View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by Lehigh University: Lehigh Preserve

Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1984

Productivity aids for software development.

Lester L. Zern

Follow this and additional works at: http://preserve lehigh.edu/etd

b Part of the Computer Sciences Commons

Recommended Citation
Zern, Lester L., "Productivity aids for software development.” (1984). Theses and Dissertations. Paper 2220.

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an

authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

https://core.ac.uk/display/228650873?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2220&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2220&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2220&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=preserve.lehigh.edu%2Fetd%2F2220&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2220?utm_source=preserve.lehigh.edu%2Fetd%2F2220&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

FRODUCTIVITY AIDS
FOR
SOF TWARE DEVELOFMENT

by
LESTER L. ZERN

A Thes:is
Fresented to the Graduate Committee
‘of Lehigh Universaity
i Candigdacy for the De&ree o+
Mester of Scirence
1n
Compurting Scirence

Leri1gh University
1984

ProQuest Number: EP76495

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Pro(Quest.
/ \

ProQuest EP76495
Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

Ali rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M! 48106 - 1346

CERTIFICATE OF AFPROVAL

J

e thes1s 1s acceopted and approved 1n partial tulfillment

cf the requatr emeents tor the deqrece of Master ot Science.

Al 30 /9%

(dat e

w
Frofessor 1n Charge

\Y S
Chairman u‘{ Depar tment

TABLE OF CONTENTS

Abstract St e e e oo oo e eeann
Xntraduchon e e eceeccecscacenoansns .
Productivity Airds .;...:.
Office Autoéétnon e
Design and Codingceve...
T@SLING + i v v v ev i innnsnsoncnnss
Froductivity Aids for Screen Design
Display Terminal Intertace
Terminal Dialogvennnnen.n.
Elements of a Dialog
Fofmattxng of Displays
DEC ‘Forms Management System
DEC/FMS Dialog Development‘....
DEC/FMS Dialog Management
IBM/ Inter act: ve S;stbm Froductivity
I1SFF Dialog Qevelopmen& e meeae

ISHF Dialog Management

......... 1°

Statastical Analysis Systea.fFull ‘Screen-Product ...

ClONCIUSION 4t ittt e et e e et ae e P
Bibliography ... il
fandldate Biography00 ...

L)

.................

L]

0

ABRSTRACLT

Froductivity 15 one of the most talled about subjects in
data processing today. It seemingly 1s the concern of
ever yone €rom the board of directors, to the manager of data

‘

processing, to fﬁe software designers and pfogrammers.

.
Litewise, there 14 a new awar eness thaf prodﬁctlvxtv 18 more
thanm just volﬁme. It includes the quality and ?elxabxl;ty_
of the software produi t and the e‘f:gnénCy with which the
product 1< produceg.'

This paper reviews a classe of tuols that affect the
whole environment of software development: productivity
ards. ance_%u‘tware development is becoming more lile a
wuftware factory, productivity aids play a vital part an
1ncreased productivi by, These tools are what may be called
“"captured 1ntelligence”. They represent the cUmulatxvé
b oowl edge and effort of manQ people. Variouse tools have
ev ol ved out of a need to 1mprove the quality and consistency
of the“softwq?e svetem beiyng developed. Software
engineer 1ng has 1mproved our software development
techni ques. Froductivity axds‘arp one way 1n which one can
implement man, of these tedhin) ques.

Frqduntxlxty atdes and therr application to specxflr'
ar eas 0f software devefopmpnt are reviewed, RAfter this, a
Jet a1led review 0t productivity airds for display terminal

sur een desi1gn 15 presented.

.

FRODUCTIVITY AIDS FUR SOF TWARE DEVELOPMENT

Introduction

In the early 196@8s computeri1zation bocame a qrbu:nq
tactor 1n business. In tﬁe same ti1me span the national
productivity level, which had been growing at about 3.2
percent yearly since World war.ll, suddenly started to drop.
It bottomed out at less tﬁan 1 percent 1n the late 1962; gnd
has not rég;xned 1tes growth rate since that time. Hahy
factors contributed to the decline 1n productivity. The-
computer , as the heriect replacement for many routine)obs,
may have accelerated the decline by alienating many worlers.
Howe ver , without fhe advent of cpmpufers. national
productivity would be far ower.

With the arrival of computers an e:tensive set of new
carvers was established. Thousands of jobs 1 the
manufacture, maintainance, and programming~0f computers were
created. One area of computing that 18 currently receiving
much attention i1s the prBdurtxv;iv of the software
development etfort..

F;oduct:xaty 15 the abi1li1ty to create a qualaty softwa(e
product 1n a spectirfired peri1od of time thﬁ tini1te resources.
The way 10 whxfh the different phases of softwaré
doveluphent are completed affects the overall productivity

0of the software development effort. Typically, this

development effort 1ncludes a proposal, feasibility studies,

D]

system definition and des:ign, programmng, i1mplementation,
and maintenance. How w; inter face thh.the coﬁputer system
on which a s0ftware systgm 1s being developéd and what toolse
are avatlable for our use can aft+ect the uitimate product
and the productivity of the system development effort.

The advances 1n electrontt technology have tmpraoved the
cost4per60rmanae ot hArdware_weil beyond the 1mproved cost
per for mance of soitware engtﬁeer;nq. Today we see that
machine cost 1% tﬁe major cost tor less than % percent of
the man-machine 1nter acti1ons. On the other hand, human time
15 twenty times more expensive than machine t;me ¢or over 9%
percent of the man mé;hxne interactions. Current
projections 1ndicate that this trend will continue wlgh
higher human costs 1n the future, Theretore, 1mproving
these man-machine 1nteractions will 1mprove the overall
productivity o0f the sottware development eftort.

Another rneed ar ses out‘oi the problems observed'xn the
snftware systems developed. Many o¢ them are not responsive
to the end user s needs; they do not meet specirfications.
Thei1r relr1abiirty 14 uncertain ana thei1r costses are oxcos?nvo
and unpredictable. Many del:1vered systems are not easily

modi t1ed: software maintenance 1s comple-, costly, and error

prone. The system 15 often dell vered late and 18 less than
pr amy sed,. In addition, the process 0t system developement
15 too often 1nefficient and does not matle optimal use of

the avar1lable romputer resources.

Sof twar e development 15 becoming lite a sottware factory.
Artal yets desi19n software systems and prograﬁmers manutacture
and repair them. Modules are put together lile parts of a
car. With maintenance costs consuming S50-8@ percent of data
processing budgets, one can see that the way 1n which these
modqles ?re designed and programmed 1§ very i1mportant.

Sottware engxneprxaq has developed new design and
programming techniques for so(tware‘d@velopment.A High level
languages such as FASUAL and Adae 1mplement manv ot these
techn ques. There are new wavs to 1ntert+ace with the
computer ;. such as light pens, di1giti1-i1ng tablets, touch
sonsltlive screens, 10y sticks, opt;c scanners, and voice.
N1 aof these 1mprove our ab1li1ty to deliver a quality
product and 1mprove onr productivity.

The software development environment needs to have a
coordinated cet of tools tor sottware development. These
toole should suppor&athe entire software li1fe cycle. In
such an en .flr()nmqnt thhe desi1gners and programmers cah
effectively commumicate thoughts and 1deas between
themsel ves and the end user., They will be able to wrate
system aspeciticatons, dorument.the software system, develop
ﬁoft?are models, write the program code, and test the end
prod;gt. Hnoortnna}nly. most environments do not have such

% ' s)
a set ot productaivity ards. Using the computer as a lite
cycle tool for sottware development will then have li1mi ted

SLICC esy,

Froductivity Aids

Har dwar e xnteriarés to the computer have i1mpraved over
the yaa}s. The s(andard inter face for xnpu; and output has
chénged from cards and prainters to display termxnals: Some
terminals are equipped with toucth sensi1tive screens, optac
scanner s, and dx@:tx;lng tablets. - Softwaré development‘has
evolved from wired boards to high-level languabes.
Froductivity 9xdq'have been developed to tate advantégn of
these changes. They can be applied tn every area of
wOttware development. The judicious use of these aids can
improve the software éevelopment process 5y improving the
productivity of software desxbners and progr ammer s.

