part of this information. The interactions

would be I »?ss- efficient than full screen mode but each piece

of information could be checked as it is entered giving the

programmer more immediate control. In line mode the

.13

programmer would Also have to be concerned about page

strolling if they wanted to maintain related information on

the screen at the same time. Instead of prompting for this

information one piece at a time, full mcremn mode enable?

the programmer to establish fields on the screen for this

i nf or mat 1 on. The user t hen fill?, in the fields with this

information. After completing or filling all the fields,

the information could then be transmitted to the computer

for processing. This would greatly improve the efficiency

of the interaction. It would also reduce the livelihood of

errors because all related information can be seen at one

time. Each screen contains the- fields or requests for

related information and the programmer need not be concerned

with p,age scrolling. Full screen mode takes full advantage

of the technology available* with most display terminals. It

enhances the structuring of the interaction with the

computer system. Furthermore, it improves error checking by

enabling the programmer or designer to set characteristics

for fields on the screen. This capability is really an

extension of the pruqr*wtr» error checking routinet. In

line mode the programmer had more immediate and tighter

control 1 n that each fii»ld could be checked as they were

entered. Put in line mode all error chpchnq had to be done

h> the' programmer. In ful 1 screen mode some of the standard

type of error < hec 1 l ng (an be done by set tinq field

characteristics and ranges. The programmer can concentrate

14

more on specifics relating to the data and still maintain

control of the data entered. This all adds to improved

productivity of the system development effort.
ft

The programming of display terminals for full screen

mode, on the other hand, is difficult. In line mode the

programmer needs, to be concerned with the amount of

information that f 1 t *» on one line and one page. All

information is ervtered into the system one line at a time

.and error cher I i ng 1 «■» done by the programmer. In full

screen mode ?,pec nl programming i <i required to establish

fields on a display screen and to set field characteristics.

Furthermore, all the information on a screen is entered

prior to transmitting to an application program.

The implementation of full screen mode is dependent on

the type of equipment that is used. The products discussed

below relatp to two types of equipment: the Digital

Equipment Corporation VT100 type terminal and its interface

with a DEC main frame, and IBM T7-: type terminal and its

interface with I E*M mat n frame.

Although toe purpose of thi t o«p«r it not to di«u« the

hardware implementation of full screen, the following

discussion should provide enough information to understand

how the screen design productivity aids interface with the

terminal and main frame.

The DFT VT100 interface with the main frame is at a

character interrupt level. Each character is sent and

15

processed by the computer as it is typed. On one hand this

means the man mathine interaction is inefficient in that

little information is being processed with each computer

interaction. On the other hand, the computer can checl each

and every character as it is t yped and send an immediate

response to erroneous information and have it corrected.

Then the information that is finally processed by our

application program will be error free. The implementation

of full screen mode in this environment involves a screen

image driver that is t fie interface between the terminal and

the application program. This will be explained in greater

det ai 1 1 ater .

The I mpl ement at l on of full screen mode for the IBM 3»7.-t

type terminal is based upon the presence of a mapped

rhararter buffer in the terminal, and a terminal controller.

There is a fi : ed one-to-one relationship between each

character storage location in the buffer and each character

position on the display. For example, if the terminal has a

display surface of 2A rows and 80 columns, row 1 maps to the

first BB character storage positions in the character

buffer, row 2 maps to the second 80 character storage v

positions, and so on. All data is entered into the storage

buffer of the terminal and there is no interaction with the

computer until the SFND Key is 'depressed. The amount of

information transmitted is higher than that of a character

interrupt system. This improves the efficiency of the

16

interaction with the computer. The error rhecling however

is not as immediate as with a character level interrupt

system.

In either case, the addressability of each character

position enables the programmer to establish fields within

the display and to control the attributes of each field.

Field attributes may include highlighting, color, alpha,

numeric, alphanumeric, protected 'user can read but not

update that field), and field validation (certain items must

be present before the display data can be fully processed by

the computer. Typically this would be used to insure that a

valid processing request was made). The ability to set and

control these field characteristics wi11 greatly improve

this man-machine interface.

There »r e a number of ot'her characteristics relating to

display terminals that need consideration by the

prbgrammer<?,. Special control characters Are required to set

these field characteristics and control cursor movement.

Without some type of programming aid the programmer will

have to OeveTop Ms own low-level language interface. This

increases the time needed to develop a screen display and

increases the 11lelihood of program errors.

T gr_ m I n «!] P L § L 99,

Numerous vendor o offer productivity aids for the

programming of display terminals. The products offered

contain special functions for the development and use of

l7

interactive applications called "dialogs". A dialog is the

interaction of a terminal operator and an application

program. The operator communicates his needs to the

application program by responding to inquiries presented on

the terminal display. Productivity aids, for display

terminal programming, are generally grouped into two areas.

First is a facility that .»ids in the development of various

types uf dialogs. Second, a dialog manager provides control

and services to support processing of these dialogs.

"Dialog development" functions increase programmer

productivity by simplifying frequent lv performed programming

tasts. they are especially helpful in the development of

screen formats. Significant features include:

Full-screen context editing gives the programmer the

ability to design the screen image directly onto the

screen. In most cases this is done using a standard

editor. After the sc r t-en image is created special

functions are used to save the image in a screen file

f or 1 at er use-.

Screen skeletons* and program models - help the systan

designers and programmers develop dialog panels

(screens1, messages, function routines, and tables.

Theses sleletons and models give the programmer a

st ,<r t l rig poi nt f r om wh 1 < h to wor l< . T yp i c a 1 1 y t hey

include the structure of the most likely used areas of

a dialog.

18

Scrolling - enable* the user to scroll the information on

the screen up, down, left, or right by various numbers

of lines or characters.

Inter-face to standard language processors - provides the

structure for linking to and calling bther languages.

Dialog test facilities - enables the designer or

programmer to display the screen images and trace the

flow of information on individual screens and dialog

segments.

Documentation preparation assistance - provides a way of

structuring the documentation process to improve the

documentation of the system being developed. This Is

done by keeping tables of variables used and processing

sequence of the screens displayed during a particular

dialng.

Online help and tutorial - these functions help the

designer or programmer use the facilities of dialpg

development. It also enables the programmer to create

similar help information and tutorials for the end user

o+ the sfrf-twaT-e syttmi being developed.

"Dialog management" involves a number of functions that

provide a variety of services and manages the dialog

process. When a dialog is invoked, dialog management!

Displays a hierarchy of screen menus based on user

seler tions.

Invokes functions from the menus such as command

19

procedures or application programs or displays other

screens.

Communicates with the user via data entry displays and

messages. This is done through variables on input and

messages on output.

Provides online help and tutorial information. The user

can reqeust help on using the dialog facility or can

request help on the system they are using. The latter

help or tutorial information would have to be provided

by the system programmer when the dialog was developed.

Generates logs of the interactive session. This facility

enables the u*,er to trace an entire dialog, recording

all the interactions that occurred.

Maintains user-entered or program-generated data. Dialog

management will maintain a list of the last used

screens and selections. Then on request, the user can

be returned to the last point of the dialog before the

dialog was terminated.

iiL«NZ»ents._of _a_Di.ai.9Q

A dialog \n made up o+ » panel, 'functions, messages,

variables, and in some cases tables and file skeletons.

A'"panel" is a predefined display image. It may be a

menu from which the user selects options, a data entry

display,' a table display of sel ec ted entr i es f rom a file, or

an information display such as a tutorial or help panel.

A "function" is a program or command procedure that

1?0

^

performs processing or controls the flow of the dialog. The

program may be written in an assembler language or

high-level language such as FORTRAN; or it may be written as

a command procedure.

A "message" is a comment that provides specific

information to the user. It may be acknowledgement that a

request was received or a warning that something is not

progressing as expected.

A "variable" is a character string referred to by

symbolic name. It is 'the main means of communicating

between the parts of a dialog such as panels and ♦unction'-,,

formatt i_nq of _Di.SQl.ays.

The services of dialog development and dialog management

functions male it easy for a designer or programmer to

define screen display images. These images are specified by

panel definition** that include a picture of what the end

user will see. Thi s simplifies panel creation and

maintenance.. Frine! and message definitions are created and

maintained b> editing directly into the panel and message

files. rwmpi !-f» or preprocessing *5tpp*3 are not rpqtii red.

Panel definitions may contain an attribute section, the

mai n borl , , an 1 n 1 t I a I 1 .'at 1 on sec t 1 on , and a pr ocessi ng

■ie< t 11 >n . 7 he attribute sec t i nn def i nes the special

characters t fiat will be used in the body Of the panel to

define the attributes of the fields in the panel. The main

body of a panel is required and defines the format of the

:»i

panel as seen by the user. It also defines the names of any

variable Melds used on the panel. The initialisation

section specifies initial processing and typically defines

the initial values of variables. The processing section

specifies the processing that is to occur after the panel

has been displayed. This section defines how variables are

to he verified <<iicl the functions or other panels ttiat ar e to

be displayed a*, a result of the values entered on the panel.

The ne.f section reviews a number of products that are

designed to improve the productivity of software designers

and programmers in their use of display terminals for

software development. These products provide special

furn t 10115 for the development and management of terminal

dialogs. Thev Are also used by the end user as the

loterfare between the terminal and the application program.

These pr odut t«. represent three levels of capability in

products th^t »r e currently available. The DEC'f-oVms

Management System provides functions for terminal dialog

between the display terminal and application program(s).

fPfl"? Intprartlve Sv?tp* rroduct i vl t y Facility provides

similar capabilities but provides more System wide services.

And finally the SAS/Kull Screen Product provides functions

for terminal dialog but only as those dialogs interface with

^ t he BMS s,-s-tem. These will be e plained in more detail

b e1ow.