These software tools, or productivity aids, represent
what might be called captured 1ntelligence. They represent
the combined I nowledge of many software dqvelopers in trying
to improve the producrtivity of software development,
Froductivity aids 1nclude within them techniques and
procedur s that address specific problems in software
development. Listed below are & airaaun set of tool; that
will 1mp;ov9 the usefulness auf the computer 35.3 tool 1n the
i1t cycle of software devu]npmpn{.

Ctfice Automat o
i "Wor d processars” avtomate almast every binad of typed

document | Since sottware designers and pragr ammers are

already familiar with computer terminal | eyboards, word

(S
4

brocessan can be a useful ertension of their leving sbxfla.
lnstead of writing, they can tybe their thouqghts directl, ~
1nto machine readable form. .Nlthpthe burden ot writing
sxmpl:f:gd the litelihood of better documentatiaon of
specifications, system rhangés, and user procedufe: will
\mprove. Document. preparation can be further si1mplified by
providing 5£elegon; of the documents required. This
1mproves document readability, completeness, aﬁd SCCuracy.
”Electronxt mail” 1m§rov95 the'communxcatxon of thoughts
and 1deas between desi1gners and progQrammers. A Boore and
Allern study found that télephone callu reach the i1ntended
per son about half the time. Keturn calls fare no better.
Electronic mail can automatically Veep trach of mail sent
and when 1t was receilved and read. The receirving parties
can review and read their mail when 1t best Q\té thear
wehedule. This reduces anterruptirons and ;txll al lows them
to respond 1 o4 timel, tashion to the more 1mportant mail.
Heang electronic marl, specitications, software‘problems or
P
Ather relecant 1ntormation can easily be transéerred between
Jesigners and programmers. This will improve the end
product by the timely and accurate 1nteractions of designers
and programmer s as the software product 1s being developed.
“In(ormatxnn rwtriuval“. us1ng databaqé management
systems and Fnglish libe query languages, can pr Q»‘xde quitk
. *

and easy access to information relevant to the software

de.elopment effort. This can he especlally usetul where the

system being developed 18 large qnd 1nvol ves many‘d951gners.
.and programmers.b A dagabase of speci1fications, current
pfoblems, and other relavgnt information can be uéed to keep
@ jJournal o+ the so+tw;ro development effort. The designers
and progkammers can then access this 1nformation by using
1nformation retrieval systems. It 18 xmpnrtan£ that the
database management system used be simple and ver'v user
frxendly. llé not, any benefits gained by having a central
rsposxtory of 1nformation will be fos} 1n the complexi1ty of
accessing the 1nformataion.

Another 1mportant productivity aid 18 “"personal time
Mmanagement ™ In any software development effort there will
be meetings between desxghers ang programnmers. At times,
thewe people ma, be unava:iéble tor meetings due to
vat atiron, business trips, conferences, Oor seminars, At the
same ti1me, there will also be meetings with the
customer rusers to review the %n#tware developed. Scheduling
meetings tao accomodate these people can e Quite difficult.
[t a calendar 0f each person 1 online, 1t becomes a much
si1mapler task. Fhrough normal management hierarchies or
secur ity systems, upper management (ould directly update
calendars of subordinates without 1nterrupting already
scheduled events. Feers could review each other s schedul es
which will help 1n planning future meétans. This will
1mprove the interaction of the software development team and

improve the overall productivity of the software development

~d

effort.

Obv:ously the use of these tools requires a new way of
doxné business. The gains can be si1gnificant but not
without i1nvestment. It will require titme to learn the new
procedures and hardware to support the needs.

There are three major parts tu any software system:
1nput , output, and the i1nternal loq{c. The 1nput 1s the
data or requests nreded for the software system kn operdtp.
The cutput 18 the result of running the svstem. Thirdl,,
the 1nternal log): 0f the system 1<« the 1natructiong
required to meet the specifications ot the svestem, In:-most
uases.“the internal lngnﬁ of fhe system 168 lett to the
sOftwar e destgners and progr ammers to estabilish, The logic
and program tlow must | 0+ course, meet the requlrements and
CpEecrtacatioans 0 the scttware system herng deceloped. The
Poput and ontpet detanition and format requar es the
Loater wr bron of designer g end aser &, and progr ammer s. In
the cohieme ot qyatem development | sOoftware devel oprrs need
N shhw the erd veasr Row thetr trpoat /output may 1oy 1n the
v e oy atem, Thiw 15 an 1terative process and may

reguiires man, protot cpe anpot contpet formats to pstablish the

proapers dr el G, ariteer 4, Thia procesys 1o very 1mportant
P aree thige tater facre with thee yetem can detearmine the
st e, or b b e b 0wy ot Fem,
N ¢
The topat anterface 15 1mportact hecause 1t 1s the firgt

plac% data or requests that have been entered can he chected
for errors., I¢ the 1nput iormat 18 complicated or
confusing, the end user will mate additional mistales anda
bhecome ¢trusatrated w;th’fhe syastem, In ?h)!vwbvu the nvpr;l!
eftecti1veness of the system w)ll be reduced, and the
litelihood ot erroneocu.ws data bei1ng entered 11nto the svstem
INCreased.

The ouput dntprfa(; 1% also very 1mportant because the
end user must 1nterpret what the system hag presented to
him. [+ the output format 14 complicated ar confusing, the
end user may interpret the output 1ncorrectly.

As | mentioned earlier, the 1Aternal logic 18, 1n most
qases{ left to the designers and programmers toO establthﬂ
The end uwser has set forth the requirements and
specifications of the system. The 1nternal logic to meet
those specifications 15 determined by the software
developérs. "

"Screen design” tools offer a way 1n which a designer or
progr ammer can prototype the screen format very quich!ly.
Working with the end user, they cen review many di¢éerent
screen farmats to lnsuré that the man-machine i1nterface 1s
correctl, and accurately desiyned. Thxs'ran occur long
before any>code 19 generated a?d'helps to reduce the number
and comple. 1ty yi changes once the system 15 devel oped. 1t
also encourages the user to tale greater respoﬁsxhxllky for

proper marn-machine 1nterface design by showing them the

- terminal nnteractxons.‘ Screen de#xgn tools can be used far
both xnﬁut and output depending on the type and volume of
data £o be requested or displayed. The detailed aspects of
some sc;oon desi1gn software proquctﬁ are® described 'later 1n
this report.

"Report gener atora’” can provxde a facxlxty 1n which the
end user 15 shown different types of reports of data f}om
the system being developed. rhe software developers can
p}ototype var10us‘reports to help the end user determine
e:éctly what types of reports may be needed. This will help
insure that the final reports established will meet the
needs of the end user and not be complicated or confusing.
This effort will 1mprove the overall qgalxty of the system
apd reduce the comple:i1ty and number of changes that may be
required to the report section o0f the software system. Wheﬂ
the reports are establi1shed ihey can be coded 1n the
1 anguage of the software system. In some cases the software
usgd for prototyping may be.adequate enough to be i1ncluded
1n the system being developed.