DEC/FormS Management System

FMS is a software tool, for developing terminal dialogs.

These dialogs include panels 'screen image forms) and

application programs which use the panels for input, output,

and control information. FMS panels must be displayed on a

VT100 or rompatiblp type terminals. FMS is designed to run

on VAX/VMS V2.0.

FMS has two main functions for dialog development:

Form Editor 'FED) is used to design the form directly

on the screen. By using FED editing functions you can

arrange the fields of the form (content editing),

assign form name's and field names., and set field

attributes 'hat will be used when the form is

d t spl aver). Ik

For m Utility (FIJT) aids in the creation of hard copy

listings from the forms designed on the screen. It is

.<lso used to manage the library of forms already

created.

FMS has one main function for dialog management.

Form Driver (FDV) - is the interface between the User s

application program and the terminal. The services of

FDV are requested by an application program. These

services display forms and perform field and character

validation from input entered on the form. Once called

to display a panel (screen image), FDV does not return

to the calling program until all required data on that

panel is entered.

The relationship o* FDV and an application program is as

foilows:

f ♦

♦ Host Operating System Services ♦
♦ (VAX/VMS V2.0) ♦
»■ ♦

+ ••••»»••»•••»•••»••••••♦ *

♦ ♦ FORM *■ *■
♦ ♦ DRIVER ♦ ♦
♦ ♦ (FDV) ♦ *■

♦■ ♦ ♦ ♦

♦ Application ♦ ♦ VTlfiMB ♦
♦ Program ♦ ♦ Terminal ♦
♦ ♦ -f ♦

The form driver interface (FDV) is logically between thp

terminal and the application program. Each Key stroJp at

the terminal is eamined by FDV based on established field

characteristics. Any errors are immediately reflected ba^

to the terminal user for correction. Once the input for

that panel 1 s terminated the data entered is returned to* the

application program.

Since FDV is the only direct interface with the

application program, form maintenance is simplified. Form

layout can be changed without recompiling an application

program.

ft

Creating or modifying forms with the formeditor iF'ED>

is an iterative procesi. The form editor permits one to

arrange the fields on the screen and to then test the form

to <aee it* appearance on the screen. In this manner, a

software designer and user can wort' together to lay out the

form. This» will improve the final screen layout and improve

the information that needs to be displayed. Programmers can

use the editor to displa/ forms in checking the interface

between the form and application program. This will improve*

software development, as a whole, by improving the accuracy

and quality of r,creea image displays. In addition, both

tasl % of screen design and application programming can

lontinue s1multaneous1 v. The only interface is Inowinq the

number and names of variables. Programming for the display

terminal becomes <> separable t as> .

The) "form editor " has a number of f Line t ions to create

tt^ screen i mag*» and assign field attributes. The fields of

the screen 1 m.jye are* arranged using the editor. Field

pictures art* *»stabl 1 she*d using a set of picture validation

charactt?rs which have the following meaning:

T M 1 pti an timer i c

M A] phabet i c

<? NumMr ir *_

N Signed Numern

' Any Character

".""5

An example of how a screen image might 1 oof follows:

 :_. Employee Records

Employee. Sen al : 9999999

Type of Changes! AAAAAA(New,Update,Delete)

Employee Name:
Last
First
Initial

AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA
A

Home Address :
P.O. Bo;: : 99999
Street :CCCCCCCCCCCCCCCCCCCCCCCC
City :AAAAAAAAAAAAAAAAAAAAAAAA
State :AA
Zip Code :99999

Home Phone :
Area Code:999
Number :999-9999

The characters in the fields have the meaning described

above. This screen image would be displayed without the

field picture characters. Any attempt to enter a character

that doe* not match what was specified for that field would

be i mmpdi at el y flagged as an error. 1 he terminal operator

would have to correct it before he could move on to the next

field.

There mr* additional attributes that can bt> assigned to

each field. The VIDEO function is used to assign video

attributes to each field. Possible selections are BOLD,

Bl INf , REVERSE, or UNDERLINE. Final 1/, the ASSIGN function

displays two questionnaires. One questionnaire is used to

assign attribute?-:, to the entire screen. The other

questionnaire assigns additional attributes to particular

fields. An example of each follows:

Form Wide Attribute*

Form Name :
Help Form Nma>» t
Reverse Screen (Y,N> N
Current Screen (Y,N) N
Wide Screen (Y,N) N
Starting Line (1,23) 1
Endinq Line « 1* ,2Z) 27.

Impure Area ->->-.-. bytes
Form Sire ''>",", words

Field Attrlbutes

Name :
Right JustiY,N>_ Clear Char(chr)

Zero Fi11(Y,N)
Default :
Help : Type a 1 , 2, or "*.
Auto Tab (Y,N)N Reap Reqd<Y,N>Y
Must Fill<Y,N)N Fixed Dec(Y,N)N
Indexed<N,H,V>N Diap OnlytY,N>Y
Echo Off (Y,N)N Stipv Only<V,N)N

After the form h^s bee<< designed and attributes assigned the

f or m is sa vetl.

The form utility <FIJT> processes the form created by the

form editor. It stores the form description in a format

that lfc u&ed by the form drivmr. FUT car* t»» u**ct to merge

forms eliminating the need to recreate a form with the

editor. It can be used to print field descriptions and

irrppri images of forms maintained in a forms library. The

fifld description 1 i^ts each Meld ,ind t he attributes

assigned to it. The printed screen image contain?, a picture

of the *i»'ld%, as they will appear on the terminal, and a

27

map of the video attributes of each field.

DEC/FMS_D.i.a.lQg_f1aQ4gemg nt

The form driver (FDV) processes the form description to

display the screen form and collect the responses entered by

the user. Using the form description and field attributes,

the form driver guides the user through the form. It

.collects and validates all input based on the form

description. Only after all required data is input and

validated will the form driver return these values to the

calling application program.

The form driver supports interfaces to VAX-M BASIC,

COBOL, FORTRAN, and FL / 1 . The interface is a call to the
- •

FDV driver functions. For e ample:

CALL FDV*CLRSH<fname, 1 me) will clear the screen and

display the form specified by fname on the line

spec 1f ed by 1lne .

CAL I FDVfGFT t f val ,term, f id) - gets the value fval ,

field terminator term', 'and.the fiel-d name fid .

This is the way in which data is communicated to the

application program.

There Arc other functions similar to those shown above.

Thetv are used to accomplish a variety of tasks required to

rammum rate information between an application program and a

terminal. These standard functions improve the productivity

of programmers by eliminating the need to write their own

functions. In addition, the automatic error checking

28

accomplished through Meld attributes reduces the chance of

error and improves the overall quality of the software

system developed.

29

I b(1/ I n ter ac t i ve System Pr odur t l vi t y Facility

ISPF is an e.. tension of MVS/TbO or VM/SF operating

systems. There are two major subsystems to ISPF. The first

i« "program development" and is an environment in which the

programmer can do most all the functions they might do in
v

developing software. It provides a menu interface to all

available operating system services such a* language

processors, compilers, word processors, job submission,

electronic mail, editors, HELP facilities, and online

tutorlals. The second major subsystem is "dialog

development anddialoq management". ISPF uses its own dialog

management facilities to display the panels related to

program development. These »r ^ also available to designers

and programmers for the devel opment of terminal dialogs,

i SPF provides t tie screen management services and display

driver interface between t tie terminal and the main frame.

•0

The* relationship of ISFI- and an application program is

•ihown bel ow:

♦ Host Operating System Services ♦•
♦ tMVS'TSO or VM/SP) ♦
♦• ♦

« ♦ ISPF ♦ ♦
» ♦ Dialog Management ♦ ♦
♦ . ♦ Service* ♦■ ♦

• Application *■ * .'279 ♦•
♦■ Program •» ♦' Terminal ♦

In a manner 5iitiil.tr to that of DFC'FMS, I SF'F d 1 a 1 oq

management is logical 1, between the terminal and the

application program. The information *»ntr»red on a panel i«,

not reflected to I Sf F dialog manaqemen t i mmecJ i at el y tiLit

instPftd Citnr ed in the tor mi rial buff or. When the user ends

panel input the content?, of the terminal 'buffer ar e

transmitted to- ISFf , Each field is. e:-*mined bited on the

field characteristics established when the panel was

developed. If any pr r or s are detected the entire panel and

field contents Are redisplayed and the erroneous field

m<tr > ed for correction. Only after all detected errors have

been ' or rented can the terminal dialog continue. Data

entered is then passed to the application program or command

pr or edur e.

M

I§?lL-l?idlQg_peye!Qgment

Creating a panel (screen image' in ISPF is done by using

a standard file editor. Panel definitions include the

following sections:

The "body" de+ines the format of the panel or srreen

image as seen by the user. This is the picture part of

a screen and is required.

The "attribute" section defines special cl^arekcter*-, that

,.wiil be used in th** body to define field

characteristics. It ma/ optionally override default

attribute definitions.

The "initialization" section specifies initial

processing prior to displaying the panel. Typically,

this section defines how any variables are to be

initiali;ed.

The "pr ocessi ni\" section specifies the professing that

is to oc< ur after the screen has been displayed.

following is an e? . amp I p of a panel as it would appear

prior to bei ng' <1i spl ayed by I SPf- :

•/# EMPLOYEE RECORDS

V.