"Application generatore” Can provide the basie for esound -
progr amming. A comple: system that worts 15 often derived
trom a si1mple system that works. As personnel costé
continue to rise, more and more companies try to fi1ll the
prnductxvxt; gap by using application generators. A number

f software companies offer these software productivaty

21ds, essenti1ally power tools for programmers. Application

10

gener ators use program aléletons that include standard
structure§ tor such tﬁxngs as 1nhput/output, data dé‘xnxt;én,
and énntrof logic. They i1nclude a set of varitables that are
us@d to customize the code to spectfic applications, These
program of command procedure steletons have been teséed and
are nearly error free.~ They are'a good starting point for
Mmany trequently used structures 1n programming. A
s1gntfrcant 1mprovement 1n productivity c&n be achieved
because these'wleletéﬁ§ eliminate much of the desxgn'and

pr ogramming assonc lated w;th starting from scratch.

Some forms of applxgatxon generators i1nclude the
necerassar y procedures for documenting the programs being
developed. The, provide program flowcharts. These are
developed using the program code as 1nput to a flow charting
program. This program developes a logic flow diagram from
the program ¢ade. These same tonl% provide cross reference
lxstlnds af program variables and subroutines. vSome
document at: on proq;ams read the comments and gener ate a
psevdo dowtvument of eact madule.

Igeting

The firal phace of software development 1s testing.
Each function of the devel oped system must meet the
specifications and requirements established by the end uger.
The s.stem 14 'hwn tested for anteraction of all the

funcrtions that male up the complete system.

“"Sottware drivers” may be used to test the system.

11

These software drivers are script fi1les which represent
typical requests of the system. These f1les cgn be used to
stress the ;ystem by varying the volume of requests and the
e-“treme values 1n erpected data. Thege tests can provide a
systematic and standardiced method of soffware testing. In
thi13 way, any 1Naccur ari1es 1N system r95u1t6 will be brought
out . »

“Fuecur;on analyzxers", on the 6thér hand, are used to
test the e:xecuti1on chara&&erlstxcs of an entire system or
speci1firc parts 0+t a system, Firast, per furmance testing
1nvol ves testi1ng whether the performance criteria specified
for the system have been met. The performance criteria §or
the system may be tested by running a controlled envxronment
1in which the load provided by the scripts 16 representat)ve
of the plahnpd wor b load. For e ample, the system may, be
required to process .00 trans;c?xnns bnr hour with a mean
response time of secnnds.. The srrxpts'may be set ub ?o
provide this wortbload. Second, esedution anaiyﬁxs of
program code will stiow where time 1s heing consumed 1n the
system., From tHias 1néormation, ohe can determine where code
may need to be rewritten or redesigned to 1mprove the

ver all system eféi1 1ency.

v

Productivaity Aids for Screen Design

Moust software systems being developed today ;re
interact:ve, nnlxnevcomputer syst;ms. 'Tho gdi1splay terminal
1w the main 1nterface with such systems. The format ot the
information displayed on the terminal plays a significant
part 1n the success wé the 3v5;em. It must be well
structur ed ;nu easlly undprétood. The terminal 1nterface 19
alsy the first place erroneous data can be screened from the
syatem.

Display Terminal Interface

The display ;ermxnal can be used as an i1nter face thh
'the system 1n ei1ther line mode or full screen mode. In line
mode the e.change of 1nformation with the séftyare svetem 15
restricted to one line at a time. This method 15 relatively
ineféicrient 1n that onlv a small amount of 1nformat;dn 18
e changed with each computer system 1nteraction, In
addition, 1t 15 difficult to structure requests for data
that relate tu one another. For erample, 1f you were
burlding e personnel fi1ile, you would want to i1ncliude each
persuns name, address, phone number, number of dependents,
and social SGLUF;QY number . In line mode each prompt would
réqu]st \ome part of this 1nformation. The i1nteractions
would‘be 193§ elbxclent than full screen mode but earh prece
of 1nformation could be cher‘ed as 1t 1s entered gaving the

progr ammer more 1mmedirate control. In 1line mode the

A%

proqrammer.would aléo have to be concerned about page
scrolling 1§ they wanted to maintain related 1nformation on
the screen at the same trﬁe. Instead of prompting for this’
intformation one prece at a time, +ull screen mode Pnablés
thé proérammer to eastablish fields on the screen 60(‘2h15
information. The user then fille 1n the ti1elds with this
tnformation., After completnnq or“fxllxng all the fi1elds,
the 1nformation could then be transmitted to the computer
for processing. Thise would greatly 1mprove the efficirency
of the interaction, It would also reduce the litelihood of
errors because all related 1ntormation can be seen at one
txmé. Each screen coihtains the fi1elds or requests for
related inoo;hatxon and the programmer neéd not be concerned
with page scrolling. Full screen mode tales full advantaqei
ot the technoloyy avairlable with mést'dlspIAy terminals. It
enhanctes the structuring ot the 1nteraction thh'the
computer system. Furthermore, 1t 1mproves error checking by
9habl?ng the programmer or designer to set characteristics
tor fields on the «creen. This capabilaity 1s really an
e»tensxon'of the proqrammers error checking routines. in
line mode the programmer had more 1mmediate and tighter
controul an that each field cﬂuld be chected as they were
entered. But 1n line mode all error chechbing had to be done
t-y the proqrammer . In full screen mﬁdé some nf the astandard

type of error «heching can be done by setting fir1elo

characteristics and ranges. The programmer can concentrate

14

more on specifics relating to the data and still maintain
control of the data entered. This all adds to improved
productxv;ty of the sys;em development effort.

The programaing of display tor&:nals for full screen
mode, on the uther hand, 18 difficult. In line mode the
droqrammer Heeds to be concerned with the amount of
1tnformation that fi1te on oné line and one page. a1l
information 1s entered 1nto the s;stem one line at a time
and error checling 19 done by thé programmer. In full
screen mode special programming 19 rgqu]red to establish
fields on a display acreen and to set field character:stxcs.
?urthermore. all the 1nformation on a screen 1% entered
prior tc transmitting to an application program.

Ihé 1mplemehtatxon of full screen mode 15 dependent on
the type nof equipment that 1s used. The products discussed
helow relate to twno types ot equipment: the Digital
Eaquipment ﬂorporatxcn VIIO0 type terminal and 1ta 1ntertace
with a DEC main frame, and IEM "7 type terminal and 1ts
inter face with [BM main trame.

Al thaugh the purpose of this paper i1s not to discuss the
hardware 1mplementation of full screen, the following
Ji1scussion should provide enough 1nformation to understand
how the screen degan éroductxznty ards 1nterface with the

a
terminal and main frame.
The DEC QTIDB inter face with the main frame 1% at a

char acter 1nterrupt level. Each charatter 18 sent and

processed by the computer as 1t 1s typed. On one hand thas
means the man-machine aneracbxon 18 1nefficient 1n that
little 1nformation 168 being processed with each computer
uxntéractxon. On the other hand, the gbmputer can checlt each
and every character as 1t 18 typed and send an 1mmed ate
reasponse to erronecus 1nformation and have xg corrected.
Then the i1nformation that 15 ¢;nally processed by our
application praogram will be error free. The 1mplementation
nf full screern mode 1n this environment i1nvolves a screen
image driver that 1s the i1nter face between the terminal and
the application program. ' }Hxs will be explained 1n gréater
detairl later,.

'Thw nmplempnfatxnﬁ of full screen mode for the IBM 327
type terminal 1% baséd upon the presenée of & mapped
character buffer 1n the terminal, and a terminal controller.
There 15 a f1 :ed one-to-one relationship between each
character storage lucation 1n tﬂe»bu{fer and each character
posi1tion on the display. For example, 1 the termxﬁal has a
drsplay surface 04.24 rows and B8@ columns, row | ﬁaps to ‘he
firet 80 character storage positions {n the character
buffer, row 7 maps tou the second B@ character storage
positions, and o on; All data 15 entered 1nto the storage
buffer of the terminal and there 13 no i1nteraction with the
computer unti1l the SEND btey 1s depressed. The‘amount of
information transmitted 1s higher than that 6# a character

interrupt system, This 1mproves the efficiency of the

16

.

interaction with the computer. The error checting however
1 Nnot as 1mmediate as with a character levél interrupt
syatem.

In etther case, the addressability of each char acter
position enables the progrémmer to establish fr1elds within
the display and to cantrol fhe attraibutes o(cach f1eld.
Fxéld attributes may 1nclude highlighting, color, alpha,
numeri1c, alphanumeric, protected ‘'user can read but no(‘
update'that field), ant ¢f1eld validation (certain 1tems must
‘be present betore the display data can be fully processed by
the computer . Typically this would be used to 1nsure that a
vall1d processing request was made). The ability to set and
control these field characteristics wi)ll greatly 1mprove
thas man~mgchxne 1ntér6@ce.

There are a number of other characteristics relatlng.té
dxspléy terminals that need consideration by the

. .

p(bgrammera. Speciral control characters are required to set
these field characteristics and control cursor movement.
Without some type of programming aid the programmer will
have to dgevelop his own l1ow-level language interface. This
increases the time needed to develop a screen display and
1ncreases the lxlplthnc»d of program errors,
Terminal Dialog

Numer ous vendor o of fer prohuct;vxty aids for the

programming ot display terminals. The products offered

contain spectal functions far the development and use of

17

-

interactive applications called “d}aloqs“. A dialog 1s th;
interaction of a terminal operator and an application
program. The oper ator communxcates hi1s needs to the
.application program by resﬁbndxné to inquiri1es presented on
the terminal display. Prpductnvxty aidea, for display
terminal progrémhxng, are generally grnupeg 1Into two areas.
First xs.a facility that aids 1n the development of various
types of dialongs. Séfond. a dialog manager provides control
and services to support processing of thesé di1alogs.

"Dialog development™ functions 1nirease progr ammer
productivity by si1mplifring frequently per formed progQramming
tasks, They are especially helpful 1n the development of
screen formatos. _Siqnxfxcant features include:

Full -screen context editing - gives the programmer the
abili1ty to design the screen 1mage directly onto the
sureen, In most cases this 15 done using a standard
editor . After the screen 1mage 1s created special
tunctions are used to save the 1mage 1n a screen f1le
faor later use.

Screen sheletons and program madels - help the svstea
designers and programmers develop dialoqg panels
(ecreens', messages, fuhctxon routines, and tables.
Thears sieletons and models give the programmer a
starting pGxnt from which to work. Typically they
include the structure of the most lilely used areas of

A

a diralog.

t8

Scrolling - enables the user to scroll the information on
. tﬁe screen up, down. left, or right by various numbers
of lines or characters.

lnterfacé to standard |anguage processors - provides the
stfucture for linking to and calling other languages.

Dialog test facalities - enables the designer or

.programmer to dxsplayfthe screén 1mages and trace the
flow of 1nformation on 1ndividual screens and d{#loq
segments.

DOCumentatgon preparation assistance - provides a way of
structuring the documentation process to 1mprove the
documentation of the system being devel oped. This is
done by leeping tables of Qarxables used and brocossxng
sequence of thé’gz:;ens displayed during a particular
dialog.

Online help and tutorial - these functions help the
designer or progr ammer use the facxl:txesvoc dialpg
devel opment . It alsovenables the programmer to create
similar help i1nformation and tutorials for the end user
oé¢ the soétware system being developed.

"Dialog management” i1nvolves a number o+ functions that
provide a variety of services and manages the dialog
process. When a dialog 18 1nvoked, di1alog management:

Displave @ hierarchy of screen menus based on user
selections.

¢ Involes functions ¢from the menus such as command.

19

procedures or applxcation progr ams or d{splay. other
screens.

Communicates with the user via data entry displays and
messages. This s done thFquh var;ab!oa on i1nput and
messages on output.

Provides online helb and tutor}al information. The user.
cah reqeust'help on usxn§'£he dialog facility or can
request help on the gaystem they are using. The lattgr
help or tutorial 1nformation would have to be provided
by the system progr ammer when the dialog was developed.

- Cenerates logs of the i1nteractive sessxoﬁ. Tﬁxs facility
enables the user to trace an entire dialog, recording
all tﬁe interactions that occurred.

Maintains usér;enfered or program-generated data. Oxalog
management will maintain a list of the last used
screens and selections. Then on request, the user can
be réturned to the last point of the dialog before the
dialog was terminated.

Elements of a Dialog
A dislog 19 made up ot & panel ;- functions, messages,
vari1ables, and 1n some cases tgbles and file sleletons.
A "panel” 1s a predefined display 1mage. it may be a
menu from which the user selects options, a data entry
display, a8 table display of selected Qntrxeg from a f1le, or

an 1nformation display such as a tutorial or help panel.

A “"function” 18 a program or command procedure that

2

’perfOrms proceassing or controls the flow of the dialog. The
program may be wrltteﬁ 1n an assembler language or
high-level language such‘as FORTRAN: or 1t may be w;xtten as
a command protedure.

A "mewssage’” 1s a commeﬁt that provides speci1fic
1nfo;matxon to the user., It may be'aclnowledqement that a
request was receilved Or a warning that something 1s not
progrecsing as ezpected.

A “vari1able” 1s a character string reterred to by
symbolic name. It 19 the main means of communicating
between the parts of a dialog such as panels and functions.

The services of dialog development and dialog management
functions mate 1t easy for a deglqner or programmer to
define screen display 1mages. These 1mages are ;pecxfygd by
pane!l aeixnx!lnnu that 1nclude a preture of what the end
user will see. Thx% s1mplifies panel creation ana
maintenant e, Fanel and messnge definitions are created and
maintained by editing directly 1nto the panel and message
f!!es. Compile or preprocessing steps are not requtred.

Fanel definitions may contain an attrabute section, the
ma1n bad,, an 1mtirali1cation section, and & processing
section, The attraibute secti1on defines the special
(haracters that will be used 1n the boudy bf the panel to
detine the attributes of the fields 1n the panel. The main

hody of a panel 1w required and defines the format of the

21

panel as seen by the user., It also defines the names of an}
varirable ti1elds used on the panel. The i1ni1tialization
secti10on specifies 1nmtial procgssxng‘and'typncally defi1nes
the xnxtxél values of variables. The processing section
speci1fi1es the procéssxng that 18 to occur after ghe panel
has been displavyed.. This section defines how vari1ables are
to he verxfxea and the functions or other panels tﬂqt are to
be displayed ac a result of ;he Qalues entered on the panel.
The neAf spckxun reviews a number of products that are
denigned to 1mpr6ve the productivity ot software designers
ANG progr ammer s 1n their uvse of display terminals for
sOttware devel opment. These products provide speciral
tunc ti1ons for the dévelopment and management of tefmxnal
dielugs. They are alan used hy the end user as the
1iterface between the terminal andwéhe application program.
These producte represent three levels of capability in
pronn(ts that are currently avallable. The DE(/fForms
Management System provides functions for terminal dialog
betweer: the display terminal and application programts).
1BM s Interartive System Productivity Facility provides
similar (apabilities but provides more system wide services.
And +tinally the SAS,Fnli Screen Froduct provides functions
for terminal diralog but only as those dialogs i1ntertace with
the ShS s, stem. These will he e plained 1n more detarl

bel ow.

e

P

DEC/FormS‘Mahagement System

FMS 1s & software tool for developing terminal dialogs.
Theae dxaloés tnclude panels 'g;reoﬁ 1mage forms) and
application programs which use the paﬁels for 1nput, output,
and control 1nformation, FMS panels must bg displayed on a
VT100 or romba?xhlp type terminals, FMS 1s designed to run
on VAX/VMS V2. 0.