'/.EMPLOYEE SERIAL: S.EMPSER
♦ TYPE OF CHANGE7. = = = TYPECHG ♦■ (NEW,UPDATE, OR
DELETE)

♦ EMPLOYEE NAME:
♦ LAST ?.=»»» _LNAME ♦
♦ FIRST •/.—-^ FNAME *
♦ INITIAL*/.-" _!«■

♦ HOME ADDRESS:
♦ LINE 1 */. = »* _ADDR1 ♦
♦ L INE 2 v.-.. ADDR2 ♦
♦ LINE I X»" _ADDR3 ♦
♦ LINE 4 */.-«= ADDR4 *

♦ HOME PHONE:
♦ AREA CODE */. = «■ PHA*
*■ LOCAL NUMBERV."= PHNUM ♦

) INIT
If <S»PHA « •) ■

?>PHA - 301
•-TYPECHG = TRANS (S.TYPECHG N,NEW U,UPDATE D,DELETE)

>PROC
S-TYPECHG =■ TRUNC < fvTYPELHG , l >
VER (l> T YPECHG ,LIST,N,U,D, MSG=EMP X 210 >
VER (*>l NAME, ALPHA)
VER <*vF NAME, ALPHA)
VER (fc I,ALPHA)
VER <-.PHA,NUM>
VER (*>PHNUM,PICT, NNN-NNNN >

) k ND

Thp ♦, V., signs have the following meaning when

proee%»erJ fcy the I3PF aisplay service routine.

'/. (percent sign) - te^t (protected) field, hiqh
i n t e?V?»-t 4-y— -

♦ 'plus sign) te:-t (protected) field, low
intensity

* under si or e) input (unprotected.* field, high
1ntensit y

The trailing plus jign indicates the ma 1 mum length of the

field. Any attempt to t,pe beyond this field marl will not

regi'.ter ^nd s l mp 1 ■, t^b to the ne t field.

Ther.e are the default settmqs for field attributes.

fhev may be further defined by including an attribute

section. In the attribute section, fields may be declared

t>y: ,

I YPE.'< i nput .output , text >

1N TENS"h1qh,1ow,non)

CAPS(on,of f)

JUST(1eft,right,asis)

PAD<pad character).

Thr> VfcP statement is verification of the values entered

and has a variety of options. The options include:

NONE<LANf field is required.

Al PHA alpha only.

NUM number only.

PICT,string matching specific character »trinqs.

RANfrF,Iower,upper the valup muit fall within the

1 i mi t s .

L1ST,valuel,value2.... the value must be one of those

1 isti?d.

Although not shown in the above e..*mele, the PRQC

section has another option: !«SEL. This option processes

the'values entered and can select: another screen Imaqe for

di^.pla-, , a host system command for execution, or another

iip[)l i r A t ion pr ogr am for e*f»< ut ion.

After the screen is processed by ISPF dialog management

the screen would be displayed like this:

 EMPLOYEE RECORDS

EMPLOYEE SERIAL:
TYPE OF CHANGE *»» (NEW,UPDATE, OR

DEIETE)

EMPLOYEE NAME:
LAST »*=
FIRST «»
INITIAL = **

HOME ADDRESS:
LINE 1 *«■
L INE 2 ■*'.>
LINE 3 "^
LINE 4 «i

HUME PHONE: **
AREA CODE *«=
LOCAL NUMBER *=«

'•?PF_ Dialog Mahag§ment

ISPF dialog management services can be executed front a
<-

rommand procrrture or high level language such as FORTRAN,-

PI 1, or COBOL. It provides a number of services tar dialog

management.

"Display Services'

DISPLAY reads screen image definitions from screen

files, initializes variable information from variable

files, ar.d displays the screen on the display terminal.

After the datij. is entered on the screen, the inputs ar e

stored in dialog variables and the display service

returns to the .'»pp 1 l i at l on program or function.

•TBDISP.t combines information from screen definition

files and ISPF tables. It displays selected rows and

columns and permits the user to select the rows *or

processing.

Variable Services"

Dialog variables set vp as the main communication

between dialog functions 'application programs or

system commands) and I SPF services. Variable 'services

allow a ♦unction to define and use variables,

referencing them symbolically by name,

'file Tailoring Services"

File tailoring services read skeleton files and

create current tailored output that may be used to

drive other functions. typically, these services Are

used to modify a job processing ^tep by filling in

variable values tor a particular job. In addition to

this, they ran be used to help standardire parts of

software development surh as documentation. A skeleton

i -anJ he a<^ simple as providing a standard way ot

recording information about a program module. This may

be module name, programmer name, creation date, and the

da' e the module was tested or modified. For e: ample:

MODULE - fcMODNAMF
PROGRAMMER - ?-PRGNAM£

CREATED - '-DATE
TFSIED - .'-TESTDATE

Ml ID IF IFD VMODDATE

The si eleton stub above could be included in other

si r »en images and dialogs to insure that this specific.

t>pp of information is recorded. It is general enough,

however, to be included i n a variety of documentation

steps. In this way, a library of standard sleletons

can be developed to record necessary information.

File tailoring service**, are provided bv four

*unctlons:

F TQPEN - prepares the file tailoring process.

F T I N(i ^pec i (I es 'he s* el et on t o be used and

starts the tailoring process.,

f-TQQSE ends the tailoring process.

FTFRASF - erases an, output tile that was created

by file t a 14 or 1 ng .