FMS has two main functians for dialog development:

Form Editor FED) - 18 used to desanbthe form directly
on the screen. By using FED editing functions you can
arrange the fields of the tourm (context editing),
assi1gn farm names and fleld names, and set field
attributes that will be used when the form 1s
displaven, k
Form Uti1laty FUT)Y - ai1ds 1n the creati1on of hard-copy
lx;tanq from the forms designed on the screes. It 1s
alao vsed to manage the library of forms already

created,

FMS tas one main function for dialog management.
Form Driver (FDV) - 1s the ;nter6ace between the user s
application program and the termxnél. The services of
FDV are requested by an applxcafxon program, These
services display forms and perform field and character

validation from 1nput entered on the form. Once called

"to display a panel (screen 1mage), FDV does not return

to the calling program unti] all required data on that

panel] 1s entered.
The relationship of FDV and an application program 1s as
follows:

([ZZ 22 XX RS A RIS RER R R R A X R N X R NN & X N J

. +
. Host Operating System Services +
+ (VAX/VMS V2.0) +
S +
+ ..CQQD'I..QI.Q..Q‘Q.QCOOQ +
+ + FORM + -
+ + DRIVER * +
+ + (FDV) + +
[EENXEEANEEENREFT ARSI R RSN R R R RN AR XX XN N X X J ;
+ 'S '

[R XX N RSN N S XY X J 28a000880008

* + + +

+ Application + * vTiee +

+ Rrogram + + Jerminal +

+ + + +

PRNBEBOIRBPRIIES [E XXX AR TR N XX)

The form driver 1nterface (FDV) 1s logically between the
terminal and the ;pplxcafxon program. Each key strole at
the terminal 15 e:amined by FDV based on established Oxéld
charactgr:stxcs. Any errors are 1mmediately reflected bacl
to the terminal user for correction. Once the 1nput.ior
that panél 1s‘te}m1nat9d the data entered 1s returned to’éhe
application program.

Since FDV 15 the only direct 1nterface with the
application program, form malntenénce 18 simplified. Form
layout can be changed without recompiling an application

Jprogram,

DEC/FMS_Diralog Developaent

Creating or modifying forms with the form editor (FED)
18 an 1terative process. The form edxtqr permits one to
arranqge the fields on the screen and to then test the form
to see 1ts appearance on the screen. In this manner, a
.s0ftware designer and user can work together to lay out the
form. This will 1mpfove the t1nal screen layout and i1mprove
the 1ntormation that needs to be displavyed. Froqgr ammer s rén
use the editor to display forms 1n checking the 1nter face
- bhetween the faorm and applaication program. This will 1mprove
software development, as a whole, by 1mproving the accuracy
and quality of screen 1mage dxsplays.‘ In addition, both
tasls of screen desxgn‘and application programming can
continue simul taneousl v, The only 1nterface 15 nowing the
number and names of varxébles.' P(ogrammxﬁq tor the disaplay
terminal becomes o seprarable tash,

The) "form editor ' has a number of functions to creaté
tt screen 1mage and assign fi1eld att?xbuteﬁ. The fields of
the screen 1maygye are arr anged using the editor. Field
prctures are establiched uesing a set of picture validation

characters which have the following meaning:

C nlphanumer o

- &lphaﬁpfx(

9 Numesr 3 ¢ : : ~
N Si1gned Numer ¢

o Any Char acter

25

An e:ample of how a ‘screen 1mage mxght'loot ftollows:
emmess-e-~ Employee Records ----- -----
Emp;Oyee.éerxal: PIIIIIY
Type of Changes: AAAAAA (New,Update,Delete)

Employee Name:. .
lLast : ARARARAAAARAAAAAARAAAAA
Firet + ARARARAARARAAAAAAAAA
Inityal : N

Home Address :
F.0. Bo: :99999
Street : CCCCCLcececeeececcececceccceeeccceccecec
City : ARAAAAARAAAARARAARAARAAAAAA
State : RA
Z1p Code :99999

Home Phone H
Area Code: 999
Number :999-9999

The characters 1n the fields have the meaning described
above. This screen 1mage would be displayed without the
f1eld picture characters,. Any attempt to enter a character
‘that does not match what was specified for that field would
be 1mmediatel y flagged as an error. The terminal operator
would have to correct 1t before he could move on to the next
fr1eld.

Fhere are additironal attributes that can be assigned to
each fielo. The VIDED tunction 1s used to assign video
attributes to each field. FPossible seléctlons are BOLD,
BUINE | REVERSE, or UNDERLINE. Finally, the ASSIGN function
 d1GDldy% two gquestionnalr es, Une questionnaire 18 used to
assign attrabutes tn the entire screen. The other

-

questionnalre assiqgns additional attributes to particular

26

fi1elds.

.

" Form Name
Help Form Name

Reverse Screen (Y ,N) N
Current Screen (Y ,N) N
Wide Screen (Y N N
Starting Line (1,23 1

Endxng Lime

An . example of each follows:

Form Wide Attributes

3

—~ -
- -

or

Impure Area
Form Si1r-e

" bytes
7Y words

Field Attributes

Name H
Right Just (¥ N} _Clear Char (chr)
lero F1ll (Y /N
Default
Help :Type a 1, 2, or <
Auto Tab (Y,N)N Reap Reqd (Y, ,N)Y

Must F1ll (Y,NON
Indexed(N,H,V)N
Echo O#¢ (Y ,NIN

Fixed Dec (v ,N)N
Diep Only (Y N)Y
Supv OnlytY NN

After the form hae beer designed and attributes assi1gned the

form 15 saved.

The form uti1li1ty (FUUT) procresses the form created by the

torm editor. It stores the form description 1n a for mat

that 1s used Ly the furae draver. FUT can be used to merge

torme eli1minating the need to recreate a form with the

editar. It can be used to print field descriptions and

aCrpen tmages of forms maintained 1n a forms library. The

f1eeld descraiption li1ats earh f1eld and the attributes

assi1gued to 1t. The printed screen 1mage contains a picture

wf the ixnlds, as they will appear on the terminal, and a

27

map of the video attributes of each field.

The form driver (FDV) processes the form deucr:ptxoﬁ to
display the screen form and collect the responses enter ed py
the user. lising the form description and field attributes,
the form driver qQuides the user through the form. It
.collects and validates all 1nput bqsed on.the form
descraiption. lOnly‘a6ter all required data 1s 1nput pnd
validated will the form driver return these values to the
calling Qpplxcatxon program.

The form driver supports 1nterfaces to VAX—I{ BASIC,
COBOL, FORTRAN, and FL /1. The i1nter face 18 a call to the
FDV draiver functions. For e:ample:)

CALL FDVSCLRSH(fname,line) - will clear the screen and

display the form spec) fied by fname on the line

speci1fed by 'line .

CALL FDVSGET tfval ,term,f1d) - gets the value tval ',

t1eld terminator term |, and . the fi1eld name ¢1d .

- This 1s the way 1n which data 15 communicated to the

application pr ogrém. |
There are other functions similar to those shown above.

ThEy are used to accomplish a varxety‘of tasks required to
roéﬁunlrate 1ntormation between an application program and a
terminal, These standard functions 1mp;ove the productivity

of programmers by eliminating the need to write their own

functirons, In addirtron, the automatic error checking

accomplished through field attributes reduces the chance of
error and 1mproves the overall quality of the Software

system developed.

IBM/Interactive System Productivity Facility

ISFF 1 an ci.tension ot MVS/TS0 or VM/SF operating
systems. There are two maj)or subsystems to I1SPF. The fi1rst
1% “program development” and 1s ‘an environment 1n which the

proqr&mmer can do most all the functions they might do 1n
developing software. It provides a menu Interface to-all
avairlable operat;ng syvetem ser .1ces such as] anguage
processors, compilers, word processors, jab submxssxon;

electronic mail, pdxtors._HELP facilitr1es, and online

tutorials. The second maj)or subsystem 1s "diralog

devel opment anddi1alog management ', ISFF uses 1ts own dialog

management facilities to thisplay the ?anels related to

pr oyr am development. These are also avair1lable to designers
and proqramﬁprs for the development ot terainal dialogs:.
ISFF pro.ides the screen management ser vices and dxsblay

driver 1nterface betweon the terminal and the main frame.