ISPF f.,«n be in.'ol etl in two ways: from a command

procedure or from a programming language. Languages that

<*r >- *,,,ppc>rted «*r e FORTRAN, PL / 1 , and COBOL. I SPF services

ar e invoked in the following manner (or form):

from t» command procedure

ISPExFl. service-name le/wordl i.'alu*>) I pywnrd!'1 value1

ISPF»EL DISPLAY PANEL'screen image name>

f r om a pr ogr am

CALL ISPLINr t ser s i re -name , leywordl 'value' ,

yeywordT<value))

CALL ISPLINr < DISPLAY , FANEL (screen image name))

I SPF is ve'r v similar to DEC^FMS ex r pet for the actual

hardware implementation as discussed earlier. They both

provide flexible vet standard ways to develop and implement

3 7

\

terminal dialogs. They both have functions that provide

for: panel development and display, panel interface to >

standard languages, and dialog test facilities. The

software implementation of panels, fields, field

characteristics, and the control of dialogs is different but

only ici the actual instructions used,' conceptually they are

the same.

'.8

Statistical Analysis System/Ful1-Screen-Product

The Statistical Analysis System <SAS> is a set of

procedures that can bi used for all types of data creation, .

modification, analysis, and retrieval. SAS/Ful1 Screen

Product (FSP) runs within the SAS environment, which runs

under the IBM operating systems MVS/TSO or VM/CMS, using an

IBM 327* or compatible display terminal.

This product represents a set of products similar to the

two previouly discussed. It is very limited in scope though

in that it ran only be used within the SAS interactive

subsystem to create, manipulate, or display SAS datasets.

Although its application to computing is restricted, it may

suffice in particular data processing situations.

SAS/FSP has one procedure FSEDIT for developing terminal

dialogs. FSEDIT accomplishes both functions of dialog

development and dialog management in a limited fashion.

Full terminal dialog as previously discussed is not possible

with SAS/FSP. SAS/FSP has three additional procedures but

they Are not used for developing and managing terminal

dialogs. The four procedures ar&i

PROC FSF.DIT is used to change panel (screen image)

layouts and manipulate SAS datasets.

PROC FSBROWSF is used to display observations in a SAS

data set .

PROC FSLETTEP is used to edit and send letters through

39

el t?r t r gn 1 i ma 1 1 ,

PROC f{ IbT is u-ied to list SAS datasets.

Ihese procedures provide the des» qner , programmer , or

fnd ii«^»-r with the ability to work with their SAS files.

Since SAS IS already an interactive subsystem, the end user

is. typically the per son using SAS'F'SF.

A SAS data set has two parts: a descriptor section

containing documentation about the data and a data section

containing thi? data values arr. anqed in a rectangular table.

Rows of ' Me t Sble represent observations,: the columns

represent /<r Mble? which are identified b> name. The

descriptor section stores information about each \/ar table

such as: type (character or numeric), length, position in

the t ab 1 «? -'column), format 'format for display or print),

informal (format on input*, and * label (description for a

. a* I ab 1 e name)./""■ Historical information may also be

contained in the descriptor spctnm stating when the data

set was created, last update or modification, and the

statements used tn create the data set. SAS data sets are

thp basis for the full screen procedure FSF.DIT.

TSEDIT is a procedure that is used to add, delete,

update, or locate observations within data sets. It is also

the procedure? that is used to layout the fields on a

•• i r een pane! »nd define any special characteristics of the

fields. On e . ution of FSfLDIT a def,/uilt lav out of field* i.s

use'l it nc spm I f i r screen layout was requested.

40

As an e ample, assume that you wanted to >eep a mailing

list of subscribers to a magazine. Using SAS you would

create the description section of the data you wanted to

keep as foilows:

DATA IN.SUBSCRIB;
INPUT.name 150. »2 ADDR 1 150. H~ ADDR2 150.

♦14 BEGDATE M0NYY5. *5 YRS 1. *6 NEW II. :
INFORMAT BEGDATE MON^Yfi. ;
FORMAT BEGDATE M0NYY5. ;
LABEl &F(il>ATF:"DATE OF FIRST ISSUE

NEW" l=NEW SUBSCRIPTION, 0»OLD SUBSCRIPTION ;
CARDS;

Thi^ represents a DATA step within SAS. As a result of

executing this code SAS creates a data set with the

following descriptor section:

ft VARIABLE TYPE LENGTH POSITION FORMAT INFORMAT
LABEL
CHAR 8 4
CHAR , 50 54
CHAR 50 104
NUM B 154 M0NYY5. MONYY
DATE OF FIRST ISSUE
NUM 8 16T
CHAR 1 170
1=NEW SUBSCRIPTION, 0=OLD SUBSCRIPTION

lo display the screen image you invore FSEDIT in the

f ol 1 owl ng way:

PROC FSEDIT DATA*IN.SUBSCRIB:'IN.SCREEN 1 jRUN;

) Thj s command is executed from within the SAS environment

and specifies t hie data set to be processed. The screen file

used to *ave the format and variable characteristics is also

specified. The first ric reen displayed i «, the primary option

men 11 s-t r een .