T

—~
p N

.

The relationship of ISFF and an apblxcatlon program 1s

shown below:

AR X EEE R RIS AR AZE AN R AR E R SR AR AR X RN N 4

+ +
. Host Uperating System Services +
+ (MVS /TS50 or VM/SGPR) +
. ‘ N .
. + ([EE NN N N X NN ENRN RN NERNRNNNN X J +
] + [SPF * +
¢ ¢+ Dialog Management . U
+ ¢+ Ser .1ces - +
[EEREENENNERENRNNESRESEE X XNN SN -ENNENNNXENNNY N]
(4 +
+ *
CHBDBPHIPOBOIIIDN sSepasBadIIGRES
¢ Application ¢+ . 2279 +
+ Frogram * ¥ Terminal -+
[E R NN R X N X NR N X ¥ NI ahepoEBOBDIGBNES

I a manner similar to that ot DEUC/FMS, ISEF dialng
management 1¢ logicall, between tﬁe terminal and the
application program, The information entered on a panel ;%
not reflected to [SFF dialog management 1mmed: ately but
instead staored 10 the terminal bud der when ?he user eaends
panel 1nput the contents o+ the terminal buffer are
transmitted to ISFE, Each field 15 erxamined based on the
field characteristics established when the panel was
developed. It any error; are detected the entire panel and
freld contents are redisplayed and the erronecus field
.marled taor correction., Dnl; aiger all detected errors have
beer. rorrected can the terminal dlalng continue. Data
entered 15 then passed to the application program or command

pr ot edure.

ISPE _Dialog_Develgpment
Creating a panel (screen 1mage) 1n [SFF 18 done by using
a standard f1le editor. Pane!l definitions 1nclude the

following sections:

The "body"” detines the tormat of the panel or screen

1mage as seen by the user. Thi1e 18 the pircture part of
A screen and 1s required.
The "attraibute" secti1on defines special characters that

M1kl be used 1n the body to detine fireld

B LI }

characteristics. It may optionally Overrldé“deiault
“attrxhute definitions,

The "1nitir1alizati1on” section speclrfies 1ﬁxtxal
processing prior tu displaying fho panel . Typically,
this section defines how any vari1ables are to be
inmiti1aliced.

The "processing” section specifies the processing that

15 to aoctur after the screen has been displayed.

Following 1s an e.ample of a panel as 1t would appear

pricr to being displayed by [SPF:

\“\

Yom EMPLOYEE RECORDS -=-=------

“EMPLOYEE SERIAL: SEMPSER
+ TYFE OF CHANGEZ==='_TYPECHG + (NEW,UPDATE, OR

DELETE)

+ EMPLOYEE NAME:

+ LAST Z=ma® | NAME +
+ FIRST V===, FNAME +
+ INITIALY === 1+ ’

HOME ADDRESS: .
LINE | %=== _ADDK1
LINE 2 %m== . ADDKR2
LLINE 3 %Z=== _ADDR3
LINE 4 %=== ._ADDR4

* ¢+ + + -
+ ¢ + &

e by —

+

HOME PHONE : ‘ :
AREA CODE %Z===. PHA+
LOCAL NUMBERY%=== _FHNUM .

L 4

*

) INIT
IF (4PHA =)
LPHA = 301
LTIYPECHG = TRANS (L TYPECHG N(NEW U,UFPDATE O,DELETE)

' PROC :
STYPECHG = TRUNC (S&TYPECHG, 1) g
VER (LTYPECHG,LIST N,U,D ,MSG=EMFX21@)"

VEK (&L NAME , ALFHA)

VER (LFNAME , ALFHA)

VER (L1 ,ALPHA)

VER (2 FPHA ,NUM)

VER (%FHNUM,PICT, NNN-NNNN)

YEND
The ¢+, %, _ ®1gns have the following meanlng when
processed by the I1SPF display service routine.

“ ‘percent sign} - ts*{ﬁ;nrotected) t1eld, high
1Nt eMnt oy

¢ plus si1gn?} - tert (protected) fi1eld, |low
intensat
tunder score) - 1nput (unprotected) ti1eld, high

intensa ty
The trarling plus 31gn 1ndicates the ma.i1mum length ot the

fi1eld. Any attempt to t,pe beyond this field mart will not

reqx%ter and simpply tab to the net field.

. .

Thecse are the default settings for field attributes.
The, may be further defined by ;ncludan an attraibute
section. x& tne attribute section, fields may be declared
by: a
TYPE (anput ,output ,text)
INTENS thigh,low,non)
CARSton,of §)

JUST(lett ,right ,as13)
FAD (pad character).

The VER statement 15 veri1fication ot the values entered

and has a vari1ety of options. The options 1nclude:

NONEL AN} - ¢s1eld 18 required.

Al FHA alpha only.

NUM numher only.

FICCY ,strang - matching specific character straings.

FANGE |, | ower jupper the value must fall within the
limts,

LIST,valuel, ,valuel.... the value must be one of those

li1sted.

Although not shown 1n the akove e.ample, the FROC
section has anuther option: LSEL. This option processes
the values entered and cen select: another screen 1maqQe f{or
diwpla,, a host system Commaﬁd for e:ecution, Or anofher

application program for exscution.

Atter the screen 15 processed by [SFF dialog management

the screen would be displayed like this:

~-=-w=--- EMPLOYEE RECORDS --=- - - ----

EMFPLOYEE SERIAL: :
TYPE OF UCHANGE === (NEW,UPDATE , OK
DELETE) '

EMPLOYEE NAME:
LAST mez
FIRST axa
INITIAL ===

HOME ADDRESS:

LINE ! ez
LINE 2 ===,
LINE T ===
ILINE 4 ===

HMUME FHONE :
AREA CUODE zE=
LOCAL. NUMBER =
I5PF Liralog Management

[SFF d;alog management services ¢an be executed 4r06 a
rommand procedure or high level l%nquéqe such astORTRANw -
FtL 1, or OB, It provides a number of services ftor dialog
management .

"Displav Services”
DISFPLAY - reads screen 1mage deftinittions from screen
files, initi1alizes var)able’xniormatldn from varxable‘
f1les, arnd displays the screen on the display terminal.
After the qﬁgﬁgxs entered on the screen, the 1nputs are
stored 1 dialoug varitables and the display service
returrs to the application program or function,

TR TSR combines 1nformation from screen definition

files and ISFF tablee, It displays selected rows and

re
R}

columns and permits the user to select the rows f(o0r
proucessing.
"Vari1able Services"”

Dialog variables serve as the main communication
between diralog functions tapplication programs or
s;sfem commands) and [SPH éervtces. Vari1able ser vices
allow a tunction to define and use variables,
?uferenc1ng them symbolically by name.

s+ e Tailoring Services"”

File tairloring services read steleton ¢1les and
treate current tailored 0ut§ut that may be used to
drirve other 4unct13ns. fypircally, these services are
used to modiéy a Job processing wtep by fi1lling 1n
var1able values tor a particoalar job. In addition to
this, they ran be used to belp standardi-e parts ot
sOftware development euch as documentation. A sleleton
can’be a< si1mple as providing a standard way O¢
recording 1ntormation about a program module. IThis may
be module name, programmer name, creation date, and the

date the mndule was tested or moditied. For erample:

MODULE LMODNAME
0 FROGRAMMER - LFRGNAME
CREATED - %DATE
TESTED - STESTDATE
MODIF TED YMODDATE

The steleton stub above could be 1ncluded Jnvother
screen 1mages and diaiogs to 1nsure that this specatic

type of intormation 1s recor ded. lt 1« general enouqgh,

however , to be 1ncluded 'n a varieoety ot documentation

steps. In this way, a library b‘ standerd steletons
can be developed to record necessary 1ntormation.