1 NAME
^ ADDR1
* ADDR2
4 BEGDATE

YRS
b NEW

<J 1

FSEDIT Primary Option Menu

Select option---- Press END to return to '.iA5

1 Edit SAS data set: IN. SU6SLR I F<

2 Review or chanqe PF l-ey definitions

?• Review edit commands

4 Review the F ROC FSEDIT statement and options

"- - Srr eeri Modi f i cat i on

5 Review Or chanqe screen modi 4l <:at lon FF keys

t> Mod l f y t tie ed it srr t:»pn

To arrange the Format and set. characteristics ot the

fields sp*--(I 4 i *jd in t tie datt* set von select option ^. A

5i.r uen it presented with the variable* displayed in a

d»?t iiu It f or mat .

rDI! SAS data ■,*>' : i N. SUE'Sl .R I b

Comer- -»pii -• •■ =

NAME :

ADDR1:

ADDR2:
BEGDAIF :

rRS:

NF 1-*:

M . ar i ft , i» f ,}< i 1 : t; i PS ar e .» . .«i I «t> |p ♦ (ir «,(r t->p»n dc* l ijn

and thp s^tti'fj c>* field a» t r 1 h'u t ♦••«>. t.'sinq t U^• piti tur ,

M >'l ds t an be c r mijpft ;n wt < a t <> v >>r f i ir m 11 tlip ilp'iqnpr • >r

[it rxjr ^mfiipr 1< >« i > c<. . A* * >-r ♦ hf* * (ir ,-JIH t : «■. dn'cr (iiinpd, the

.'■» t t r : hi 11 «"\ in h<- ,rt 'or r». it ■ h v'.ir 1 ,iLI c nr «.i 1 1 i iwi'il t < ■

dr-».--«'! t t ■ , ^ v s t em '-t amUrdv.

' f ■»> \ .ir i »b 1 »• ■ f i e I d at.tr ibiitps .irp set f n >m spei inl

•. r •-«»'»•:, -.I'! fi I itil »• b, c ommarid name*.. fr.uti time one ot these

n,tiiti,in(ls i' issued .* screen image < <i the < leld* dft inc?rt is

■I i sp 1 n /ed. Hifsp s|ii»r nl screens set field .it tr ihuton v.

f i.! ! t >ws :

I M I I spec i Ivi rig a v a I uf i n ,« ♦ i e 1 d set s i t v. initial

v.tli'i..*. Ttiev»i- will be d i sp 1 ay eel as. initial ■. ali.ief. ear r.

t l rtic t tie . -»r i ib If* is d l ».p 1 »• ved .

r-lA» MltJ tiV placing a number in a tield sets <> range of

rir • ej>t .it) 1 e ..«lu»»s. If .» > ,i I ■ ii' is entered t hat does not

♦ ill withiii Ihf'.p, .-aluev, an er r or Tiessaqes is

d i S|. 1 a , t'd .

F'iLHJlKr.L' JH PC in any field ipE-Cifiea that th\is field

rims' t>i entered liefure ttie -screen ran tie processed.

' ><y » I in ,»riy field "Specifies that this field will be

capitalized when processed. Fields no* marled in this

w.i, will remain as t hev are entered.

r.OL OR plar.mg 't. tie tirst letter of a color in a field

•sets t tie color of this field when it is displayed.

FHOt OP one ran specif, the color of a variable field

when an p>r r or has been detected. The color is

specified l ri the same manner as for COL DR.

ATT^ at t r ihutes of eacti field ran be set to one of a

number of attributes such as: Minting, reverse video,

\.>r under 1 I ue .

»ROTFf.TF[) - this srreen lets you define protected fields

4Z

by entering ^i P in any field you want protected.

Protected fields appear on the screen but can not be

a I t er ed.

Onre the format and characteristics of the • ari.ible

fields ar;e set they are saved for later use. At any time

the designer or pr ogr dimtier wishes to change the screen they

use FSFDM arid spec if/ >he data <?.et and screen they want t a

change.

Although similar in concept to the previous two

products, SAf«'F5F' is limited to the SAb environment. This

reduces i t v. value as a general facility for creating and

managing terminal dialogs.

44

CONCLUSION

The three dialog management products described are

typical of the products currently available. Some, lite

SAS/FSP, are very specific to one type of environment.

Others, like DEC/FMS and 1BM/ISPF, have a wider application

to interfacing with a host system or application program.

All offer facilities to easily create and manage the

interface with the computer.

Each product is designed to run on specific hardware.

However, as software engineering continues to improve

programming techinques, products will evolve that will have

application across different types of hardware and operating

systems.

The computing industry has been driven by advances in

hardware technology. Put, as it grows, the pressure appears

to be for software to become the driving force behind

effective growth of its consumers; their time is now the

mo'jt e: pensive item. Ar t j ons to reduce the human costs and

simplify the man-machine interface will have the greatest

impart on these costi. Office automation facilities, design

and coding tools, application and report generators, and

program test routines meet some of these needs. They

provide special routines that standardise frequently used

functions and mare them easier to use. Screep image desiqn

and* dialog management provides the tools for development of

effective display terminal interfaces.

Merged into one? coordinated set of tools, these

productivity aids will improve the quality of software

systems and the productivity of the software development

effort.

46

DIBI IOGRAPHV

Arthur , l . .]. , "Programmer Product ivitv'', John Wi ley and
Sons, New Vor I , 1983.

Bildstm, f>\ , "F'roqrammer Productivity: Plenty of
f'r odu(.. t 1 vi t >• Aids: No Guarantee?,", Software News, Vol.
." No. 10, October 19B3.

Bourn, G. , "Sr)ftw.ire' fc'nqi'neer inq with Ada";
Benjamin Tummings Publishing Co., Men 1 o F'ar k , La.,
198'.

Boo.-e, Allen, and Hamilton, Inc., " Hoo: c, Allen Study of
M^nagerul -rVofessiorial Productivity", Boo.-e, Allen,
,»nd Hamilton, New Yorl , 1VH0. »

fir .if I Pt t , M. , "F'r ocjr ammer Product i vit> : What S our current
situation'", Snltwitrp News, Vol. ' No. 10, Dr t ober
199'..

f ar d, 'T. ^ . , T. P. Morao, A. Newell , "The Ifvstrole Level
Model <pr User Performance Time witti Interactive
Systems', Coitifliurncatjoni of the ACM, 1980.

Dean. M. , "How A Computer Should T,»1 \ Fo Peopdfe ' , IBM
S.stems Journal, Vol. ?\ > In . 4 , 198.'.

Dolipr t /, W. J . , "The t ommer rial 'iignif irarice o* Man Mar hi ne
Interaction", InfotPf.ti State ->t • he Art (.onteronre,
No/ember \'*y9.

F .-*r ber , P . H. , "f'r oqr ammer F'r oduc ti.it.: benet l t s and
Pitfalls- CD* tiener at or s" , Software News, Vol. 3 No. 10,
Hi t ober i'>9 '..

Leavitt, D., "F'roqrammer Productivity: Measure Programs,
Not F-T ogr ammer s" , Software News, Vol. " No. 10, October

1 ^8 *.

Lent,. P. M. , T. I. Booth, T. T. Wet more IV, "An
Instrumentation System For Measurement of Software
Fei formanre". Proceedings Computer Software and
Application Conference, November I98T.

I. (Hiding, t. N. , Iconic Inter f ar i no," , 1LFF Computer Oraphics
and App 1 n nt ion, Mar r h ' Apr l 1 1 90 '*,.

Mandeil, S. I ., "Computers and Data Processing Today", West
Publishing Co., St. Paul, Mn., 1*^83.

•» ■'

Putnam., 1.. H. , D. T. Putnam, I . P. Thayer , "Programmer
Productivity: Software Equation Computes
Characteristics", Software News, Vol. 7. No. 10, October
198'..

Stevens, A., B. Roberts, and L. Stead, "The Use of a
Sophisticated Graphics Interface in Computer - Assisted
Instruction", IEEE Computer Graphics and Application,
March/Apr I 1 19fl?..

Weirenbaum, J., "Computer Power and Human Reason", W. H.
Freeman and Co.,1976.

Wcj;ny, M. J., 'The Human-Machine Lonneqtion", IEEE Computer
Graphics and Application, March/April 198*.

Digital Equipment Corp., "VAX-11 Forms Management System",
Software Reference Manual No. AA- J1,69A- TE, 1980.

I E<M Corp., "Interactive System Productivity Facility",
Program Number 5668 00^, March 1981.

SAS Institute, "SAS/Full Screen Product", Users Guide, 1982.

48.

CANDIDATE blOGKAPHY'
i

\

Lester t . Zern is a senior programmer analyst at General

i-lw.tr ir 1 ri the Space Systems Division. Consultant to-a

number of data processing romplf>::es, hp advises in the areas,

of operating system tuning and productivity. Before hi 4

employment at General Elf?t trie he was an assistant research

engineer at Bethlehem Steel Corporations Homer Research

laboratories. At Homer his responsibilities included the

(ompjter operating system software and the laboratories data

communication intsi f*ces with the coutputer center.

A I9'| graduate of Capitol Radio Engineering Institute

in Washington, D.C., in Electronic Engineering Technology

major 1 rig in Communications Engineering Technology. He then

attended Ursinus College in Co 1 1egev1 11e, Pa. prior to

entering Lehjgr. University.

4V

	Lehigh University
	Lehigh Preserve
	1-1-1984

	Productivity aids for software development.
	Lester L. Zern
	Recommended Citation

	tmp.1451580486.pdf.ZyndN