File tax{oran 5;rvn(n5 are provided by four
functions:

+ TOPEN - prepares the file tailoring process.

FEINCL - specrfies ‘he sieleton to be used and

s!ariq the taitloring process.:

F1CL OSE ends the tailoring proceéq. ,

F TERASE - erases an, output fllé that was created
by fi1le tarloring.

ISFF can be 1involed 1N two ways: trom a command
procedure Qr from a programming laﬁbuage. Languages that
are capported are FORTRAN, L /1, and COBOL.. ISHF ser vices
are 1nvored 1n the following manner (or form):
traam o command pr ocedur e

IGPEXFL ser vice-name tey/swordl tralue) reyword. (value:
ISHFEYEL DISFLAY FANEL ‘screen 1mage name) |
trom a praogram

CALL. ISFLINY (ser svice-name, beyNOfdl'valqe\,

teywordlivaluer)}

CALL [SFLINE ¢ DISFLAY , FANEL (screen 1mage name))

ISPF 1s «er similar to DEC/FMS excpet for the actual
hardware 1mplementation as discussed earlier. They both

pruvide flevi1ble vet standard ways to develop and 1mplement

\

terminal dialogs. They both have functions that provide
éof: panel development and display, panel 1nterface to .
standard.langnaqes. and dialog test tatilities. Thg
software |mplementatxoﬁ of panels,tfnelds. ti1eld
characteraistics, and the cbn?rol of dialogs 18 drtéferent but
only 11 the actual i1nstructions used) concebtually they are

[

the same.

Statistical Analysis System/Full-Screen-Product

The Statistical Anal?sns System (SAS) 18 a set of
procedures that can be used for all types of data creation,
modi fi1cation, analysis. and retrieval, SAS/Full Screen
Froduct (FSF) runs within the SAS environment, which runs
under phe &éﬂ operating systems MYS/TSO or VM/CMS, using ah
1BM 357x or compatible display term:nal.”

Tﬁns product‘representé a set of products sxmxlar‘to the
two previouly discussed. It 13 very limited 1q scope though
in that a1t can"oﬁly be used within the.SAS interact:ve
subsystem to create, manmipulate, or display SAS datasets.
Although 1ts application to computing is restricted, 1t may
suffice 1n part:;ular data processing situations.

SAS/FSP has one procedure FSEDIT for developing terminal
dralogs. FSEDIT accomplishes botﬁ'functxons‘of dralog
development and dialog management 1n a limited fashion.

Full terminal dialog as previously discussed 1s not possible
with SAS/FSP. SAS/FSF has three additional procedures but
they are not used for developxngﬁand managing terminal
dialogs. The four procedures are:

PROC FSEDIT ;s used to change panel (screen 1mage)

layouts and manipulate SAS datasets.

FROC FSBROWSE 19 used to display obgervettons 1n a SAS

data set.

PROC FSLETTER 19 used to edit and send letteras through

electronic mail,
FROC FLILWT 1o used to list SASvdatasets.

.Yhese procedur es pro?xde the desi1gner , proqgr ammer , Or
end uswr with the‘abxlxtw‘to wOrh with their SAS fa1les.
Bince GAS 1s already an i1nteractive subsystem, the end user
A fypxc;lly the per son using SAS/FGE L

A SAS data set has two parts: a dpgcfxptor section
contairning documentation ahnut’(he‘dat; and a data section
containing the data values armanged 11 a rectangular table.
Rows Ot 'hextéble represent ohsergatxuns: the columns
represent vari1ables which are 1dentiéied by name. The
descriptor ﬁpct;on 5§ores anQrmatlon about each vari1able
such as: type tcharacter or numeric), length, position i1n
thé table ‘column?, format (format for diasplay or praint),
informat (format on 1nputy, and & | abel (description for a
var table name)%“.Hxstorxaal information may also be
contained 1n the desrr{ptor section stating when the data
set was (reated, last upqate pr modi fication, and the
wctatements used to create the data set. SAS data sets are
the basis for the full screen procedure FSEDIT.

FSEDIT 18 a procedure that 1s used to add, delete,
update, or locéte obhser vations within data sets. It 18 also
the procedure that 15 used to layout the ti1elds on a -
coreen panel and define any spect cﬁaracterls?lrs 0 the
fields., On & cution of FSEDIT a default 1ayout of frelds x$

usel 14 N ospec1fic screen la,out was requested.

ne an e ample, assume that you wanted to leep a mailing
li1st of 5dbsc}|bers to a magazine. Usnnd SAS you would
create the descr:pt\on secti10on of the data you wanted to
keep as 60110w§:

DATA IN.SUBSCRIE;
INFUT. name $5@. #2 ADDR1 $SQ. #~ ADDR2 5%0.
94 BEGDATE MONYYS., #% YRS 1. W6 NEW $1.
INFORMAT BEGDATE MONYYS. ;
FORMAT BEGDATE MONYYS.
LABElL BEGDATE=DATE 0OF FIKST. ISSUE
NEW= 1=NEW SUBSCKIPTION, @=0LD SUKSCRIPTION :
CARDS: .

Thie« represents a DATA step within SaS. AS a result of
e:ecuting this code SAS creates a data set with the
following descriptor section:

VARIABLE TYPE LENGTH POSITION FORMAT INFORMAT

LABEL

1 NAME CHAR 8 q

> ADDR! CHAR . " .54

= ADDR2 CHAR =0 104

4 BEGDATE NUM 8 1S4 MONYYS. MONYY
DATE OF FIRST [GSUF

5 YRS NUM 8 162

& NEW CHAR 1 170

1=NEW SUBSCRIPTIDN..QtoLD SUBSCRIFTIUN

lo display the screen 1mage you 1nvole FSEDIT 1n the
following wav:

FROC FSEDXT DATA=!N.SUBSCRIB:IN.SCRFENI;RUN;

J Thas command 18 erecuted from within the SAS environment

and spec) fies the data set to be processed. The screen file

used to save the format and variable characteristics 15 also

spect f1ed. The $1rst woreen dxsplafen 1~ the primary option

ment SCr e,

Select

To

fields

G Len

Adet aa

Command

1t

e

FSEDIT Fraimary Option Menu

option=-- Press END to return
1 Edit SAS data set: IN.SUBSCKIEK
2 Review or change FPF ley definitions

%

T RKeview edit commands

to YAS

4 FReview the FROI. FSEDIT statement and options

- T Sereert Modirficatian - -

5 Review or change screen modifi1cation FF keys

6 Modify the edit screen

arrange the format and set characteristic~ of

apet 1fr1ed 1n the date met you select aption 6.

16 presented with the varirables displayed 1 a
fur mat .

EDIT SAS data set: IN,SUBRSIKIH

HAME ¢

ADDKR 1 : : "
ADDKR

BREGDWIF ¢

] PS:

HE it .

(&)

anag the

faelds can he arranged o o whatover fagr mat the dec)gne

[t Qe wmmer tes g, Nttt the bar wat v deter minedd,

Attrabatyer an biee et vor et vartable or al bowed to
“ '

et a4l e, s atem otandar de.

ar 1 et T ‘Al‘)l‘."lP\‘SJ'P Al able cor sor een

N

cettiog ot faield attribntes, asyrmg the edy tor

a0

the

" '

dec 1 0n

A

r ar

tte

"t vartablee faeld attraibutes are set from spec) al
Ger e e leac t o bee t»,; Command rramec Each time one ot those
‘;nnm.un!a 1t 1 ssued A screcn 1mage of the fareldse detined 14
Jraplasen, These apecral acr G?F.'ﬂ‘.’.' set ¢ 1teld attrabaten ac
fod D ws s
PNTT 1 spetitving a value 1 a tield sets 1t 1 taal
values, Thew: will be displayed as 1nitial .alues eact

time the ..ﬂflljhlf* 19 v aplaved.

u

Mar MM Uy placicg a number 1n a ti1eld sets & range of
At antable Loalaes, [& (alae 19 entered that does not
tall Wittt theaece caludes, an error messages 19

dispri o, eed.

BEOUITKRED atr Koan any tield ».»ﬁ_c.*uhea tr;at tr\\s fnxel‘d
mu".’“ Ly entered before the screet carn be processed,
reie Al oan any field speci1fies that this ¢ti1eld will be
Capl?."all:ed wheti processed. _ Fielde not marted 1n thas

wa, wil]l remain as they arp entered.

COLOR plarang the ti1rst letrter of a (olor 1n a fireld
sety the colaor ov thais ¢1eld when 1t 15 displayed.

FCOL OF <_ﬁrwe can speci1fy the color ot a vari1able field
when an error has ﬁeev- detected. The color 1s
apeciried 1n the same manner as for COLDR.

ATTH wttraibates of each fireld ran be set to one of a
ramber ot attraibutes surh as: blinting, reverse video,
ur Ur\derll'llf-.

. FROTECTED - this grreen lets you detine protected ti1elds

by entering & F 1n any ti1eld you want protected.

Frotected fields appear on the screen.but can not be

B

altereqo.

Once the tormat and characteristics of the variable
fields are set they are saved tor léter use..- At any time
the designer or programmer wishes to change the screen they
use FSEDRDIT armd spec;f/ the data set and screen they wagt to
change.

A{thouqh stmilar 1n cohcept to the previous two
products, SAS'FSF 18 limited to the SAS environment, .fhxs
redue es x(a value auw a general facilaty tor crea!{nq and

managing terminal dialogs.

44

CONCLUSION

The three dralog management products described are-
typical of the products currently available. Some, lite
SAS/FSF, are very specific to one type of environment.
Otﬁers.‘lnke'DEC/FmS and IBM/ISPF, have a wider application
to 1nterfacing with a host system or'appl;ratton program.'v
All offter facilities to easily create and manage the
interface with the computer.

Each product 1svdéslgned to run on specific hardware.
However , as software engineering continues to i1mprove
programming techinques, products will evolve that will have
application acrose different typés ot hardware and operating
systems.

The computing i1ndustry has been driven by advances 1n
har dware technology. But, as 1t grows, the pressure appears’
to be for spftware to become the draving force behind
efftective growth of 1te cdnsumers: their time 1s now the

“

moat erpens:ve 1tem. Actrons to reduce the human costs and
- .
s1mplity the man-machine i1nterface will have the greatest
impact on these costs. 0Office automation facilities, design
and coding tonls, application and report generators, and
program test routines meet some of these needs. They
provide speciral routines that standardx:e frequently used
functions and male them easier to use. Screen 1mage design

and dialog management provides the tools for development of

effective display terminal 1nter faces.

=
w4

Merged 1nto one coordinated set of tools, these’
productivit, aids will 1mprove the quality of software
systems and the productivity of the software development

effort. !

46

B 1Bl IOGRAFHY

Arthuar, L. J., "Frogr ammer Froductivit.”, John Wiley and
Soins, New Yorl , 1987,

Fildsun, K., "FProgrammer Froductivity: 'H}entv_of
Froductivity Ards: No Guaranteec”, Software News, Vol.
No. 1@, October 1983.

BEooch, G., "Snftware Engineering with Ada",
Benjamin Cummings Fubliszhing Co., Menlo Fartb, Ca.,
19647,

Boose, Allen, and Hamilton, Inc., "Hoore, Allen Study of
Managerial ‘Frotessional troductivity”, bBoore, Allen,
and Hamilton, New Yori , 1vHO. -

EBractett, M, “Frogrammer Productivit,: What & oQur current

sittuation ™, Software News, Yol. ° No. 18, October
1997, :

Card, 5. v, T, F, Moran, A, Newell, "The tevstrole Level
Mode]l $or tiser Fertormance Time with Interact:ve
Svatems”, Communications of the ACM, 1980,

Dearr, M., “How & Compater Shovld Tall Te ('eor.u(&;"'. '
S.ateoms Journal , Vol., D1 o a4, 198,

Doherty,, W, J., “The (ommercial "agmifircance o+ Man Machine
[rrteracrtion”, Infotect, State Ht *he vt (onteroence,
NCo sember 1778, '

Farber , R, M., "Frogrammer Froductioit,: Benefits and
Pitfalle ot Gerner ators”, Software News, “Yol. 7 No. 10,
Oc tober 19297, -

Leavitt, D., "Frogrammer FProductivit,: Measureoe Froqgrams,
Not Frogrammers” | Sottware News, Vol. ° Nn. 1@, October
1949 7.

Lent , K. M., T. L. Booth, T. T. wetmore 1V, "An
Instrumentation Sysetem For Measurement of Software
Fer formance” , Froceedinges Computer Sottware and
application Conference, November 1987,

Lodding, F.o N., leomie Interfacina”, IetEt Computer wwraphics
and Applicati1on, March/April 19875,

Mandeil]l , S. L., "Compnters and Data Frocessing lToday”, West
Fublaishing Co., St, Faul, Mn,., 1967,

Puinamw L. M., D._T. Putnam, L. F. Thavyer, "Froqgr ammer
Froductivity? Software Fquation Computes
Characteristics’”, Software News, Vol. 2 No. 10, October
1987, .

Stevens, A., B. Roberts, and L. Stead, "The Use of a
Sophisticated Graphics Interface 1n Computer-Aasisted
Instructiron”, l1EEE Computer Graphica and Application,
March/Apra1l 1987, ° ’

Weilsenbaum, J., "Computer Power and Human Reason”, W. H.
Freeman and Co., 1976.

Wosny, M. J., 'The Human-Machine Lonnection", 1EFE (omputer
Graphics and Application, March/April 1987,

Digital Egquipment Corp., "VAX-1] Forms Management System”,
Software Reference Manual No. AA-JC69A-TE, 1980.

IBM Corp., "Interactive System Froductivity Facility",
Frogr am Number S&68- 009, March 1981,

- .

SAS Institute, "SAS/Full Screen Product”, Users Guide, 1987

48.

CANDIDATE BIOGHAFHY »

i

{

Lester (.. Jern 15 a sen1or programmer analyst at General
Flectric 1n the Space Systems Division. Consultunt ta-a
mumber ot data procefssan complees, he advices 1n the areas
of oper ating c.ysterﬁ tuning and productivity, Hefore his
employment at General Electric he was an assi1stant research
engineer at Bethlehem Steei Corporations Homer Research
L aboratories. “,‘. Homer his Y'ESDOHSIDIIIQIQS 1ncluded the
tomputor oper atxr-qu System aoftware and the laboratories data
communication 1nte 6ac793 with the computer center,

A 1971 graduate of Capi1tol Radio Engineering Institute
1n Washington, ()..C. v In Electronic Engineesring Yec‘hn;)logy
‘m.Uor ““q 10 Communications Fngineering Technology. He then
attended Uroainue Tolilege 1n Collegevillie, Fa. praor to

entering Lehygt Umiversity.

a9

	Lehigh University
	Lehigh Preserve
	1-1-1984

	Productivity aids for software development.
	Lester L. Zern
	Recommended Citation

	tmp.1451580486.pdf.ZyndN

